WorldWideScience

Sample records for spacecraft viewing technology

  1. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  2. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  3. Spacecraft Environmental Interactions Technology 1983

    Science.gov (United States)

    1985-01-01

    recently acquired a NASA field office within the Technology Lenter; that is staffed by Mr. Wa~ne Hudson. We take our guidance from Air Force...apogee of 4.6 % geocentric and a perigee of 650 )a altitude. The DR-1 Nigh Altitude Plama instrument (DAPI) consists of five electrostatic analyzers

  4. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  5. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  6. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  7. Galileo spacecraft solid-state imaging system view of Antarctica

    Science.gov (United States)

    1990-01-01

    Galileo spacecraft solid-state imaging system view of Antarctica was taken during its first encounter with the Earth. This color picture of Antarctica is part of a mosaic of pictures covering the entire polar continent showing the Ross Ice Shelf and its border with the sea and mountains poking through the ice near the McMurdo Station. From top to bottom, the frame looks across about half of Antarctica. View provided by the Jet Propulsion Laboratory (JPL) with alternate number P-37297.

  8. A Technology Program that Rescues Spacecraft

    Science.gov (United States)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  9. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  10. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  11. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  12. Project Overview of the Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment

    National Research Council Canada - National Science Library

    Reuer, Charles

    2001-01-01

    The Naval Postgraduate School's current attempt at getting another spacecraft into orbit is focusing on Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment (NPSAT1...

  13. Customizing graphical user interface technology for spacecraft control centers

    Science.gov (United States)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  14. Application of software technology to a future spacecraft computer design

    Science.gov (United States)

    Labaugh, R. J.

    1980-01-01

    A study was conducted to determine how major improvements in spacecraft computer systems can be obtained from recent advances in hardware and software technology. Investigations into integrated circuit technology indicated that the CMOS/SOS chip set being developed for the Air Force Avionics Laboratory at Wright Patterson had the best potential for improving the performance of spaceborne computer systems. An integral part of the chip set is the bit slice arithmetic and logic unit. The flexibility allowed by microprogramming, combined with the software investigations, led to the specification of a baseline architecture and instruction set.

  15. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)

    Science.gov (United States)

    1995-01-01

    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  16. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    , 3) Controllability of the space-craft via a voltage bias to steer itself through the solar system to destinations of discovery. These activities once demonstrated analytically, will require a technology demonstration mission (TDM) around the year2020 to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) mission could be initiated. A notional TDM spacecraft that meets the requirements of such a mission will be showcased in this paper.

  17. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Science.gov (United States)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  18. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    Science.gov (United States)

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  19. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  20. DISRUPTIVE TECHNOLOGIES: AN EXPANDED VIEW

    OpenAIRE

    JAMES M. UTTERBACK; HAPPY J. ACEE

    2005-01-01

    The term "disruptive technology" as coined by Christensen (1997, The Innovator's Dilemma; How New Technologies Cause Great Firms to Fail. Harvard Business School Press) refers to a new technology having lower cost and performance measured by traditional criteria, but having higher ancillary performance. Christensen finds that disruptive technologies may enter and expand emerging market niches, improving with time and ultimately attacking established products in their traditional markets. This...

  1. The Physics and Technology of Solar Sail Spacecraft.

    Science.gov (United States)

    Dwivedi, B. N.; McInnes, C. R.

    1991-01-01

    Various aspects of the solar sail spacecraft such as solar sailing, solar sail design, navigation with solar sails, solar sail mission applications and future prospects for solar sailing are described. Several possible student projects are suggested. (KR)

  2. The technology vicinity: a location based view on technology

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Kocaoglu, D.F.; Anderson, T.R.

    2001-01-01

    The issue of technology transfer has been viewed from many different perspectives. In this case the focus is on the process of (production) technology transfer. One of the difficulties in studying international technology transfer is the definition of technology. The many technology definitions that

  3. Evolving Technologies: A View to Tomorrow

    Science.gov (United States)

    Tamarkin, Molly; Rodrigo, Shelley

    2011-01-01

    Technology leaders must participate in strategy creation as well as operational delivery within higher education institutions. The future of higher education--the view to tomorrow--is irrevocably integrated and intertwined with evolving technologies. This article focuses on two specific evolving technologies: (1) alternative IT sourcing; and (2)…

  4. The technology vicinity: a location based view on technology

    OpenAIRE

    Steenhuis, H.J.; de Bruijn, E.J.; Kocaoglu, D.F.; Anderson, T.R.

    2001-01-01

    The issue of technology transfer has been viewed from many different perspectives. In this case the focus is on the process of (production) technology transfer. One of the difficulties in studying international technology transfer is the definition of technology. The many technology definitions that exist are either too ‘loosely’ formulated or they require thorough expert knowledge. This results in difficulties with measuring technology and comparing different studies meaningfully. This study...

  5. 26th Conference of Spacecraft TT&C Technology in China

    CERN Document Server

    Qian, Weiping

    2013-01-01

    Proceedings of the 26th Conference of Spacecraft TT&C Technology in China collects selected papers from the 26th Conference of Spacecraft TT&C Technology in China held in Nanjing on October 16-19, 2012. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of “Shared and Flexible TT&C Systems”. The selected works can help  promote development of spacecraft TT&C technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book. Rongjun Shen is the Academician of Chinese Academy of Engineering; Weiping Qian is the Director General of Beijing Institute of Tracking and Telecommunications Technology.

  6. Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Science.gov (United States)

    Mccoy, D. A.; Lackner, J. L.

    1986-01-01

    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.

  7. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  8. Flexible spacecraft dynamics, control and guidance technologies by giovanni campolo

    CERN Document Server

    Mazzini, Leonardo

    2016-01-01

    This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art senso...

  9. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  10. A Multi-spacecraft View of a Giant Filament Eruption during 2009 September 26/27

    Science.gov (United States)

    Gosain, Sanjay; Schmieder, Brigitte; Artzner, Guy; Bogachev, Sergei; Török, Tibor

    2012-12-01

    We analyze multi-spacecraft observations of a giant filament eruption that occurred during 2009 September 26 and 27. The filament eruption was associated with a relatively slow coronal mass ejection. The filament consisted of a large and a small part, and both parts erupted nearly simultaneously. Here we focus on the eruption associated with the larger part of the filament. The STEREO satellites were separated by about 117° during this event, so we additionally used SoHO/EIT and CORONAS/TESIS observations as a third eye (Earth view) to aid our measurements. We measure the plane-of-sky trajectory of the filament as seen from STEREO-A and TESIS viewpoints. Using a simple trigonometric relation, we then use these measurements to estimate the true direction of propagation of the filament which allows us to derive the true R/R ⊙-time profile of the filament apex. Furthermore, we develop a new tomographic method that can potentially provide a more robust three-dimensional (3D) reconstruction by exploiting multiple simultaneous views. We apply this method also to investigate the 3D evolution of the top part of filament. We expect this method to be useful when SDO and STEREO observations are combined. We then analyze the kinematics of the eruptive filament during its rapid acceleration phase by fitting different functional forms to the height-time data derived from the two methods. We find that for both methods an exponential function fits the rise profile of the filament slightly better than parabolic or cubic functions. Finally, we confront these results with the predictions of theoretical eruption models.

  11. A MULTI-SPACECRAFT VIEW OF A GIANT FILAMENT ERUPTION DURING 2009 SEPTEMBER 26/27

    Energy Technology Data Exchange (ETDEWEB)

    Gosain, Sanjay [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Schmieder, Brigitte [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, 5 Place Jules Janssen, F-92190 Meudon (France); Artzner, Guy [CNRS UMR 8617, Institut d' astrophysique Spatiale (IAS), F-91405 Orsay Cedex (France); Bogachev, Sergei [Lebedev Physical Institute of Russian Academy of Science, Leninskij prospekt 53, Moscow 119991 (Russian Federation); Toeroek, Tibor [Predictive Science, Inc., 9990 Mesa Rim Rd., Suite 170, San Diego, CA 92121 (United States)

    2012-12-10

    We analyze multi-spacecraft observations of a giant filament eruption that occurred during 2009 September 26 and 27. The filament eruption was associated with a relatively slow coronal mass ejection. The filament consisted of a large and a small part, and both parts erupted nearly simultaneously. Here we focus on the eruption associated with the larger part of the filament. The STEREO satellites were separated by about 117 Degree-Sign during this event, so we additionally used SoHO/EIT and CORONAS/TESIS observations as a third eye (Earth view) to aid our measurements. We measure the plane-of-sky trajectory of the filament as seen from STEREO-A and TESIS viewpoints. Using a simple trigonometric relation, we then use these measurements to estimate the true direction of propagation of the filament which allows us to derive the true R/R{sub Sun }-time profile of the filament apex. Furthermore, we develop a new tomographic method that can potentially provide a more robust three-dimensional (3D) reconstruction by exploiting multiple simultaneous views. We apply this method also to investigate the 3D evolution of the top part of filament. We expect this method to be useful when SDO and STEREO observations are combined. We then analyze the kinematics of the eruptive filament during its rapid acceleration phase by fitting different functional forms to the height-time data derived from the two methods. We find that for both methods an exponential function fits the rise profile of the filament slightly better than parabolic or cubic functions. Finally, we confront these results with the predictions of theoretical eruption models.

  12. A MULTI-SPACECRAFT VIEW OF A GIANT FILAMENT ERUPTION DURING 2009 SEPTEMBER 26/27

    International Nuclear Information System (INIS)

    Gosain, Sanjay; Schmieder, Brigitte; Artzner, Guy; Bogachev, Sergei; Török, Tibor

    2012-01-01

    We analyze multi-spacecraft observations of a giant filament eruption that occurred during 2009 September 26 and 27. The filament eruption was associated with a relatively slow coronal mass ejection. The filament consisted of a large and a small part, and both parts erupted nearly simultaneously. Here we focus on the eruption associated with the larger part of the filament. The STEREO satellites were separated by about 117° during this event, so we additionally used SoHO/EIT and CORONAS/TESIS observations as a third eye (Earth view) to aid our measurements. We measure the plane-of-sky trajectory of the filament as seen from STEREO-A and TESIS viewpoints. Using a simple trigonometric relation, we then use these measurements to estimate the true direction of propagation of the filament which allows us to derive the true R/R ☉ -time profile of the filament apex. Furthermore, we develop a new tomographic method that can potentially provide a more robust three-dimensional (3D) reconstruction by exploiting multiple simultaneous views. We apply this method also to investigate the 3D evolution of the top part of filament. We expect this method to be useful when SDO and STEREO observations are combined. We then analyze the kinematics of the eruptive filament during its rapid acceleration phase by fitting different functional forms to the height-time data derived from the two methods. We find that for both methods an exponential function fits the rise profile of the filament slightly better than parabolic or cubic functions. Finally, we confront these results with the predictions of theoretical eruption models.

  13. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  14. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    Science.gov (United States)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  15. Got risk? risk-centric perspective for spacecraft technology decision-making

    Science.gov (United States)

    Feather, Martin S.; Cornford, Steven L.; Moran, Kelly

    2004-01-01

    A risk-based decision-making methodology conceived and developed at JPL and NASA has been used to aid in decision making for spacecraft technology assessment, adoption, development and operation. It takes a risk-centric perspective, through which risks are used as a reasoning step to interpose between mission objectives and risk mitigation measures.

  16. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Science.gov (United States)

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.

    2000-01-01

    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  17. A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation

    Science.gov (United States)

    Christian, John A.; Cryan, Scott P.

    2013-01-01

    This paper provides a survey of modern LIght Detection And Ranging (LIDAR) sensors from a perspective of how they can be used for spacecraft relative navigation. In addition to LIDAR technology commonly used in space applications today (e.g. scanning, flash), this paper reviews emerging LIDAR technologies gaining traction in other non-aerospace fields. The discussion will include an overview of sensor operating principles and specific pros/cons for each type of LIDAR. This paper provides a comprehensive review of LIDAR technology as applied specifically to spacecraft relative navigation. HE problem of orbital rendezvous and docking has been a consistent challenge for complex space missions since before the Gemini 8 spacecraft performed the first successful on-orbit docking of two spacecraft in 1966. Over the years, a great deal of effort has been devoted to advancing technology associated with all aspects of the rendezvous, proximity operations, and docking (RPOD) flight phase. After years of perfecting the art of crewed rendezvous with the Gemini, Apollo, and Space Shuttle programs, NASA began investigating the problem of autonomous rendezvous and docking (AR&D) to support a host of different mission applications. Some of these applications include autonomous resupply of the International Space Station (ISS), robotic servicing/refueling of existing orbital assets, and on-orbit assembly.1 The push towards a robust AR&D capability has led to an intensified interest in a number of different sensors capable of providing insight into the relative state of two spacecraft. The present work focuses on exploring the state-of-the-art in one of these sensors - LIght Detection And Ranging (LIDAR) sensors. It should be noted that the military community frequently uses the acronym LADAR (LAser Detection And Ranging) to refer to what this paper calls LIDARs. A LIDAR is an active remote sensing device that is typically used in space applications to obtain the range to one or more

  18. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    Science.gov (United States)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  19. Disruptive Technologies, A Critical Yet Hopeful View

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez Pereira

    2017-06-01

    Full Text Available A new perspective is attempted on the role played by Information and Communication Technologies (ICTs in the evolution of human societies in the last few decades. Particular attention is paid to their (lack of relationship with the challenges of sustainable development, presenting the view contrary to mainstream perception that for now ICTs have a negative impact on sustainability overall. This in turn is described as a result of how ICTs and innovation in general are presently conceived and framed in a way that actually inhibits their potential for human progress in harmony with the environment. Some hints are suggested on how to reverse this situation and make digital tech useful for life as a whole.

  20. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    Science.gov (United States)

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.

    2017-09-01

    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  1. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    Science.gov (United States)

    Bjorkman, Michael D.; Hyde, James L.

    2008-01-01

    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  2. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    Science.gov (United States)

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance

  3. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Science.gov (United States)

    Abney, Morgan; Barta, Daniel

    2015-01-01

    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  4. Stereo Viewing System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2000-01-01

    The Stereo Viewing System provides stereoscopic viewing of Light Duty Utility Arm activities. Stereoscopic viewing allows operators to see the depth of objects. This capability improves the control of the Light Duty Utility Arm performed in DOE's underground radioactive waste storage tanks and allows operators to evaluate the depth of pits, seams, and other anomalies. Potential applications include Light Duty Utility Arm deployment operations at the Oak Ridge Reservation, Hanford Site, and the Idaho National Engineering and Environmental Laboratory

  5. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  6. Preservice Science Teachers' Views on Science-Technology-Society

    Science.gov (United States)

    Dikmentepe, Emel; Yakar, Zeha

    2016-01-01

    The aim of this study is to investigate the views of pre-service science teachers on Science-Technology-Society (STS). In the research, a descriptive research method was used and data were collected using the Views on Science-Technology-Society (VOSTS) Questionnaire. In general, the results of this study revealed that pre-service science teachers…

  7. Views of Students about Technology, Effects of Technology on Daily Living and Their Professional Preferences

    Science.gov (United States)

    Daghan, Gökhan

    2017-01-01

    The aim of this study is to examine the views of students about technology and their professional preferences and put forth the correlation between professional preferences and views about technology. For this purpose, in a private school in Ankara, 109 students from 6th and 7th grades were asked about their views on what technology is, the…

  8. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Science.gov (United States)

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony

    2016-01-01

    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  9. Technological innovation: a structrational process view

    NARCIS (Netherlands)

    Fehse, K.I.A.; Wognum, P.M.

    1999-01-01

    The central aim of our research is to describe and explain how the introduction of a computer-based technology, which supports co-operative work in engineering departments, induces change processes. The employment of computer-based technologies in product development organisations to support

  10. Management of health technologies: An international view

    NARCIS (Netherlands)

    Jonsson, E.; Banta, D.

    1999-01-01

    Health technology includes not only equipment, pharmaceuticals, and medical devices but also surgical and medical procedures Most countries regulate drugs and devices by law, by payment, or by placement of services-a new, multidisciplinary research called health technology assessment assists policy

  11. Technology and Gender: Differences in Masculine and Feminine Views.

    Science.gov (United States)

    Brunner, Cornelia; Bennett, Dorothy

    1997-01-01

    The feminine attitude toward technology looks through Learning Environments for Today's Classroom machinery to its social function; the masculine view focuses more on the machine. Presenting technology as an end in itself turns most young women off. Exploring whether new technology solves a social problem, rather than celebrating speed or power,…

  12. Gas To Liquids Technology: A Futuristic View

    Energy Technology Data Exchange (ETDEWEB)

    El Shamy, A A [Egyptian General Petroleum Corporation, Opr. Development Depart., P.O No. 11742, Cairo (Egypt); Zayed, A M [Egyptian General Petroleum Corporation, Quality Control Department, P.O No. 11742, Cairo (Egypt)

    2004-07-01

    Worldwide efforts aimed to the formulation of environment friendly diesel fuels able to meet the advanced fuel specifications of the 21 st century and able to meet the global demand on diesel fuels. Synthetically derived gas to-liquid (GTL) diesel fuel promises to meet these challenges and spearhead the way to the future. This technology will produce almost zero sulfur, high cetane, low aromatic diesel and naphtha which will be sold regionally and internationally. GTL fuel is cleaner than any conventional fuel which will help the environment. It can be used in conventional diesel engines to give reductions in emission levels. Construction of such technology will reduce the gap between production and consumption by maximizing the gross profitability of natural gas.

  13. Gas To Liquids Technology: A Futuristic View

    International Nuclear Information System (INIS)

    El Shamy, A.A; Zayed, A.M

    2004-01-01

    Worldwide efforts aimed to the formulation of environment friendly diesel fuels able to meet the advanced fuel specifications of the 21 st century and able to meet the global demand on diesel fuels. Synthetically derived gas to-liquid (GTL) diesel fuel promises to meet these challenges and spearhead the way to the future. This technology will produce almost zero sulfur, high cetane, low aromatic diesel and naphtha which will be sold regionally and internationally. GTL fuel is cleaner than any conventional fuel which will help the environment. It can be used in conventional diesel engines to give reductions in emission levels. Construction of such technology will reduce the gap between production and consumption by maximizing the gross profitability of natural gas

  14. Technology transfer at NASA - A librarian's view

    Science.gov (United States)

    Buchan, Ronald L.

    1991-01-01

    The NASA programs, publications, and services promoting the transfer and utilization of aerospace technology developed by and for NASA are briefly surveyed. Topics addressed include the corporate sources of NASA technical information and its interest for corporate users of information services; the IAA and STAR abstract journals; NASA/RECON, NTIS, and the AIAA Aerospace Database; the RECON Space Commercialization file; the Computer Software Management and Information Center file; company information in the RECON database; and services to small businesses. Also discussed are the NASA publications Tech Briefs and Spinoff, the Industrial Applications Centers, NASA continuing bibliographies on management and patent abstracts (indexed using the NASA Thesaurus), the Index to NASA News Releases and Speeches, and the Aerospace Research Information Network (ARIN).

  15. Technology concept in the view of Iranian nurses.

    Science.gov (United States)

    Mehraban, Marzieh Adel; Hassanpour, Marzieh; Yazdannik, Ahmadreza; Ajami, Sima

    2013-05-01

    Over the years, the concept technology has modified, especially from the viewpoint of the development of scientific knowledge as well as the philosophical and artistic aspects. However, the concept of technology in nursing are still poorly understood. Only small qualitative studies, especially in Iran, have investigated this phenomenon and they just are about information technology. The aim of this study is to gain a better understanding of the concept of technology in the view of Iranian nurses. This study was qualitative explorative study which was done with a purposeful sampling of 23 nurses (staffs, supervisors and chief nurse managers) working in Isfahan hospitals. Unstructured interviews were including 13 individual interviews and 2 focused-group interviews. In addition to this, filed notes and memos were used in data collection. After this data transcribing was done and then conventional content analysis was used for data coding and classification. The results showed that there are various definitions for technology among nurses. In the view of nurses, technology means using new equipment, computers, information technology, etc). Data analysis revealed that nurses understand technology up to three main concepts: Change, Equipment and Knowledge. In deep overview on categories, we found that the most important concept about technology in nursing perspective is equipment. Therefore, it is necessary to develop deep understanding about the possible concepts technology among nurses. We suppose that technology concepts must be defined separately in all disciplines.

  16. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  17. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    Science.gov (United States)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  18. Designer Babies? Teacher Views on Gene Technology and Human Medicine.

    Science.gov (United States)

    Schibeci, Renato

    1999-01-01

    Summarizes the views of a sample of primary and high school teachers on the application of gene technology to human medicine. In general, high school teachers are more positive about these developments than primary teachers, and both groups of teachers are more positive than interested lay publics. Highlights ways in which this topic can be…

  19. The use of technology at school: teachers' point of view

    Directory of Open Access Journals (Sweden)

    Sandra Legrottaglie

    2014-12-01

    One system deals with positive and negative values, while the other is based on conceptual contrapositions. The results reveal that, despite their generally positive view of technology, teachers see many factors preventing real educational use. Furthermore, we found that school level influences the type of factors teachers reported.

  20. Science and Technology Teachers' Views of Primary School Science and Technology Curriculum

    Science.gov (United States)

    Yildiz-Duban, Nil

    2013-01-01

    This phenomenographic study attempts to explicit science and technology teachers' views of primary school science and technology curriculum. Participants of the study were selected through opportunistic sampling and consisted of 30 science and technology teachers teaching in primary schools in Afyonkarahisar, Turkey. Data were collected through an…

  1. Health technology assessment in Iran: challenges and views

    Science.gov (United States)

    Olyaeemanesh, Alireza; Doaee, Shila; Mobinizadeh, Mohammadreza; Nedjati, Mina; Aboee, Parisa; Emami-Razavi, Seyed Hassan

    2014-01-01

    Background: Various decisions have been made on technology application at all levels of the health system in different countries around the world. Health technology assessment is considered as one of the best scientific tools at the service of policy- makers. This study attempts to investigate the current challenges of Iran’s health technology assessment and provide appropriate strategies to establish and institutionalize this program. Methods: This study was carried out in two independent phases. In the first, electronic databases such as Medline (via Pub Med) and Scientific Information Database (SID) were searched to provide a list of challenges of Iran’s health technology assessment. The views and opinions of the experts and practitioners on HTA challenges were studied through a questionnaire in the second phase which was then analyzed by SPSS Software version 16. This has been an observational and analytical study with a thematic analysis. Results: In the first phase, seven papers were retrieved; from which, twenty- two HTA challenges in Iran were extracted by the researchers; and they were used as the base for designing a structured questionnaire of the second phase. The views of the experts on the challenges of health technology assessment were categorized as follows: organizational culture, stewardship, stakeholders, health system management, infrastructures and external pressures which were mentioned in more than 60% of the cases and were also common in the views. Conclusion: The identification and prioritization of HTA challenges which were approved by those experts involved in the strategic planning of the Department of Health Technology Assessment will be a step forward in the promotion of an evidence- based policy- making and in the production of comprehensive scientific evidence. PMID:25695015

  2. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica

    2009-07-01

    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  3. Teachers’ Views about Effective Use of Technology in Classrooms

    Directory of Open Access Journals (Sweden)

    Suzan Duygu Bedir Erişti

    2012-02-01

    Full Text Available Effective use of technology in educational environments and its successful integration increases the productivity of instructional processes. Constant and good-quality support supposed to be provided for teachers is quite important for technology use in educational environments. Thus, it is necessary to find answers to the question of what kinds of activities could be used to provide teachers with constant support for technology integration in educational environments. In this respect, the present study aimed at determining teachers’ views and their suggestions about the process of technology integration into educational environments and about the problems experienced in the process. In the study, the research sample included a total of 21 teachers teaching at Tepebasi Resat Benli Elementary School in the city of Eskisehir. Of all the participating teachers, 11 of them were elementary school teachers, and 10 of them were field teachers. In order to find answers to the research questions directed in line with the overall purpose of the study, the qualitative research method was applied. The research data were analyzed with the help of thematic analysis. The research data were collected via the focus-group interviews held with the teachers, observations and researcher journals. The data collected in the study were gathered under two main themes depending on the open-ended questions directed to the teachers regarding technology use and on the related literature. These themes were ‘Problems experienced by teachers regarding technology use in class’ and ‘Suggestions for effective use of technology’

  4. Teachers’ Views about Effective Use of Technology in Classrooms

    Directory of Open Access Journals (Sweden)

    Adile aşkım Kurt

    2012-04-01

    Full Text Available Effective use of technology in educational environments and its successful integration increases the productivity of instructional processes. Constant and good-quality support supposed to be provided for teachers is quite important for technology use in educational environments. Thus, it is necessary to find answers to the question of what kinds of activities could be used to provide teachers with constant support for technology integration in educational environments. In this respect, the present study aimed at determining teachers’ views and their suggestions about the process of technology integration into educational environments and about the problems experienced in the process. In the study, the research sample included a total of 21 teachers teaching at Tepebasi Resat Benli Elementary School in the city of Eskisehir. Of all the participating teachers, 11 of them were elementary school teachers, and 10 of them were field teachers. In order to find answers to the research questions directed in line with the overall purpose of the study, the qualitative research method was applied. The research data were analyzed with the help of thematic analysis. The research data were collected via the focus-group interviews held with the teachers, observations and researcher journals. The data collected in the study were gathered under two main themes depending on the open-ended questions directed to the teachers regarding technology use and on the related literature. These themes were ‘Problems experienced by teachers regarding technology use in class’ and ‘Suggestions for effective use of technology’.

  5. How Consumers and Physicians View New Medical Technology: Comparative Survey.

    Science.gov (United States)

    Boeldt, Debra L; Wineinger, Nathan E; Waalen, Jill; Gollamudi, Shreya; Grossberg, Adam; Steinhubl, Steven R; McCollister-Slipp, Anna; Rogers, Marc A; Silvers, Carey; Topol, Eric J

    2015-09-14

    As a result of the digital revolution coming to medicine, a number of new tools are becoming available and are starting to be introduced in clinical practice. We aim to assess health care professional and consumer attitudes toward new medical technology including smartphones, genetic testing, privacy, and patient-accessible electronic health records. We performed a survey with 1406 health care providers and 1102 consumer responders. Consumers who completed the survey were more likely to prefer new technologies for a medical diagnosis (437/1102, 39.66%) compared with providers (194/1406, 13.80%; P<.001), with more providers (393/1406, 27.95%) than consumers (175/1102, 15.88%) reporting feeling uneasy about using technology for a diagnosis. Both providers and consumers supported genetic testing for various purposes, with providers (1234/1406, 87.77%) being significantly more likely than consumers (806/1102, 73.14%) to support genetic testing when planning to have a baby (P<.001). Similarly, 91.68% (1289/1406) of providers and 81.22% (895/1102) of consumers supported diagnosing problems in a fetus (P<.001). Among providers, 90.33% (1270/1406) were concerned that patients would experience anxiety after accessing health records, and 81.95% (1149/1406) felt it would lead to requests for unnecessary medical evaluations, but only 34.30% (378/1102; P<.001) and 24.59% (271/1102; P<.001) of consumers expressed the same concerns, respectively. Physicians (137/827, 16.6%) reported less concern about the use of technology for diagnosis compared to medical students (21/235, 8.9%; P=.03) and also more frequently felt that patients owned their medical record (323/827, 39.1%; and 30/235, 12.8%, respectively; P<.001). Consumers and health professionals differ significantly and broadly in their views of emerging medical technology, with more enthusiasm and support expressed by consumers.

  6. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  7. Review of thin film solar cell technology and applications for ultra-light spacecraft solar arrays

    Science.gov (United States)

    Landis, Geoffrey A.

    1991-01-01

    Developments in thin-film amorphous and polycrystalline photovoltaic cells are reviewed and discussed with a view to potential applications in space. Two important figures of merit are discussed: efficiency (i.e., what fraction of the incident solar energy is converted to electricity), and specific power (power to weight ratio).

  8. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    Science.gov (United States)

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin

    2017-01-01

    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  9. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  10. Cross-Cultural Comparison of Teachers' Views upon Integration and Use of Technology in Classroom

    Science.gov (United States)

    Kayalar, Fethi

    2016-01-01

    The purpose of the study is to compare teachers' views upon integration and use of technology in classroom. To make cross-cultural comparison of teachers' views, we interviewed with nine teachers in a primary school in city of Erzincan, Turkey and compared the views of the teachers with those of the teachers living in foreign countries. To obtain…

  11. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  12. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  13. The user's view of commercially available medical technology

    Science.gov (United States)

    Harrison, D. C.

    1975-01-01

    The potential user of new medical equipment for imaging the cardiovascular system is often faced with the problem of deciding whether or not to accept a new piece of equipment or a new technological concept into the practice of cardiology. Considerations for acquiring new medical technology are discussed in some detail. Acquisition of new technology should depend on whether the equipment provides more and relevant clinical data, is for research or for limited use, is properly engineered for patient use, presents information in easily storable and retrievable form, is tested and validated clinically, is fabricated by a reliable manufacturer, is cost effective, and may be readily replaced by a new technology.

  14. The broad view of nuclear technology for aerospace

    International Nuclear Information System (INIS)

    Buden, D.; Angelo, J.A. Jr.

