WorldWideScience

Sample records for spacecraft science instruments

  1. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  2. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  3. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  4. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  5. The Science of String Instruments

    CERN Document Server

    Rossing, Thomas D

    2010-01-01

    Many performing musicians, as well as instrument builders, are coming to realize the importance of understanding the science of musical instruments. This book explains how string instruments produce sound. It presents basic ideas in simple language, and it also translates some more sophisticated ideas in non-technical language. It should be of interest to performers, researchers, and instrument makers alike.

  6. The mechanical design and dynamic testing of the IBEX-H1 electrostatic analyzer spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    This paper presents the mechanical design, fabrication and dynamic testing of an electrostatic analyzer spacecraft instrument. The functional and environmental requirements combined with limited spacecraft accommodations, resulted in complex component geometries, unique material selections, and difficult fabrication processes. The challenging aspects of the mechanical design and several of the more difficult production processes are discussed. In addition, the successes, failures, and lessons learned from acoustic and random vibration testing of a full-scale prototype instrument are presented.

  7. The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results

    Directory of Open Access Journals (Sweden)

    H. Rème

    2005-11-01

    Full Text Available On 29 December 2003, the Chinese spacecraft Tan Ce 1 (TC-1, the first component of the Double Star mission, was successfully launched within a low-latitude eccentric orbit. In the framework of the scientific cooperation between the Academy of Sciences of China and ESA, several European instruments, identical to those developed for the Cluster spacecraft, were installed on board this spacecraft. The HIA (Hot Ion Analyzer instrument on board the TC-1 spacecraft is an ion spectrometer nearly identical to the HIA sensor of the CIS instrument on board the 4 Cluster spacecraft. This instrument has been specially adapted for TC-1. It measures the 3-D distribution functions of the ions between 5 eV/q and 32 keV/q without mass discrimination. TC-1 is like a fifth Cluster spacecraft to study the interaction of the solar wind with the magnetosphere and to study geomagnetic storms and magnetospheric substorms in the near equatorial plane. HIA was commissioned in February 2004. Due to the 2 RE higher apogee than expected, some in-flight improvements were needed in order to use HIA in the solar wind in the initial phase of the mission. Since this period HIA has obtained very good measurements in the solar wind, the magnetosheath, the dayside and nightside plasma sheet, the ring current and the radiation belts. We present here the first results in the different regions of the magnetosphere and in the solar wind. Some of them are very new and include, for example, ion dispersion structures in the bow shock and ion beams close to the magnetopause. The huge interest in the orbit of TC-1 is strongly demonstrated.

  8. The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results

    Directory of Open Access Journals (Sweden)

    H. Rème

    2005-11-01

    Full Text Available On 29 December 2003, the Chinese spacecraft Tan Ce 1 (TC-1, the first component of the Double Star mission, was successfully launched within a low-latitude eccentric orbit. In the framework of the scientific cooperation between the Academy of Sciences of China and ESA, several European instruments, identical to those developed for the Cluster spacecraft, were installed on board this spacecraft.

    The HIA (Hot Ion Analyzer instrument on board the TC-1 spacecraft is an ion spectrometer nearly identical to the HIA sensor of the CIS instrument on board the 4 Cluster spacecraft. This instrument has been specially adapted for TC-1. It measures the 3-D distribution functions of the ions between 5 eV/q and 32 keV/q without mass discrimination.

    TC-1 is like a fifth Cluster spacecraft to study the interaction of the solar wind with the magnetosphere and to study geomagnetic storms and magnetospheric substorms in the near equatorial plane.

    HIA was commissioned in February 2004. Due to the 2 RE higher apogee than expected, some in-flight improvements were needed in order to use HIA in the solar wind in the initial phase of the mission. Since this period HIA has obtained very good measurements in the solar wind, the magnetosheath, the dayside and nightside plasma sheet, the ring current and the radiation belts. We present here the first results in the different regions of the magnetosphere and in the solar wind. Some of them are very new and include, for example, ion dispersion structures in the bow shock and ion beams close to the magnetopause. The huge interest in the orbit of TC-1 is strongly demonstrated.

  9. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  10. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    Science.gov (United States)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  11. Synergistic Use of Spacecraft Telecom Links for Collection of Planetary Radar Science Data

    Science.gov (United States)

    Asmar, S.; Bell, D. J.; Chahat, N. E.; Decrossas, E.; Dobreva, T.; Duncan, C.; Ellliot, H.; Jin, C.; Lazio, J.; Miller, J.; Preston, R.

    2017-12-01

    On multiple solar system missions, radar instruments have been used to probe subsurface geomorphology and to infer chemical composition based on the dielectric signature derived from the reflected signal. Example spacecraft radar instruments are the 90 MHz CONSERT radar used to probe the interior of Comet 67P/Churyumov-Gerasimenko to a depth of 760m, the 20 MHz SHARAD instrument used to investigate Mars subsurface ice features from Mars orbit at depths of 300 to 3000 meters and the upcoming RIMFAX 150 MHz to 1200 MHz ground penetrating radar that will ride on the Mars 2020 rover investigating to a depth of 10m below the rover. In all of these applications, the radar frequency and signal structures were chosen to match science goals of desired depth of penetration and spatial resolution combined with the expected subsurface materials and structures below the surface. Recently, JPL investigators have proposed a new radar science paradigm, synergistic use of the telecom hardware and telecom links to collect bistatic or monostatic radar signatures. All JPL spacecraft employ telecom hardware that operates at UHF (400 MHz and 900 MHz), X-band (8 GHz) or Ka-band (32 GHz). Using existing open-loop record functions in these radios, the telecom hardware can be used to capture opportunistic radar signatures from telecom signals penetrating the surface and reflecting off of subsurface structures. This paper reports on telecom strategies, radar science applications and recent laboratory and field tests to demonstrate the effectiveness of telecom link based radar data collection.

  12. Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis

    International Nuclear Information System (INIS)

    Randol, B M; Christian, E R

    2015-01-01

    Using publicly available data from the Voyager Low Energy Charged Particle (LECP) instruments, we investigate the form of the solar wind ion suprathermal tail in the outer heliosphere inside the termination shock. This tail has a commonly observed form in the inner heliosphere, that is, a power law with a particular spectral index. The Voyager spacecraft have taken data beyond 100 AU, farther than any other spacecraft. However, during extended periods of time, the data appears to be mostly background. We have developed a technique to self-consistently estimate the background seen by LECP due to cosmic rays using data from the Voyager cosmic ray instruments and a simple, semi-analytical model of the LECP instruments

  13. Bright THz Instrument and Nonlinear THz Science

    Science.gov (United States)

    2017-10-30

    Report: Bright THz Instrument and Nonlinear THz Science The views, opinions and/or findings contained in this report are those of the author(s) and...Number: W911NF-16-1-0436 Organization: University of Rochester Title: Bright THz Instrument and Nonlinear THz Science Report Term: 0-Other Email: xi...exploring new cutting-edge research and broader applications, following the significant development of THz science and technology in the late 80’s, is the

  14. Three Canted Radiator Panels to Provide Adequate Cooling for Instruments on Slewing Spacecraft in LEO

    Science.gov (United States)

    Choi, Michael K.

    2012-01-01

    Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.

  15. Analysis of a spacecraft instrument ball bearing assembly lubricated by a perfluoroalkylether

    Science.gov (United States)

    Morales, W.; Jones, W. R., Jr.; Buckley, D. H.

    1986-01-01

    An analysis of a spacecraft instrument ball bearing assembly, subjected to a scanning life test, was performed to determine the possible case of rotational problems involving these units aboard several satellites. The analysis indicated an ineffective transfer of a fluorinated liquid lubricant from a phenolic retainer to the bearing balls. Part of the analysis led to a novel HPLC separation method employing a fluorinated mobile phase in conjunction with silica based size exclusion columns.

  16. INSTRUMENTALISM IN SCIENCE: COMMENTS AND CRITICISMS

    African Journals Online (AJOL)

    Admin

    that guide the scientist in making his decisions or a perceived system of procedural rules. ... to science, information and theories than an ... instrumentalists try to provide the foundation of ..... instrumentalism, which are practical rather than.

  17. Data Science and Some Instruments

    Directory of Open Access Journals (Sweden)

    Corina SBUGHEA

    2017-12-01

    Full Text Available This paper is addressed to beginners, who want to form an overview on the field of Data Science, on the skills needed to access available IT tools, for obtaining meaningful and valuable analyzes in developing new strategies.

  18. Increased Science Instrumentation Funding Strengthens Mars Program

    Science.gov (United States)

    Graham, Lee D.; Graff, T. G.

    2012-01-01

    As the strategic knowledge gaps mature for the exploration of Mars, Mars sample return (MSR), and Phobos/Deimos missions, one approach that becomes more probable involves smaller science instrumentation and integrated science suites. Recent technological advances provide the foundation for a significant evolution of instrumentation; however, the funding support is currently too small to fully utilize these advances. We propose that an increase in funding for instrumentation development occur in the near-term so that these foundational technologies can be applied. These instruments would directly address the significant knowledge gaps for humans to Mars orbit, humans to the Martian surface, and humans to Phobos/ Deimos. They would also address the topics covered by the Decadal Survey and the Mars scientific goals, objectives, investigations and priorities as stated by the MEPAG. We argue that an increase of science instrumentation funding would be of great benefit to the Mars program as well as the potential for human exploration of the Mars system. If the total non-Earth-related planetary science instrumentation budget were increased 100% it would not add an appreciable amount to the overall NASA budget and would provide the real potential for future breakthroughs. If such an approach were implemented in the near-term, NASA would benefit greatly in terms of science knowledge of the Mars, Phobos/Deimos system, exploration risk mitigation, technology development, and public interest.

  19. Astrbiology Science and Technology for Instrument Development (ASTID)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Astrobiology Science and Technology for Instrument Development (ASTID) develops instrumentation capabilities to help meet Astrobiology science requirements on...

  20. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    Energy Technology Data Exchange (ETDEWEB)

    Bernardin, John D [Los Alamos National Laboratory; Baca, Allen G [SNL

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  1. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  2. Developing the TRYAD Science Instrument

    Science.gov (United States)

    Van Eck, K. T.; Jenke, P.; Briggs, M. S.; Fuchs, J.; Capps, L.

    2017-12-01

    Terrestrial gamma-ray flashes (TGFs) are brief MeV gamma-ray flashes that are associated with thunderstorms, around 12km in altitude, and are viewed by orbiting satellites. These bright flashes of high energy photons were discovered in 1994. The two major models for TGFs that originate in thunderstorms are the Lightning Leader and Relativistic Feedback Discharge (RFD) model. Both depend on energetic electrons radiating via bremsstrahlung emission. The Lightning Leader model theorizes that lightning step leaders can accelerate electrons to relativistic speeds. The RFD model states that an energetic seed particle can be accelerated to relativistic speeds by strong electric fields inside of a thunderstorm. The main difference in the results of the two models is as follows; the Lightning Leader model results in a wider beam of gamma-rays than the RFD model because the electric field of a thunderstorm is more structured than that of lightning. The TRYAD mission will be the first to fly two detectors, inside CubeSats, in formation to detect TGFs from multiple points in the sky. The data from the CubeSats and the World Wide Lightning Location Network (WWLLN) will likely provide enough insight to constrain or eliminate some of the existing models for TGFs.This summer was spent testing components and constructing the engineering model of the scientific instrument that will be used to detect TGFs. The detector is made up of four lead-doped plastic scintillators which are coupled to arrays of Silicon Photomultipliers (SiPM). The signal from the SiPM array is then fed into a discriminator where a lower energy estimate can be determined and photon counts are recorded. I will present the progress made over the summer constructing the engineering model.

  3. Rockets and spacecraft: Sine qua non of space science

    Science.gov (United States)

    1980-01-01

    The evolution of the national launch vehicle stable is presented along with lists of launch vehicles used in NASA programs. A partial list of spacecraft used throughout the world is also given. Scientific spacecraft costs are presented along with an historial overview of project development and funding in NASA.

  4. The GLAST LAT Instrument Science Operations Center

    International Nuclear Information System (INIS)

    Cameron, Robert A.; SLAC

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is scheduled for launch in late 2007. Operations support and science data processing for the Large Area Telescope (LAT) instrument on GLAST will be provided by the LAT Instrument Science Operations Center (ISOC) at the Stanford Linear Accelerator Center (SLAC). The ISOC supports GLAST mission operations in conjunction with other GLAST mission ground system elements and supports the research activities of the LAT scientific collaboration. The ISOC will be responsible for monitoring the health and safety of the LAT, preparing command loads for the LAT, maintaining embedded flight software which controls the LAT detector and data acquisition flight hardware, maintaining the operating configuration of the LAT and its calibration, and applying event reconstruction processing to down-linked LAT data to recover information about detected gamma-ray photons. The SLAC computer farm will be used to process LAT event data and generate science products, to be made available to the LAT collaboration through the ISOC and to the broader scientific community through the GLAST Science Support Center at NASA/GSFC. ISOC science operations will optimize the performance of the LAT and oversee automated science processing of LAT data to detect and monitor transient gamma-ray sources

  5. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  6. Instrumentation between science, state and industry

    CERN Document Server

    Shinn, Terry

    2001-01-01

    these. In this book, we appropriate their conception of research-technology, and ex­ tend it to many other phenomena which are less stable and less localized in time and space than the Zeeman/Cotton situation. In the following pages, we use the concept for instances where research activities are orientated primarily toward technologies which facilitate both the production of scientific knowledge and the production of other goods. In particular, we use the tenn for instances where instruments and meth­ ods· traverse numerous geographic and institutional boundaries; that is, fields dis­ tinctly different and distant from the instruments' and methods' initial focus. We suggest that instruments such as the ultra-centrifuge, and the trajectories of the men who devise such artefacts, diverge in an interesting way from other fonns of artefacts and careers in science, metrology and engineering with which students of science and technology are more familiar. The instrument systems developed by re­ search-technolo...

  7. Science Goal Driven Observing: A Step towards Maximizing Science Returns and Spacecraft Autonomy

    Science.gov (United States)

    Koratkar, Anuradha; Grosvenor, Sandy; Jones, Jeremy E.; Memarsadeghi, Nargess; Wolf, Karl R.

    2002-12-01

    In the coming decade, the drive to increase the scientific returns on capital investment and to reduce costs will force automation to be implemented in many of the scientific tasks that have traditionally been manually overseen. Thus, spacecraft autonomy will become an even greater part of mission operations. While recent missions have made great strides in the ability to autonomously monitor and react to changing health and physical status of spacecraft, little progress has been made in responding quickly to science driven events. The new generation of space-based telescopes/observatories will see deeper, with greater clarity, and they will generate data at an unprecedented rate. Yet, while onboard data processing and storage capability will increase rapidly, bandwidth for downloading data will not increase as fast and can become a significant bottleneck and cost of a science program. For observations of inherently variable targets and targets of opportunity, the ability to recognize early if an observation will not meet the science goals of variability or minimum brightness, and react accordingly, can have a major positive impact on the overall scientific returns of an observatory and on its operational costs. If the observatory can reprioritize the schedule to focus on alternate targets, discard uninteresting observations prior to downloading, or download them at a reduced resolution its overall efficiency will be dramatically increased. We are investigating and developing tools for a science goal monitoring (SGM) system. The SGM will have an interface to help capture higher-level science goals from scientists and translate them into a flexible observing strategy that SGM can execute and monitor. SGM will then monitor the incoming data stream and interface with data processing systems to recognize significant events. When an event occurs, the system will use the science goals given it to reprioritize observations, and react appropriately and/or communicate with

  8. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  9. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  10. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions

    Science.gov (United States)

    Brophy, John R.; Larson, Tim

    2013-01-01

    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape

  11. MO and DA on the SWIE Instrument on the Wind Spacecraft

    Science.gov (United States)

    Lazarus, Alan J.

    2002-01-01

    The construction of the Faraday Cup portion of the SWIE instrument on the Wind spacecraft, participation in Mission Operations, and Data Analysis (MO and DA) of observations of the solar wind has been supported by a sequence of grants. This 'final' Report represents work done on Mission Operations and Data Analysis for the Faraday Cup portion of the SWE. The work reported here was supported under NASA Grant NAG5-7359 (OSP 6701100) from June 1998 to October 2001. It should be noted that this work is continuing under NASA Grant NAG-10915, and therefore this report is 'final' only in the sense that the Grant has changed its number; a future report will cover the entire period of work. We have two types of obligations under these contracts: (1) To provide and assure the validity of "Key Parameters" which describe the basic properties of the solar wind on a daily basis. We have provided our 92 second observations daily via plots and parameters available from our Web site: http://web.mit.edu/space/www/wind/wind.html (2). To carry out scientific studies based on our observations. To document the extent of our research, we are including below a list of publications and presentations related to this project. The observations from Wind have made a major contribution to the study of the solar wind, and have every indication of continuing to do so.

