Sample records for spacecraft valve technology

  1. Internet Technology on Spacecraft

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)


    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  2. Spacecraft Environmental Interactions Technology, 1983


    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  3. Spacecraft Environmental Interactions Technology 1983


    recently acquired a NASA field office within the Technology Lenter; that is staffed by Mr. Wa~ne Hudson. We take our guidance from Air Force...apogee of 4.6 % geocentric and a perigee of 650 )a altitude. The DR-1 Nigh Altitude Plama instrument (DAPI) consists of five electrostatic analyzers

  4. Small Spacecraft Technology Initiative Education Program


    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  5. Spacecraft computer technology at Southwest Research Institute

    Shirley, D. J.


    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  6. Small Rocket/Spacecraft Technology (SMART) Platform

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.


    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  7. Development of advanced diagnostic technologies for motor-operated valves

    Hegi, Kotaro; Shimizu, Shunichi; Higuma, Koji; Nishino, Koji; Osaki, Kenji; Watanabe, Kazumi; Hamano, Frank


    As use of condition-based maintenance is allowed in the new regulatory inspection system employed in Japan's nuclear power plants in 2009, development of advanced diagnostic technologies for motor-operated valves (MOVs) is now required. This report discusses advanced technologies in valve-setup verification, valve performance evaluation, monitoring of valve/actuator conditions by performance diagnostic system and moreover detection of stem crack by ultrasonic diagnostic system. (author)

  8. A Technology Program that Rescues Spacecraft

    Deutsch, Leslie J.; Lesh, J. R.


    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  9. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Wichmann, H.


    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  10. Leaflet escape in a new bileaflet mechanical valve: TRI technologies.

    Bottio, Tomaso; Casarotto, Dino; Thiene, Gaetano; Caprili, Luca; Angelini, Annalisa; Gerosa, Gino


    Leaflet escape is a mode of structural valve failure for mechanical prostheses. This complication previously has been reported for both monoleaflet and bileaflet valve models. We report 2 leaflet escape occurrences observed in 2 patients who underwent valve replacement with a TRI Technologies valve prosthesis. At the University of Padua, between November 2000 and February 2002, 36 TRI Technologies valve prostheses (26 aortic and 10 mitral) were implanted in 34 patients (12 women and 22 men) with a mean age of 59.9+/-10.3 years (range, 30 to 75 years). There were 5 deaths: 3 in hospital, 1 early after discharge, and 1 late. Two patients experienced a catastrophic prosthetic leaflet escape; the first patient was a 52-year-old man who died 10 days after aortic valve and ascending aorta replacement, and the second was a 58-year-old man who underwent a successful emergency reoperation 20 months after mitral valve replacement. Examination of the explanted prostheses showed in both cases a leaflet escape caused by a leaflet's pivoting system fracture. Prophylactic replacement was then successfully accomplished so far in 12 patients, without evidence of structural valve failure in any of them. Among other significant postoperative complications, we observed 3 major thromboembolisms, 1 hemorrhage, and 1 paravalvular leak. These catastrophes prompted us to interrupt the implantation program, and they cast a shadow on the durability of the TRI Technologies valve prosthesis because of its high risk of structural failure.

  11. The Manned Spacecraft Center and medical technology

    Johnston, R. S.; Pool, S. L.


    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  12. Ad hoc laser networks component technology for modular spacecraft

    Huang, Xiujun; Shi, Dele; Shen, Jingshi


    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  13. Spacecraft TT&C and information transmission theory and technologies

    Liu, Jiaxing


    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  14. Dielectric elastomer actuators used for pneumatic valve technology

    Giousouf, Metin; Kovacs, Gabor


    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications. (paper)

  15. Project Overview of the Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment

    Reuer, Charles


    The Naval Postgraduate School's current attempt at getting another spacecraft into orbit is focusing on Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment (NPSAT1...

  16. Customizing graphical user interface technology for spacecraft control centers

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald


    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  17. A review of digital radiography technology for valve inspection

    Stoev, K.; Guerout, F.M.; Horn, D.


    There are thousands of valves in a nuclear power plant (NPP) used for control, safety and checks in various plant systems, so there is a well-identified need for fast and reliable inspection and diagnostics of valves. Digital radiography can provide considerable improvements to the inspection and testing procedures for valves in comparison to classical film radiography. These improvements can lead to significant financial advantages by providing real-time inspection results, significantly reduced inspection and decision-making time, and reduced operational cost. Digital image processing, including digital image enhancement, digital archiving, and digital communication of the images and the results, is also a considerable advantage over classical film radiography technology. Another advantage of digital radiography technology is the improved safety and the reduced environmental impact due to reduced exposure/test times, use of smaller exclusion zones, elimination of chemical processing, and absence of disposable materials. This paper reviews the existing technology and evaluates the potential of digital radiography for inspection and diagnostics of valves. Station needs and requirements are assessed, and the safety, environmental and economical constraints of digital radiography techniques estimated. The advantages and disadvantages of different digital radiography equipment are compared, and their limitations and characteristics studied. (author)

  18. Application of software technology to a future spacecraft computer design

    Labaugh, R. J.


    A study was conducted to determine how major improvements in spacecraft computer systems can be obtained from recent advances in hardware and software technology. Investigations into integrated circuit technology indicated that the CMOS/SOS chip set being developed for the Air Force Avionics Laboratory at Wright Patterson had the best potential for improving the performance of spaceborne computer systems. An integral part of the chip set is the bit slice arithmetic and logic unit. The flexibility allowed by microprogramming, combined with the software investigations, led to the specification of a baseline architecture and instruction set.

  19. Learning curve analysis of mitral valve repair using telemanipulative technology.

    Charland, Patrick J; Robbins, Tom; Rodriguez, Evilio; Nifong, Wiley L; Chitwood, Randolph W


    To determine if the time required to perform mitral valve repairs using telemanipulation technology decreases with experience and how that decrease is influenced by patient and procedure variables. A single-center retrospective review was conducted using perioperative and outcomes data collected contemporaneously on 458 mitral valve repair surgeries using telemanipulative technology. A regression model was constructed to assess learning with this technology and predict total robot time using multiple predictive variables. Statistical analysis was used to determine if models were significantly useful, to rule out correlation between predictor variables, and to identify terms that did not contribute to the prediction of total robot time. We found a statistically significant learning curve (P learning percentage∗ derived from total robot times† for the first 458 recorded cases of mitral valve repair using telemanipulative technology is 95% (R(2) = .40). More than one third of the variability in total robot time can be explained through our model using the following variables: type of repair (chordal procedures, ablations, and leaflet resections), band size, use of clips alone in band implantation, and the presence of a fellow at bedside (P Learning in mitral valve repair surgery using telemanipulative technology occurs at the East Carolina Heart Institute according to a logarithmic curve, with a learning percentage of 95%. From our regression output, we can make an approximate prediction of total robot time using an additive model. These metrics can be used by programs for benchmarking to manage the implementation of this new technology, as well as for capacity planning, scheduling, and capital budget analysis. Copyright © 2011 The American Association for Thoracic Surgery. All rights reserved.

  20. System Critical Design Audit (CDA). Books 1, 2 and 3; [Small Satellite Technology Initiative (SSTI Lewis Spacecraft Program)


    Small Satellite Technology Initiative (SSTI) Lewis Spacecraft Program is evaluated. Spacecraft integration, test, launch, and spacecraft bus are discussed. Payloads and technology demonstrations are presented. Mission data management system and ground segment are also addressed.

  1. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Wiegmann, Bruce M.


    , 3) Controllability of the space-craft via a voltage bias to steer itself through the solar system to destinations of discovery. These activities once demonstrated analytically, will require a technology demonstration mission (TDM) around the year2020 to demonstrate that all systems work together seamlessly before a Heliophysics Electrostatic Rapid Transit System (HERTS) mission could be initiated. A notional TDM spacecraft that meets the requirements of such a mission will be showcased in this paper.

  2. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide


    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  3. In-operation inspection technology development-4 ''development of degradation prediction technology for motor-operated valves''

    Kikuo, Takeshima; Yuichi, Higashikawa; Masahiro, Koike; Kenji, Matsumoto; Eiji, O'shima


    A method for degradation predicting technology has been proposed for motor operated valves in nuclear power plants which is based on the concept of condition monitoring for maintenance. This method (degradation prediction technology) eliminates the unnecessary overhaul of valves and realizes high reliability and economy. The degradation mechanism was clarified by long time heating experiments of gasket and gland packing and the wear test for them and stem nut to research valve parts degradation by stress (pressure, temperature, etc) during plant operation. Effective electric power measurements for motor operated valves were confirmed to be useful discovering valve part failures. The motor operated valve degradation prediction system was developed on the basis of the experiment results and mechanism. The system is able to predict the degradation of valve parts (gasket/gland packing, stem, stem nut, etc) utilizing plant data (pressure, temperature, etc) and effective power of the motor. The life of valve parts can be estimated from the experimental results. (authors)

  4. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 2

    Greenburg, J. S.; Kaplan, M.; Fishman, J.; Hopkins, C.


    The computational procedures used in the evaluation of spacecraft technology programs that impact upon commercial communication satellite operations are discussed. Computer programs and data bases are described.

  5. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Straub, Jeremy


    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  6. The power of disruptive technological innovation: Transcatheter aortic valve implantation.

    Berlin, David B; Davidson, Michael J; Schoen, Frederick J


    We sought to evaluate the principles of disruptive innovation, defined as technology innovation that fundamentally shifts performance and utility metrics, as applied to transcatheter aortic valve implantation (TAVI). In particular, we considered implantation procedure, device design, cost, and patient population. Generally cheaper and lower performing, classical disruptive innovations are first commercialized in insignificant markets, promise lower margins, and often parasitize existing usage, representing unattractive investments for established market participants. However, despite presently high unit cost, TAVI is less invasive, treats a "new," generally high risk, patient population, and is generally done by a multidisciplinary integrated heart team. Moreover, at least in the short-term TAVI has not been lower-performing than open surgical aortic valve replacement in high-risk patients. We conclude that TAVI extends the paradigm of disruptive innovation and represents an attractive commercial opportunity space. Moreover, should the long-term performance and durability of TAVI approach that of conventional prostheses, TAVI will be an increasingly attractive commercial opportunity. © 2014 Wiley Periodicals, Inc.

  7. The Physics and Technology of Solar Sail Spacecraft.

    Dwivedi, B. N.; McInnes, C. R.


    Various aspects of the solar sail spacecraft such as solar sailing, solar sail design, navigation with solar sails, solar sail mission applications and future prospects for solar sailing are described. Several possible student projects are suggested. (KR)

  8. Advancements in valve technology and industry lessons lead to improved plant reliability and cost savings

    Sharma, V.; Kalsi, M.S.


    Plant reliability and safety hinges on the proper functioning of several valves. Recent advancements in valve technology have resulted in new analytical and test methods for evaluating and improving valve and actuator reliability. This is especially significant in critical service applications in which the economic impact of a valve failure on production, outage schedules and consequential damages far surpasses the initial equipment purchase price. This paper presents an overview of recent advances in valve technology driven by reliability concerns and cost savings objectives without comprising safety in the Nuclear Power Industry. This overview is based on over 27 years of experience in supporting US and International nuclear power utilities, and contributing to EPRI, and NSSS Owners' Groups in developing generic models/methodologies to address industry wide issues; performing design basis reviews; and implementing plant-wide valve reliability improvement programs. Various analytical prediction software and hardware solutions and training seminars are now available to implement valve programs covering power plants' lifecycle from the construction phase through life extension and power up rate. These tools and methodologies can enhance valve-engineering activities including the selection, sizing, proper application, condition monitoring, failure analysis, and condition based maintenance optimization with a focus on potential bad actors. This paper offers two such examples, the Kalsi Valve and Actuator Program (KVAP) and Check Valve Analysis and Prioritization (CVAP) [1-3, 8, 9, 11-13]. The advanced, validated torque prediction models incorporated into KVAP software for AOVs and MOVs have improved reliability of margin predictions and enabled cost savings through elimination of unwarranted equipment modifications. CVAP models provides a basis to prioritize the population of valves recommended for preventive maintenance, inspection and/or modification, allowing

  9. Check valve diagnostics utilizing acoustic and magnetic technologies

    Agostinelli, A.


    The potential hazards associated with check valve failures make it necessary to detect check valve problems before they cause significant damage. In the nuclear industry, check valve failures are known to have resulted in damaging water hammer conditions, overpressurization of low pressure systems, steam binding of auxiliary feedwater pumps, and other serious component damage in power plant environments. Similar problems exist in fossil power and various process industries, but the resources dedicated to valve maintenance issues are greatly reduced. However, the trend toward plant life extension, predictive maintenance, and maximum operating efficiency will raise the general awareness of check valve maintenance in commercial (non-nuclear) applications. Although this paper includes specific references to the nuclear industry, the check valve problem conditions and diagnostic techniques apply across all power and process plant environments. The ability to accurately diagnose check valve conditions using non-intrusive, predictive maintenance testing methods allows for a more cost-efficient, productive maintenance program. One particular diagnostic system, called Quickcheck trademark, assists utilities in addressing these concerns. This article presents actual field test data and analysis that demonstrate the power of check valve diagnostics. Prior to presenting the field data, a brief overview of the system is overviewed

  10. 26th Conference of Spacecraft TT&C Technology in China

    Qian, Weiping


    Proceedings of the 26th Conference of Spacecraft TT&C Technology in China collects selected papers from the 26th Conference of Spacecraft TT&C Technology in China held in Nanjing on October 16-19, 2012. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of “Shared and Flexible TT&C Systems”. The selected works can help  promote development of spacecraft TT&C technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book. Rongjun Shen is the Academician of Chinese Academy of Engineering; Weiping Qian is the Director General of Beijing Institute of Tracking and Telecommunications Technology.

  11. Investigation of nickel hydrogen battery technology for the RADARSAT spacecraft

    Mccoy, D. A.; Lackner, J. L.


    The low Earth orbit (LEO) operations of the RADARSAT spacecraft require high performance batteries to provide energy to the payload and platform during eclipse period. Nickel Hydrogen cells are currently competing with the more traditional Nickel Cadmium cells for high performance spacecraft applications at geostationary Earth orbit (GEO) and Leo. Nickel Hydrogen cells appear better suited for high power applications where high currents and high Depths of Discharge are required. Although a number of GEO missions have flown with Nickel Hydrogen batteries, it is not readily apparent that the LEO version of the Nickel Hydrogen cell is able to withstand the extended cycle lifetime (5 years) of the RADARSAT mission. The problems associated with Nickel Hydrogen cells are discussed in the contex of RADARSAT mission and a test program designed to characterize cell performance is presented.

  12. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David


    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  13. Flexible spacecraft dynamics, control and guidance technologies by giovanni campolo

    Mazzini, Leonardo


    This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art senso...

  14. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.


    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  15. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.


    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  16. High Risk Aortic Valve Replacement - The Challenges of Multiple Treatment Strategies with an Evolving Technology.

    Booth, K; Beattie, R; McBride, M; Manoharan, G; Spence, M; Jones, J M


    Deciding on the optimal treatment strategy for high risk aortic valve replacement is challenging. Transcatheter Aortic Valve implantation (TAVI) has been available in our centre as an alternative treatment modality for patients since 2008. We present our early experience of TAVI and SAVR (surgical Aortic Valve Replacement) in high risk patients who required SAVR because TAVI could not be performed. The database for Surgical aortic valve and Transcatheter aortic valve replacement referrals was interrogated to identify relevant patients. Survival to hospital discharge was 95.5% in the forty five patients who had SAVR when TAVI was deemed technically unsuitable. One year survival was 86%. Defining who is appropriate for TAVI or high risk SAVR is challenging and multidisciplinary team discussion has never been more prudent in this field of evolving technology with ever decreasing risks of surgery. The introduction of TAVI at our institution has seen a rise in our surgical caseload by approximately by 25%. Overall, the option of aortic valve intervention is being offered to more patients in general which is a substantial benefit in the treatment of aortic valve disease.

  17. In-operation inspection technology development-4 ''development of degradation prediction technology for motor-operated valves''

    Kikuo, Takeshima; Yuichi, Higashikawa [Hitachi Engineering and Production Div., Nuclear Systems Div., Hitachi, Ltd., Ibaraki (Japan); Masahiro, Koike [Power and Industrial Systems R and D Lab., Hitachi, Ltd., (Japan); Kenji, Matsumoto [Tokyo Research and Development Center, Japan Power Engineering and Inspection Corp. (Japan); Eiji, O' shima [Tokyo Institute of Technology (Japan)


    A method for degradation predicting technology has been proposed for motor operated valves in nuclear power plants which is based on the concept of condition monitoring for maintenance. This method (degradation prediction technology) eliminates the unnecessary overhaul of valves and realizes high reliability and economy. The degradation mechanism was clarified by long time heating experiments of gasket and gland packing and the wear test for them and stem nut to research valve parts degradation by stress (pressure, temperature, etc) during plant operation. Effective electric power measurements for motor operated valves were confirmed to be useful discovering valve part failures. The motor operated valve degradation prediction system was developed on the basis of the experiment results and mechanism. The system is able to predict the degradation of valve parts (gasket/gland packing, stem, stem nut, etc) utilizing plant data (pressure, temperature, etc) and effective power of the motor. The life of valve parts can be estimated from the experimental results. (authors)

  18. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    Rawal, Suraj


    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  19. Got risk? risk-centric perspective for spacecraft technology decision-making

    Feather, Martin S.; Cornford, Steven L.; Moran, Kelly


    A risk-based decision-making methodology conceived and developed at JPL and NASA has been used to aid in decision making for spacecraft technology assessment, adoption, development and operation. It takes a risk-centric perspective, through which risks are used as a reasoning step to interpose between mission objectives and risk mitigation measures.

  20. Solar Power System Options for the Radiation and Technology Demonstration Spacecraft

    Kerslake, Thomas W.; Haraburda, Francis M.; Riehl, John P.


    The Radiation and Technology Demonstration (RTD) Mission has the primary objective of demonstrating high-power (10 kilowatts) electric thruster technologies in Earth orbit. This paper discusses the conceptual design of the RTD spacecraft photovoltaic (PV) power system and mission performance analyses. These power system studies assessed multiple options for PV arrays, battery technologies and bus voltage levels. To quantify performance attributes of these power system options, a dedicated Fortran code was developed to predict power system performance and estimate system mass. The low-thrust mission trajectory was analyzed and important Earth orbital environments were modeled. Baseline power system design options are recommended on the basis of performance, mass and risk/complexity. Important findings from parametric studies are discussed and the resulting impacts to the spacecraft design and cost.

  1. An update to inplace testing of safety/relief valves utilizing lift assist technology

    Heorman, K.R.


    Inplace testing of safety and relief valves with lift-assist devices has received mixed reviews from nuclear power plant testing personnel. While many plants use the technology, most limit its use to testing main steam safety valves (even though both OM-1-1981 and PTC 25.3-1976 allow its use for several different service applications). Test coordinator concerns regarding the technology range from lift set point accuracy and repeatability to the quality of the test result output. In addition, OM-1-1981 and PTC 25.3-1976 differ in their approach to the technology. The reasons for the differences between PTC 25.3-1976 and OM-1-1981 are discussed along with additional considerations applicable to the use of the technology in testing liquid service valves. This paper shows that lift assist technology is capable of determining lift set points within the accuracy requirements of OM-1 and PTC 25.3. It also demonstrates that the technology should not be limited to compressible service systems. Also, improvements in test repeatability and output quality are discussed as a function of the assist device design used and valve characteristics. Lift assist testing is often preferred over inplace testing that uses direct system pressure. It is often more cost efficient than bench testing because it does not require removal of critical systems from service and transportation of components. Also, duplicating system temperatures and other environmental factors is not an issue during inplace testing. Valve testing that once required an outage and maintenance period can now be conducted prior to such periods. This approach minimizes the possibility of failures becoming critical path limiting items

  2. Retrieval of a leaflet escaped in a Tri-technologies bileaflet mechanical prosthetic valve.

    Cianciulli, Tomás F; Lax, Jorge A; Saccheri, María C; Guidoin, Robert; Salvado, César M; Fernández, Adrián J; Prezioso, Horacio A


    The escape of the prosthetic heart valve disc is one of the causes of prosthetic dysfunction that requires emergency surgery. The removal of the embolized disc should be carried out because of the risk of a progressive extrusion on the aortic wall. Several imaging techniques can be used for the detection of the missing disc localization. In this report we describe a 32-year-old man who underwent mitral valve replacement with a Tri-technologies bileaflet valve three years ago, and was admitted in cardiogenic shock. Transesophageal echocardiography showed acute-onset massive mitral regurgitation. The patient underwent emergency replacement of the prosthetic valve. Only one of the two leaflets remained in the removed prosthetic valve. The missing leaflet could not be found within the cardiac cavity. The abdominal fluoroscopic study and plain radiography were unable to detect the escaped leaflet. The abdominal computed tomography scan and the ultrasound showed the escaped leaflet in the terminal portion of the aortic bifurcation. To retrieve the embolized disc laparotomy and aortotomy were performed three months later. The escaped leaflet shows a fracture of one of the pivot systems caused by structural failure. This kind of failure mode is usually the result of high stress concentration.

  3. A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation

    Christian, John A.; Cryan, Scott P.


    This paper provides a survey of modern LIght Detection And Ranging (LIDAR) sensors from a perspective of how they can be used for spacecraft relative navigation. In addition to LIDAR technology commonly used in space applications today (e.g. scanning, flash), this paper reviews emerging LIDAR technologies gaining traction in other non-aerospace fields. The discussion will include an overview of sensor operating principles and specific pros/cons for each type of LIDAR. This paper provides a comprehensive review of LIDAR technology as applied specifically to spacecraft relative navigation. HE problem of orbital rendezvous and docking has been a consistent challenge for complex space missions since before the Gemini 8 spacecraft performed the first successful on-orbit docking of two spacecraft in 1966. Over the years, a great deal of effort has been devoted to advancing technology associated with all aspects of the rendezvous, proximity operations, and docking (RPOD) flight phase. After years of perfecting the art of crewed rendezvous with the Gemini, Apollo, and Space Shuttle programs, NASA began investigating the problem of autonomous rendezvous and docking (AR&D) to support a host of different mission applications. Some of these applications include autonomous resupply of the International Space Station (ISS), robotic servicing/refueling of existing orbital assets, and on-orbit assembly.1 The push towards a robust AR&D capability has led to an intensified interest in a number of different sensors capable of providing insight into the relative state of two spacecraft. The present work focuses on exploring the state-of-the-art in one of these sensors - LIght Detection And Ranging (LIDAR) sensors. It should be noted that the military community frequently uses the acronym LADAR (LAser Detection And Ranging) to refer to what this paper calls LIDARs. A LIDAR is an active remote sensing device that is typically used in space applications to obtain the range to one or more

  4. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan


    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  5. Comparison of technologies for deorbiting spacecraft from low-earth-orbit at end of mission

    Sánchez-Arriaga, G.; Sanmartín, J. R.; Lorenzini, E. C.


    An analytical comparison of four technologies for deorbiting spacecraft from Low-Earth-Orbit at end of mission is presented. Basic formulas based on simple physical models of key figures of merit for each device are found. Active devices - rockets and electrical thrusters - and passive technologies - drag augmentation devices and electrodynamic tethers - are considered. A basic figure of merit is the deorbit device-to-spacecraft mass ratio, which is, in general, a function of environmental variables, technology development parameters and deorbit time. For typical state-of-the-art values, equal deorbit time, middle inclination and initial altitude of 850 km, the analysis indicates that tethers are about one and two orders of magnitude lighter than active technologies and drag augmentation devices, respectively; a tether needs a few percent mass-ratio for a deorbit time of a couple of weeks. For high inclination, the performance drop of the tether system is moderate: mass ratio and deorbit time increase by factors of 2 and 4, respectively. Besides collision risk with other spacecraft and system mass considerations, such as main driving factors for deorbit space technologies, the analysis addresses other important constraints, like deorbit time, system scalability, manoeuver capability, reliability, simplicity, attitude control requirement, and re-entry and multi-mission capability (deorbit and re-boost) issues. The requirements and constraints are used to make a critical assessment of the four technologies as functions of spacecraft mass and initial orbit (altitude and inclination). Emphasis is placed on electrodynamic tethers, including the latest advances attained in the FP7/Space project BETs. The superiority of tape tethers as compared to round and multi-line tethers in terms of deorbit mission performance is highlighted, as well as the importance of an optimal geometry selection, i.e. tape length, width, and thickness, as function of spacecraft mass and initial

  6. Strategic use of information and communication technology in valve program management

    Jakubaitis, V.; Lahey, C


    Today it is hard to imagine a time without the internet and the ability to access maintenance manuals, source qualified vendors and research OPEX from utilities a continent away. We do so daily from the comfort of our desk; a few clicks of our mouse and we find everything we need to efficiently plan and execute every aspect of operating and maintaining critical nuclear valves. We assemble our valve work ‘packages’ and print the resultant information for the technician in the field. At the point we hit print, we disconnect our technicians from that information and ourselves from their progress. Employing the paper copy, resources are tasked with the execution of complex valve work in the field. Cumbersome hand offs between stakeholders responsible for different processes jeopardize schedule adherence while front line supervisors attempt to keep everyone up to date, often removing them from a critical task. Occasionally these paper packages are lost or destroyed or found to be missing information, placing daily activities at risk. Leveraging information and communications technology in a Valve Program can significantly change how we operate. The technology exists to ensure field resources have the most up-to-date information. We can be auto-notified when crucial steps are completed, know in advance if additional resources are required or analyze the time it takes to complete critical evolutions. Quality can be improved lessening the need for expensive re-work, workface efficiency and general productivity can also greatly benefit. We can prevent ‘hold’ points from being missed; ensure the correct revision of a procedure is employed or accurately predict when other work can begin. All this accomplished without having our field staff redirect their focus to update management. Technology based tools are slowly moving into our powerhouses and its time we took advantage to properly manage our Valve Programs. (author)

  7. A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft

    Bjorkman, Michael D.; Hyde, James L.


    Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.

  8. A methodology for spacecraft technology insertion analysis balancing benefit, cost, and risk

    Bearden, David Allen

    Emerging technologies are changing the way space missions are developed and implemented. Technology development programs are proceeding with the goal of enhancing spacecraft performance and reducing mass and cost. However, it is often the case that technology insertion assessment activities, in the interest of maximizing performance and/or mass reduction, do not consider synergistic system-level effects. Furthermore, even though technical risks are often identified as a large cost and schedule driver, many design processes ignore effects of cost and schedule uncertainty. This research is based on the hypothesis that technology selection is a problem of balancing interrelated (and potentially competing) objectives. Current spacecraft technology selection approaches are summarized, and a Methodology for Evaluating and Ranking Insertion of Technology (MERIT) that expands on these practices to attack otherwise unsolved problems is demonstrated. MERIT combines the modern techniques of technology maturity measures, parametric models, genetic algorithms, and risk assessment (cost and schedule) in a unique manner to resolve very difficult issues including: user-generated uncertainty, relationships between cost/schedule and complexity, and technology "portfolio" management. While the methodology is sufficiently generic that it may in theory be applied to a number of technology insertion problems, this research focuses on application to the specific case of small (<500 kg) satellite design. Small satellite missions are of particular interest because they are often developed under rigid programmatic (cost and schedule) constraints and are motivated to introduce advanced technologies into the design. MERIT is demonstrated for programs procured under varying conditions and constraints such as stringent performance goals, not-to-exceed costs, or hard schedule requirements. MERIT'S contributions to the engineering community are its: unique coupling of the aspects of performance

  9. Space Technology Game Changing Development- Next Generation Life Support: Spacecraft Oxygen Recovery (SCOR)

    Abney, Morgan; Barta, Daniel


    The Next Generation Life Support Spacecraft Oxygen Recovery (SCOR) project element is dedicated to developing technology that enables oxygen recovery from metabolically produced carbon dioxide in space habitats. The state-of-the-art system on the International Space Station uses Sabatier technology to recover (is) approximately 50% oxygen from carbon dioxide. The remaining oxygen required for crew respiration is supplied from Earth. For long duration manned missions beyond low-Earth orbit, resupply of oxygen becomes economically and logistically prohibitive. To mitigate these challenges, the SCOR project element is targeting development of technology to increase the recovery of oxygen to 75% or more, thereby reducing the total oxygen resupply required for future missions.