    1991-01-01

    Nuclear technologies can directly support advanced space initiatives. For near-Earth missions, nuclear technology can be used to power air traffic control, communications and manufacturing platforms, provide emergency power for manned platforms, provide power for maneuvering units, move asteroids for mining, measure the natural radiation environment, provide radiation protection instruments, and design radiation hardened robotic systems. For the Lunar and Mars surfaces, nuclear technology can be used for base stationary, mobile, and emergency power, energy storage, process heat, nuclear thermal and electric rocket propulsion, excavation and underground engineering, water and sewage treatment and sterilization, food processing and preservation, mineral exploration, self-luminous systems, radiation protection instrumentation, radiation environmental warning systems, and habitat shielding design. Outer planet missions can make use of nuclear technology for power and propulsion. Programs need to be initiated to ensure the full beneficial use of nuclear technologies in advanced space missions

  15. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  16. Information Technology: A View from Both Side of the President's Desk

    Science.gov (United States)

    McRobbie, Michael A.

    2012-01-01

    As a university president who was also the institution's vice president for information technology and CIO for ten years, the author is often asked: "What do you now think about technology? From your point of view as a president, what are the major issues in information technology today? What has changed in your thinking?" So in his…

  17. Consumer Views on Transportation and Advanced Vehicle Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Vehicle manufacturers, U.S. Department of Energy laboratories, universities, private researchers, and organizations from countries around the globe are pursuing advanced vehicle technologies that aim to reduce gasoline and diesel consumption. This report details study findings of broad American public sentiments toward issues surrounding advanced vehicle technologies and is supported by the U.S. Department of Energy Vehicle Technology Office (VTO) in alignment with its mission to develop and deploy these technologies to improve energy security, increase mobility flexibility, reduce transportation costs, and increase environmental sustainability. Understanding and tracking consumer sentiments can influence the prioritization of development efforts by identifying barriers to and opportunities for broad acceptance of new technologies. Predicting consumer behavior toward developing technologies and products is inherently inexact. A person's stated preference given in an interview about a hypothetical setting may not match the preference that is demonstrated in an actual situation. This difference makes tracking actual consumer actions ultimately more valuable in understanding potential behavior. However, when developing technologies are not yet available and actual behaviors cannot be tracked, stated preferences provide some insight into how consumers may react in new circumstances. In this context this report provides an additional source to validate data and a new resource when no data are available. This report covers study data captured from December 2005 through June 2015 relevant to VTO research efforts at the time of the studies. Broadly the report covers respondent sentiments about vehicle fuel economy, future vehicle technology alternatives, ethanol as a vehicle fuel, plug-in electric vehicles, and willingness to pay for vehicle efficiency. This report represents a renewed effort to publicize study findings and make consumer sentiment data available to

  18. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  19. From Stove-pipe to Network Centric Leveraging Technology to Present a Unified View

    National Research Council Canada - National Science Library

    Abuhantash, Medhat A; Shoultz, Matthew V

    2004-01-01

    .... The paper will also demonstrate how the application of current technology can be leveraged to present a unified view of data from disparate data sources, and how our organization is leveraging...

  20. Turkish Pre-Service Science Teachers' Views on Science-Technology-Society Issues

    Science.gov (United States)

    Yalvac, Bugrahan; Tekkaya, Ceren; Cakiroglu, Jale; Kahyaoglu, Elvan

    2007-01-01

    The international science education community recognises the role of pre-service science teachers' views about the interdependence of Science, Technology, and Society (STS) in achieving scientific literacy for all. To this end, pre-service science teachers' STS views signal the strengths and the weaknesses of science education reform movements.…

  1. Student Views of Technology-Mediated Written Corrective Feedback

    DEFF Research Database (Denmark)

    Kjærgaard, Hanne Wacher

    2017-01-01

    and practices concerning the specific – and time-consuming – language-teacher activity of providing WCF and 2) potential changes in student attitudes when technology is used to mediate the feedback. At the core of the study is an eight-month intervention which was carried out with three teachers of English...

  2. Maslow and Motherboards: Taking a Hierarchical View of Technology Planning.

    Science.gov (United States)

    Johnson, Doug

    2003-01-01

    Presents a planning model for educational uses of technology that is based on Maslow's hierarchy of needs. Topics include established infrastructure; effective administration; extensive resources; enhanced teaching, including creating distance learning opportunities; empowered students, including evaluation methods and information literacy skills;…

  3. Views of Student Nurses on Caring and Technology in Nursing

    Science.gov (United States)

    Brodell, Elizabeth Becky

    2009-01-01

    Nurses entering the workforce are faced with many challenges, but today the multiple demands of patient care are complicated by a nurse's need to keep abreast of fast-changing technology. This research is universally relevant to nursing practice in educational settings and practice areas because nursing education needs to develop strategies to…

  4. Risk perceptions and technological hazards: a contextual view

    International Nuclear Information System (INIS)

    Walker, G.; Simmons, P.; Irwin, A.; Wynne, B.

    1998-01-01

    Full text of publication follows: the study of public perceptions of risk has given rise to a number of different (and sometimes conflicting) perspectives. Although the differences between these approaches are not trivial, recent reviews have suggested that there may be some points of convergence. In particular, recent work within the different traditions has emphasised the importance of factors such as trust and power for understanding public perceptions of risk. These factors take us beyond the characteristics of the risks themselves, which were the focus of influential work in the psychometric tradition and into a consideration of the social and cultural context within which potentially hazardous technologies are encountered and evaluated. In this paper we examine the way in which the lay public understand and respond to a particular class of technological risks - those associated with site-based major accident hazards. On the basis of empirical research, we argue that an appreciation of the different contexts within which citizens encounter such risks is crucial to understanding the dynamics of public concerns. We illustrate our argument by examining the different ways in which contextual factors influence perceptions. The discussion draws upon a recently completed study of public perceptions of the risks at seven major hazard sites in the UK, which was funded the by UK Health and Safety Executive. (authors)

  5. 23. Symposium On Fusion Technology (SOFT), Venice - A personal view

    International Nuclear Information System (INIS)

    Spears, W.R.

    2004-01-01

    This conference, examining the advances in our leading-edge technology, took place on 22-24 September 2004 against the wonderful and historic backdrop of Venice, at a monastery of the Cini Foundation, on the Island of St. Giorgio, directly opposite St. Marks. The strong connection between the ancient and modern was brought home to us in the very first talk, from the Mayor of Venice and MEP Prof. P. Costa, who reminded us of Venice's particular problem with global warming, and urged us to do our part to develop an energy source that should help to avoid it drowning. Prof. Sir C. Llewellyn-Smith, head of the UK Fusion Programme and Chairman of Euratom CCE-FU, took up this theme and elaborated how we should reach our goal, showing in particular the urgency of pursuing a fast track, proceeding with ITER and the International Fusion Materials Irradiation Facility (IFMIF) without further delay, and envisaging that the subsequent machine would be prototypical of future commercial fusion power plants. The conference proceeded through plenary and oral sessions, and through poster sessions, covering plasma heating, fuelling, control and diagnostics, magnets and power supplies, plasma-facing components, blanket and vessel, remote handling, materials technology, the experiences gained on existing experiments, and projections for future experiments and fusion power plants. There were 570 participants, from 25 countries, of whom a third came from outside Europe

  6. Teachers' Views about Science and Technology Lesson Effects on the Development of Students' Entrepreneurship Skills

    Science.gov (United States)

    Bacanak, Ahmet

    2013-01-01

    The purpose of this study was to determine the views of science and technology teachers about the effects of 6th, 7th and 8th grade science and technology courses on students' entrepreneurship skills. In the study, phenomenographic method was used and data were collected through a semi-structured interview method with 8 questions. 5 science and…

  7. Views of Students on Learning with Technologies in Dutch Education and Training

    NARCIS (Netherlands)

    Jeroen Bottema; Pieter Swager

    2012-01-01

    The integrated use of technologies in learning in formal education and training in The Netherlands is far from realized, and there is still a long way to go to reach that goal. But what are the views of students and early career teachers about learning with technologies? This chapter focuses on

  8. Science and Technology Teachers' Views about the Causes of Laboratory Accidents

    Science.gov (United States)

    Aydogdu, Cemil

    2015-01-01

    The aim of this study was to determine science and technology teachers' views about the causes of the problems encountered in laboratories. In this research, phenomenology, a qualitative research design, was used. 21 science and technology teachers who were working in elementary schools in Eskisehir during the 2010-2011 spring semester were the…

  9. Comparing relational model transformation technologies: implementing Query/View/Transformation with Triple Graph Grammars

    DEFF Research Database (Denmark)

    Greenyer, Joel; Kindler, Ekkart

    2010-01-01

    and for model-based software engineering approaches in general. QVT (Query/View/Transformation) is the transformation technology recently proposed for this purpose by the OMG. TGGs (Triple Graph Grammars) are another transformation technology proposed in the mid-nineties, used for example in the FUJABA CASE...

  10. Proceedings of the Spacecraft Charging Technology Conference Held in Monterey, California on 31 October - 3 November 1989. Volume 1

    Science.gov (United States)

    1989-11-01

    Technical Note I (Chapter 4), ESA Contract 8011/88. IASB , 1989. Williams, D..., E. Keppler, T.A. Fritz, B. Wilken and G. Wibberenz, The ISEE 1 and 2...either detector. 112 IV. THE HYPOTHESIS The above observations indicated that electrons played a role , ruled out cosmic-ray showers (i.e. pairing...F2 studies, in particular the role of spacecraft charging in generating the anomalies and the possibility of deep dielectric charging as an

  11. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    Science.gov (United States)

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.

    2017-10-01

    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  12. Identifying, Licensing, and Commercializing Technology: An Entrepreneur's View

    Science.gov (United States)

    Appel, Kris

    2013-03-01

    A linguist by trade, Kris Appel left government service to pursue entrepreneurship. She knew she wanted to start a company, but she did not have a business idea. After researching various technologies available for commercialization, she began to focus on a prototype medical device at the University of Maryland Medical School, which had been developed to help stroke survivors recover their arm movement. The device was based upon emerging science into brain re-training, and was backed by very convincing clinical trials. Working closely with University researchers, she licensed the rights to the device, developed a commercial version, and launched it in 2009. Today the device is used around the globe, and has helped thousands of stroke and brain injury survivors improve their arm function and way of life. Kris will tell the story of the device, and how it got from idea to prototype to successful rehabilitation product.

  13. An Investigation of Science and Technology Teachers’ Views on the 5th Grade Science Course

    OpenAIRE

    İkramettin Daşdemir

    2014-01-01

    This study was conducted to explore the science and technology teachers’ views on the implementation of 5th grade science course. Open-ended questions were used as a data collection tool. The study sample consisted of 28 science and technology teachers working in Erzurum in 2012-2013 education year. The data gathered were analysed via content analysis method. According to the results obtained from the open-ended questions, a great majority of science and technology teache...

  14. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  15. Application of 3-Dimensional Printing Technology to Construct an Eye Model for Fundus Viewing Study

    OpenAIRE

    Xie, Ping; Hu, Zizhong; Zhang, Xiaojun; Li, Xinhua; Gao, Zhishan; Yuan, Dongqing; Liu, Qinghuai

    2014-01-01

    Objective To construct a life-sized eye model using the three-dimensional (3D) printing technology for fundus viewing study of the viewing system. Methods We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs). Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical ...

  16. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  17. New Forces at Work in Mining: Industry View of Critical Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D. J. [Science and Technology Policy Inst., Arlington, VA (United States); LaTourrette, Tom [Science and Technology Policy Inst., Arlington, VA (United States); Bartis, James T. [Science and Technology Policy Inst., Arlington, VA (United States)

    2007-04-01

    RAND has just published a report entitled, "New Forces at Work in Mining: Industry Views of Critical Technologies," by D. J. Peterson, Tom LaTourrette, and James T. Bartis. The report presents the results of a series of in-depth discussions with leading mining industry representatives selected for their prominent position and their ability to think broadly about technology trends. The discussions highlighted the importance of collaborative technology research, development, and implementation strategies and the increasingly critical role of mine personnel in the utilization of new technologies.

  18. Status and future perspectives of PWR and comparing views on WWER fuel technology

    International Nuclear Information System (INIS)

    Weidinger, H.

    2003-01-01

    The main purpose of this paper is to give an overview on status and future perspectives of the Western PWR fuel technology. For easer understanding and correlating, some comparing views to the WWER fuel technology are provided. This overview of the PWR fuel technology of course can not go into the details of the today used designs of fuel, fuel rods and fuel assemblies. However, it tries to describe the today achieved capability of PWR fuel technology with regard to reliability, efficiency and safety

  19. Swedish Technology Teachers' Views on Assessing Student Understandings of Technological Systems

    Science.gov (United States)

    Schooner, Patrick; Klasander, Claes; Hallström, Jonas

    2018-01-01

    Technology education is a new school subject in comparison with other subjects within the Swedish compulsory school system. Research in technology education shows that technology teachers lack experience of and support for assessment in comparison with the long-term experiences that other teachers use in their subjects. This becomes especially…

  20. The Views of Mathematics Teachers on the Factors Affecting the Integration of Technology in Mathematics Courses

    Science.gov (United States)

    Kaleli-Yilmaz, Gül

    2015-01-01

    The aim of this study was to determine the views of mathematics teachers on the factors that affect the integration of technology in mathematic courses. It is a qualitative case study. The sample size of the study is 10 teachers who are receiving postgraduate education in a university in Turkey. The current study was conducted in three stages. At…

  1. The Views of Teacher Candidates on Using Cloud Technologies in Education

    Science.gov (United States)

    Korucu, Agah Tugrul

    2017-01-01

    This study aims to describe the views of student IT teachers' and the factors which affect their priorities to use cloud services progressively. The study is conducted by qualitative research approach. The data obtained from the department of Computer Education and Instructional Technology students are collected by "structured form for the…

  2. Students' Views about the Problem Based Collaborative Learning Environment Supported by Dynamic Web Technologies

    Science.gov (United States)

    Ünal, Erhan; Çakir, Hasan

    2017-01-01

    The purpose of this study was to design a problem based collaborative learning environment supported by dynamic web technologies and to examine students' views about this learning environment. The study was designed as a qualitative research. Some 36 students who took an Object Oriented Programming I-II course at the department of computer…

  3. Children and Young People's Views on Web 2.0 Technologies. LGA Research Report

    Science.gov (United States)

    Rudd, Peter; Walker, Matthew

    2010-01-01

    Web 2.0 technologies are online tools that allow users to share, collaborate and interact with one another. This small-scale project focused on young people's personal use of social media, and on the potential to use these tools to collect the views of young people and involve them in democracy in communities and local authorities. The main…

  4. A view of technology maturity assessment to realize fusion reactor by Japanese young researchers

    International Nuclear Information System (INIS)

    Kasada, Ryuta; Goto, Takuya; Miyazawa, Junichi; Fujioka, Shinsuke; Hiwatari, Ryoji; Oyama, Naoyuki; Tanigawa, Hiroyasu

    2013-01-01

    Japanese young researchers who have interest in realizing fusion reactor have analyzed Technology Readiness Levels (TRL) in Young Scientists Special Interest Group on Fusion Reactor Realization. In this report, brief introduction to TRL assessment and a view of TRL assessment against fusion reactor projects conducting in Japan. (J.P.N.)

  5. Internet-generation nursing students' view of technology-based health care

    NARCIS (Netherlands)

    van Houwelingen, C.T.M.; Ettema, R.G.A.; Kort, H.S.M.; ten Cate, O.

    2017-01-01

    BACKGROUND: Today's nursing school applicants are considered “digital natives.” This study investigated students' views of new health care technologies. METHOD: In a cross-sectional survey among first-year nursing students, 23 common nursing activities and five telehealth nursing activities were

  6. Technologies for dealing with information overload : an engineers' point of view

    NARCIS (Netherlands)

    Calders, T.G.K.; Fletcher, G.H.L.; Kamiran, F.; Pechenizkiy, M.; Strother, J.B.; Ulijn, J.M.; Fazal, Z.

    2012-01-01

    In this chapter, we provide an overview of the technological side of the information overload problem. We discuss the challenges and opportunities offered by the ever-growing and emerging stream of information from an engineering point of view. More concretely, we survey storage and querying

  7. Social Perception of Hydrogen Technologies: The View of Spanish Stake holders

    International Nuclear Information System (INIS)

    Ferri Anglada, S.

    2013-01-01

    This technical report presents an overview of the social perception and vision of a sample of Spanish stake holders on hydrogen technologies. The study is based on the implementation of a survey, combining both quantitative and qualitative data. An ad hoc electronic survey was design to collect views and perceptions on several key factors regarding this innovative energy alternative. The group of experts participating (N=130) in the study, comes mainly from research centers, universities and private companies. The survey addresses three major themes: expert views, social acceptability, and contextual factors of hydrogen technologies. The aim is to capture both the current and the future scene as viewed by the experts on hydrogen technologies, identifying key factors in terms of changes, uncertainties, obstacles and opportunities. The objective is to identify potential key features for the introduction, development, promotion, implementation, and large-scale deployment of a highly successful energy proposal in countries such as Iceland, one of the pioneers in base its economy on hydrogen technologies. To conclude, this report illustrates the positive engagement of a sample of Spanish stake holders towards hydrogen technologies that may prove vital in the transition towards the Hydrogen Economy in Spain. (Author)

  8. Off-The-Shelf and Free Software Technologies for Spacecraft Control & Command: An Example, Balloon-Borne Stabilised Gondolas

    National Research Council Canada - National Science Library

    Laurens, Andre

    2005-01-01

    Balloons are low-cost, short development time space vehicles for science missions and technology in-flight experiments that need out-of-atmosphere or in-situ measurements, thus being complementary to the satellite...

  9. PEAC: A Power-Efficient Adaptive Computing Technology for Enabling Swarm of Small Spacecraft and Deployable Mini-Payloads

    Data.gov (United States)

    National Aeronautics and Space Administration — This task is to develop and demonstrate a path-to-flight and power-adaptive avionics technology PEAC (Power Efficient Adaptive Computing). PEAC will enable emerging...

  10. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-03-27

    This current report is a summary of information obtained in the "Information Capture" task of the U.S. DOE-funded "Under Sodium Viewing (USV) Project." The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  11. Under-Sodium Viewing: A Review of Ultrasonic Imaging Technology for Liquid Metal Fast Reactors

    International Nuclear Information System (INIS)

    Griffin, Jeffrey W.; Peters, Timothy J.; Posakony, Gerald J.; Chien, Hual-Te; Bond, Leonard J.; Denslow, Kayte M.; Sheen, Shuh-Haw; Raptis, Paul

    2009-01-01

    This current report is a summary of information obtained in the 'Information Capture' task of the U.S. DOE-funded 'Under Sodium Viewing (USV) Project.' The goal of the multi-year USV project is to design, build, and demonstrate a state-of-the-art prototype ultrasonic viewing system tailored for periodic reactor core in-service monitoring and maintenance inspections. The study seeks to optimize system parameters, improve performance, and re-establish this key technology area which will be required to support any new U.S. liquid-metal cooled fast reactors.

  12. Proceedings of ACROSS workshop on 'current state of ACROSS technology and view in the future'

    International Nuclear Information System (INIS)

    Asai, Hideaki; Hasegawa, Ken

    2010-11-01

    ACROSS (Accurately Controlled Routinely Operated Signal System) has developed to acquire the detailed information on the tectonically active zone. The technology, for example the transmission and receiving technique, the data analysis and the interpretation technique of the ACROSS signal, is able to apply not only to seismology but also to other field. We considered the ACROSS technology may apply to the engineering technology of the MIU (Mizunami underground laboratory) project, for example monitoring of the change of the geological environment around shafts and also the strength of the shaft concrete itself. It was planned that the examination for three years would be made from fiscal year 2007, and the new observation site around the MIU was established, and the data acquisition and data analysis have been carried out. We held ACROSS Workshop 'Current state of ACROSS technology and view in the future' on February 24 and 25, 2010 at Mizunami. The purpose of the ACROSS Workshop was to introduce our current result of the ACROSS research, to introduce the research of the ACROSS technology to external specialists, and to discuss the view of the ACROSS technology in the future. This report is collection of the documents used in the ACROSS Workshop. (author)

  13. Students’ Views about the Problem Based Collaborative Learning Environment Supported By Dynamic Web Technologies

    Directory of Open Access Journals (Sweden)

    Erhan ÜNAL

    2017-04-01

    Full Text Available The purpose of this study is to design a problem based collaborative learning environment supported by dynamic web technologies and examine students’ views about this learning environment. The study was designed as a qualitative research. 36 students who took Object Oriented Programming I-II course from a public university at the department of computer programming participated in the study. During the research process, the Object Oriented Programming I-II course was designed with incorporating different dynamic web technologies (Edmodo, Google Services, and Mind42 and Nelson (1999’s collaborative problem solving method. At the end of the course, there were focus group interviews in regards to the students’ views on a learning environment supported by dynamic web technologies and collaborative problem solving method. At the end of the focus group interviews, 4 themes were obtained from the students’ views, including positive aspects of the learning environment, difficulties faced in the learning environment, advantages of the learning environment, and skills gained as a result of the project. The results suggest that problem based collaborative learning methods and dynamic web technologies can be used in learning environments in community colleges.

  14. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  15. Technology in the Rear-View Mirror: How to Better Incorporate the History of Technology into Technology Education

    Science.gov (United States)

    Hallstrom, Jonas; Gyberg, Per

    2011-01-01

    The history of technology can play an important role in illuminating the fundamentals of technological change, but it is important that technology teachers, teacher educators, curriculum developers and researchers can be provided with good analytical tools for this purpose. In this article, we propose a model of techno-historical interplay, as a…

  16. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  17. A large-scale view of Space Technology 5 magnetometer response to solar wind drivers.

    Science.gov (United States)

    Knipp, D J; Kilcommons, L M; Gjerloev, J; Redmon, R J; Slavin, J; Le, G

    2015-04-01

    In this data report we discuss reprocessing of the Space Technology 5 (ST5) magnetometer database for inclusion in NASA's Coordinated Data Analysis Web (CDAWeb) virtual observatory. The mission consisted of three spacecraft flying in elliptical orbits, from 27 March to 27 June 2006. Reprocessing includes (1) transforming the data into the Modified Apex Coordinate System for projection to a common reference altitude of 110 km, (2) correcting gain jumps, and (3) validating the results. We display the averaged magnetic perturbations as a keogram, which allows direct comparison of the full-mission data with the solar wind values and geomagnetic indices. With the data referenced to a common altitude, we find the following: (1) Magnetic perturbations that track the passage of corotating interaction regions and high-speed solar wind; (2) unexpectedly strong dayside perturbations during a solstice magnetospheric sawtooth oscillation interval characterized by a radial interplanetary magnetic field (IMF) component that may have enhanced the accompanying modest southward IMF; and (3) intervals of reduced magnetic perturbations or "calms," associated with periods of slow solar wind, interspersed among variable-length episodic enhancements. These calms are most evident when the IMF is northward or projects with a northward component onto the geomagnetic dipole. The reprocessed ST5 data are in very good agreement with magnetic perturbations from the Defense Meteorological Satellite Program (DMSP) spacecraft, which we also map to 110 km. We briefly discuss the methods used to remap the ST5 data and the means of validating the results against DMSP. Our methods form the basis for future intermission comparisons of space-based magnetometer data.

  18. A pilot exploratory investigation on pregnant women's views regarding STan fetal monitoring technology.

    Science.gov (United States)

    Bryson, Kate; Wilkinson, Chris; Kuah, Sabrina; Matthews, Geoff; Turnbull, Deborah

    2017-12-29

    Women's views are critical for informing the planning and delivery of maternity care services. ST segment analysis (STan) is a promising method to more accurately detect when unborn babies are at risk of brain damage or death during labour that is being trialled for the first time in Australia. This is the first study to examine women's views about STan monitoring in this context. Semi-structured interviews were conducted with pregnant women recruited across a range of clinical locations at the study hospital. The interviews included hypothetical scenarios to assess women's prospective views about STan monitoring (as an adjunct to cardiotocography, (CTG)) compared to the existing fetal monitoring method of CTG alone. This article describes findings from an inductive and descriptive thematic analysis. Most women preferred the existing fetal monitoring method compared to STan monitoring; women's decision-making was multifaceted. Analysis yielded four themes relating to women's views towards fetal monitoring in labour: a) risk and labour b) mobility in labour c) autonomy and choice in labour d) trust in maternity care providers. Findings suggest that women's views towards CTG and STan monitoring are multifaceted, and appear to be influenced by individual labour preferences and the information being received and understood. This underlies the importance of clear communication between maternity care providers and women about technology use in intrapartum care. This research is now being used to inform the implementation of the first properly powered Australian randomised trial comparing STan and CTG monitoring.

  19. Using the Technology: Introducing Point of View Video Glasses Into the Simulated Clinical Learning Environment.

    Science.gov (United States)

    Metcalfe, Helene; Jonas-Dwyer, Diana; Saunders, Rosemary; Dugmore, Helen

    2015-10-01

    The introduction of learning technologies into educational settings continues to grow alongside the emergence of innovative technologies into the healthcare arena. The challenge for health professionals such as medical, nursing, and allied health practitioners is to develop an improved understanding of these technologies and how they may influence practice and contribute to healthcare. For nurse educators to remain contemporary, there is a need to not only embrace current technologies in teaching and learning but to also ensure that students are able to adapt to this changing pedagogy. One recent technological innovation is the use of wearable computing technology, consisting of video recording with the capability of playback analysis. The authors of this article discuss the introduction of the use of wearable Point of View video glasses by a cohort of nursing students in a simulated clinical learning laboratory. Of particular interest was the ease of use of the glasses, also termed the usability of this technology, which is central to its success. Students' reflections were analyzed together with suggestions for future use.

  20. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  1. Application of advanced electronics to a future spacecraft computer design

    Science.gov (United States)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  2. Bridging the digital disconnect : Exploring the views of professionals on using technology to promote young people’s mental health

    NARCIS (Netherlands)

    Clarke, Aleisha M.; Chambers, Derek; Barry, Margaret M.

    2017-01-01

    The increasing role of online technologies in young people’s lives has significant implications for professionals’ engagement with technologies to promote youth mental health and well-being. However, relatively little is known about professionals’ views on the role of technologies in supporting

  3. Making use of research: clinical views on an evaluation of everyday technology use.

    Science.gov (United States)

    Nygård, Louise; Kottorp, Anders; Rosenberg, Lena

    2015-01-01

    The study aim was to investigate how and when an evaluation of perceived difficulty in use of everyday technology (Everyday Technology Use Questionnaire, ETUQ) could be used in clinical occupational therapy. Eight focus-group interviews were undertaken with a total of 42 participants (occupational therapists), and data were analysed with a constant comparative approach. The findings are presented in four main categories, including (i) appropriate purposes and contexts for using ETUQ, (ii) standardization versus individual flexibility, (iii) approaching everyday technology use and occupation as one whole, and (iv) synthesizing and documentation. In conclusion, the participants considered ability to use technology to be an important topic for occupational therapy, particularly in investigations of clients with subtle disabilities and in connection with discharge from hospital - but not in inpatient care. They had different views on how to integrate ETUQ with evaluations of occupational performance, and new ideas on how information about clients' ability to use technology could be utilized in interventions. They held standardized evaluations in high regard, but a paradox appeared in that many of them would use ETUQ in a non-standardized way, while simultaneously asking for a standardized output to be used in clients' medical files and to guide interventions.

  4. Stakeholder views addressing the development and uptake of powered wheelchair assistive technology.

    Science.gov (United States)

    Gillham, Michael; Pepper, Matthew; Kelly, Steve; Howells, Gareth

    2017-12-14

    The objective of this research is to identify stakeholder views with regard to the development of effective powered wheelchair assistive technologies more suited to the user and carer needs, whilst also meeting the requirements for other stakeholders, such that developers can be better guided towards producing solutions which have a better chance of getting to the market place and hence to the end user. A questionnaire was designed to collect the views of all stakeholders and circulated to a statistically representative number of them. The question rating data were then checked for correlation between groups, and within groups, to establish validity. The 74 stakeholders across the eight classes who responded had a good correlation between each other, with a cross class "Pearson's correlation" ranging between 0.7 and 0.95, and the "Fleiss's Kappa reliability of agreement" within each class ranging between 0.07 and 0.36. This research has identified that all stakeholders should be involved in the development of the technology and that some may benefit in 'role-reversal' to help understand user problems and stakeholder concerns more clearly. Cost was a significant barrier to the uptake of appropriate technology, and training of users and carers was a major issue. Furthermore, development should not increase user isolation and the impact on the user must be monitored for 'quality of life'. Technical support and training should be given to the user and their carers, and equipment must be adaptive to meet the changing needs of the user. Implications for Rehabilitation Improved acceptance and use of technology by the user and their carers. Reduced rejection of appropriate provision. Improved mobility and interaction with others. Improved quality of life for users and carers.