  12. The STAFF-DWP wave instrument on the DSP equatorial spacecraft: description and first results

    Directory of Open Access Journals (Sweden)

    N. Cornilleau-Wehrlin

    2005-11-01

    Full Text Available The STAFF-DWP wave instrument on board the equatorial spacecraft (TC1 of the Double Star Project consists of a combination of 2 instruments which are a heritage of the Cluster mission: the Spatio-Temporal Analysis of Field Fluctuations (STAFF experiment and the Digital Wave-Processing experiment (DWP. On DSP-TC1 STAFF consists of a three-axis search coil magnetometer, used to measure magnetic fluctuations at frequencies up to 4 kHz and a waveform unit, up to 10 Hz, plus snapshots up to 180 Hz. DWP provides several onboard analysis tools: a complex FFT to fully characterise electromagnetic waves in the frequency range 10 Hz-4 kHz, a particle correlator linked to the PEACE electron experiment, and compression of the STAFF waveform data. The complementary Cluster and TC1 orbits, together with the similarity of the instruments, permits new multi-point studies. The first results show the capabilities of the experiment, with examples in the different regions of the magnetosphere-solar wind system that have been encountered by DSP-TC1 at the beginning of its operational phase. An overview of the different kinds of electromagnetic waves observed on the dayside from perigee to apogee is given, including the different whistler mode waves (hiss, chorus, lion roars and broad-band ULF emissions. The polarisation and propagation characteristics of intense waves in the vicinity of a bow shock crossing are analysed using the dedicated PRASSADCO tool, giving results compatible with previous studies: the broad-band ULF waves consist of a superimposition of different wave modes, whereas the magnetosheath lion roars are right-handed and propagate close to the magnetic field. An example of a combined Cluster DSP-TC1 magnetopause crossing is given. This first case study shows that the ULF wave power intensity is higher at low latitude (DSP than at high latitude (Cluster. On the nightside in the tail, a first wave event comparison - in a rather quiet time interval

  13. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  14. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  15. New sources and instrumentation for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Gil, Alina, E-mail: a.gil@ajd.czest.pl [Faculty of Mathematical and Natural Sciences, JD University, Al. Armii Krajowej 13/15, 42-200 Czestochowa (Poland)

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  16. New sources and instrumentation for neutron science

    International Nuclear Information System (INIS)

    Gil, Alina

    2011-01-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  17. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    Science.gov (United States)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  18. Using and Developing Measurement Instruments in Science Education: A Rasch Modeling Approach. Science & Engineering Education Sources

    Science.gov (United States)

    Liu, Xiufeng

    2010-01-01

    This book meets a demand in the science education community for a comprehensive and introductory measurement book in science education. It describes measurement instruments reported in refereed science education research journals, and introduces the Rasch modeling approach to developing measurement instruments in common science assessment domains,…

  19. On DESTINY Science Instrument Electrical and Electronics Subsystem Framework

    Science.gov (United States)

    Kizhner, Semion; Benford, Dominic J.; Lauer, Tod R.

    2009-01-01

    Future space missions are going to require large focal planes with many sensing arrays and hundreds of millions of pixels all read out at high data rates'' . This will place unique demands on the electrical and electronics (EE) subsystem design and it will be critically important to have high technology readiness level (TRL) EE concepts ready to support such missions. One such omission is the Joint Dark Energy Mission (JDEM) charged with making precise measurements of the expansion rate of the universe to reveal vital clues about the nature of dark energy - a hypothetical form of energy that permeates all of space and tends to increase the rate of the expansion. One of three JDEM concept studies - the Dark Energy Space Telescope (DESTINY) was conducted in 2008 at the NASA's Goddard Space Flight Center (GSFC) in Greenbelt, Maryland. This paper presents the EE subsystem framework, which evolved from the DESTINY science instrument study. It describes the main challenges and implementation concepts related to the design of an EE subsystem featuring multiple focal planes populated with dozens of large arrays and millions of pixels. The focal planes are passively cooled to cryogenic temperatures (below 140 K). The sensor mosaic is controlled by a large number of Readout Integrated Circuits and Application Specific Integrated Circuits - the ROICs/ASICs in near proximity to their sensor focal planes. The ASICs, in turn, are serviced by a set of "warm" EE subsystem boxes performing Field Programmable Gate Array (FPGA) based digital signal processing (DSP) computations of complex algorithms, such as sampling-up-the-ramp algorithm (SUTR), over large volumes of fast data streams. The SUTR boxes are supported by the Instrument Control/Command and Data Handling box (ICDH Primary and Backup boxes) for lossless data compression, command and low volume telemetry handling, power conversion and for communications with the spacecraft. The paper outlines how the JDEM DESTINY concept

  20. The SPICE concept - An approach to providing geometric and other ancillary information needed for interpretation of data returned from space science instruments

    Science.gov (United States)

    Acton, Charles H., Jr.

    1990-01-01

    The Navigation Ancillary Information Facility (NAIF), acting under the direction of NASA's Office of Space Science and Applications, and with substantial participation of the planetary science community, is designing and implementing an ancillary data system - called SPICE - to assist scientists in planning and interpreting scientific observations taken from spaceborne instruments. The principal objective of the implemented SPICE system is that it will hold the essential geometric and related ancillary information needed to recover the full value of science instrument data, and that it will facilitate correlations of individual instrument datasets with data obtained from other instruments on the same or other spacecraft.

  1. Spacecraft Software Maintenance: An Effective Approach to Reducing Costs and Increasing Science Return

    Science.gov (United States)

    Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.

    1999-01-01

    Flight software is a mission critical element of spacecraft functionality and performance. When ground operations personnel interface to a spacecraft, they are typically dealing almost entirely with the capabilities of onboard software. This software, even more than critical ground/flight communications systems, is expected to perform perfectly during all phases of spacecraft life. Due to the fact that it can be reprogrammed on-orbit to accommodate degradations or failures in flight hardware, new insights into spacecraft characteristics, new control options which permit enhanced science options, etc., the on- orbit flight software maintenance team is usually significantly responsible for the long term success of a science mission. Failure of flight software to perform as needed can result in very expensive operations work-around costs and lost science opportunities. There are three basic approaches to maintaining spacecraft software--namely using the original developers, using the mission operations personnel, or assembling a center of excellence for multi-spacecraft software maintenance. Not planning properly for flight software maintenance can lead to unnecessarily high on-orbit costs and/or unacceptably long delays, or errors, in patch installations. A common approach for flight software maintenance is to access the original development staff. The argument for utilizing the development staff is that the people who developed the software will be the best people to modify the software on-orbit. However, it can quickly becomes a challenge to obtain the services of these key people. They may no longer be available to the organization. They may have a more urgent job to perform, quite likely on another project under different project management. If they havn't worked on the software for a long time, they may need precious time for refamiliarization to the software, testbeds and tools. Further, a lack of insight into issues related to flight software in its on

  2. SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool

    Science.gov (United States)

    Boyer, Jeffrey S.

    1994-11-01

    Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  3. Optical instrumentation for science and formation flying with a starshade observatory

    Science.gov (United States)

    Martin, Stefan; Scharf, Daniel; Cady, Eric; Liebe, Carl; Tang, Hong

    2015-09-01

    In conjunction with a space telescope of modest size, a starshade enables observation of small exoplanets close to the parent star by blocking the direct starlight while the planet light remains unobscured. The starshade is flown some tens of thousands of kilometers ahead of the telescope. Science instruments may include a wide field camera for imaging the target exoplanetary system as well as an integral field spectrometer for characterization of exoplanet atmospheres. We show the preliminary designs of the optical instruments for observatories such as Exo-S, discuss formation flying and control, retargeting maneuvers and other aspects of a starshade mission. The implementation of a starshade-ready WFIRST-AFTA is discussed and we show how a compact, standalone instrument package could be developed as an add-on to future space telescopes, requiring only minor additions to the telescope spacecraft.

  4. Low-T, Low-Q Cryocoolers for Science Instruments

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of the planned research is to advance the current space science instruments through the development of light weight and low power cryocoolers. Currently,...

  5. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  6. Data, instruments, and theory a dialectical approach to understanding science

    CERN Document Server

    Ackermann, Robert John

    1985-01-01

    Robert John Ackermann deals decisively with the problem of relativism that has plagued post-empiricist philosophy of science. Recognizing that theory and data are mediated by data domains (bordered data sets produced by scientific instruments), he argues that the use of instruments breaks the dependency of observation on theory and thus creates a reasoned basis for scientific objectivity.

  7. Purging sensitive science instruments with nitrogen in the STS environment

    Science.gov (United States)

    Lumsden, J. M.; Noel, M. B.

    1983-01-01

    Potential contamination of extremely sensitive science instruments during prelaunch, launch, and earth orbit operations are a major concern to the Galileo and International Solar Polar Mission (ISPM) Programs. The Galileo Program is developing a system to purify Shuttle supplied nitrogen gas for in-flight purging of seven imaging and non-imaging science instruments. Monolayers of contamination deposited on critical surfaces can degrade some instrument sensitivities as much as fifty percent. The purging system provides a reliable supply of filtered and fried nitrogen gas during these critical phases of the mission when the contamination potential is highest. The Galileo and ISPM Programs are including the system as Airborne Support Equipment (ASE).

  8. Remote Instrumentation for eScience and Related Aspects

    CERN Document Server

    Lawenda, Marcin; Meyer, Norbert; Pugliese, Roberto; Węglarz, Jan; Zappatore, Sandro

    2012-01-01

    Making scientific instruments a manageable resource over distributed computing infrastructures such as the grid has been a key focal point of e-science research in recent years. It is now known by the generic term ‘remote instrumentation’, and is the subject of this useful volume that covers a range of perspectives on the topic reflected by the contributions to the 2010 workshop on remote instrumentation held in Poznań, Poland. E-science itself is a complex set of disciplines requiring computationally intensive distributed operations, high-speed networking, and collaborative working tools. As such, it is most often (and correctly) associated with grid- and cloud-computing infrastructures and middleware. The contributions to this publication consider broader aspects of the theme of remote instrumentation applied to e-science, as well as exploring related technologies that enable the implementation of truly distributed and coordinated laboratories. Among the topics discussed are remote instrumentation and ...

  9. NOAA: Primary GOES-R instrument cleared for installation onto spacecraft

    Science.gov (United States)

    NOAA HOME WEATHER OCEANS FISHERIES CHARTING SATELLITES CLIMATE RESEARCH COASTS CAREERS National primary instrument for scanning Earth's weather, oceans, and environment and is a significant improvement changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and to

  10. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  11. Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft

    Science.gov (United States)

    Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy

    2018-01-01

    The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.

  12. Advanced Instrumentation for Ultrafast Science at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Berrah, Nora [Univ. of Connecticut, Storrs, CT (United States)

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  13. Science Driven Instrumentation for LCLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bergmann, Uwe [SLAC National Accelerator Lab., Menlo Park, CA (United States); Brunger, Axel [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bostedt, Christoph [SLAC National Accelerator Lab., Menlo Park, CA (United States); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bozek, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cocco, Daniele [SLAC National Accelerator Lab., Menlo Park, CA (United States); Devereaux, Tom [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ding, Yuantao [SLAC National Accelerator Lab., Menlo Park, CA (United States); Durr, Hermann [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fritz, David [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gaffney, Kelly [SLAC National Accelerator Lab., Menlo Park, CA (United States); Galayda, John [SLAC National Accelerator Lab., Menlo Park, CA (United States); Goldstein, Julia [SLAC National Accelerator Lab., Menlo Park, CA (United States); Guhr, Markus [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hastings, Jerome [SLAC National Accelerator Lab., Menlo Park, CA (United States); Heimann, Philip [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hodgson, Keith [SLAC National Accelerator Lab., Menlo Park, CA (United States); Huang, Zirong [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kelez, Nicholas [SLAC National Accelerator Lab., Menlo Park, CA (United States); Montanez, Paul [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2014-03-24

    The world’s first x-ray free electron laser (XFEL), LCLS, has now been operating for more than three years and all six experimental stations are supporting user science and producing high impact scientific results. Other countries are rapidly catching up and a second XFEL, SACLA, is already operating in Japan with others coming on line in Germany, Korea and Switzerland within the next three to five years. In order to increase capability and capacity of LCLS, the Department of Energy has funded LCLS-II.

  14. Instrument for observing transient cosmic gamma-ray sources for the ISEE-C Heliocentric spacecraft

    International Nuclear Information System (INIS)

    Evans, W.D.; Aiello, W.P.; Klebesadel, R.W.

    1977-12-01

    Satellite instrumentation that would serve as one element of a three-satellite network to provide precise directional information for the recently discovered cosmic gamma-ray bursts is described. The proposed network would be capable of determining source locations with uncertainties of less than one arc minute, sufficient for a meaningful optical and radio search. The association of the gamma bursts with a known type of astrophysical object provides the most direct method for establishing source distances and thus defining the overall energetics of the emission process

  15. ExoMars Trace Gas Orbiter Instrument Modelling Approach to Streamline Science Operations

    Science.gov (United States)

    Munoz Fernandez, Michela; Frew, David; Ashman, Michael; Cardesin Moinelo, Alejandro; Garcia Beteta, Juan Jose; Geiger, Bernhard; Metcalfe, Leo; Nespoli, Federico; Muniz Solaz, Carlos

    2018-05-01

    ExoMars Trace Gas Orbiter (TGO) science operations activities are centralised at ESAC's Science Operations Centre (SOC). The SOC receives the inputs from the principal investigators (PIs) in order to implement and deliver the spacecraft pointing requests and instrument timelines to the Mission Operations Centre (MOC). The high number of orbits per planning cycle has made it necessary to abstract the planning interactions between the SOC and the PI teams at the observation level. This paper describes the modelling approach we have conducted for TGOís instruments to streamline science operations. We have created dynamic observation types that scale to adapt to the conditions specified by the PI teams including observation timing, and pointing block parameters calculated from observation geometry. This approach is considered and improvement with respect to previous missions where the generation of the observation pointing and commanding requests was performed manually by the instrument teams. Automation software assists us to effectively handle the high density of planned orbits with increasing volume of scientific data and to successfully meet opportunistic scientific goals and objectives. Our planning tool combines the instrument observation definition files provided by the PIs together with the flight dynamics products to generate the Pointing Requests and the instrument timeline (ITL). The ITL contains all the validated commands at the TC sequence level and computes the resource envelopes (data rate, power, data volume) within the constraints. At the SOC, our main goal is to maximise the science output while minimising the number of iterations among the teams, ensuring that the timeline does not violate the state transitions allowed in the Mission Operations Rules and Constraints Document.

  16. The OCO-3 Mission: Science Objectives and Instrument Performance

    Science.gov (United States)

    Eldering, A.; Basilio, R. R.; Bennett, M. W.

    2017-12-01

    The Orbiting Carbon Observatory 3 (OCO-3) will continue global CO2 and solar-induced chlorophyll fluorescence (SIF) using the flight spare instrument from OCO-2. The instrument is currently being tested, and will be packaged for installation on the International Space Station (ISS) (launch readiness in early 2018.) This talk will focus on the science objectives, updated simulations of the science data products, and the outcome of recent instrument performance tests. The low-inclination ISS orbit lets OCO-3 sample the tropics and sub-tropics across the full range of daylight hours with dense observations at northern and southern mid-latitudes (+/- 52º). The combination of these dense CO2 and SIF measurements provides continuity of data for global flux estimates as well as a unique opportunity to address key deficiencies in our understanding of the global carbon cycle. The instrument utilizes an agile, 2-axis pointing mechanism (PMA), providing the capability to look towards the bright reflection from the ocean and validation targets. The PMA also allows for a snapshot mapping mode to collect dense datasets over 100km by 100km areas. Measurements over urban centers could aid in making estimates of fossil fuel CO2 emissions. Similarly, the snapshot mapping mode can be used to sample regions of interest for the terrestrial carbon cycle. In addition, there is potential to utilize data from ISS instruments ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station) and GEDI (Global Ecosystem Dynamics Investigation), which measure other key variables of the control of carbon uptake by plants, to complement OCO-3 data in science analysis. In 2017, the OCO-2 instrument was transformed into the ISS-ready OCO-3 payload. The transformed instrument was thoroughly tested and characterized. Key characteristics, such as instrument ILS, spectral resolution, and radiometric performance will be described. Analysis of direct sun measurements taken during testing

  17. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  18. Smartphone measurement engineering - Innovative challenges for science & education, instrumentation & training

    Science.gov (United States)

    Hofmann, D.; Dittrich, P.-G.; Duentsch, E.

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science & education, instrumentation & training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  19. Advanced Technologies and Instrumentation at the National Science Foundation

    Science.gov (United States)

    Kurczynski, Peter; Neff, James E.

    2018-01-01

    Over its more than thirty-year history, the Advanced Technologies and Instrumentation (ATI) program within the Division of Astronomical Sciences has provided grants to support the development and deployment of detectors and instrumentation for ground-based astronomy. This program has enabled scientific advances in diverse fields from solar physics to exoplanets to cosmology. ATI has provided instrumentation for both small and large observatories from radio through visible wavebands. It has played a role in the early development of major initiatives such as the Large Synoptic Survey Telescope. Technology development for astronomy unfolds over a longer period than the lifetime of a single grant. This review will consider ATI from an historical perspective to assess its impact on astronomy.

  20. Remote Access to Instrumental Analysis for Distance Education in Science

    Directory of Open Access Journals (Sweden)

    Dietmar Kennepohl

    2005-11-01

    Full Text Available Remote access to experiments offers distance educators another tool to integrate a strong laboratory component within a science course. Since virtually all modern chemical instrumental analysis in industry now use devices operated by a computer interface, remote control of instrumentation is not only relatively facile, it enhances students’ opportunity to learn the subject matter and be exposed to “real world” contents. Northern Alberta Institute of Technology (NAIT and Athabasca University are developing teaching laboratories based on the control of analytical instruments in real-time via an Internet connection. Students perform real-time analysis using equipment, methods, and skills that are common to modern analytical laboratories (or sophisticated teaching laboratories. Students obtain real results using real substances to arrive at real conclusions, just as they would if they were in a physical laboratory with the equipment; this approach allows students to access to conduct instrumental science experiments, thus providing them with an advantageous route to upgrade their laboratory skills while learning at a distance.

  1. Mars Science Laboratory Using Laser Instrument, Artist's Concept

    Science.gov (United States)

    2007-01-01

    This artist's conception of NASA's Mars Science Laboratory portrays use of the rover's ChemCam instrument to identify the chemical composition of a rock sample on the surface of Mars. ChemCam is innovative for planetary exploration in using a technique referred to as laser breakdown spectroscopy to determine the chemical composition of samples from distances of up to about 8 meters (25 feet) away. ChemCam is led by a team at the Los Alamos National Laboratory and the Centre d'Etude Spatiale des Rayonnements in Toulouse, France. Mars Science Laboratory, a mobile robot for investigating Mars' past or present ability to sustain microbial life, is in development at NASA's Jet Propulsion Laboratory for a launch opportunity in 2009. The mission is managed by JPL, a division of the California Institute of Technology, Pasadena, Calif., for the NASA Science Mission Directorate, Washington.