  10. NRC Information Notice No. 93-01: Accuracy of motor-operated valve diagnostic equipment manufactured by Liberty Technologies

    Grimes, B.K.


    Most licensees rely on MOV diagnostic equipment to provide information on the thrust delivered by the motor actuator in opening or closing its valve. The various types of MOV diagnostic equipment estimate valve stem thrust using different parameters, such as displacement of the spring pack or strain in the stem, mounting bolts, or yoke. Liberty Technologies has developed MOV diagnostic equipment, referred to as the Valve Operation Test and Evaluation System (VOTES), that estimates the thrust needed to open or close a valve based on strain of the valve yoke. The VOTES equipment derives thrust from yoke strain that has been calibrated to stem thrust using measured diametral strain of the valve stem and nominal engineering material properties. On October 2, 1992, Liberty Technologies notified the NRC that it had determined that two new factors can affect the thrust values obtained with its equipment. Those factors involve (1) the possible use of improper stem material constants and (2) the failure to account for a torque effect when the VOTES equipment is calibrated by measuring strain in the threaded portion of the valve stem. Liberty Technologies provided information on performing manual calculations to address these factors and stated that its new software, Version 2.3, assists in performing corrections to the thrust data

  11. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon


    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  12. Ka-band Technologies for Small Spacecraft Communications via Relays and Direct Data Downlink

    Budinger, James M.; Niederhaus, Charles; Reinhart, Richard; Downey, Joe; Roberts, Anthony


    As the scientific capabilities and number of small spacecraft missions in the near Earth region increase, standard yet configurable user spacecraft terminals operating in Ka-band are needed to lower mission cost and risk and enable significantly higher data return than current UHF or S-band terminals. These compact Ka-band terminals are intended to operate with both the current and next generation of Ka-band relay satellites and via direct data communications with near Earth tracking terminals. This presentation provides an overview of emerging NASA-sponsored and commercially provided technologies in software defined radios (SDRs), transceivers, and electronically steered antennas that will enable data rates from hundreds of kbps to over 1 Gbps and operate in multiple frequency bands (such as S- and X-bands) and expand the use of NASA's common Ka-bands frequencies: 22.55-23.15 GHz for forward data or uplink; and 25.5-27.0 GHz for return data or downlink. Reductions in mass, power and volume come from integration of multiple radio functions, operations in Ka-band, high efficiency amplifiers and receivers, and compact, flat and vibration free electronically steered narrow beam antennas for up to + 60 degrees field of regard. The software defined near Earth space transceiver (SD-NEST) described in the presentation is intended to be compliant with NASA's space telecommunications radio system (STRS) standard for communications waveforms and hardware interoperability.

  13. AVARIS - AREVA Valve Repair in-Situ. Innovative technology and processes

    Schultz, Ch.


    Concept of in-situ welding and turning machine is explained. The AVARIS processes are: Disassembly Evaluation Turning Welding Finish turning Penetration test Grinding Reassembly Result - The seats are within the dimensional and hardness tolerances. The repaired valves with AVARIS as in the case of Isar 2 in 2010 did not show any indications after one year in operation Advantages: Development based on an approved and safe technology; Capability for improving and/or modification of the hardfacing material according to specific system conditions; Minimization of dose exposure (ALARA)

  14. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    Hron, J.; Krumpl, M.


    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  15. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Reissner, Alexander, E-mail: [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)


    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  16. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    Ticker, Ronald L.; Azzolini, John D.


    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  17. Acceptance and introduction of disruptive technologies - simple steps to build a fully functional pulmonary valved stent.

    Huber, Christoph H; Marty, Bettina; von Segesser, Ludwig K


    Valved stents are new land for cardiac surgeons even though they are being used more frequently by interventional disciplines. This paper presents simple steps to build a patient-specific pulmonary valved stent and its delivery device. The design concept was tested by random participants at a med-tech meeting. The valved stent is constructed by linking an endoprosthetic graft with a valved-jugular-vein. The delivery device is made from a modified 5-ml syringe. Of 72 participants, 66 (92%) built and 60 participants implanted the device successfully into the targeted pulmonary position via a trans-infundibular access.

  18. A broad look at separator material technology for valve-regulated lead/acid batteries

    Zguris, G.C. [Hollingsworth and Vose, West Groton, MA (United States)


    Recent research has proved the importance of a constant force of 40 kPa or greater on the paste solidus-grid interface. This has lead to increased interest in re-examining the microglass separator and the system that the plate-separator interaction forms. This renewed interest has resulted in new separator ideas and the revisiting of concepts tried in the early days of valve-regulated lead/acid (VRLA) technology. The paper is divided into two parts. The first part examines some past separator developments that have been tried but are presently not accepted by the general VRLA community. This is due to the excellent performance of the microglass separator used so successfully during the last 20 years. Many fundamental questions that need to be asked regarding the selection of a new separator system have long ago been forgotten. The second part of the paper reviews some fundamental aspects of separator selection, and some important attributes that the separator must provide based on current knowledge of the separator system. Attributes such as toughness, corrosion resistance, compression, wicking, stratification, porosity and conformability are discussed. (orig.)

  19. Study on the Measurement of Valve Leak Rate Using Acoustic Emission Technology

    Lee, Sang-Guk; Park, Jong-Hyuck; Yoo, Keun-Bae; Lee, Sun-Ki; Hong, Sung-Yull


    This study is to estimate the feasibility of acoustic emission(AE) method for the internal leak from the valves. In this study, 4 inch ball water valve leak tests using three different leak path and various leak rates were performed in order to analyze AE properties when leaks arise in valve seat. As a result of leak test for specimens simulated valve seat, we conformed that leak sound amplitude increased in proportion to the increase of leak rate, and leak rates were plotted versus peak acoustic amplitudes recorded within those two narrow frequency bands on each spectrum plot. The resulting plots of leak rate versus peak AE amplitude were the primary basis for determining the feasibility of quantifying leak acoustically. The large amount of data attained also allowed a favorable investigation of the effects of different leak paths, leak rates, pressure differentials and AE sensors on the AE amplitude spectrum. From the experimental results, it was suggested that the AE method for monitoring of leak was feasible. This paper describes quantitative measurements of fluid valve leak rates by the analysis of AE. Experimental apparatus were fabricated to accept a variety of leaking water valves in order to determine what characteristics of AE signal change with leak rate. The data for each valve were generated by varying the leak rate and recording the time averaged amplitude of AE versus frequency. Leak rates were varied by modifying the valve seating surfaces in ways designed to simulate actual defects observed in service. Most of the data analysis involved plotting the leak rate versus signal amplitude at a specific frequency to determine how well the two variables correlate in terms of accuracy, resolution, and repeatability

  20. Future spacecraft propulsion systems. Enabling technologies for space exploration. 2. ed.

    Czysz, Paul A. [St. Louis Univ., MO (United States). Oliver L. Parks Endowed Chair in Aerospace Engineering; Bruno, Claudio [Univ. degli Studi di Roma (Italy). Dipt. di Meccanica e Aeronautica


    In this second edition of Future Spacecraft Propulsion Systems, the authors demonstrate the need to break free from the old established concepts of expendable rockets, using chemical propulsion, and to develop new breeds of launch vehicle capable of both launching payloads into orbit at a dramatically reduced cost and for sustained operations in low-Earth orbit. The next steps to establishing a permanent 'presence' in the Solar System beyond Earth are the commercialisation of sustained operations on the Moon and the development of advanced nuclear or high-energy space propulsion systems for Solar System exploration out to the boundary of interstellar space. In the future, high-energy particle research facilities may one day yield a very high-energy propulsion system that will take us to the nearby stars, or even beyond. Space is not quiet: it is a continuous series of nuclear explosions that provide the material for new star systems to form and provide the challenge to explore. This book provides an assessment of the industrial capability required to construct and operate the necessary spacecraft. Time and distance communication and control limitations impose robotic constraints. Space environments restrict human sustained presence and put high demands on electronic, control and materials systems. This comprehensive and authoritative book puts spacecraft propulsion systems in perspective, from earth orbit launchers to astronomical/space exploration vehicles. It includes new material on fusion propulsion, new figures and updates and expands the information given in the first edition. (orig.)

  1. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter


    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  2. Heart valve surgery

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  3. Fast-responding liquid crystal light-valve technology for color-sequential display applications

    Janssen, Peter J.; Konovalov, Victor A.; Muravski, Anatoli A.; Yakovenko, Sergei Y.


    A color sequential projection system has some distinct advantages over conventional systems which make it uniquely suitable for consumer TV as well as high performance professional applications such as computer monitors and electronic cinema. A fast responding light-valve is, clearly, essential for a good performing system. Response speed of transmissive LC lightvalves has been marginal thus far for good color rendition. Recently, Sevchenko Institute has made some very fast reflective LC cells which were evaluated at Philips Labs. These devices showed sub millisecond-large signal-response times, even at room temperature, and produced good color in a projector emulation testbed. In our presentation we describe our highly efficient color sequential projector and demonstrate its operation on video tape. Next we discuss light-valve requirements and reflective light-valve test results.

  4. Strengthening of the nuclear valve sealing surface by laser cladding technology

    Shi Shihong; Huang Guodong


    A 5 kW laser with CO 2 flow transverse for cladding Co-base alloy or Ni-base alloy coat on the austenite matrix of the nuclear valve sealing surface is introduced. The results show that, after the sealing surface of valve is processed by the laser cladding, the coat of 3.0 mm thick can be made with smooth surface. The test and comparison analysis indicate that the structure and all performance have obvious advantages over that of the plasma spurt welding, bead welding and flame welding processing

  5. Valve Disease

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  6. The effect of peripherally inserted central catheter (PICC) valve technology on catheter occlusion rates--the 'ELeCTRiC' study.

    Johnston, Andrew J; Streater, Carmel T; Noorani, Remy; Crofts, Joanne L; Del Mundo, Aldwin B; Parker, Richard A


    Peripherally Inserted Central Catheters (PICCs) are increasingly being used to provide short to medium-term central venous access. The current study was designed to test the hypothesis that PICC valve technology does not influence PICC occlusion rates. Intensive care unit (ICU) patients who required a PICC were randomized to one of three types of dual lumen PICC (open ended non-valved, Groshong valve, PASV valve). PICC occlusions were recorded and managed with a protocol that used urokinase. A total of 102 patients were recruited to the study. The overall risk of occlusion per catheter was 35% (95% CI 26% to 44%). The overall rate of occlusion was 76 occlusions per 1000 catheter days (95% CI 61 to 95). Presence or type of valve did not significantly influence this rate (open-ended non-valved PICC 38% of catheters, 79 occlusions per 1000 catheter days; Groshong 38% of catheters, 60 occlusions per 1000 catheter days; PASV 27% of catheters, 99 occlusions per 1000 catheter days). The dose of urokinase required to treat PICC occlusions did not significantly differ between PICC types. Valved PICCs do not appear to influence PICC occlusion rates.

  7. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Scott, John H.


    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  8. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin


    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  9. Tight valve

    Guedj, F.


    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  10. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.


    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  11. Check valve

    Upton, H.A.; Garcia, P.


    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  12. Check valve

    Upton, H.A.; Garcia, P.


    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  13. Transcatheter aortic valve replacement in patients with severe aortic stenosis who are at high risk for surgical complications: summary assessment of the California Technology Assessment Forum.

    Tice, Jeffrey A; Sellke, Frank W; Schaff, Hartzell V


    The California Technology Assessment Forum is dedicated to assessment and public reporting of syntheses of available data on medical technologies. In this assessment, transcatheter aortic valve replacement (TAVR) was evaluated for patients with severe aortic stenosis (AS) who are at high risk for complications. In this assessment, 5 criteria were used: Regulatory approval, sufficient scientific evidence to allow conclusions on effectiveness, evidence that the technology improves net health outcomes, evidence that the technology is as beneficial as established methods, and availability of the technology outside investigational settings. In this assessment, all 5 criteria were judged to have been met. The primary benefit of TAVR is the ability to treat AS in patients who would otherwise be ineligible for surgical aortic valve replacement. It may also be useful for patients at high surgical risk by potentially reducing periprocedural complications and avoiding the morbidity and recovery from undergoing heart surgery. Potential harms include the need for conversion to an open procedure, perioperative death, myocardial infarction, stroke, bleeding, valve embolization, aortic regurgitation, heart block that requires a permanent pacemaker, renal failure, pulmonary failure, and major vascular complications such as cardiac perforation or arterial dissection. Potential long-term harms include death, stroke, valve failure or clotting, and endocarditis. As highlighted at the February 2012 California Technology Assessment Forum meeting, the dispersion of this technology to new centers across the United States must proceed with careful thought given to training and proctoring multidisciplinary teams to become new centers of excellence. TAVR is a potentially lifesaving procedure that may improve quality of life for patients at high risk for surgical AVR. However, attention needs to be paid to appropriate patient selection, their preoperative evaluation, surgical techniques, and

  14. Bioprinting a cardiac valve.

    Jana, Soumen; Lerman, Amir


    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Control Valve

    Moore, Wayne R.


    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  16. Valve assembly

    Sandling, M.


    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  17. Spacecraft momentum control systems

    Leve, Frederick A; Peck, Mason A


    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  18. Small Spacecraft for Planetary Science

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew


    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  19. Development of an effective valve packing program

    Hart, K.A.


    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  20. Mechanical Design of Spacecraft


    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  1. Mitral Valve Disease

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  2. Proceedings of the Spacecraft Charging Technology Conference Held in Monterey, California on 31 October - 3 November 1989. Volume 1


    Technical Note I (Chapter 4), ESA Contract 8011/88. IASB , 1989. Williams, D..., E. Keppler, T.A. Fritz, B. Wilken and G. Wibberenz, The ISEE 1 and 2...either detector. 112 IV. THE HYPOTHESIS The above observations indicated that electrons played a role , ruled out cosmic-ray showers (i.e. pairing...F2 studies, in particular the role of spacecraft charging in generating the anomalies and the possibility of deep dielectric charging as an

  3. Technology for organization of the onboard system for processing and storage of ERS data for ultrasmall spacecraft

    Strotov, Valery V.; Taganov, Alexander I.; Konkin, Yuriy V.; Kolesenkov, Aleksandr N.


    Task of processing and analysis of obtained Earth remote sensing data on ultra-small spacecraft board is actual taking into consideration significant expenditures of energy for data transfer and low productivity of computers. Thereby, there is an issue of effective and reliable storage of the general information flow obtained from onboard systems of information collection, including Earth remote sensing data, into a specialized data base. The paper has considered peculiarities of database management system operation with the multilevel memory structure. For storage of data in data base the format has been developed that describes a data base physical structure which contains required parameters for information loading. Such structure allows reducing a memory size occupied by data base because it is not necessary to store values of keys separately. The paper has shown architecture of the relational database management system oriented into embedment into the onboard ultra-small spacecraft software. Data base for storage of different information, including Earth remote sensing data, can be developed by means of such database management system for its following processing. Suggested database management system architecture has low requirements to power of the computer systems and memory resources on the ultra-small spacecraft board. Data integrity is ensured under input and change of the structured information.

  4. Latest design of gate valves

    Kurzhofer, U.; Stolte, J.; Weyand, M.


    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  5. Building valve amplifiers

    Jones, Morgan


    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  6. Spacecraft operations

    Sellmaier, Florian; Schmidhuber, Michael


    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  7. Hardfacing materials and processes for valve applications

    Matthews, S.J.; Crook, P.


    The subject of hardfacing is a very high technology effort especially in the valve industry. The technology is manifested by the need for sophisticated high performance hardfacing alloys required to resist the demanding environments of fluid flow control valve service. High technology is also found in the automated methods currently being used to efficiently deposit high quality hardfacing overlays. 3 figures, 3 tables

  8. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Belvin, W. Keith


    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  9. Piezoelectric valve

    Petrenko, Serhiy Fedorovich


    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  10. Small sodium valve design and operating experience

    McGough, C.B.


    The United States Liquid Metal Fast Breeder Reactor program (LMFBR) includes an extensive program devoted to the development of small sodium valves. This program is now focused on the development and production of valves for the Fast Flux Test Facility (FFTF) now under construction near Richland, Washington. Other AEC support facilities, such as various test loops located at the Liquid Metal Engineering Center (LMEC), Los Angeles, California, and at the Hanford Engineering Development Laboratory (HEDL), Richland, Washington, also have significant requirements for small sodium valves, and valves similar in design to the FFTF valves are being supplied to these AEC laboratories for use in their critical test installations. A principal motivation for these valve programs, beyond the immediate need to provide high-reliability valves for FFTF and the support facilities, is the necessity to develop small valve technology for the Clinch River Breeder Reactor Plant (CRBRP). FFTF small sodium valve design and development experience will be directly applied to the CRBRP program. Various test programs have been, and are being, conducted to verify the performance and integrity of the FFTF valves, and to uncover any potential problems so that they can be corrected before the valves are placed in service in FFTF. The principal small sodium valve designs being utilized in current U.S. programs, the test and operational experience obtained to date on them, problems uncovered, and future development and testing efforts being planned are reviewed. The standards and requirements to which the valves are being designed and fabricated, the valve designs in current use, valve operators, test and operating experience, and future valve development plans are summarized. (U.S.)

  11. Acoustic valve leak detection in nuclear plants

    Dimmick, J.G.; Dickey, J.W.


    Internal valve leakage is a hidden energy loss and can cause or prolong a forced outage. Recent advances in acoustic detection of internal valve leakage have reduced piping system maintenance costs, unnecessary downtime, and energy waste. Extremely short payback periods have been reported by plants applying this technology to preventive maintenance, troubleshooting, energy conservation and outage planning. Sensors temporarily attached to the outside of valves and connected to the instruments detect ultrasonic acoustic emissions which are characteristic of internal valve leakage. Since the sensors are attached to the outside of the valves, the time and expense of dismantling the valves or removing them from the systems are eliminated. This paper describes the instrumentation and specific applications to nuclear plant valves, including independent verification of initial findings. Guidelines for potential users, including instrumentation selection, training requirements, application planning, and the choice of in-house versus contract services are discussed

  12. Off-The-Shelf and Free Software Technologies for Spacecraft Control & Command: An Example, Balloon-Borne Stabilised Gondolas

    Laurens, Andre


    Balloons are low-cost, short development time space vehicles for science missions and technology in-flight experiments that need out-of-atmosphere or in-situ measurements, thus being complementary to the satellite...

  13. PEAC: A Power-Efficient Adaptive Computing Technology for Enabling Swarm of Small Spacecraft and Deployable Mini-Payloads

    National Aeronautics and Space Administration — This task is to develop and demonstrate a path-to-flight and power-adaptive avionics technology PEAC (Power Efficient Adaptive Computing). PEAC will enable emerging...

  14. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem


    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  15. Spacecraft Thermal Management

    Hurlbert, Kathryn Miller


    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  16. Aortic valve bypass

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik


    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  17. Spacecraft radiator systems

    Anderson, Grant A. (Inventor)


    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  18. Transcatheter aortic valve replacement

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  19. Application of advanced electronics to a future spacecraft computer design

    Carney, P. C.


    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  20. Magnetically operated check valve

    Morris, Brian G.; Bozeman, Richard J., Jr.


    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  1. What Is Heart Valve Surgery?

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  2. What Is Heart Valve Disease?

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  3. AREVA's innovative solutions for valve diagnostics and in-situ valve repair

    Damies, H.; Breitenberger, U.; Munoz, L.; Kostroun, F.


    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions can support that in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. More than 25 years of experience in various plants worldwide show that application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. With the innovative AVARIS technology an in-situ valve repair is possible. It has the unique ability to conduct several steps in-situ, to maintain the sealing seat of gate or check valves. By applying AVARIS, the valve is restored in its original state, the system remains unchanged. Thus, all original documents remain valid and applicable. In comparison to previous procedures like cutting valves out of the pipeline and repairing hard facings or damaged seal seats in a separate workshop or alternatively replacement by a new valve body the new AVARIS technology avoids costs, risk and effort. (author)

  4. Microfluidic sieve valves

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L


    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  5. Rotary pneumatic valve

    Hardee, Harry C.


    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  6. Mitral Valve Stenosis

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  7. Aortic Valve Stenosis

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  8. Remote actuated valve implant

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen


    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  9. Scissor thrust valve actuator

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.


    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  10. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Tobias, R. F.


    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  11. Power requirements for commercial communications spacecraft

    Billerbeck, W. J.


    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  12. Novel Active Combustion Control Valve

    Caspermeyer, Matt


    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  13. Use of a valve operation test and evaluation system to enhance valve reliability

    Lowry, D.A.


    Power plant owners have emphasized the need for assuring safe, reliable operation of valves. While most valves must simply open or close, the mechanisms involved can be quite complex. Motor operated valves (MOVs) must be properly adjusted to assure operability. Individual operator components determine the performance of the entire MOV. Failure in MOVs could cripple or shut down a unit. Thus, a complete valve program consisting of design reviews, operational testing, and preventive and predictive maintenance activities will enhance an owner's confidence level that his valves win operate as expected. Liberty's Valve Operation Test and Evaluation System (VOTES) accurately measures stein thrust without intruding on valve operation. Since mounting a strain gage to a valve stem is a desirable but impractical way of obtaining precise stem thrust, Liberty developed a method to obtain identical data by placing a strain gage sensor on the valve yoke. VOTES provides information which effectively eliminates costly, unscheduled downtime. This paper presents the results of infield VOTES testing. The system's proven ability to identify and characterize actuator and valve performance is demonstrated. Specific topics of discussion include the ability of VOTES to ease a utility's IE Bulletin 8543 concerns and conclusively diagnose MOV components. Data from static and differential pressure testing are presented. Technical, operational, and financial advantages resulting from VOTES technology are explored in detail

  14. Which valve is which?

    Pravin Saxena


    Full Text Available A 25-year-old man presented with a history of breathlessness for the past 2 years. He had a history of operation for Tetralogy of Fallot at the age of 5 years and history suggestive of Rheumatic fever at the age of 7 years. On echocardiographic examination, all his heart valves were severely regurgitating. Morphologically, all the valves were irreparable. The ejection fraction was 35%. He underwent quadruple valve replacement. The aortic and mitral valves were replaced by metallic valve and the tricuspid and pulmonary by tissue valve.

  15. Transcatheter Mitral Valve Devices - Functional Mechanical Designs.

    Kliger, Chad


    Mitral regurgitation is a complex disorder involving a multitude of components of the mitral apparatus. With the desire for less invasive treatment approaches, transcatheter mitral valve therapies (TMVT) are directed at these components and available at varying stages of development. Therapeutic advancements and the potential to combine technologies may further improve their efficacy and safety. Transcatheter mitral valve replacement, while preserving the mitral apparatus, may emerge as an alternative or even a more suitable treatment option. In addition, early data on transcatheter mitral valve-in-valve and valve-in-ring implantation are encouraging and this approach may be an alternative to reoperation in the high-risk patient. This review details the expanding functional mechanical designs of current active TMVT.

  16. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael


    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  17. Printed Spacecraft Separation System

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation


    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  18. Mitral Valve Prolapse

    ... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ... our brochures Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  19. Problem: Mitral Valve Regurgitation

    ... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  20. Problem: Heart Valve Regurgitation

    ... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  1. Aortic valve surgery - open

    ... gov/ency/article/007408.htm Aortic valve surgery - open To use the sharing features on this page, ... separates the heart and aorta. The aortic valve opens so blood can flow out. It then closes ...

  2. Corrosion of valve metals

    Draley, J.E.


    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  3. Mitral valve surgery - open

    ... Taking warfarin (Coumadin) References Otto CM, Bonow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... A.M. Editorial team. Heart Surgery Read more Heart Valve Diseases Read more Mitral Valve Prolapse Read more A. ...

  4. Swing check valve

    Eminger, H.E.


    A swing check valve which includes a valve body having an inlet and outlet is described. A recess in the valve body designed to hold a seal ring and a check valve disc swingable between open and closed positions. The disc is supported by a high strength wire secured at one end in a support spacer pinned through bearing blocks fixed to the valve body and at its other end in a groove formed on the outer peripheral surface of the disc. The parts are designed and chosen such to provide a lightweight valve disc which is held open by minimum velocity of fluid flowing through the valve which thus reduces oscillations and accompanying wear of bearings supporting the valve operating parts. (Auth.)

  5. Spacecraft Spin Test Facility

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  6. Mitral Valve Prolapse

    Mitral valve prolapse (MVP) occurs when one of your heart's valves doesn't work properly. The flaps of the valve are "floppy" and ... to run in families. Most of the time, MVP doesn't cause any problems. Rarely, blood can ...

  7. Overflow control valve

    Kessinger, B.A.; Hundal, R.; Parlak, E.A.


    An overflow control valve for use in a liquid sodium coolant pump tank which can be remotely engaged with and disengaged from the pump tank wall to thereby permit valve removal. An actuating shaft for controlling the valve also has means for operating a sliding cylinder against a spring to retract the cylinder from sealing contact with the pump tank nozzle. (author)

  8. Fluid control valves

    Rankin, J.


    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  9. A remote control valve

    Cachard, Maurice de; Dumont, Maurice.


    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  10. Heart Valve Diseases

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  11. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.


    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  12. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)


    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  13. Implementation of a Low Frame-Rate Protocol and Noise-Reduction Technology to Minimize Radiation Dose in Transcatheter Aortic Valve Replacement.

    Maccagni, Davide; Candilio, Luciano; Latib, Azeem; Godino, Cosmo; Chieffo, Alaide; Montorfano, Matteo; Colombo, Antonio; Azzalini, Lorenzo


    Limiting radiation exposure is necessary in radiological procedures. This study evaluates the impact of a radiological low frame-rate protocol in a standard angiographic system and the implementation of a noise-reduction technology (NRT) on patient radiation exposure during transcatheter aortic valve replacement (TAVR). Transfemoral TAVR procedures performed between February 2016 and February 2017 were analyzed according to two angiographic systems, Standard and NRT, and further divided in four subgroups: (1) Standard 15 frames per second (fps) with 15 fps for both fluoroscopy and cine acquisitions; (2) Standard 7.5 fps with 7.5 fps for both fluoroscopy and cine acquisitions; (3) NRT 15 fps with 15 fps for both fluoroscopy and cine acquisitions; and (4) NRT 7.5 fps with 15 fps for fluoroscopy and 7.5 fps for cine acquisitions. Study endpoints were kerma area product (KAP) and cumulative air kerma at interventional reference point (AK at IRP). Significant differences were found in KAP (153 Gy·cm² [IQR, 95-234 Gy·cm²] vs 78.3 Gy·cm² [IQR, 54.4-103.5 Gy·cm²]; Pfps and Standard 7.5 fps groups (184 Gy·cm² [IQR, 128-262 Gy·cm²] vs 106.8 Gy·cm² [IQR, 76.87-181 Gy·cm²] [P<.01] and 0.973 Gy [IQR, 0.642-1.786 Gy] vs 0.64 Gy [IQR, 0.489-0.933 Gy] [P<.01], respectively). The present study suggests that the low frame-rate protocol in Standard system and NRT implementation allows a marked reduction of patient radiation exposure in TAVR procedures.