  5. Optics and optics-based technologies education with the benefit of LabVIEW

    Science.gov (United States)

    Wan, Yuhong; Man, Tianlong; Tao, Shiquan

    2015-10-01

    The details of design and implementation of incoherent digital holographic experiments based on LabVIEW are demonstrated in this work in order to offer a teaching modal by making full use of LabVIEW as an educational tool. Digital incoherent holography enables holograms to be recorded from incoherent light with just a digital camera and spatial light modulator and three-dimensional properties of the specimen are revealed after the hologram is reconstructed in the computer. The experiment of phase shifting incoherent digital holography is designed and implemented based on the principle of Fresnel incoherent correlation holography. An automatic control application is developed based on LabVIEW, which combines the functions of major experimental hardware control and digital reconstruction of the holograms. The basic functions of the system are completed and a user-friendly interface is provided for easy operation. The students are encouraged and stimulated to learn and practice the basic principle of incoherent digital holography and other related optics-based technologies during the programming of the application and implementation of the system.

  6. Comparing Views of Primary School Mathematics Teachers and Prospective Mathematics Teachers about Instructional Technologies

    Directory of Open Access Journals (Sweden)

    Adnan Baki

    2009-11-01

    Full Text Available Technology is rapidly improving in both hardware and software side. As one of the contemporary needs people should acquire certain knowledge, skills, attitudes and habits to understand this technology, to adapt to it and to make use of its benefits. In addition, as in all domains of life, change and improvement is also unavoidable for educational field. As known, change and improvement in education depends on lots of factors. One of the most important factors is teacher. In order to disseminate educational reforms, teachers themselves should accept the innovation first (Hardy, 1998, Baki, 2002; Oral, 2004. There has been variety of studies investigating teacher and prospective teachers‟ competences, attitudes and opinions (Paprzychi, Vikovic & Pierson, 1994; Hardy, 1998; Kocasaraç, 2003; Lin, Hsiech and Pierson, 2004; Eliküçük, 2006; YeĢilyurt, 2006; Fendi, 2007; Teo, 2008; Arslan, Kutluca & Özpınar, 2009. As the common result of these studies indicate that teachers‟ interest towards using instructional technology have increased. Accordingly, most of the teachers began to think that using instructional technologies becomes inevitable for teachers. By reviewing the related literature, no studies have been come across comparing the opinions of teachers and teacher candidates about instructional technologies. In this study, it was aimed to investigate and compare the views of mathematics teachers with prospective mathematics teachers about ICT. It was considered that collecting opinions of teachers and teachers candidates about the instructional technologies, comparing and contrasting them will contribute to the field. To follow this research inquiry, a descriptive approach type; case study research design was applied. The reason for choosing such design is that the case study method permits studying one aspect of the problem in detail and in a short time (Yin, 2003; Çepni, 2007. The study was conducted with the total sample of 12. 3 of

  7. Application of 3-dimensional printing technology to construct an eye model for fundus viewing study.

    Directory of Open Access Journals (Sweden)

    Ping Xie

    Full Text Available To construct a life-sized eye model using the three-dimensional (3D printing technology for fundus viewing study of the viewing system.We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs. Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D printing. Together with the main printed structure, polymethyl methacrylate(PMMA aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy.In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value.The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus range viewing research.

  8. Application of 3-dimensional printing technology to construct an eye model for fundus viewing study.

    Science.gov (United States)

    Xie, Ping; Hu, Zizhong; Zhang, Xiaojun; Li, Xinhua; Gao, Zhishan; Yuan, Dongqing; Liu, Qinghuai

    2014-01-01

    To construct a life-sized eye model using the three-dimensional (3D) printing technology for fundus viewing study of the viewing system. We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs). Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD) software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D) printing. Together with the main printed structure, polymethyl methacrylate(PMMA) aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy. In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value. The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus range viewing research.

  9. Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth–sun Lagrange 1 orbit

    Directory of Open Access Journals (Sweden)

    J. Herman

    2018-01-01

    Full Text Available EPIC (Earth Polychromatic Imaging Camera on board the DSCOVR (Deep Space Climate Observatory spacecraft is the first earth science instrument located near the earth–sun gravitational plus centrifugal force balance point, Lagrange 1. EPIC measures earth-reflected radiances in 10 wavelength channels ranging from 317.5 to 779.5 nm. Of these channels, four are in the UV range 317.5, 325, 340, and 388 nm, which are used to retrieve O3, 388 nm scene reflectivity (LER: Lambert equivalent reflectivity, SO2, and aerosol properties. These new synoptic quantities are retrieved for the entire sunlit globe from sunrise to sunset multiple times per day as the earth rotates in EPIC's field of view. Retrieved ozone amounts agree with ground-based measurements and satellite data to within 3 %. The ozone amounts and LER are combined to derive the erythemal irradiance for the earth's entire sunlit surface at a nadir resolution of 18 × 18 km2 using a computationally efficient approximation to a radiative transfer calculation of irradiance. The results show very high summertime values of the UV index (UVI in the Andes and Himalayas (greater than 18, and high values of UVI near the Equator at equinox.

  10. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  11. The Impact of Globalization and Technology on Teaching Business Communication: Reframing and Enlarging World View, Methods, and Content

    Science.gov (United States)

    Berry, Priscilla

    2013-01-01

    This paper explores the current paradigm shift in the use of technology in the classroom, which is occurring because of technology explosion in society, impact of globalization, necessary reframing, and enlarging of the world view, methods, and content to make business communication classes relevant. The question is whether the classroom should…

  12. Consumer Views: Fuel Economy, Plug-in Electric Vehicle Battery Range, and Willingness to Pay for Vehicle Technology

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Mark [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-11

    This presentation includes data captured by the National Renewable Energy Laboratory (NREL) to support the U.S. Department of Energy's Vehicle Technologies Office (VTO) research efforts. The data capture consumer views on fuel economy, plug-in electric vehicle battery range, and willingness to pay for advanced vehicle technologies.

  13. Integration of Digital Technologies into Play-Based Pedagogy in Kuwaiti Early Childhood Education: Teachers' Views, Attitudes and Aptitudes

    Science.gov (United States)

    Aldhafeeri, Fayiz; Palaiologou, Ioanna; Folorunsho, Aderonke

    2016-01-01

    Scholars in the field of early childhood education are still debating the inclusion of digital technologies in play-based pedagogy and our understanding of digital play in early childhood education is still developing. This research paper examines early childhood education teachers' views, aptitudes and attitudes towards digital technologies in…

  14. Pre-Service Science Teachers Views on STEM Materials and STEM Competition in Instructional Technologies and Material Development Course

    Science.gov (United States)

    Cetin, Ali; Balta, Nuri

    2017-01-01

    This qualitative study was designed to introduce STEM (Science, Technology, Engineering, Mathematics) activities to preservice science teachers and identify their views about STEM materials. In this context, a competition was organized with 42 preservice science teachers (13 male- 29 female) who took Instructional Technologies and Material…

  15. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  16. Towards a Differentiated and Domain-Specific View of Educational Technology: An Exploratory Study of History Teachers' Technology Use

    Science.gov (United States)

    Voet, Michiel; De Wever, Bram

    2017-01-01

    Adopting a differentiated and domain-specific view of educational technology, the present study focuses on the case of school history. It argues that, in this particular context, one of technology's main assets is its ability to support inquiry-based learning activities, during which students interpret the past through historical reasoning. As…

  17. The Comparative Effects of Transaction Cost Economics and Resource Based View: A Technological Alliance Motivational Perspective

    Directory of Open Access Journals (Sweden)

    Hwan Jin Kim

    2016-06-01

    Full Text Available This paper examines the impact of two main alliance motivation theories, transaction cost economics (TCE and resource based view (RBV, on alliance processes among Korean manufacturing high-tech ventures. Results show that TCE and RBV are complimentarily explaining the formation of inter-firm alliances. TCE variables are more related with alliance partner characteristics while RBV is more linked with partner capabilities. Both show positive effects on performance. No significant effect is found on determining an alliance governance structure. While selecting appropriate technological alliance partners show positive effects on performance, no significant effect is found between alliance governance structure and performance. Factors of both theories impacting each alliance stage and analytical explanations of such impacts are discussed.

  18. Health technology assessment and health policy today a multifaceted view of their unstable crossroads

    CERN Document Server

    del Llano-Señarís, Juan E

    2015-01-01

    This book disentangles the issues in connection with the advancement of Health Technology Assessment (HTA) and its interface with health policy. It highlights the factors that should shape its progress in the near future. Interdisciplinary and critical views from a number of professionals are put together in a prescient order to cast some light and make recommendations as to the next steps HTA should take to be fit for purpose. A wealth of documents dealing with HTA have been published over the last three decades. HTA allegedly is one of the bedrocks of regulation and medical decision making. However, counter vailing visions contend that geographical variations in the role that HTA is actually playing within countries pinpoints specific room for improvement. Given our social preferences, cherry-picking HTA's features and successes over the last decades moves it away from its possibility frontier. Some of the most noteworthy hindrances that HTA faces, in several countries, to making headway towards its consoli...

  19. Artificial reproductive technologies (ART) applications in Turkey as viewed by feminists.

    Science.gov (United States)

    Sahinoglu-Pelin, S

    2002-01-01

    Since 1979, a lot of couples have benefited, in terms of having babies, from Artificial Reproductive Technologies (ART). In Turkey, there are presently about 20 centres in existence for this purpose where two approved sets of regulations are in operation; the second being an improved form of the former. In this paper, ART applications in Turkey, as viewed by feminists, will be discussed. During ART, the body of the woman concerned is directly involved. And after every application, the possibility of not having a living baby can adversely affect the physical and psychological state of the woman in question with the trauma being sometimes beyond endurance. In the two sets of approved regulations mentioned above, this application has been questioned in terms of ethics.

  20. Large-screen display industry: market and technology trends for direct view and projection displays

    Science.gov (United States)

    Castellano, Joseph A.; Mentley, David E.

    1996-03-01

    Large screen information displays are defined as dynamic electronic displays that can be viewed by more than one person and are at least 2-feet wide. These large area displays for public viewing provide convenience, entertainment, security, and efficiency to the viewers. There are numerous uses for large screen information displays including those in advertising, transportation, traffic control, conference room presentations, computer aided design, banking, and military command/control. A noticeable characteristic of the large screen display market is the interchangeability of display types. For any given application, the user can usually choose from at least three alternative technologies, and sometimes from many more. Some display types have features that make them suitable for specific applications due to temperature, brightness, power consumption, or other such characteristic. The overall worldwide unit consumption of large screen information displays of all types and for all applications (excluding consumer TV) will increase from 401,109 units in 1995 to 655,797 units in 2002. On a unit consumption basis, applications in business and education represent the largest share of unit consumption over this time period; in 1995, this application represented 69.7% of the total. The market (value of shipments) will grow from DOL3.1 billion in 1995 to DOL3.9 billion in 2002. The market will be dominated by front LCD projectors and LCD overhead projector plates.

  1. Students and technologies. A view from the 'lens' of university teachers

    Directory of Open Access Journals (Sweden)

    Analía Claudia Chiecher

    2017-01-01

    Full Text Available It is often heard that young people today are not as they used to. If there is one trait that characterizes the youth today is the fact that they were born in a technological world. This culture generally has an influence on the process of identity building, and more specifically on the way they learn. Taking this reality as a starting point, this article presents results of a study in which we interviewed a group of teachers from a public university in Argentina in order to know their views about the current student. 27 semi-structured interviews with university teachers were performed. The data analysis followed a qualitative method of constructing categories from the discourse of the interviewees. The research findings highlight that faculty respondents generally agree and describe the college student today as highly technological, with ample opportunities to access to information, with a capacity to handle several tasks simultaneously but with some difficulties in reading and writing activities and critical reflection. The above features induce teachers to constantly attempt to renew their practices to adjust to the college student today.

  2. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  3. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  4. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  5. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  6. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  7. Target validation for FCV technology development in Japan from energy competition point of view

    International Nuclear Information System (INIS)

    ENDO Eiichi

    2006-01-01

    The objective of this work is to validate the technical targets in the governmental hydrogen energy road-map of Japan by analyzing market penetration of fuel cell vehicle(FCV)s and effects of fuel price and carbon tax on it from technology competition point of view. In this analysis, an energy system model of Japan based on MARKAL is used. The results of the analysis show that hydrogen FCVs could not have cost-competitiveness until 2030 without carbon tax, including the governmental actual plan of carbon tax. However, as the carbon tax rate increases, instead of conventional vehicles including gasoline hybrid electric vehicle, hydrogen FCVs penetrate to the market earlier and more. By assuming higher fuel price and severer carbon tax rate, market share of hydrogen FCVs approaches to the governmental goal. This suggests that cheaper vehicle cost and/or hydrogen price than those targeted in the road-map is required. At the same time, achievement of the technical targets in the road-map also allows to attain the market penetration target of hydrogen FCVs in some possible conditions. (authors)

  8. The effect of cooperative learning on students’ achievement and views on the science and technology course

    Directory of Open Access Journals (Sweden)

    Sertel Altun

    2015-06-01

    Full Text Available The purpose of this study is to investigate the efficiency of learning plan implementation prepared with the cooperative learning method. In particular, the study addresses the effect of cooperative learning on students’ achievement and their views regarding the ‘Systems in Our Body’ unit of the 6th grade Science and Technology lesson. For this purpose, mixed method was used. The study is conducted in the second term of the 2013-2014 academic year, on a study group consisted of 7 girls and 13 boys, a total of 20 students of a private middle school in Istanbul. An achievement scale was utilized for the quantitative data and focus group interviews were hold for the qualitative data. While t-test was used for the quantitative findings, content analysis technique was used for the qualitative data. The result of the study indicated that CL method had a favorable effect on learning. The cooperation based learning-teaching environment provided cooperation, supported permanent learning, provided opportunities to be successful, contributed to the development of social and personal skills, but also caused worry as it requires students to be successful at all stages.

  9. Health technology assessment of medicines in Greece: pharmaceutical industry executives' views.

    Science.gov (United States)

    Armataki, Eleni; Karampli, Eleftheria; Kyriopoulos, John; Pavi, Elpida

    2014-04-01

    The aim of this study was to investigate originator pharmaceutical companies' practices in relation to health technology assessment (HTA) and the views and perceptions of their executives on the importance of HTA in pricing and reimbursement of medicines in Greece. A qualitative study was performed, using individual semi-structured interviews based on an interview schedule with open-ended questions. The target population was market access departments' executives of originator pharmaceutical companies. Our target sample consisted of sixteen executives, of whom ten agreed to participate. Saturation point was reached after eight interviews. Data were audio recorded, transcribed verbatim, and analyzed using content analysis. Participants considered HTA as a very important complementary tool for decision making in health policy, particularly in the field of pharmaceuticals and medical devices. They believed that, in Greece, HTA could be institutionalized for the reimbursement mechanism of medicines under certain conditions relating to current health policy-making attitudes and conditions pertaining in the country. They considered that there are many constraints which must be overcome as well as opportunities to be exploited. Decisions in pharmaceutical policy should be scientifically substantiated and HTA should be institutionalized primarily for reimbursement decisions. Development of guidelines for conducting pharmaco-economic evaluation, change in health policy goals, recording of cost and epidemiological data, and broader participation of all stakeholders in HTA decision-making processes are suggested as prerequisites for a successful implementation of HTA in Greece.

  10. The Effect of Cooperative Learning on Students’ Achievement and Views on the Science and Technology Course

    Directory of Open Access Journals (Sweden)

    Sertel ALTUN

    2015-06-01

    Full Text Available The purpose of this study is to investigate the efficiency of learning plan implementation prepared with the cooperative learning method. In particular, the study addresses the effect of cooperative learning on students’ achievement and their views regarding the ‘Systems in Our Body’ unit of the 6th grade Science and Technology lesson. For this purpose, mixed method was used. The study is conducted in the second term of the 2013-2014 academic year, on a study group consisted of 7 girls and 13 boys, a total of 20 students of a private middle school in Istanbul. An achievement scale was utilized for the quantitative data and focus group interviews were hold for the qualitative data. While t-test was used for the quantitative findings, content analysis technique was used for the qualitative data. The result of the study indicated that CL method had a favorable effect on learning. The cooperation based learning-teaching environment provided cooperation, supported permanent learning, provided opportunities to be successful, contributed to the development of social and personal skills, but also caused worry as it requires students to be successful at all stages.

  11. Using digital technologies to engage with medical research: views of myotonic dystrophy patients in Japan.

    Science.gov (United States)

    Coathup, Victoria; Teare, Harriet J A; Minari, Jusaku; Yoshizawa, Go; Kaye, Jane; Takahashi, Masanori P; Kato, Kazuto

    2016-08-24

    As in other countries, the traditional doctor-patient relationship in the Japanese healthcare system has often been characterised as being of a paternalistic nature. However, in recent years there has been a gradual shift towards a more participatory-patient model in Japan. With advances in technology, the possibility to use digital technologies to improve patient interactions is growing and is in line with changing attitudes in the medical profession and society within Japan and elsewhere. The implementation of an online patient engagement platform is being considered by the Myotonic Dystrophy Registry of Japan. The aim of this exploratory study was to understand patients' views and attitudes to using digital tools in patient registries and engagement with medical research in Japan, prior to implementation of the digital platform. We conducted an exploratory, cross-sectional, self-completed questionnaire with a sample of myotonic dystrophy (MD) patients attending an Open Day at Osaka University, Japan. Patients were eligible for inclusion if they were 18 years or older, and were diagnosed with MD. A total of 68 patients and family members attended the Open Day and were invited to participate in the survey. Of those, 59 % submitted a completed questionnaire (n = 40). The survey showed that the majority of patients felt that they were not receiving the information they wanted from their clinicians, which included recent medical research findings and opportunities to participate in clinical trials, and 88 % of patients indicated they would be willing to engage with digital technologies to receive relevant medical information. Patients also expressed an interest in having control over when and how they received this information, as well as being informed of how their data is used and shared with other researchers. Overall, the findings from this study suggest that there is scope to develop a digital platform to engage with patients so that they can receive

  12. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  13. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  14. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  15. Exploring Technology-Enhanced Learning Using Google Glass to Offer Students a Unique Instructor's Point of View Live Laboratory Demonstration

    Science.gov (United States)

    Man, Fung Fun

    2016-01-01

    Technology-enhanced learning (TEL) is fast gaining momentum among educational institutions all over the world. The usual way in which laboratory instructional videos are filmed takes the third-person view. However, such videos are not as realistic and sensorial. With the advent of Google Glass and GoPro cameras, a more personal and effective way…

  16. Impact of STS Issue Oriented Instruction on Pre-Service Elementary Teachers' Views and Perceptions of Science, Technology, and Society

    Science.gov (United States)

    Amirshokoohi, Aidin

    2016-01-01

    The purpose of the study was to investigate the impact of Science, Technology, Society (STS) issue oriented science methods course on pre-service teachers' views and perceptions toward STS issues and instruction as well as their levels of environmental literacy. The STS issue oriented curriculum was designed to help pre-service teachers improve…

  17. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    Science.gov (United States)

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  18. Gene Technology: Also a Gender Issue. Views of Dutch Informed Women on Genetic Screening and Gene Therapy.

    Science.gov (United States)

    van Berkel, Dymphie; Klinge, Ineke

    1997-01-01

    The views of Dutch women on the implications of the analysis of the human genome were studied by questionnaire and interview. Although a serious lack of knowledge about the topic was found, interviews produced a broad range of problematic issues. Attention to gender implications of gene technology is needed. (Author/EMK)

  19. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  20. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  1. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  2. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  3. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  4. A Comparative Analysis of Point-of-View Modeling for Industrial and Technology Education Courses

    Science.gov (United States)

    Katsioloudis, Petros J.; Fantz, Todd D.; Jones, Millie

    2013-01-01

    Enrollment in technology education at the college level has been declining, so it is becoming essential for technology teacher educators to investigate ways to increase the enrollment in their programs. Technology teacher educators are exploring the extent to which distance-learning technologies such as video modeling can be used by industrial and…

  5. The Users' Views on Different Types of Instructional Materials Provided in Virtual Reality Technologies

    Science.gov (United States)

    Yildirim, Gürkan

    2017-01-01

    Today, it is seen that developing technologies are tried to be used continuously in the learning environments. These technologies have rapidly been diversifying and changing. Recently, virtual reality technology has become one of the technologies that experts have often been dwelling on. The present research tries to determine users' opinions and…

  6. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  7. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  8. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  9. Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology.

    Science.gov (United States)

    Yoshimura, Michitaka; Kitazawa, Momoko; Maeda, Yasuhiro; Mimura, Masaru; Tsubota, Kazuo; Kishimoto, Taishiro

    2017-01-01

    There are studies reporting the negative impact of smartphone utilization on sleep. It is considered that reduction of melatonin secretion under the blue light exposure from smart-phone displays is one of the causes. The viewing distance may cause sleep disturbance, because the viewing distance determines the screen illuminance and/or asthenopia. However, to date, there has been no study closely investigating the impact of viewing distance on sleep; therefore, we sought to determine the relationship between smartphone viewing distance and subjective sleep status. Twenty-three nursing students (mean age ± standard deviation of 19.7±3.1 years) participated in the study. Subjective sleep status was assessed using the Pittsburgh Sleep Quality Index, morningness-eveningness questionnaire, and the Epworth sleepiness scale. We used the distance between the head and the hand while holding a smartphone to measure the viewing distance while using smartphones in sitting and lying positions. The distance was calculated using the three-dimensional coordinates obtained by a noncontact motion-sensing device. The viewing distance of smartphones in the sitting position ranged from 13.3 to 32.9 cm among participants. In the lying position, it ranged from 9.9 to 21.3cm. The viewing distance was longer in the sitting position than in the lying position (mean ± standard deviation: 20.3±4.7 vs 16.4±2.7, respectively, P sleep state ( R 2 =0.27, P sleep efficiency ( R 2 =0.35, P sleep latency ( R 2 =0.38, P smartphone viewing distances in lying position correlated negatively with subjective sleep status. Therefore, when recommending ideal smartphone use in lying position, one should take into account the viewing distances.

  10. The IT Audit Assignment: Viewing Technology in the Organizational and Strategic Context.

    Science.gov (United States)

    Schwering, Randolph E.

    2002-01-01

    The information technology audit is a management learning activity in which students apply interdisciplinary research questions to a client organization. Business students thus learn to predict, diagnose, and mitigate organizational risks in implementing information technology. (Contains 14 references.) (SK)

  11. Requirements for effective technology transfer for engineering and project management. The views of the recipient country and the technology supplier

    International Nuclear Information System (INIS)

    Backhaus, K.W.

    1986-04-01

    Technology transfer in the area of engineering and project management for nuclear power plant projects is considered a rather complex and sophisticated matter. Therefore only within a long-term nuclear co-operation a meaningful transfer of such a multifaceted technology can reasonably be achieved. A long-term nuclear co-operation anticipates a nuclear power plant program consisting of a few nuclear power plants of a certain type and size in order to achieve the indispensable effect ''learning by doing''. The objectives of nuclear technology transfer may be in general or in particular; absorption of a foreign nuclear technology and its adaptation to the conditions and needs of the receiver's country; built-up of industrial infrastructure for planning, construction and operation of nuclear power plants; raising of the general industrial level and achieve a spin-off effect; creation of a basis for independent development of nuclear technology. The technology transfer on one side and the construction program of nuclear power plants on the other side cannot be practiced by two parallel but separated event, however, they form one unit. Contrary to the import of industrial equipment in terms of ''black box'', by means of a nuclear technology transfer the introduction of new dependencies will be prevented. The technology transfer can remarkably be facilitated by forming a joint venture engineering company in the recipient country. The required know-how potential within a certain time period determines the intensity of the technology transfer and consequently the man power to be involved. The realization of such technology transfer is demonstrated by means of practical examples. (author). 12 figs

  12. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  13. Study on the communication technology of instrument based on LabVIEW

    International Nuclear Information System (INIS)

    Jiang Wei; Lai Qinggui; Zhang Xiaobo

    2012-01-01

    The hardware and software structure of communication of universal instrument is discussed based on LabVIEW, the several realization of remote communication is compared too. In the control and measure system of LIA, using LabVIEW, the communication is realized among the plenty of instruments which have the various interfaces, in this paper the frame of hardware and software about instrument communication is showed. (authors)

  14. Teachers as Learning Designers: What Technology Has to Do with Learning. A View from Singapore

    Science.gov (United States)

    Fei, Victor Lim; Hung, David

    2016-01-01

    This article discusses the controversies and value in the use of technology for learning. It proposes that as a teaching tool, technology also opens up new possibilities for teachers to design meaningful learning experiences for their students. The appropriate use of technology promises to deepen the learning of traditional literacy, numeracy, and…

  15. Teacher Views on Barriers to the Integration of Information and Communication Technologies (ICT) in Turkish Teaching

    Science.gov (United States)

    Özdemir, Serpil

    2017-01-01

    Technology has taken place in all areas of life. Educational environment is equipped with the technology to educate individuals with the skills to meet the needs of the day. It is expected that teachers use information and communication technologies and transfer this skill to the educational environment in the information age. When the use of ICT…

  16. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  17. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  18. Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology

    Directory of Open Access Journals (Sweden)

    Yoshimura M

    2017-03-01

    Full Text Available Michitaka Yoshimura,1,* Momoko Kitazawa,1–3,* Yasuhiro Maeda,2 Masaru Mimura,4 Kazuo Tsubota,1 Taishiro Kishimoto,4,5 1Department of Ophthalmology, Keio University School of Medicine, Tokyo, 2RIKEN Center for Advanced Photonics, Wako, Saitama, 3Department of Nursing, Aino University Junior College, 4Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; 5Department of Psychiatry, Hofstra Northwell School of Medicine, NY, USA *These authors contributed equally to this work Abstract: There are studies reporting the negative impact of smartphone utilization on sleep. It is considered that reduction of melatonin secretion under the blue light exposure from smartphone displays is one of the causes. The viewing distance may cause sleep disturbance, because the viewing distance determines the screen illuminance and/or asthenopia. However, to date, there has been no study closely investigating the impact of viewing distance on sleep; therefore, we sought to determine the relationship between smartphone viewing distance and subjective sleep status. Twenty-three nursing students (mean age ± standard deviation of 19.7±3.1 years participated in the study. Subjective sleep status was assessed using the Pittsburgh Sleep Quality Index, morningness–eveningness questionnaire, and the Epworth sleepiness scale. We used the distance between the head and the hand while holding a smartphone to measure the viewing distance while using smartphones in sitting and lying positions. The distance was calculated using the three-dimensional coordinates obtained by a noncontact motion-sensing device. The viewing distance of smartphones in the sitting position ranged from 13.3 to 32.9 cm among participants. In the lying position, it ranged from 9.9 to 21.3cm. The viewing distance was longer in the sitting position than in the lying position (mean ± standard deviation: 20.3±4.7 vs 16.4±2.7, respectively, P<0.01. We found that the short viewing

  19. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  20. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  1. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  2. A Sociomaterial View on the Scaffolding of Information Technology Work Practices

    DEFF Research Database (Denmark)

    Leclercq, Aurelie; Carugati, Andrea; Giangreco, Antonio

    This paper builds on the concept of sociomateriality to investigate different modalities by which information technology may scaffold work practices. Taking into account the constitutive entanglement of both the social and the material, the authors identify a model to map emergent work practices...... through which IT use unfolds. An investigation of mobile IT usage in 10 companies indicates a model of four modalities of behaviors: (1) When people perceive that the mobile technology supports their local needs, they will use it in the prescribed way; (2) when they perceive that the mobile technology can...... produce additional advantages, they augment its use beyond that prescribed; (3) when possible, people use unprescribed technologies to complement their prescribed mobile technology; and (4) people use unprescribed mobile technology to scaffold their work and limit their use of the prescribed IT as much...

  3. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  4. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  5. [Technology and future ways of thinking related to work from ergonomics points of views in moments of global crisis].

    Science.gov (United States)

    Puentes-Lagos, David E; García-Acosta, Gabriel

    2012-06-01

    Is it possible to establish (at short, medium and long term) future work conditions or expected work conditions for Colombian people considering upcoming work technologies? Is it possible to anticipate future work desirable work conditions for Colombian people in order to plan (foresee?) work technologies? These questions guided this research and they point to an action thesis and to a reaction one in this context of work crisis. Even though a work technology establishes where, when, how, who, who with, and using what element work is done, it also establishes certain work conditions. Besides, multiple forms of considering and deconstructing past have been created from many disciplines. However, in order to foresee or construct work technologies requires a different perspective for looking further. This research has been carried out considering other disciplines points of view regarding Future Studies and Future Thinking Studies. This research has the purpose of finding future paths for Future Thinking Studies from ergonomics point of view in this moment of global work crisis we are going through.

  6. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  7. Professional values, technology and future health care: The view of health care professionals in The Netherlands

    NARCIS (Netherlands)

    M.E. Nieboer; A.M. van Hout; Joost van Hoof; Sil Aarts; Eveline Wouters

    2014-01-01

    Perceptions and values of care professionals are critical in successfully implementing technology in health care. The aim of this study was threefold: (1) to explore the main values of health care professionals, (2) to investigate the perceived influence of the technologies regarding these values,

  8. Shifting Views: Exploring the Potential for Technology Integration in Early Childhood Education Programs

    Science.gov (United States)

    Dietze, Beverlie; Kashin, Diane

    2013-01-01

    Using technology with children in play-based early learning programs creates questions for some within the Early Childhood Education (ECE) community. This paper presents how two faculty who teach in ECE-related degree programs integrated educational technology into their teaching pedagogy as a way to model to their students how it can be used to…

  9. Teaching e-Commerce Personalization Technology: The Need for a Comprehensive View

    Science.gov (United States)

    Sicilia, Miguel-Angel

    2005-01-01

    Personalization technology has become an important topic in e-commerce, fostered by the emergence of the relationship-marketing paradigm. But teaching e-commerce personalization technology is a challenging task, since it requires a balance between marketing and management and technical implementation issues that must be calibrated according to the…

  10. Bridging the digital disconnect: Exploring the views of professionals on using technology to promote young people's mental health.