  2. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    Science.gov (United States)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  3. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    Science.gov (United States)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  4. The Development of the Chemin Mineralogy Instrument and Its Deployment on Mars (and Latest Results from the Mars Science Laboratory Rover Curiosity)

    Science.gov (United States)

    Blake, David F.

    2014-01-01

    The CheMin instrument (short for "Chemistry and Mineralogy") on the Mars Science Laboratory rover Curiosity is one of two "laboratory quality" instruments on board the Curiosity rover that is exploring Gale crater, Mars. CheMin is an X-ray diffractometer that has for the first time returned definitive and fully quantitative mineral identifications of Mars soil and drilled rock. I will describe CheMin's 23-year development from an idea to a spacecraft qualified instrument, and report on some of the discoveries that Curiosity has made since its entry, descent and landing on Aug. 6, 2012, including the discovery and characterization of the first habitable environment on Mars.

  5. Prototyping a Global Soft X-Ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.

  6. Prototyping a Global Soft X-ray Imaging Instrument for Heliophysics, Planetary Science, and Astrophysics Science

    Science.gov (United States)

    Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra; hide

    2012-01-01

    We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission

  7. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  8. Measuring primary teachers' attitudes toward teaching science: development of the dimensions of attitude toward science (DAS) instrument

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is

  9. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    Science.gov (United States)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  10. Data catalog series for space science and applications flight missions. Volume 5A: Descriptions of astronomy, astrophysics, and solar physics spacecraft and investigations. Volume 5B: Descriptions of data sets from astronomy, astrophysics, and solar physics spacecraft and investigations

    Science.gov (United States)

    Kim, Sang J. (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets of astronomy, astrophysics, solar physics spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  11. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  12. Historical Trends of Participation of Women Scientists in Robotic Spacecraft Mission Science Teams: Effect of Participating Scientist Programs

    Science.gov (United States)

    Rathbun, Julie A.; Castillo-Rogez, Julie; Diniega, Serina; Hurley, Dana; New, Michael; Pappalardo, Robert T.; Prockter, Louise; Sayanagi, Kunio M.; Schug, Joanna; Turtle, Elizabeth P.; Vasavada, Ashwin R.

    2016-10-01

    Many planetary scientists consider involvement in a robotic spacecraft mission the highlight of their career. We have searched for names of science team members and determined the percentage of women on each team. We have limited the lists to members working at US institutions at the time of selection. We also determined the year each team was selected. The gender of each team member was limited to male and female and based on gender expression. In some cases one of the authors knew the team member and what pronouns they use. In other cases, we based our determinations on the team member's name or photo (obtained via a google search, including institution). Our initial analysis considered 22 NASA planetary science missions over a period of 41 years and only considered NASA-selected PI and Co-Is and not participating scientists, postdocs, or graduate students. We found that there has been a dramatic increase in participation of women on spacecraft science teams since 1974, from 0-2% in the 1970s - 1980s to an average of 14% 2000-present. This, however, is still lower than the recent percentage of women in planetary science, which 3 different surveys found to be ~25%. Here we will present our latest results, which include consideration of participating scientists. As in the case of PIs and Co-Is, we consider only participating scientists working at US institutions at the time of their selection.

  13. WATER PRODUCTION BY COMET 103P/HARTLEY 2 OBSERVED WITH THE SWAN INSTRUMENT ON THE SOHO SPACECRAFT

    International Nuclear Information System (INIS)

    Combi, M. R.; Bertaux, J.-L.; Quemerais, E.; Ferron, S.; Maekinen, J. T. T.

    2011-01-01

    Global water production rates were determined from the Lyα emission of hydrogen around comet 103P/Hartley 2, observed with the SWAN (Solar Wind Anisotropies) all-sky camera on the SOHO spacecraft from 2010 September 14 through December 12. This time period included the November 4 flyby by the EPOXI spacecraft. Water production was three times lower than during the 1997 apparition also measured by SWAN. In 2010, it increased by a factor of ∼2.5 within one day on September 30 with a similar corresponding drop between November 24 and 30. The total surface area of sublimating water within ±20 days of perihelion was ∼0.5 km 2 , about half of the mean cross section of the nucleus. Outside this period it was ∼0.2 km 2 . The peak value was 90%, implying a significant water production by released nucleus icy fragments.

  14. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics.

    Science.gov (United States)

    1987-10-01

    include Security Classification) Instrumentation for scientific computing in neural networks, information science, artificial intelligence, and...instrumentation grant to purchase equipment for support of research in neural networks, information science, artificail intellignece , and applied mathematics...in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics Contract AFOSR 86-0282 Principal Investigator: Stephen

  15. What Are They Thinking? The Development and Use of an Instrument that Identifies Common Science Misconceptions

    Science.gov (United States)

    Stein, Mary; Barman, Charles R.; Larrabee, Timothy

    2007-01-01

    This article describes the rationale for, and development of, an online instrument that helps identify commonly held science misconceptions. Science Beliefs is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. It utilizes a true or false, along with a written-explanation, format. The true or…

  16. Development of perceived instrumentality for mathematics, reading and science curricula

    Science.gov (United States)

    Garcia, Steve L.

    Perceptions of instrumentality (PI) are the connections one sees between a current activity and a future goal. With high PI, one is motivated to persist with quality effort because the current activity, even when difficult, is perceived as aligned with, and progress toward, the goal. Conversely, with low PI, one is motivated to relinquish effort in pursuit of other, more meaningful goals. In view of the alarming dropout rates in this country, it appears that PI research has much to offer in understanding students' motivations to stay in school and hence to become employed in their field of choice. Because academic achievement motivation can be affected by gender and ethnicity, particularly for specific components of the curriculum, and because curricular content varies across grade levels and school settings, this line of research offers significant potential for understanding and improving student outcomes. This research examined the development of PI among suburban 6th, 8th, 10th and 12th graders from a school district in the southwestern United States. Twelve hundred students completed a one-time paper and pencil survey measuring the perceived instrumentality of mathematics, literacy and science courses in terms of the students' occupational choices. MANOVA was used to determine factors that may affect students' overall PI and individual subject PI. Grade, gender, ethnicity, occupational choice, expectancy and value were the independent variables. A school setting variable was examined for effects on 12th graders. For the 8th through 12th grade sample, significant main effects were observed for grade, gender, minority status, occupational choice and expectancy on PI. Results show that PI is highest in the 6 th grade. Males reported higher Math PI than females. Females reported higher Reading PI and Science PI than males. Minority students reported lower overall PI and Science PI than non-minority students. Students who aspire to professional careers report the

  17. Construction and Validation of an Instrument to Measure Taiwanese Elementary Students' Attitudes toward Their Science Class

    Science.gov (United States)

    Wang, Tzu-Ling; Berlin, Donna

    2010-12-01

    The main purpose of this study is to develop a valid and reliable instrument for measuring the attitudes toward science class of fourth- and fifth-grade students in an Asian school culture. Specifically, the development focused on three science attitude constructs-science enjoyment, science confidence, and importance of science as related to science class experiences. A total of 265 elementary school students in Taiwan responded to the instrument developed. Data analysis indicated that the instrument exhibited satisfactory validity and reliability with the Taiwan population used. The Cronbach's alpha coefficient was 0.93 for the entire instrument indicating a satisfactory level of internal consistency. However, both principal component analysis and parallel analysis showed that the three attitude scales were not unique and should be combined and used as a general "attitudes toward science class" scale. The analysis also showed that there were no gender or grade-level differences in students' overall attitudes toward science class.

  18. Spacecraft-to-Earth Communications for Juno and Mars Science Laboratory Critical Events

    Science.gov (United States)

    Soriano, Melissa; Finley, Susan; Jongeling, Andre; Fort, David; Goodhart, Charles; Rogstad, David; Navarro, Robert

    2012-01-01

    Deep Space communications typically utilize closed loop receivers and Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK). Critical spacecraft events include orbit insertion and entry, descent, and landing.---Low gain antennas--> low signal -to-noise-ratio.---High dynamics such as parachute deployment or spin --> Doppler shift. During critical events, open loop receivers and Multiple Frequency Shift Keying (MFSK) used. Entry, Descent, Landing (EDL) Data Analysis (EDA) system detects tones in real-time.

  19. A localized swarm of low-resource CubeSat-class spacecraft for auroral ionospheric science

    Science.gov (United States)

    Clayton, R.; Lynch, K. A.; Gayetsky, L.; Guinther, J.; Slagle, A.; Currey, S.

    2012-12-01

    In interesting and dynamic auroral ionospheric plasmas, single-point in situ measurements are insufficient. Changes in measurements recorded from a single probe can be ascribed to either changes in position or to changes over time, and gradient scales can only be inferred. A localized array of sensors deployed as a low-resource swarm from a main deployer, can address these issues. We consider two aspects of designing such a swarm: (a) maintaining the localization in a low-cost manner, and (b) creating an extremely low-resource spacecraft by taking advantage of commercially available technologies. For a few-week low-altitude mission, STK (SatelliteToolKit) studies show that with proper deployment, an array of CubeSat-class spacecraft near 350 km altitude can regroup once per orbit to within a few 10s of km. Kepler's laws and Hill's equations allow us to put constraints on the capability of the deployer needed, in order to deploy the array with a minimal component of the ejection velocity along the orbital track. In order to keep the cost of each spacecraft low, we are exploring commercially available technologies such as Arduino controllers and video-game sensors. The Arduino on each payload will take in information from the sensors on the payload, and will send the information to a DNT-900MHz local area communications system. We show an example experiment measuring river flows on the Connecticut river, and discuss the design of our payload swarm.

  20. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  1. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  2. NASA SMD Airborne Science Capabilities for Development and Testing of New Instruments

    Science.gov (United States)

    Fladeland, Matthew

    2015-01-01

    The SMD NASA Airborne Science Program operates and maintains a fleet of highly modified aircraft to support instrument development, satellite instrument calibration, data product validation and earth science process studies. This poster will provide an overview of aircraft available to NASA researchers including performance specifications and modifications for instrument support, processes for requesting aircraft time and developing cost estimates for proposals, and policies and procedures required to ensure safety of flight.

  3. Regolith Properties of Asteroid 21 Lutetia Constrained by Combined Data Sets of the MIRO and VIRTIS Instruments During the Rosetta Spacecraft Flyby

    Science.gov (United States)

    Keihm, S.; Tosi, F.; Kamp, L.; Capaccioni, F.; Grassi, D.; Gulkis, S.; Coradini, A.

    2011-01-01

    During the July 10, 2010 flyby of Asteroid 21 Lutetia by the Rosetta spacecraft, maps of surface and subsurface temperatures were derived from the VIRTIS and MIRO instruments respectively. Both data sets indicated a porous surface layer with an extremely low, lunar-like thermal inertia. However, comparisons of the VIRTIS-measured and MIRO-modelled surface temperatures revealed offsets of 10- 30 K, indicative of self-heating or "beaming" effects that were not taken into account in the MIRO thermal modeling. Inclusion of a model of hemispherical craters at all scales 1 cm and larger, covering 50% of the surface, removes most of the offsets in the VIRTIS, MIRO surface temperature determinations.

  4. Data catalog series for space science and applications flight missions. Volume 3B: Descriptions of data sets from low- and medium-altitude scientific spacecraft and investigations

    Science.gov (United States)

    Jackson, John E. (Editor); Horowitz, Richard (Editor)

    1986-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from low and medium altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  5. Data catalog series for space science and applications flight missions. Volume 1B: Descriptions of data sets from planetary and heliocentric spacecraft and investigations

    Science.gov (United States)

    Horowitz, Richard (Compiler); Jackson, John E. (Compiler); Cameron, Winifred S. (Compiler)

    1987-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of planetary and heliocentric spacecraft and associated experiments. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  6. Data Catalog Series for Space Science and Applications Flight Missions. Volume 2B; Descriptions of Data Sets from Geostationary and High-Altitude Scientific Spacecraft and Investigations

    Science.gov (United States)

    Schofield, Norman J. (Editor); Parthasarathy, R. (Editor); Hills, H. Kent (Editor)

    1988-01-01

    The main purpose of the data catalog series is to provide descriptive references to data generated by space science flight missions. The data sets described include all of the actual holdings of the Space Science Data Center (NSSDC), all data sets for which direct contact information is available, and some data collections held and serviced by foreign investigators, NASA and other U.S. government agencies. This volume contains narrative descriptions of data sets from geostationary and high altitude scientific spacecraft and investigations. The following spacecraft series are included: Mariner, Pioneer, Pioneer Venus, Venera, Viking, Voyager, and Helios. Separate indexes to the planetary and interplanetary missions are also provided.

  7. Development of an instrument to measure student attitudes toward science fairs

    Science.gov (United States)

    Huddleston, Claudia A.

    Science fairs are woven into the very fabric of science instruction in the United States and in other countries. Even though thousands of students participate in science fairs every year, no instrument to measure student attitudes toward partaking in this hands-on learning experience has been fully developed and available for school administrators and teachers to assess the perceived value that current students attribute to participation in science fairs. Therefore, the purpose of this study was to continue the development and refinement of an instrument that measured student attitudes towards science fairs based on an unpublished instrument created by Michael (2005). The instrument developed and tested using 110 students at two different middle schools in southwest Virginia. The instrument consisted of 45 questions. After applying a principal component factor analysis, the instrument was reduced to two domains, enjoyment and value. The internal consistency of the instrument was calculated using Cronbach's alpha and showed good internal consistency of .89 between the two domains. Further analysis was conducted using a Pearson product-moment test and showed a significant positive correlation between enjoyment and value (r = .78). Demographic information was explored concerning the domains using a series of statistical tests, and results revealed no significant differences among race and science fair category. However, a significant difference was found among gender and students who won awards and those who did not. The conclusion was that further development and refinement of the instrument should be conducted.

  8. SOFIA science instruments: commissioning, upgrades and future opportunities

    Science.gov (United States)

    Smith, Erin C.; Miles, John W.; Helton, L. Andrew; Sankrit, Ravi; Andersson, B. G.; Becklin, Eric E.; De Buizer, James M.; Dowell, C. D.; Dunham, Edward W.; Güsten, Rolf; Harper, Doyal A.; Herter, Terry L.; Keller, Luke D.; Klein, Randolf; Krabbe, Alfred; Logsdon, Sarah; Marcum, Pamela M.; McLean, Ian S.; Reach, William T.; Richter, Matthew J.; Roellig, Thomas L.; Sandell, Göran; Savage, Maureen L.; Temi, Pasquale; Vacca, William D.; Vaillancourt, John E.; Van Cleve, Jeffrey E.; Young, Erick T.

    2014-07-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is the world's largest airborne observatory, featuring a 2.5 meter effective aperture telescope housed in the aft section of a Boeing 747SP aircraft. SOFIA's current instrument suite includes: FORCAST (Faint Object InfraRed CAmera for the SOFIA Telescope), a 5-40 μm dual band imager/grism spectrometer developed at Cornell University; HIPO (High-speed Imaging Photometer for Occultations), a 0.3-1.1μm imager built by Lowell Observatory; GREAT (German Receiver for Astronomy at Terahertz Frequencies), a multichannel heterodyne spectrometer from 60-240 μm, developed by a consortium led by the Max Planck Institute for Radio Astronomy; FLITECAM (First Light Infrared Test Experiment CAMera), a 1-5 μm wide-field imager/grism spectrometer developed at UCLA; FIFI-LS (Far-Infrared Field-Imaging Line Spectrometer), a 42-200 μm IFU grating spectrograph completed by University Stuttgart; and EXES (Echelon-Cross-Echelle Spectrograph), a 5-28 μm highresolution spectrometer designed at the University of Texas and being completed by UC Davis and NASA Ames Research Center. HAWC+ (High-resolution Airborne Wideband Camera) is a 50-240 μm imager that was originally developed at the University of Chicago as a first-generation instrument (HAWC), and is being upgraded at JPL to add polarimetry and new detectors developed at Goddard Space Flight Center (GSFC). SOFIA will continually update its instrument suite with new instrumentation, technology demonstration experiments and upgrades to the existing instrument suite. This paper details the current instrument capabilities and status, as well as the plans for future instrumentation.

  9. Instruments of Science and Citizenship: Science Education for Dutch Orphans During the Late Eighteenth Century

    Science.gov (United States)

    Roberts, Lissa L.

    2012-01-01

    One of the two most extensive instrument collections in the Netherlands during the second half of the eighteenth century—rivaling the much better known collection at the University of Leiden—belonged to an orphanage in The Hague that was specially established to mold hand-picked orphans into productive citizens. (The other was housed at the Mennonite Seminary in Amsterdam, for use in the education of its students.) The educational program at this orphanage, one of three established by the Fundatie van Renswoude, grew out of a marriage between the socially-oriented generosity of the wealthy Baroness van Renswoude and the pedagogical vision of the institute's director and head teacher—a vision that fit with the larger movement of oeconomic patriotism. Oeconomic patriotism, similar to `improvement' and oeconomic movements in other European countries and their colonies, sought to tie the investigation of nature to an improvement of society's material and moral well-being. Indeed, it was argued that these two facets of society should be viewed as inseparable from each other, distinguishing the movement from more modern conceptions of economics. While a number of the key figures in this Dutch movement also became prominent Patriots during the revolutionary period at the end of the century, fighting against the House of Orange, they did not have a monopoly on oeconomic ideas of societal improvement. This is demonstrated by the fact that an explicitly pro-Orangist society, Mathesis Scientiarum Genitrix, was organized in 1785 to teach science and mathematics to poor boys and orphans for very similar reasons: to turn them into productive and useful citizens. As was the case with the Fundatie van Renswoude, a collection of instruments was assembled to help make this possible. This story is of interest because it discusses a hitherto under-examined use to which science education was put during this period, by revealing the link between such programs and the highly

  10. History of Computer Science as an Instrument of Enlightenment

    OpenAIRE

    Fet , Yakov

    2013-01-01

    Part 6: Putting the History of Computing into Different Contexts; International audience; This report focuses on the dangerous problems that are currently facing the society – the negative phenomena in development of education and science. The most important way to solve this problem seems to be education and enlightenment. It is assumed that in the history of Computer Science, the intellectual and moral heritage of this history contains a wealth of material that can be used for the dissemina...