  14. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  15. Heavy gas valves

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)


    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  16. Relief valve testing study

    BROMM, R.D.


    Reclosing pressure-actuated valves, commonly called relief valves, are designed to relieve system pressure once it reaches the set point of the valve. They generally operate either proportional to the differential between their set pressure and the system pressure (gradual lift) or by rapidly opening fully when the set pressure is reached (pop action). A pop action valve allows the maximum fluid flow through the valve when the set pressure is reached. A gradual lift valve allows fluid flow in proportion to how much the system pressure has exceeded the set pressure of the valve (in the case of pressure relief) or has decreased below the set pressure (vacuum relief). These valves are used to protect systems from over and under pressurization. They are used on boilers, pressure vessels, piping systems and vacuum systems to prevent catastrophic failures of these systems, which can happen if they are under or over pressurized beyond the material tolerances. The construction of these valves ranges from extreme precision of less than a psi tolerance and a very short lifetime to extremely robust construction such as those used on historic railroad steam engines that are designed operate many times a day without changing their set pressure when the engines are operating. Relief valves can be designed to be immune to the effects of back pressure or to be vulnerable to it. Which type of valve to use depends upon the design requirements of the system

  17. Spacecraft Charge Monitor

    Goembel, L.


    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  18. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Biesiadecki, Jeffrey; Jain, Abhinandan


    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  19. Attitude Fusion Techniques for Spacecraft

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  20. SHARP - Automated monitoring of spacecraft health and status

    Atkinson, David J.; James, Mark L.; Martin, R. G.


    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  1. SHARP: Automated monitoring of spacecraft health and status

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius


    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  2. Radiation Effects on Spacecraft Structural Materials

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.


    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  3. Motor operated valves problems tests and simulations

    Pinier, D.; Haas, J.L.


    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  4. Motor operated valves problems tests and simulations

    Pinier, D.; Haas, J.L.


    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a open-quotes boilerclose quotes effect: determination of the necessary modifications: development and testing of anti-boiler effect systems

  5. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    Wells, Beric E.


    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  6. A review of design and modeling of magnetorheological valve

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian


    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  7. Guide to prosthetic cardiac valves

    Morse, D.; Steiner, R.M.; Fernandez, J.


    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  8. Developments in mechanical heart valve prosthesis

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    BHUVANESHWAR. Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences. & Technology ... affect the performance of mechanical heart valves. The clinical performance of ... those who cannot be put under anticoagulant therapy, like women who may still wish to bear children, or hemolytic patients.

  9. Fractionated Spacecraft Architectures Seeding Study

    Mathieu, Charlotte; Weigel, Annalisa


    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  10. Intelligent Flow Control Valve

    Kelley, Anthony R (Inventor)


    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  11. Nuclear valves latest development

    Isaac, F.; Monier, M.


    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  12. Cryogenic Cam Butterfly Valve

    McCormack, Kenneth J. (Inventor)


    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  13. Low noise control valve

    Christie, R.S.


    Noise is one of the problems associated with the use of any type of control valve in systems involving the flow of fluids. The advent of OSHA standards has prompted control valve manufacturers to design valves with special trim to lower the sound pressure level to meet these standards. However, these levels are in some cases too high, particularly when a valve must be located in or near an area where people are working at tasks requiring a high degree of concentration. Such locations are found around and near research devices and in laboratory-office areas. This paper describes a type of fluid control device presently being used at PPL as a bypass control valve in deionized water systems and designed to reduce sound pressure levels considerably below OSHA standards. Details of the design and construction of this constant pressure drop variable flow control valve are contained in the text and are shown in photographs and drawings. Test data taken are included

  14. Spacecraft Material Outgassing Data

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  15. Spacecraft Fire Safety Demonstration

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  16. Quick spacecraft charging primer

    Larsen, Brian Arthur


    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  17. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the effects of valve body and valve seat by steam experiments

    Morita, Ryo; Inada, Fumio


    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop the countermeasures by CFD (Computational Fluid Dynamics) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the new valve shape (named 'Extended Valve') that can suppress the pressure fluctuations by air experiments and CFD calculations. Then, we also conducted steam experiments and CFD calculations to understand the differences between air and the steam, and found that the pressure fluctuations in the middle opening condition also occurred in the steam tests and the differences between the air and steam were not remarkable. In this report, to clarify the effects of valve and valve seat shape in steam flow condition, we conduct the steam experiments with various valve and seat shape. As a result, we find the change of the valve seat can decrease the amplitude of pressure fluctuations, but can not quite suppress the pressure fluctuations in the middle opening condition. Then, we apply the 'Extended Valve' to clarify the valve shape effect, and find that the extended valve suppresses the pressure fluctuations in the middle opening condition completely and decreases the pressure amplitude drastically. (author)

  18. Deployable Brake for Spacecraft

    Rausch, J. R.; Maloney, J. W.


    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  19. Automated constraint checking of spacecraft command sequences

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang


    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  20. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  1. Aortic or Mitral Valve Replacement With the Biocor and Biocor Supra


    Aortic Valve Insufficiency; Aortic Valve Regurgitation; Aortic Valve Stenosis; Aortic Valve Incompetence; Mitral Valve Insufficiency; Mitral Valve Regurgitation; Mitral Valve Stenosis; Mitral Valve Incompetence

  2. Magnetic Check Valve

    Morris, Brian G.; Bozeman, Richard J., Jr.


    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  3. Butterfly valves for seawater

    Yamanaka, Katsuto


    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  4. Redo mitral valve surgery

    Redoy Ranjan


    Full Text Available This study is based on the findings of a single surgeon’s practice of mitral valve replacement of 167 patients from April 2005 to June 2017 who developed symptomatic mitral restenosis after closed or open mitral commisurotomy. Both clinical and color doppler echocardiographic data of peri-operative and six months follow-up period were evaluated and compared to assess the early outcome of the redo mitral valve surgery. With male-female ratio of 1: 2.2 and after a duration of 6 to 22 years symptom free interval between the redo procedures, the selected patients with mitral valve restenosis undergone valve replacement with either mechanical valve in 62% cases and also tissue valve in 38% cases. Particular emphasis was given to separate the adhered pericardium from the heart completely to ameliorate base to apex and global contraction of the heart. Besides favorable post-operative clinical outcome, the echocardiographic findings were also encouraging as there was statistically significant increase in the mitral valve area and ejection fraction with significant decrease in the left atrial diameter, pressure gradient across the mitral valve and pulmonary artery systolic pressure. Therefore, in case of inevitable mitral restenosis after closed or open commisurotomy, mitral valve replacement is a promising treatment modality.

  5. Diseases of the Tricuspid Valve

    ... stenosis. Tricuspid Regurgitation Tricuspid regurgitation is also called tricuspid insufficiency or tricuspid incompetence. It means there is a ... require valve surgery. Tags: heart valves , tricuspid incompetence , ... tricuspid regurgitation , tricuspid stenosis , valve disease Related Links ...

  6. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    Scotten, Lawrence N; Siegel, Rolland


    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring

  7. Vascular complications associated with transcatheter aortic valve replacement.

    Sardar, M Rizwan; Goldsweig, Andrew M; Abbott, J Dawn; Sharaf, Barry L; Gordon, Paul C; Ehsan, Afshin; Aronow, Herbert D


    Transcatheter aortic valve replacement (TAVR) is now an accepted pathway for aortic valve replacement for patients who are at prohibitive, severe and intermediate risk for traditional aortic valve surgery. However, with this rising uptrend and adaptation of this new technology, vascular complications and their management remain an Achilles heel for percutaneous aortic valve replacement. The vascular complications are an independent predictor of mortality for patients undergoing TAVR. Early recognition of these complications and appropriate management is paramount. In this article, we review the most commonly encountered vascular complications associated with currently approved TAVR devices and their optimal percutaneous management techniques.

  8. Low cost spacecraft computers: Oxymoron or future trend?

    Manning, Robert M.


    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  9. Danfos: Thermostatic Radiator Valves

    Gregersen, Niels; Oliver, James; Hjorth, Poul G.


    This problem deals with modelling the flow through a typical Danfoss thermostatic radiator valve.Danfoss is able to employ Computational Fluid Dynamics (CFD) in calculations of the capacity of valves, but an experienced engineer can often by rules of thumb "guess" the capacity, with a precision...

  10. Potential problems will drillstring safety valves



    In the paper titled ``New generation drill string safety valves,`` presented at the IADC Well Control Conference for Europe, Aberdeen, May 22--24, 1996, documented limitations of presently available drillstring safety valves commonly used as kelly valves and stabbing valves were presented, and industry efforts to develop solutions to these problems were described. Authors of the paper are B.A. Tarr and R.A. Sukup (Mobil E and P Technology Center, Dallas), Dr. R. Luy (ITE, Clausthal, Germany), G. Rabby (Hi-Kalibre, Edmonton, Alberta) and J. Mertsch (ITAG, Celle, Germany). In 1995, the Task Group developed a draft of a new spec, and a DSSV testing program was initiated as a joint industry project, with the Gas Research Institute (GRI) as the major sponsor. Two manufacturers, Hi-Kalibre and ITAG, agreed to build new valves for the testing program. Hi-Kalibre, Edmonton, Alberta, supplied an already-commercial twin floating ball valve for November 1995 testing. This product is being used by Tesco in its portable top drive system. ITAG of Germany supplied a radically improved DSSV design, which was tested in December, and was to be retested in May following modifications.

  11. Space Vehicle Valve System

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)


    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  12. Multiple-port valve

    Doody, T.J.


    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable with one or more of a plurality of secondary conduits fitting into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits

  13. Developing Sustainable Spacecraft Water Management Systems

    Thomas, Evan A.; Klaus, David M.


    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  14. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Didion, Jeffrey R.


    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  15. Spacecraft Attitude Determination

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  16. Modification and performance evaluation of a mono-valve engine

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  17. Pivot design in bileaflet valves.

    Vallana, F; Rinaldi, S; Galletti, P M; Nguyen, A; Piwnica, A


    The design criteria leading to the development of a new bileaflet valve (Sorin Bicarbon) were derived from the analysis of functional requirements, the performance of existing prostheses, and the availability of an advanced carbon coating technology (Carbofilm). The hinge is the critical element affecting fluid dynamics, durability, and thrombus formation in bileaflet valves. A comparative study of three existing models led to a new hinge design that was based on coupling two spheric surfaces with different radii of curvature (leaflet pivot and hinge recess) and obtained by electroerosion into a Carbofilm-coated metallic housing. In this valve, the point of contact moves continuously by rolling, not sliding. This minimizes friction and wear and allows uninterrupted washing of the blood exposed surfaces even during diastole (a finding established in patients using transesophageal echocardiography). Tricuspid implantation without anticoagulation in 33 sheep did not lead to thrombotic events (follow-up, 40-400 days). In the first 36 clinical implants observed for 15 months (mitral position, size 29; two unrelated deaths), the mean diastolic gradient by echo Doppler was 4 +/- 1.25 mmHg; the functional area was 3.2 +/- 0.6 cm2. No leaflet fracture and no thrombotic or embolic complications were observed clinically using a standard anticoagulant regimen.

  18. Revamping Spacecraft Operational Intelligence

    Hwang, Victor


    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  19. Dips spacecraft integration issues

    Determan, W.R.; Harty, R.B.


    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  20. Gate valve performance prediction

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.


    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  1. Modeling valve leakage

    Bell, S.R.; Rohrscheib, R.


    The American Society of Mechanical Engineers (ASME) Code requires individual valve leakage testing for Category A valves. Although the U.S. Nuclear Regulatory Commission (USNRC) has recognized that it is more appropriate to test containment isolation valves in groups, as allowed by 10 CFR 50, Appendix J, a utility seeking relief from these Code requirements must provide technical justification for the relief and establish a conservative alternate acceptance criteria. In order to provide technical justification for group testing of containment isolation valves, Illinois Power developed a calculation (model) for determining the size of a leakage pathway in a valve disc or seat for a given leakage rate. The model was verified experimentally by machining leakage pathways of known size and then measuring the leakage and comparing this value to the calculated value. For the range of values typical of leakage rate testing, the correlation between the experimental values and calculated values was quote good. Based upon these results, Illinois Power established a conservative acceptance criteria for all valves in the inservice testing (IST) program and was granted relief by the USNRC from the individual leakage testing requirements of the ASME Code. This paper presents the results of Illinois Power's work in the area of valve leakage rate testing

  2. Face-Sealing Butterfly Valve

    Tervo, John N.


    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.


    Prashanth Kumar


    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  4. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    Kroes, R.


    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  5. Valve monitoring ITI-MOVATS

    Moureau, S.


    ITI-MOVATS provides a wide range of test devices to monitor the performance of valves: motor operated gate or globe valve, butterfly valve, air operated valve, and check valve. The ITI-MOVATS testing equipment is used in the following three areas: actuator setup/baseline testing, periodic/post-maintenance testing, and differential pressure testing. The parameters typically measured with the MOVATS diagnostic system as well as the devices used to measure them are described. (Z.S.)

  6. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael


    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  7. The use of valves in the SAGD process

    Romano, Michael A. [Global Marketing, Oil and Gas, Tyco Valves and Controls (United States)


    Steam-assisted gravity drainage (SAGD) is a developing technology, the aim of which is to increase production of bitumen while minimizing its environmental footprint. Valves must meet the process conditions of the operations, which depend on weel depth: deeper reservoirs of bitumen require higher steam injection pressure. A wide range of valves is used throughout the SAGD process. In the water softening plant, butterfly and process lined valves are used. HP gate valves are used for isolation, globe valves for vents/drains/bypasses, along with ARC valves for steam and booster pump projection with steam traps on injection lines in steam injection. Isolation valves are used throughout the low pressure process including ball, gate and triple-offset valves. Pressure management is carried out on all pressure vessels and lines. Control and choke valves are installed on well pads and production. Instrumentation, actuation and controls are installed throughout. In the ideal situation, suppliers and process engineers would work together in the early stages of a project.

  8. An Overview of the CNES Propulsion Program for Spacecraft

    Cadiou, A.; Darnon, F.; Gibek, I.; Jolivet, L.; Pillet, N.


    This paper presents an overview of the CNES spacecraft propulsion activities. The main existing and future projects corresponding to low earth orbit and geostationary platforms are described. These projects cover various types of propulsion subsystems: monopropellant, bipropellant and electric. Monopropellant is mainly used for low earth orbit applications such as earth observation (SPOT/Helios, PLEIADES) or scientific applications (minisatellite PROTEUS line and micro satellites MYRIADE line). Bipropellant is used for geostationary telecommunications satellites (@BUS). The field of application of electric propulsion is the station keeping of geostationary telecommunication satellites (@BUS), main propulsion for specific probes (SMART 1) and fine attitude control for dedicated micro satellites (MICROSCOPE). The preparation of the future and the associated Research and Technology program are also described in the paper. The future developments are mainly dedicated to the performance improvements of electric propulsion which leads to the development of thrusters with higher thrust and higher specific impulse than those existing today, the evaluation of the different low thrust technologies for formation flying applications, the development of new systems to pressurize the propellants (volatile liquid, micro pump), the research on green propellants and different actions concerning components such as over wrapped pressure vessels, valves, micro propulsion. A constant effort is also put on plume effect in chemical and electrical propulsion area (improvement of tools and test activities) in the continuity of the previous work. These different R &T activities are described in detail after a presentation of the different projects and of their propulsion subsystems. The scientific activity supporting the development of Hall thrusters is going on in the frame of the GDR (Groupement de Recherche) CNRS / Universities / CNES / SNECMA on Plasma Propulsion.

  9. Main feedwater valve diagnostics at Waterford 3 nuclear generating station

    Fitzgerald, W.V.


    Pneumatically-operated control valves are coming under increasing scrutiny in nuclear power plants because of their relatively high incident rate. The theory behind a device that could make performance evaluation of these valves simpler and more effective was first described at the original EPRI Power Plant Valve Symposium. The development of this Diagnostic System was completed in 1989, and it was recently used to troubleshoot two main feedwater valves at Louisiana Power and Light's Waterford 3 Power Station. During a cold snap last December, these valves failed to respond to the input signal and, as a result, the plant came off line. An incident report had to be filed, and the plant chose to contact the original equipment manufacturer (OEM) for assistance. This paper describes the original incident involving these valves and then gives a brief description of the diagnostic system and how it works. The balance of the paper then reviews how the OEM and plant personnel utilized the system to evaluate each component of the control valve assembly (I/P transducer, positioner, volume boosters, actuator, and valve body assembly). By simply stroking the valve and monitoring pneumatic signals and valve position, the problem was traced to a malfunctioning positioner and a volume booster that was leaking. The problems were corrected and new performance signatures run for the valves using the system to document their improved operation. This case study demonstrates how new Diagnostic Technology along with OEM involvement can effectively address problems with pneumatically-operated control valves so that root-cause solutions can be implemented

  10. High Temperature, High Frequency Fuel Metering Valve, Phase I

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  11. Pulmonary valve stenosis

    ... surgery - discharge Images Heart valves References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Saunders; 2016:chap 69. Otto CM, Bownow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ...

  12. Mitral valve regurgitation

    ... and dentist if you have a history of heart valve disease or congenital heart disease before treatment. Some people ... the middle Heart, front view References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  13. Aortic Valve Disease

    ... team will discuss with you the advantages and disadvantages of both valve types. Regardless of which type ... Diagnosis and Treatment Options Recovery Questions for Your Doctor Will my condition ever get better without treatment? ...

  14. Dry product valve

    Greaves, James D.


    This invention provides a system for delivering particulate radioactive or other toxic wastes to a container in which they can be solidified. The system includes a set of valves that prevent the escape of dusty materials to the atmosphere

  15. Ball check valve

    Bevilacqua, F.


    A pressurized nuclear reactor having an instrument assembly sheathed in a metallic tube which is extended vertically upward into the reactor core by traversing a metallic guide tube which is welded to the wall of the vessel is described. Sensors in each instrument assembly are connected to instruments outside the vessel to manifest the conditions within the core. Each instrument assembly probe is moved into position within a metallic guide channel. The guide channel penetrates the wall of the vessel and forms part of the barrier to the environment within the pressure vessel. Each channel includes a ball check valve which is opened by the instrument assembly probe when the probe passes through the valve. A ball valve element is moved from its seat by the probe to a position lateral of the bore of the channel and is guided to its seat along a sloped path within the valve body when the probe is removed. 5 claims, 3 figures

  16. Valve for gas centrifuges

    Hahs, Charles A.; Burbage, Charles H.


    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  17. Coanda effect in valves

    Uruba Václav


    Full Text Available Coanda effect takes place in flow within valves diffuser for certain conditions. The valve plug in half-closed position forms wall-jet, which could be stable or instable, depending on geometry and other conditions. This phenomenon was subject of experimental study using time-resolved PIV technique. For the acquired data analysis the special spatio-temporal methods have been used.

  18. Compressed gas domestic aerosol valve design using high viscous product

    A Nourian


    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  19. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.


    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  20. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)


    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  1. Compact UHV valve with field replaceable windows

    Johnson, E.D.; Freeman, J.; Powell, F.


    There are many applications in synchrotron radiation research where window valves can be usefully employed. Examples include gas cells for monochromator calibration, filters for high order light rejection, and as vacuum isolation elements between machine and experimental vacua. Often these devices are fairly expensive, and have only fixed (ie non-removable) windows. The development of a new type of seal technology by VAT for their series 01 valves provides a gate surface which is free from obstructions due to internal mechanical elements. This feature allows a threaded recess to be machined into the gate to receive a removable window frame which can carry standard size Luxel thin film windows. The combination of these features results in a DN 40 (2.75in. conflat flange) valve which provides a clear aperture of 21mm diameter for the window material. 8 refs., 2 figs

  2. Three-dimensional echocardiography in valve disease

    Cesare Fiorentini


    Full Text Available This review covers the role of three-dimensional (3D echocardiography in the diagnosis of heart valve disease. Several factors have contributed to the evolution of this technique, which is currently a simple and routine method: rapid evolution in probe and computer technologies, demonstration that 3D data sets allowed more complete and accurate evaluation of cardiac structures, emerging clinical experience indicating the strong potential particularly in valve diseases, volume and function of the two ventricle measurements and several other fields. This report will review current and future applications of 3D echocardiography in mitral, aortic and tricuspid valve diseases underlying both qualitative (morphologic and quantitative advantages of this technique. (Heart International 2007; 3: 35-41

  3. Automating Trend Analysis for Spacecraft Constellations

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)


    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  4. Triple3 Redundant Spacecraft Subsystems (T3RSS), Phase I

    National Aeronautics and Space Administration — Redefine Technologies, along with researchers at the University of Colorado, will use three redundancy methods to decrease the susceptibility of a spacecraft, on a...

  5. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  6. Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves

    Dvir, Danny; Webb, John; Brecker, Stephen


    Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry....

  7. NRC valve performance test program - check valve testing

    Jeanmougin, N.M.


    The Valve Performance Test Program addresses the current requirements for testing of pressure isolation valves (PIVs) in light water reactors. Leak rate monitoring is the current method used by operating commercial power plants to survey the condition of their PIVs. ETEC testing of three check valves (4-inch, 6-inch, and 12-inch nominal diameters) indicates that leak rate testing is not a reliable method for detecting impending valve failure. Acoustic emission monitoring of check valves shows promise as a method of detecting loosened internals damage. Future efforts will focus on evaluation of acoustic emission monitoring as a technique for determining check valve condition. Three gate valves also will be tested to evaluate whether the check valve results are applicable to gate type PIVs

  8. Radiographic detection of single-leg fracture in Björk-Shiley Convexo-Concave prosthetic valves: a phantom model study.

    Gilchrist, I C; Cardella, J F; Fox, P S; Pae, W E; el-Ghamry Sabe, A A; Landis, J R; Localio, A R; Kunselman, A R; Hopper, K D


    Cineradiography can identify patients with single-leg fractured Björk-Shiley Convexo-Concave valves, although little is known about the sensitivity and specificity of this technique. We evaluated three normal and six (0 microm gap) single-leg fractured Björk-Shiley valves that were placed in a working phantom model. Valves were randomly imaged a total of 33 times and duplicated into a 120-valve series with a 1:9 ratio of abnormal/normal valves. Six reviewers independently graded each valve and demonstrated markedly different rates of identifying the fractured valves. Average sensitivity at the grade that clinically results in valve explanation was 47%. Among the normal valves, a correct identification was made 96% (range 91% to 99%) of the time. Present radiographic technology may have significant difficulty in identifying true single-leg fracture in Björk-Shiley valves with limb separations that are common among clinically explanted valves.

  9. Check valves aging assessment

    Haynes, H.D.


    In support of the NRC Nuclear Plant Aging Research (NPAR) program, the Oak Ridge National Laboratory (ORNL) has carried out an assessment of several check value diagnostic monitoring methods, in particular, those based on measurements of acoustic emission, ultrasonics, and magnetic flux. The evaluations have focussed on the capabilities of each method to provide information useful in determining check valve aging and service wear effects, check valve failures, and undesirable operating modes. This paper describes the benefits and limitations associated with each method and includes recent laboratory and field test data, including data obtained from the vendors who recently participated in a comprehensive series of tests directed by a nuclear industry users group. In addition, as part of the ORNL Advanced Diagnostic Engineering Research and Development Center (ADEC), two novel nonintrusive monitoring methods were developed that provide several unique capabilities. These methods, based on external ac- an dc-magnetic monitoring are also described. None of the examined methods could, by themselves, monitor both the instantaneous position and motion of check valve internals and valve leakage; however, the combination of acoustic emission monitoring with one of the other methods provides the means to determine vital check valve operational information

  10. Spacecraft exploration of asteroids

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.


    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  11. Spacecraft rendezvous and docking

    Jørgensen, John Leif


    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  12. Toward autonomous spacecraft

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.


    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  13. Aortic valve replacement and the stentless Freedom SOLO valve

    Wollersheim, L.W.L.M.


    Aortic valve stenosis has become the most prevalent valvular heart disease in Europe and North America, and is generally caused by age-related calcification of the aortic valve. For most patients, severe symptomatic aortic stenosis needs effective mechanical relief in the form of valve replacement

  14. Comparative study of Butterfly valves

    Galmes Belmonte, F.B.


    This work tries to justify the hydrodynamic butterfly valves performance, using the EPRI tests, results carried out in laboratory and in situ. This justification will be possible if: - The valves to study are similar - Their performance is calculated using EPRI's methodology Looking for this objective, the elements of the present work are: 1. Brief EPRI butterfly valve description it wild provide the factors which are necessary to define the butterfly valves similarity. 2. EPRI tests description and range of validation against test data definition. 3. Description of the spanish butterfly analyzed valves, and comparison with the EPRI performance results, to prove that this valves are similar to the EPRI test valves. In this way, it will not be necessary to carry out particular dynamic tests on the spanish valves to describe their hydrodynamic performance. (Author)

  15. A symmetric safety valve

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny


    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  16. Nuclear reactor steam depressurization valve

    Moore, G.L.


    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  17. Valve spindle gland

    Burda, Z.; Harazim, A.; Kerlin, K.


    A gland is proposed of the valve spindle designed for radioactive or otherwise harmful media, such as in nuclear power plant primary circuits. The gland is installed in the valve cover and consists of a primary and a secondary part and of a gland case partitioning the gland space into two chambers. The bottom face of the gland case is provided with a double-sided collar for controlling the elements of the bottom primary gland while the top face is provided with a removable flange. (M.S.)

  18. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep


    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  19. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.

    Sugiura, Yusuke; Hirama, Hirotada; Torii, Toru


    In this paper, a method for fabricating a microfluidic valve made of polydimethylsiloxane (PDMS) using a rapid prototyping method for microchannels through hydrogel cast molding is discussed. Currently, the valves in microchannels play an important role in various microfluidic devices. The technology to prototype microfluidic valves rapidly is actively being developed. For the rapid prototyping of PDMS microchannels, a method that uses a hydrogel as the casting mold has been recently developed. This technique can be used to prepare a three-dimensional structure through simple and uncomplicated methods. In this study, we were able to fabricate microfluidic valves easily using this rapid prototyping method that utilizes hydrogel cast molding. In addition, we confirmed that the valve displacement could be predicted within a range of constant pressures. Moreover, because microfluidic valves fabricated using this method can be directly observed from a cross-sectional direction, we anticipate that this technology will significantly contribute to clarifying fluid behavior and other phenomena in microchannels and microfluidic valves with complex structures.

  20. Cavitation problems in sodium valves

    Elie, X.