    Science.gov (United States)

    Clarke, Aleisha M; Chambers, Derek; Barry, Margaret M

    2017-08-01

    The increasing role of online technologies in young people's lives has significant implications for professionals' engagement with technologies to promote youth mental health and well-being. However, relatively little is known about professionals' views on the role of technologies in supporting youth mental health. This article outlines key findings from a needs assessment survey carried out in Ireland that sought to determine the views of professionals working with young people on the use of online technologies in supporting young people's mental health and well-being. A total of 900 professionals from across the education, health, and mental health professions completed an online survey. The findings demonstrate the importance of the internet as a resource for professionals working with young people, with over 98% of those surveyed expressing a readiness to use online resources to support young people's mental health. The nature of preferred online technologies differed according to professional groupings, however, 63% of overall respondents indicated they would look for help on a dedicated mental health website. Guidelines on working with young people and their parents on the promotion of positive mental were requested with the most frequency. Among the barriers identified were concerns about access to reliable information that was relevant to specific professional roles, and the need for organizational support of professionals' use of online evidence-based resources. Concerns were also expressed that online resources could replace face-to-face support services for young people, and the need for training professionals in their appropriate use. The results highlight the potential role of technology in assisting professionals through the provision of online training, reliable information, and practical resources on the promotion of positive youth mental health.

  11. Bridging the Digital Disconnect: Exploring the Views of Professionals on Using Technology to Promote Young People's Mental Health

    Science.gov (United States)

    Clarke, Aleisha M.; Chambers, Derek; Barry, Margaret M.

    2017-01-01

    The increasing role of online technologies in young people's lives has significant implications for professionals' engagement with technologies to promote youth mental health and well-being. However, relatively little is known about professionals' views on the role of technologies in supporting youth mental health. This article outlines key…

  12. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  13. Innovation Priorities in Nuclear and Radiation Technologies in Russia. View from Skolkovo

    International Nuclear Information System (INIS)

    Fertman, A.; Kovalevich, D.; Turtikov, V.; Zaytseva, N.

    2012-01-01

    The direction for the modernization and technological development of 'Nuclear Technologies' sector of the Russian economy comprises a group of scientific and engineering subjects (atomic engineering, technologies on the basis of radiation, change of properties of materials, radiation resistant microelectronics, etc.), and serves as the foundation of one of the most high-tech industries. The innovative development of nuclear technologies is an integral condition for the strengthening (and in some directions of conquering) a country's position as a global technological leader and preservation of defensive capability of the nation. For this reason, nuclear technologies became one of the priority areas for the activity of the Skolkovo Center. The wide opportunities offered by the application of nuclear technologies were already clear at the deployment stage of the 'Nuclear Project - 1'. In 1958, at the 2nd International conference on the peaceful use of nuclear energy in Geneva, the USSR presented more than 200 reports and communiques in all civil use of atomic energy directions.One of the major results of the development of the nuclear branch have become the developments in the sphere of control of radiation and magnetic fields (radiation technologies). This group of technologies have actively developed in collaboration with design and manufacturing of different types of equipment, including accelerators, neutron generators, lasers, HF-systems, detectors of particles and radiation, microscopes and telescopes, microwave microelectronics, etc. Today these technologies and equipment are used in a variety of other (non-power and not military) markets - and the list of these markets grows constantly. Among the fastest growing ones, we can list the markets of nuclear medicine, sterilization and disinfection, safety and non-destructive testing, ecology and water processing, extraction and the processing of minerals. Historically, the development of nuclear technologies

  14. Perspectives on Technology Transfer Strategies of Korean Companies in Point of Resource and Capability Based View

    Directory of Open Access Journals (Sweden)

    Seung-Ho Park

    2011-03-01

    The approach of this research is unique in that it examines a sample comprising of licensing-in and technological cooperation variables, categorizes forms according to industry, and looks at such unique variables as a "process" (the ratio of CEO's and related-person's stocks. The data on 361 Korean firms was gathered from Korea's Data Analysis, Retrieval, and Transfer System and Worldwide Intellectual Property Search. Findings show that human, technology, and fixed assets are related positively to financial performance, and searching, absorbing, and openness capabilities as a control effect is related positively to a firm's increased sales ratio. Strategic plans for technology transfer companies are also included in this research.

  15. The public understanding of nanotechnology in the food domain: the hidden role of views on science, technology, and nature.

    Science.gov (United States)

    Vandermoere, Frederic; Blanchemanche, Sandrine; Bieberstein, Andrea; Marette, Stephan; Roosen, Jutta

    2011-03-01

    In spite of great expectations about the potential of nanotechnology, this study shows that people are rather ambiguous and pessimistic about nanotechnology applications in the food domain. Our findings are drawn from a survey of public perceptions about nanotechnology food and nanotechnology food packaging (N = 752). Multinomial logistic regression analyses further reveal that knowledge about food risks and nanotechnology significantly influences people's views about nanotechnology food packaging. However, knowledge variables were unrelated to support for nanofood, suggesting that an increase in people's knowledge might not be sufficient to bridge the gap between the excitement some business leaders in the food sector have and the restraint of the public. Additionally, opposition to nanofood was not related to the use of heuristics but to trust in governmental agencies. Furthermore, the results indicate that public perceptions of nanoscience in the food domain significantly relate to views on science, technology, and nature.

  16. Assessment of industry views on international business prospects for solar thermal technology

    Energy Technology Data Exchange (ETDEWEB)

    Easterling, J.C.

    1984-09-01

    This report contains a review of solar thermal industry viewpoints on their prospects for developing international business. The report documents the industry's current involvement in foreign markets, view of foreign competition in overseas applications, and view of federal R and D and policy requirements to strengthen international business prospects. The report is based on discussions with equipment manufacturers and system integrators who have a product or service with potential international demand. Interviews with manufacturers and system integrators were conducted by using a standard format for interview questions. The use of a standard format for questions provided a basis for aggregating similar views expressed by US companies concerning overseas business prospects. A special effort was made to gather responses from the entire solar thermal industry, including manufacturers of line-focus, point-focus, and central receiver systems. General, technical, economic, institutional, and financial findings are provided in this summary. In addition, Pacific Northwest Laboratory (PNL) recommendations are provided (based upon advice from the Solar Thermal Review Panel) for activities to improve US solar thermal business prospects overseas.

  17. Non-invasive nursing technologies for pain relief during childbirth--the Brazilian nurse midwives' view.

    Science.gov (United States)

    Vargens, Octavio M C; Silva, Alexandra C V; Progianti, Jane M

    2013-11-01

    to describe the non-invasive care technologies most frequently used by nurse midwives to relieve childbirth pain, and provide a synthesis of studies published by Brazilian nurse midwives on the use of such technologies. a systematic literature review focusing on the non-invasive pain relief strategies used by nurse midwives in Brazil. Surveys of three databases (BDENF, CINAHL and MEDLINE) were conducted between 2002 and 2012. The inclusion criteria were: (1) full-text article available; (2) published between 2002 and 2012; (3) written by Brazilian nurse midwives, and (4) fitting the descriptors: childbirth pain; non-invasive technologies; labour; and pain relief. For purposes of analysis, the technologies mentioned were classified into four main categories of support as they relate to environment, position, tactile stimulation, and energy level. we located 21 scientific articles that met the inclusion criteria and addressed the non-invasive technologies that nurse midwives use to provide pain relief during labour. The technologies most used was: stimulation of breathing and relaxation; use of massage with essential oils; encouraging freedom to move, to walk and the free choice for vertical positioning; use of showers and baths; use of birth ball. Brazilian nurse midwives have made efforts to focus care during delivery on the parturient. By studying and publishing about the non-invasive care technologies they have strengthened de-medicalised knowledge, based on scientific evidence and good outcomes in pain relief during labour. the study presented ideas towards improved theoretical foundations and strategies for establishing practice consonant with humanised care. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Financing of renewable electric technologies in developing countries - an Indian view

    International Nuclear Information System (INIS)

    Bakshi, R.

    1999-01-01

    To encourage the growth of renewable energy technologies and to provide adequate finance at concessional rates, the Indian Renewable Energy Development Agency Ltd. (IREDA), a Public Sector Undertaking, was established by the Ministry of Non-conventional Energy Sources in the year 1987. IREDA is perhaps the only agency of its kind established in the world for financing renewable energy projects. A number of renowned multilateral and bilateral agencies have come forward to join this global movement for sustained development, IREDA has, over the past decade of its existence, launched several innovative inititatives to promote, develop and finance various renewable energy technologies in the country. (orig./RHM)

  19. News and views: perspectives on graphene and other 2d materials research and technology investments

    International Nuclear Information System (INIS)

    Ribeiro-Soares, J.

    2014-01-01

    With the actual experimental realization of graphene samples, it became possible not only to exploit the special physical properties of graphene but also to exploit its technological applications. As the field developed, the discovery of other 2D materials occurred and this opened up access to a plethora of combinations of a large variety of electrical, optical, mechanical, and chemical properties. Now there are large investments being made around the world to develop the graphene research area and to boost graphene use in technology. Here, we discuss current research and some future prospects for this area of layered nanomaterials. (author)

  20. Bird's IP view of limits of conventional e+e- linear collider technology

    International Nuclear Information System (INIS)

    Irwin, J.

    1994-11-01

    Scaling laws appropriate to future e + e - linear colliders in the high upsilon regime are examined assuming that the luminosity must increase as the square of the energy. Limits on achievable energy for these colliders are identified under the assumption that no exotica such as energy recovery, superdisruption, or four-beam charge compensation are employed, and all technology is foreseeable and has an apparent cost within the bounds of a large international collaboration. Following these guidelines, an upper energy limit appears around 15 TeV in the center of mass as the normalized emittance required to produce ever smaller vertical spot sizes become unattainable with conventional damping ring technology

  1. Artificial intelligence costs, benefits, and risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline); (2) standalone expert systems; (3) standardized, reusable knowledge base management systems (KBMS); and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  2. Artificial intelligence costs, benefits, risks for selected spacecraft ground system automation scenarios

    Science.gov (United States)

    Truszkowski, Walter F.; Silverman, Barry G.; Kahn, Martha; Hexmoor, Henry

    1988-01-01

    In response to a number of high-level strategy studies in the early 1980s, expert systems and artificial intelligence (AI/ES) efforts for spacecraft ground systems have proliferated in the past several years primarily as individual small to medium scale applications. It is useful to stop and assess the impact of this technology in view of lessons learned to date, and hopefully, to determine if the overall strategies of some of the earlier studies both are being followed and still seem relevant. To achieve that end four idealized ground system automation scenarios and their attendant AI architecture are postulated and benefits, risks, and lessons learned are examined and compared. These architectures encompass: (1) no AI (baseline), (2) standalone expert systems, (3) standardized, reusable knowledge base management systems (KBMS), and (4) a futuristic unattended automation scenario. The resulting artificial intelligence lessons learned, benefits, and risks for spacecraft ground system automation scenarios are described.

  3. The challenge of a greener European construction sector: Views on technology-driven (eco)innovation

    DEFF Research Database (Denmark)

    Jofre, Sergio

    , particular emphasis is given to the description and discussion of technology-driven eco-innovation initiatives such us nanotechnologies for a greener construction. Although the scope of this report covers the European construction sector, most data presented is at an EU scale. In this context, particular...

  4. Teachers' Views about Technical Education: Implications for Reforms towards a Broad Based Technology Curriculum in Malawi

    Science.gov (United States)

    Chikasanda, Vanwyk Khobidi; Otrel-Cass, Kathrin; Jones, Alister

    2011-01-01

    Internationally there has been concern about the direction of technical education and how it is positioned in schools. This has also been the case in Malawi where the curriculum has had a strong focus on skills development. However, lately there has been a call for enhancing technological literacy of students, yet little support has been provided…

  5. Social Networks As Internet-technologies in Electoral Campaigns: the International View

    Directory of Open Access Journals (Sweden)

    Александр Александрович Свинин

    2013-12-01

    Full Text Available Social networks as internet-technologies became a useful instrument for politicians during the electoral campaigns. The main reason for that is the fact that social networks today are the next step in development of communications between people. In the article the author investigates the history of social networks, different cases of application of social networks in electoral campaigns.

  6. Information Technology in University-Level Mathematics Teaching and Learning: A Mathematician's Point of View

    Science.gov (United States)

    Borovik, Alexandre

    2011-01-01

    Although mathematicians frequently use specialist software in direct teaching of mathematics, as a means of delivery e-learning technologies have so far been less widely used. We (mathematicians) insist that teaching methods should be subject-specific and content-driven, not delivery-driven. We oppose generic approaches to teaching, including…

  7. Infusing Creativity and Technology in 21st Century Education: A Systemic View for Change

    Science.gov (United States)

    Henriksen, Danah; Mishra, Punya; Fisser, Petra

    2016-01-01

    In this article, we explore creativity alongside educational technology, as fundamental constructs of 21st century education. Creativity has become increasingly important, as one of the most important and noted skills for success in the 21st century. We offer a definition of creativity; and draw upon a systems model of creativity, to suggest…

  8. Special Education Teachers' Views on Using Technology in Teaching Mathematics

    Science.gov (United States)

    Baglama, Basak; Yikmis, Ahmet; Demirok, Mukaddes Sakalli

    2017-01-01

    Individuals with special needs require support in acquiring various academic and social skills and mathematical skills are one of the most important skills in which individuals with special needs need to acquire in order to maintain their daily lives. Current approaches in education emphasize the importance of integrating technology into special…

  9. Technology challenges for SRF guns as ERL sources in view of Rossendorf work

    International Nuclear Information System (INIS)

    Janssen, Dietmar; Buettig, Hartmut; Evtushenko, Pavel; Lehnert, Ulf; Michel, Peter; Moeller, Karsten; Murcek, Petr; Schneider, Christof; Schurig, Rico; Staufenbiel, Friedrich; Teichert, Jochen; Xiang, Rong; Stephan, Juergen; Lehmann, Wolf-Dietrich; Kamps, Thorsten; Lipka, Dirk; Volkov, Vladimir; Will, Ingo

    2006-01-01

    After successful tests of a SRF gun with a superconducting half-cell cavity a new SRF photoinjector for cw operation at the ELBE linac is under development. The paper discuss the design of the injector, the technological challenges of different components, the status of manufacturing and the expected parameters

  10. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    Science.gov (United States)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  11. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  12. Triple3 Redundant Spacecraft Subsystems (T3RSS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Redefine Technologies, along with researchers at the University of Colorado, will use three redundancy methods to decrease the susceptibility of a spacecraft, on a...

  13. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  14. The addiction concept and technology: diagnosis, metaphor, or something else? a psychodynamic point of view.

    Science.gov (United States)

    Essig, Todd

    2012-11-01

    Many today suffer from an imbalance between life and life on the screen. When extreme, such as excessive gaming, clinicians retreat to familiar explanations, such as "Internet addiction." But the addiction concept is of limited value, limiting both research and treatment options. This article discusses an alternative. Pathological overuse is seen as a failed solution in which people become entrapped by technology's promise of delivering that which only life can offer, such as the grand adventure simulated in World of Warcraft. A two-part treatment approach of such "simulation entrapment" is described in which both the original problem and the entrapment are treated, the former by traditional psychodynamic psychotherapy and the later by highlighting differences between the technologically mediated experience and traditional experiences of being bodies together. The case of a college student suffering from pathological shame with excessive gaming as the failed solution is offered as an illustration. © 2012 Wiley Periodicals, Inc.

  15. Research on Modeling Technology of Virtual Robot Based on LabVIEW

    Science.gov (United States)

    Wang, Z.; Huo, J. L.; Y Sun, L.; Y Hao, X.

    2017-12-01

    Because of the dangerous working environment, the underwater operation robot for nuclear power station needs manual teleoperation. In the process of operation, it is necessary to guide the position and orientation of the robot in real time. In this paper, the geometric modeling of the virtual robot and the working environment is accomplished by using SolidWorks software, and the accurate modeling and assembly of the robot are realized. Using LabVIEW software to read the model, and established the manipulator forward kinematics and inverse kinematics model, and realized the hierarchical modeling of virtual robot and computer graphics modeling. Experimental results show that the method studied in this paper can be successfully applied to robot control system.

  16. Materiality, Technology, and Constructing Social Knowledge through Bodily Representation: A View from Prehistoric Guernsey, Channel Islands

    Science.gov (United States)

    Kohring, Sheila

    2015-01-01

    The role of the human body in the creation of social knowledge—as an ontological and/or aesthetic category—has been applied across social theory. In all these approaches, the body is viewed as a locus for experience and knowledge. If the body is a source of subjective knowledge, then it can also become an important means of creating ontological categories of self and society. The materiality of human representations within art traditions, then, can be interpreted as providing a means for contextualizing and aestheticizing the body in order to produce a symbolic and structural knowledge category. This paper explores the effect of material choices and techniques of production when representing the human body on how societies order and categorize the world. PMID:26290654

  17. Materiality, Technology, and Constructing Social Knowledge through Bodily Representation: A View from Prehistoric Guernsey, Channel Islands.

    Science.gov (United States)

    Kohring, Sheila

    2015-04-22

    The role of the human body in the creation of social knowledge-as an ontological and/or aesthetic category-has been applied across social theory. In all these approaches, the body is viewed as a locus for experience and knowledge. If the body is a source of subjective knowledge, then it can also become an important means of creating ontological categories of self and society. The materiality of human representations within art traditions, then, can be interpreted as providing a means for contextualizing and aestheticizing the body in order to produce a symbolic and structural knowledge category. This paper explores the effect of material choices and techniques of production when representing the human body on how societies order and categorize the world.

  18. The Value of Harmonizing Multiple Improvement Technologies: A Process Improvement Professional’s View

    Science.gov (United States)

    2008-03-01

    maturity models and ISO standards, specifically CMMI, CMMI-ACQ and ISO 12207 . Also, the improvement group supplemented their selection of these...compliant with the technologies and standards that are important to the business. Lockheed Martin IS&GS has integrated CMMI, EIA 632, ISO 12207 , and Six...geographically dispersed organization. [Siviy 07-1] Northrop Grumman Mission Systems has integrated CMMI, ISO 9001, AS9100, and Six Sigma, as well as a

  19. How does the average Belgian view nuclear technology? Barometer assesses knowledge and risk perception

    International Nuclear Information System (INIS)

    Turcanu, C.; Perko, T.

    2011-01-01

    Irrespective of the choices made in the future, questions about nuclear safety, radiation protection and waste management will always be of topical interest. SCK-CEN has consciously opted for social research on risk perception, sustainable development, and communication. SCK-CEN founded the Barometer in 2002 in order to keep both feet firmly planted in society: a regular, large-scale survey amongst the Belgian population on radiation and nuclear technology. The findings of the third edition were published in 2010.

  20. Information technology in university-level mathematics teaching and learning: a mathematician's point of view

    Directory of Open Access Journals (Sweden)

    Alexandre Borovik

    2011-12-01

    Full Text Available Although mathematicians frequently use specialist software in direct teaching ofmathematics, as a means of delivery e-learning technologies have so far been lesswidely used. We (mathematicians insist that teaching methods should be subjectspecificand content-driven, not delivery-driven. We oppose generic approaches toteaching, including excessively generalist, content-free, one-size-fits-allpromotion of information and communications technology. This stance is fullyexpressed, for example, in the recent Teaching Position Statement from the LondonMathematical Society (2010 and is supported by a recent report from the NationalUnion of Students (2010, 5: “Not every area of study needed or was compatiblewith e-learning, and so to assume it would grant blanket advantages was notaccurate”. This paper is an attempt to explain mathematicians' selectivity in use ofinformation and communications technology and its guiding principles. The paperis addressed to our non-mathematician colleagues and is not intended to be a surveyof the existing software and courseware for mathematics teaching – the corpus ofexisting solutions is enormous and its discussion inevitably involves hardcoremathematics.

  1. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  2. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  3. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    cabin leak occurring. The paper also offers a look at how different equipment configurations on future spacecraft impact the previously defined cabin leak operational philosophy and includes additional operational methods and considerations that result due to various configurations. The intent is to showcase these various considerations and highlight the variability they allow. The paper concludes with a selection of the author s personal observations from a spacecraft operator's point of view and recommendations with the goal of improving the design and operations of future spacecraft.

  4. Hydrogen as Future Energy Carrier: The ENEA Point of View on Technology and Application Prospects

    Directory of Open Access Journals (Sweden)

    Marina Ronchetti

    2009-03-01

    Full Text Available Hydrogen and fuel cells should reduce costs and increase reliability and durability to compete in the energy market. A considerable long term effort is necessary for research, development and demonstration of adequate solutions; important programs in this sense are carried out in the main industrialized countries, with the involvement of many industries, research structures and stakeholders. In such framework a relevant role is played in Italy by ENEA (Italian Agency for New Technologies, Energy and Environment. In the paper the main aspects related to the possible hydrogen role in the future society are addressed, according to ENEA perspectives.

  5. Students views of integrating web-based learning technology into the nursing curriculum - A descriptive survey.

    Science.gov (United States)

    Adams, Audrey; Timmins, Fiona

    2006-01-01

    This paper describes students' experiences of a Web-based innovation at one university. This paper reports on the first phase of this development where two Web-based modules were developed. Using a survey approach (n=44) students' access to and use of computer technology were explored. Findings revealed that students' prior use of computers and Internet technologies was higher than previously reported, although use of databases was low. Skills in this area increased during the programme, with a significant rise in database, email, search engine and word processing use. Many specific computer skills were learned during the programme, with high numbers reporting ability to deal adequately with files and folders. Overall, the experience was a positive one for students. While a sense of student isolation was not reported, as many students kept in touch by phone and class attendance continued, some individual students did appear to isolate themselves. This teaching methodology has much to offer in the provision of convenient easy to access programmes that can be easily adapted to the individual lifestyle. However, student support mechanisms need careful consideration for students who are at risk of becoming isolated. Staff also need to supported in the provision of this methodology and face-to-face contact with teachers for some part of the programme is preferable.

  6. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  7. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  8. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  9. Incorporating nanoscale science and technology into secondary school curriculum: Views of nano-trained science teachers

    Directory of Open Access Journals (Sweden)

    Antti Laherto

    2011-09-01

    Full Text Available The growing societal significance of nanoscience and nanotechnology (NST entails needs for addressing these topics in school curricula. This study lays groundwork for responding to those needs in Finland. The purpose was to analyse the appropriateness of NST for secondary school curriculum contents. First, a week-long in-service teacher training course was arranged on content knowledge of NST. After attending the course, 23 experienced science teachers were surveyed regarding their views on the educational significance of these issues, and on prospects for including them into the curriculum. A questionnaire with open-ended questions was used. Qualitative content analysis of the responses revealed that the respondents considered NST as desirable contents for secondary school, but arranging instruction is problematic. The teachers emphasised the educational significance of many applications, scientific principles and ethical issues related to NST. The outcomes are discussed with reference to recent studies on teachers’ barriers and educational concerns regarding NST.

  10. Present status of development of alternative energy technology from environment protection point of view

    International Nuclear Information System (INIS)

    Tanaka, T.

    1992-01-01

    This paper reports that Japan lacks fossil fuel resources. Consequently, almost all fossil fuels are imported from abroad. Therefore, change in international affairs affects on Japan's politics and social life, as learned from experience of economic social life, as learned from experience of economic confusion caused by the oil crisis of 1973. For this reason, research and development (R and D) of alternative energy technologies was initiated in July 1974, which was promoted as one of national energy development programs called Sunshine Project. Presently, their technical developments are being continued to put practical use under this project. However, Japan's dependency of primary energy resources on oil is still high among major advanced countries and energy supply structure is significantly weak. Furthermore, from indetermination of the recent political condition in the Middle East, the importance of security against supply and demand of petroleum in middle and long term is generally recognized with the increasing cost of oil

  11. Accuracy required and achievable in radiotherapy dosimetry: have modern technology and techniques changed our views?

    Science.gov (United States)

    Thwaites, David

    2013-06-01

    In this review of the accuracy required and achievable in radiotherapy dosimetry, older approaches and evidence-based estimates for 3DCRT have been reprised, summarising and drawing together the author's earlier evaluations where still relevant. Available evidence for IMRT uncertainties has been reviewed, selecting information from tolerances, QA, verification measurements, in vivo dosimetry and dose delivery audits, to consider whether achievable uncertainties increase or decrease for current advanced treatments and practice. Overall there is some evidence that they tend to increase, but that similar levels should be achievable. Thus it is concluded that those earlier estimates of achievable dosimetric accuracy are still applicable, despite the changes and advances in technology and techniques. The one exception is where there is significant lung involvement, where it is likely that uncertainties have now improved due to widespread use of more accurate heterogeneity models. Geometric uncertainties have improved with the wide availability of IGRT.

  12. Patients' use and views of real-time feedback technology in general practice.

    Science.gov (United States)

    Wright, Christine; Davey, Antoinette; Elmore, Natasha; Carter, Mary; Mounce, Luke; Wilson, Ed; Burt, Jenni; Roland, Martin; Campbell, John

    2017-06-01

    There is growing interest in real-time feedback (RTF), which involves collecting and summarizing information about patient experience at the point of care with the aim of informing service improvement. To investigate the feasibility and acceptability of RTF in UK general practice. Exploratory randomized trial. Ten general practices in south-west England and Cambridgeshire. All patients attending surgeries were eligible to provide RTF. Touch screens were installed in waiting areas for 12 weeks with practice staff responsible for encouraging patients to provide RTF. All practices received fortnightly feedback summaries. Four teams attended a facilitated reflection session. RTF 'response rates' among consulting patients were estimated, and the representativeness of touch screen users were assessed. The frequency of staff-patient interactions about RTF (direct observation) and patient views of RTF (exit survey) were summarized. Associated costs were collated. About 2.5% consulting patients provided RTF (range 0.7-8.0% across practices), representing a mean of 194 responses per practice. Patients aged above 65 were under-represented among touch screen users. Receptionists rarely encouraged RTF but, when this did occur, 60% patients participated. Patients were largely positive about RTF but identified some barriers. Costs per practice for the twelve-week period ranged from £1125 (unfacilitated team-level feedback) to £1887 (facilitated team ± practitioner-level feedback). The main cost was the provision of touch screens. Response rates for RTF were lower than those of other survey modes, although the numbers of patients providing feedback to each practice were comparable to those achieved in the English national GP patient survey. More patients might engage with RTF if the opportunity were consistently highlighted to them. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  13. An Investigation into the Views of Gifted Children on the Effects of Computer and Information Technologies on Their Lives and Education

    OpenAIRE

    Ahmet Kurnaz; Eyup Yurt; Ümit Çiftci

    2014-01-01

    In this study, too, an attempt was made to reveal the place and effects of information technologies on the lives and education of gifted children based on the views of gifted. To this end, the effects of information technologies on gifted are general skills, technology use, academic and social skills, and cooperative and personal skills were investigated. These skills were explored depending on whether or not gifted had their own computers, had internet connection at home...

  14. [Research on the range of motion measurement system for spine based on LabVIEW image processing technology].

    Science.gov (United States)

    Li, Xiaofang; Deng, Linhong; Lu, Hu; He, Bin

    2014-08-01

    A measurement system based on the image processing technology and developed by LabVIEW was designed to quickly obtain the range of motion (ROM) of spine. NI-Vision module was used to pre-process the original images and calculate the angles of marked needles in order to get ROM data. Six human cadaveric thoracic spine segments T7-T10 were selected to carry out 6 kinds of loads, including left/right lateral bending, flexion, extension, cis/counterclockwise torsion. The system was used to measure the ROM of segment T8-T9 under the loads from 1 Nm to 5 Nm. The experimental results showed that the system is able to measure the ROM of the spine accurately and quickly, which provides a simple and reliable tool for spine biomechanics investigators.

  15. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    Science.gov (United States)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  16. Ethical issues in newer assisted reproductive technologies: A view from Nigeria.

    Science.gov (United States)

    Fadare, J O; Adeniyi, A A

    2015-12-01

    Infertility is a prevalent condition in many developing countries with significant physical and psychosocial implications. The aim of this study is to discuss briefly the ethics of newer assisted reproductive technology (ART) with special emphasis on the peculiarities in Nigeria. MEDLINE and Google Scholar were searched for English-language articles from January 1990 to July 2014 using the search terms "ethics of ART AND Nigeria," "ethical issues in in vitro fertilization AND Nigeria." Using the above search phrases, a total of 43 articles were retrieved out of which only 5 dealt specifically with the subject matter. The core ethical issues found in the reviewed literature are listed in [Table 1]. Inequitable access to ART due to its high cost, lack of regulatory body, safety of the procedure, and fate of the embryos were the main themes identified from the papers. Surrogacy, sex selection, and gamete donation were additional relevant ethical issues. There is an urgent need for stakeholders in developing countries to formulate cultural and context-specific guidelines to help address some of these ethical dilemmas.