  11. The Moon Mineralogy Mapper (M3) imaging spectrometerfor lunar science: Instrument description, calibration, on‐orbit measurements, science data calibration and on‐orbit validation

    Science.gov (United States)

    C. Pieters,; P. Mouroulis,; M. Eastwood,; J. Boardman,; Green, R.O.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Cate, D.; Chatterjee, A.; Clark, R.; Barr, D.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, K.; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriguez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  12. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    Science.gov (United States)

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    The NASA Discovery Moon Mineralogy Mapper imaging spectrometer was selected to pursue a wide range of science objectives requiring measurement of composition at fine spatial scales over the full lunar surface. To pursue these objectives, a broad spectral range imaging spectrometer with high uniformity and high signal-to-noise ratio capable of measuring compositionally diagnostic spectral absorption features from a wide variety of known and possible lunar materials was required. For this purpose the Moon Mineralogy Mapper imaging spectrometer was designed and developed that measures the spectral range from 430 to 3000 nm with 10 nm spectral sampling through a 24 degree field of view with 0.7 milliradian spatial sampling. The instrument has a signal-to-noise ratio of greater than 400 for the specified equatorial reference radiance and greater than 100 for the polar reference radiance. The spectral cross-track uniformity is >90% and spectral instantaneous field-of-view uniformity is >90%. The Moon Mineralogy Mapper was launched on Chandrayaan-1 on the 22nd of October. On the 18th of November 2008 the Moon Mineralogy Mapper was turned on and collected a first light data set within 24 h. During this early checkout period and throughout the mission the spacecraft thermal environment and orbital parameters varied more than expected and placed operational and data quality constraints on the measurements. On the 29th of August 2009, spacecraft communication was lost. Over the course of the flight mission 1542 downlinked data sets were acquired that provide coverage of more than 95% of the lunar surface. An end-to-end science data calibration system was developed and all measurements have been passed through this system and delivered to the Planetary Data System (PDS.NASA.GOV). An extensive effort has been undertaken by the science team to validate the Moon Mineralogy Mapper science measurements in the context of the mission objectives. A focused spectral, radiometric

  13. Instrumentation

    International Nuclear Information System (INIS)

    Prieur, G.; Nadi, M.; Hedjiedj, A.; Weber, S.

    1995-01-01

    This second chapter on instrumentation gives little general consideration on history and classification of instrumentation, and two specific states of the art. The first one concerns NMR (block diagram of instrumentation chain with details on the magnets, gradients, probes, reception unit). The first one concerns precision instrumentation (optical fiber gyro-meter and scanning electron microscope), and its data processing tools (programmability, VXI standard and its history). The chapter ends with future trends on smart sensors and Field Emission Displays. (D.L.). Refs., figs

  14. Design and validation of a standards-based science teacher efficacy instrument

    Science.gov (United States)

    Kerr, Patricia Reda

    National standards for K--12 science education address all aspects of science education, with their main emphasis on curriculum---both science subject matter and the process involved in doing science. Standards for science teacher education programs have been developing along a parallel plane, as is self-efficacy research involving classroom teachers. Generally, studies about efficacy have been dichotomous---basing the theoretical underpinnings on the work of either Rotter's Locus of Control theory or on Bandura's explanations of efficacy beliefs and outcome expectancy. This study brings all three threads together---K--12 science standards, teacher education standards, and efficacy beliefs---in an instrument designed to measure science teacher efficacy with items based on identified critical attributes of standards-based science teaching and learning. Based on Bandura's explanation of efficacy being task-specific and having outcome expectancy, a developmental, systematic progression from standards-based strategies and activities to tasks to critical attributes was used to craft items for a standards-based science teacher efficacy instrument. Demographic questions related to school characteristics, teacher characteristics, preservice background, science teaching experience, and post-certification professional development were included in the instrument. The instrument was completed by 102 middle level science teachers, with complete data for 87 teachers. A principal components analysis of the science teachers' responses to the instrument resulted in two components: Standards-Based Science Teacher Efficacy: Beliefs About Teaching (BAT, reliability = .92) and Standards-Based Science Teacher Efficacy: Beliefs About Student Achievement (BASA, reliability = .82). Variables that were characteristic of professional development activities, science content preparation, and school environment were identified as members of the sets of variables predicting the BAT and BASA

  15. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  16. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  17. Instrument development for materials science research at WNR

    International Nuclear Information System (INIS)

    Eckert, J.; Silver, R.N.; Soper, A.; Vergamini, P.J.; Goldstone, J.; Larson, A.; Seeger, P.A.; Yarnell, J.

    1980-01-01

    The neutron scattering program at the Los Alamos spallation neutron source is based on the operational WNR facility which provides up to 11 μA of 800 MeV protons to a target in pulse widths up to 8 μs at 120 Hz. The immediate goals of the program are: to gain experience with neutron instrumentation at spallation neutron sources; and to explore the scientific potential for condensed matter research at these sources. The proton storage ring (PSR) funded for construction will provide 100 μA in 0.27 μs pulses at 12 Hz, therefore greatly improving intensity, time-of-flight (TOF) resolution, and repetition rate. The initial emphasis, given limited manpower and resources, has been placed on developing a set of prototype instruments which are relatively easy to implement and which take advantage of the unique characteristics of the present WNR when compared with reactor neutron sources

  18. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2000-01-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised

  19. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2001-04-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor.

  20. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2001-01-01

    SCK-CEN's research and development programme on instrumentation involves the assessment and the development of sensitive measurement systems used within a radiation environment. Particular emphasis is on the assessment of optical fibre components and their adaptability to radiation environments. The evaluation of ageing processes of instrumentation in fission plants, the development of specific data evaluation strategies to compensate for ageing induced degradation of sensors and cable performance form part of these activities. In 2000, particular emphasis was on in-core reactor instrumentation applied to fusion, accelerator driven and water-cooled fission reactors. This involved the development of high performance instrumentation for irradiation experiments in the BR2 reactor in support of new instrumentation needs for MYRRHA, and for diagnostic systems for the ITER reactor

  1. The Atomic, Molecular and Optical Science instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ken R. [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Applied Physics, Stanford University, 348 Via Pueblo, Stanford, CA 94305 (United States); Bucher, Maximilian; Bozek, John D.; Carron, Sebastian; Castagna, Jean-Charles [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Coffee, Ryan [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Curiel, G. Ivan; Holmes, Michael; Krzywinski, Jacek; Messerschmidt, Marc; Minitti, Michael; Mitra, Ankush; Moeller, Stefan; Noonan, Peter; Osipov, Timur; Schorb, Sebastian; Swiggers, Michele; Wallace, Alexander; Yin, Jing [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Bostedt, Christoph, E-mail: bostedt@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Pulse Institute, Stanford University and SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-17

    A description of the Atomic, Molecular and Optical Sciences (AMO) instrument at the Linac Coherent Light Source is presented. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument. The Atomic, Molecular and Optical Science (AMO) instrument at the Linac Coherent Light Source (LCLS) provides a tight soft X-ray focus into one of three experimental endstations. The flexible instrument design is optimized for studying a wide variety of phenomena requiring peak intensity. There is a suite of spectrometers and two photon area detectors available. An optional mirror-based split-and-delay unit can be used for X-ray pump–probe experiments. Recent scientific highlights illustrate the imaging, time-resolved spectroscopy and high-power density capabilities of the AMO instrument.

  2. The Preschool Rating Instrument for Science and Mathematics (PRISM)

    Science.gov (United States)

    Brenneman, Kimberly; Stevenson-Garcia, Judi; Jung, Kwanghee; Frede, Ellen

    2011-01-01

    Until recently, few valid and reliable assessments were available to measure young children's mathematics and science learning in a "comprehensive" way. Now, a number of mathematics assessments have been developed and subjected to testing (Klein, Starkey, & Wakeley, 2000; Ginsburg, 2008; Clements & Sarama, 2008), and progress has…

  3. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  4. Review of decametric radio astronomy - instruments and science

    International Nuclear Information System (INIS)

    Erickson, W.C.; Cane, H.V.

    1987-01-01

    The techniques and instruments used in Galactic and extragalactic radio astronomy at dkm wavelengths are surveyed, and typical results are summarized. Consideration is given to the large specialized phased arrays used for early surveys, the use of wideband elements to increase frequency agility, experimental VLBI observations, and limitations on ground-based observations below about 10 MHz (where the proposed LF Space Array, with resolution 0.5-5 arcmin, could make a major contribution). Observations discussed cover the Galactic center, the Galactic background radiation, SNRs, compact Galactic sources, the ISM, and large extragalactic sources. 38 references

  5. Instrumentation

    International Nuclear Information System (INIS)

    Decreton, M.

    2002-01-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described

  6. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2002-04-01

    SCK-CEN's R and D programme on instrumentation involves the development of advanced instrumentation systems for nuclear applications as well as the assessment of the performance of these instruments in a radiation environment. Particular emphasis is on the use of optical fibres as umbilincal links of a remote handling unit for use during maintanance of a fusion reacor, studies on the radiation hardening of plasma diagnostic systems; investigations on new instrumentation for the future MYRRHA accelerator driven system; space applications related to radiation-hardened lenses; the development of new approaches for dose, temperature and strain measurements; the assessment of radiation-hardened sensors and motors for remote handling tasks and studies of dose measurement systems including the use of optical fibres. Progress and achievements in these areas for 2001 are described.

  7. Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Decreton, M

    2000-07-01

    SCK-CEN's research and development programme on instrumentation aims at evaluating the potentials of new instrumentation technologies under the severe constraints of a nuclear application. It focuses on the tolerance of sensors to high radiation doses, including optical fibre sensors, and on the related intelligent data processing needed to cope with the nuclear constraints. Main achievements in these domains in 1999 are summarised.

  8. Integrating Instrumental Data Provides the Full Science in 3D

    Science.gov (United States)

    Turrin, M.; Boghosian, A.; Bell, R. E.; Frearson, N.

    2017-12-01

    Looking at data sparks questions, discussion and insights. By integrating multiple data sets we deepen our understanding of how cryosphere processes operate. Field collected data provide measurements from multiple instruments supporting rapid insights. Icepod provides a platform focused on the integration of multiple instruments. Over the last three seasons, the ROSETTA-Ice project has deployed Icepod to comprehensively map the Ross Ice Shelf, Antarctica. This integrative data collection along with new methods of data visualization allows us to answer questions about ice shelf structure and evolution that arise during data processing and review. While data are vetted and archived in the field to confirm instruments are operating, upon return to the lab data are again reviewed for accuracy before full analysis. Recent review of shallow ice radar data from the Beardmore Glacier, an outlet glacier into the Ross Ice Shelf, presented an abrupt discontinuity in the ice surface. This sharp 8m surface elevation drop was originally interpreted as a processing error. Data were reexamined, integrating the simultaneously collected shallow and deep ice radar with lidar data. All the data sources showed the surface discontinuity, confirming the abrupt 8m drop in surface elevation. Examining high resolution WorldView satellite imagery revealed a persistent source for these elevation drops. The satellite imagery showed that this tear in the ice surface was only one piece of a larger pattern of "chatter marks" in ice that flows at a rate of 300 m/yr. The markings are buried over a distance of 30 km or after 100 years of travel down Beardmore Glacier towards the front of the Ross Ice Shelf. Using Icepod's lidar and cameras we map this chatter mark feature in 3D to reveal its full structure. We use digital elevation models from WorldView to map the other along flow chatter marks. In order to investigate the relationship between these surface features and basal crevasses, the deep ice

  9. Instrumentation

    International Nuclear Information System (INIS)

    Umminger, K.

    2008-01-01

    A proper measurement of the relevant single and two-phase flow parameters is the basis for the understanding of many complex thermal-hydraulic processes. Reliable instrumentation is therefore necessary for the interaction between analysis and experiment especially in the field of nuclear safety research where postulated accident scenarios have to be simulated in experimental facilities and predicted by complex computer code systems. The so-called conventional instrumentation for the measurement of e. g. pressures, temperatures, pressure differences and single phase flow velocities is still a solid basis for the investigation and interpretation of many phenomena and especially for the understanding of the overall system behavior. Measurement data from such instrumentation still serves in many cases as a database for thermal-hydraulic system codes. However some special instrumentation such as online concentration measurement for boric acid in the water phase or for non-condensibles in steam atmosphere as well as flow visualization techniques were further developed and successfully applied during the recent years. Concerning the modeling needs for advanced thermal-hydraulic codes, significant advances have been accomplished in the last few years in the local instrumentation technology for two-phase flow by the application of new sensor techniques, optical or beam methods and electronic technology. This paper will give insight into the current state of instrumentation technology for safety-related thermohydraulic experiments. Advantages and limitations of some measurement processes and systems will be indicated as well as trends and possibilities for further development. Aspects of instrumentation in operating reactors will also be mentioned.

  10. Instruments

    International Nuclear Information System (INIS)

    Buehrer, W.

    1996-01-01

    The present paper mediates a basic knowledge of the most commonly used experimental techniques. We discuss the principles and concepts necessary to understand what one is doing if one performs an experiment on a certain instrument. (author) 29 figs., 1 tab., refs

  11. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  12. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  13. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.

    1977-01-01

    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  14. Instrumentation

    International Nuclear Information System (INIS)

    Muehllehner, G.; Colsher, J.G.

    1982-01-01

    This chapter reviews the parameters which are important to positron-imaging instruments. It summarizes the options which various groups have explored in designing tomographs and the methods which have been developed to overcome some of the limitations inherent in the technique as well as in present instruments. The chapter is not presented as a defense of positron imaging versus single-photon or other imaging modality, neither does it contain a description of various existing instruments, but rather stresses their common properties and problems. Design parameters which are considered are resolution, sampling requirements, sensitivity, methods of eliminating scattered radiation, random coincidences and attenuation. The implementation of these parameters is considered, with special reference to sampling, choice of detector material, detector ring diameter and shielding and variations in point spread function. Quantitation problems discussed are normalization, and attenuation and random corrections. Present developments mentioned are noise reduction through time-of-flight-assisted tomography and signal to noise improvements through high intrinsic resolution. Extensive bibliography. (U.K.)

  15. Examining the Teaching of Science, and Technology and Engineering Content and Practices: An Instrument Modification Study

    Science.gov (United States)

    Love, Tyler S.; Wells, John G.; Parkes, Kelly A.

    2017-01-01

    A modified Reformed Teaching Observation Protocol (RTOP) (Piburn & Sawada, 2000) instrument was used to separately examine eight technology and engineering (T&E) educators' teaching of science, and T&E content and practices, as called for by the "Standards for Technological Literacy: Content for the Study of Technology"…

  16. Development and Validation of Nature of Science Instrument for Elementary School Students

    Science.gov (United States)

    Hacieminoglu, Esme; Yilmaz-Tüzün, Özgül; Ertepinar, Hamide

    2014-01-01

    The purposes of this study were to develop and validate an instrument for assessing elementary students' nature of science (NOS) views and to explain the elementary school students' NOS views, in terms of varying grade levels and gender. The sample included 782 students enrolled in sixth, seventh, and eighth grades. Exploratory factor analysis…

  17. Preliminary Analysis of Assessment Instrument Design to Reveal Science Generic Skill and Chemistry Literacy

    Science.gov (United States)

    Sumarni, Woro; Sudarmin; Supartono, Wiyanto

    2016-01-01

    The purpose of this research is to design assessment instrument to evaluate science generic skill (SGS) achievement and chemistry literacy in ethnoscience-integrated chemistry learning. The steps of tool designing refers to Plomp models including 1) Investigation Phase (Prelimenary Investigation); 2) Designing Phase (Design); 3)…

  18. The design and implementation of the Dynamic Ionosphere Cubesat Experiment (DICE) science instruments

    Science.gov (United States)

    Burr, Steven Reed

    Dynamic Ionosphere Cubesat Experiment (DICE) is a satellite project funded by the National Science Foundation (NSF) to study the ionosphere, more particularly Storm Enhanced Densities (SED) with a payload consisting of plasma diagnostic instrumentation. Three instruments onboard DICE include an Electric Field Probe (EFP), Ion Langmuir Probe (ILP), and Three Axis Magnetometer (TAM). The EFP measures electric fields from +/-8V and consists of three channels a DC to 40Hz channel, a Floating Potential Probe (FPP), and an spectrographic channel with four bands from 16Hz to 512Hz. The ILP measures plasma densities from 1x104 cm--3 to 2x107 cm--3. The TAM measures magnetic field strength with a range +/-0.5 Gauss with a sensitivity of 2nT. To achieve desired mission requirements careful selection of instrument requirements and planning of the instrumentation design to achieve mission success. The analog design of each instrument is described in addition to the digital framework required to sample the science data at a 70Hz rate and prepare the data for the Command and Data Handing (C&DH) system. Calibration results are also presented and show fulfillment of the mission and instrumentation requirements.

  19. The Astronomy and Space Science Concept Inventory: Assessment Instruments Aligned with the K-12 National Science Standards

    Science.gov (United States)

    Sadler, Philip M.

    2011-01-01

    We report on the development of an item test bank and associated instruments based on those K-12 national standards which involve astronomy and space science. Utilizing hundreds of studies in the science education research literature on student misconceptions, we have constructed 211 unique items that measure the degree to which students abandon such ideas for accepted scientific views. Piloted nationally with 7599 students and their 88 teachers spanning grades 5-12, the items reveal a range of interesting results, particularly student difficulties in mastering the NRC Standards and AAAS Benchmarks. Teachers generally perform well on items covering the standards of the grade level at which they teach, exhibiting few misconceptions of their own. Teachers dramatically overestimate their students’ performance, perhaps because they are unaware of their students’ misconceptions. Examples are given showing how the developed instruments can be used to assess the effectiveness of instruction and to evaluate the impact of professional development activities for teachers.