    Cavitation poses few problems for sodium valves, in spite of the fact that the loops are not pressurized. This is no doubt due to the low flow velocities in the pipes. For auxiliary loop valves we are attempting to standardize performances with respect to cavitation. For economic reasons cavitation thresholds are approached with large diameter valves. (author)

  1. Passive Set-Point Thermal Control Skin for Spacecraft, Phase I

    National Aeronautics and Space Administration — Current manned and unmanned spacecraft require sophisticated thermal control technologies to keep systems at temperatures within their proper operating ranges....

  2. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine


    for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  3. How Spacecraft Fly Spaceflight Without Formulae

    Swinerd, Graham


    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...



    It is disclosed a shut-off valve which acts automatically and has a fully mechanical performance with respect to the loosing of the tower-shape part balance under the effect of the special acceleration Which is arisen from the quakes waves or serious vibrations, while such vibrations are mainly r...

  5. Heart valve surgery - discharge

    ... ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College ... Editorial team. Related MedlinePlus Health Topics Heart Surgery Heart Valve Diseases Browse the Encyclopedia A.D.A.M., Inc. ...

  6. Poppet valve tester

    Tellier, G. F.


    Tester investigates fundamental factors affecting cyclic life and sealing performance of valve seats and poppets. Tester provides for varying impact loading of poppet against seat and rate of cycling, and controls amount and type of relative motion between sealing faces of seat and poppet. Relative motion between seat and poppet can be varied in three modes.

  7. Thermostatic Radiator Valve Evaluation

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)


    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  8. Blocked Urethral Valves

    ... if any damage has occurred to the upper urinary tract. Your pediatrician will consult with a pediatric nephrologist (kidney specialist) or nurologist, who may recommend surgery to remove the obstructing valves and prevent further infection or damage to the kidneys or urinary system. ...

  9. SULIVAN: Remote Manual Valve Monitoring System Real-Time Transmission of Valve Positions to Reduce Alignment Errors

    Denis, J.C.; Mace, J.R.; Perisse, J.


    Every year, a number of plants worldwide face valve misalignment issues that can lead to damaged components and unplanned extended outage. By installing valve monitoring solutions, the plant can expect a reduction of the risk of valve misalignment events. Over the past years, AREVA has developed Wireless communication solutions and Smart sensor expertise at its own facilities and has carried out tests in nuclear power plants. This paper presents AREVA Wireless studies and Solutions that could be implemented in a nuclear plant. These solutions are mainly based on IoT technologies as MEMs and Low Power Wide Area Network, LPWAN. (Author)

  10. SULIVAN: Remote Manual Valve Monitoring System Real-Time Transmission of Valve Positions to Reduce Alignment Errors

    Denis, J.C.; Mace, J.R.; Perisse, J.


    Every year, a number of plants worldwide face valve misalignment issues that can lead to damaged components and unplanned extended outage. By installing valve monitoring solutions, the plant can expect a reduction of the risk of valve misalignment events. Over the past years, AREVA has developed Wireless communication solutions and Smart sensor expertise at its own facilities and has carried out tests in nuclear power plants. This paper presents AREVA Wireless studies and Solutions that could be implemented in a nuclear plant. These solutions are mainly based on IoT technologies as MEMs and Low Power Wide Area Network, LPWAN. (Author)

  11. Tricuspid valve endocarditis

    Hussain, Syed T.; Witten, James; Shrestha, Nabin K.; Blackstone, Eugene H.


    Right-sided infective endocarditis (RSIE) is less common than left-sided infective endocarditis (IE), encompassing only 5–10% of cases of IE. Ninety percent of RSIE involves the tricuspid valve (TV). Given the relatively small numbers of TVIE cases operated on at most institutions, the purpose of this review is to highlight and discuss the current understanding of IE involving the TV. RSIE and TVIE are strongly associated with intravenous drug use (IVDU), although pacemaker leads, defibrillator leads and vascular access for dialysis are also major risk factors. Staphylococcus aureus is the predominant causative organism in TVIE. Most patients with TVIE are successfully treated with antibiotics, however, 5–16% of RSIE cases eventually require surgical intervention. Indications and timing for surgery are less clear than for left-sided IE; surgery is primarily considered for failed medical therapy, large vegetations and septic pulmonary embolism, and less often for TV regurgitation and heart failure. Most patients with an infected prosthetic TV will require surgery. Concomitant left-sided IE has its own surgical indications. Earlier surgical intervention may potentially prevent further destruction of leaflet tissue and increase the likelihood of TV repair. Fortunately, TV debridement and repair can be accomplished in most cases, even those with extensive valve destruction, using a variety of techniques. Valve repair is advocated over replacement, particularly in IVDUs patients who are young, non-compliant and have a higher risk of recurrent infection and reoperation with valve replacement. Excising the valve without replacing, it is not advocated; it has been reported previously, but these patients are likely to be symptomatic, particularly in cases with septic pulmonary embolism and increased pulmonary vascular resistance. Patients with concomitant left-sided involvement have worse prognosis than those with RSIE alone, due predominantly to greater likelihood of

  12. New safety valve addresses environmental concerns

    Taylor, J.; Austin, R.


    This paper reports that Conoco Pipeline is using a unique relief valve to reduce costs while improving environmental protection at its facilities. Conoco Pipeline Co. Inc. began testing new relief valves in 1987 to present over-pressuring its pipelines while enhancing the safety, environmental integrity and profitability of its pipelines. Conoco worked jointly with Rupture Pin Technology Inc., Oklahoma City, to seek a solution to a series of safety, environmental, and operational risks in the transportation of crude oil and refined products through pipelines. Several of the identified problems were traced to a single equipment source: the reliability of rupture discs used at pipeline stations to relieve pressure by diverting flow to tanks during over-pressure conditions. Conoco's corporate safety and environmental policies requires solving problems that deal with exposure to hydrocarbon vapors, chemical spills or the atmospheric release of fugitive emissions, such as during rupture disc maintenance. The company had used rupture pin valves as vent relief devices in conjunction with development by Rick Austin of inert gas methods to protect the inner casing wall and outer carrier pipeline wall in pipeline road crossings. The design relies on rupture pin valves set at 5 psi to isolate vent openings from the atmosphere prior to purging the annular space between the pipeline and casing with inert gas to prevent corrosion. Speciality Pipeline Inspection and Engineering Inc., Houston, is licensed to distribute the equipment for the new cased-crossing procedure

  13. Analysis of electromagnetic field of direct action solenoid valve with current changing

    Liu Qianfeng; Bo Hanliang; Qin Benke


    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  14. Preliminary thermal design of the COLD-SAT spacecraft

    Arif, Hugh


    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  15. Effect of amusement park rides on programmable shunt valve settings.

    Strahle, Jennifer; Collins, Kelly; Stetler, William R; Smith, Brandon W; Garton, Thomas; Garton, Catherine; Garton, Hugh J L; Maher, Cormac O


    Magnetically programmable shunt valves are susceptible to environmental factors including magnetic fields and accelerative forces. It is unknown if rollercoasters with or without magnetic brakes or linear induction motors (LIMs) are capable of altering the setting of a programmable shunt valve. Two different valve types (type A, n = 10; type B, n = 9) were tested at varying resistance settings in 2 trials on 6 different amusement park rides including 2 rides with LIMs, 2 rides with magnetic brakes, and 2 rides without magnetic technology. The performance level of valve type A and the setting of valve type B changed on rollercoasters with magnets (A = 2.5% [2/80]; B = 5.6% [4/72]) and without magnets (A = 7.5% [3/40]; B = 2.8% [1/36]). Neither valve setting changed when exposed to a Ferris wheel or during ambulation throughout the park. Magnetically programmable valves are susceptible to changes in pressure settings when exposed to amusement park rides with elevated vertical gravitational forces, irrespective of the presence of LIMs or magnetic brakes. © 2013 S. Karger AG, Basel.

  16. Protecting Spacecraft Fragments from Exposure to Small Debris

    V. V. Zelentsov


    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  17. Cyclonic valve test: preliminary results

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)


    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  18. MIDN: A spacecraft Micro-dosimeter mission

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.


    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  19. Spectra and spacecraft

    Moroz, V. I.


    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  20. The use of transcatheter aortic valve replacement vs surgical aortic valve replacement for the treatment of aortic stenosis

    Jensen HA


    Full Text Available Hanna A Jensen, Lillian L Tsai, Vinod H Thourani Division of Cardiothoracic Surgery, Joseph B Whitehead Department of Surgery, Structural Heart and Valve Center, Emory University School of Medicine, Atlanta, GA, USA Abstract: Severe aortic stenosis (AS is associated with considerable morbidity and mortality and is increasing in prevalence as the global population increases. Since AS primarily affects the elderly, many of these patients have comorbidities that make them poor candidates for the gold standard treatment for AS, surgical aortic valve replacement. Transcatheter aortic valve replacement has emerged as a novel technology for the management of AS in higher risk patients over the past decade. Randomized trials have established the safety and efficacy of transcatheter aortic valve replacement, and the medical community has rallied to identify the patients who are most suitable for this transformative treatment. This review focuses on outlining the key procedural differences, describing the unique challenges of both operations, and finally assessing and comparing outcomes both on a general level and in challenging patient subgroups. Keywords: aortic valve replacement, transcatheter aortic valve replacement, surgical aortic valve replacement 

  1. Posterior Urethral Valves

    Steve J. Hodges


    Full Text Available The most common cause of lower urinary tract obstruction in male infants is posterior urethral valves. Although the incidence has remained stable, the neonatal mortality for this disorder has improved due to early diagnosis and intensive neonatal care, thanks in part to the widespread use of prenatal ultrasound evaluations. In fact, the most common reason for the diagnosis of posterior urethral valves presently is the evaluation of infants for prenatal hydronephrosis. Since these children are often diagnosed early, the urethral obstruction can be alleviated rapidly through catheter insertion and eventual surgery, and their metabolic derangements can be normalized without delay, avoiding preventable infant mortality. Of the children that survive, however, early diagnosis has not had much effect on their long-term prognosis, as 30% still develop renal insufficiency before adolescence. A better understanding of the exact cause of the congenital obstruction of the male posterior urethra, prevention of postnatal bladder and renal injury, and the development of safe methods to treat urethral obstruction prenatally (and thereby avoiding the bladder and renal damage due to obstructive uropathy are the goals for the care of children with posterior urethral valves[1].

  2. Anterior Urethral Valves

    Vidyadhar P. Mali


    Full Text Available We studied the clinical presentation and management of four patients with anterior urethral valves; a rare cause of urethral obstruction in male children. One patient presented antenatally with oligohydramnios, bilateral hydronephrosis and bladder thickening suggestive of an infravesical obstruction. Two other patients presented postnatally at 1 and 2 years of age, respectively, with poor stream of urine since birth. The fourth patient presented at 9 years with frequency and dysuria. Diagnosis was established on either micturating cystourethrogram (MCU (in 2 or on cystoscopy (in 2. All patients had cystoscopic ablation of the valves. One patient developed a postablation stricture that was resected with an end-to-end urethroplasty. He had an associated bilateral vesicoureteric junction (VUJ obstruction for which a bilateral ureteric reimplantation was done at the same time. On long-term follow-up, all patients demonstrated a good stream of urine. The renal function is normal. Patients are continent and free of urinary infections. Anterior urethral valves are rare obstructive lesions in male children. The degree of obstruction is variable, and so they may present with mild micturition difficulty or severe obstruction with hydroureteronephrosis and renal impairment. Hence, it is important to evaluate the anterior urethra in any male child with suspected infravesical obstruction. The diagnosis is established by MCU or cystoscopy and the treatment is always surgical, either a transurethral ablation or an open resection. The long-term prognosis is good.

  3. Assessment of diagnostic methods for determining degradation of check valves

    Haynes, H.D.; Farmer, W.S.


    The Oak Ridge National Laboratory (ORNL) has carried out a comprehensive aging assessment of check valves in support of the Nuclear Plant Aging Research (NPAR) program. This paper provides a summary of the ORNL check valve aging assessment with emphasis on the identification, evaluation, and application of check valve monitoring methods and techniques. Several check valve monitoring methods are described and compared. These methods include: acoustic emission monitoring, ultrasonic inspection, magnetic flux signature analysis (MFSA), external magnetics. These diagnostic technologies were shown to be useful in determining check valve condition (e.g., disc position, disc motion, and seat leakage), although none of the methods was by itself, successful in monitoring all three condition indicators. The combination of acoustic emission with either ultrasonics or one of the magnetic technologies, however, yields a monitoring system that succeeds in providing the sensitivity to detect all major check valve operating conditions. Other areas covered in the paper include descriptions of relevant regulatory issues, utility group activities, and interactions ORNL has had with outside organizations for the purpose of disseminating research results

  4. Pros and cons of transcatheter aortic valve implantation (TAVI).

    Terré, Juan A; George, Isaac; Smith, Craig R


    Transcatheter aortic valve implantation (TAVI) or replacement (TAVR) was recently approved by the FDA for intermediate risk patients with severe aortic stenosis (AS). This technique was already worldwide adopted for inoperable and high-risk patients. Improved device technology, imaging analysis and operator expertise has reduced the initial worrisome higher complications rate associated with TAVR, making it comparable to surgical aortic valve replacement (SAVR). However, many answers need to be addressed before adoption in lower risk patients. This paper highlights the pros and cons of TAVI based mostly on randomized clinical trials involving the two device platforms approved in the United States. We focused our analysis on metrics that will play a key role in expanding TAVR indication in healthier individuals. We review the significance and gave a perspective on paravalvular leak (PVL), valve performance, valve durability, leaflet thrombosis, stroke and pacemaker requirement.

  5. Latest-Generation Transcatheter Aortic Valve Replacement Devices and Procedures.

    Chamandi, Chekrallah; Puri, Rishi; Rodriguez-Gabella, Tania; Rodés-Cabau, Josep


    Transcatheter aortic valve replacement (TAVR) is a well-established treatment for patients with severe symptomatic aortic stenosis who are at high or prohibitive surgical risk. More recently, TAVR has emerged as a valid alternative to surgical aortic valve replacement for treating intermediate-risk patients, and several studies are currently evaluating the role of TAVR in low-risk patients. Transcatheter heart valve (THV) technologies have evolved considerably over time, and important iterations have been implemented in many of the latest-generation devices to (1) reduce the size and improve delivery system properties; (2) improve valve deployment, repositioning, and retrievability; and (3) reduce paravalvular leaks. This article reviews the main characteristics of, and clinical results associated with, the newer-generation THVs while providing an overview of novel TAVR indications. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  6. Space power systems--''Spacecraft 2000''

    Faymon, K.A.


    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  7. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik


    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  8. TTEthernet for Integrated Spacecraft Networks

    Loveless, Andrew


    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  9. Automatic fire hydrant valve development

    Drumheller, K.


    The development of a remotely-controlled valve to operate a fire hydrant is described. Assembled from off-the-shelf components, the prototype illustrates that a valve light enough to be handled by one man is possible. However, it does not have the ruggedness or reliability needed for actual fire-fighting operations. Preliminary testing by City of Tacoma fire department personnel indicates that the valve may indeed contribute significantly to fire-fighting efficiency

  10. [Ahmed valve in glaucoma surgery].

    Bikbov, M M; Khusnitdinov, I I

    This is a review on Ahmed valve application in glaucoma surgery. It contains, in particular, data on the Ahmed valve efficiency, results of experimental and histological studies of filtering bleb encapsulation, examines the use of antimetabolites and anti-VEGF agents, and discusses implantation techniques. The current appraisal of antimetabolites delivery systems integrated into the Ahmed valve is presented. Various complications encountered in practice and preventive measures are also covered.

  11. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John


    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  12. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Timothy, VanSant J.; Neergaard, Linda F.


    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  13. Thermal fatigue behavior of valves

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.


    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  14. Fluid mechanics of heart valves.

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S


    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  15. Double-disc gate valve

    Wheatley, S.J.


    The invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewith, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separation of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve

  16. Surge-damping vacuum valve

    Bullock, J.C.; Kelley, B.E.


    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  17. Transcatheter aortic valve implantation and cerebrovascular accidents.

    Stortecky, Stefan; Wenaweser, Peter; Windecker, Stephan


    Transcatheter aortic valve implantation (TAVI) is an evidence-based treatment alternative for selected high-risk patients with symptomatic severe aortic stenosis as acknowledged in the most recent edition of the ESC Guidelines on Valvular Heart Disease 2012. However, periprocedural complications and in particular cerebrovascular accidents remain a matter of concern. While transcatheter heart valve technology continuously improves and the development of novel and even less invasive implantation techniques is on-going, cerebrovascular events complicating TAVI may abrogate the usual improvement in terms of prognosis and quality of life. This article describes the incidence of cerebrovascular events after cardiovascular procedures, provides an overview of the pathophysiological mechanisms as well as the impact on outcomes and provides some insights into preventive strategies as well as the acute management of these events.

  18. Heart Valve Surgery Recovery and Follow Up

    ... Guide: Understanding Your Heart Valve Problem | Spanish Symptom Tracker | Spanish Pre-surgery Checklist | Spanish What Is Heart ... Heart Valves • Heart Valve Problems and Causes • Risks, Signs and Symptoms • Accurate Diagnosis • Treatment Options • Recovery and ...

  19. Gravity Probe B spacecraft description

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky


    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  20. Intelligent spacecraft module

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana


    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  1. Spacecraft early design validation using formal methods

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco


    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  2. 241-AN-A valve pit manifold valves and position indication acceptance test procedure



    This document describes the method used to test design criteria for gear actuated ball valves installed in 241-AN-A Valve Pit located at 200E Tank Farms. The purpose of this procedure is to demonstrate the following: Equipment is properly installed, labeled, and documented on As-Built drawings; New Manifold Valves in the 241-AN-A Valve Pit are fully operable using the handwheel of the valve operators; New valve position indicators on the valve operators will show correct valve positions; New valve position switches will function properly; and New valve locking devices function properly.

  3. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Kern, Dennis L.; Scharton, Terry D.


    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  4. Testing of valves and associated systems in large scale experiments

    Becker, M.


    The system examples dealt with are selected so that they cover a wide spectrum of technical tasks and limits. Therefore the flowing medium varies from pure steam flow via a mixed flow of steam and water to pure water flow. The valves concerned include those whose main function is opening, and also those whose main function is the secure closing. There is a certain limitation in that the examples are taken from Boiling Water Reactor technology. The main procedure in valve and system testing described is, of course, not limited to the selected examples, but applies generally in powerstation and process technology. (orig./HAG) [de

  5. Aortic valve replacement

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A


    mortality were collected. Group analysis by patient geographic distribution and by annular diameter of the prosthesis utilized was conducted. Patients with a manufacturer's labeled prosthesis size > or = 21 mm were assigned to the 'large' aortic size subset, while those with a prosthesis size ... differences in the distribution of either gender or BSA. In the multivariable model, south European patients were seven times more likely to receive a smaller-sized aortic valve (OR = 6.5, 95% CI = 4.82-8.83, p

  6. Materials and methods for hard-facing of power engineering valves

    Frumin, I.I.; Gladkii, P.V.; Eremeev, V.B.; Perepliotchikov, E.F.


    In the Soviet Union a large experience in hard-facing for the water and steam valves has been accumulated. A workability of valves largely depends upon materials used and a technology of their deposition. Mechanized methods have been recently successfully developed, new hard-facing materials created are considered

  7. Optimum design of seat region in valves suitable for digital displacement machines

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.


    Digital displacement fluid power is an upcoming technology setting new standards for the achievable efficiency in variable displacement fluid power pumps and motors. In the present work, an annular seat valve suitable for use in digital displacement units is considered, and the valve geometry...

  8. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    Maxfield, D.A. (ed.)


    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  9. BNGS B valve packing program

    Cumming, D.


    The Bruce B Valve Packing Program began in 1987. The early history and development were presented at the 1992 International CANDU Maintenance conference. This presentation covers the evolution of the Bruce B Valve Packing Program over the period 1992 to 1995. (author)

  10. The tightness of the globe valves in the exploitations practice of the gas pipe-lines

    Pietrak, T.; Rudzki, Z.; Surmacz, W.


    Technological units of the Transit Gas Pipeline (i.e. Compressor Stations, Valve Stations, Stations or National Network Service Installations) have been fitted with Ball Valves as shut-off devices (block valves). Internal tightness of the valves' seat becomes major factor in securing proper service conditions during normal pipeline operation as well as for isolating of pipeline sections in emergency situations (loss of pipeline integrity or uncontrolled gas escape). Internal tightness of the valves is being inspected during scheduled maintenance of the pipeline units. Any leak revealed during inspection is being repaired, following instructions provided in the Manufacturer's Valve Manual. After a time, some cases have been identified, when repair of the revealed leak was found to be difficult, despite close following of the repair manuals. The paper presents analysis of the issue and corrective actions taken accordingly. (authors)

  11. Mechanism study of freeze-valve for molten salt reactor (MSR)

    Qinhua, Zhang


    Molten salt reactor (MSR) is one of the fourth generation nuclear reactor, ordinary nuclear grade valve is unsuitable for MSR due to its special coolant and extraordinary working temperature. Freeze-valve is proposed as the most appropriate valve for MSR, but the technology issue about freeze-valve has not been report in recent decades. Its significance to test the comprehensive property of freeze-valve for the application in MSR. A high temperature molten salt test loop was built which the physics property of salt is similar to the coolant of MSR. The results indicate that freeze-valve has a good performance use in the molten salt circumstances of high temperature (max 700 deg. C) and strong corrosion (authors)

  12. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  13. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Cross, Paul C.; Hansen, Craig N.


    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  14. Experience with valves for PHWR reactors

    Narayan, K.; Mhetre, S.G.


    Material specifications and inspection and testing requirements of the valves meant for use in nuclear reactors are mentioned. In the heavy water systems (both primary and moderator) of a PHWR type reactor, the valves used are gate valves, globe valves, diaphragm valves, butterfly valves, check valves and relief valves. Their locations and functions they perform in the Rajasthan Atomic Power Station Unit-1 are described. Experience with them is given. The major problems encountered with them have been : (1) leakage from the stem seals and body bonnet joint, (2) leakage due to failure of diaphragm and/or washout of the packing and (3) malfunctioning. Measures taken to solve these are discussed. Finally a mention has been made of improved versions of valves, namely, metal diaphragm valve and inverted relief valve. (M.G.B.)

  15. Study of laser cladding nuclear valve parts

    Shi Shihong; Wang Xinlin; Huang Guodong


    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  16. Minimally Invasive Cardiac Surgery: Transapical Aortic Valve Replacement

    Ming Li


    Full Text Available Minimally invasive cardiac surgery is less traumatic and therefore leads to quicker recovery. With the assistance of engineering technologies on devices, imaging, and robotics, in conjunction with surgical technique, minimally invasive cardiac surgery will improve clinical outcomes and expand the cohort of patients that can be treated. We used transapical aortic valve implantation as an example to demonstrate that minimally invasive cardiac surgery can be implemented with the integration of surgical techniques and engineering technologies. Feasibility studies and long-term evaluation results prove that transapical aortic valve implantation under MRI guidance is feasible and practical. We are investigating an MRI compatible robotic surgical system to further assist the surgeon to precisely deliver aortic valve prostheses via a transapical approach. Ex vivo experimentation results indicate that a robotic system can also be employed in in vivo models.

  17. Spacecraft fabrication and test MODIL. Final report

    Saito, T.T.


    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  18. Submarines, spacecraft and exhaled breath.

    Pleil, Joachim D; Hansel, Armin


    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  19. Prosthetic valve endocarditis after transcatheter aortic valve implantation

    Olsen, Niels Thue; De Backer, Ole; Thyregod, Hans G H


    BACKGROUND: Transcatheter aortic valve implantation (TAVI) is an advancing mode of treatment for inoperable or high-risk patients with aortic stenosis. Prosthetic valve endocarditis (PVE) after TAVI is a serious complication, but only limited data exist on its incidence, outcome, and procedural......%) were treated conservatively and 1 with surgery. Four patients (22%) died from endocarditis or complications to treatment, 2 of those (11%) during initial hospitalization for PVE. An increased risk of TAVI-PVE was seen in patients with low implanted valve position (hazard ratio, 2.8 [1.1-7.2]), moderate...

  20. Spacecraft control center automation using the generic inferential executor (GENIE)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug


    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  1. Large Scale Experiments on Spacecraft Fire Safety

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide


    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  2. Artist concept of Galileo spacecraft


    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  3. Cavitation guide for control valves

    Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)


    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  4. Cavitation guide for control valves

    Tullis, J.P.


    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation

  5. Characteristic analysis of servo valve

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.


    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  6. 3D printed mitral valve models: affordable simulation for robotic mitral valve repair.

    Premyodhin, Ned; Mandair, Divneet; Ferng, Alice S; Leach, Timothy S; Palsma, Ryan P; Albanna, Mohammad Z; Khalpey, Zain I


    3D printed mitral valve (MV) models that capture the suture response of real tissue may be utilized as surgical training tools. Leveraging clinical imaging modalities, 3D computerized modelling and 3D printing technology to produce affordable models complements currently available virtual simulators and paves the way for patient- and pathology-specific preoperative rehearsal. We used polyvinyl alcohol, a dissolvable thermoplastic, to 3D print moulds that were casted with liquid platinum-cure silicone yielding flexible, low-cost MV models capable of simulating valvular tissue. Silicone-moulded MV models were fabricated for 2 morphologies: the normal MV and the P2 flail. The moulded valves were plication and suture tested in a laparoscopic trainer box with a da Vinci Si robotic surgical system. One cardiothoracic surgery fellow and 1 attending surgeon qualitatively evaluated the ability of the valves to recapitulate tissue feel through surveys utilizing the 5-point Likert-type scale to grade impressions of the valves. Valves produced with the moulding and casting method maintained anatomical dimensions within 3% of directly 3D printed acrylonitrile butadiene styrene controls for both morphologies. Likert-type scale mean scores corresponded with a realistic material response to sutures (5.0/5), tensile strength that is similar to real MV tissue (5.0/5) and anatomical appearance resembling real MVs (5.0/5), indicating that evaluators 'agreed' that these aspects of the model were appropriate for training. Evaluators 'somewhat agreed' that the overall model durability was appropriate for training (4.0/5) due to the mounting design. Qualitative differences in repair quality were notable between fellow and attending surgeon. 3D computer-aided design, 3D printing and fabrication techniques can be applied to fabricate affordable, high-quality educational models for technical training that are capable of differentiating proficiency levels among users. © The Author 2017

  7. Developments in mechanical heart valve prosthesis

    Artificial heart valves are engineered devices used for replacing diseased or damaged natural valves of the heart. Most commonly used for replacement are mechanical heart valves and biological valves. This paper briefly outlines the evolution, designs employed, materials being used,. and important factors that affect the ...

  8. Butterfly valve torque prediction methodology

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.


    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  9. Training for spacecraft technical analysts

    Ayres, Thomas J.; Bryant, Larry


    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  10. Thermostatic Radiator Valve Evaluation

    Dentz, J. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States)


    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  11. Transcatheter Mitral Valve-in-Ring Implantation

    Tanner, RE


    Failed surgical mitral valve repair using an annuloplasty ring has traditionally been treated with surgical valve replacement or repair1. For patients at high risk for repeat open heart surgery, placement of a trans-catheter aortic valve (i.e., TAVI valve) within the mitral ring (i.e., Mitral-Valve-in-Ring, MViR) has emerged as a novel alternative treatment strategy2-5 . We describe our experience of a failed mitral valve repair that was successfully treated with a TAVI valve delivered via the trans-septal approach, and summarise the data relating to this emerging treatment strategy.