  17. The concept of health technology assessment. Views of applicants to funding of HTA projects.

    Science.gov (United States)

    Lange, M; Jørgensen, T; Kristensen, F B; Stilvén, S

    2000-01-01

    The purpose of this study is to analyze the perception of the content of health technology assessment (HTA) among health professionals applying for a state grant of DKK 10 million. A total of 113 applications were received and analyzed. When conducting the analysis, it was assumed that the applicants' maximum five-page project description would reflect: a) the applicants' perception of what an HTA is; b) how the assessment was to be conducted; and c) what the results were going to be used for. More than 40% of all applications focused on treatment; in 51% only one or two professional groups were to be involved (thus interdisciplinarity was questionable); only 22% of the HTA cases were intended to form the basis for political/administrative decisions; in general, the HTAs were planned far less comprehensively than was relevant; 76% of the projects did not include a formal synthesis phase; 41% intended to use diffusion as the only method for publication of the HTA result. The analysis reveals several areas where DIHTA has to make an effort in order to secure that HTA in fact constitutes a comprehensive and well-documented basis for decision making. These areas concern the following topics: multidisciplinarity, the objective of HTA, comprehensiveness, the synthesis phase, and publication and utilization of the HTA result.

  18. Passive Set-Point Thermal Control Skin for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned and unmanned spacecraft require sophisticated thermal control technologies to keep systems at temperatures within their proper operating ranges....

  19. PET and diagnostic technology evaluation in a global clinical process. DGN's point of view

    International Nuclear Information System (INIS)

    Kotzerke, J.; Dietlein, M.; Gruenwald, F.; Bockisch, A.

    2010-01-01

    The German Society of Nuclear Medicine (DGN) criticizes the methodological approach of the IQWiG for evaluation of PET and the conclusions, which represent the opposite point of view compared to the most other European countries and health companies in the USA: (1) Real integration of experienced physicians into the interpretation of data and the evaluation of effectiveness should be used for best possible reporting instead of only formal hearing. (2) Data of the National Oncologic PET Registry (NOPR) from the USA have shown, that PET has changed the therapeutic management in 38% of patients. (3) The decision of the IQWiG to accept outcome data only for their benefit analyses, is controversial. Medical knowledge is generated by different methods, and an actual analysis of the scientific guidelines has shown that only 15% out of all guidelines are based on the level of evidence demanded by the IQWiG. Health economics has created different assessment methods for the evaluation of a diagnostic procedure. The strategy chosen by the IQWiG overestimated the perspective of the population and undervalue the benefit for an individual patient. (4) PET evaluates the effectiveness of a therapeutic procedure, but does not create an effective therapy. When the predictive value of PET is already implemented in a specific study design and the result of PET define a specific management, the trial evaluate the whole algorithm and PET is part of this algorithm only. When PET is implemented as test during chemotherapy or by the end of chemotherapy, the predictive value of PET will depend decisively on the effectiveness of the therapy: The better the therapy, the smaller the differences in survival detected by PET. (5) The significance of an optimal staging by the integration of PET will increase. Rationale is the actual development of ''titration'' of chemotherapy intensity and radiation dose towards the lowest possible, just about effective dosage. (6) The medical therapy of

  20. Evaluating space station applications of automation and robotics technologies from a human productivity point of view

    Science.gov (United States)

    Bard, J. F.

    1986-01-01

    The role that automation, robotics, and artificial intelligence will play in Space Station operations is now beginning to take shape. Although there is only limited data on the precise nature of the payoffs that these technologies are likely to afford there is a general consensus that, at a minimum, the following benefits will be realized: increased responsiveness to innovation, lower operating costs, and reduction of exposure to hazards. Nevertheless, the question arises as to how much automation can be justified with the technical and economic constraints of the program? The purpose of this paper is to present a methodology which can be used to evaluate and rank different approaches to automating the functions and tasks planned for the Space Station. Special attention is given to the impact of advanced automation on human productivity. The methodology employed is based on the Analytic Hierarchy Process. This permits the introduction of individual judgements to resolve the confict that normally arises when incomparable criteria underly the selection process. Because of the large number of factors involved in the model, the overall problem is decomposed into four subproblems individually focusing on human productivity, economics, design, and operations, respectively. The results from each are then combined to yield the final rankings. To demonstrate the methodology, an example is developed based on the selection of an on-orbit assembly system. Five alternatives for performing this task are identified, ranging from an astronaut working in space, to a dexterous manipulator with sensory feedback. Computational results are presented along with their implications. A final parametric analysis shows that the outcome is locally insensitive to all but complete reversals in preference.

  1. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  2. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  3. Soyuz Spacecraft Transported to Launch Pad

    Science.gov (United States)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  4. The Future of Classification in Wheelchair Sports; Can Data Science and Technological Advancement Offer an Alternative Point of View?

    Science.gov (United States)

    van der Slikke, Rienk M A; Bregman, Daan J J; Berger, Monique A M; de Witte, Annemarie M H; Veeger, Dirk-Jan H E J

    2017-11-01

    Classification is a defining factor for competition in wheelchair sports, but it is a delicate and time-consuming process with often questionable validity. 1 New inertial sensor based measurement methods applied in match play and field tests, allow for more precise and objective estimates of the impairment effect on wheelchair mobility performance. It was evaluated if these measures could offer an alternative point of view for classification. Six standard wheelchair mobility performance outcomes of different classification groups were measured in match play (n=29), as well as best possible performance in a field test (n=47). In match-results a clear relationship between classification and performance level is shown, with increased performance outcomes in each adjacent higher classification group. Three outcomes differed significantly between the low and mid-class groups, and one between the mid and high-class groups. In best performance (field test), a split between the low and mid-class groups shows (5 out of 6 outcomes differed significantly) but hardly any difference between the mid and high-class groups. This observed split was confirmed by cluster analysis, revealing the existence of only two performance based clusters. The use of inertial sensor technology to get objective measures of wheelchair mobility performance, combined with a standardized field-test, brought alternative views for evidence based classification. The results of this approach provided arguments for a reduced number of classes in wheelchair basketball. Future use of inertial sensors in match play and in field testing could enhance evaluation of classification guidelines as well as individual athlete performance.

  5. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  6. HIMSS Venture+ Forum and HX360 Provide Industry View of Health Technology Innovation, Startup and Investment Activity; Advancing the New Model of Care.

    Science.gov (United States)

    Burde, Howard A; Scarfo, Richard

    2015-01-01

    Presented by HIMSS, the Venture+ Forum program and pitch competition provides a 360-degree view on health technology investing and today's top innovative companies. It features exciting 3-minute pitch presentations from emerging and growth-stage companies, investor panels and a networking reception. Recent Venture+ Forum winners include TowerView Health, Prima-Temp, ActuaiMeds and M3 Clinician. As an industry catalyst for health IT innovation and business-building resource for growing companies and emerging technology solutions, HIMSS has co-developed with A VIA, a new initiative that addresses how emerging technologies, health system business model changes and investment will transform the delivery of care. HX360 engages senior healthcare leaders, innovation teams, investors and entrepreneurs around the vision of transforming healthcare delivery by leveraging technology, process and structure.

  7. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  8. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  9. A systematic review of clinician and staff views on the acceptability of incorporating remote monitoring technology into primary care.

    Science.gov (United States)

    Davis, Melinda M; Freeman, Michele; Kaye, Jeffrey; Vuckovic, Nancy; Buckley, David I

    2014-05-01

    Remote monitoring technology (RMT) may enhance healthcare quality and reduce costs. RMT adoption depends on perceptions of the end-user (e.g., patients, caregivers, healthcare providers). We conducted a systematic review exploring the acceptability and feasibility of RMT use in routine adult patient care, from the perspectives of primary care clinicians, administrators, and clinic staff. We searched the databases of Medline, IEEE Xplore, and Compendex for original articles published from January 1996 through February 2013. We manually screened bibliographies of pertinent studies and consulted experts to identify English-language studies meeting our inclusion criteria. Of 939 citations identified, 15 studies reported in 16 publications met inclusion criteria. Studies were heterogeneous by country, type of RMT used, patient and provider characteristics, and method of implementation and evaluation. Clinicians, staff, and administrators generally held positive views about RMTs. Concerns emerged regarding clinical relevance of RMT data, changing clinical roles and patterns of care (e.g., reduced quality of care from fewer patient visits, overtreatment), insufficient staffing or time to monitor and discuss RMT data, data incompatibility with a clinic's electronic health record (EHR), and unclear legal liability regarding response protocols. This small body of heterogeneous literature suggests that for RMTs to be adopted in primary care, researchers and developers must ensure clinical relevance, support adequate infrastructure, streamline data transmission into EHR systems, attend to changing care patterns and professional roles, and clarify response protocols. There is a critical need to engage end-users in the development and implementation of RMT.

  10. Ethical issues in the application of medical technology to paediatric intensive care: two views of the newborn.

    Science.gov (United States)

    Wyatt, J S

    1996-04-01

    Recent advances in medical technology have led to a marked improvement in the chances of survival of sick or preterm infants, thereby stimulating renewed ethical debate on the status of the newborn. Two contradictory attitudes to the medical care of preterm or congenitally malformed newborn infants can be discerned in our pluralistic society. The two attitudes have their historical roots in the classical Graeco-Roman and Judaeo-Christian ethical traditions respectively. The former views newborn infants as of potential value only whereas the latter emphasises the intrinsic worth and dignity of the individual made in God's image. Recent secular philosophical reflection has provided a rationale for infanticide of the sick or abnormal newborn. A Christian approach to the care of the newborn prohibits intentional killing yet may encompass the withdrawal of treatment that is inappropriate or unduly burdensome. Medical care should be based upon respect for the value of the individual, protection of the defenceless from abuse or exploitation, and wise stewardship of limited health-care resources.

  11. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  12. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  13. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  14. Social Perception of Hydrogen Technologies: The View of Spanish Stake holders; Percepcion Social de las Tecnologias del Hidrogeno. La Vision de los Stakeholders Espanoles

    Energy Technology Data Exchange (ETDEWEB)

    Ferri Anglada, S.

    2013-07-01

    This technical report presents an overview of the social perception and vision of a sample of Spanish stake holders on hydrogen technologies. The study is based on the implementation of a survey, combining both quantitative and qualitative data. An ad hoc electronic survey was design to collect views and perceptions on several key factors regarding this innovative energy alternative. The group of experts participating (N=130) in the study, comes mainly from research centers, universities and private companies. The survey addresses three major themes: expert views, social acceptability, and contextual factors of hydrogen technologies. The aim is to capture both the current and the future scene as viewed by the experts on hydrogen technologies, identifying key factors in terms of changes, uncertainties, obstacles and opportunities. The objective is to identify potential key features for the introduction, development, promotion, implementation, and large-scale deployment of a highly successful energy proposal in countries such as Iceland, one of the pioneers in base its economy on hydrogen technologies. To conclude, this report illustrates the positive engagement of a sample of Spanish stake holders towards hydrogen technologies that may prove vital in the transition towards the Hydrogen Economy in Spain. (Author)

  15. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  16. Spacecraft early design validation using formal methods

    International Nuclear Information System (INIS)

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco

    2014-01-01

    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  17. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  18. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  19. Understanding Stakeholders’ Views and the Influence of the Socio-Cultural Dimension on the Adoption of Solar Energy Technology in Lebanon

    Directory of Open Access Journals (Sweden)

    Houda Elmustapha

    2018-01-01

    Full Text Available In light of climate change and global commitments, a great amount of programs and policies have been implemented by governments targeting the diffusion of renewable energy technologies. Successful diffusion relies on the understanding, persuasion and acceptance by consumers and other stakeholders. This article investigates the views, roles and influence of stakeholders on the adoption of solar energy technology in Lebanon. The main research questions are: What are the stakeholders’ views, roles and influence on the diffusion process of solar energy technologies? And are specific socio-cultural factors therein that influenced adoption? The influence of different stakeholders (end users, public representatives, banking sector, suppliers, consultants and NGOs was assessed via qualitative data analysis, in particular semi-structured interviews. Our research perspective combines grounded and critical theoretical approaches with a case study research design allowing for a semi-inductive process to elaborate and complement new insights to the current body of literature on adoption of clean technology innovation, with a particular focus on the socio-cultural dimension. The results show that contextual factors, specifically related to the social, cultural, geographic and market dimensions, played a crucial role in shaping market development, especially in relation to the uptake of solar energy technology by different consumer groups. Based on the results of this study we argue that more scholarly attention should be awarded to the influence of the socio-cultural dimension and stakeholders’ perspectives on adoption of renewable energy technology.

  20. Patients' views and experiences of technology based self-management tools for the treatment of hypertension in the community: A qualitative study.

    Science.gov (United States)

    Glynn, Liam; Casey, Monica; Walsh, Jane; Hayes, Patrick S; Harte, Richard P; Heaney, David

    2015-09-09

    Patients with hypertension in the community frequently fail to meet treatment goals. The optimal way to organize and deliver care to hypertensive patients has not been clearly identified. The powerful on-board computing capacity of mobile devices, along with the unique relationship individuals have with newer technologies, suggests that they have the potential to influence behaviour. However, little is known regarding the views and experiences of patients using such technology to self-manage their hypertension and associated lifestyle behaviours. The aim of this study was to explore patients' views and experiences of using technology based self-management tools for the treatment of hypertension in the community. This focus group study was conducted with known hypertensive patients over 45 years of age who were recruited in a community setting in Ireland. Taped and transcribed semi-structured interviews with a purposeful sample involving 50 participants in six focus groups were used. Framework analysis was utilized to analyse the data. Four key inter-related themes emerged from the analysis: individualisation; trust; motivation; and communication. The globalisation of newer technologies has triggered many substantial and widespread behaviour changes within society, yet users are unique in their use and interactions with such technologies. Trust is an ever present issue in terms of its potential impact on engagement with healthcare providers and motivation around self-management. The potential ability of technology to influence motivation through carefully selected and tailored messaging and to facilitate a personalised flow of communication between patient and healthcare provider was highlighted. Newer technologies such as mobile devices and the internet have been embraced across the globe despite technological challenges and concerns regarding privacy and security. In the design and development of technology based self-management tools for the treatment of

  1. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  2. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  3. Improving nurse-patient communication with patients with communication impairments: hospital nurses' views on the feasibility of using mobile communication technologies.

    Science.gov (United States)

    Sharpe, Bridget; Hemsley, Bronwyn

    2016-05-01

    Nurses communicating with patients who are unable to speak often lack access to tools and technologies to support communication. Although mobile communication technologies are ubiquitous, it is not known whether their use to support communication is feasible on a busy hospital ward. The aim of this study was to determine the views of hospital nurses on the feasibility of using mobile communication technologies to support nurse-patient communication with individuals who have communication impairments. This study involved an online survey followed by a focus group, with findings analyzed across the two data sources. Nurses expected that mobile communication devices could benefit patient care but lacked access to these devices, encountered policies against use, and held concerns over privacy and confidentiality. The use of mobile communication technologies with patients who have communication difficulties is feasible and may lead to improvements in communication and care, provided environmental barriers are removed and facilitators enhanced. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  5. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  6. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  7. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  8. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  9. Networked Constellation Communications Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop communications architectures and enabling technologies for mission concepts relying on multiple spatially distributed spacecraft to perform coordinated...

  10. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  11. Ability to Resist Temptations of Technology Use: A Qualitative Analysis of Children's Views on Factors Associated with Delay of Gratification.

    Science.gov (United States)

    Ang, Chin-Siang; Lee, Kam-Fong

    2017-01-01

    Excessive technology use among young children remains a public health concern with diverse serious consequences. It is important to find out how children resist the temptation to use technology. Using focus group interviews, the authors explored what factors influence children's ability to delay gratification in using technology. Four specific themes emerged from the interview data: they found (a) fear of punishment, (b) self-directed speech, (c) reinforcement, and (d) parental modeling are effective measures to train children to forgo immediate pleasures of using technology. These findings provided some support for the hypothesis that children's self-control of technology use can be modified and improved. This study suggests methods to leverage and strengthen existing initiatives to promote self-control of technology use for children.

  12. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  13. Impact of Scientific and Technological Progress on Economic Development - the Views of Some Nobel Laureates of the Economic Science

    OpenAIRE

    Florentina Xhelili KRASNIQI; Nexhmie Berisha VOKSHI

    2017-01-01

    There are different authors' opinions and numerous theories according to which scientific technological progress is a determining factor of the economic development. The paper aims to present the contributions of some Nobel laureates to the impact of scientific and technological progress on economic development such as Arrow, Debreu, Hicks, Solow, Kuznets, Kantorovich and Stiglitz. The research results of their contributions show that scientific technological progress is considered as a sour...

  14. AN ANALYSIS OF CANDIDATE TEACHERS’ VIEWS ON THE EFFECT OF TECHNOLOGY USE IN EDUCATION OVER CLASSROOM MANAGEMENT

    OpenAIRE

    İLGAR, Lütfü

    2018-01-01

    Technology hasbeen developing rapidly in our age and it has influenced every aspect of our livesas well as education and teaching. In our country, the use of technology foreducation is considered to be the means of catching up with developed countriesby improving quality and a great deal of investment is made on this field.The purpose ofthis research is to determine the perspectives of candidate teachers towardshow educational technology affects classroom management, what its advantagesand di...

  15. Impact of Scientific and Technological Progress on Economic Development - the Views of Some Nobel Laureates of the Economic Science

    Directory of Open Access Journals (Sweden)

    Florentina Xhelili KRASNIQI

    2017-12-01

    Full Text Available There are different authors' opinions and numerous theories according to which scientific technological progress is a determining factor of the economic development. The paper aims to present the contributions of some Nobel laureates to the impact of scientific and technological progress on economic development such as Arrow, Debreu, Hicks, Solow, Kuznets, Kantorovich and Stiglitz. The research results of their contributions show that scientific technological progress is considered as a source of economic development but this advanced technology to be widely and effectively used should be accompanied by such ideological and institutional adjustments that guarantee the reasonable use of innovations produced by the huge improvements of human knowledge.

  16. A Student View of Technology in the Classroom: Does It Enhance the Seven Principles of Good Practice in Undergraduate Education?

    Science.gov (United States)

    McCabe, Deborah Brown; Meuter, Matthew L.

    2011-01-01

    There has been an explosion of classroom technologies, yet there is a lack of research investigating the connection between classroom technology and student learning. This research project explores faculty usage of classroom-based course management software, student usage and opinions of these software tools, and an exploration of whether or not…

  17. Using Mobile Phone Technologies to Maintain Quality of Education in Ethiopia: A View beyond the Prevalence of Academic Dishonesty

    Science.gov (United States)

    Bachore, Mebratu Mulatu

    2015-01-01

    The 21st century is characterized by the increasing access to sophisticated but affordable and portable technologies that are contributing much to the world. Specifically, in Ethiopia, mobile technologies are rapidly attracting new users, providing increasing capacity, and introducing more sophisticated uses to the citizens. However, it is…

  18. Licensing Foreign Technology and the Moderating Role of Local R&D Collaboration: Extending the Relational View

    DEFF Research Database (Denmark)

    Wang, Yuandi; Li-Ying, Jason

    2015-01-01

    The relational resource-based view posits that performance differences among firms can be explained not only by the possession of internal resources but also by maintaining and developing relationships with external partners. However, studies in the extant literature usually address the separated...

  19. Impacts of Music on Sectional View Drawing Ability for Engineering Technology Students as Measured through Technical Drawings

    Science.gov (United States)

    Katsioloudis, Petros; Jones, Mildred; Jovanovic, Vukica

    2016-01-01

    Results from a number of studies indicate that the use of different types of music can influence cognition and behavior; however, research provides inconsistent results. Considering this, a quasi-experimental study was conducted to identify the existence of statistically significant effects on sectional view drawing ability due to the impacts of…

  20. From troglodytes to information managers: information management and technology needs to achieve the primary care NHS modernization agenda--the views of three GPs.

    Science.gov (United States)

    Rooney, I; Hornby, S

    2000-09-01

    In response to the information management and technology changes proposed by the Government's NHS modernization initiative this article examines the issues that GPs feel to be of major significance to their work. Although information and communications technology is widely used in general practice there is no one agreed standard system. The level of technology and the manner in which it is used is also diverse throughout the profession, as are the attitudes that exist amongst GPs regarding the value of information management and technology, and the benefits efficient information management offers to them and to their patients. The views of three local GPs from practices with varying levels of information technology were obtained through semi-structured interviews and the findings developed in the light of current discussions in the published literature. The GPs chosen reflect the disparity within general practice and, perhaps, other units of the NHS in the use and understanding of information management. The main conclusions were that there is ambivalence and scepticism about what NHSnet currently has to offer; that local electronic records benefit patient care, but when networked more widely problems of confidentiality and security result. Practitioners were also mindful of the financial costs of changes and concerned, given the impact of PCGs and clinical governance, as to who will be responsible for ensuring a common level of electronic records, IT provision, and financial and technological support.

  1. Development of Information Technologies in Slovak Small and Medium Enterprises From the Point of View of a Learning Organization

    Directory of Open Access Journals (Sweden)

    Minárová Martina

    2011-09-01

    Full Text Available This article deals with information technologies from the knowledge management perspective. A partial objective of the research within the project VEGA 1/0638/08 was to find out how much of the knowledge of information technology is used by managers, and thus the overall readiness of small and medium enterprises in the creation of a learning organization. In the current, constantly changing environment, it is essential to elaborate on the need for the development of information technologies in an organization.

  2. Public meetings for views and comments on the conduct of the 1992 Clean Coal Technology Solicitation---Cheyenne, Wyoming, October 30, 1991 and Louisville, Kentucky, November 12, 1991

    International Nuclear Information System (INIS)

    1991-12-01

    Two public meetings were convened by the Department of Energy (DOE) in October and November 1991 in order to obtain views, comments, and recommendations with regard to the forthcoming Clean Coal Technology V solicitation. In the sections that follow, brief descriptions are provided on the background to the CCT solicitation and the public meetings, and how the meetings were conducted. Subsequent chapters of this report present the discussions that ensued at teach of the meetings, and the views, recommendations, and concerns that were expressed by attendees. The report also includes a compilation of the written comments that were received. Finally, an appendix contains attendee registration data and transcripts for opening and closing plenary sessions. (VC)

  3. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  4. Assessment of Clinical Education in the Alborz University of Medical Sciences from Surgical Technology and Anesthesiology Students’ Point of View

    Directory of Open Access Journals (Sweden)

    T. Bahrami Babaheidary

    2012-07-01

    Conclusion: Because of surgical technology and anesthesiology students needs to acquire clinical skills along with theoretical training, providing suitable clinical environment seems to be critical to achieve essential in-depth experience in professional aspects.

  5. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  6. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  7. Standardized spacecraft: a methodology for decision making. AMS report No. 1199

    International Nuclear Information System (INIS)

    Greenberg, J.S.; Nichols, R.A.

    1974-01-01

    As the space program matures, more and more attention is being focused on ways to reduce the costs of performing space missions. Standardization has been suggested as a way of providing cost reductions. The question of standardization at the system level, in particular, the question of the desirability of spacecraft standardization for geocentric space missions is addressed. The spacecraft is considered to be a bus upon which mission oriented equipment, the payload, is mounted. Three basic questions are considered: (1) is spacecraft standardization economically desirable; (2) if spacecraft standardization is economically desirable, what standardized spacecraft configuration or mix of configurations and technologies should be developed; and (3) if standardized spacecraft are to be developed, what power levels should they be designed for. A methodology which has been developed and which is necessary to follow if the above questions are to be answered and informed decisions made relative to spacecraft standardization is described. To illustrate the decision making problems and the need for the developed methodology and the data requirements, typical standardized spacecraft have been considered. Both standardized solar and nuclear-powered spacecraft and mission specialized spacecraft have been conceptualized and performance and cost estimates have been made. These estimates are not considered to be of sufficient accuracy to allow decisions regarding spacecraft mix and power levels to be made at this time. The estimates are deemed of sufficient accuracy so as to demonstrate the desirability of spacecraft standardization and the methodology (as well as the need for the methodology) which is necessary to decide upon the best mix of standardized spacecraft and their design power levels. (U.S.)

  8. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  9. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  10. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  11. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  12. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  13. Deep Space Networking Experiments on the EPOXI Spacecraft

    Science.gov (United States)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  14. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  15. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  16. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  17. Using information and communication technologies to consult with patients in Victorian primary care: the views of general practitioners.

    Science.gov (United States)

    Hanna, Lisa; Fairhurst, Karen

    2013-01-01

    Information and communication technologies such as email, text messaging and video messaging are commonly used by the general population. However, international research has shown that they are not used routinely by GPs to communicate or consult with patients. Investigating Victorian GPs' perceptions of doing so is timely given Australia's new National Broadband Network, which may facilitate web-based modes of doctor-patient interaction. This study therefore aimed to explore Victorian GPs' experiences of, and attitudes toward, using information and communication technologies to consult with patients. Qualitative telephone interviews were carried out with a maximum variation sample of 36GPs from across Victoria. GPs reported a range of perspectives on using new consultation technologies within their practice. Common concerns included medico-legal and remuneration issues and perceived patient information technology literacy. Policy makers should incorporate GPs' perspectives into primary care service delivery planning to promote the effective use of information and communication technologies in improving accessibility and quality of general practice care.

  18. Advanced Portable Fine Water Mist Fire Extinguisher for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist (FWM) is a promising replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in performance,...

  19. Test of Advanced Fine Water Mist Nozzles in a Representative Spacecraft Atmosphere, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist is being considered as a replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in...

  20. Integrated Spacecraft Navigation and Communication Using Radio, Optical, and X-rays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This program proposes to design and evaluate novel technology of X-ray navigation for augmentation and increased capability of high data-rate spacecraft...

  1. Influences on students' assistive technology use at school: the views of classroom teachers, allied health professionals, students with cerebral palsy and their parents.

    Science.gov (United States)

    Karlsson, Petra; Johnston, Christine; Barker, Katrina

    2017-09-07

    This study explored how classroom teachers, allied health professionals, students with cerebral palsy, and their parents view high-tech assistive technology service delivery in the classroom. Semi-structured interviews with six classroom teachers and six parents and their children were conducted. Additionally, two focus groups comprising 10 occupational therapists and six speech pathologists were carried out. Ethical and confidentiality considerations meant that the groups were not matched. Results revealed that it is often untrained staff member who determine students' educational needs. The participants' experiences suggested that, particularly in mainstream settings, there is a need for support and guidance from a professional with knowledge of assistive technology who can also take a lead and guide classroom teachers in how to meet students' needs. Students' motivation to use the technology was also found to be critical for its successful uptake. The study points to the need for classroom teachers to be given sufficient time and skill development opportunities to enable them to work effectively with assistive technology in the classroom. The participants' experiences suggest that such opportunities are not generally forthcoming. Only in this way can it be ensured that students with disabilities receive the education that is their right. Implications for Rehabilitation Classroom teachers, allied health professionals, students, parents need ongoing support and opportunities to practise operational, strategic and linguistic skills with the assistive technology equipment. System barriers to the uptake of assistive technology need to be addressed. To address the lack of time available for training, programing and other support activities around assistive technology, dedicated administrative support is crucial. Professional development around the use of the quality low cost ICF-CY checklist is recommended for both school and allied health staff.

  2. According to Candidate Teachers Views Classroom Management Problems of Teachers in Traditional and Technology-Supported Classrooms

    Science.gov (United States)

    Tas, Said

    2017-01-01

    In this research, it is aimed to investigate classroom management problems of middle school 6th and 7th grade teachers in traditional and technology-supported classrooms and differences between them. For this purpose the opinions of the students in the 4th grade of Primary Education Department in Faculty of Education of Süleyman Demirel University…

  3. The school inclusion and use of assistive technology with myelomeningocele sequelae students: a view of the teachers

    Directory of Open Access Journals (Sweden)

    Caroline Penteado Assis

    2011-06-01

    Full Text Available Myelomeningocele is a congenital malformation that affects the fetus during pregnancy. It can causes numerous consequences for the development of the child and consequently in their schooling process. So, there are several challenges that can be experienced by these children in their inclusion at school. The use of assistive technology in the school context has been implanted with goal to high from the functional abilities of these students. In Brazil are conducted a lot of studies to know the reality of children with myelomeningocele. Therefore, the goal of this study was to investigate, from the teacher ́s perspective of regular and multifunctional class, as was the process of schooling for students with myelomeningocele sequelae and resource utilization of assistive technology in the school context. The participants of this research were seven teachers and four students with myelomeningocele sequels enclosed in regular scholl.The researcher confectioned the instruments used in interviews. Data were analyzed using content of interview analysis. The results reveal that there are present challenges for inclusion of students with myelomeningocele sequelae and that teachers did not use assistive technology resources at school. It is considered that for the real practice of educational inclusion of these students the knowledge about meningomyelocele and various technologies that can be used in the school context must be published.