  20. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  1. Developing instruments concerning scientific epistemic beliefs and goal orientations in learning science: a validation study

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-11-01

    The purpose of this study was to develop and validate two survey instruments to evaluate high school students' scientific epistemic beliefs and goal orientations in learning science. The initial relationships between the sampled students' scientific epistemic beliefs and goal orientations in learning science were also investigated. A final valid sample of 600 volunteer Taiwanese high school students participated in this survey by responding to the Scientific Epistemic Beliefs Instrument (SEBI) and the Goal Orientations in Learning Science Instrument (GOLSI). Through both exploratory and confirmatory factor analyses, the SEBI and GOLSI were proven to be valid and reliable for assessing the participants' scientific epistemic beliefs and goal orientations in learning science. The path analysis results indicated that, by and large, the students with more sophisticated epistemic beliefs in various dimensions such as Development of Knowledge, Justification for Knowing, and Purpose of Knowing tended to adopt both Mastery-approach and Mastery-avoidance goals. Some interesting results were also found. For example, the students tended to set a learning goal to outperform others or merely demonstrate competence (Performance-approach) if they had more informed epistemic beliefs in the dimensions of Multiplicity of Knowledge, Uncertainty of Knowledge, and Purpose of Knowing.

  2. The Use of Cronbach's Alpha When Developing and Reporting Research Instruments in Science Education

    Science.gov (United States)

    Taber, Keith S.

    2017-06-01

    Cronbach's alpha is a statistic commonly quoted by authors to demonstrate that tests and scales that have been constructed or adopted for research projects are fit for purpose. Cronbach's alpha is regularly adopted in studies in science education: it was referred to in 69 different papers published in 4 leading science education journals in a single year (2015)—usually as a measure of reliability. This article explores how this statistic is used in reporting science education research and what it represents. Authors often cite alpha values with little commentary to explain why they feel this statistic is relevant and seldom interpret the result for readers beyond citing an arbitrary threshold for an acceptable value. Those authors who do offer readers qualitative descriptors interpreting alpha values adopt a diverse and seemingly arbitrary terminology. More seriously, illustrative examples from the science education literature demonstrate that alpha may be acceptable even when there are recognised problems with the scales concerned. Alpha is also sometimes inappropriately used to claim an instrument is unidimensional. It is argued that a high value of alpha offers limited evidence of the reliability of a research instrument, and that indeed a very high value may actually be undesirable when developing a test of scientific knowledge or understanding. Guidance is offered to authors reporting, and readers evaluating, studies that present Cronbach's alpha statistic as evidence of instrument quality.

  3. Experimental innovations in surface science a guide to practical laboratory methods and instruments

    CERN Document Server

    Yates, John T

    2015-01-01

    This book is a new edition of a classic text on experimental methods and instruments in surface science. It offers practical insight useful to chemists, physicists, and materials scientists working in experimental surface science. This enlarged second edition contains almost 300 descriptions of experimental methods. The more than 50 active areas with individual scientific and measurement concepts and activities relevant to each area are presented in this book. The key areas covered are: Vacuum System Technology, Mechanical Fabrication Techniques, Measurement Methods, Thermal Control, Delivery of Adsorbates to Surfaces, UHV Windows, Surface Preparation Methods, High Area Solids, Safety. The book is written for researchers and graduate students.

  4. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  5. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    Science.gov (United States)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  6. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, D; Dittrich, P-G; Duentsch, E [Senior Network Manager NEMO SpectroNet, Technologie- und Innovationspark Jena GmbH, Wildenbruchstrasse 15, D-07745 Jena (Germany)

    2010-07-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  7. Smartphone measurement engineering - Innovative challenges for science and education, instrumentation and training

    International Nuclear Information System (INIS)

    Hofmann, D; Dittrich, P-G; Duentsch, E

    2010-01-01

    Smartphones have an enormous conceptual and structural influence on measurement science and education, instrumentation and training. Smartphones are matured. They became convenient, reliable and affordable. In 2009 worldwide 174 million Smartphones has been delivered. Measurement with Smartphones is ready for the future. In only 10 years the German vision industry tripled its global sales volume to one Billion Euro/Year. Machine vision is used for mobile object identification, contactless industrial quality control, personalized health care, remote facility and transport management, safety critical surveillance and all tasks which are too complex for the human eye or too monotonous for the human brain. Aim of the paper is to describe selected success stories for the application of Smartphones for measurement engineering in science and education, instrumentation and training.

  8. Evolution and validation of a personal form of an instrument for assessing science laboratory classroom environments

    Science.gov (United States)

    Fraser, Barry J.; Giddings, Geoffrey J.; McRobbie, Campbell J.

    The research reported in this article makes two distinctive contributions to the field of classroom environment research. First, because existing instruments are unsuitable for science laboratory classes, the Science Laboratory Environment Inventory (SLEI) was developed and validated. Second, a new Personal form of the SLEI (involving a student's perceptions of his or her own role within the class) was developed and validated in conjunction with the conventional Class form (involving a student's perceptions of the class as a whole), and its usefulness was investigated. The instrument was cross-nationally fieldtested with 5,447 students in 269 senior high school and university classes in six countries, and cross-validated with 1,594 senior high school students in 92 classes in Australia. Each SLEI scale exhibited satisfactory internal consistency reliability, discriminant validity, and factorial validity, and differentiated between the perceptions of students in different classes. A variety of applications with the new instrument furnished evidence about its usefulness and revealed that science laboratory classes are dominated by closed-ended activities; mean scores obtained on the Class form were consistently somewhat more favorable than on the corresponding Personal form; females generally held more favorable perceptions than males, but these differences were somewhat larger for the Personal form than the Class form; associations existed between attitudinal outcomes and laboratory environment dimensions; and the Class and Personal forms of the SLEI each accounted for unique variance in student outcomes which was independent of that accounted for by the other form.

  9. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  10. Astro 101 Students' Perceptions of Science: Results from the "Thinking about Science Survey Instrument"

    Science.gov (United States)

    Wallace, Colin S.; Prather, Edward E.; Mendelsohn, Benjamin M.

    2013-01-01

    What are the underlying worldviews and beliefs about the role of science in society held by students enrolled in a college-level, general education, introductory astronomy course (Astro 101)--and are those beliefs affected by active engagement instruction shown to significantly increase students' conceptual knowledge and reasoning abilities…

  11. The Instrument Implementation of Two-tier Multiple Choice to Analyze Students’ Science Process Skill Profile

    Directory of Open Access Journals (Sweden)

    Sukarmin Sukarmin

    2018-01-01

    Full Text Available This research is aimed to analyze the profile of students’ science process skill (SPS by using instrument two-tier multiple choice. This is a descriptive research that describes the profile of students’ SPS. Subjects of the research were 10th-grade students from high, medium and low categorized school. Instrument two-tier multiple choice consists of 30 question that contains an indicator of SPS. The indicator of SPS namely formulating a hypothesis, designing experiment, analyzing data, applying the concept, communicating, making a conclusion. Based on the result of the research and analysis, it shows that: 1 the average of indicator achievement of science process skill at high categorized school on formulating hypothesis is 74,55%, designing experiment is 74,89%, analyzing data is 67,89%, applying concept is 52,89%, communicating is 80,22%, making conclusion is 76%, 2. the average of indicator achievement of science process skill at medium categorized school on formulating hypothesis is 53,47%, designing experiment is 59,86%, analyzing data is 42,22%, applying concept is 33,19%, communicating is 76,25%, making conclusion is 61,53%, 3 the average of indicator achievement of science process skill at low categorized school on formulating hypothesis is 51%, designing experiment is 55,17%, analyzing data is 39,17%, applying concept is 35,83%, communicating is 58,83%, making conclusion is 58%.

  12. Synchrotron light sources and free-electron lasers accelerator physics, instrumentation and science applications

    CERN Document Server

    Khan, Shaukat; Schneider, Jochen; Hastings, Jerome

    2016-01-01

    Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources dri...

  13. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  14. The Nature of Science Instrument-Elementary (NOSI-E): the end of the road?

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M

    2014-01-01

    This research continues prior work published in this journal (Peoples, O'Dwyer, Shields and Wang, 2013). The first paper described the scale development, psychometric analyses and part-validation of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). In the first paper, evidence was provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. The research described in this paper examines two additional validity aspects (structural and external). The purpose of this study was to determine which of three competing internal models provides reliable, interpretable, and responsive measures of students' understanding of NOS. One postulate is that the NOS construct is unidimensional;. alternatively, the NOS construct is composed of five independent unidimensional constructs (the consecutive approach). Lastly, the NOS construct is multidimensional and composed of five inter-related but separate dimensions. The vast body of evidence supported the claim that the NOS construct is multidimensional. Measures from the multidimensional model were positively related to student science achievement and students' perceptions of their classroom environment; this provided supporting evidence for the external validity aspect of the NOS construct. As US science education moves toward students learning science through engaging in authentic scientific practices and building learning progressions (NRC, 2012), it will be important to assess whether this new approach to teaching science is effective, and the NOSI-E may be used as a measure of the impact of this reform.

  15. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  16. Development and validation of an instrument to evaluate science teachers' assessment beliefs and practices

    Science.gov (United States)

    Genc, Evrim

    The primary purpose of this study was to develop a valid and reliable instrument to examine science teachers' assessment beliefs and practices in science classrooms. The present study also investigated the relationship between teachers' beliefs and practices in terms of assessment issues in science, their perceptions of the factors that influenced their assessment practices and their feelings towards high-stakes testing. The participants of the study were 408 science teachers teaching at middle and high school levels in the State of Florida. Data were collected through two modes of administration of the instrument as a paper-and-pencil and a web-based form. The response rate for paper-and-pencil administration was estimated as 68% whereas the response for the web administration was found to be 27%. Results from the various dimensions of validity and reliability analyses revealed that the 24 item-four-factor belief and practice measures were psychometrically sound and conceptually anchored measures of science teachers' assessment beliefs and self-reported practices. Reliability estimates for the belief measure ranged from .83 to .91 whereas alpha values for the practice measure ranged from .56 to .90. Results from the multigroup analysis supported that the instrument has the same theoretical structure across both administration groups. Therefore, future researchers may use either a paper-and-pencil or web-based format of the instrument. This study underscored a discrepancy between what teachers believe and how they act in classroom settings. It was emphasized that certain factors were mediating the dynamics between the belief and the practice. The majority of teachers reported that instruction time, class size, professional development activities, availability of school funding, and state testing mandates impact their assessment routines. Teachers reported that both the preparation process and the results of the test created unbelievable tension both on students and

  17. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year's summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer's summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs

  18. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  19. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    Science.gov (United States)

    Ice, G. E.; Larson, B. C.; Liu, W.; Barabash, R. I.; Specht, E. D.; Pang, J. W. L.; Budai, J. D.; Tischler, J. Z.; Khounsary, A.; Liu, C.; Macrander, A. T.; Assoufid, L.

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization.

  20. Polychromatic X-ray Micro- and Nano-Beam Science and Instrumentation

    International Nuclear Information System (INIS)

    Ice, G.E.; Larson, Ben C.; Liu, Wenjun; Barabash, Rozaliya; Specht, Eliot D; Pang, Judy; Budai, John D.; Tischler, Jonathan Zachary; Khounsary, Ali; Liu, Chian; Macrander, Albert T.; Assoufid, Lahsen

    2007-01-01

    Polychromatic x-ray micro- and nano-beam diffraction is an emerging nondestructive tool for the study of local crystalline structure and defect distributions. Both long-standing fundamental materials science issues, and technologically important questions about specific materials systems can be uniquely addressed. Spatial resolution is determined by the beam size at the sample and by a knife-edge technique called differential aperture microscopy that decodes the origin of scattering from along the penetrating x-ray beam. First-generation instrumentation on station 34-ID-E at the Advanced Photon Source (APS) allows for nondestructive automated recovery of the three-dimensional (3D) local crystal phase and orientation. Also recovered are the local elastic-strain and the dislocation tensor distributions. New instrumentation now under development will further extend the applications of polychromatic microdiffraction and will revolutionize materials characterization

  1. OCEANUS: A high science return Uranus orbiter with a low-cost instrument suite

    Science.gov (United States)

    Elder, C. M.; Bramson, A. M.; Blum, L. W.; Chilton, H. T.; Chopra, A.; Chu, C.; Das, A.; Davis, A. B.; Delgado, A.; Fulton, J.; Jozwiak, L. M.; Khayat, A.; Landis, M. E.; Molaro, J. L.; Slipski, M.; Valencia, S.; Watkins, J.; Young, C. L.; Budney, C. J.; Mitchell, K. L.

    2018-07-01

    Ice-giant-sized planets are the most common type of observed exoplanet, yet the two ice giants in our own solar system (Uranus and Neptune) are the least explored class of planet, having only been observed through ground-based observations and a single flyby each by Voyager 2 approximately 30 years ago. These single flybys were unable to characterize the spatial and temporal variability in ice giant magnetospheres, some of the most odd and intriguing magnetospheres in the solar system. They also offered only limited constraints on the internal structure of ice giants; understanding the internal structure of a planet is important for understanding its formation and evolution. The most recent planetary science Decadal Survey by the U.S. National Academy of Sciences, "Vision and Voyages for Planetary Science in the Decade 2013-2022," identified the ice giant Uranus as the third highest priority for a Flagship mission in the decade 2013-2022. However, in the event that NASA or another space agency is unable to fly a Flagship-class mission to an ice giant in the next decade, this paper presents a mission concept for a focused, lower cost Uranus orbiter called OCEANUS (Origins and Composition of the Exoplanet Analog Uranus System). OCEANUS would increase our understanding of the interior structure of Uranus, its magnetosphere, and how its magnetic field is generated. These goals could be achieved with just a magnetometer and the spacecraft's radio system. This study shows that several of the objectives outlined by the Decadal Survey, including one of the two identified as highest priority, are within reach for a New-Frontiers-class mission.

  2. The Student Actions Coding Sheet (SACS): An Instrument for Illuminating the Shifts toward Student-Centered Science Classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Abd-Hamid, Nor Hashidah

    2011-01-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3)…

  3. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  4. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  5. INSTRUMENTS OF SUPPORT FOR RESEARCH AND DEVELOPMENT FUNDED BY LEADING DOMESTIC AND INTERNATIONAL SCIENCE FOUNDATIONS

    Directory of Open Access Journals (Sweden)

    Irina E. Ilina

    2017-06-01

    Full Text Available Introduction: one of the key aspects of the knowledge economy development is the growing significance of the results of research and development. The education and basic research play a key role in this process. Funding for education and fundamental science is carried out mainly at the expense of the state resources, including a system of foundations for scientific, engineering and innovation activities in Russia. The purpose of this article is to present recommendations for improving the tools of domestic foundations in funding fundamental research and development, including education and training. The propositions are made with a comparative analysis of the domestic and foreign science foun dations’ activities. Materials and Methods: the authors used analysis, comparison, induction, deduction, graphical analysis, generalisation and other scientific methods during the study. Results: the lack of comparability between domestic and foreign scientific funds in the volume of funding allocated for basic research and development is revealed. This situation affects the scientific research. The foreign foundations have a wide range of instruments to support research projects at all stages of the life cycle of grants for education and training prior to release of an innovative product to market (the use of “innovation elevator” system. The Russian national scientific foundations have no such possibilities. The authors guess that the Russian organisations ignore some of the instruments for supporting research and development. Use of these tools could enhance the effectiveness of research projects. According to the study of domestic and foreign experience in supporting research and development, the authors proposed a matrix composed of instruments for support in the fields of basic scientific researches and education with such phases of the project life cycle as “research” and “development”. Discussion and Conclusions: the foreign science

  6. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  7. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  8. The Impact of Crosstalk in the X-IFU Instrument on Athena Science Cases

    Science.gov (United States)

    Hartog, R. Den; Peille, P.; Dauser, T.; Jackson, B.; Bandler, S.; Barret, D.; Brand, T.; Herder, J-W Den; Kiviranta, M.; Kuur, J. Van Der; hide

    2016-01-01

    In this paper we present a first assessment of the impact of various forms of instrumental crosstalk on the science performance of the X-ray Integral Field Unit (X-IFU) on the Athena X-ray mission. This assessment is made using the SIXTE end-to-end simulator in the context of one of the more technically challenging science cases for the XIFU instrument. Crosstalk considerations may influence or drive various aspects of the design of the array of high-count-rate Transition Edge Sensor (TES) detectors and its Frequency Domain Multiplexed (FDM) readout architecture. The Athena X-ray mission was selected as the second L-class mission in ESA's Cosmic Vision 2015–25 plan, with alaunch foreseen in 2028, to address the theme ''Hot and Energetic Universe"1. One of the two instruments on boardAthena is the X-ray Integral Field Unit2 (X-IFU) which is based on an array of 3800 Transition Edge Sensors (TES's)operated at a temperature of 90 mK. The science cases pose an interesting challenge for this instrument, as they requirea combination of high energy resolution (2.5 eV FWHM or better), high spatial resolution (5 arcsec or better) and highcount rate capability (several tens of counts per second per detector for point sources as bright as 10 mCrab).The performance at the single sensor level has been demonstrated3, but the operation of such detectors in an array, usingmultiplexed readout, brings additional challenges, both for the design of the array in which the sensors are placed and forthe readout of the sensors. The readout of the detector array will be based on Frequency Domain Multiplexing (FDM)4.In this system of detectors and readout, crosstalk can arise through various mechanisms: on the TES array, neighboringsensors can couple through thermal crosstalk. Detectors adjacent in carrier frequency may suffer from electrical crosstalkdue to the finite width of the bandpass filters, and shared sources of impedance in their signal lines. The signals from theindividual

  9. Interplanetary variability recorded by the sled instrument aboard the Phobos spacecraft during that period of solar cycle 22 characterized by a transition from solar minimum- to solar maximum-dominated conditions

    Energy Technology Data Exchange (ETDEWEB)

    McKenna-Lawlor, S.M.P. (Saint Patrick' s Coll., Maynooth (Ireland)); Afonin, V.V.; Gringauz, K.I. (AN SSSR, Moscow (USSR). Space Research Inst.) (and others)

    Twin telescope particle detector systems SLED-1 and SLED-2, with the capability of monitoring electron and ion fluxes within an energy range spanning approximately 30 keV to a few megaelectron volts, were individually launched on the two spacecraft (Phobos-2 and Phobos-1, respectively) of the Soviet Phobos Mission to Mars and its moons in July 1988. A short description of the SLED instrument and a preliminary account of representative solar-related particle enhancements recorded by SLED-1 and SLED-2 during the Cruise Phase, and by SLED-1 in the near Martian environment (within the interval 25 July 1988-26 March 1989) are presented. These observations were made while the interplanetary medium was in the course of changing over from solar minimum- to solar maximum-dominated conditions and examples are presented of events associated with each of these phenomenological states. (author).