  12. Valve leakage inspection testing and maintenance process

    Aikin, J.A.; Reinwald, J.W.; Kittmer, C.A.


    In valve maintenance, packing rings that prevent leakage along the valve stem must periodically be replaced, either during routine maintenance or to correct a leak or valve malfunction. Tools and procedures currently in use for valve packing removal and inspection are generally of limited value due to various access and application problems. A process has been developed by AECL Research that addresses these problems. The process, using incompressible fluid pressure, quickly and efficiently confirms the integrity of the valve backseat, extracts hard-to-remove valve packing sets, and verifies the leak tightness of the repacked valve

  13. Valve radio and audio repair handbook



    This book is not only an essential read for every professional working with antique radio and gramophone equipment, but also dealers, collectors and valve technology enthusiasts the world over. The emphasis is firmly on the practicalities of repairing and restoring, so technical content is kept to a minimum, and always explained in a way that can be followed by readers with no background in electronics. Those who have a good grounding in electronics, but wish to learn more about the practical aspects, will benefit from the emphasis given to hands-on repair work, covering mechanical as

  14. Transcatheter, valve-in-valve transapical aortic and mitral valve implantation, in a high risk patient with aortic and mitral prosthetic valve stenoses

    Harish Ramakrishna


    Full Text Available Transcatheter valve implantation continues to grow worldwide and has been used principally for the nonsurgical management of native aortic valvular disease-as a potentially less invasive method of valve replacement in high-risk and inoperable patients with severe aortic valve stenosis. Given the burden of valvular heart disease in the general population and the increasing numbers of patients who have had previous valve operations, we are now seeing a growing number of high-risk patients presenting with prosthetic valve stenosis, who are not potential surgical candidates. For this high-risk subset transcatheter valve delivery may be the only option. Here, we present an inoperable patient with severe, prosthetic valve aortic and mitral stenosis who was successfully treated with a trans catheter based approach, with a valve-in-valve implantation procedure of both aortic and mitral valves.

  15. Results from active spacecraft potential control on the Geotail spacecraft

    Schmidt, R.; Arends, H.; Pedersen, A.


    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  16. Sterilization and preservation for aortic-valve transplantation

    A.W.M. van der Kamp (Arthur)


    textabstractRecent advances in modern technology1 expertise and surgical enterprise hove contributed to the solution of may problems in the field of cardiovascular and thoracic surgery. Among these the surgical treatment of heart-valvedysfunctionby valve replacement has become possible

  17. Networked Constellation Communications Technologies

    National Aeronautics and Space Administration — Develop communications architectures and enabling technologies for mission concepts relying on multiple spatially distributed spacecraft to perform coordinated...

  18. Transcatheter Pulmonary Valve Replacement: Current State of Art.

    Alkashkari, Wail; Alsubei, Amani; Hijazi, Ziyad M


    The past couple of decades have brought tremendous advances to the field of pediatric and adult congenital heart disease (CHD). Percutaneous valve interventions are now a cornerstone of not just the congenital cardiologist treating patients with congenital heart disease, but also-and numerically more importantly-for adult interventional cardiologists treating patients with acquired heart valve disease. Transcatheter pulmonary valve replacement (tPVR) is one of the most exciting recent developments in the treatment of CHD and has evolved to become an attractive alternative to surgery in patients with right ventricular outflow tract (RVOT) dysfunction. This review aims to summarize (1) the current state of the art for tPVR, (2) the expanding indications, and (3) the technological obstacles to optimizing tPVR. Since its introduction in 2000, more than ten thousands tPVR procedures have been performed worldwide. Although the indications for tPVR have been adapted earlier from those accepted for surgical intervention, they remain incompletely defined. The new imaging modalities give better assessment of cardiac anatomy and function and determine candidacy for the procedure. The procedure has been shown to be feasible and safe when performed in patients who received pulmonary conduit and or bioprosthetic valves between the right ventricle and the pulmonary artery. Fewer selected patients post trans-annular patch repair for tetralogy of Fallot may also be candidates for this technology. Size restrictions of the currently available valves limit deployment in the majority of patients post trans-annular patch repair. Newer valves and techniques are being developed that may help such patients. Refinements and further developments of this procedure hold promise for the extension of this technology to other patient populations.

  19. Charging in the environment of large spacecraft

    Lai, S.T.


    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  20. Airborne particulate matter in spacecraft


    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  1. Options for Heart Valve Replacement

    ... Guide: Understanding Your Heart Valve Problem | Spanish Symptom Tracker | Spanish Pre-surgery Checklist | Spanish What Is Heart ... Cardiac Arrest: How Are They Different? 7 Warning Signs of a Heart Attack 8 Low Blood Pressure - ...

  2. Minimally invasive aortic valve replacement

    Foghsgaard, Signe; Schmidt, Thomas Andersen; Kjaergard, Henrik K


    In this descriptive prospective study, we evaluate the outcomes of surgery in 98 patients who were scheduled to undergo minimally invasive aortic valve replacement. These patients were compared with a group of 50 patients who underwent scheduled aortic valve replacement through a full sternotomy...... operations were completed as mini-sternotomies, 4 died later of noncardiac causes. The aortic cross-clamp and perfusion times were significantly different across all groups (P replacement...... is an excellent operation in selected patients, but its true advantages over conventional aortic valve replacement (other than a smaller scar) await evaluation by means of randomized clinical trial. The "extended mini-aortic valve replacement" operation, on the other hand, is a risky procedure that should...

  3. Substitution of cobalt alloying in PWR primary circuit gate valves

    Cachon, L.; Sudreau, F.; Brunel, L.


    The object of this study is qualify cobalt-free alternative alloys for valve applications. This paper focus on tribological characterization of numerous coatings is done by using the first one, of a classical type. Then tests are performed with the second one which simulates solicitations supported by gate valves in primary circuit of PWR. 35% Ni-Cr - 65% Cr 3 C 2 coating, deposited by detonation gun technology, gives us hope to find a substitute of Stelite 6. (author). 5 refs., 16 figs., 2 tabs

  4. A nuclear radiation actuated valve for a nuclear reactor

    Christiansen, D.W.; Schively, D.P.


    The valve has a first part (such as a valve rod with piston) and a second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics which are different. The valve parts are positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system. (author)

  5. Optimization of geometry of annular seat valves suitable for Digital Displacement fluid power pumps/motors

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.


    Digital Displacement Fluid Power is an upcoming technology setting new standards for the achievable efficiency of fluid power pumps and motors. The core element of the Digital Displacement technology is high performance electronically controlled seat valves, which must exhibit very low flow...... work an annular seat valve suitable for use in Digital Displacement units is considered, and the ring geometry is optimized using finite element analysis including non-linear material behaviour, contact elements and fluid pressure penetrating load, closely reflecting the actual load of the seat valve...

  6. Development of nuclear quality high pressure valve bellows in Canada

    Janzen, P.; Astill, C.J.


    Concurrent with the decision to use bellows stem sealed nuclear valves where feasible in commercial-scale CANDU plants, AECL undertook to develop an indigenous high pressure valve bellows technology. This program included developing the capability to fabricate improved high pressure valve bellows in conjunction with a Canadian manufacturer. This paper describes the evolution of a two-stage bellows fabrication process involving: (1) manufacture of discrete lengths of precision thin wall telescoping tubes - from preparation of strip blanks through edge grinding and edge forming to longitudinal welding; (2) forming of bellows from tube assemblies using a novel combination of mechanical inward forming followed by hydraulic outward forming. Bellows of Inconel 600 and Inconel 625 have been manufactured and evaluated. Test results indicate comparable to improved performance over alternative high quality bellows. (author)

  7. Small sodium valve design and operating experience

    Abramson, R.; Elie, X.; Vercasson, M.; Nedelec, J.


    Conventionally, valves for sodium pipes smaller than 125 mm in diameter are called ''small sodium valves''. However, this limit should rather be considered as the lower limit o ''large sodium valves''. In fact, both the largest sizes of small valves and the smallest of large valves can be found in the range of 125-300 mm in diameter. Thus what is said about small valves also applies, for a few valve types, above the 125 mm limit. Sodium valves are described here in a general manner, with no manufacturing details except when necessary for understanding valve behavior. Operating experience is pointed out wherever possible. Finally, some information is given about ongoing or proposed development plans. (U.S.)

  8. Design of the Modular Pneumatic Valve Terminal

    Jakub E. TAKOSOGLU


    Full Text Available The paper presents design of the modular pneumatic valve terminal, which was made on the basis of the patent application No A1 402905 „A valve for controlling fluid power drives, specially for pneumatic actuators, and the control system for fluid power drives valves”. The authors describe a method of operation of the system with double-acting valve and 5/2 (five ways and two position valve. Functions of the valve, and an example of application of the valve terminal in the production process were presented. 3D solid models of all the components of the valve were made. The paper presents a complete 3D model of the valve in various configurations. Using CAD-embedded SOLIDWORKS Flow Simulation computational fluid dynamics CFD analysis was also carried out of compressed air flow in the ways of the valve elements

  9. Prevention of crack initiation in valve bodies under thermal shock

    Delmas, J.; Coppolani, P.


    On site and testing experience has shown that cracking in valves affects mainly the stellite hardfacing on seats and discs but may also be a concern for valve bodies. Metallurgical investigations conducted by EDF laboratories on many damaged valves have shown that most of the damage had either a chemical, manufacturing, or operating origin with a strong correlation between the origins and the type of damage. The chemical defects were either excess ferritic dilution of stellite or excess carburizing. Excess carburizing leads to a too brittle hardfacing which cracks under excessive stresses induced on the seating surfaces, via the stem, by too high operating thrusts. The same conditions can also induce cracks of the seats in the presence, in the hardfacing, of hidden defects generated during the welding process. Reduction of the number of defects results first from controls during manufacturing, mainly in the thickness of stellite. On the other hand, maintenance must be fitted to the type of defect. In-situ lapping may lead to release of cobalt, resulting in contamination of the circuit. Furthermore, it is ineffectual in the case of a crack through the seating surface, as is often found on globe valves. The use of new technologies of valves with removable seats and cobalt-free alloys solves permanently this kind of problem.

  10. Development of a novel rf waveguide vacuum valve

    Grudiev, A


    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  11. Soft valves in plants

    Park, Keunhwan; Tixier, Aude; Christensen, Anneline; Arnbjerg-Nielsen, Sif; Zwieniecki, Maciej; Jensen, Kaare


    Water and minerals flow from plant roots to leaves in the xylem, an interconnected network of vascular conduits that spans the full length of the organism. When a plant is subjected to drought stress, air pockets can spread inside the xylem, threatening the survival of the plant. Many plants prevent propagation of air by using hydrophobic nano-membranes in the ``pit'' pores that link adjacent xylem cells. This adds considerable resistance to flow. Interestingly, torus-margo pit pores in conifers are open and offer less resistance. To prevent propagation of air, conifers use a soft gating mechanism, which relies on hydrodynamic interactions between the xylem liquid and the elastic pit. However, it is unknown exactly how it is able to combine the seemingly antagonist functions of high permeability and resistance to propagation of air. We conduct experiments on biomimetic pores to elucidate the flow regulation mechanism. The design of plant valves is compared to other natural systems and optimal strategies are discussed. This work was supported by a research Grant (13166) from VILLUM FONDEN.

  12. Annular flow diverter valve

    Rider, R.L.


    A valve is described for diverting flow from the center of two concentric tubes to the annulus between the tubes or, operating in the reverse direction, for mixing fluids from concentric tubes into a common tube and for controlling the volume ratio of said flow. It consists of a toroidal baffle disposed in sliding engagement with the interior of the inner tube downstream of a plurality of ports in the inner tube, a plurality of gates in sliding engagement with the interior of the inner tube attached to the baffle for movement therewith, a servomotor having a bullet-shaped plug on the downstream end thereof, and drive rods connecting the servomotor to the toroidal baffle. The sevomotor is adapted to move the baffle into mating engagement with the bullet-shaped plug and simultaneously move the gates away from the ports in the inner tube and to move the baffle away from the bullet-shaped plug and simultaneously move the gates to cover the ports in the inner tube

  13. Bioprosthetic Valve Fracture During Valve-in-valve TAVR: Bench to Bedside.

    Saxon, John T; Allen, Keith B; Cohen, David J; Chhatriwalla, Adnan K


    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) has been established as a safe and effective means of treating failed surgical bioprosthetic valves (BPVs) in patients at high risk for complications related to reoperation. Patients who undergo VIV TAVR are at risk of patient-prosthesis mismatch, as the transcatheter heart valve (THV) is implanted within the ring of the existing BPV, limiting full expansion and reducing the maximum achievable effective orifice area of the THV. Importantly, patient-prosthesis mismatch and high residual transvalvular gradients are associated with reduced survival following VIV TAVR. Bioprosthetic valve fracture (BVF) is as a novel technique to address this problem. During BPV, a non-compliant valvuloplasty balloon is positioned within the BPV frame, and a highpressure balloon inflation is performed to fracture the surgical sewing ring of the BPV. This allows for further expansion of the BPV as well as the implanted THV, thus increasing the maximum effective orifice area that can be achieved after VIV TAVR. This review focuses on the current evidence base for BVF to facilitate VIV TAVR, including initial bench testing, procedural technique, clinical experience and future directions.

  14. Transient flow analysis of integrated valve opening process

    Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail:; Xu, Xingxing


    Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.

  15. Quick Spacecraft Thermal Analysis Tool, Phase II

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  16. First report on a human percutaneous transluminal implantation of a self-expanding valve prosthesis for interventional treatment of aortic valve stenosis.

    Grube, Eberhard; Laborde, Jean C; Zickmann, Bernfried; Gerckens, Ulrich; Felderhoff, Thomas; Sauren, Barthel; Bootsveld, Andreas; Buellesfeld, Lutz; Iversen, Stein


    Percutaneous aortic valve replacement is a new technology for the treatment of patients with significant aortic valve stenosis. We present the first report on a human implantation of a self-expanding aortic valve prosthesis, which is composed of three bovine pericardial leaflets inserted within a self-expanding nitinol stent. The 73-year-old woman presented with severe symptomatic aortic valve stenosis (mean transvalvular gradient of 45 mmHg; valve area of 0.7 cm2). Surgical valve replacement had been declined for the patient because of comorbidities, including previous bypass surgery. A retrograde approach via the common iliac artery was used for valve deployment. The contralateral femoral vessels were used for a temporary extracorporal circulation, unloading the left ventricle during the actual stent expansion. Clinical, hemodynamic, and echocardiographic outcomes were assessed serially during the procedure. Clinical and echocardiographic follow-up at day 1, 2, and 14 post procedure was performed to evaluate the short-term outcome. The prosthesis was successfully deployed within the native aortic valve, with accurate and stable positioning and with no impairment of the coronary artery or vein graft blood flow. 2D and doppler echo immediately after device deployment showed a significant reduction in transaortic mean pressure gradient (from 45 to 8 mmHg) without evidence of aortic or mitral valve insufficiency. The clinical status has then significantly improved. These results remained unchanged up to the day 14 follow-up. This case report demonstrates a successful percutaneous implantation of a self-expanding aortic valve prosthesis with remarkable functional and clinical improvements in the acute and short-term outcome. Copyright (c) 2005 Wiley-Liss, Inc.

  17. Multiple spacecraft Michelson stellar interferometer

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.


    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  18. Spacecraft Tests of General Relativity

    Anderson, John D.


    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  19. Standardized spacecraft: a methodology for decision making. AMS report No. 1199

    Greenberg, J.S.; Nichols, R.A.


    As the space program matures, more and more attention is being focused on ways to reduce the costs of performing space missions. Standardization has been suggested as a way of providing cost reductions. The question of standardization at the system level, in particular, the question of the desirability of spacecraft standardization for geocentric space missions is addressed. The spacecraft is considered to be a bus upon which mission oriented equipment, the payload, is mounted. Three basic questions are considered: (1) is spacecraft standardization economically desirable; (2) if spacecraft standardization is economically desirable, what standardized spacecraft configuration or mix of configurations and technologies should be developed; and (3) if standardized spacecraft are to be developed, what power levels should they be designed for. A methodology which has been developed and which is necessary to follow if the above questions are to be answered and informed decisions made relative to spacecraft standardization is described. To illustrate the decision making problems and the need for the developed methodology and the data requirements, typical standardized spacecraft have been considered. Both standardized solar and nuclear-powered spacecraft and mission specialized spacecraft have been conceptualized and performance and cost estimates have been made. These estimates are not considered to be of sufficient accuracy to allow decisions regarding spacecraft mix and power levels to be made at this time. The estimates are deemed of sufficient accuracy so as to demonstrate the desirability of spacecraft standardization and the methodology (as well as the need for the methodology) which is necessary to decide upon the best mix of standardized spacecraft and their design power levels. (U.S.)

  20. LOFT pressurizer safety: relief valve reliability

    Brown, E.S.


    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice

  1. Valve system incorporating single failure protection logic

    Ryan, Rodger; Timmerman, Walter J. H.


    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  2. LOFT pressurizer safety: relief valve reliability

    Brown, E.S.


    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice.

  3. Experimental study on coil of direct action solenoid valve with temperature increasing

    Wang Lu; Liu Qianfeng; Bo Hanliang


    Hydraulic control rod drive technology (HCRDT) is a newly invented patent and Institute of Nuclear and New Energy Technology of Tsinghua University owns HCRDT's independent intellectual property rights. The integrated valve which is made up of three direct action solenoid valves is the key part of this technology, so the performance of the solenoid valve directly affects the function of the integrated valve and the HCRDT. Based on the conditions occurring in the operation of the control rod hydraulic drive system, the coil of the direct action solenoid valve with temperature increasing was studied by the experiment and analyzed by ANSYS code. The result shows that the temperature of the coil for the solenoid valve increases with the current increasing firstly. The temperature of the inner wall of the coil is higher than that of the exterior wall. The temperature of the middle coil is higher than that of the edge of the coil. The design of the direct action solenoid valve can be optimized. (authors)

  4. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Havelund, Klaus; Joshi, Rajeev


    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  5. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)


    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  6. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Armstrong J. W.


    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  7. Autonomous spacecraft rendezvous and docking

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  8. Nonlinearity-induced spacecraft tumbling

    Amos, A.K.


    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  9. Deep Space Networking Experiments on the EPOXI Spacecraft

    Jones, Ross M.


    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  10. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Dunn, V. B.


    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  11. Design Method for Fast Switching Seat Valves for Digital Displacement Machines

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik C.


    corresponding to the piston movement, which has been shown to facilitate superior part load efficiency combined with high bandwidth compared to traditional displacement machines. However, DD machines need fast switching on-off valves with low pressure loss for efficient operation, especially in fast rotating......Digital Displacement (DD) machines are upcoming technology where the displacement of each pressure chamber is controlled electronically by use of two fast switching seat valves. The effective displacement and operation type (pumping/motoring) may be controlled by manipulating the seat valves...... method for DD seat valves are presented, taking into account the significant aspects related to obtaining efficient DD valves with basis in a given DD machine specifications. The seat area is minimized and the stroke length is minimized to obtain fast switching times while considering the pressure loss...

  12. Worldwide Spacecraft Crew Hatch History

    Johnson, Gary


    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  13. Real-time three-dimensional transesophageal echocardiography in valve disease: comparison with surgical findings and evaluation of prosthetic valves.

    Sugeng, Lissa; Shernan, Stanton K; Weinert, Lynn; Shook, Doug; Raman, Jai; Jeevanandam, Valluvan; DuPont, Frank; Fox, John; Mor-Avi, Victor; Lang, Roberto M


    Recently, a novel real-time 3-dimensional (3D) matrix-array transesophageal echocardiographic (3D-MTEE) probe was found to be highly effective in the evaluation of native mitral valves (MVs) and other intracardiac structures, including the interatrial septum and left atrial appendage. However, the ability to visualize prosthetic valves using this transducer has not been evaluated. Moreover, the diagnostic accuracy of this new technology has never been validated against surgical findings. This study was designed to (1) assess the quality of 3D-MTEE images of prosthetic valves and (2) determine the potential value of 3D-MTEE imaging in the preoperative assessment of valvular pathology by comparing images with surgical findings. Eighty-seven patients undergoing clinically indicated transesophageal echocardiography were studied. In 40 patients, 3D-MTEE images of prosthetic MVs, aortic valves (AVs), and tricuspid valves (TVs) were scored for the quality of visualization. For both MVs and AVs, mechanical and bioprosthetic valves, the rings and leaflets were scored individually. In 47 additional patients, intraoperative 3D-MTEE diagnoses of MV pathology obtained before initiating cardiopulmonary bypass were compared with surgical findings. For the visualization of prosthetic MVs and annuloplasty rings, quality was superior compared with AV and TV prostheses. In addition, 3D-MTEE imaging had 96% agreement with surgical findings. Three-dimensional matrix-array transesophageal echocardiographic imaging provides superb imaging and accurate presurgical evaluation of native MV pathology and prostheses. However, the current technology is less accurate for the clinical assessment of AVs and TVs. Fast acquisition and immediate online display will make this the modality of choice for MV surgical planning and postsurgical follow-up.

  14. Integrating standard operating procedures with spacecraft automation, Phase I

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  15. Application of risk-based methods to inservice testing of check valves

    Closky, N.B.; Balkey, K.R.; McAllister, W.J. [and others


    Research efforts have been underway in the American Society of Mechanical Engineers (ASME) and industry to define appropriate methods for the application of risk-based technology in the development of inservice testing (IST) programs for pumps and valves in nuclear steam supply systems. This paper discusses a pilot application of these methods to the inservice testing of check valves in the emergency core cooling system of Georgia Power`s Vogtle nuclear power station. The results of the probabilistic safety assessment (PSA) are used to divide the check valves into risk-significant and less-risk-significant groups. This information is reviewed by a plant expert panel along with the consideration of appropriate deterministic insights to finally categorize the check valves into more safety-significant and less safety-significant component groups. All of the more safety-significant check valves are further evaluated in detail using a failure modes and causes analysis (FMCA) to assist in defining effective IST strategies. A template has been designed to evaluate how effective current and emerging tests for check valves are in detecting failures or in finding significant conditions that are precursors to failure for the likely failure causes. This information is then used to design and evaluate appropriate IST strategies that consider both the test method and frequency. A few of the less safety-significant check valves are also evaluated using this process since differences exist in check valve design, function, and operating conditions. Appropriate test strategies are selected for each check valve that has been evaluated based on safety and cost considerations. Test strategies are inferred from this information for the other check valves based on similar check valve conditions. Sensitivity studies are performed using the PSA model to arrive at an overall IST program that maintains or enhances safety at the lowest achievable cost.

  16. Numerical simulation and analysis of ball valve three-dimensional flow based on CFD

    Zhang, S C; Zhang, Y L; Fang, Z M


    The new rotor oil-gas mixture pump that added ball valves in its export is a kind of innovative products, which can better adapt to the oil and gas mixed condition. In order to explore the rule of flow field in the export ball valve of new rotor oil-gas mixture pump, established the 3 d model of ball valve flow field was established. Using the FLUENT software, combining the standard k-ε turbulent model with multiphase flow technology and adopting the SIMPLE algorithm to simulate the 3 d gas-liquid two phase flow field in export ball valve of new rotor oil-gas mixture pump. In the different conditions that the volume of gas rate was 25%, 50%, 75%, through analyzing the velocity field, stress field and the distribution of the liquid and gas with the ball valve open height respectively at 3mm, 5mm, 7mm. Discussed how open height and different volume of gas rate to influence the field in export ball valve in the process of gas-liquid mixing was discussed. The simulation results showed that the greater the open height, the smaller the difference pressure of ball valve; the gap velocity decreasing with the open height increasing. The gas is mainly distributed in the vicinity of the valve ball in the process of gas-liquid mixing. The gas liquid ratio has a little effect on the gap velocity in the same open height. The results showed the flow field forms in the ball valve directly, to a certain degree, it had released the rules of gas-liquid flow in the valve and provided the theoretical guidance for design and optimization of the new rotor oil-gas mixture pump export ball valve.

  17. Human factors issues for interstellar spacecraft

    Cohen, Marc M.; Brody, Adam R.


    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  18. Butterfly valve of all rubber lining type

    Shimada, Shosaku; Nakatsuma, Sumiya; Sasaki, Iwao; Aoki, Naoshi.


    The valves used for the circulating water pipes for condensers in nuclear and thermal power stations have become large with the increase of power output, and their specifications have become strict. The materials for the valves change from cast iron to steel plate construction. To cope with sea water corrosion, rubber lining has been applied to the internal surfaces of valve boxes, and the build-up welding of stainless steel has been made on the edges of valves. However, recently it is desired to develop butterfly valves, of which the whole valve disks are lined with hard rubber. For the purpose of confirming the performance of large bore valves, a 2600 mm bore butterfly valve of all rubber lining type was used, and the opening and closing test of 1100 times was carried out by applying thermal cycle and pressure difference and using artifical sea water. Also the bending test of hard rubber lining was performed with test pieces. Thus, it was confirmed that the butterfly valves of all rubber lining type have the performance exceeding that of the valves with build-up welding. The course of development of the valves of all rubber lining type, the construction and the items of confirmation by tests of these valves, and the tests of the valve and the hard rubber lining described above are reported. (Kako, I.)

  19. Door valve for fuel handling path

    Makishima, Katsuhiko.


    A door valve is provided which seals cover gas from a liquid metal cooled reactor without leakage therefrom. A threaded shaft is screwed into a heavy box press which is packed with lead. The shaft is adapted to be rotated by an electric motor or a manually operated wheel which is disposed outside of the door valve. A valve plate is suspended from the box press by four guide wheels mounted thereon. The guide wheels are fitted into inclined guide grooves formed at the valve plate and into grooved formed in the inner wall of a valve casing. A locking ball is provided at each side of the valve plate. In operation the shaft rotates and travels to permit the box press and the valve plate to move into the door valve casing, thus releasing the locking balls. The valve plate does not contact the bottom of the casing. When the box press reaches the home position, the valve plate is carried on the valve opening, and the box press presses the valve plate to increase the tightness. The valve plate does not suffer wear as it does not slide over other parts. (Yamaguchi, T.)

  20. Sequential transcatheter aortic valve implantation due to valve dislodgement - a Portico valve implanted over a CoreValve bioprosthesis.

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel; Brito, João; Sondergaard, Lars; Neves, José P; Abecasis, João; M Gabriel, Henrique


    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected for surgery due to advanced age and comorbidities. The patient underwent a first TAVI, with implantation of a Medtronic CoreValve ® , which became dislodged and migrated to the ascending aorta. Due to the previous balloon valvuloplasty, the patient's AS became moderate, and her symptoms improved. After several months, she required another intervention, performed with a St. Jude Portico ® repositionable self-expanding transcatheter aortic valve. There was a good clinical response that was maintained at one-year follow-up. The use of a self-expanding transcatheter bioprosthesis with repositioning features is a solution in cases of valve dislocation to avoid suboptimal positioning of a second implant, especially when the two valves have to be positioned overlapping or partially overlapping each other. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Cavitation noise from butterfly valves

    Rahmeyer, W.J.