  4. Using Information and Communication Technologies to Teach and Learn Mathematics in South African Schools: A Snapshot View of Its Impact

    Science.gov (United States)

    Vadachalam, Nalisha; Chimbo, Bester

    2017-01-01

    Information and communication technologies (ICTs) have become ubiquitous in most people's lives. Yet, within the developing and emerging regions, there are still many who have not fully benefitted from ICTs. This article reports on a research project that focused on investigating the barriers, opportunities and impact that ICTs have on the…

  5. Applying Multi-Touch Technology to Facilitate the Learning of Art Appreciation: From the View of Motivation and Annotation

    Science.gov (United States)

    Hung, Hui-Chun; Young, Shelley Shwu-Ching

    2017-01-01

    Handheld technologies with multi-touch functions have been embraced by the young generation and become their important tool for social and learning purposes. The purpose of this study was to explore how the state-of-art devices could be integrated into authentic art appreciation courses to motivate and enhance students' learning. It was conducted…

  6. Viewing the Changing World of Educational Technology from a Different Perspective: Present Realities, Past Lessons, and Future Possibilities

    Science.gov (United States)

    Sanders, Martie; George, Ann

    2017-01-01

    This review paper focuses on likely reasons for the rhetoric-reality gap in the use of educational information and communication technology. It is based on the assumption that the present challenges being experienced with educational ICT might be avoided in the future if we look at the current challenges from a different perspective, by revisiting…

  7. The Educational Technology Centre: A Window to View the Progress of Chinese ICT-Based Higher Education

    Science.gov (United States)

    Zhou, Rong; Xie, Baizhi

    2010-01-01

    In China, after many years, the current status and challenges of e-learning development in higher education have been gradually understood. The educational technology centre (ECT) serves as the key unit to promote e-learning initiatives, but the performance of some centres still trails their foreign counterparts. Under such conditions, the project…

  8. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  9. Analysis concerning the perspective of Romania-USA technological cooperation with a view to performing TRIGA reactor project

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Ionescu, M.; Constantin, L.

    1998-01-01

    The co-operation between Romania and the USA in the field of technologic transfer of nuclear research reactor technology began with the steady state 14 MW, TRIGA reactor, installed at INR Pitesti, Romania. It is the first in the range of TRIGA reactors proposed as a materials testing reactor. The first criticality was reached in November 19, 1979 and first operation at 14 MW, level was in February 1980. The paper will present the short history of this co-operation and the perspective for a new co-operation for building a Nuclear Heating Plant using the TRIGA reactor concept for demonstration purpose. The energy crisis is a world-wide problem which affects each country in different ways because the resources and the consumption are unfairly distributed. World-wide research points out that the fossil fuel sources are not to be considered the main energy sources for the long term as they are limited. (author)

  10. Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA)

    Science.gov (United States)

    Banker, Brian F.; Robinson, Travis

    2016-01-01

    The proposed paper will cover ongoing effort named HESTIA (Human Exploration Spacecraft Testbed for Integration and Advancement), led at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) to promote a cross-subsystem approach to developing Mars-enabling technologies with the ultimate goal of integrated system optimization. HESTIA also aims to develop the infrastructure required to rapidly test these highly integrated systems at a low cost. The initial focus is on the common fluids architecture required to enable human exploration of mars, specifically between life support and in-situ resource utilization (ISRU) subsystems. An overview of the advancements in both integrated technologies, in infrastructure, in simulation, and in modeling capabilities will be presented, as well as the results and findings of integrated testing,. Due to the enormous mass gear-ratio required for human exploration beyond low-earth orbit, (for every 1 kg of payload landed on Mars, 226 kg will be required on Earth), minimization of surface hardware and commodities is paramount. Hardware requirements can be minimized by reduction of equipment performing similar functions though for different subsystems. If hardware could be developed which meets the requirements of both life support and ISRU it could result in the reduction of primary hardware and/or reduction in spares. Minimization of commodities to the surface of mars can be achieved through the creation of higher efficiency systems producing little to no undesired waste, such as a closed-loop life support subsystem. Where complete efficiency is impossible or impractical, makeup commodities could be manufactured via ISRU. Although, utilization of ISRU products (oxygen and water) for crew consumption holds great promise of reducing demands on life support hardware, there exist concerns as to the purity and transportation of commodities. To date, ISRU has been focused on production rates and purities for

  11. Uranium as an energy source: resources, production and reserves from the point of view of technological development

    International Nuclear Information System (INIS)

    Lersow, M.

    2008-01-01

    A reliable evaluation of the uranium resources available in the future and associated strategic reserves must take into account trends in prospecting, degree of technological development of the different stages of the nuclear fuel cycle (starting with the mining industry and preparation), but in particular also the specific raw material and energy yield of future generations of fuel and reactor technology. Uranium deposits are categorised with regard to ore content and probable production costs. The intensified prospecting following the increase in the uranium price will lead to discovery of further reserves and thus continue to follow the historical trend. Uranium production is subject to increasingly stringent legal boundary conditions - mining and preparation are approved according to strict international standards to minimise the environmental effects during operation and to restore and recultivate the sites after closure. New or extended/modernised uranium production sites are based on modern semi- or fully automated technologies. Exposure to radiation and environmental effects are minimised by avoidance of tailings (in situ leaching), by relocation of preparation partial processes underground or by storage of the residues from conventional plants according to international standards. In addition to a rough prediction based on currently available data trends in resource development, uranium production, fuel production and the energy yield from uranium including the option of utilisation of transuranic elements for energy production in order to minimise the radioactive waste are discussed and applied qualitatively to estimation of the reserves. (orig.)

  12. Views of Information Technologies Teachers Regarding Effects of Education Received in the University on the Professional Life

    Directory of Open Access Journals (Sweden)

    Ferhat BAHÇECİ

    2013-12-01

    Full Text Available According to Article 43 of the National Education Basic Law No: 1739, teaching is a specialty profession, which undertakes the educational and relevant administration tasks of the government. Preparation to the profession of teaching is provided through general knowledge, special field education, and pedagogical formation. Today, the task of training teachers is undertaken by the relevant Education Faculties and Faculties of Technical Education in the universities (Gizemlikapı, 2012. Do the faculties sustain this duty successfully enough? Is a person, assuming the title of teacher, able to have the basic knowledge about related duty and field? This education plays a very important role especially for a frequently-updated department like Information Technologies. All these questions constitute the main problem of the study. There are numerous faculties which train Information Technologies Teachers in our country. The education provided in these faculties enables the pre-service teachers to get acquainted with and learn their fields and obtain field information. However, the education provided does not always give the same result in every student. The purpose of this study is to measure the contribution of this education, which teachers receive, to the professional life. 36 questionnaire forms were filled by Information Technologies Teachers in Elazığ Province and 29 questionnaire forms were filled by teachers outside of the province via internet. According to findings of the study, it was concluded that the education, which teachers receive in the university, has positive effects on the professional life

  13. Is ‘Smart Mobility’ Sustainable? Examining the Views and Beliefs of Transport’s Technological Entrepreneurs

    Directory of Open Access Journals (Sweden)

    Kfir Noy

    2018-02-01

    Full Text Available One of the main evolving trends in the transport system is the assimilation of Information and Communications Technologies (ICTs and other sophisticated hi-technology innovations into it. Those processes and practices are increasingly referred to as the “Smart Mobility” paradigm. In this paradigm, ‘smart’ and ‘sustainable’ are often considered synonymous, or at least complementary to each other. This research aims to examine the extent to which ‘smart’ and ‘sustainable’ are aligned with each other by conducting a survey amongst the main actors within smart mobility. These actors are referred to as transport innovators or entrepreneurs. The survey of n = 117 entrepreneurs shows that there is a mismatch between interpretation and understanding of what is ‘smart’ and what is ‘sustainable’. It is clear that the concern of those transport entrepreneurs is primarily with commercial considerations and that their appreciation of what it takes to advance towards a more sustainable transport system is lacking. The belief amongst those entrepreneurs, it emerges, is that technological developments alone, specifically with respect to autonomous and connected vehicles, can lead to sustainable transport. This should be a real concern if those same actors are the ones who lead and pave the way forward for transport planning.

  14. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  15. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  16. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  17. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  18. Essentials of the successful drafting of invention applications on nuclear technology in the view of patent examination

    International Nuclear Information System (INIS)

    Zhai Chenyang

    2010-01-01

    Up to now, there has been a comparatively low ratio of domestic authorization in terms of invention applications in the field of nuclear technology. In this paper, the main reasons according to my experience in the patent examination are revealed in the following three aspects: (1) there is a lack of novelty or inventive step; (2) the scope of some claims is not clearly defined; (3) the description is improperly drafting. Common problems are shown and analyzed. Suggestion for avoiding the problems and corresponding solutions are given. (author)

  19. The other aspect of solar energy utilization. Solar technologies export enhancement: A central European point of view

    Science.gov (United States)

    Winter, C. J.; Nitsch, J.; Klaiss, H.; Voigt, C.

    1985-11-01

    It is shown that solar energy utilization can, on a moderate scale, supplement the indigenous energy supply of the Federal Republic of Germany. It can contribute to the prevention of fatal ecological damage, open an attractive export market and, in the long run, prepare ground for North-South compensation, where energy-poor but technology rich countries cooperate with countries of the Third World, which are often rich in raw materials and are situated in the solar belt of the world, for the benefit of the implementation of a solar industry or the production of a marketable synthetic solar energy carrier.

  20. An ESARDA view of future implementation of science and modern technology for safeguards following recent ESARDA and INMM initiatives

    International Nuclear Information System (INIS)

    Guardini, Sergio; Stein, Gotthard

    2001-01-01

    Full text: The new challenges posed by integrated safeguards, ensuring correctness and completeness without cost increase, may require that new techniques are employed or existing techniques modified to cope with the new requirements. Conscious of this new scenario, ESARDA decided to undertake a thorough review of current Science and Technology initiatives aimed, in particular, at identifying new techniques not yet applied in Safeguards that could help in increasing efficiency and effectiveness at no additional cost. To that purpose ESARDA organized, together with the INMM, a series of workshops on 'Science and Modem Technology for Safeguards' with the aim 'to inform the safeguards community about selected sciences and advanced technologies that are currently available or that will become available in the next few years and that could be used to support needed advances in international safeguards' and to 'stimulate interchange amongst experts in the various technologies and in safeguards'. Three Workshops have been held, the first in Arona in October 1996, then at Albuquerque, September 1998 and the third in Tokyo, November 2000. In 1998 ESARDA also dedicated an annual meeting, in Helsinki, to the topic, 'Modem Verification Regimes: Similarities, Synergies and Challenges'. The ESARDA Co-ordinators have examined the outcome of these Workshops to establish whether the aims were achieved, analyzing the status of the development of those techniques and methods presented that may have an application for Safeguards and suggesting future directions for the ESARDA activities and for Safeguards R and D. Following the main format followed by the Workshops, the Co-ordinators' analysis has been structured along the following areas: 1. 'hard' sciences (instruments, C and S); 2. 'soft' sciences (data and information treatment, knowledge building); 3. nontechnical (or socio-political) aspects; 4. the role of the Regional Systems of Accountancy and Control (RSAC) and of the State

  1. The Internet of Citizens. A lawyer’s view on some technological developments in the United Kingdom and India

    OpenAIRE

    Noto La Diega, Guido

    2017-01-01

    This article is a useful tool for both Asian and European readers as regards some of the state-of-the-art technologies revolving around the Internet of Things (‘IoT’) and their intersection with cloud computing (the Clouds of Things, ‘CoT’) in both the continents. The main legal issues will be presented, with a focus on intellectual property, consumer protection, and privacy. India and the United Kingdom are selected because they are at the forefront of the IoT innovation in their respective ...

  2. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  3. Dream missions space colonies, nuclear spacecraft and other possibilities

    CERN Document Server

    van Pelt, Michel

    2017-01-01

    This book takes the reader on a journey through the history of extremely ambitious, large and complex space missions that never happened. What were the dreams and expectations of the visionaries behind these plans, and why were they not successful in bringing their projects to reality thus far? As spaceflight development progressed, new technologies and ideas led to pushing the boundaries of engineering and technology though still grounded in real scientific possibilities. Examples are space colonies, nuclear-propelled interplanetary spacecraft, space telescopes consisting of multiple satellites and canon launch systems. Each project described in this book says something about the dreams and expectations of their time, and their demise was often linked to an important change in the cultural, political and social state of the world. For each mission or spacecraft concept, the following will be covered: • Description of the design. • Overview of the history of the concept and the people involved. • Why it...

  4. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    Science.gov (United States)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  5. Use of information and communication technologies (ICT) in science education: The views and experiences of three high school teachers

    Science.gov (United States)

    Barreto-Marrero, Luz N.

    ; developed scientific and technological skills; worked real situations in a collaborative way guided by science standards; and that parents participated in their children's learning. The conditions that facilitated these processes were the availability of technological resources, practical and continuous professional development, colleague communication and collaboration, the paradigmatic change towards constructivism with changes in assessment, school texts, curriculum and educational software, and a new generation of students and teachers open towards ICT, and pre-service teachers with technological skills.

  6. An AFDX Network for Spacecraft Data Handling

    Science.gov (United States)

    Deredempt, Marie-Helene; Kollias, Vangelis; Sun, Zhili; Canamares, Ernest; Ricco, Philippe

    2014-08-01

    In aeronautical domain, ARINC-664 Part 7 specification (AFDX) [4] provides the enabling technology for interfacing equipment in Integrated Modular Avionics (IMA) architectures. The complementary part of AFDX for a complete interoperability - Time and Space Partitioning (ARINC 653) concepts [1]- was already studied as part of space domain ESA roadmap (i.e. IMA4Space project)Standardized IMA based architecture is already considered in aeronautical domain as more flexible, reliable and secure. Integration and validation become simple, using a common set of tools and data base and could be done by part on different means with the same definition (hardware and software test benches, flight control or alarm test benches, simulator and flight test installation).In some area, requirements in terms of data processing are quite similar in space domain and the concept could be applicable to take benefit of the technology itself and of the panel of hardware and software solutions and tools available on the market. The Mission project (Methodology and assessment for the applicability of ARINC-664 (AFDX) in Satellite/Spacecraft on-board communicatION networks), as an FP7 initiative for bringing terrestrial SME research into the space domain started to evaluate the applicability of the standard in space domain.

  7. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  8. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  9. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  10. Chronic illness, self-management and technology: type 1 diabetes patients’ views of the use of technology to communicate with health professionals about their disease

    Directory of Open Access Journals (Sweden)

    Fernando B

    2012-11-01

    Full Text Available Annmarie Ruston,1 Alison Smith,1 Bernard Fernando21Centre for Health and Social Care Research, Faculty of Health and Social Care, Canterbury Christ Church University, Chatham Maritime, United Kingdom; 2Thames Avenue Surgery, Rainham, United KingdomPurpose: Diabetes represents one of the greatest health challenges facing the UK. Telehealth is seen to have the potential to revolutionize health care provision by improving access for patients with chronic disease, reducing health care costs, and improving efficiency. There have been many trials of telehealth in the UK but these have typically failed to become part of routine health care, particularly for diabetics. Program design and implementation has not been grounded in an understanding about the ways in which patients manage their disease and perceive these new technologies. This study addresses this gap by gaining an understanding of the perceptions of patients with type 1 diabetes about how telehealth could be used as part of their health care.Patients and methods: Thirty-two people with type 1 diabetes were recruited from a database of insulin pump users, and in-depth telephone interviews were undertaken, tape recorded, and transcribed. Analysis was conducted using a constant comparative approach.Results: Although respondents used technology as part of their diabetes self-management, they considered that the use of telehealth, as part of their health care, was potentially of limited value. Three themes emerged from their discourses: (1 a need to be in control of their disease themselves and a lack of trust of health care professionals in this process; (2 the belief that the National Health Service routine IT systems were unable to support telehealth; and (3 the belief that face-to-face communication was vital in providing them with high-quality care.Conclusion: Telehealth is considered to be revolutionizing health care and shifting power between patients and health professionals; however

  11. BPMN process views construction

    NARCIS (Netherlands)

    Yongchareon, S.; Liu, Chengfei; Zhao, X.; Kowalkiewicz, M.; Kitagawa, H.; Ishikawa, Y.

    2010-01-01

    Process view technology is catching more attentions in modern business process management, as it enables the customisation of business process representation. This capability helps improve the privacy protection, authority control, flexible display, etc., in business process modelling. One of

  12. Guidance and Navigation for Rendezvous and Proximity Operations with a Non-Cooperative Spacecraft at Geosynchronous Orbit

    Science.gov (United States)

    Barbee, Brent William; Carpenter, J. Russell; Heatwole, Scott; Markley, F. Landis; Moreau, Michael; Naasz, Bo J.; VanEepoel, John

    2010-01-01

    The feasibility and benefits of various spacecraft servicing concepts are currently being assessed, and all require that the servicer spacecraft perform rendezvous, proximity, and capture operations with the target spacecraft to be serviced. Many high-value spacecraft, which would be logical targets for servicing from an economic point of view, are located in geosynchronous orbit, a regime in which autonomous rendezvous and capture operations are not commonplace. Furthermore, existing GEO spacecraft were not designed to be serviced. Most do not have cooperative relative navigation sensors or docking features, and some servicing applications, such as de-orbiting of a non-functional spacecraft, entail rendezvous and capture with a spacecraft that may be non-functional or un-controlled. Several of these challenges have been explored via the design of a notional mission in which a nonfunctional satellite in geosynchronous orbit is captured by a servicer spacecraft and boosted into super-synchronous orbit for safe disposal. A strategy for autonomous rendezvous, proximity operations, and capture is developed, and the Orbit Determination Toolbox (ODTBX) is used to perform a relative navigation simulation to assess the feasibility of performing the rendezvous using a combination of angles-only and range measurements. Additionally, a method for designing efficient orbital rendezvous sequences for multiple target spacecraft is utilized to examine the capabilities of a servicer spacecraft to service multiple targets during the course of a single mission.

  13. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  14. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  15. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  16. An algorithm based on OmniView technology to reconstruct sagittal and coronal planes of the fetal brain from volume datasets acquired by three-dimensional ultrasound.

    Science.gov (United States)

    Rizzo, G; Capponi, A; Pietrolucci, M E; Capece, A; Aiello, E; Mammarella, S; Arduini, D

    2011-08-01

    To describe a novel algorithm, based on the new display technology 'OmniView', developed to visualize diagnostic sagittal and coronal planes of the fetal brain from volumes obtained by three-dimensional (3D) ultrasonography. We developed an algorithm to image standard neurosonographic planes by drawing dissecting lines through the axial transventricular view of 3D volume datasets acquired transabdominally. The algorithm was tested on 106 normal fetuses at 18-24 weeks of gestation and the visualization rates of brain diagnostic planes were evaluated by two independent reviewers. The algorithm was also applied to nine cases with proven brain defects. The two reviewers, using the algorithm on normal fetuses, found satisfactory images with visualization rates ranging between 71.7% and 96.2% for sagittal planes and between 76.4% and 90.6% for coronal planes. The agreement rate between the two reviewers, as expressed by Cohen's kappa coefficient, was > 0.93 for sagittal planes and > 0.89 for coronal planes. All nine abnormal volumes were identified by a single observer from among a series including normal brains, and eight of these nine cases were diagnosed correctly. This novel algorithm can be used to visualize standard sagittal and coronal planes in the fetal brain. This approach may simplify the examination of the fetal brain and reduce dependency of success on operator skill. Copyright © 2011 ISUOG. Published by John Wiley & Sons, Ltd.

  17. PET and diagnostic technology evaluation in a global clinical process. DGN's point of view

    Energy Technology Data Exchange (ETDEWEB)

    Kotzerke, J. [Klinik und Poliklinik fuer Nuklearmedizin der Univ. Dresden (Germany); Dietlein, M. [Klinik und Poliklinik fuer Nuklearmedizin der Univ. Koeln (Germany); Gruenwald, F. [Klinik und Poliklinik fuer Nuklearmedizin der Univ. Frankfurt am Main (Germany); Bockisch, A. [Klinik und Poliklinik fuer Nuklearmedizin der Univ. Essen (Germany)

    2010-07-01

    The German Society of Nuclear Medicine (DGN) criticizes the methodological approach of the IQWiG for evaluation of PET and the conclusions, which represent the opposite point of view compared to the most other European countries and health companies in the USA: (1) Real integration of experienced physicians into the interpretation of data and the evaluation of effectiveness should be used for best possible reporting instead of only formal hearing. (2) Data of the National Oncologic PET Registry (NOPR) from the USA have shown, that PET has changed the therapeutic management in 38% of patients. (3) The decision of the IQWiG to accept outcome data only for their benefit analyses, is controversial. Medical knowledge is generated by different methods, and an actual analysis of the scientific guidelines has shown that only 15% out of all guidelines are based on the level of evidence demanded by the IQWiG. Health economics has created different assessment methods for the evaluation of a diagnostic procedure. The strategy chosen by the IQWiG overestimated the perspective of the population and undervalue the benefit for an individual patient. (4) PET evaluates the effectiveness of a therapeutic procedure, but does not create an effective therapy. When the predictive value of PET is already implemented in a specific study design and the result of PET define a specific management, the trial evaluate the whole algorithm and PET is part of this algorithm only. When PET is implemented as test during chemotherapy or by the end of chemotherapy, the predictive value of PET will depend decisively on the effectiveness of the therapy: The better the therapy, the smaller the differences in survival detected by PET. (5) The significance of an optimal staging by the integration of PET will increase. Rationale is the actual development of ''titration'' of chemotherapy intensity and radiation dose towards the lowest possible, just about effective dosage. (6) The medical

  18. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology. Volume 6: Executive summary. [technological forecasting spacecraft control/attitude (inclination) -classical mechanics

    Science.gov (United States)

    1975-01-01

    An assessment of the technological impact of modern satellite weather forecasting for the United States is presented. Topics discussed are: (1) television broadcasting of weather; (2) agriculture (crop production); (3) water resources; (4) urban development; (5) recreation; and (6) transportation.

  19. Factors Influencing Postsecondary STEM Students' Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities

    Science.gov (United States)

    Gardner, Grant E.; Jones, M. Gail; Albe, Virginie; Blonder, Ron; Laherto, Antti; Macher, Daniel; Paechter, Manuela

    2017-10-01

    Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emerging technologies will have on a new generation of scientists and engineers including their formal communication with engaged citizenry. This cross-national study examined postsecondary science and engineering students' ( n = 254 from five countries: Austria, Finland, France, Israel, and USA) perspectives on the role of science communication in their own formal science and engineering education. More broadly, we examined participants' understanding of their perceived responsibilities of communicating science and engineering to the general public when an issue contains complex social and ethical implications (SEI). The study is contextualized in the emergent technology of nanotechnology for which SEI are of particular concern and for which the general public often perceives conflicting risks and benefits. Findings indicate that student participants' hold similar views on the need for their own training in communication as future scientists and engineers. When asked about the role that ethics and risk perception plays in research, development, and public communication of nanotechnology, participants demonstrate similar trajectories of perspectives that are, however, often anchored in very different levels of beginning concern. Results are discussed in the context of considerations for science communication training within formal science education curricula globally.

  20. Theoretical analysis of infrared radiation shields of spacecraft

    Science.gov (United States)

    Shealy, D. L.

    1984-01-01

    For a system of N diffuse, gray body radiation shields which view only adjacent surfaces and space, the net radiation method for enclosures has been used to formulate a system of linear, nonhomogeneous equations in terms of the temperatures to the fourth power of each surface in the coupled system of enclosures. The coefficients of the unknown temperatures in the system of equations are expressed in terms of configuration factors between adjacent surfaces and the emissivities. As an application, a system of four conical radiation shields for a spin stabilized STARPROBE spacecraft has been designed and analyzed with respect to variations of the cone half angles, the intershield spacings, and emissivities.

  1. Short rendezvous missions for advanced Russian human spacecraft

    Science.gov (United States)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  2. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  3. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  4. On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.

  5. Spaceborne intensity interferometry via spacecraft formation flight

    Science.gov (United States)

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral

    2012-07-01

    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  6. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  7. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  8. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  9. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  10. A computer graphics system for visualizing spacecraft in orbit

    Science.gov (United States)

    Eyles, Don E.

    1989-01-01

    To carry out unanticipated operations with resources already in space is part of the rationale for a permanently manned space station in Earth orbit. The astronauts aboard a space station will require an on-board, spatial display tool to assist the planning and rehearsal of upcoming operations. Such a tool can also help astronauts to monitor and control such operations as they occur, especially in cases where first-hand visibility is not possible. A computer graphics visualization system designed for such an application and currently implemented as part of a ground-based simulation is described. The visualization system presents to the user the spatial information available in the spacecraft's computers by drawing a dynamic picture containing the planet Earth, the Sun, a star field, and up to two spacecraft. The point of view within the picture can be controlled by the user to obtain a number of specific visualization functions. The elements of the display, the methods used to control the display's point of view, and some of the ways in which the system can be used are described.

  11. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  12. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  13. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  14. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  15. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  16. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  17. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    Science.gov (United States)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  18. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  19. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  20. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    Science.gov (United States)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  1. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  2. Mars Orbiter Camera Views the 'Face on Mars' - Best View from Viking

    Science.gov (United States)

    1998-01-01

    Shortly after midnight Sunday morning (5 April 1998 12:39 AM PST), the Mars Orbiter Camera (MOC) on the Mars Global Surveyor (MGS) spacecraft successfully acquired a high resolution image of the 'Face on Mars' feature in the Cydonia region. The image was transmitted to Earth on Sunday, and retrieved from the mission computer data base Monday morning (6 April 1998). The image was processed at the Malin Space Science Systems (MSSS) facility 9:15 AM and the raw image immediately transferred to the Jet Propulsion Laboratory (JPL) for release to the Internet. The images shown here were subsequently processed at MSSS.The picture was acquired 375 seconds after the spacecraft's 220th close approach to Mars. At that time, the 'Face', located at approximately 40.8o N, 9.6o W, was 275 miles (444 km) from the spacecraft. The 'morning' sun was 25o above the horizon. The picture has a resolution of 14.1 feet (4.3 meters) per pixel, making it ten times higher resolution than the best previous image of the feature, which was taken by the Viking Mission in the mid-1970's. The full image covers an area 2.7 miles (4.4 km) wide and 25.7 miles (41.5 km) long.This Viking Orbiter image is one of the best Viking pictures of the area Cydonia where the 'Face' is located. Marked on the image are the 'footprint' of the high resolution (narrow angle) Mars Orbiter Camera image and the area seen in enlarged views (dashed box). See PIA01440-1442 for these images in raw and processed form.Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  3. Xenia Mission: Spacecraft Design Concept

    Science.gov (United States)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  4. Manned spacecraft automation and robotics

    Science.gov (United States)

    Erickson, Jon D.

    1987-01-01

    The Space Station holds promise of being a showcase user and driver of advanced automation and robotics technology. The author addresses the advances in automation and robotics from the Space Shuttle - with its high-reliability redundancy management and fault tolerance design and its remote manipulator system - to the projected knowledge-based systems for monitoring, control, fault diagnosis, planning, and scheduling, and the telerobotic systems of the future Space Station.

  5. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    Directory of Open Access Journals (Sweden)

    Shu-Nan Wu

    2013-01-01

    Full Text Available The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller.

  6. Investigation of fast initialization of spacecraft bubble memory systems

    Science.gov (United States)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  7. Manned spacecraft electrical power systems

    Science.gov (United States)

    Simon, William E.; Nored, Donald L.

    1987-01-01

    A brief history of the development of electrical power systems from the earliest manned space flights illustrates a natural trend toward a growth of electrical power requirements and operational lifetimes with each succeeding space program. A review of the design philosophy and development experience associated with the Space Shuttle Orbiter electrical power system is presented, beginning with the state of technology at the conclusion of the Apollo Program. A discussion of prototype, verification, and qualification hardware is included, and several design improvements following the first Orbiter flight are described. The problems encountered, the scientific and engineering approaches used to meet the technological challenges, and the results obtained are stressed. Major technology barriers and their solutions are discussed, and a brief Orbiter flight experience summary of early Space Shuttle missions is included. A description of projected Space Station power requirements and candidate system concepts which could satisfy these anticipated needs is presented. Significant challenges different from Space Shuttle, innovative concepts and ideas, and station growth considerations are discussed. The Phase B Advanced Development hardware program is summarized and a status of Phase B preliminary tradeoff studies is presented.

  8. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  9. Development and Analysis of a Resource-Aware Power Management System as Applied to Small Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, Patrick [Univ. of Colorado, Boulder, CO (United States)

    2005-01-01

    In this thesis, an overall framework and solution method for managing the limited power resources of a small spacecraft is presented. Analogous to mobile computing technology, a primary limiting factor is the available power resources. In spite of the millions of dollars budgeted for research and development over decades, improvements in battery efficiency remains low. This situation is exacerbated by advances in payload technology that lead to increasingly power-hungry and data-intensive instruments. The challenge for the small spacecraft is to maximize capabilities and performance while meeting difficult design requirements and small project budgets.