  10. Latest developments of neutron scattering instrumentation at the Juelich Centre for Neutron Science

    International Nuclear Information System (INIS)

    Ioffe, Alexander

    2013-01-01

    Jülich Centre for Neutron Science (JCNS) is operating a number of world-class neutron scattering instruments situated at the most powerful and advanced neutron sources (FRM II, ILL and SNS) and is continuously undertaking significant efforts in the development and upgrades to keep this instrumentation in line with the continuously changing scientific request. These developments are mostly based upon the latest progress in neutron optics and polarized neutron techniques. For example, the low-Q limit of the suite of small angle-scattering instruments has been extended to 4·10 -5 Å -1 by the successful use of focusing optics. A new generation of correction elements for the neutron spin-echo spectrometer has allowed for the use of the full field integral available, thus pushing further the instrument resolution. A significant progress has been achieved in the developments of 3 He neutron spin filters for purposes of the wide-angle polarization analysis for off-specular reflectometry and (grazing incidence) small-angle neutron scattering, e.g. the on-beam polarization of 3 He in large cells is allowing to achieve a high neutron beam polarization without any degradation in time. The wide Q-range polarization analysis using 3 He neutron spin filters has been implemented for small-angle neutron scattering that lead to the reduction up to 100 times of the intrinsic incoherent background from non-deuterated biological molecules. Also the work on wide-angle XYZ magnetic cavities (Magic PASTIS) will be presented. (author)

  11. Thermospheric O/N2 ratio observations obtained over more than four years with the GUVI instrument in the TIMED spacecraft mission

    Science.gov (United States)

    Craven, J. D.; Christensen, A. B.; Paxton, L. J.; Strickland, D. J.

    2006-12-01

    GUVI observations of the thermospheric column density ratio, O/N2, in the sunlit hemisphere have been made continuously from about Day 50 of 2002 to the present as part of the TIMED spacecraft mission. From these observations have been created organized databases to be used in the creation of analytic models for this parameter. Undesirable attributes within the GUVI data are being eliminated; sun glint at particular solar orientations and penetrating radiation from the South Atlantic magnetic anomaly. The large-scale basic spatial structure includes variations with local time (greater values before local noon), Universal Time (modulation at high latitudes as the dayside auroral oval varies in solar zenith angle due to the offset magnetic dipole), and season (greater values in the local winter hemisphere). Superposed on this well- behaved background structure are the complex, transient perturbations of auroral substorm and geomagnetic storm driven heating events at the high latitudes. These are more difficult to analyze, but are of great interest, as changes in neutral composition, for example, drive changes in ionospheric electron density. The current state of these efforts is to be presented.

  12. Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex II: Neutron Scattering Instruments

    Directory of Open Access Journals (Sweden)

    Kenji Nakajima

    2017-11-01

    Full Text Available The neutron instruments suite, installed at the spallation neutron source of the Materials and Life Science Experimental Facility (MLF at the Japan Proton Accelerator Research Complex (J-PARC, is reviewed. MLF has 23 neutron beam ports and 21 instruments are in operation for user programs or are under commissioning. A unique and challenging instrumental suite in MLF has been realized via combination of a high-performance neutron source, optimized for neutron scattering, and unique instruments using cutting-edge technologies. All instruments are/will serve in world-leading investigations in a broad range of fields, from fundamental physics to industrial applications. In this review, overviews, characteristic features, and typical applications of the individual instruments are mentioned.

  13. Data from the Mars Science Laboratory CheMin XRD/XRF Instrument

    Science.gov (United States)

    Vaniman, David; Blake, David; Bristow, Tom; DesMarais, David; Achilles, Cherie; Anderson, Robert; Crips, Joy; Morookian, John Michael; Spanovich, Nicole; Vasavada, Ashwin; hide

    2013-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity uses a Co tube source and a CCD detector to acquire mineralogy from diffracted primary X-rays and chemical information from fluoresced X-rays. CheMin has been operating at the MSL Gale Crater field site since August 5, 2012 and has provided the first X-ray diffraction (XRD) analyses in situ on a body beyond Earth. Data from the first sample collected, the Rocknest eolian soil, identify a basaltic mineral suite, predominantly plagioclase (approx.An50), forsteritic olivine (approx.Fo58), augite and pigeonite, consistent with expectation that detrital grains on Mars would reflect widespread basaltic sources. Minor phases (each XRD. This amorphous component is attested to by a broad rise in background centered at approx.27deg 2(theta) (Co K(alpha)) and may include volcanic glass, impact glass, and poorly crystalline phases including iron oxyhydroxides; a rise at lower 2(theta) may indicate allophane or hisingerite. Constraints from phase chemistry of the crystalline components, compared with a Rocknest bulk composition from the APXS instrument on Curiosity, indicate that in sum the amorphous or poorly crystalline components are relatively Si, Al, Mg-poor and enriched in Ti, Cr, Fe, K, P, S, and Cl. All of the identified crystalline phases are volatile-free; H2O, SO2 and CO2 volatile releases from a split of this sample analyzed by the SAM instrument on Curiosity are associated with the amorphous or poorly ordered materials. The Rocknest eolian soil may be a mixture of local detritus, mostly crystalline, with a regional or global set of dominantly amorphous or poorly ordered components. The Rocknest sample was targeted by MSL for "first time analysis" to demonstrate that a loose deposit could be scooped, sieved to <150 microns, and delivered to instruments in the body of the rover. A drilled sample of sediment in outcrop is anticipated. At the time of writing this abstract, promising outcrops are

  14. Development and Large-Scale Validation of an Instrument to Assess Arabic-Speaking Students' Attitudes Toward Science

    Science.gov (United States)

    Abd-El-Khalick, Fouad; Summers, Ryan; Said, Ziad; Wang, Shuai; Culbertson, Michael

    2015-11-01

    This study is part of a large-scale project focused on 'Qatari students' Interest in, and Attitudes toward, Science' (QIAS). QIAS aimed to gauge Qatari student attitudes toward science in grades 3-12, examine factors that impact these attitudes, and assess the relationship between student attitudes and prevailing modes of science teaching in Qatari schools. This report details the development and validation of the 'Arabic-Speaking Students' Attitudes toward Science Survey' (ASSASS), which was specifically developed for the purposes of the QIAS project. The theories of reasoned action and planned behavior (TRAPB) [Ajzen, I., & Fishbein, M. (2005). The influence of attitudes on behavior. In D. Albarracín, B. T. Johnson, & M. P. Zanna (Eds.), The handbook of attitudes (pp. 173-221). Mahwah, NJ: Erlbaum] guided the instrument development. Development and validation of the ASSASS proceeded in 3 phases. First, a 10-member expert panel examined an initial pool of 74 items, which were revised and consolidated into a 60-item version of the instrument. This version was piloted with 369 Qatari students from the target schools and grade levels. Analyses of pilot data resulted in a refined version of the ASSASS, which was administered to a national probability sample of 3027 participants representing all students enrolled in grades 3-12 in the various types of schools in Qatar. Of the latter, 1978 students completed the Arabic version of the instrument. Analyses supported a robust, 5-factor model for the instrument, which is consistent with the TRAPB framework. The factors were: Attitudes toward science and school science, unfavorable outlook on science, control beliefs about ability in science, behavioral beliefs about the consequences of engaging with science, and intentions to pursue science.

  15. Development and Validation of an Instrument to Measure Students' Motivation and Self-Regulation in Science Learning

    Science.gov (United States)

    Velayutham, Sunitadevi; Aldridge, Jill; Fraser, Barry

    2011-10-01

    Students' motivational beliefs and self-regulatory practices have been identified as instrumental in influencing the engagement of students in the learning process. An important aim of science education is to empower students by nurturing the belief that they can succeed in science learning and to cultivate the adaptive learning strategies required to help to bring about that success. This article reports the development and validation of an instrument to measure salient factors related to the motivation and self-regulation of students in lower secondary science classrooms. The development of the instrument involved identifying key determinants of students' motivation and self-regulation in science learning based on theoretical and research underpinnings. Once the instrument was developed, a pilot study involving 52 students from two Grade 8 science classes was undertaken. Quantitative data were collected from 1,360 students in 78 classes across Grades 8, 9, and 10, in addition to in-depth qualitative information gathered from 10 experienced science teachers and 12 Grade 8 students. Analyses of the data suggest that the survey has strong construct validity when used with lower secondary students. This survey could be practically valuable as a tool for gathering information that may guide classroom teachers in refocusing their teaching practices and help to evaluate the effectiveness of intervention programmes.

  16. In Situ Analysis of Martian Phyllosilicates Using the Chemin Minerological Instrument on Mars Science Laboratory

    Science.gov (United States)

    Blake, David F.

    2008-01-01

    The CheMin minerological instrument on Mars Science Laboratory (MSL'09) [1] will return quantitive Xray diffraction data (XRD) and quantative X-ray fluorescence data (XRF;14

  17. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    Science.gov (United States)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  18. Recalibration of the Mars Science Laboratory ChemCam instrument with an expanded geochemical database

    Science.gov (United States)

    Clegg, Samuel M.; Wiens, Roger C.; Anderson, Ryan; Forni, Olivier; Frydenvang, Jens; Lasue, Jeremie; Cousin, Agnes; Payre, Valerie; Boucher, Tommy; Dyar, M. Darby; McLennan, Scott M.; Morris, Richard V.; Graff, Trevor G.; Mertzman, Stanley A; Ehlmann, Bethany L.; Belgacem, Ines; Newsom, Horton E.; Clark, Ben C.; Melikechi, Noureddine; Mezzacappa, Alissa; McInroy, Rhonda E.; Martinez, Ronald; Gasda, Patrick J.; Gasnault, Olivier; Maurice, Sylvestre

    2017-01-01

    The ChemCam Laser-Induced Breakdown Spectroscopy (LIBS) instrument onboard the Mars Science Laboratory (MSL) rover Curiosity has obtained > 300,000 spectra of rock and soil analysis targets since landing at Gale Crater in 2012, and the spectra represent perhaps the largest publicly-available LIBS datasets. The compositions of the major elements, reported as oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), have been re-calibrated using a laboratory LIBS instrument, Mars-like atmospheric conditions, and a much larger set of standards (408) that span a wider compositional range than previously employed. The new calibration uses a combination of partial least squares (PLS1) and Independent Component Analysis (ICA) algorithms, together with a calibration transfer matrix to minimize differences between the conditions under which the standards were analyzed in the laboratory and the conditions on Mars. While the previous model provided good results in the compositional range near the average Mars surface composition, the new model fits the extreme compositions far better. Examples are given for plagioclase feldspars, where silicon was significantly over-estimated by the previous model, and for calcium-sulfate veins, where silicon compositions near zero were inaccurate. The uncertainties of major element abundances are described as a function of the abundances, and are overall significantly lower than the previous model, enabling important new geochemical interpretations of the data.

  19. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description

    Science.gov (United States)

    Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; Bernardin, J.; Berthé, M.; Bridges, N.; Blaney, D.; Bouyé, M.; Caïs, P.; Clark, B.; Clegg, S.; Cousin, A.; Cremers, D.; Cros, A.; DeFlores, L.; Derycke, C.; Dingler, B.; Dromart, G.; Dubois, B.; Dupieux, M.; Durand, E.; d'Uston, L.; Fabre, C.; Faure, B.; Gaboriaud, A.; Gharsa, T.; Herkenhoff, K.; Kan, E.; Kirkland, L.; Kouach, D.; Lacour, J.-L.; Langevin, Y.; Lasue, J.; Le Mouélic, S.; Lescure, M.; Lewin, E.; Limonadi, D.; Manhès, G.; Mauchien, P.; McKay, C.; Meslin, P.-Y.; Michel, Y.; Miller, E.; Newsom, Horton E.; Orttner, G.; Paillet, A.; Parès, L.; Parot, Y.; Pérez, R.; Pinet, P.; Poitrasson, F.; Quertier, B.; Sallé, B.; Sotin, Christophe; Sautter, V.; Séran, H.; Simmonds, J.J.; Sirven, J.-B.; Stiglich, R.; Striebig, N.; Thocaven, J.-J.; Toplis, M.J.; Vaniman, D.

    2012-01-01

    ChemCam is a remote sensing instrument suite on board the "Curiosity" rover (NASA) that uses Laser-Induced Breakdown Spectroscopy (LIBS) to provide the elemental composition of soils and rocks at the surface of Mars from a distance of 1.3 to 7 m, and a telescopic imager to return high resolution context and micro-images at distances greater than 1.16 m. We describe five analytical capabilities: rock classification, quantitative composition, depth profiling, context imaging, and passive spectroscopy. They serve as a toolbox to address most of the science questions at Gale crater. ChemCam consists of a Mast-Unit (laser, telescope, camera, and electronics) and a Body-Unit (spectrometers, digital processing unit, and optical demultiplexer), which are connected by an optical fiber and an electrical interface. We then report on the development, integration, and testing of the Mast-Unit, and summarize some key characteristics of ChemCam. This confirmed that nominal or better than nominal performances were achieved for critical parameters, in particular power density (>1 GW/cm2). The analysis spot diameter varies from 350 μm at 2 m to 550 μm at 7 m distance. For remote imaging, the camera field of view is 20 mrad for 1024×1024 pixels. Field tests demonstrated that the resolution (˜90 μrad) made it possible to identify laser shots on a wide variety of images. This is sufficient for visualizing laser shot pits and textures of rocks and soils. An auto-exposure capability optimizes the dynamical range of the images. Dedicated hardware and software focus the telescope, with precision that is appropriate for the LIBS and imaging depths-of-field. The light emitted by the plasma is collected and sent to the Body-Unit via a 6 m optical fiber. The companion to this paper (Wiens et al. this issue) reports on the development of the Body-Unit, on the analysis of the emitted light, and on the good match between instrument performance and science specifications.

  20. The Calibration Target for the Mars 2020 SHERLOC Instrument: Multiple Science Roles for Future Manned and Unmanned Mars Exploration

    Science.gov (United States)

    Fries, M.; Bhartia, R.; Beegle, L.; Burton, A.; Ross, A.; Shahar, A.

    2014-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman/fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples, which may be selected for inclusion into a returnable sample cache. The SHERLOC instrument will require the use of a calibration target, and by design, multiple science roles will be addressed in the design of the target. Samples of materials used in NASA Extravehicular Mobility unit (EMU, or "space suit") manufacture have been included in the target to serve as both solid polymer calibration targets for SHERLOC instrument function, as well as for testing the resiliency of those materials under martian ambient conditions. A martian meteorite will also be included in the target to serve as a well-characterized example of a martian rock that contains trace carbonaceous material. This rock will be the first rock that we know of that has completed a round trip between planets and will therefore serve an EPO role to attract public attention to science and planetary exploration. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  1. Science and the Large Hadron Collider: a probe into instrumentation, periodization and classification

    CERN Document Server

    Roy, Arpita

    2012-01-01

    On September 19, 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began the world’s highest energy experiments as a probe into the structure of matter and forces of nature. Just nine days after the gala start-up, an explosion occurred in the LHC tunnel that brought the epic collider to a complete standstill. In light of the catastrophic incident that disrupted the operation of the LHC, the paper investigates the relation of temporality to the cycle of work in science, and raises the question: What kind of methodological value should we ascribe to events such as crises or breakdowns? Drawing upon and integrating classical anthropological themes with two and a half years of fieldwork at the LHC particle accelerator complex, the paper explores how the incident in September, which affected the instrument, acquaints us with the distribution of work in the laboratory. The incident discloses that the organization of science is not a homogenous ensemble, but marked by an enormous diversity of tasks and p...

  2. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  3. View of Nature of Science (VNOS Form B: An Instrument for Assessing Preservice Teachers View of Nature of Science at Borneo University Tarakan

    Directory of Open Access Journals (Sweden)

    Listiani Listiani

    2017-03-01

    Full Text Available NOS form B is an instrument that has been developed and revised to assess the view of nature of science of preservice science teachers through nature of science aspects.Indeed, students and teachers have to have the view of nature of science to avoid misconceptions of science concepts. Unfortunately, research on the view of Nature of Science is less conducted in Indonesia. This is a qualitative research that was conducted in Borneo University Tarakan. Respondents are preservice biology teachers in the sixth semester. The first step of this research is translating and adapting the VNOS form B into Bahasa Indonesia to make sure that the instrument is culturally fit to Indonesian and the transadapted instrument then given to the respondents. The result shows that the VNOS form B can be applied to assess the view of nature of science of preservice biology teachers. However, the result also shows that most of preservice biology teachers have few understanding on aspects of nature of scince.

  4. High-Speed On-Board Data Processing for Science Instruments: HOPS

    Science.gov (United States)

    Beyon, Jeffrey

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program during April, 2012 â€" April, 2015. HOPS is an enabler for science missions with extremely high data processing rates. In this three-year effort of HOPS, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) and 3-D Winds were of interest in particular. As for ASCENDS, HOPS replaces time domain data processing with frequency domain processing while making the real-time on-board data processing possible. As for 3-D Winds, HOPS offers real-time high-resolution wind profiling with 4,096-point fast Fourier transform (FFT). HOPS is adaptable with quick turn-around time. Since HOPS offers reusable user-friendly computational elements, its FPGA IP Core can be modified for a shorter development period if the algorithm changes. The FPGA and memory bandwidth of HOPS is 20 GB/sec while the typical maximum processor-to-SDRAM bandwidth of the commercial radiation tolerant high-end processors is about 130-150 MB/sec. The inter-board communication bandwidth of HOPS is 4 GB/sec while the effective processor-to-cPCI bandwidth of commercial radiation tolerant high-end boards is about 50-75 MB/sec. Also, HOPS offers VHDL cores for the easy and efficient implementation of ASCENDS and 3-D Winds, and other similar algorithms. A general overview of the 3-year development of HOPS is the goal of this presentation.