    Cavitation in valves can produce levels of intense noise. It is possible to mathematically express a limit for a design level of cavitation noise in terms of the cavitation parameter sigma. Using the cavitation parameter or limit, it is then possible to calculate the flow conditions at which a design level of cavitation noise will occur. However, the intensity of cavitation increases with the upstream pressure and valve size at a constant sigma. Therefore, it is necessary to derive equations to correct or scale the cavitation limit for the effects of different upstream pressures and valve sizes. The following paper discusses and presents experimental data for the caviation noise limit as well as the cavitation limits of incipient, critical, incipient damage, and choking cavitation for butterfly valves. The main emphasis is on the design limit of caviation noise, and a noise level of 85 decibels was selected as the noise limit. Tables of data and scaling exponents are included for applying the design limits for the effects of upstream pressure and valve size. (orig.)

  2. Plunger with simple retention valve

    Fekete, A.V.


    This patent describes a positive displacement retention valve apparatus in which the actual flow equals the theoretical maximum flow through the retention valve. The apparatus includes, in combination, a confined fluid flow conduit, a piston adapted for reciprocal movement within the fluid flow conduit between upstream and downstream limit positions, piston reciprocating means, and pressure responsive check valve means located upstream with respect to the piston in the fluid flow conduit. The pressure responsive check valve means operable to permit fluid flow therethrough in a downstream direction toward the piston, and to preclude fluid flow therethrough in an opposite direction. The piston is composed of parts which are relatively movable with respect to one another. The piston includes a simple retention valve consisting of a plug means, a cylinder having a minimum and a maximum internal cross section flow area therein and being reciprocal within the confined fluid flow conduit, and a seat on the cylinder for the plug means. The piston reciprocating means are operatively connected to the plug means

  3. Advanced Portable Fine Water Mist Fire Extinguisher for Spacecraft, Phase II

    National Aeronautics and Space Administration — Fine water mist (FWM) is a promising replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in performance,...

  4. Test of Advanced Fine Water Mist Nozzles in a Representative Spacecraft Atmosphere, Phase I

    National Aeronautics and Space Administration — Fine water mist is being considered as a replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in...

  5. Integrated Spacecraft Navigation and Communication Using Radio, Optical, and X-rays, Phase I

    National Aeronautics and Space Administration — This program proposes to design and evaluate novel technology of X-ray navigation for augmentation and increased capability of high data-rate spacecraft...

  6. Structural valve deterioration in the Mitroflow biological heart valve prosthesis

    Issa, Issa Farah; Poulsen, Steen Hvitfeldt; Waziri, Farhad


    OBJECTIVES: Concern has been raised regarding the long-term durability of the Mitroflow biological heart valve prosthesis. Our aim was to assess the incidence of structural valve degeneration (SVD) for the Mitroflow bioprosthesis in a nationwide study in Denmark including all patients alive......: A total of 173 patients were diagnosed with SVD by echocardiography. Of these, 64 (11%) patients had severe SVD and 109 (19%) patients moderate SVD. Severe SVD was associated with the age of the prosthesis and small prosthesis size [Size 21: hazard ratio (95% confidence interval, CI) 2.72 (0.97-8.56), P...

  7. The German Aortic Valve Registry (GARY): a nationwide registry for patients undergoing invasive therapy for severe aortic valve stenosis.

    Beckmann, A; Hamm, C; Figulla, H R; Cremer, J; Kuck, K H; Lange, R; Zahn, R; Sack, S; Schuler, G C; Walther, T; Beyersdorf, F; Böhm, M; Heusch, G; Funkat, A K; Meinertz, T; Neumann, T; Papoutsis, K; Schneider, S; Welz, A; Mohr, F W


    Background The increasing prevalence of severe aortic valve defects correlates with the increase of life expectancy. For decades, surgical aortic valve replacement (AVR), under the use of extracorporeal circulation, has been the gold standard for treatment of severe aortic valve diseases. In Germany ~12,000 patients receive isolated aortic valve surgery per year. For some time, percutaneous balloon valvuloplasty has been used as a palliative therapeutic option for very few patients. Currently, alternatives for the established surgical procedures such as transcatheter aortic valve implantation (TAVI) have become available, but there are only limited data from randomized studies or low-volume registries concerning long-time outcome. In Germany, the implementation of this new technology into hospital care increased rapidly in the past few years. Therefore, the German Aortic Valve Registry (GARY) was founded in July 2010 including all available therapeutic options and providing data from a large quantity of patients.Methods The GARY is assembled as a complete survey for all invasive therapies in patients with relevant aortic valve diseases. It evaluates the new therapeutic options and compares them to surgical AVR. The model for data acquisition is based on three data sources: source I, the mandatory German database for external performance measurement; source II, a specific registry dataset; and source III, a follow-up data sheet (generated by phone interview). Various procedures will be compared concerning observed complications, mortality, and quality of life up to 5 years after the initial procedure. Furthermore, the registry will enable a compilation of evidence-based indication criteria and, in addition, also a comparison of all approved operative procedures, such as Ross or David procedures, and the use of different mechanical or biological aortic valve prostheses.Results Since the launch of data acquisition in July 2010, almost all institutions performing

  8. Reasons for conversion and adverse intraoperative events in Endoscopic Port Access™ atrioventricular valve surgery and minimally invasive aortic valve surgery.

    van der Merwe, Johan; Van Praet, Frank; Stockman, Bernard; Degrieck, Ivan; Vermeulen, Yvette; Casselman, Filip


    This study reports the factors that contribute to sternotomy conversions (SCs) and adverse intraoperative events in minimally invasive aortic valve surgery (MI-AVS) and minimally invasive Endoscopic Port Access™ atrioventricular valve surgery (MI-PAS). In total, 3780 consecutive patients with either aortic valve disease or atrioventricular valve disease underwent minimally invasive valve surgery (MIVS) at our institution between 1 February 1997 and 31 March 2016. MI-AVS was performed in 908 patients (mean age 69.2 ± 11.3 years, 45.2% women, 6.2% redo cardiac surgery) and MI-PAS in 2872 patients (mean age 64.1 ± 13.3 years, 46.7% women, 12.2% redo cardiac surgery). A cumulative total of 4415 MIVS procedures (MI-AVS = 908, MI-PAS = 3507) included 1537 valve replacements (MI-AVS = 896, MI-PAS = 641) and 2878 isolated or combined valve repairs (MI-AVS = 12, MI-PAS = 2866). SC was required in 3.0% (n = 114 of 3780) of MIVS patients, which occurred in 3.1% (n = 28 of 908) of MI-AVS patients and 3.0% (n = 86 of 2872) of MI-PAS patients, respectively. Reasons for SC in MI-AVS included inadequate visualization (n = 4, 0.4%) and arterial cannulation difficulty (n = 7, 0.8%). For MI-PAS, SC was required in 54 (2.5%) isolated mitral valve procedures (n = 2183). Factors that contributed to SC in MI-PAS included lung adhesions (n = 35, 1.2%), inadequate visualization (n = 2, 0.1%), ventricular bleeding (n = 3, 0.1%) and atrioventricular dehiscence (n = 5, 0.2%). Neurological deficit occurred in 1 (0.1%) and 3 (3.5%) MI-AVS and MI-PAS conversions, respectively. No operative or 30-day mortalities were observed in MI-AVS conversions (n = 28). The 30-day mortality associated with SC in MI-PAS (n = 86) was 10.5% (n = 9). MIVS is increasingly being recognized as the 'gold-standard' for surgical valve interventions in the context of rapidly expanding catheter-based technology and increasing

  9. Valve Repair or Replacement

    ... Rounds Seminar Series & Daily Conferences Fellowships and Residencies School of Perfusion Technology Education Resources Library & Learning Resource Center CME Resources THI Journal THI Cardiac Society Register for the Cardiac Society ...

  10. Mitral Valve Prolapse

    ... Rounds Seminar Series & Daily Conferences Fellowships and Residencies School of Perfusion Technology Education Resources Library & Learning Resource Center CME Resources THI Journal THI Cardiac Society Register for the Cardiac Society ...

  11. Bicuspid Aortic Valve Disease: A Comprehensive Review

    Mordi, Ify; Tzemos, Nikolaos


    Bicuspid aortic valve is the commonest congenital cardiac abnormality in the general population. This paper article will discuss our current knowledge of the anatomy, pathophysiology, genetics, and clinical aspects of bicuspid aortic valve disease.

  12. Echocardiographic evaluation of heart valve prosthetic dysfunction

    Yuriy Ivaniv


    Full Text Available Patients with replaced heart valve submitted to echocardiographic examination may have symptoms related either to valvular malfunction or ventricular dysfunction from different causes. Clinical examination is not reliable in a prosthetic valve evaluation and the main information regarding its function could be obtained using different cardiac ultrasound modalities. This review provides a description of echocardiographic and Doppler techniques useful in evaluation of prosthetic heart valves. For the interpretation of echocardiography there is a need in special knowledge of prosthesis types and possible reasons of prosthetic function deterioration. Echocardiography allows to reveal valve thrombosis, pannus formation, vegetation and such complications of infective endocarditis as valve ring abscess or dehiscence. Transthoracic echocardiography requires different section plane angles and unconventional views. Transesophageal echocardiography is more often used than in native valve examination due to better visualization of prosthetic valve structure and function. Three-dimensional echocardiography could provide more detailed visual information especially in the assessment of paravalvular regurgitation or valve obstruction.

  13. Bistable fluidic valve is electrically switched

    Fiet, O.; Salvinski, R. J.


    Bistable control valve is selectively switched by direct application of an electrical field to divert fluid from one output channel to another. Valve is inexpensive, has no moving parts, and operates on fluids which are relatively poor electrical conductors.

  14. Comparative study between CardiaMed valves (freely floating valve leaflets versus St. Jude Medical (fixed valve leaflets in mitral valve replacement surgery

    Mostafa Ahmed


    Conclusions: CardiaMed freely floating leaflet prostheses showed good hemodynamic characteristics. The prosthesis adequately corrects hemodynamics and is safe and no worse than the St. Jude Medical valve in the mitral valve position.

  15. Prosthetic Mitral Valve Leaflet Escape

    Kim, Darae; Hun, Sin Sang; Cho, In-Jeong; Shim, Chi-Young; Ha, Jong-Won; Chung, Namsik; Ju, Hyun Chul; Sohn, Jang Won


    Leaflet escape of prosthetic valve is rare but potentially life threatening. It is essential to make timely diagnosis in order to avoid mortality. Transesophageal echocardiography and cinefluoroscopy is usually diagnostic and the location of the missing leaflet can be identified by computed tomography (CT). Emergent surgical correction is mandatory. We report a case of fractured escape of Edward-Duromedics mitral valve 27 years after the surgery. The patient presented with symptoms of acute decompensated heart failure and cardiogenic shock. She was instantly intubated and mechanically ventilated. After prompt evaluation including transthoracic echocardiography and CT, the escape of the leaflet was confirmed. The patient underwent emergent surgery for replacement of the damaged prosthetic valves immediately. Eleven days after the surgery, the dislodged leaflet in iliac artery was removed safely and the patient recovered well. PMID:23837121

  16. Active combustion flow modulation valve

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W


    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  17. Statins for aortic valve stenosis

    Luciana Thiago

    Full Text Available ABSTRACT BACKGROUND: Aortic valve stenosis is the most common type of valvular heart disease in the USA and Europe. Aortic valve stenosis is considered similar to atherosclerotic disease. Some studies have evaluated statins for aortic valve stenosis. OBJECTIVES: To evaluate the effectiveness and safety of statins in aortic valve stenosis. METHODS: Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, Embase, LILACS - IBECS, Web of Science and CINAHL Plus. These databases were searched from their inception to 24 November 2015. We also searched trials in registers for ongoing trials. We used no language restrictions. Selection criteria: Randomized controlled clinical trials (RCTs comparing statins alone or in association with other systemic drugs to reduce cholesterol levels versus placebo or usual care. Data collection and analysis: Primary outcomes were severity of aortic valve stenosis (evaluated by echocardiographic criteria: mean pressure gradient, valve area and aortic jet velocity, freedom from valve replacement and death from cardiovascular cause. Secondary outcomes were hospitalization for any reason, overall mortality, adverse events and patient quality of life. Two review authors independently selected trials for inclusion, extracted data and assessed the risk of bias. The GRADE methodology was employed to assess the quality of result findings and the GRADE profiler (GRADEPRO was used to import data from Review Manager 5.3 to create a 'Summary of findings' table. MAIN RESULTS: We included four RCTs with 2360 participants comparing statins (1185 participants with placebo (1175 participants. We found low-quality evidence for our primary outcome of severity of aortic valve stenosis, evaluated by mean pressure gradient (mean difference (MD -0.54, 95% confidence interval (CI -1.88 to 0.80; participants = 1935; studies = 2, valve area (MD -0.07, 95% CI -0.28 to 0.14; participants = 127; studies = 2

  18. Statins for aortic valve stenosis.

    Thiago, Luciana; Tsuji, Selma Rumiko; Nyong, Jonathan; Puga, Maria Eduarda Dos Santos; Góis, Aécio Flávio Teixeira de; Macedo, Cristiane Rufino; Valente, Orsine; Atallah, Álvaro Nagib


    Aortic valve stenosis is the most common type of valvular heart disease in the USA and Europe. Aortic valve stenosis is considered similar to atherosclerotic disease. Some studies have evaluated statins for aortic valve stenosis. To evaluate the effectiveness and safety of statins in aortic valve stenosis. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS - IBECS, Web of Science and CINAHL Plus. These databases were searched from their inception to 24 November 2015. We also searched trials in registers for ongoing trials. We used no language restrictions.Selection criteria: Randomized controlled clinical trials (RCTs) comparing statins alone or in association with other systemic drugs to reduce cholesterol levels versus placebo or usual care. Data collection and analysis: Primary outcomes were severity of aortic valve stenosis (evaluated by echocardiographic criteria: mean pressure gradient, valve area and aortic jet velocity), freedom from valve replacement and death from cardiovascular cause. Secondary outcomes were hospitalization for any reason, overall mortality, adverse events and patient quality of life.Two review authors independently selected trials for inclusion, extracted data and assessed the risk of bias. The GRADE methodology was employed to assess the quality of result findings and the GRADE profiler (GRADEPRO) was used to import data from Review Manager 5.3 to create a 'Summary of findings' table. We included four RCTs with 2360 participants comparing statins (1185 participants) with placebo (1175 participants). We found low-quality evidence for our primary outcome of severity of aortic valve stenosis, evaluated by mean pressure gradient (mean difference (MD) -0.54, 95% confidence interval (CI) -1.88 to 0.80; participants = 1935; studies = 2), valve area (MD -0.07, 95% CI -0.28 to 0.14; participants = 127; studies = 2), and aortic jet velocity (MD -0.06, 95% CI -0.26 to 0

  19. Evaluation of mispositioned ECCS valves

    Hill, R.A.; O'Brien, J.F.; McIntire, D.C.; Barlow, R.T.


    In October of 1975, Westinghouse submitted NS-CE-787, dated October 17, 1975, to the Nuclear Regulatory Commission (NRC) and entered into discussions with them concerning the spurious movement of certain motor-operated valves (MOV's) in the Emergency Core Cooling System (ECCS) to a position defeating the ECCS function at a time when this function is required. On November 25, 1975, the discussion turned to the possible movement of a manually controlled, motor-operated valve due to a fault in its electrical circuitry and the NRC staff expressed concerns about other possible failure modes that might lead to such a valve movement. The NRC meeting minutes document these concerns. This report is an item-by-item response to the concerns expressed by the NRC staff at that meeting and incorporates the original electrical fault analysis

  20. Pannus Formation Leads to Valve Malfunction in the Tricuspid Position 19 Years after Triple Valve Replacement.

    Alskaf, Ebraham; McConkey, Hannah; Laskar, Nabila; Kardos, Attila


    The Medtronic ATS Open Pivot mechanical valve has been successfully used in heart valve surgery for more than two decades. We present the case of a patient who, 19 years following a tricuspid valve replacement with an ATS prosthesis as part of a triple valve operation following infective endocarditis, developed severe tricuspid regurgitation due to pannus formation.

  1. The nordic aortic valve intervention (NOTION) trial comparing transcatheter versus surgical valve implantation

    Thyregod, Hans Gustav; Søndergaard, Lars; Ihlemann, Nikolaj


    Degenerative aortic valve (AV) stenosis is the most prevalent heart valve disease in the western world. Surgical aortic valve replacement (SAVR) has until recently been the standard of treatment for patients with severe AV stenosis. Whether transcatheter aortic valve implantation (TAVI) can...

  2. Early clinical outcome of aortic transcatheter valve-in-valve implantation in the Nordic countries

    Ihlberg, Leo; Nissen, Henrik Hoffmann; Nielsen, Niels Erik


    Transcatheter valve-in-valve implantation has emerged as an option, in addition to reoperative surgical aortic valve replacement, to treat failed biologic heart valve substitutes. However, the clinical experience with this approach is still limited. We report the comprehensive experience...

  3. Intro to Valve Guide Reconditioning. Automotive Mechanics. Valves. Instructor's Guide [and] Student Guide.

    Horner, W.

    This instructional package, one in a series of individualized instructional units on tools and techniques for repairing worn valve guides in motor vehicles, provides practical experience for students in working on cylinder heads. Covered in the module are reaming valve guides that are oversized to match a new oversized valve, reaming valve guides…

  4. Infective Endocarditis of the Aortic Valve with Anterior Mitral Valve Leaflet Aneurysm

    Tomsic, Anton; Li, Wilson W. L.; van Paridon, Marieke; Bindraban, Navin R.; de Mol, Bas A. J. M.


    Mitral valve leaflet aneurysm is a rare and potentially devastating complication of aortic valve endocarditis. We report the case of a 48-year-old man who had endocarditis of the native aortic valve and a concomitant aneurysm of the anterior mitral valve leaflet. Severe mitral regurgitation occurred

  5. Promising results after percutaneous mitral valve repair

    Ihlemann, Nikolaj; Franzen, Olaf; Jørgensen, Erik


    Mitral valve regurgitation (MR) is the secondmost frequent valve disease in Europe. Untreated MR causes considerable morbidity and mortality. In the elderly, as many as half of these patients are denied surgery because of an estimated high surgical risk. Percutaneous mitral valve repair with the ...... with the MitraClip system resembles the Alfieristitch where a clip is used to connect the tip of the mitral valve leaflets....

  6. Infective endocarditis following percutaneous pulmonary valve replacement

    Cheung, Gary; Vejlstrup, Niels; Ihlemann, Nikolaj


    Infective endocarditis (IE) following percutaneous pulmonary valve replacement (PPVR) with the Melody valve is rarely reported. Furthermore, there are challenges in this diagnosis; especially echocardiographic evidence of vegetation within the prosthesis may be difficult.......Infective endocarditis (IE) following percutaneous pulmonary valve replacement (PPVR) with the Melody valve is rarely reported. Furthermore, there are challenges in this diagnosis; especially echocardiographic evidence of vegetation within the prosthesis may be difficult....

  7. Fast-acting valve actuator

    Cho, Nakwon


    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  8. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    Rho, Hyung Joon; Lee, Jee Keun; Choi, Hee Joo


    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk

  9. 49 CFR 195.260 - Valves: Location.


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valves: Location. 195.260 Section 195.260... PIPELINE Construction § 195.260 Valves: Location. A valve must be installed at each of the following locations: (a) On the suction end and the discharge end of a pump station in a manner that permits isolation...

  10. Porcine Tricuspid Valve Anatomy and Human Compatibility

    Waziri, Farhad; Lyager Nielsen, Sten; Hasenkam, J. Michael


    before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. METHODS: The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin...

  11. Valve-sparing aortic root replacement†

    Koolbergen, David R.; Manshanden, Johan S. J.; Bouma, Berto J.; Blom, Nico A.; Mulder, Barbara J. M.; de Mol, Bas A. J. M.; Hazekamp, Mark G.


    To evaluate our results of valve-sparing aortic root replacement and associated (multiple) valve repair. From September 2003 to September 2013, 97 patients had valve-sparing aortic root replacement procedures. Patient records and preoperative, postoperative and recent echocardiograms were reviewed.

  12. Solving the problem of valve stem leakage

    Dixon, D.F.


    Engineering solutions to valve stem leakage, in systems carrying expensive heavy water under pressure, have progressed from changing packing brands (failure) to leak collection (partial success) to elimination of small packed valves and an improved valve packing strategy involving stable packing materials, live Belleville spring-loading of packing, and issuance of a detailed stuffing box specification (success). (E.C.B.)

  13. 49 CFR 229.109 - Safety valves.


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Safety valves. 229.109 Section 229.109..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.109 Safety valves. Every steam generator shall be equipped with at least two safety valves that have a...

  14. Miniature piezo electric vacuum inlet valve

    Keville, Robert F.; Dietrich, Daniel D.


    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  15. Valve Corporation: Strategy Tipping Points and Thresholds

    Teppo Felin


    Valve Corporation represents an intriguing case study of flat structure and self organization (Puranam & Håkonsson, 2015; Valve, 2012).  The structures and practices of Valve of course are not new. But the company provides an interesting experiment and illustration that powerfully highlights how organizational design can impact individual and collective behavior, strategy and performance.

  16. Valve Corporation: Strategy Tipping Points and Thresholds

    Teppo Felin


    Full Text Available Valve Corporation represents an intriguing case study of flat structure and self organization (Puranam & Håkonsson, 2015; Valve, 2012.  The structures and practices of Valve of course are not new. But the company provides an interesting experiment and illustration that powerfully highlights how organizational design can impact individual and collective behavior, strategy and performance.

  17. Door valve for fuel handling path

    Makishima, Katsuhiko.


    A door valve is provided which seals cover gas from a liquid metal cooled reactor without leakage therefrom. A threaded shaft is screwed into a heavy box press which is packed with lead. The shaft is adapted to be rotated by an electric motor or a manually operated wheel which is disposed outside of the door valve. From the box press a valve plate is suspended by four linkage bars, one for each corner. Each linkage bar is provided with two wheels which are respectively mounted at the connections with the box press and the valve plate. The wheels are carried on the horizontal grooves formed in a door valve casing. In operation the shaft rotates and travels to permit the box press and the valve plate to move into the door valve casing while the valve plate does not contact the casing. When the box press reaches the home position, the wheels drop into the recesses which are disposed at the ends of the grooves, the valve plate is carried on the valve opening, and the box press presses the valve plate to increase the tightness. The valve plate does not suffer wear as it does not over other parts. (Yamaguchi, T.)

  18. Sequential transcatheter aortic valve implantation due to valve dislodgement

    Campante Teles, Rui; Costa, Cátia; Almeida, Manuel


    Transcatheter aortic valve implantation (TAVI) has become an important treatment in high surgical risk patients with severe aortic stenosis (AS), whose complications need to be managed promptly. The authors report the case of an 86-year-old woman presenting with severe symptomatic AS, rejected...

  19. Technology in cardiology


    technology for the patient who is consult- ing a cardiologist. ... patients with, for example, aortic and mitral valve ... availability in the doctor's rooms. ..... tance, usually via the Internet with .... tic relationship with re g a rd to investigation and inter-.

  20. Spacecraft Design Thermal Control Subsystem

    Miyake, Robert N.


    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  1. Supra-annular valve strategy for an early degenerated transcatheter balloon-expandable heart valve.

    Kamioka, Norihiko; Caughron, Hope; Corrigan, Frank; Block, Peter; Babaliaros, Vasilis


    Currently, there are no recommendations regarding the selection of valve type for a transcatheter heart valve (THV)-in-THV procedure. A supra-annular valve design may be superior in that it results in a larger effective orifice area and may have a lower chance of valve thrombosis after THV-in-THV. In this report, we describe the use of a supra-annular valve strategy for an early degenerated THV. © 2018 Wiley Periodicals, Inc.

  2. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    Bradley, Scott M


    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  3. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan


    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  4. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)


    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  5. Aortic valve function after bicuspidization of the unicuspid aortic valve.

    Aicher, Diana; Bewarder, Moritz; Kindermann, Michael; Abdul-Khalique, Hashim; Schäfers, Hans-Joachim


    Unicuspid aortic valve (UAV) anatomy leads to dysfunction of the valve in young individuals. We introduced a reconstructive technique of bicuspidizing the UAV. Initially we copied the typical asymmetry of a normal bicuspid aortic valve (BAV) (I), later we created a symmetric BAV (II). This study compared the hemodynamic function of the two designs of a bicuspidized UAV. Aortic valve function was studied at rest and during exercise in 28 patients after repair of UAV (group I, n = 8; group II, n = 20). There were no differences among the groups I and II with respect to gender, age, body size, or weight. All patients were in New York Heart Association class I. Six healthy adults served as control individuals. All patients were studied with transthoracic echocardiography between 4 and 65 months postoperatively. Systolic gradients were assessed by continuous wave Doppler while patients were at rest and exercising on a bicycle ergometer. Aortic regurgitation was grade I or less in all patients. Resting gradients were significantly elevated in group I compared with group II and control individuals (group I, peak 33.8 ± 7.8 mm Hg; mean 19.1 ± 5.4 mm Hg; group II, peak 15.8 ± 5.4, mean 8.2 ± 2.8 mm Hg; control individuals, peak 6.0 ± 1.6, mean 3.2 ± 0.8 mm Hg; p competence. A symmetric repair design leads to improved systolic aortic valve function at rest and during exercise. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Condition monitoring of a check valve for nuclear power plants by means of acoustic emission technique

    Lee, M. R.; Lee, J. H.; Kim, J. T.; Kim, J. S.; Luk, V. K.


    This work performed in support of the International Nuclear Energy Research Institute (INERI) program, which was to develop and demonstrate advanced sensor and computational technology for on-line monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This primary object of this work is to investigate advanced condition monitoring systems based on acoustic emission detection that can provide timely detection of check valve degeneration and service aging so that maintenance/replacement could be preformed prior to loss safety function. The research is focused on the capability of AE technique to provide diagnostic information useful in determining check valve aging and degradation check valve failure and undesirable operating modes. This work also includes the investigation and adaptation of several advanced sensor technologies such as accelerometer and advanced ultrasonic technique. In addition, this work will develop advanced sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms from check valve degradation.

  7. Benefits of Spacecraft Level Vibration Testing

    Gordon, Scott; Kern, Dennis L.


    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  8. Hybrid spacecraft attitude control system

    Renuganth Varatharajoo


    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  9. Optothermally actuated capillary burst valve

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders


    be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett...

  10. Spring valve for well completion

    Gorbatov, P T


    A spring-loaded valve for well completion consists of a housing with a spring-loaded closing element. In order to protect the closing element from corrosion which might lower the pressure drop, the closing element is made in the form of a piston. It is tightly connected with sealing elements. The housing has orifices, overlapping the piston in the initial position.

  11. Hydraulic servo control spool valve

    Miller, Donald M.


    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  12. Dream missions space colonies, nuclear spacecraft and other possibilities

    van Pelt, Michel


    This book takes the reader on a journey through the history of extremely ambitious, large and complex space missions that never happened. What were the dreams and expectations of the visionaries behind these plans, and why were they not successful in bringing their projects to reality thus far? As spaceflight development progressed, new technologies and ideas led to pushing the boundaries of engineering and technology though still grounded in real scientific possibilities. Examples are space colonies, nuclear-propelled interplanetary spacecraft, space telescopes consisting of multiple satellites and canon launch systems. Each project described in this book says something about the dreams and expectations of their time, and their demise was often linked to an important change in the cultural, political and social state of the world. For each mission or spacecraft concept, the following will be covered: • Description of the design. • Overview of the history of the concept and the people involved. • Why it...