  10. CRISM Views Phobos and Deimos

    Science.gov (United States)

    2007-01-01

    These two images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show Mars' two small moons, Phobos and Deimos, as seen from the Mars Reconnaissance Orbiter's low orbit around Mars. Both images were taken while the spacecraft was over Mars' night side, with the spacecraft turned off its normal nadir-viewing geometry to glimpse the moons. The image of Phobos, shown at the top, was taken at 0119 UTC on October 23 (9:19 p.m. EDT on Oct. 22), and shows features as small as 400 meters (1,320 feet) across. The image of Deimos, shown at the bottom, was taken at 2016 UTC (12:16 p.m. EDT) on June 7, 2007, and shows features as small as 1.3 kilometers (0.8 miles) across. Both CRISM images were taken in 544 colors covering 0.36-3.92 micrometers, and are displayed at twice the size in the original data for viewing purposes. Phobos and Deimos are about 21 and 12 kilometers (13.0 and 7.5 miles) in diameter and orbit Mars with periods of 7 hours, 39.2 minutes and 1 day, 6 hours, 17.9 minutes respectively. Because Phobos orbits Mars in a shorter time than Mars' 24 hour, 37.4-minute rotational period, to an observer on Mars' surface it would appear to rise in the west and set in the east. From Mars' surface, Phobos appears about one-third the diameter of the Moon from Earth, whereas Deimos appears as a bright star. The moons were discovered in 1877 by the astronomer Asaph Hall, and as satellites of a planet named for the Roman god of war, they were named for Greek mythological figures that personify fear and terror. The first spacecraft measurements of Phobos and Deimos, from the Mariner 9 and Viking Orbiter spacecraft, showed that both moons have dark surfaces reflecting only 5 to 7% of the sunlight that falls on them. The first reconstruction of the moons' spectrum of reflected sunlight was a difficult compilation from three different instruments, and appeared to show a flat, grayish spectrum resembling carbonaceous chondrite meteorites. Carbonaceous

  11. Laser Diagnostics for Spacecraft Propulsion

    Science.gov (United States)

    2015-10-13

    for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 3 Motivation • Many satellite propulsion technologies were developed in the...distribution unlimited.  AFTC/PA Clearance No.  XXXX Propellant Catalyst Bed Decomposition Chamber Thrust Chamber 5 Diode Laser Absorption Spectroscopy Beer...Hydrazine Thruster NH3 Iν(L)Iν0 Ramp t I L DISTRIBUTION A:  Approved for public release; distribution unlimited.  AFTC/PA Clearance No.  XXXX 6 Wavelength

  12. Revamping Spacecraft Operational Intelligence with Splunk

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    So what is Splunk? Instead of giving the technical details, which you can find online, I'll tell you what it did for me. Splunk slapped everything into one place, with one uniform format, and gave me the ability to forget about all these annoying details of where it is, how to parse it, and all that. Instead, I only need to interact with Splunk to find the data I need. This sounds simple and obvious, but it's surprising what you can do once you all of your data is indexed in one place. By having your data organized, querying becomes much easier. Let's say that I want to search telemetry for a sensor_name gtemp_1 h and to return all data that is at most five minutes old. And because Splunk can hook into a real ]time stream, this data will always be up-to-date. Extending the previous example, I can now aggregate all types of data into one view based in time. In this picture, I've got transaction logs, telemetry, and downlinked files all in one page, organized by time. Even though the raw data looks completely than this, I've defined interfaces that transform it into this uniform format. This gives me a more complete picture for the question what was the spacecraft doing at this particular time? And because querying data is simple, I can start with a big block of data and whiddle it down to what I need, rather than hunting around for the individual pieces of data that I need. When we have all the data we need, we can begin widdling down the data with Splunk's Unix-like search syntax. These three examples highlights my trial-and-error attempts to find large temperature changes. I begin by showing the first 5 temperatures, only to find that they're sorted chronologically, rather than from highest temperatures to lowest temperatures. The next line shows sorting temperatures by their values, but I find that that fs not really what I want either. I want to know the delta temperatures between readings. Looking through Splunk's user manual, I find the delta function, which

  13. Characterization of spacecraft humidity condensate

    Science.gov (United States)

    Muckle, Susan; Schultz, John R.; Sauer, Richard L.

    1994-01-01

    When construction of Space Station Freedom reaches the Permanent Manned Capability (PMC) stage, the Water Recovery and Management Subsystem will be fully operational such that (distilled) urine, spent hygiene water, and humidity condensate will be reclaimed to provide water of potable quality. The reclamation technologies currently baselined to process these waste waters include adsorption, ion exchange, catalytic oxidation, and disinfection. To ensure that the baseline technologies will be able to effectively remove those compounds presenting a health risk to the crew, the National Research Council has recommended that additional information be gathered on specific contaminants in waste waters representative of those to be encountered on the Space Station. With the application of new analytical methods and the analysis of waste water samples more representative of the Space Station environment, advances in the identification of the specific contaminants continue to be made. Efforts by the Water and Food Analytical Laboratory at JSC were successful in enlarging the database of contaminants in humidity condensate. These efforts have not only included the chemical characterization of condensate generated during ground-based studies, but most significantly the characterization of cabin and Spacelab condensate generated during Shuttle missions. The analytical results presented in this paper will be used to show how the composition of condensate varies amongst enclosed environments and thus the importance of collecting condensate from an environment close to that of the proposed Space Station. Although advances were made in the characterization of space condensate, complete characterization, particularly of the organics, requires further development of analytical methods.

  14. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  15. Power Management and Distribution Trades Studies for a Deep-Space Mission Scientific Spacecraft

    Science.gov (United States)

    Kimnach, Greg L.; Soltis, James V.

    2004-01-01

    As part of NASA's Project Prometheus, the Nuclear Systems Program, NASA GRC performed trade studies on the various Power Management and Distribution (PMAD) options for a deep-space scientific spacecraft which would have a nominal electrical power requirement of 100 kWe. These options included AC (1000Hz and 1500Hz and DC primary distribution at various voltages. The distribution system efficiency, reliability, mass, thermal, corona, space radiation levels and technology readiness of devices and components were considered. The final proposed system consisted of two independent power distribution channels, sourced by two 3-phase, 110 kVA alternators nominally operating at half-rated power. Each alternator nominally supplies 50kWe to one half of the ion thrusters and science modules but is capable of supplying the total power re3quirements in the event of loss of one alternator. This paper is an introduction to the methodology for the trades done to arrive at the proposed PMAD architecture. Any opinions expressed are those of the author(s) and do not necessarily reflect the views of Project Prometheus.

  16. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  17. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  18. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Science.gov (United States)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA

  19. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  20. Micro-Inspector Spacecraft for Space Exploration Missions

    Science.gov (United States)

    Mueller, Juergen; Alkalai, Leon; Lewis, Carol

    2005-01-01

    NASA is seeking to embark on a new set of human and robotic exploration missions back to the Moon, to Mars, and destinations beyond. Key strategic technical challenges will need to be addressed to realize this new vision for space exploration, including improvements in safety and reliability to improve robustness of space operations. Under sponsorship by NASA's Exploration Systems Mission, the Jet Propulsion Laboratory (JPL), together with its partners in government (NASA Johnson Space Center) and industry (Boeing, Vacco Industries, Ashwin-Ushas Inc.) is developing an ultra-low mass (missions. The micro-inspector will provide remote vehicle inspections to ensure safety and reliability, or to provide monitoring of in-space assembly. The micro-inspector spacecraft represents an inherently modular system addition that can improve safety and support multiple host vehicles in multiple applications. On human missions, it may help extend the reach of human explorers, decreasing human EVA time to reduce mission cost and risk. The micro-inspector development is the continuation of an effort begun under NASA's Office of Aerospace Technology Enabling Concepts and Technology (ECT) program. The micro-inspector uses miniaturized celestial sensors; relies on a combination of solar power and batteries (allowing for unlimited operation in the sun and up to 4 hours in the shade); utilizes a low-pressure, low-leakage liquid butane propellant system for added safety; and includes multi-functional structure for high system-level integration and miniaturization. Versions of this system to be designed and developed under the H&RT program will include additional capabilities for on-board, vision-based navigation, spacecraft inspection, and collision avoidance, and will be demonstrated in a ground-based, space-related environment. These features make the micro-inspector design unique in its ability to serve crewed as well as robotic spacecraft, well beyond Earth-orbit and into arenas such

  1. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  2. SMART-1: the first spacecraft of the future

    Science.gov (United States)

    2003-09-01

    This is the first of a series of missions designed to test key technologies for future spacecraft —SMART stands for 'Small Missions for Advanced Research and Technology'. In the case of SMART-1, the two main new technologies to be tested are a new 'solar-electric propulsion' system and miniaturised spacecraft and instrumentation. Together, these technologies make up a spacecraft with revolutionary qualities: smaller, lighter, capable of carrying more scientific instruments, greater fuel efficiency. All of which also considerably reduces the cost of the mission. So, the idea behind SMART-1 is to pioneer a futuristic philosophy, the motto of which could be: 'more science for less money'. Even though it is the first of a kind, SMART-1 has been developed in less than four years, and at about a fifth of the cost of a major science mission for ESA: only 110 million euros. That includes the launch, the operations and a dozen scientific experiments. This was achieved partly by using new management methods — such as working with smaller teams both within ESA and in the industry — and partly because of some of the new features inherent in SMART-1, such as the miniaturisation and novel design. Giuseppe Racca, SMART-1 Project Manager, explains: "What has been our trick? First, a short development period in itself means less money. But also, with its small size — which was a requirement of the mission because we are testing miniaturised hardware — the spacecraft is able to 'share' a commercial Ariane flight with two other passengers. Besides, since we were not constrained by any existing design or heritage, we could be more innovative and elegant in our architecture. For example, the new SMART-1 electrical architecture has enabled us to simplify the system tests considerably." SMART-1 could almost be a toy spacecraft — it weighs only 367 kilograms and fits into a cube just one metre across (the solar panel wings extend about 14 metres) — although one able to

  3. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  4. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  5. SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  6. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  7. The scheduling of tracking times for interplanetary spacecraft on the Deep Space Network

    Science.gov (United States)

    Webb, W. A.

    1978-01-01

    The Deep Space Network (DSN) is a network of tracking stations, located throughout the globe, used to track spacecraft for NASA's interplanetary missions. This paper describes a computer program, DSNTRAK, which provides an optimum daily tracking schedule for the DSN given the view periods at each station for a mission set of n spacecraft, where n is between 2 and 6. The objective function is specified in terms of relative total daily tracking time requirements between the n spacecraft. Linear programming is used to maximize the total daily tracking time and determine an optimal daily tracking schedule consistent with DSN station capabilities. DSNTRAK is used as part of a procedure to provide DSN load forecasting information for proposed future NASA mission sets.

  8. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  9. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  10. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  11. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  12. The trajectory prediction of spacecraft by grey method

    International Nuclear Information System (INIS)

    Wang, Qiyue; Wang, Zhongyu; Zhang, Zili; Wang, Yanqing; Zhou, Weihu

    2016-01-01

    The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively. (paper)

  13. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  14. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  15. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  16. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  17. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  18. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  19. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  20. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  1. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    Science.gov (United States)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  2. Interpretation of Forest Resources at the Individual Tree Level at Purple Mountain, Nanjing City, China, Using WorldView-2 Imagery by Combining GPS, RS and GIS Technologies

    Directory of Open Access Journals (Sweden)

    Songqiu Deng

    2013-12-01

    Full Text Available This study attempted to measure forest resources at the individual tree level using high-resolution images by combining GPS, RS, and Geographic Information System (GIS technologies. The images were acquired by the WorldView-2 satellite with a resolution of 0.5 m in the panchromatic band and 2.0 m in the multispectral bands. Field data of 90 plots were used to verify the interpreted accuracy. The tops of trees in three groups, namely ≥10 cm, ≥15 cm, and ≥20 cm DBH (diameter at breast height, were extracted by the individual tree crown (ITC approach using filters with moving windows of 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels, respectively. In the study area, there were 1,203,970 trees of DBH over 10 cm, and the interpreted accuracy was 73.68 ± 15.14% averaged over the 90 plots. The numbers of the trees that were ≥15 cm and ≥20 cm DBH were 727,887 and 548,919, with an average accuracy of 68.74 ± 17.21% and 71.92 ± 18.03%, respectively. The pixel-based classification showed that the classified accuracies of the 16 classes obtained using the eight multispectral bands were higher than those obtained using only the four standard bands. The increments ranged from 0.1% for the water class to 17.0% for Metasequoia glyptostroboides, with an average value of 4.8% for the 16 classes. In addition, to overcome the “mixed pixels” problem, a crown-based supervised classification, which can improve the classified accuracy of both dominant species and smaller classes, was used for generating a thematic map of tree species. The improvements of the crown- to pixel-based classification ranged from −1.6% for the open forest class to 34.3% for Metasequoia glyptostroboides, with an average value of 20.3% for the 10 classes. All tree tops were then annotated with the species attributes from the map, and a tree count of different species indicated that the forest of Purple Mountain is mainly dominated by Quercus acutissima, Liquidambar formosana

  3. Spacecraft Architecture and environmental pshychology

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  4. Spacecraft Architecture and well being

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  5. NASA Spacecraft Fault Management Workshop Results

    Science.gov (United States)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  6. Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Jørgensen, Mikkel

    2013-01-01

    The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology w...

  7. Electromagnetic Spacecraft Propulsion Motor and a Permanent Magnet (PM-Drive) Thruster

    Science.gov (United States)

    Ahmadov, B. A.

    2018-04-01

    Ion thrusters are designed to be used for realization of a Mars Sample Return mission. The competing technologies with ion thrusters are electromagnetic spacecraft propulsion motors. I'm an engineer and engage in the creation of the new electromagnetic propulsion motors.

  8. SSTL based thermal and power efficient RAM design on 28nm FPGA for spacecraft

    DEFF Research Database (Denmark)

    Kalia, Kartik; Pandey, Bishwajeet; Hussain, D. M.A.

    2016-01-01

    In this paper, an approach is made to design a Thermal and Power efficient RAM for that reason we have used DDR4L memory and six different members of SSTL I/Os standards on 28nm technology. Every spacecraft requires most energy efficient electronic system and for that very purpose we have designe...

  9. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  10. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  11. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  12. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  13. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  14. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  15. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  16. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  17. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  18. Implications of Advanced Technologies for Air and Spacecraft Escape

    Science.gov (United States)

    1990-02-01

    yaw, and at high speeds, aallort yaw angle will create high lateral g- loach , and a consequently high DR. on the crew member. Therefore, the first...Figure 5. The risk levels shown on dini plot are approxtisations of the Levels derived fronm Brinkley.* An ejection from an aircraft at 800 kens is

  19. Omni-directional Particle Detector (ODPD) on Tiangong-2 Spacecraft

    Science.gov (United States)

    Guohong, S.; Zhang, S.; Yang, X.; Wang, C.

    2017-12-01

    Tiangong-2 spacecraft is the second space laboratory independently developed by china after Tiangong-1, which was launched on 15 September 2016. It is also the first real space laboratory in china, which will be used to further validate the space rendezvous and docking technology and to carry out a series of space tests. The spacecraft's orbit is 350km height and 42° inclination. The omni-directional particle detector (ODPD) on Tiangong-2 spacecraft is a new instrument developed by China. Its goal is the anisotropy and energy spectra of space particles on manned space flight orbit. The ODPD measures the energy spectra and pitch angle distributions of high energy electrons and protons. It consists of one electron spectrum telescope, one proton spectrum telescope and sixteen directional flux telescopes. The ODPD is designed to measure the protons spectrum from 2.5MeV to 150MeV, electrons spectrum from 0.2MeV to 1.5MeV, the flux of electrons energy >200keV and protons energy>1.5MeV on 2∏ space, also the ODPD has a small sensor to measure the LET spectrum from 1-100MeV/cm2sr. The primary advantage can give the particle's pitch angle distributions at any time because of the sixteen flux telescopes arrange form 0 to 180 degree. This is the first paper dealing with ODPD data, so we firstly spend some time describing the instrument, its theory of operation and its calibration. Then we give the preliminary detecting results.

  20. Simulated Aging of Spacecraft External Materials on Orbit

    Science.gov (United States)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  1. Ergonomics technology

    Science.gov (United States)

    Jones, W. L.

    1977-01-01

    Major areas of research and development in ergonomics technology for space environments are discussed. Attention is given to possible applications of the technology developed by NASA in industrial settings. A group of mass spectrometers for gas analysis capable of fully automatic operation has been developed for atmosphere control on spacecraft; a version for industrial use has been constructed. Advances have been made in personal cooling technology, remote monitoring of medical information, and aerosol particle control. Experience gained by NASA during the design and development of portable life support units has recently been applied to improve breathing equipment used by fire fighters.

  2. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  3. Three Canted Radiator Panels to Provide Adequate Cooling for Instruments on Slewing Spacecraft in LEO

    Science.gov (United States)

    Choi, Michael K.

    2012-01-01

    Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.

  4. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  5. Electrical design for origami solar panels and a small spacecraft test mission

    Science.gov (United States)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  6. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  7. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  8. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  9. Zograscopic viewing

    NARCIS (Netherlands)

    Koenderink, J.; Wijntjes, M.; Van Doorn, A.

    2013-01-01

    The “zograscope” is a “visual aid” (commonly known as “optical machine” in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates

  10. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    Science.gov (United States)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  11. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  12. Sunlight reflection off the spacecraft with a solar sail on the surface of mars

    Science.gov (United States)

    Starinova, O. L.; Rozhkov, M. A.; Gorbunova, I. V.

    2018-05-01

    Modern technologies make it possible to fulfill many projects in the field of space exploration. One such project is the colonization of Mars and providing favorable conditions for living on it. Authors propose principles of functioning of the spacecraft with a solar sail, intended to create a thermal and light spot in a predetermined area of the Martian surface. This additional illumination can maintain and support certain climatic conditions on a small area where a Mars base could be located. This paper investigate the possibility of the spacecraft continuously reflect the sunlight off the solar sail on the small area of the Mars surface. The mathematical motion model in such condition of the solar sail's orientation is considered and used for motion simulation session. Moreover, the analysis of this motion is performed. Thus, were obtained parameters of the synchronic non-Keplerian orbit and spacecraft construction. In addition, were given recommendations for further applying satellites to reflect the sunlight on a planet's surface.

  13. Protecting Spacecraft Fragments from Exposure to Small Debris

    Directory of Open Access Journals (Sweden)

    V. V. Zelentsov

    2015-01-01

    Full Text Available Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable debris. In case of possible collision with the observed debris an avoidance manoeuvre is provided. The situation with unobservable debris is worse, its dimensions ranging from 100 mm to several microns. This debris is formed as a result of explosions of dead space objects and at collisions of destroyed spacecraft fragments against each other. This debris moves along arbitrary trajectories at different speeds.At collision of a spacecraft with fragments of small-size space debris, various consequences are possible: the device can immediately fail, suffer damages, which will have effect later and damages, which break no bones to the aircraft. Anyway, the spacecraft collision with small-size debris particles is undesirable. The protective shields are used to protect the aircraft from damage. Development of shield construction is complicated because the high cost of launch makes it impossible to conduct field tests of shields in space. All the work is carried out in the laboratory, with particles having co-impact speeds up to 10 km/s (possible speeds are up to 20 km/s and spherically shaped particles of 0.8 ... 3 mm in diameter.Various materials are used to manufacture shields. These are aluminum sheet, sandwich panels, metal mesh, metal foam, and woven materials (ballistic fabric. The paper considers single-layer (from sheet metal sandwich materials and multilayer shield designs. As experimental studies show, a single-layer shield protects colliding at speeds

  14. Improving the Use of Technology Enhanced Learning Environments in Higher Education in the UK: A Qualitative Visualization of Students' Views

    Science.gov (United States)

    Kennedy, Mark; Dunn, Thomas J.

    2018-01-01

    In recent years, the use of Technology Enhanced Learning (TEL) has risen exponentially throughout higher education in the UK. Whilst TEL is an umbrella term for a range of technologies, evidence suggests that in the UK, TEL is usually delivered via the medium of Virtual Learning Environments (VLEs) for the provision of lecture materials and…

  15. The Views of Pre-Service Teachers Regarding the Effectiveness of Peer Assisted Learning Method in the Science and Technology Laboratory Practices Course

    Science.gov (United States)

    Simsekli, Yeter; Özer, Dilek Zeren; Güngör, Sema Nur

    2017-01-01

    The purpose of this study is to show the views of pre-service teachers about peer-assisted learning method which is a common practice. The peer student group of the research sample (N:40) consisted of 2nd grade pre-service primary teachers attending the Uludag University Faculty of Education during the 2010-2011 academic year and taking the…

  16. Views of the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, C.

    1995-02-01

    Views of the Solar System has been created as an educational tour of the solar system. It contains images and information about the Sun, planets, moons, asteroids and comets found within the solar system. The image processing for many of the images was done by the author. This tour uses hypertext to allow space travel by simply clicking on a desired planet. This causes information and images about the planet to appear on screen. While on a planet page, hyperlinks travel to pages about the moons and other relevant available resources. Unusual terms are linked to and defined in the Glossary page. Statistical information of the planets and satellites can be browsed through lists sorted by name, radius and distance. History of Space Exploration contains information about rocket history, early astronauts, space missions, spacecraft and detailed chronology tables of space exploration. The Table of Contents page has links to all of the various pages within Views Of the Solar System.

  17. Space tribology: its role in spacecraft mechanisms

    International Nuclear Information System (INIS)

    Roberts, E W

    2012-01-01

    The subject of tribology encompasses the friction, wear and lubrication of mechanical components such as bearings and gears. Tribological practices are aimed at ensuring that such components operate with high efficiency (low friction) and achieve long lives. On spacecraft mechanisms the route to achieving these goals brings its own unique challenges. This review describes the problems posed by the space environment, the types of tribological component used on spacecraft and the approaches taken to their lubrication. It is shown that in many instances lubrication needs can be met by synthetic oils having exceedingly low volatilities, but that at temperature extremes the only means of reducing friction and wear is by solid lubrication. As the demands placed on space engineering increase, innovatory approaches will be needed to solve future tribological problems. The direction that future developments might take is anticipated and discussed.

  18. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  19. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance

  20. Data combinations accounting for LISA spacecraft motion

    International Nuclear Information System (INIS)

    Shaddock, Daniel A.; Tinto, Massimo; Estabrook, Frank B.; Armstrong, J.W.

    2003-01-01

    The laser interferometer space antenna is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers

  1. The Stardust spacecraft arrives at KSC

    Science.gov (United States)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  2. Close-Range Photogrammetry & Next Generation Spacecraft

    Science.gov (United States)

    Pappa, Richard S.

    2002-01-01

    NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.

  3. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  4. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  5. FORTE spacecraft vibration mitigation. Final report

    International Nuclear Information System (INIS)

    Maly, J.R.

    1996-02-01

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure

  6. Concept Assessment of a Fission Fragment Rocket Engine (FFRE) Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert; Clark, Rod; Sheldon, Rob; Percy, Tom

    2012-01-01

    The March, 2012 issue of Aerospace America stated that ?the near-to-medium prospects for applying advanced propulsion to create a new era of space exploration are not very good. In the current world, we operate to the Moon by climbing aboard a Carnival Cruise Lines vessel (Saturn 5), sail from the harbor (liftoff) shedding whole decks of the ship (staging) along the way and, having reached the return leg of the journey, sink the ship (burnout) and return home in a lifeboat (Apollo capsule). Clearly this is an illogical way to travel, but forced on Explorers by today's propulsion technology. However, the article neglected to consider the one propulsion technology, using today's physical principles that offer continuous, substantial thrust at a theoretical specific impulse of 1,000,000 sec. This engine unequivocally can create a new era of space exploration that changes the way spacecraft operate. Today's space Explorers could travel in Cruise Liner fashion using the technology not considered by Aerospace America, the novel Dusty Plasma Fission Fragment Rocket Engine (FFRE). This NIAC study addresses the FFRE as well as its impact on Exploration Spacecraft design and operation. It uses common physics of the relativistic speed of fission fragments to produce thrust. It radiatively cools the fissioning dusty core and magnetically controls the fragments direction to practically implement previously patented, but unworkable designs. The spacecraft hosting this engine is no more complex nor more massive than the International Space Station (ISS) and would employ the successful ISS technology for assembly and check-out. The elements can be lifted in "chunks" by a Heavy Lift Launcher. This Exploration Spacecraft would require the resupply of small amounts of nuclear fuel for each journey and would be an in-space asset for decades just as any Cruise Liner on Earth. This study has synthesized versions of the FFRE, integrated one concept onto a host spacecraft designed for

  7. Large Field Photogrammetry Techniques in Aircraft and Spacecraft Impact Testing

    Science.gov (United States)

    Littell, Justin D.

    2010-01-01

    The Landing and Impact Research Facility (LandIR) at NASA Langley Research Center is a 240 ft. high A-frame structure which is used for full-scale crash testing of aircraft and rotorcraft vehicles. Because the LandIR provides a unique capability to introduce impact velocities in the forward and vertical directions, it is also serving as the facility for landing tests on full-scale and sub-scale Orion spacecraft mass simulators. Recently, a three-dimensional photogrammetry system was acquired to assist with the gathering of vehicle flight data before, throughout and after the impact. This data provides the basis for the post-test analysis and data reduction. Experimental setups for pendulum swing tests on vehicles having both forward and vertical velocities can extend to 50 x 50 x 50 foot cubes, while weather, vehicle geometry, and other constraints make each experimental setup unique to each test. This paper will discuss the specific calibration techniques for large fields of views, camera and lens selection, data processing, as well as best practice techniques learned from using the large field of view photogrammetry on a multitude of crash and landing test scenarios unique to the LandIR.

  8. Redundancy for electric motors in spacecraft applications

    Science.gov (United States)

    Smith, Robert J.; Flew, Alastair R.

    1986-01-01

    The parts of electric motors which should be duplicated in order to provide maximum reliability in spacecraft application are identified. Various common types of redundancy are described. The advantages and disadvantages of each are noted. The principal types are illustrated by reference to specific examples. For each example, constructional details, basic performance data and failure modes are described, together with a discussion of the suitability of particular redundancy techniques to motor types.

  9. Research on spacecraft electrical power conversion

    Science.gov (United States)

    Wilson, T. G.

    1983-01-01

    The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.

  10. Schema for Spacecraft-Command Dictionary

    Science.gov (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  11. Additive Manufacturing: Ensuring Quality for Spacecraft Applications

    Science.gov (United States)

    Swanson, Theodore; Stephenson, Timothy

    2014-01-01

    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  12. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  13. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  14. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  15. 长期飞行载人航天器适居性设计与分析%Study on Habitability Design of Long Duration Manned Spacecraft

    Institute of Scientific and Technical Information of China (English)

    周前祥

    2012-01-01

    With the successful rendezvous and docking between Shenzhou-8 spaceship and Tiangong-1 spacecraft, habitability design and ergonomic analysis of long duration manned spacecraft will become the main technological problem. The present habitability study of ISS is described in detail, and the status of NASA's study in habitability are analyzed. The main contents of habitability ergonomic design are explored, with some views put forward for discussion.%随着神舟八号飞船与天宫一号的成功对接,长期飞行栽人航天器的适居性设计与应用将成为我国:载人航天技术发展面临的主要技术问题。首先对国际空间站上有关适居性的概况和NASA的研究现状进行了分析。在此基础上,归纳出长期载人航天器适居性设计的主要内容。最后,提出几点看法。

  16. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  17. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  18. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  19. Delamination Assessment Tool for Spacecraft Composite Structures

    Science.gov (United States)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  20. Topology Optimization of Spacecraft Transfer Compartment

    Directory of Open Access Journals (Sweden)

    A. A. Borovikov

    2016-01-01

    Full Text Available IntroductionThe subject of this research is topology optimization of the adapter of a spacecraft transfer compartment. The finite element topology optimization [1] is widely used for simple structure elements [6, 7]. It is argued that using this method in conjunction with additive technology (3D - printing it is possible to create construction designs with the best weight characteristics. However, the paper shows that when applying this method to a complex construction design the optimization results are highly sensitive to optimization algorithm parameters. The goal of this research is to study parameters of the topology optimization algorithm and the influence of their variations on results.1.      Problem formulation   A commercial software Altair HyperWorks/OptiStruct (student’s license performed numerical calculations. The paper presents a detailed description of the finite element model.The main features of the proposed model are as follows:-          Simplicity with non-complicated geometry;-          Building a finite element model in terms of computing time minimization;-          Using the lumped mass elements to simulate the impacts of the conjugates on the adapter;-          A limit of material strength, decreased by an order of magnitude, to eliminate stress concentrators;-          The gravitational load applied corresponds to the loads for the Angara-A5 launcher [8]. 2.      Method of solutionA brief description of the SIMP-method realized in the Altair HyperWorks/OptiStruct software is given.3.      ResultsPerformed numerical calculations, and shown the influence of variations of algorithm parameters (DISCRETE, MATINIT, MINDIM, MAXDIM on construction design as well as the parameters SINGLE and SPLIT used to reveal restrictions on manufacturing.Shown that, depending on variations of parameters, an adapter construction strives to «truss» or «shell» type. Described

  1. Zograscopic viewing.

    Science.gov (United States)

    Koenderink, Jan; Wijntjes, Maarten; van Doorn, Andrea

    2013-01-01

    The "zograscope" is a "visual aid" (commonly known as "optical machine" in the 18th century) invented in the mid-18th century, and in general use until the early 20th century. It was intended to view single pictures (thus not stereographic pairs) with both eyes. The optics approximately eliminates the physiological cues (binocular disparity, vergence, accommodation, movement parallax, and image blur) that might indicate the flatness of the picture surface. The spatial structure of pictorial space is due to the remaining pictorial cues. As a consequence, many (or perhaps most) observers are aware of a heightened "plasticity" of the pictorial content for zograscopic as compared with natural viewing. We discuss the optics of the zograscope in some detail. Such an analysis is not available in the literature, whereas common "explanations" of the apparatus are evidently nonsensical. We constructed a zograscope, using modern parts, and present psychophysical data on its performance.