  5. The Student Actions Coding Sheet (SACS): An instrument for illuminating the shifts toward student-centered science classrooms

    Science.gov (United States)

    Erdogan, Ibrahim; Campbell, Todd; Hashidah Abd-Hamid, Nor

    2011-07-01

    This study describes the development of an instrument to investigate the extent to which student-centered actions are occurring in science classrooms. The instrument was developed through the following five stages: (1) student action identification, (2) use of both national and international content experts to establish content validity, (3) refinement of the item pool based on reviewer comments, (4) pilot testing of the instrument, and (5) statistical reliability and item analysis leading to additional refinement and finalization of the instrument. In the field test, the instrument consisted of 26 items separated into four categories originally derived from student-centered instruction literature and used by the authors to sort student actions in previous research. The SACS was administered across 22 Grade 6-8 classrooms by 22 groups of observers, with a total of 67 SACS ratings completed. The finalized instrument was found to be internally consistent, with acceptable estimates from inter-rater intraclass correlation reliability coefficients at the p Observation Protocol. Based on the analyses completed, the SACS appears to be a useful instrument for inclusion in comprehensive assessment packages for illuminating the extent to which student-centered actions are occurring in science classrooms.

  6. Electron Pitch Angle Variations Recorded at the High Magnetic Latitude Boundary Layer by the NUADU Instrument on the TC-2 Spacecraft

    Science.gov (United States)

    Lu, L.; McKenna-Lawlor, S.; Barabash, S.; Liu, Z.; Balaz, J.; Brinkfeldt, K.; Strhansky, I.; Shen, C.; Shi, J.; Cao, J.; Pu, Z.; Fu, S.; Gunell, H.; Kudela, K.; Roelof, E. C.; Brandt, P. C.; Dandouras, I.; Zhang, T.; Carr, C.; Fazakerley, A.

    2005-12-01

    During the first on orbit commission, with the deflection high voltage zero, the NUADU (NeUtral Atom Detector Unit) instrument aboard TC-2, with its high temporal-spatial resolution recorded 4d solid angle images of energetic particles spiraling around the geomagnetic field lines with different configuration at high northern magnetic latitude L>10. The ambient magnetic field and particles in different energy spectrum were simultaneously measured by the magnetometer experiment (FGM), the plasma electron and current experiment (PEACE), the low energy ion detector (LEID), and the high energy electron detector (HEED). The up-flowing electron beams made the pitch angle distribution (PAD) ring like configuration, and even concentrated toward the field lines to form a dumbbell-type PAD. In integration of the variations of ambient magnetic field and particles in different energy spectrums, a temporal string magnetic bottle model was proposed which might be formed by the disturbance of the magnetic pulse. Changes in the particle pitch angle diffusion may be associated with electron acceleration along the geomagnetic field lines.

  7. Academic Research Equipment in the Physical and Computer Sciences and Engineering. An Analysis of Findings from Phase I of the National Science Foundation's National Survey of Academic Research Instruments and Instrumentation Needs.

    Science.gov (United States)

    Burgdorf, Kenneth; White, Kristine

    This report presents information from phase I of a survey designed to develop quantitative indicators of the current national stock, cost/investment, condition, obsolescence, utilization, and need for major research instruments in academic settings. Data for phase I (which focused on the physical and computer sciences and engineering) were…

  8. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  9. Design requirements for the SWIFT instrument

    International Nuclear Information System (INIS)

    Rahnama, P; McDade, I; Shepherd, G; Gault, W

    2013-01-01

    The Stratospheric Wind Interferometer for Transport studies (SWIFT) instrument is a proposed limb-viewing satellite instrument that employs the method of Doppler Michelson interferometry to measure stratospheric wind velocities and ozone densities in the altitude range of 15–45 km. The values of the main instrument parameters including filter system parameters and Michelson interferometer parameters are derived using simulations and analyses. The system design requirements for the instrument and spacecraft are presented and discussed. Some of the retrieval-imposed design requirements are also discussed. Critical design issues are identified. The design optimization process is described. The sensitivity of wind measurements to instrument characteristics is investigated including the impact on critical design issues. Using sensitivity analyses, the instrument parameters were iteratively optimized in order to meet the science objectives. It is shown that wind measurements are sensitive to the thermal sensitivity of the instrument components, especially the narrow filter and the Michelson interferometer. The optimized values of the main system parameters including Michelson interferometer optical path difference, instrument visibility, instrument responsivity and knowledge of spacecraft velocity are reported. This work also shows that the filter thermal drift and the Michelson thermal drift are two main technical risks. (paper)

  10. Investigating the Quality of Project-Based Science and Technology Learning Environments in Elementary School: A Critical Review of Instruments

    Science.gov (United States)

    Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre

    2016-01-01

    This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…

  11. Improving Student Perceptions of Science through the Use of State-of-the-Art Instrumentation in General Chemistry Laboratory

    Science.gov (United States)

    Aurentz, David J.; Kerns, Stefanie L.; Shibley, Lisa R.

    2011-01-01

    Access to state-of-the-art instrumentation, namely nuclear magnetic resonance (NMR) spectroscopy, early in the college curriculum was provided to undergraduate students in an effort to improve student perceptions of science. Proton NMR spectroscopy was introduced as part of an aspirin synthesis in a guided-inquiry approach to spectral…

  12. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  13. High-Speed On-Board Data Processing for Science Instruments

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Lin, Bing; Hu, Yongxiang; Harrison, Wallace

    2014-01-01

    A new development of on-board data processing platform has been in progress at NASA Langley Research Center since April, 2012, and the overall review of such work is presented in this paper. The project is called High-Speed On-Board Data Processing for Science Instruments (HOPS) and focuses on a high-speed scalable data processing platform for three particular National Research Council's Decadal Survey missions such as Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS), Aerosol-Cloud-Ecosystems (ACE), and Doppler Aerosol Wind Lidar (DAWN) 3-D Winds. HOPS utilizes advanced general purpose computing with Field Programmable Gate Array (FPGA) based algorithm implementation techniques. The significance of HOPS is to enable high speed on-board data processing for current and future science missions with its reconfigurable and scalable data processing platform. A single HOPS processing board is expected to provide approximately 66 times faster data processing speed for ASCENDS, more than 70% reduction in both power and weight, and about two orders of cost reduction compared to the state-of-the-art (SOA) on-board data processing system. Such benchmark predictions are based on the data when HOPS was originally proposed in August, 2011. The details of these improvement measures are also presented. The two facets of HOPS development are identifying the most computationally intensive algorithm segments of each mission and implementing them in a FPGA-based data processing board. A general introduction of such facets is also the purpose of this paper.

  14. Intellectual property as an instrument of interaction between government, business, science and society

    Science.gov (United States)

    Nikitenko, S. M.; Mesyats, M. A.; Rozhkova, O. V.

    2017-09-01

    This article is devoted to research the characteristics associated with pledge of intellectual property in foreign and domestic practice. Holding intellectual property objects’ pledge transactions accelerates the pace of creating innovative systems in the economy. In present paper the modern scheme for bank loan, financing secured with patented intellectual property is researched. The authors give the brief description of features of pledge security registration for loans in some Europe countries. The Europe Union experience shows that as collateral for monetary loans can be used trademarks, patents on the intellectual property, as well as their registration requests. Russian experience of the pledge operations of the intellectual property is too small. This way of bank lending is at an early stage of development. The main constraint is the difficulty of assessing the value of the pledged intellectual property as intangible assets. However, taking into account world and domestic practice this direction for Russian market is estimated by the authors as promising one. Pledge transactions take place within the framework of the Quadruple-Helix Model concept that involves four participants: “science”, “business”, “government” and “society”. Intellectual property are estimates by the authors as an instrument of interaction between government, business, science and society.

  15. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  16. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  17. EU Science Diplomacy and Framework Programs as Instruments of STI Cooperation

    Directory of Open Access Journals (Sweden)

    К. А. Ibragimova

    2017-01-01

    Full Text Available This article examines the tools that the EU in interactions with third countries in the field of STI uses. The EU is a pioneer in the use of science and technology in the international arena, the creation of strategic bilateral agreements on science and technology and the conduct of political dialogues at the highest political level (at the country and regional levels. The EU actively uses its foreign policy instruments of influence, including the provision of access to its framework programs to researchers from third countries, as well as scientific diplomacy. The success of these programs and scientific diplomacy shows the effectiveness of the EU as a global actor. In its foreign policy global innovation strategy, the EU proceeds from the premise that no state in the world today can cope independently with modern global challenges such as climate change, migration, terrorism, etc. Therefore, the solution of these issues requires both an expert evaluation from an independent world scientific community, and the perseverance of diplomats and officials of branch ministries of national states capable of conveying the views of their government in international negotiations and defending national interests of the country to find a solution that suits everyone. The EU has the resources to create a "cumulative effect" by developing and applying common norms on the territory of theUnion, analyzing the innovation policies of member states and the possibility of sharing best practices. At the same time, the EU shares its vision of problems, values and priorities with partners and uses the tools of "soft power" (including its smart and normative force and scientific diplomacy in the field of STI. The soft power of the EU in the field of STI lies in the attractiveness of the EU as a research area in which it is possible to conduct modern high-quality international research with the involvement of scientific teams from different countries in both physical

  18. Optical Manufacturing and Testing Requirements Identified by the NASA Science Instruments, Observatories and Sensor Systems Technology Assessment

    Science.gov (United States)

    Stahl, H. Philip; Barney, Rich; Bauman, Jill; Feinberg, Lee; Mcleese, Dan; Singh, Upendra

    2011-01-01

    In August 2010, the NASA Office of Chief Technologist (OCT) commissioned an assessment of 15 different technology areas of importance to the future of NASA. Technology assessment #8 (TA8) was Science Instruments, Observatories and Sensor Systems (SIOSS). SIOSS assess the needs for optical technology ranging from detectors to lasers, x-ray mirrors to microwave antenna, in-situ spectrographs for on-surface planetary sample characterization to large space telescopes. The needs assessment looked across the entirety of NASA and not just the Science Mission Directorate. This paper reviews the optical manufacturing and testing technologies identified by SIOSS which require development in order to enable future NASA high priority missions.

  19. Reusing Joint Polar Satellite System (jpss) Ground System Components to Process AURA Ozone Monitoring Instrument (omi) Science Products

    Science.gov (United States)

    Moses, J. F.; Jain, P.; Johnson, J.; Doiron, J. A.

    2017-12-01

    New Earth observation instruments are planned to enable advancements in Earth science research over the next decade. Diversity of Earth observing instruments and their observing platforms will continue to increase as new instrument technologies emerge and are deployed as part of National programs such as Joint Polar Satellite System (JPSS), Geostationary Operational Environmental Satellite system (GOES), Landsat as well as the potential for many CubeSat and aircraft missions. The practical use and value of these observational data often extends well beyond their original purpose. The practicing community needs intuitive and standardized tools to enable quick unfettered development of tailored products for specific applications and decision support systems. However, the associated data processing system can take years to develop and requires inherent knowledge and the ability to integrate increasingly diverse data types from multiple sources. This paper describes the adaptation of a large-scale data processing system built for supporting JPSS algorithm calibration and validation (Cal/Val) node to a simplified science data system for rapid application. The new configurable data system reuses scalable JAVA technologies built for the JPSS Government Resource for Algorithm Verification, Independent Test, and Evaluation (GRAVITE) system to run within a laptop environment and support product generation and data processing of AURA Ozone Monitoring Instrument (OMI) science products. Of particular interest are the root requirements necessary for integrating experimental algorithms and Hierarchical Data Format (HDF) data access libraries into a science data production system. This study demonstrates the ability to reuse existing Ground System technologies to support future missions with minimal changes.

  20. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  1. Osiris-REx Spacecraft Current Status and Forward Plans

    Science.gov (United States)

    Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.

    2017-01-01

    The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy

  2. SPESS: A New Instrument for Measuring Student Perceptions in Earth and Ocean Science

    Science.gov (United States)

    Jolley, Allison; Lane, Erin; Kennedy, Ben; Frappé-Sénéclauze, Tom-Pierre

    2012-01-01

    This paper discusses the development and results of a new tool used for measuring shifts in students' perceptions of earth and ocean sciences called the Student Perceptions about Earth Sciences Survey (SPESS). The survey measures where students lie on the novice--expert continuum, and how their perceptions change after taking one or more earth and…

  3. Study of the Spacecraft Potential Under Active Control and Plasma Density Estimates During the MMS Commissioning Phase

    Science.gov (United States)

    Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.

    2016-01-01

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  4. Quantitative x-ray microanalysis in an AEM: instrumental considerations and applications to materials science

    International Nuclear Information System (INIS)

    Zaluzec, N.J.

    1979-01-01

    There are a wide variety of instrumental problems which are present to some degree in all AEM instruments. The nature and magnitude of these artifacts can in some instances preclude the simple quantitative interpretation of the recorded x-ray emission spectrum using a thin-film electron excitation model; however, by judicious modifications to the instrument these complications can be effectively eliminated. The specific operating conditions of the microscope necessarily vary from one analysis to another depending on the type of specimen and experiment being performed. In general, however, the overall performance of the AEM system during x-ray analysis is optimized using the highest attainable incident electron energy; selecting the maximum probe diameter and probe current consistent with experimental limitations; and positioning the x-ray detector in a geometry such that it records information from the electron entrance surface of the specimen

  5. The development and validation of a two-tiered multiple-choice instrument to identify alternative conceptions in earth science

    Science.gov (United States)

    Mangione, Katherine Anna

    This study was to determine reliability and validity for a two-tiered, multiple- choice instrument designed to identify alternative conceptions in earth science. Additionally, this study sought to identify alternative conceptions in earth science held by preservice teachers, to investigate relationships between self-reported confidence scores and understanding of earth science concepts, and to describe relationships between content knowledge and alternative conceptions and planning instruction in the science classroom. Eighty-seven preservice teachers enrolled in the MAT program participated in this study. Sixty-eight participants were female, twelve were male, and seven chose not to answer. Forty-seven participants were in the elementary certification program, five were in the middle school certification program, and twenty-nine were pursuing secondary certification. Results indicate that the two-tiered, multiple-choice format can be a reliable and valid method for identifying alternative conceptions. Preservice teachers in all certification areas who participated in this study may possess common alternative conceptions previously identified in the literature. Alternative conceptions included: all rivers flow north to south, the shadow of the Earth covers the Moon causing lunar phases, the Sun is always directly overhead at noon, weather can be predicted by animal coverings, and seasons are caused by the Earth's proximity to the Sun. Statistical analyses indicated differences, however not all of them significant, among all subgroups according to gender and certification area. Generally males outperformed females and preservice teachers pursuing middle school certification had higher scores on the questionnaire followed by those obtaining secondary certification. Elementary preservice teachers scored the lowest. Additionally, self-reported scores of confidence in one's answers and understanding of the earth science concept in question were analyzed. There was a

  6. Detection Limit of Smectite by Chemin IV Laboratory Instrument: Preliminary Implications for Chemin on the Mars Science Laboratory Mission

    Science.gov (United States)

    Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.

    2011-01-01

    The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.

  7. "Designing Instrument for Science Classroom Learning Environment in Francophone Minority Settings: Accounting for Voiced Concerns among Teachers and Immigrant/Refugee Students"

    Science.gov (United States)

    Bolivar, Bathélemy

    2015-01-01

    The three-phase process "-Instrument for Minority Immigrant Science Learning Environment," an 8-scale, 32-item see Appendix I- (I_MISLE) instrument when completed by teachers provides an accurate description of existing conditions in classrooms in which immigrant and refugee students are situated. Through the completion of the instrument…

  8. Science Planning and Orbit Classification for Solar Probe Plus

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Rodgers, D. J.; Turner, F. S.

    2016-12-01

    There are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus (SPP) Mission. Since SPP is using a decoupled payload operations approach, tight coordination between the mission operations and payload teams will be required. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. Making this process more difficult, the geometry of the celestial bodies and the spacecraft during some of the SPP mission orbits cause limited uplink and downlink opportunities. The payload teams will also be required to coordinate power on opportunities, command uplink opportunities, and data transfers from instrument memory to the spacecraft SSR with the operation team. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To solve these challenges, detailed orbit activity planning is required in advance for each orbit. An orbit planning process is being created to facilitate the coordination of spacecraft and payload activities for each orbit. An interactive Science Planning Tool is being designed to integrate the payload data volume and priority allocations, spacecraft ephemeris, attitude, downlink and uplink schedules, spacecraft and payload activities, and other spacecraft ephemeris. It will be used during science planning to select the instrument data priorities and data volumes that satisfy the orbit data volume constraints and power on, command uplink and data transfer time periods. To aid in the initial stages of science planning we have created an orbit classification scheme based on downlink availability and significant science events. Different types of challenges arise in the management of science data driven by orbital geometry and operational constraints, and this scheme attempts to identify the patterns that emerge.

  9. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  10. Factor analysis for instruments of science learning motivation and its implementation for the chemistry and biology teacher candidates

    Science.gov (United States)

    Prasetya, A. T.; Ridlo, S.