  13. Guidelines for valves in tritium service

    Weaver, W.W.


    Some undesirable practices and misapplications that caused valve-related failures are examined, and future courses of action are recommended to avoid repetition of these events. Desirable valve characteristics and practices that should be considered when selecting valves for use in tritium service are also discussed. Supporting logic for the desirability of these features is presented by discussing the mechanisms of valve degradation followed by examples of related events. Desirable valve and system features and operational actions are grouped into two categories: strongly recommended and recommended. 13 refs., 1 fig

  14. Valve assembly having remotely replaceable bearings

    Johnson, E.R.; Tanner, D.E.


    A valve assembly having remotely replaceable bearings is disclosed wherein a valve disc is supported within a flow duct for rotation about a pair of axially aligned bearings, one of which is carried by a spindle received within a diametral bore in the valve disc, and the other of which is carried by a bearing support block releasably mounted on the duct circumferentially of an annular collar on the valve disc coaxial with its diametrical bore. The spindle and bearing support block are adapted for remote removal to facilitate servicing or replacement of the valve disc support bearings

  15. Multifunctional four-port directional control valve constructed from logic valves

    Lisowski, E.; Czyżycki, W.; Rajda, J.


    Highlights: • Directional valve with standard ISO 440-08 has been constructed from logic valves. • Only one innovative valve may replace whole family of the standard valves. • CFD analysis and bench tests of the innovative valve has been carried. • Parameters of the innovative valve are equaling or surpassing the standard ones. • The innovative valve has additional possibilities of pressure and flow control. - Abstract: The paper refers to four-port solenoid pilot operated valves, which are subplate mounted in a hydraulic system in accordance with the ISO 4401 standard. Their widespread use in many machines and devices causes a continuing interest in the development of their design by both the scientific centers and the industry. This paper presents an innovative directional control valve based on the use of logic valves and a methodology followed for the design of it by using Solid Edge CAD and ANSYS/Fluent CFD software. The valve design methodology takes into account the need to seek solutions that minimize flow resistance through the valve. For this purpose, the flow paths are prepared by means of CAD software and pressure-flow curves are determined as a result of CFD analysis. The obtained curves are compared with the curves available in the catalogs of spool type directional control valves. The new solution allows to replace the whole family of spool type four-port directional control valves by one valve built of logic valves. In addition, the innovative directional control valve provides leak-proof shutting the flow paths off and also it can control flow rate and even pressure of working liquid. A prototype of the valve designed by the presented method has been made and tested on the test bench. The results quoted in the paper confirm that the developed logic type directional control valve is able to meet all designed connection configurations, and the obtained pressure-flow curves show very good conformity with the results of CFD analysis

  16. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    Brooks, R. P.; Cha, K. K.


    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  17. [Tricuspid valve insufficiency: what should be done?].

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G


    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  18. Valve for closing a steam line

    Meyer, W.; Potrykus, G.


    Instead of several control elements, the quick-closing valve, especially in the main-steam line between steam generator and turbine of a power station has the valve cone itself as the only movable part, acting with its inner surface as a piston within a second cylinder space. The valve shaft is at the same time a piston rod with a stepped piston at the upper end. This piston is loaded in a cylinder at the upspace below the valve cover on one hand by a spring, on the other hand by its own medium. Two non-return valves, one of it in a bore of the valve cone, connect the first-mentioned cylinder space with the steam-loaded inlet resp. outlet side of the valve. For controlling the valve, a magnet valve is sufficient. By automatic control of the valve cone coupled with several pistons several control lines can be omitted. There are also no pressurized control lines outside the valve which could be damaged by exterior influences. (ERA) [de

  19. Mechanical versus bioprosthetic aortic valve replacement.

    Head, Stuart J; Çelik, Mevlüt; Kappetein, A Pieter


    Mechanical valves used for aortic valve replacement (AVR) continue to be associated with bleeding risks because of anticoagulation therapy, while bioprosthetic valves are at risk of structural valve deterioration requiring reoperation. This risk/benefit ratio of mechanical and bioprosthetic valves has led American and European guidelines on valvular heart disease to be consistent in recommending the use of mechanical prostheses in patients younger than 60 years of age. Despite these recommendations, the use of bioprosthetic valves has significantly increased over the last decades in all age groups. A systematic review of manuscripts applying propensity-matching or multivariable analysis to compare the usage of mechanical vs. bioprosthetic valves found either similar outcomes between the two types of valves or favourable outcomes with mechanical prostheses, particularly in younger patients. The risk/benefit ratio and choice of valves will be impacted by developments in valve designs, anticoagulation therapy, reducing the required international normalized ratio, and transcatheter and minimally invasive procedures. However, there is currently no evidence to support lowering the age threshold for implanting a bioprosthesis. Physicians in the Heart Team and patients should be cautious in pursuing more bioprosthetic valve use until its benefit is clearly proven in middle-aged patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email:

  20. An AFDX Network for Spacecraft Data Handling

    Deredempt, Marie-Helene; Kollias, Vangelis; Sun, Zhili; Canamares, Ernest; Ricco, Philippe


    In aeronautical domain, ARINC-664 Part 7 specification (AFDX) [4] provides the enabling technology for interfacing equipment in Integrated Modular Avionics (IMA) architectures. The complementary part of AFDX for a complete interoperability - Time and Space Partitioning (ARINC 653) concepts [1]- was already studied as part of space domain ESA roadmap (i.e. IMA4Space project)Standardized IMA based architecture is already considered in aeronautical domain as more flexible, reliable and secure. Integration and validation become simple, using a common set of tools and data base and could be done by part on different means with the same definition (hardware and software test benches, flight control or alarm test benches, simulator and flight test installation).In some area, requirements in terms of data processing are quite similar in space domain and the concept could be applicable to take benefit of the technology itself and of the panel of hardware and software solutions and tools available on the market. The Mission project (Methodology and assessment for the applicability of ARINC-664 (AFDX) in Satellite/Spacecraft on-board communicatION networks), as an FP7 initiative for bringing terrestrial SME research into the space domain started to evaluate the applicability of the standard in space domain.

  1. Estimating Torque Imparted on Spacecraft Using Telemetry

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.


    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  2. Computer simulation of spacecraft/environment interaction

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.


    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  3. Computer simulation of spacecraft/environment interaction

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V


    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  4. Study on process of laser cladded nuclear valve parts

    Zhang Chunliang


    The microstructure and performances of the Co-base alloy coatings that are formed by laser cladding, plasma spurt welding and arc surfacing on the nuclear valve-sealing surface have been studied and compared. The combination costs of laser cladding, plasma spurt welding and arc, surfacing have been analyzed and compared. The results showed that the laser cladding processing has the advantages of high efficiency, low energy cost, a little machining allowance, high rate of finished products and low combination cost, compared with plasma spurt welding processing and arc surfacing processing. The laser cladding technology can improve the qualities of nuclear valve parts and increase their service life. Therefore, the laser cladding processing is a new technology with developing potential

  5. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics


    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  6. Valve testing for UK PWR safety applications

    George, P.T.; Bryant, S.


    Extensive testing and development has been done by the Central Electricity Generating Board (CEGB) to support the design, construction and operation of Sizewell B, the UK's first PWR. A Blowdown Rig for the Assessment of Valve Operability - (BRAVO) has been constructed at the CEGB Marchwood Engineering Laboratory to reproduce PWR Pressurizer fluid conditions for the full scale testing of Pressurizer Relief System (PRS) valves. A full size tandem pair of Pilot Operated Safety Relief Valves (POSRVs) is being tested under the full range of pressurizer fluid conditions. Tests to date have produced important data on the performance of the valve in its Cold Overpressure protection mode of operation and on methods for the in-service testing of the valve. Also, a full size pressurizer safety valve has been tested under full PRS fluid conditions to develop a methodology for the pre-service testing of the Sizewell valves. Further work will be carried out to develop procedures for the in-service testing of the valve. In the Main Steam Safety Valve test program carried out at the Siemens-KWU Test Facilities, a single MSSV from three potential suppliers was tested under full secondary system conditions. The test results have been analyzed and are reflected in the CEGB's arrangements for the pre-service and in-service testing of the Sizewell MSSVs. Valves required to interrupt pipebreak flow must be qualified for this duty by testing or a combination of testing and analysis. To obtain guidance on the performance of such tests gate and globe valves have been subjected to simulated pipebreaks under PWR primary circuit conditions. In the light of problems encountered with gate valve closure under these conditions, further tests are currently being carried out on the BRAVO facility on a gate valve, in preparation for the full scale flow interruption qualification testing of the Sizewell main steam isolation valve

  7. Transcatheter aortic valve prosthesis surgically replaced 4 months after implantation

    Thyregod, Hans Gustav; Lund, Jens Teglgaard; Engstrøm, Thomas


    Transcatheter aortic valve implantation is a new and rapidly evolving treatment option for high-risk surgical patients with degenerative aortic valve stenosis. Long-term results with these new valve prostheses are lacking, and potential valve dysfunction and failure would require valve replacemen....... We report the first case of surgical valve replacement in a patient with a dysfunctional transcatheter-implanted aortic valve prosthesis 4 months after implantation....

  8. Evaluation of Reflexive Valve Logic for a Shipboard Firemain


    firemain valves can be used to measure flow rate [2-5]. In addition, several device-level communication technologies such as Lon Works, Modbus, Profibus ...19,20]: Continuity dp ,d(pV)_0 dt 8K (1) Where p = fluid density, lbm/ft3 (kg/m3) t = time, s V = fluid velocity, ft/s (m/s) x = location

  9. Ulysses spacecraft control and monitoring system

    Hamer, P. A.; Snowden, P. J.


    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  10. Operationally Responsive Spacecraft Subsystem, Phase I

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  11. Application of ceramics to the sliding seat of valve bridge; Valve bridge yodobu eno ceramics tekiyo

    Matsui, T; Ono, T [Mitsubishi Motors Corp., Tokyo (Japan)


    For use in the valve train, using an OHV (over head valve) configuration. of a 4 valve diesel engine for trucks and buses; we developed a valve bridge, a component of a valve train, with a ceramic head that is made of silicon nitride(Si3N4) in contact with a rocker arm in order to reduce cost and improve wear resistance for further diesel engine emissions regulations. In order to evaluate the effect of this valve bridge, RIG tests and durability tests on actual engines were carried out. 7 figs., 2 tabs.

  12. AVARIS. An innovative process to repair seal seat surfaces in gate and check valves

    Herzing, Karl-Heinz; Breitenberger, Ulf; Grieser, Armin


    AREVA Valve Repair in situ - AVARIS in short - is an innovative process for valve repair developed by AREVA. Its main benefit is that valves no longer need to be cut out but can be machined in situ, i.e. within the piping system. AVARIS saves the plant operators time and money, as complete exchanges of valves and the ensuing complex measures become dispensable. AVARIS is of high interest in the worldwide maintenance market, as it can be applied in both nuclear and conventional power plants. Moreover, AVARIS retrofits valves in the secondary and primary circuit which even saves complex nuclear transports. AVARIS fulfills the quality requirements of 3. party authorities in national and international markets. Valves repaired with AVARIS correspond to their original condition with regard to the sealing function. The successful first application on 2 gate valves in a German nuclear power plant proves that this repair technology is very reliable and flexible. Follow-up orders for AVARIS will be realized in several nuclear power plants in 2011. (orig.)

  13. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    Zakirnichnaya, M. M.; Kulsharipov, I. M.


    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  14. Multidisciplinary studies of the social, economic and political impact resulting from recent advances in satellite meteorology. Volume 6: Executive summary. [technological forecasting spacecraft control/attitude (inclination) -classical mechanics


    An assessment of the technological impact of modern satellite weather forecasting for the United States is presented. Topics discussed are: (1) television broadcasting of weather; (2) agriculture (crop production); (3) water resources; (4) urban development; (5) recreation; and (6) transportation.

  15. Performance of balanced bellows safety relief valves

    Lai, Y.S.


    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  16. Traumatic Mitral Valve and Pericardial Injury

    Nissar Shaikh


    Full Text Available Cardiac injury after blunt trauma is common but underreported. Common cardiac trauma after the blunt chest injury (BCI is cardiac contusion; it is very rare to have cardiac valve injury. The mitral valve injury during chest trauma occurs when extreme pressure is applied at early systole during the isovolumic contraction between the closure of the mitral valve and the opening of the aortic valve. Traumatic mitral valve injury can involve valve leaflet, chordae tendineae, or papillary muscles. For the diagnosis of mitral valve injury, a high index of suspicion is required, as in polytrauma patients, other obvious severe injuries will divert the attention of the treating physician. Clinical picture of patients with mitral valve injury may vary from none to cardiogenic shock. The echocardiogram is the main diagnostic modality of mitral valve injuries. Patient’s clinical condition will dictate the timing and type of surgery or medical therapy. We report a case of mitral valve and pericardial injury in a polytrauma patient, successfully treated in our intensive care unit.

  17. Simple Check Valves for Microfluidic Devices

    Willis, Peter A.; Greer, Harold F.; Smith, J. Anthony


    A simple design concept for check valves has been adopted for microfluidic devices that consist mostly of (1) deformable fluorocarbon polymer membranes sandwiched between (2) borosilicate float glass wafers into which channels, valve seats, and holes have been etched. The first microfluidic devices in which these check valves are intended to be used are micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. In this application, it will be necessary to store some liquid samples in reservoirs in the devices for subsequent laboratory analysis, and check valves are needed to prevent cross-contamination of the samples. The simple check-valve design concept is also applicable to other microfluidic devices and to fluidic devices in general. These check valves are simplified microscopic versions of conventional rubber- flap check valves that are parts of numerous industrial and consumer products. These check valves are fabricated, not as separate components, but as integral parts of microfluidic devices. A check valve according to this concept consists of suitably shaped portions of a deformable membrane and the two glass wafers between which the membrane is sandwiched (see figure). The valve flap is formed by making an approximately semicircular cut in the membrane. The flap is centered over a hole in the lower glass wafer, through which hole the liquid in question is intended to flow upward into a wider hole, channel, or reservoir in the upper glass wafer. The radius of the cut exceeds the radius of the hole by an amount large enough to prevent settling of the flap into the hole. As in a conventional rubber-flap check valve, back pressure in the liquid pushes the flap against the valve seat (in this case, the valve seat is the adjacent surface of the lower glass wafer), thereby forming a seal that prevents backflow.

  18. Quantitative assessment of an aortic and pulmonary valve function according to valve fenestration

    Mirkhani, S.H.; Golestani, M.G.; Hosini, M.; Kazemian, A.


    There are some reasons for malfunction of aortic and pulmonary valve like fibrosis, calcification, and atheroma. Although, in some papers fenestration were known as a pathologic sign, but it is not generally accepted, while this matter is important in choosing suitable Homograft Heart Valve. In this paper fenestrations and its size, numbers and situation effect was studied. We collected 98 hearts, the donors died because of accident, we excluded valves with atheroma, calcification, fibrosis and unequal cusps, 91 aortic and 93 pulmonary valves were given further consideration. We classified valves according to situation, number and size of fenestration. Each valve was tested with 104 cm of non-nal saline column pressure which is equal to 76 mm Hg. Valve efficacy was detected by fluid flow assay. With study of 184 valves, 95 had no fenestration, 64 had less than 2 fenestration and 25 had more than 2 fenestration. Valve efficacy in condition of less than 2 fenestration was more than others (p <0.01). Malfunction effects of fenestration increased in larger valve and it will be decreased if their situation would be marginal (free margin of cusp). In the comparison of aortic and pulmonary valve we saw that malfunction effect of fenestration in pulmonary valve was more than aortic valve. Our experience in Immam Khomeini Homograft Valve Bank has shown that a great deal of valves is fenestrated. It seems that fenestration must be considered as a quality criterion in homograft valve preparation, especially in pulmonary and large aortic valves; but complementary studies is necessary

  19. Organic evaporator steam valve failure

    Jacobs, R.A.


    Defense Waste Processing Facility (DWPF) Technical has requested an analysis of the capacity of the Organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore, it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS)

  20. Aerococcus viridans Native Valve Endocarditis

    Wenwan Zhou


    Full Text Available Aerococcus viridans is an infrequent human pathogen and few cases of infective endocarditis have been reported. A case involving a 69-year-old man with colon cancer and hemicolectomy 14 years previously, without recurrence, is reported. A diagnosis of native mitral valve endocarditis was established on the basis of clinical presentation, characteristic echocardiographic findings and pathological specimen examination after urgent valve replacement. A viridans endocarditis appears to be particularly virulent, requiring a surgical approach in four of 10 cases reported and death in one of nine. Given the aggressive nature of A viridans endocarditis and the variable time to diagnosis (a few days to seven months, prompt recognition of symptoms and echocardiography, in addition to blood cultures, should be performed when symptoms persist.

  1. Bistable diverter valve in microfluidics

    Tesař, Václav; Bandulasena, H.C.H.


    Roč. 50, č. 5 (2011), s. 1225-1233 ISSN 0723-4864 R&D Projects: GA ČR GA101/07/1499; GA AV ČR IAA200760705 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluidics * bistable diverter valves * pressure-driven microfluidics Subject RIV: BK - Fluid Dynamics Impact factor: 1.735, year: 2011

  2. Short rendezvous missions for advanced Russian human spacecraft

    Murtazin, Rafail F.; Budylov, Sergey G.


    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  3. Control valve friction operational experience at Darlington NGD

    Speer, B.


    Proper installation of valve packing is an important part of ensuring that control valves operate as intended. Darlington NGD has developed a Valve Packing Program. This program combined with valve diagnostics has enabled the station to ensure that the operability of control valves is maintained after repacking. This paper outlines the process that is used for this. (author)

  4. Transcatheter aortic valve prosthesis surgically replaced 4 months after implantation

    Thyregod, Hans Gustav; Lund, Jens Teglgaard; Engstrøm, Thomas


    Transcatheter aortic valve implantation is a new and rapidly evolving treatment option for high-risk surgical patients with degenerative aortic valve stenosis. Long-term results with these new valve prostheses are lacking, and potential valve dysfunction and failure would require valve replacemen...

  5. On/off multi-poppet valve for switching manifold in discrete fluid power force system PTO in wave energy converters

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole


    Fluid power systems are the leading technology for power take off systems in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lowers the energy production. To overcome......, the choice of pilot valve, structural mechanical issues and modelling and simulation of various valve configurations. Hence, a mechatronic design process is utilised to choose the best valve configuration....

  6. The development of fusion sensor techniques for condition monitoring of a check valve

    Seong, S.H.; Kim, J.S.; Hur, S.; Kim, J.T.; Park, W.M.; Cha, D.B.


    The failures of check valves are one of the most important problems in nuclear power plants because the reverse flows through the failed check valve impact on the healthy hydraulic loop. The present test method of finding out the mechanical failure of a check valve is very risky in the radiated environments during normal operation. In addition, the detection of failures in the overhaul period is very costly and tedious because many check valves are used in the plants and manual disassembly work is required. We have suggested the fusion sensor technology for detecting the failures of check valves through measuring and analyzing the backward leakage flow and mechanical vibration without disassembling the check valve. The fusion sensor means that more than two sensors are used in order to identify and analyze the changes of the frequency response between the failed check valve and healthy check valve. We use the accelerometer and acoustic emission sensor as an alternative to the fusion sensor methodology. We have found that the acoustic emission sensor would be capable of directly detecting a high frequency acoustic wave generated from backward leakage flow itself at a low pressure and temperature. The accelerometer for detecting the mechanical vibration induced from leakage flows would, also, be useful at a high pressure and temperature from the previous studies. The effectiveness of this system is that it is possible for predictive maintenance and information of the problem valve will be captured and it reduces the radiation exposure for the maintenance personnel during power operation as well as the maintenance period. (orig.)

  7. Defining indicators to motorize block valves aiming to reduce potential leakage applied to OSBRA pipeline

    Pires, L.F.G. [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil); Sousa, A.G.; Castro, N.C.; Spagnolo, R. [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)


    The discussion about motorizing block valves is a constant point being brought up when it is intended to control or reduce the amount of liquid leaking in the event of a pipe rupture. During the pipeline's project stage the installation of blocking valves along the pipeline must be taken into consideration to meet the operation and maintenance requirements as well as to reduce the potential amounts of volume being leaked. In existing pipelines, the main concern is the definition of which valves are candidates to be motorized. In both situations criteria should be established to define this choice. A math algorithm was developed to define the potential leakage due to gravity along the pipeline profile where the influence of a valve over another is verified, as well as the contribution of the check valves existing in the pipeline. The present work defines a parameter based on the extension protected by the valve and the reduction of the potential leakage. This parameter is then fed to a worksheet where the efficiency indicators are calculated to each valve eligible to be motorized. It also takes into consideration factors relative to the valve location, such as the environmental sensitivity, risk assessment, social diagnosis and device's proximity to contingency resources. Finally, after considering all the above aspects, it's possible to come up with a final classification, recommending specific valves to be prioritized on an eventual process of motorization adequacies. This methodology was applied, experimentally on a pipe segment of TRANSPETRO's Sao Paulo-Brasilia pipeline - OSBRA , where it proved to be an important technological and management tool. (author)

  8. Spacecraft command and control using expert systems

    Norcross, Scott; Grieser, William H.


    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  9. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex


    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  10. On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    Loveless, Andrew


    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.

  11. Aortic valve surgery of the 21st century: sutureless AVR versus TAVI.

    Costache, Victor S; Moldovan, Horatiu; Arsenescu, Catalina; Costache, Andreea


    Surgical aortic valve replacement (sAVR) has been a safe, effective and time-proven technique and is still the standard of care all over the world for aortic valve treatment. The vast majority of centers perform this procedure by doing a median sternotomy with several disadvantages. While many others specialties went minimally invasive decades ago, in cardiovascular field transcatheter valve implantation was the first minimally invasive valvular procedure that gained rapid worldwide acceptance. Transcatheter valve replacement (TAVR) is now marketed as a procedure that should be performed under local anesthesia, by an interventional cardiologist via trans femoral route with no other healthcare professional invited to the patient selection or case planning. An increasing number of surgeons are promoting minimally invasive aortic valve replacement, which is gaining grounds, especially with the help of the new sutureless valve technology. With these two new technologies emerging, legitimate questions arise and need to be answered - which has the longest durability, lower complication rate and lower overall mortality.

  12. Design of a multi-poppet on-off valve for wave energy converters

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole


    Fluid power systems are the leading technology for the power take off system in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lower the energy production. To overcome...... the issues with poor system efficiency a discrete fluid power system is proposed as a main part of the PTO system. For the discrete system to be feasible large fluid power switching valves are needed. The current paper presents a two stage 1000 L/min@5bar multi-poppet on/off valve with a switching time less......, structural mechanical issues and modelling and simulation of various valve configurations. Hence in the design process a wide variety of topics are combined to chose the best valve configuration....

  13. Force measuring valve assemblies, systems including such valve assemblies and related methods

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID


    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  14. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    Park, Sung Hwan


    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  15. 3D Printed Multimaterial Microfluidic Valve.

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  16. The radiology of prosthetic heart valves

    Steiner, R.M.; Flicker, S.


    The development of prosthetic heart valves in the late 1950s ushered in a new era in the treatment of heart disease. The radiologist has an important role to play preoperatively in the diagnosis of valvular heart disease. Radiology is valuable in identification of the implanted prosthetic valve and recognition of complications associated with valve implantation. Radiologists must be familiar with the imaging techniques best suited to evaluate the function of the valve prosthesis in question. In this chapter the authors discuss the radiographic approach to the evaluation of the status of patients for valve replacement and the imaging problems peculiar to the types of valves in current use. The relative value of plain-film radiography, fluoroscopy, videorecording and cinerecording, and aortography is addressed, as well as the potential value of magnetic resonance imaging and subsecond dynamic computed tomography

  17. Spaceborne intensity interferometry via spacecraft formation flight

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral


    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  18. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Dekoulis, George


    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  19. Trans-apical aortic valve implantation in a patient with stentless valve degeneration.

    Kapetanakis, Emmanouil I; MacCarthy, Philip; Monaghan, Mark; Wendler, Olaf


    Trans-apical valve-in-valve trans-catheter aortic valve implantation (TAVI) has successfully been performed in selected, high-risk patients, who suffered prosthetic degeneration after aortic valve replacement using stented xenografts. We report the case of a 79-year-old male patient who underwent one of the first successful TAVIs in a failing stentless bioprosthesis. Copyright © 2010 European Association for Cardio-Thoracic Surgery. Published by Elsevier B.V. All rights reserved.

  20. Optimal valve location in long oil pipelines

    Grigoriev, A.; Grigorieva, N.V.


    We address the valve location problem, one of the basic problems in design of long oil pipelines. Whenever a pipeline is depressurized, the shutoff valves block the oil flow and seal the damaged part of the pipeline. Thus, the quantity of oil possibly contaminating the area around the pipeline is determined by the volume of the damaged section of the pipeline between two consecutive valves. Then, ecologic damage can be quantified by the amount of leaked oil and the environmental characteristi...

  1. Bistable (latching) solenoid actuated propellant isolation valve

    Wichmann, H.; Deboi, H. H.


    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  2. Improved valve and dash-pot assembly

    Chang, S.C.


    A dash-pot valve comprises a cylinder submerged in the fluid of a housing and have a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with targentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  3. Valve and dash-pot assembly

    Chang, Shih-Chih


    A dash-pot valve comprising a cylinder submerged in the fluid of a housing and having a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with tangentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  4. Double-reed exhaust valve engine

    Bennett, Charles L.


    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  5. Fast Flux Test Facility primary sodium valves

    Rabe, G.B.; Ezra, B.C.


    The design and development of the valves used in the primary sodium coolant loop of the Fast Flux Test Facility is described. One tilting-disk check valve is used in the cold leg of the coolant loop. It is designed to limit flow reversal in the loop while maintaining a low pressure drop during forward flow. Two isolation valves are used in each coolant loop--one in the cold leg and one in the hot leg. They are of the motor-operated swinging-gate type. The design, analysis, and testing programs undertaken to develop and qualify these valves are described

  6. Advantages of butterfly valves for power plants

    Lapadat, J.T.


    Butterfly valves are increasingly used in nuclear power plants. They are used in CANDU reactors for class 2 and 3 service, to provide emergency and tight shutoff valves for all inlets and outlets of heat exchangers and all calandria penetrations. Guidelines for meeting nuclear power plant valve specifications are set out in ASME Section 3, Nuclear Power Plant Components. Some details of materials of construction, type of actuator, etc., for various classes of nuclear service are tabulated in the present article. The 'fishtail' butterfly valve is an improved design with reduced drag, as is illustrated and explained. (N.D.H.)

  7. Additively Manufactured Main Fuel Valve Housing

    Eddleman, David; Richard, Jim


    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  8. Safety valve opening and closing operation monitor

    Kodama, Kunio; Takeshima, Ikuo; Takahashi, Kiyokazu.