  2. Remote viewing.

    Science.gov (United States)

    Scott, C

    1988-04-15

    Remote viewing is the supposed faculty which enables a percipient, sited in a closed room, to describe the perceptions of a remote agent visiting an unknown target site. To provide convincing demonstration of such a faculty poses a range of experimental and practical problems, especially if feedback to the percipient is allowed after each trial. The precautions needed are elaborate and troublesome; many potential loopholes have to be plugged and there will be strong temptations to relax standards, requiring exceptional discipline and dedication by the experimenters. Most reports of remote viewing experiments are rather superficial and do not permit assessment of the experimental procedures with confidence; in many cases there is clear evidence of particular loopholes left unclosed. Any serious appraisal of the evidence would have to go beyond the reports. Meanwhile the published evidence is far from compelling, and certainly insufficient to justify overthrow of well-established scientific principles.

  3. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  4. Stakeholders' views of the introduction of assistive technology in the classroom: How family-centred is Australian practice for students with cerebral palsy?

    Science.gov (United States)

    Karlsson, P; Johnston, C; Barker, K

    2017-07-01

    With family-centred care widely recognized as a cornerstone for effective assistive technology service provision, the current study was undertaken to investigate to what extent such approaches were used by schools when assistive technology assessments and implementation occurred in the classroom. In this cross-sectional study, we compare survey results from parents (n = 76), school staff (n = 33) and allied health professionals (n = 65) with experience in the use of high-tech assistive technology. Demographic characteristics and the stakeholders' perceived helpfulness and frequency attending assessment and set-up sessions were captured. To evaluate how family-centred the assistive technology services were perceived to be, the parents filled out the Measure of Processes of Care for Caregivers, and the professionals completed the Measure of Processes of Care for Service Providers. Descriptive statistics and one-way analysis of variance were used to conduct the data analysis. Findings show that parents are more involved during the assessment stage than during the implementation and that classroom teachers are often not involved in the initial stage. Speech pathologists in particular are seen to be to a great extent helpful when implementing assistive technology in the classroom. This study found that family-centred service is not yet fully achieved in schools despite being endorsed in early intervention and disability services for over 20 years. No statistically significant differences were found with respect to school staff and allied health professionals' roles, their years of experience working with students with cerebral palsy and the scales in the Measure of Processes of Care for Service Providers. To enhance the way technology is matched to the student and successfully implemented, classroom teachers need to be fully involved in the whole assistive technology process. The findings also point to the significance of parents' involvement, with the support of

  5. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  6. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  7. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  8. Participation of the national industry within a nuclear power plant program by technology transfer from the point of view of the main contractor

    International Nuclear Information System (INIS)

    Kopp, H.

    1986-04-01

    The broad scope of components needed in a nuclear power plant with various technical requirements offer a big opportunity for the participation of local industries in the construction of such plants. Depending on the existing capability of the industrial enterprises, the scope of national participation can be increased by technology transfer on all technical areas to be applied for the construction of NPPs. Such technology requires as basis a nuclear program of the country determined and supported by the government and the utilities. This program has to be defined as realistic as even possible adjoined to the future energy demand of the country. Furthermore the available capability, existing qualifications and equipment of the national industry have to be considered. On the basis of these fundamental requirements a tailormade technology transfer program has to be elaborated in close cooperation with an experienced main contractor of the plant and his partners for such technology transfer and should be established afterwards. This program has to consider not only the goal to achieve finally the independent production of components and equipment for NPPs or the construction of complete power plant units itself, but also the economic benefit of such a program for the country. The costs of technology transfer and the necessary investment of the national industry required for the manufacture of nuclear components have to be thoroughly investigated, based on the expected scope of products to be manufactured for the nuclear power plants according to the nuclear program. Furthermore the application of the technology transferred for other components e.g. for conventional power stations, mineral-oil or chemical industrial plants has to be considered. By a tailormade nuclear technology transfer program, executed by qualified and experienced partners not only the quality of the products of the national industry for NPPs will be improved, but also the general standard regarding

  9. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  10. Hyperloops, Nuclear Spacecraft, and the New York City Subway

    Science.gov (United States)

    Granade, Stephen

    2014-03-01

    Frustrated by the speed and high cost-per-mile of the California High-Speed Rail project linking Los Angeles with San Francisco, Elon Musk proposed the Hyperloop: a high-speed train running in a sealed, partially-evacuated tube. Musk released a white paper that described the technology and concluded that the Hyperloop could be built for less than a tenth of a cost of the California High-Speed Rail. Musk's white paper focused heavily on the scientific and technical questions that must be answered, but public transportation is a domain at the intersection of science and society. Public transportation infrastructure is shaped as much by the pressures of government and citizens as by the technology behind the transportation. Tube-based transport like the Hyperloop has been proposed before, but has never gone further than words on a page. Why? Historical examples like the development of the New York City subway and the proposed nuclear-powered Orion spacecraft shed light on the societal barriers that new transportation must overcome, and help illuminate why technology-based answers are not a full response to transportation questions.

  11. Study of an applicability of technologies developed in the conventional industries from the view point of developing the geological disposal system

    International Nuclear Information System (INIS)

    Ushio, Kazuhiro; Ando, Yasumasa; Kubota, Kazuo; Sokejima, Susumu

    1999-02-01

    The geological disposal study of HLW (High Level Wastes) is being developed in Japan. Especially, JNC has played the central role to proceed this project, while in the industries, from the viewpoint of the environmental measures, various technologies and materials have been developed. Some of them might be applied into the geological disposal. The purpose of this study is to investigate such technologies and their applicability to the geological disposal system. Firstly, the environmental technologies used for the repository of industrial wastes were studied. The concepts of management and the regulations for the repository are summarized, and compared with the current geological disposal concept. Secondly, concerning structural and durable materials, their properties and usage were overviewed and their applicability to the current geological disposal concept was studied. (J.P.N.)

  12. Electromagnetic Dissociation and Spacecraft Electronics Damage

    Science.gov (United States)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  13. Network Views

    Science.gov (United States)

    Alexander, Louis

    2010-01-01

    The world changed in 2008. The financial crisis brought with it a deepening sense of insecurity, and the desire to be connected to a network increased. Throughout the summer and fall of 2008, events were unfolding with alarming rapidity. The Massachusetts Institute of Technology (MIT) Alumni Association wanted to respond to this change in the…

  14. Viewing Volcanoes

    Science.gov (United States)

    Wighting, Mervyn J.

    2005-01-01

    When Mount St. Helens threatened to erupt again in 2004, it grabbed headlines and captured the imagination of the country. Science classrooms nationwide used the event as an opportunity to make real-world connections to Earth science concepts introduced in the classroom. Thanks to modern technology, teachers no longer have to wait for the next…

  15. Effects of Spacecraft Landings on the Moon

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.

    2013-01-01

    The rocket exhaust of spacecraft landing on the Moon causes a number of observable effects that need to be quantified, including: disturbance of the regolith and volatiles at the landing site; damage to surrounding hardware such as the historic Apollo sites through the impingement of high-velocity ejecta; and levitation of dust after engine cutoff through as-yet unconfirmed mechanisms. While often harmful, these effects also beneficially provide insight into lunar geology and physics. Some of the research results from the past 10 years is summarized and reviewed here.

  16. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  17. Aircraft, ships, spacecraft, nuclear plants and quality

    International Nuclear Information System (INIS)

    Patrick, M.G.

    1984-05-01

    A few quality assurance programs outside the purview of the Nuclear Regulatory Commission were studied to identify features or practices which the NRC could use to enhance its program for assuring quality in the design and construction of nuclear power plants. The programs selected were: the manufacture of large commercial transport aircraft, regulated by the Federal Aviation Administration; US Navy shipbuilding; commercial shipbuilding regulated by the Maritime Administration and the US Coast Guard; Government-owned nuclear plants under the Department of Energy; spacecraft under the National Aeronautics and Space Administration; and the construction of nuclear power plants in Canada, West Germany, France, Japan, Sweden, and the United Kingdom

  18. SSS-A spacecraft and experiment description.

    Science.gov (United States)

    Longanecker, G. W.; Hoffman, R. A.

    1973-01-01

    The scientific objectives of the Explorer-45 mission are discussed. The primary objective is the study of the ring current responsible for the main phase of magnetic storms. Closely associated with this objective is the determination of the relationship between magnetic storms, substorms, and the acceleration of charged particles in the magnetosphere. Further objectives are the measurement of a wide range of proton, electron and alpha-particle energies, and studies of wave-particle interactions responsible for particle transport and loss in the inner magnetosphere. The orbital parameters, the spacecraft itself, and some of its unique features, such as the data handling system, which is programmable from the ground, are described.

  19. Comparative Analysis of Ukrainian and Foreign Scholars' Views on Interpretation of Such Terms as Competency, Professional Competency, Professional Competency of Technicians in Food Technology

    Science.gov (United States)

    Yakovchuk, Olha

    2017-01-01

    The article deals with a comparative analysis of the content of such terms as competency, competence and professional competency of technicians in food technology. Special attention has been given to domestic and foreign scholars' research findings on the matter in order to consider the genesis of the term "competency" and its spreading…

  20. Understanding stakeholders' views and the influence of the socio-cultural dimension on the adoption of solar energy technology in Lebanon

    NARCIS (Netherlands)

    El Mustapha, Houda; Hoppe, Thomas; Bressers, Hans

    2018-01-01

    In light of climate change and global commitments, a great amount of programs and policies have been implemented by governments targeting the diffusion of renewable energy technologies. Successful diffusion relies on the understanding, persuasion and acceptance by consumers and other stakeholders.

  1. Understanding stakeholders' views and the influence of the socio-cultural dimension on the adoption of solar energy technology in Lebanon

    NARCIS (Netherlands)

    Elmustapha, Houda; Hoppe, T.; Bressers, Hans

    2018-01-01

    In light of climate change and global commitments, a great amount of programs and policies have been implemented by governments targeting the diffusion of renewable energy technologies. Successful diffusion relies on the understanding, persuasion and acceptance by consumers and other

  2. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  3. Relativistic effects of spacecraft with circumnavigating observer

    Science.gov (United States)

    Shanklin, Nathaniel; West, Joseph

    A variation of the recently introduced Trolley Paradox, itself is a variation of the Ehrenfest Paradox is presented. In the Trolley Paradox, a ``stationary'' set of observers tracking a wheel rolling with a constant velocity find that the wheel travels further than its rest length circumference during one revolution of the wheel, despite the fact that the Lorentz contracted circumference is less than its rest value. In the variation presented, a rectangular spacecraft with onboard observers moves with constant velocity and is circumnavigated by several small ``sloops'' forming teams of inertial observers. This whole precession moves relative to a set of ``stationary'' Earth observers. Two cases are presented, one in which the sloops are evenly spaced according to the spacecraft observers, and one in which the sloops are evenly spaced according to the Earth observes. These two cases, combined with the rectangular geometry and an emphasis on what is seen by, and what is measured by, each set of observers is very helpful in sorting out the apparent contradictions. To aid in the visualizations stationary representations in excel along with animation in Visual Python and Unity are presented. The analysis presented is suitable for undergraduate physics majors.

  4. Spacecraft Dynamic Characterization by Strain Energies Method

    Science.gov (United States)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  5. A Survey of Cost Estimating Methodologies for Distributed Spacecraft Missions

    Science.gov (United States)

    Foreman, Veronica L.; Le Moigne, Jacqueline; de Weck, Oliver

    2016-01-01

    Satellite constellations present unique capabilities and opportunities to Earth orbiting and near-Earth scientific and communications missions, but also present new challenges to cost estimators. An effective and adaptive cost model is essential to successful mission design and implementation, and as Distributed Spacecraft Missions (DSM) become more common, cost estimating tools must become more representative of these types of designs. Existing cost models often focus on a single spacecraft and require extensive design knowledge to produce high fidelity estimates. Previous research has examined the limitations of existing cost practices as they pertain to the early stages of mission formulation, for both individual satellites and small satellite constellations. Recommendations have been made for how to improve the cost models for individual satellites one-at-a-time, but much of the complexity in constellation and DSM cost modeling arises from constellation systems level considerations that have not yet been examined. This paper constitutes a survey of the current state-of-theart in cost estimating techniques with recommendations for improvements to increase the fidelity of future constellation cost estimates. To enable our investigation, we have developed a cost estimating tool for constellation missions. The development of this tool has revealed three high-priority shortcomings within existing parametric cost estimating capabilities as they pertain to DSM architectures: design iteration, integration and test, and mission operations. Within this paper we offer illustrative examples of these discrepancies and make preliminary recommendations for addressing them. DSM and satellite constellation missions are shifting the paradigm of space-based remote sensing, showing promise in the realms of Earth science, planetary observation, and various heliophysical applications. To fully reap the benefits of DSM technology, accurate and relevant cost estimating capabilities

  6. Spacecraft Conceptual Design Compared to the Apollo Lunar Lander

    Science.gov (United States)

    Young, C.; Bowie, J.; Rust, R.; Lenius, J.; Anderson, M.; Connolly, J.

    2011-01-01

    Future human exploration of the Moon will require an optimized spacecraft design with each sub-system achieving the required minimum capability and maintaining high reliability. The objective of this study was to trade capability with reliability and minimize mass for the lunar lander spacecraft. The NASA parametric concept for a 3-person vehicle to the lunar surface with a 30% mass margin totaled was considerably heavier than the Apollo 15 Lunar Module "as flown" mass of 16.4 metric tons. The additional mass was attributed to mission requirements and system design choices that were made to meet the realities of modern spaceflight. The parametric tool used to size the current concept, Envision, accounts for primary and secondary mass requirements. For example, adding an astronaut increases the mass requirements for suits, water, food, oxygen, as well as, the increase in volume. The environmental control sub-systems becomes heavier with the increased requirements and more structure was needed to support the additional mass. There was also an increase in propellant usage. For comparison, an "Apollo-like" vehicle was created by removing these additional requirements. Utilizing the Envision parametric mass calculation tool and a quantitative reliability estimation tool designed by Valador Inc., it was determined that with today?s current technology a Lunar Module (LM) with Apollo capability could be built with less mass and similar reliability. The reliability of this new lander was compared to Apollo Lunar Module utilizing the same methodology, adjusting for mission timeline changes as well as component differences. Interestingly, the parametric concept's overall estimated risk for loss of mission (LOM) and loss of crew (LOC) did not significantly improve when compared to Apollo.

  7. Technology and globalization: the 15th World Petroleum Congress as viewed by German industry; Technologie und Globalisierung: Der 15. Welt-Erdoel-Kongress aus deutscher Sicht

    Energy Technology Data Exchange (ETDEWEB)

    Weitkamp, J. [Stuttgart Univ. (Germany). Inst. fuer Technische Chemie I

    1998-03-01

    For the 15th World Petroleum Congress, held from 12 to 16 October 1997 in Peking, the programme committee had chosen the following central motto: `Technology and globalization - Leading the Petroleum Industry into the 21st Century`. For the petroleum and natural gas industry, this congress represents the most important international forum for discussing technical, economic, and increasingly also ecological issues. (orig./HS) [Deutsch] Fuer den 15. Welt-Erdoel-Kongress, der vom 12. bis 16. Oktober 1997 in Peking abgehalten wurde, hatte das Programmkomitee als Leitthema `Technology and Globalisation - Leading the Petroleum Industry into the 21st Century` gewaehlt. Der Kongress stellt fuer die Erdoel- und Erdgasindustrie das bedeutendste internationale Forum fuer eine Diskussion technischer, oekonomischer und zunehmend auch oekologischer Fragen. (orig./HS)

  8. New technologies for the support of risk management. A systems-engineering point of view for the creation of risk information systems

    International Nuclear Information System (INIS)

    Beroggi, G.E.G.

    1995-01-01

    Within the framework of the poly project, the partial project 'Methodical Fundamentals and Computer Supported Risk Management' has developed two RISs (Risk Information Systems). The aim of the present book is to present the viewpoints gained in these new technologies and model formation attempts with which new RISs can be conceived and created. Because of the numerous new attempts, a compromise had to be made between the breadth and depth of the discussions whereby the breadth was preferred; which means that the aim is to define the broad range of RIS development as comprehensively as possible. The reader is meant to be motivated to think about the new technologies and their role in risk management. figs., tabs., refs

  9. Autonomous Navigation of the SSTI/Lewis Spacecraft Using the Global Positioning System (GPS)

    Science.gov (United States)

    Hart, R. C.; Long, A. C.; Lee, T.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) is pursuing the application of Global Positioning System (GPS) technology to improve the accuracy and economy of spacecraft navigation. High-accuracy autonomous navigation algorithms are being flight qualified in conjunction with GSFC's GPS Attitude Determination Flyer (GADFLY) experiment on the Small Satellite Technology Initiative (SSTI) Lewis spacecraft, which is scheduled for launch in 1997. Preflight performance assessments indicate that these algorithms can provide a real-time total position accuracy of better than 10 meters (1 sigma) and velocity accuracy of better than 0.01 meter per second (1 sigma), with selective availability at typical levels. This accuracy is projected to improve to the 2-meter level if corrections to be provided by the GPS Wide Area Augmentation System (WAAS) are included.

  10. "We noticed that suddenly the country has become full of MRI". Policy makers' views on diffusion and use of health technologies in Iran

    Directory of Open Access Journals (Sweden)

    Tishelman Carol

    2010-04-01

    Full Text Available Abstract Objective Uncontrolled proliferation of health technologies (HT is one contributor to the increasing pressure on health systems to adopt new technologies. With limited resources, policy-makers encounter difficulties in fulfilling their responsibility to meet the healthcare needs of the population. The aim of this study is to explore how policy-makers' reason about the diffusion and utilization of health technologies in Iran using magnetic resonance imaging (MRI and interferon beta as tracers. Method This qualitative exploration complements quantitative data generated in a research project investigating the diffusion and utilization of MRI and interferon beta in Iran. Qualitative semi-structured interviews were conducted with 13 informants in different positions and levels of authority in the Ministry of Health (MOH, University of Medical Sciences, Health Insurance Organizations, and Parliament. The data was analysed using the framework approach. Findings Although policy-makers appeared to be positive to health technology assessment (HTA, the processes of policy-making described by the interviewees did not seem to be based on a full understanding of this (discipline. Several obstacles to applying knowledge about HT and HTA were described. The current official plan for MRI adoption and diffusion in the country was said not to be followed, and no such plan was described for interferon beta. Instead, market forces such as advertising, and physician and consumer demand, appear to have strong influence on HT diffusion and use. Dual practice may have increased the induced demand and also reduced the supervision of the private sector by the MOH. Conclusion Management instability and lack of coordination in the MOH were found to be important obstacles to accumulation of knowledge and experience which, in turn, could have led to suboptimal managerial and policy-making processes. Furthermore marketing should be controlled in order to avoid

  11. Comparative Analysis of Ukrainian and Foreign Scholars′ Views On Interpretation of Such Terms as Competency, Professional Competency, Professional Competency of Technicians in Food Technology

    OpenAIRE

    Yakovchuk Olha

    2017-01-01

    The article deals with a comparative analysis of the content of such terms as competency, competence and professional competency of technicians in food technology. Special attention has been given to domestic and foreign scholars′ research findings on the matter in order to consider the genesis of the term “competency” and its spreading within Ukrainian and foreign pedagogy. Based on the comparison of European standards and the educational and qualification-based specification of technicians ...

  12. Through babies' eyes: Practical and theoretical considerations of using wearable technology to measure parent-infant behaviour from the mothers' and infants' view points.

    Science.gov (United States)

    Lee, R; Skinner, A; Bornstein, M H; Radford, A N; Campbell, A; Graham, K; Pearson, R M

    2017-05-01

    To explore the utility of first-person viewpoint cameras at home, for recording mother and infant behaviour, and for reducing problems associated with participant reactivity, which represent a fundamental bias in observational research. We compared footage recording the same play interactions from a traditional third-person point of view (3rd PC) and using cameras worn on headbands (first-person cameras [1st PCs]) to record first-person points of view of mother and infant simultaneously. In addition, we left the dyads alone with the 1st PCs for a number of days to record natural mother-child behaviour at home. Fifteen mothers with infants (3-12 months of age) provided a total of 14h of footage at home alone with the 1st PCs. Codings of maternal behaviour from footage of the same scenario captured from 1st PCs and 3rd PCs showed high concordance (kappa >0.8). Footage captured by the 1st PCs also showed strong inter-rater reliability (kappa=0.9). Data from 1st PCs during sessions recorded alone at home captured more 'negative' maternal behaviours per min than observations using 1st PCs whilst a researcher was present (mean difference=0.90 (95% CI 0.5-1.2, p<0.001 representing 1.5 SDs). 1st PCs offer a number of practical advantages and can reliably record maternal and infant behaviour. This approach can also record a higher frequency of less socially desirable maternal behaviours. It is unclear whether this difference is due to lack of need of the presence of researcher or the increased duration of recordings. This finding is potentially important for research questions aiming to capture more ecologically valid behaviours and reduce demand characteristics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Identifying breakthrough technologies for the production of basic chemicals. A long term view on the sustainable production of ammonia, olefins and aromatics in the European region

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.; Van Lieshout, M.; Croezen, H.

    2012-01-15

    The European Commission's Roadmap for a competitive and low carbon economy in 2050 indicates that greenhouse gas emissions (GHG) in all sectors should be significantly reduced to meet the European Union (EU) objective of 80 to 95% greenhouse gas emission reductions by 2050 compared to 1990 levels. The European Commission indicated in the Roadmap that the EU's industrial sectors should reduce emissions by 83 to 87% domestically by 2050 compared to 1990 levels. The objective of this study is to explore breakthrough abatement technologies in three processes in the European chemical industry that can considerably contribute to achieving the required greenhouse gas emission reductions. In this context we have assessed the processes for the production of: (1) Ammonia; (2) Olefins; (3) Aromatics (BTX). For all three processes possible breakthrough abatement technologies were found, allowing for reductions in GHG emissions varying between 50 and 100% compared to the conventional processes. Our finding regarding the chemical industry and our earlier findings regarding options in the steel, cement and pulp and paper industries show that promising breakthrough abatement technologies are available for European energy-intensive industries to contribute to a low-carbon economy. However, large scale deployment requires an integrated EU industry and energy policy allowing for a resource efficient and sustainable use of available biomass, CCS storage capacity and renewable energy capacity.

  14. Identifying breakthrough technologies for the production of basic chemicals. A long term view on the sustainable production of ammonia, olefins and aromatics in the European region

    Energy Technology Data Exchange (ETDEWEB)

    Benner, J.; Van Lieshout, M.; Croezen, H.

    2012-01-15

    The European Commission's Roadmap for a competitive and low carbon economy in 2050 indicates that greenhouse gas emissions (GHG) in all sectors should be significantly reduced to meet the European Union (EU) objective of 80 to 95% greenhouse gas emission reductions by 2050 compared to 1990 levels. The European Commission indicated in the Roadmap that the EU's industrial sectors should reduce emissions by 83 to 87% domestically by 2050 compared to 1990 levels. The objective of this study is to explore breakthrough abatement technologies in three processes in the European chemical industry that can considerably contribute to achieving the required greenhouse gas emission reductions. In this context we have assessed the processes for the production of: (1) Ammonia; (2) Olefins; (3) Aromatics (BTX). For all three processes possible breakthrough abatement technologies were found, allowing for reductions in GHG emissions varying between 50 and 100% compared to the conventional processes. Our finding regarding the chemical industry and our earlier findings regarding options in the steel, cement and pulp and paper industries show that promising breakthrough abatement technologies are available for European energy-intensive industries to contribute to a low-carbon economy. However, large scale deployment requires an integrated EU industry and energy policy allowing for a resource efficient and sustainable use of available biomass, CCS storage capacity and renewable energy capacity.

  15. Unit 1 and Unit 2 Nuclear Power Plant Mochovce construction finishing from primary contractor of technological part. Skoda Praha a. s. point of view

    International Nuclear Information System (INIS)

    Horky, F.

    2000-01-01

    In this paper the history of delivery of technological part for NPP V-1 Mochovce as well as of reconstruction and safety improvements by the Skoda Praha a.s. is presented. Primary contractor of technological part Skoda Praha together with its final suppliers proved ability to realize under hard conditions such a complicated work what was indisputedly Units 1 and 2 finishing. Company proved capability to conform itself flexibly in the course of work to requirements of customer for realization of safety measures which means that Units 1 and 2 fully satisfy international standards. By fulfilment of primary contractor of technology obligations and above all by takeover of complex responsibility for both Units putting in operation including responsibility for 'past' Skoda Praha put away one of basic problems which occurred in decision making to whom will be assigned construction finishing contract. These facts fully qualify Skoda Praha to be selected for possible Units 3 and 4 construction finishing as one of chief construction finishing participant

  16. Disinfection of Spacecraft Potable Water Systems by Passivation with Ionic Silver

    Science.gov (United States)

    Birmele, Michele N.; McCoy, LaShelle e.; Roberts, Michael S.

    2011-01-01

    Microbial growth is common on wetted surfaces in spacecraft environmental control and life support systems despite the use of chemical and physical disinfection methods. Advanced control technologies are needed to limit microorganisms and increase the reliability of life support systems required for long-duration human missions. Silver ions and compounds are widely used as antimicrobial agents for medical applications and continue to be used as a residual biocide in some spacecraft water systems. The National Aeronautics and Space Administration (NASA) has identified silver fluoride for use in the potable water system on the next generation spacecraft. Due to ionic interactions between silver fluoride in solution and wetted metallic surfaces, ionic silver is rapidly depleted from solution and loses its antimicrobial efficacy over time. This report describes research to prolong the antimicrobial efficacy of ionic silver by maintaining its solubility. Three types of metal coupons (lnconel 718, Stainless Steel 316, and Titanium 6AI-4V) used in spacecraft potable water systems were exposed to either a continuous flow of water amended with 0.4 mg/L ionic silver fluoride or to a static, pre-treatment passivation in 50 mg/L ionic silver fluoride with or without a surface oxidation pre-treatment. Coupons were then challenged in a high-shear, CDC bioreactor (BioSurface Technologies) by exposure to six bacteria previously isolated from spacecraft potable water systems. Continuous exposure to 0.4 mg/L ionic silver over the course of 24 hours during the flow phase resulted in a >7-log reduction. The residual effect of a 24-hour passivation treatment in 50 mg/L of ionic silver resulted in a >3-log reduction, whereas a two-week treatment resulted in a >4-log reduction. Results indicate that 0.4 mg/L ionic silver is an effective biocide against many bacteria and that a prepassivation of metal surfaces with silver can provide additional microbial control.

  17. Reactor/Brayton power systems for nuclear electric spacecraft

    Science.gov (United States)

    Layton, J. P.

    1980-01-01

    Studies are currently underway to assess the technological feasibility of a nuclear-reactor-powered spacecraft propelled by electric thrusters. This vehicle would be capable of performing detailed exploration of the outer planets of the solar system during the remainder of this century. The purpose of this study was to provide comparative information on a closed cycle gas turbine power conversion system. The results have shown that the performance is very competitive and that a 400 kWe space power system is dimensionally compatible with a single Space Shuttle launch. Performance parameters of system mass and radiator area were determined for systems from 100 to 1000 kWe. A 400 kWe reference system received primary attention. The components of this system were defined and a conceptual layout was developed with encouraging results. The preliminary mass determination for the complete power system was very close to the desired goal of 20 kg/kWe. Use of more advanced technology (higher turbine inlet temperature) will substantially improve system performance characteristics.

  18. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  19. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  20. Intelligent Data Visualization for Cross-Checking Spacecraft System Diagnosis

    Science.gov (United States)

    Ong, James C.; Remolina, Emilio; Breeden, David; Stroozas, Brett A.; Mohammed, John L.

    2012-01-01

    Any reasoning system is fallible, so crew members and flight controllers must be able to cross-check automated diagnoses of spacecraft or habitat problems by considering alternate diagnoses and analyzing related evidence. Cross-checking improves diagnostic accuracy because people can apply information processing heuristics, pattern recognition techniques, and reasoning methods that the automated diagnostic system may not possess. Over time, cross-checking also enables crew members to become comfortable with how the diagnostic reasoning system performs, so the system can earn the crew s trust. We developed intelligent data visualization software that helps users cross-check automated diagnoses of system faults more effectively. The user interface displays scrollable arrays of timelines and time-series graphs, which are tightly integrated with an interactive, color-coded system schematic to show important spatial-temporal data patterns. Signal processing and rule-based diagnostic reasoning automatically identify alternate hypotheses and data patterns that support or rebut the original and alternate diagnoses. A color-coded matrix display summarizes the supporting or rebutting evidence for each diagnosis, and a drill-down capability enables crew members to quickly view graphs and timelines of the underlying data. This system demonstrates that modest amounts of diagnostic reasoning, combined with interactive, information-dense data visualizations, can accelerate system diagnosis and cross-checking.