    Purpose: To enable the detection of the closing of a safety valve when the internal pressure in a BWR type reactor is a value which will close the safety valve, by inputting signals from a pressure detecting device mounted directly at a reactor vessel and a safety valve discharge pressure detecting device to an AND logic circuit. Constitution: A safety valve monitor is formed of a pressure switch mounted at a reactor pressure vessel, a pressure switch mounted at the exhaust pipe of the escape safety valve and a logic circuit and the lide. When the input pressure of the safety valve is raised so that the valve and the pressure switch mounted at the exhaust pipe are operated, an alarm is indicated, and the operation of the pressure switch mounted at a pressure vessel is eliminated. If the safety valve is not reclosed when the vessel pressure is decreased lower than the pressure at which it is to be reclosed after the safety valve is operated, an alarm is generated by the logic circuit since both the pressure switches are operated. (Sekiya, K.)

  9. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease

    Yap, Sing-Chien; Drenthen, Willem; Pieper, Petronella G.; Moons, Philip; Mulder, Barbara J. M.; Klieverik, Loes M.; Vliegen, Hubert W.; van Dijk, Arie P. J.; Meijboom, Folkert J.; Roos-Hesselink, Jolien W.

    Background and aim of the study: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  10. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease

    Yap, Sing-Chien; Drenthen, Willem; Pieper, Petronella G.; Moons, Philip; Mulder, Barbara J. M.; Klieverik, Loes M.; Vliegen, Hubert W.; van Dijk, Arie P. J.; Meijboom, Folkert J.; Roos-Hesselink, Jolien W.


    Background and aim of the study: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  11. Outcome of pregnancy in women after pulmonary autograft valve replacement for congenital aortic valve disease.

    Yap, S.C.; Drenthen, W.; Pieper, P.G.; Moons, P.; Mulder, B.J.M.; Klieverik, L.M.; Vliegen, H.W.; Dijk, A.P.J. van; Meijboom, F.J.; Roos-Hesselink, J.W.


    BACKGROUND AND AIM OF THE STUDY: The pulmonary autograft has been recommended as the valve of choice for aortic valve replacement (AVR) in young women contemplating pregnancy. However, current information on maternal and perinatal outcome of pregnancy in women with pulmonary autograft valve

  12. Transapical JenaValve in a patient with mechanical mitral valve prosthesis.

    O' Sullivan, Katie E


    We report the first case of transcatheter aortic valve replacement implantation using JenaValve™ in a patient with mechanical mitral valve prosthesis. We believe that the design features of this valve may be particularly suited for use in this setting. © 2014 Wiley Periodicals, Inc.

  13. Safety valve including a hydraulic brake and hydraulic brake that could be fitted into a valve

    Chabat-Courrede, Jean.


    Making of a safety valve that can be fitted to a containment vessel filled with a non compressible fluid, such as the water system of a nuclear power station. It includes a hydraulic brake located between the valve and the elastic means, close to the valve which completely suppresses the high frequency oscillations of the equipment [fr

  14. Small valve area index: its influence on early mortality after mitral valve replacement

    Yazdanbakhsh, A. P.; van den Brink, R. B.; Dekker, Egbert; de Mol, B. A.


    OBJECTIVE: To test the hypothesis that mitral valve prosthesis-patient mismatch increases postoperative mortality. METHODS AND RESULTS: The effect of mitral valve prosthesis-patient mismatch on survival in a cohort of consecutive patients after mitral valve replacement with a mechanical prosthesis

  15. Impact of bicuspid aortic valve on complications and death in infective endocarditis of native aortic valves.

    Kahveci, Gokhan; Bayrak, Fatih; Pala, Selcuk; Mutlu, Bulent


    We retrospectively investigated the impact of bicuspid aortic valve on the prognosis of patients who had definite infective endocarditis of the native aortic valve.Of 51 patients, a bicuspid aortic valve was present in 22 (43%); the other 29 had tricuspid aortic valves. On average, the patients who had bicuspid valves were younger than those who had tricuspid valves. Patients with a tricuspid valve had larger left atrial diameters and were more likely to have severe mitral regurgitation.Periannular complications, which we detected in 19 patients (37%), were much more common in the patients who had a bicuspid valve (64% vs 17%, P = 0.001). The presence of a bicuspid valve was the only significant independent predictor of periannular complications. The in-hospital mortality rate in the bicuspid group was lower than that in the tricuspid group; however, this figure did not reach statistical significance (9% vs 24%, P = 0.15). In multivariate analysis, left atrial diameter was the only independent predictor associated with an increased risk of death (hazard ratio, 2.19; 95% confidence interval, 1.1-4.5; P = 0.031).In our study, patients with infective endocarditis in a bicuspid aortic valve were younger and had a higher incidence of periannular complications. Although a worse prognosis has been reported previously, we found that infective endocarditis in a native bicuspid aortic valve is not likely to increase the risk of death in comparison with infective endocarditis in native tricuspid aortic valves.

  16. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Didion, Jeffrey R.


    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  17. Development of an advanced spacecraft tandem mass spectrometer

    Drew, Russell C.


    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  18. SEBIM pilot operated valves - CANDU and other applications

    Schaumburg, Gerald; Hera, Vlad


    of the reactor. The valves are in service since 1995 and give full satisfaction to the user. Prior to installation they were not only thoroughly lab tested, as already mentioned, but their functions were modelled with the help of a computer simulation software and subjected to physically impossible conditions of fast transients. No need to say, our equipment passed this challenge with flying colors. The Kozloduy Power Plant purchased SEBIM relief valves for use on the nuclear side as well as on the conventional side. All these items were tested, following not only the requirements of the Bulgarian regulator but also those of the French regulator. The SEBIM pilot operated valves are a superior product, ready to satisfied the most demanding customers around the world. They have been successfully used in CANDU and more than 80 nuclear PWR's. They represent an advanced technology, appropriate for many CANDU applications, where they may prove better than the spring-loaded, presently in use. (authors)

  19. Externally heated valve engine a new approach to piston engines

    Kazimierski, Zbyszko


    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  20. Pulmonary valve replacement in patients with corrected tetralogy of Fallot

    Fotios M. Mitropoulos


    Results: There were 2 perioperative deaths (2%. One patient developed sternal dehiscence requiring rewiring. Median ICU and hospital stay was 1 and 7 days respectively. Postoperative echocardiography at 6 and 12 months showed excellent bioprosthetic valve performance, significant decrease in size of the right cardiac chambers and reduction of tricuspid regurgitation (TR in the majority of the patients. At mean follow-up of 3.6 ± 2 years, all surviving patients remain in excellent clinical condition. Conclusion: Probability of reoperation for pulmonary insufficiency in patients with surgically corrected TOF increases with time and timely PVR by preventing the development of right heart failure is crucial for long-term survival. Current bioprosthetic valve technology in combination with the beating heart technique provides excellent immediate and short-term results. Further follow-up is necessary to evaluate long-term outcome.

  1. Hydraulic engine valve actuation system including independent feedback control

    Marriott, Craig D


    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  2. A shut-off valve for flexible tubing

    Reyburn, W. W.


    Design of light weight valve for flexible tubing is described. Valve is hand operated and provides positive sealing in normally closed position. Diagram is provided to show construction of valve. Principles of operation are explained.

  3. Foot Pedals for Spacecraft Manual Control

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary


    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  4. Resurgery for recurrent heart valve diseases

    Chong-lei REN


    Full Text Available Objective To summarize the experience with resurgery for recurrent valvular heart diseases. Methods From June 2004 to June 2015, 28 patients (15 males and 13 females with ages ranging from 44 to 67 years (55.6±6.5 years with recurrent heart valve disease underwent resurgery. The reasons for resurgery included perivalvular leakage (7 cases, bioprosthetic valve decline (6 cases in mitral valve and 3 in tricuspid valve, mechanical prostheses dysfunction (2cases, infective endocarditis after valve replacement (2 cases, restenosis of repaired native valve (1 case, and severe tricuspid insufficiency after left-side valve surgery (7 cases. Resurgery included mitral valve replacement in 18 patients and tricuspid valve replacement in 10. All the patients underwent third or fourth or even fifth cardiac surgery for valve replacement. Results There were 2 hospital deaths with a mortality of 7.1% (2/28. The main causes of early-stage deaths were low cardiac output syndrome. The main postoperative complications were respiratory failure in 3, low cardiac output syndrome in 2, reexploration for bleeding in 2 and serious infectious shock in 1. All the patients were found with the great improvement in heart function and the re-implanted prostheses worked well during follow-up. Conclusions Although resurgery for recurrent heart valve disease poses a continuing challenge to cardiac surgeon, it could be performed with the satisfactory results. The keys to a successful cardiac resurgery include appropriate operational timing, refined surgical technique and reasonable perioperative managements. DOI: 10.11855/j.issn.0577-7402.2017.01.11

  5. Multidetector computed tomography sizing of bioprosthetic valves: guidelines for measurement and implications for valve-in-valve therapies

    Rajani, R.; Attia, R.; Condemi, F.; Webb, J.; Woodburn, P.; Hodson, D.; Nair, A.; Preston, R.; Razavi, R.; Bapat, V.N.


    Aim: To describe a technique for bioprosthetic multidetector computed tomography (MDCT) sizing and to compare MDCT-derived values against manufacturer-provided sizing. Materials and methods: Fourteen bioprosthetic stented valves commonly used in the aortic valve position were evaluated using a Philips 256 MDCT system. All valves were scanned using a dedicated cardiac CT protocol with a four-channel electrocardiography (ECG) simulator. Measurements were made of major and minor axes and the area and perimeter of the internal stent using varying reconstruction kernels and window settings. Measurements derived from MDCT (MDCT ID) were compared against the stent internal diameter (Stent ID) as provided by the valve manufacturer and the True ID (Stent ID + insertion of leaflets). All data were collected and analysed using SPSS for Mac (version 21). Results: The mean difference between the MDCT ID and Stent ID was 0.6±1.9 mm (r=0.649, p=0.012) and between MDCT ID and True ID 2.1±2 mm (r=0.71, p=0.005). There was no difference in the major (p=0.90), minor (p=0.87), area (p=0.92), or perimeter (p=0.92) measurements when sharp, standard, and detailed stent kernels were used. Similarly, the measurements remained consistent across differing windowing levels. Conclusion: Bioprosthetic stented valves may be reliably sized using MDCT in patients requiring valve-in-valve (VIV) interventions where the valve type and size are unknown. In these cases, clinicians should be aware that MDCT has a tendency to overestimate the True ID size. - Highlights: • Cardiac CT is likely to be ideally suited for bioprosthetic aortic valve sizing for valve in valve procedures. • We compared MDCT sizing for 14 varying bioprosthetic aortic valves across varying window settings and reconstruction kernels. • We provide “normal” MDCT sizing for varying valves and show their relationship to surgical sizing. • Bioprosthetic valves may be reliably sized by MDCT but require adjustment owing to

  6. Transcatheter valve-in-valve implantation due to severe aortic regurgitation in a degenerated aortic homograft

    Olsen, Lene Kjaer; Engstrøm, Thomas; Søndergaard, Lars


    Transcatheter aortic valve implantation (TAVI) in severe aortic stenosis has proven to be a feasible and effective treatment modality for inoperable patients. Until now, neither aortic regurgitation nor degenerated bioprostheses has been an indication for TAVI. However, this article reports...... a successful valve-in-valve implantation of a CoreValve aortic valve prosthesis through the right subclavian artery in a case of severe aortic regurgitation within a degenerated aortic homograft. The case exemplifies the possibilities of expanding the indications for TAVI, as well as other vascular access...

  7. Gasoline New Timing and Flux Adjustable Rotary Valve Design (Hereinafter: Rotary Valve

    Du huiqi


    Full Text Available Conventional gasoline engine with an umbrella valve control cylinder intake and exhaust, in order to achieve sealing effect, the valve is driven by the spring force; at the same time, when the cam opens the valve to overcome the spring force acting. Sealing the better, the more power consumed in the engine mechanical losses, the valve mechanism consumes about 30%, which is not a small loss! This article describes a new type of rotary valve is to significantly reduce mechanical losses, so as to achieve energy saving purposes.

  8. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  9. Operation of Two-Shaft Gas Turbine in the Range of Open Anti-Surge Valve

    Dzida Marek


    Full Text Available This paper presents experimental tests of full-scale two-shaft gas turbine in the range of open anti-surge valve (ASV. The tests were carried out in a laboratory gas- turbine test stand belonging to Department of Automation and Power Engineering , Faculty of Ocean Engineering and Ship Technology , Gdańsk University of Technology. The tests covered the start-up and low load operation of the turbine set in the range of open anti-surge valve.

  10. Dikkers Valves for nuclear industry



    Most countries have adopted the ASME Boiler and Pressure Vessel Code Section III, as the basis of their national requirements for licensing nuclear components. This Code gives clear directives for defining design requirements coupled with a controlled manufacturing system. It has always been and still is the policy of Dikkers to manufacture high-quality products. Dikkers manufacture nuclear products in accordance with this Code, Section III; indeed many features exceed these minimum requirements. At the Nuclex Exhibition in Basel, Dikkers Valves BV will exhibit its main products for use in nuclear power plants. (Auth.)

  11. Cylinder valve packing nut studies

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)


    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  12. Valve Corporation: Composing Internal Markets

    Todd R. Zenger


    Discussions of the Valve Corporation are always enlightening. The skeptic wonders how much is rhetoric and recruiting ploy and how much is real. Is there clear evidence that this organizational design actually works – that it is efficient in this setting? While revenues per employee are quite remarkable, cause and effect are unclear. Is “boss-less-ness” the cause of high sales per employee or simply the result of high sales per employee, fueled from earlier success? The same question could be...

  13. Transcatheter aortic valve-in-valve treatment of degenerative stentless supra-annular Freedom Solo valves: A single centre experience.

    Cockburn, James; Dooley, Maureen; Parker, Jessica; Hill, Andrew; Hutchinson, Nevil; de Belder, Adam; Trivedi, Uday; Hildick-Smith, David


    Redo surgery for degenerative bioprosthetic aortic valves is associated with significant morbidity and mortality. Report results of valve-in-valve therapy (ViV-TAVI) in failed supra-annular stentless Freedom Solo (FS) bioprostheses, which are the highest risk for coronary occlusion. Six patients with FS valves (mean age 78.5 years, 50% males). Five had valvular restenosis (peak gradient 87.2 mm Hg, valve area 0.63 cm 2 ), one had severe regurgitation (AR). Median time to failure was 7 years. Patients were high risk (mean STS/Logistic EuroScore 10.6 15.8, respectively). FS valves ranged from 21 to 25 mm. Successful ViV-TAVI was achieved in 4/6 patients (67%). Of the unsuccessful cases, (patient 1 and 2 of series) patient 1 underwent BAV with simultaneous aortography which revealed left main stem occlusion. The procedure was stopped and the patient went forward for repeat surgery. Patient 2 underwent successful ViV-TAVI with a 26-mm CoreValve with a guide catheter in the left main, but on removal coronary obstruction occurred, necessitating valve snaring into the aorta. Among the successful cases, (patients 3, 4, 5, 6) the TAVIs used were CoreValve Evolut R 23 mm (n = 3), and Lotus 23 mm (n = 1). In the successful cases the peak gradient fell from 83.0 to 38.3 mm Hg. No patient was left with >1+ AR. One patient had a stroke on Day 2, with full neurological recovery. Two patients underwent semi-elective pacing for LBBB and PR >280 ms. ViV-TAVI in stentless Freedom Solo valves is high risk. The risk of coronary occlusion is high. The smallest possible prosthesis (1:1 sizing) should be used, and strategies to protect the coronary vessels must be considered. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Structural valve deterioration in a starr-edwards mitral caged-disk valve prosthesis.

    Aoyagi, Shigeaki; Tayama, Kei-Ichiro; Okazaki, Teiji; Shintani, Yusuke; Kono, Michitaka; Wada, Kumiko; Kosuga, Ken-Ichi; Mori, Ryusuke; Tanaka, Hiroyuki


    The durability of the Starr-Edwards (SE) mitral caged-disk valve, model 6520, is not clearly known, and structural valve deterioration in the SE disk valve is very rare. Replacement of the SE mitral disk valve was performed in 7 patients 23-40 years after implantation. Macroscopic examination of the removed disk valves showed no structural abnormalities in 3 patients, in whom the disk valves were removed at valves excised >36 years after implantation in 4 patients. Disk fracture, a longitudinal split in the disk along its circumference at the site of incorporation of the titanium ring, was detected in the valves removed 36 and 40 years after implantation, respectively, and many cracks were also observed on the outflow aspect of the disk removed 40 years after implantation. Disk fracture and localized disk wear were found in the SE mitral disk valves implanted >36 years previously. The present results suggest that SE mitral caged-disk valves implanted >20 years previously should be carefully followed up, and that those implanted >30 years previously should be electively replaced with modern prosthetic valves

  15. Maximizing prosthetic valve size with the Top Hat supra-annular aortic valve

    Aagaard, Jan; Geha, Alexander S.


    BACKGROUND AND AIM OF THE STUDY: The CarboMedics Top Hat supra-annular aortic valve allows a one-size (and often two-size) increase over the standard intra-annular valve. This advantage should minimize the risk of patient-prosthesis mismatch, where the effective prosthetic valve orifice area....... This study evaluates the authors' clinical experience with Top Hat supra-annular aortic valve size selection, and the technical aspects of implantation. METHODS: Between January 1999 and October 2005, a total of 251 consecutive patients underwent 252 aortic valve replacements with Top Hat supra...... required unplanned coronary bypass, and 30-day mortality was 2.0% (5/251), indicating a good safety profile for the valves implanted in this series. CONCLUSION: The general distribution of implant sizes in the US indicates that cardiac surgeons may be under-sizing the Top Hat supra-annular aortic valve...

  16. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    McCamish, Shawn B


    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  17. Spacecraft Swarm Coordination and Planning Tool, Phase I

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  18. Anatomical challenges for transcatheter mitral valve intervention

    De Backer, Ole; Luk, Ngai H V; Søndergaard, Lars


    Following the success of transcatheter aortic and pulmonary valve implantation, there is a large interest in transcatheter mitral valve interventions to treat severe mitral regurgitation (MR). With the exception for the MitraClipTM (Abbott, Abbott Park, IL, USA) edge-to-edge leaflet plication...

  19. Transcatheter Aortic Valve Replacement in Europe

    Mylotte, Darren; Osnabrugge, Ruben L J; Windecker, Stephan


    The authors sought to examine the adoption of transcatheter aortic valve replacement (TAVR) in Western Europe and investigate factors that may influence the heterogeneous use of this therapy.......The authors sought to examine the adoption of transcatheter aortic valve replacement (TAVR) in Western Europe and investigate factors that may influence the heterogeneous use of this therapy....

  20. Oil pipeline valve automation for spill reduction

    Mohitpour, Mo; Trefanenko, Bill [Enbridge Technology Inc, Calgary (Canada); Tolmasquim, Sueli Tiomno; Kossatz, Helmut [TRANSPETRO - PETROBRAS Transporte S.A., Rio de Janeiro, RJ (Brazil)


    Liquid pipeline codes generally stipulate placement of block valves along liquid transmission pipelines such as on each side of major river crossings where environmental hazards could cause or are foreseen to potentially cause serious consequences. Codes, however, do not stipulate any requirement for block valve spacing for low vapour pressure petroleum transportation, nor for remote pipeline valve operations to reduce spills. A review of pipeline codes for valve requirement and spill limitation in high consequence areas is thus presented along with a criteria for an acceptable spill volume that could be caused by pipeline leak/full rupture. A technique for deciding economically and technically effective pipeline block valve automation for remote operation to reduce oil spilled and control of hazards is also provided. In this review, industry practice is highlighted and application of the criteria for maximum permissible oil spill and the technique for deciding valve automation thus developed, as applied to ORSUB pipeline is presented. ORSUB is one of the three initially selected pipelines that have been studied. These pipelines represent about 14% of the total length of petroleum transmission lines operated by PETROBRAS Transporte S.A. (TRANSPETRO) in Brazil. Based on the implementation of valve motorization on these three pipeline, motorization of block valves for remote operation on the remaining pipelines is intended, depending on the success of these implementations, on historical records of failure and appropriate ranking. (author)

  1. Nuclear valves and the licencing authority

    Stevens-Guille, P.D.


    Valve problems relevant to licencing authorities are discussed. It is suggested that the probability of valve failure should be given more emphasis in safety analysis. Problems of stress analysis, codes, seismic effects, malfunction and leakage are discussed and programmes aimed at solving future problems are outlined

  2. The future of transcatheter mitral valve interventions

    Maisano, Francesco; Alfieri, Ottavio; Banai, Shmuel


    of transcatheter mitral valve interventions will be. The purpose of the present report is to review the current state-of-the-art of mitral valve intervention, and to identify the potential future scenarios, which might benefit most from the transcatheter repair and replacement devices under development....

  3. Mitral valve prolapse - report of 3 cases

    Han, Moon Hee; Im, Chung Ki; Im, Dong Ran; Han, Man Chung; Lee, Young Woo; Seo, Jung Don


    Prolapse of mitral valve is characterized by its unique auscultatory, echocardiographic and angiographic findings and may be associated with various disease entities such as congenital heart disease, coronary heart disease and Marfan's syndrome etc. Authors report recent experience of 3 cases of prolapsed mitral valve, 2 cases associated with A.S.D. and 1 case with Marfan's syndrome.

  4. Altitude valve for railway suspension control system

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong


    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  5. Bentall Operation with Valved Homograft Conduit

    Choudhary, Shiv K.; Talwar, Sachin; Kumar, A. Sampath


    Lesions of the ascending aorta associated with aortic valve disease are usually treated by implanting a prosthetic valved conduit (Bentall procedure). In this report, we present our experience in which a valved homograft conduit was used for the procedure. Six patients underwent a Bentall procedure with the use of a cryopreserved valved homograft conduit. Two of the patients had annuloaortic ectasia, 2 had Marfan syndrome, and 1 had an atherosclerotic aneurysm of the aorta. One patient had severe aortic stenosis due to a bicuspid aortic valve, along with an aneurysm and localized dissection of the ascending aorta. In all of the patients, the aortic annulus was substantially dilated, with accompanying moderate-to-severe aortic regurgitation. A standard procedure was performed with moderate hypothermia, cardiopulmonary bypass, and aortic and bicaval cannulation. The ascending aorta and the aortic valve were replaced with a cryopreserved valved homograft conduit (aortic in 5 patients and pulmonary in 1). The native coronary ostia were anastomosed directly to the homograft. Echocardiography, which was performed intraoperatively, before discharge from the hospital, and at follow-up visits (1 to 36 months), revealed good valve function without dilatation of the homograft conduits. There was 1 late death due to Aspergillus fumigatus endocarditis, 6 months postoperatively. In 1 patient, magnetic resonance imaging performed at 24 months revealed normal caliber of the homograft conduit. We conclude that the Bentall procedure can be performed, safely and with excellent results, using cryopreserved homograft conduits. PMID:11198310

  6. 14 CFR 25.995 - Fuel valves.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 25.995 Section 25.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition...

  7. 14 CFR 29.995 - Fuel valves.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 29.995 Section 29.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition...

  8. 14 CFR 27.995 - Fuel valves.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 27.995 Section 27.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must...

  9. Heart valve disease among patients with hyperprolactinemia

    Steffensen, Maria Charlotte; Maegbaek, Merete Lund; Laurberg, Peter


    Increased risk of heart valve disease during treatment with certain dopamine agonists, such as cabergoline, has been observed in patients with Parkinson's disease. The same compound is used to treat hyperprolactinemia, but it is unknown whether this also associates with heart valve disease....

  10. Evolving Concepts in Transcatheter Aortic Valve Implantation

    Nijhoff, F.


    Part I of the present thesis is dedicated to implantation technique and the clinical performance of new valve prostheses. A satisfactory TAVI result not solely depends on patient characteristics, but also relies on proper valve positioning and final placement. Moreover, prosthetic design is

  11. Heart valve replacements with regenerative capacity

    Dijkman, P.E.; Fioretta, E.S.; Frese, L.; Pasqualini, F.S.; Hoerstrup, S.P.


    The incidence of severe valvular dysfunctions (e.g., stenosis and insufficiency) is increasing, leading to over 300,000 valves implanted worldwide yearly. Clinically used heart valve replacements lack the capacity to grow, inherently requiring repetitive and high-risk surgical interventions during

  12. Sealing a Loosely Fitting Valve Assembly

    Goff, L.; Tellier, G.


    Double-ring seal avoids expense of remachining or redesigning valve parts. Mating fittings on valve sealed by pair of rings - one O-ring and backup ring. Backup ring fills relatively large gap between parts. Prevents softer O-ring from being pushed into and through gap.

  13. Butterfly valves: greater use in power plants

    McCoy, M.


    Improvements in butterfly valves, particularly in the areas of automatic control and leak tightness are described. The use of butterfly valves in nuclear power plants is discussed. These uses include service in component cooling, containment cooling, and containment isolation. The outlook for further improvements and greater uses is examined. (U.S.)

  14. Controllable valve in a nuclear reactor system

    Schabert, H.P.; Laurer, E.


    The quick-acting gate valve of the PWR is opened and closed by means of two pistons and live steam. One of the pistons is connected to the valve disk by a piston rod which is concentrically lead into another hollow piston rod being connected to the second piston. Stops limit the strokes of the two pistons. (GL) [de

  15. How to insure quality valve remanufacture

    Scott, C.F.


    The importance of quality valve repair for the power generation industry is an obvious need for both the owner as well as the consumer. Whether valves are repaired in-line, on-site, or at a valve remanufacturing facility, the selection of a vendor is vital to meeting not only stringent quality requirements, but also to meet start-up schedules and budgets. In the past, the rule of thumb was that repair of a valve could cost approximately 50% of the cost of a new valve and still represent a significant savings to the end user. For power generation facilities, the fact that many valves are welded in not only makes repair more economical, but even vital to continuing normal operations. For those items not welded in, long lead times and higher prices for these normally exotic alloys make remanufactured valves even more attractive. However, even as these advantages of remanufacturing are obvious, some repair organizations continue to cut corners to meet profit demands. The result is suspect quality in some valves. This can lead to premature failures, possible reduced generating capacity, unscheduled outages, and even catastrophic results. Therefore, the choice of a repair organization must be made with care. As the author has said, repair is an obvious option, but the procurement should definitely involve more than just price comparisons. Evaluation must place the emphasis on quality and reliability. Several aspects should be thoroughly investigated and documented in the selection process. These include: personnel; equipment/facilities; procedures; and credentials

  16. Vertical pump with free floating check valve

    Lindsay, M.


    A vertical pump is described which has a bottom discharge with a free floating check valve disposed in the outlet plenum thereof. The free floating check valve comprises a spherical member with a hemispherical cage-like member attached thereto which is capable of allowing forward or reverse flow under appropriate conditions while preventing reverse flow under inappropriate conditions

  17. Experience with the Ahmed Glaucoma Valve

    Design:Aprospective study of three glaucoma patients who had the Ahmed glaucoma valve implant at the. University of Benin ... Key words: glaucoma, glaucoma valve implant, ... introduced the micro-trephination with a diameter of. 0.6mm in ...

  18. Spacecraft Cabin Particulate Monitor, Phase II

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  19. Spacecraft Cabin Particulate Monitor, Phase I

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  20. Computational Model for Spacecraft/Habitat Volume

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...