    2018-03-01

    The purpose of this study is to test the learning motivation of science instruments and compare the learning motivation of science from chemistry and biology teacher candidates. Kuesioner Motivasi Sains (KMS) in Indonesian adoption of the Science Motivation Questionnaire II (SMQ II) consisting of 25 items with a 5-point Likert scale. The number of respondents for the Exploratory Factor Analysis (EFA) test was 312. The Kaiser-Meyer-Olkin (KMO), determinant, Bartlett’s Sphericity, Measures of Sampling Adequacy (MSA) tests against KMS using SPSS 20.0, and Lisrel 8.51 software indicate eligible indications. However testing of Communalities obtained results that there are 4 items not qualified, so the item is discarded. The second test, all parameters of eligibility and has a magnitude of Root Mean Square Error of Approximation (RMSEA), P-Value for the Test of Close Fit (RMSEA <0.05), Goodness of Fit Index (GFI) was good. The new KMS with 21 valid items and composite reliability of 0.9329 can be used to test the level of learning motivation of science which includes Intrinsic Motivation, Sefl-Efficacy, Self-Determination, Grade Motivation and Career Motivation for students who master the Indonesian language. KMS trials of chemistry and biology teacher candidates obtained no significant difference in the learning motivation between the two groups.

  11. The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP

    Czech Academy of Sciences Publication Activity Database

    Kletzing, C. A.; Kurth, W. S.; Acuna, M.; MacDowall, R. J.; Torbert, R. B.; Averkamp, T.; Bodet, D.; Bounds, S. R.; Chutter, M.; Connerney, J.; Crawford, D.; Dolan, J. S.; Dvorsky, R.; Hospodarsky, G. B.; Howard, J.; Jordanova, V.; Johnson, R. A.; Kirchner, D. L.; Mokrzycki, B.; Needell, G.; Odom, J.; Mark, D.; Pfaff Jr, R.; Phillips, J. R.; Piker, C. V.; Remington, S. L.; Rowland, D.; Santolík, Ondřej; Schnurr, R.; Sheppard, D.; Smith, C. W.; Thorne, R. M.; Tyler, J.

    2013-01-01

    Roč. 179, 1-4 (2013), s. 127-181 ISSN 0038-6308 Grant - others: NASA (US) 921647 Institutional support: RVO:68378289 Keywords : radiation belt physics * wave measurements * magnetometer measurements * space flight instruments * RBSP * radiation belt storm probes * Van Allen probes * whistler waves * geomagnetic storms * space weather Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.874, year: 2013 http://link.springer.com/article/10.1007%2Fs11214-013-9993-6#page-1

  12. Test and Delivery of the Chemin Mineralogical Instrument for Mars Science Laboratory

    Science.gov (United States)

    Blake, D. F.; Vaniman, D.; Anderson, R.; Bish, D.; Chipera, S.; Chemtob, S.; Crisp, J.; DesMarais, D. J.; Downs, R.; Feldman, S.; hide

    2010-01-01

    The CheMin mineralogical instrument on MSL will return quantitative powder X-ray diffraction data (XRD) and qualitative X-ray fluorescence data (XRF; 14

  13. Parallel Study of HEND, RAD, and DAN Instrument Response to Martian Radiation and Surface Conditions

    Science.gov (United States)

    Martiniez Sierra, Luz Maria; Jun, Insoo; Litvak, Maxim; Sanin, Anton; Mitrofanov, Igor; Zeitlin, Cary

    2015-01-01

    Nuclear detection methods are being used to understand the radiation environment at Mars. JPL (Jet Propulsion Laboratory) assets on Mars include: Orbiter -2001 Mars Odyssey [High Energy Neutron Detector (HEND)]; Mars Science Laboratory Rover -Curiosity [(Radiation Assessment Detector (RAD); Dynamic Albedo Neutron (DAN))]. Spacecraft have instruments able to detect ionizing and non-ionizing radiation. Instrument response on orbit and on the surface of Mars to space weather and local conditions [is discussed] - Data available at NASA-PDS (Planetary Data System).

  14. Measuring social science concepts in pharmacy education research: From definition to item analysis of self-report instruments.

    Science.gov (United States)

    Cor, M Ken

    Interpreting results from quantitative research can be difficult when measures of concepts are constructed poorly, something that can limit measurement validity. Social science steps for defining concepts, guidelines for limiting construct-irrelevant variance when writing self-report questions, and techniques for conducting basic item analysis are reviewed to inform the design of instruments to measure social science concepts in pharmacy education research. Based on a review of the literature, four main recommendations emerge: These include: (1) employ a systematic process of conceptualization to derive nominal definitions; (2) write exact and detailed operational definitions for each concept, (3) when creating self-report questionnaires, write statements and select scales to avoid introducing construct-irrelevant variance (CIV); and (4) use basic item analysis results to inform instrument revision. Employing recommendations that emerge from this review will strengthen arguments to support measurement validity which in turn will support the defensibility of study finding interpretations. An example from pharmacy education research is used to contextualize the concepts introduced. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  16. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  17. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    Energy Technology Data Exchange (ETDEWEB)

    Fabre, C., E-mail: cecile.fabre@g2r.uhp-nancy.fr [G2R, Nancy Universite (France); Maurice, S.; Cousin, A. [IRAP, Toulouse (France); Wiens, R.C. [LANL, Los Alamos, NM (United States); Forni, O. [IRAP, Toulouse (France); Sautter, V. [MNHN, Paris (France); Guillaume, D. [GET, Toulouse (France)

    2011-03-15

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD < 5% for concentration variations > 0.1 wt.% using electronic microprobe, and < 10% for concentration variations > 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor

  18. Las Ciencias instrumentales en la Investigación Biomédica Instrumental Sciences in Biomedical Research

    Directory of Open Access Journals (Sweden)

    Josep Roma Millán

    2004-03-01

    Full Text Available Hay una serie de ciencias que se hacen imprescindibles para poder investigar e interpretar los resultados científicos, son la ciencias que llamamos instrumentales o auxiliares. Entre ellas se encuentran la Demografía, la Epidemiología y la Bioestadística. Además, hay que tomar en consideración las técnicas de investigación cualitativa, el conjunto de estrategias e instrumentos de búsqueda de información bibliográfica y, también las metodologías de presentación de resultados. Finalmente, no puede olvidarse la ética, en sus dos componentes de bioética y de ética del trabajo científico, si queremos desarrollar un trabajo siguiendo el método científico. Este capítulo explica cuál es la función de estas disciplinas en el seno de la investigación científica y del desarrollo de proyectos.Some scientific disciplines are essential for research and scientific results interpretation. Instrumental or auxiliary sciences include Demography, Epidemiology, and Biostatistics. Also, it is necessary to take into account the techniques for qualitative research, the strategies and instruments for bibliographic information and the methodology for scientific results presentation. Finally, to develop a project according to the scientific method, it is necessary to consider ethics, in its two components: bioethics and the ethics of scientific method. This report explains which is the function of these instrumental and auxiliary sciences in the context of the scientific research and the development of scientific projects.

  19. Onboard calibration igneous targets for the Mars Science Laboratory Curiosity rover and the Chemistry Camera laser induced breakdown spectroscopy instrument

    International Nuclear Information System (INIS)

    Fabre, C.; Maurice, S.; Cousin, A.; Wiens, R.C.; Forni, O.; Sautter, V.; Guillaume, D.

    2011-01-01

    Accurate characterization of the Chemistry Camera (ChemCam) laser-induced breakdown spectroscopy (LIBS) on-board composition targets is of prime importance for the ChemCam instrument. The Mars Science Laboratory (MSL) science and operations teams expect ChemCam to provide the first compositional results at remote distances (1.5-7 m) during the in situ analyses of the Martian surface starting in 2012. Thus, establishing LIBS reference spectra from appropriate calibration standards must be undertaken diligently. Considering the global mineralogy of the Martian surface, and the possible landing sites, three specific compositions of igneous targets have been determined. Picritic, noritic, and shergottic glasses have been produced, along with a Macusanite natural glass. A sample of each target will fly on the MSL Curiosity rover deck, 1.56 m from the ChemCam instrument, and duplicates are available on the ground. Duplicates are considered to be identical, as the relative standard deviation (RSD) of the composition dispersion is around 8%. Electronic microprobe and laser ablation inductively coupled plasma mass spectrometry (LA ICP-MS) analyses give evidence that the chemical composition of the four silicate targets is very homogeneous at microscopic scales larger than the instrument spot size, with RSD 0.1 wt.% using electronic microprobe, and 0.01 wt.% using LA ICP-MS. The LIBS campaign on the igneous targets performed under flight-like Mars conditions establishes reference spectra for the entire mission. The LIBS spectra between 240 and 900 nm are extremely rich, hundreds of lines with high signal-to-noise, and a dynamical range sufficient to identify unambiguously major, minor and trace elements. For instance, a first LIBS calibration curve has been established for strontium from [Sr] = 284 ppm to [Sr] = 1480 ppm, showing the potential for the future calibrations for other major or minor elements.

  20. Employing the Five-Factor Mentoring Instrument: Analysing Mentoring Practices for Teaching Primary Science

    Science.gov (United States)

    Hudson, Peter; Usak, Muhammet; Savran-Gencer, Ayse

    2009-01-01

    Primary science education is a concern around the world and quality mentoring within schools can develop pre-service teachers' practices. A five-factor model for mentoring has been identified, namely, personal attributes, system requirements, pedagogical knowledge, modelling, and feedback. Final-year pre-service teachers (mentees, n = 211) from…

  1. Instruments for radiation measurement in life sciences (5). Development of imaging technology in life science. 4. Real-time bioradiography

    International Nuclear Information System (INIS)

    Sasaki, Toru; Iwamoto, Akinori; Tsuboi, Hisashi; Katoh, Toru; Kudo, Hiroyuki; Kazawa, Erito; Watanabe, Yasuyoshi

    2006-01-01

    Real-time bioradiography, new bioradiography method, can collect and produce image of metabolism and function of cell in real-time. The principles of instrumentation, development process and the application examples of neuroscience and biomedical gerontology are stated. The bioradiography method, the gas-tissue live-cell autoradiography method and the real-time bioradiography method are explained. As the application examples, the molecular mechanism of oxidative stress at brain ischemia and the analysis of SOD gene knockout animals are reported. Comparison between FDG-PET of epileptic brain and FDG- bioradiography image of live-cell of brain tissue, the real-time bioradiography system, improvement of image by surface treatment, the detection limit of β + ray from F 18 , image of living-slices of brain tissue by FDG-real-time bioradiography and radioluminography, continuous FDG image of living-slices of rat brain tissue, and analysis of carbohydrate metabolism of living-slices of brain tissue of mouse lacking SOD gene during aerophobia and reoxygenation process are reported. (S.Y.)

  2. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests

    International Nuclear Information System (INIS)

    Wiens, Roger C.; Barraclough, Bruce; Barkley, Walter C.; Bender, Steve; Bernardin, John; Bultman, Nathan; Clanton, Robert C.; Clegg, Samuel; Delapp, Dorothea; Dingler, Robert; Enemark, Don; Flores, Mike; Hale, Thomas; Lanza, Nina; Lasue, Jeremie; Latino, Joseph; Little, Cynthia; Morrison, Leland; Nelson, Tony; Romero, Frank; Salazar, Steven; Stiglich, Ralph; Storms, Steven; Trujillo, Tanner; Ulibarri, Mike; Vaniman, David; Whitaker, Robert; Witt, James; Maurice, Sylvestre; Bouye, Marc; Cousin, Agnes; Cros, Alain; D'Uston, Claude; Forni, Olivier; Gasnault, Olivier; Kouach, Driss; Lasue, Jeremie; Pares, Laurent; Poitrasson, Franck; Striebig, Nicolas; Thocaven, Jean-Jacques; Saccoccio, Muriel; Perez, Rene; Bell, James F. III; Hays, Charles; Blaney, Diana; DeFlores, Lauren; Elliott, Tom; Kan, Ed; Limonadi, Daniel; Lindensmith, Chris; Miller, Ed; Reiter, Joseph W.; Roberts, Tom; Simmonds, John J.; Warner, Noah; Blank, Jennifer; Bridges, Nathan; Cais, Phillippe; Clark, Benton; Cremers, David; Dyar, M. Darby; Fabre, Cecile; Herkenhoff, Ken; Kirkland, Laurel; Landis, David; Langevin, Yves; Lanza, Nina; Newsom, Horton; Ollila, Ann; LaRocca, Frank; Ott, Melanie; Mangold, Nicolas; Manhes, Gerard; Mauchien, Patrick; Blank, Jennifer; McKay, Christopher; Mooney, Joe; Provost, Cheryl; Morris, Richard V.; Sautter, Violaine; Sautter, Violaine; Waterbury, Rob; Wong-Swanson, Belinda; Barraclough, Bruce; Bender, Steve; Vaniman, David

    2012-01-01

    The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover Curiosity provides remote compositional information using the first laser-induced breakdown spectrometer (LIBS) on a planetary mission, and provides sample texture and morphology data using a remote micro-imager (RMI). Overall, ChemCam supports MSL with five capabilities: remote classification of rock and soil characteristics; quantitative elemental compositions including light elements like hydrogen and some elements to which LIBS is uniquely sensitive (e.g., Li, Be, Rb, Sr, Ba); remote removal of surface dust and depth profiling through surface coatings; context imaging; and passive spectroscopy over the 240-905 nm range. ChemCam is built in two sections: The mast unit, consisting of a laser, telescope, RMI, and associated electronics, resides on the rover's mast, and is described in a companion paper. ChemCam's body unit, which is mounted in the body of the rover, comprises an optical de-multiplexer, three spectrometers, detectors, their coolers, and associated electronics and data handling logic. Additional instrument components include a 6 m optical fiber which transfers the LIBS light from the telescope to the body unit, and a set of onboard calibration targets. ChemCam was integrated and tested at Los Alamos National Laboratory where it also underwent LIBS calibration with 69 geological standards prior to integration with the rover. Post-integration testing used coordinated mast and instrument commands, including LIBS line scans on rock targets during system-level thermal-vacuum tests. In this paper we describe the body unit, optical fiber, and calibration targets, and the assembly, testing, and verification of the instrument prior to launch. (authors)

  3. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  4. Laboratory Scale X-ray Fluorescence Tomography: Instrument Characterization and Application in Earth and Environmental Science.

    Science.gov (United States)

    Laforce, Brecht; Vermeulen, Bram; Garrevoet, Jan; Vekemans, Bart; Van Hoorebeke, Luc; Janssen, Colin; Vincze, Laszlo

    2016-03-15

    A new laboratory scale X-ray fluorescence (XRF) imaging instrument, based on an X-ray microfocus tube equipped with a monocapillary optic, has been developed to perform XRF computed tomography experiments with both higher spatial resolution (20 μm) and a better energy resolution (130 eV @Mn-K(α)) than has been achieved up-to-now. This instrument opens a new range of possible applications for XRF-CT. Next to the analytical characterization of the setup by using well-defined model/reference samples, demonstrating its capabilities for tomographic imaging, the XRF-CT microprobe has been used to image the interior of an ecotoxicological model organism, Americamysis bahia. This had been exposed to elevated metal (Cu and Ni) concentrations. The technique allowed the visualization of the accumulation sites of copper, clearly indicating the affected organs, i.e. either the gastric system or the hepatopancreas. As another illustrative application, the scanner has been employed to investigate goethite spherules from the Cretaceous-Paleogene boundary, revealing the internal elemental distribution of these valuable distal ejecta layer particles.

  5. A brief history of science as seen through the development of scientific instruments

    CERN Document Server

    Crump, Thomas

    2002-01-01

    From earliest pre-history, with the dawning understanding of fire and its many uses, up to the astonishing advances of the twenty-first century, Thomas Crump traces the ever more sophisticated means employed in our attempts to understand the universe. The result is a vigorous and readable account of how our curious nature has continually pushed forward the frontiers of science and, as a consequence, human civilization.

  6. Enhnacing the science of the WFIRST coronagraph instrument with post-processing.

    Science.gov (United States)

    Pueyo, Laurent; WFIRST CGI data analysis and post-processing WG

    2018-01-01

    We summarize the results of a three years effort investigating how to apply to the WFIRST coronagraph instrument (CGI) modern image analysis methods, now routinely used with ground-based coronagraphs. In this post we quantify the gain associated post-processing for WFIRST-CGI observing scenarios simulated between 2013 and 2017. We also show based one simulations that spectrum of planet can be confidently retrieved using these processing tools with and Integral Field Spectrograph. We then discuss our work using CGI experimental data and quantify coronagraph post-processing testbed gains. We finally introduce stability metrics that are simple to define and measure, and place useful lower bound and upper bounds on the achievable RDI post-processing contrast gain. We show that our bounds hold in the case of the testbed data.

  7. The Goldstone solar system radar: A science instrument for planetary research

    Science.gov (United States)

    Dvorsky, J. D.; Renzetti, N. A.; Fulton, D. E.

    1992-01-01

    The Goldstone Solar System Radar (GSSR) station at NASA's Deep Space Communications Complex in California's Mojave Desert is described. A short chronological account of the GSSR's technical development and scientific discoveries is given. This is followed by a basic discussion of how information is derived from the radar echo and how the raw information can be used to increase understanding of the solar system. A moderately detailed description of the radar system is given, and the engineering performance of the radar is discussed. The operating characteristics of the Arcibo Observatory in Puerto Rico are briefly described and compared with those of the GSSR. Planned and in-process improvements to the existing radar, as well as the performance of a hypothetical 128-m diameter antenna radar station, are described. A comprehensive bibliography of referred scientific and engineering articles presenting results that depended on data gathered by the instrument is provided.

  8. The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions

    Science.gov (United States)

    Malin, Michal C.; Ravine, Michael A.; Caplinger, Michael A.; Tony Ghaemi, F.; Schaffner, Jacob A.; Maki, Justin N.; Bell, James F.; Cameron, James F.; Dietrich, William E.; Edgett, Kenneth S.; Edwards, Laurence J.; Garvin, James B.; Hallet, Bernard; Herkenhoff, Kenneth E.; Heydari, Ezat; Kah, Linda C.; Lemmon, Mark T.; Minitti, Michelle E.; Olson, Timothy S.; Parker, Timothy J.; Rowland, Scott K.; Schieber, Juergen; Sletten, Ron; Sullivan, Robert J.; Sumner, Dawn Y.; Aileen Yingst, R.; Duston, Brian M.; McNair, Sean; Jensen, Elsa H.

    2017-08-01

    The Mars Science Laboratory Mast camera and Descent Imager investigations were designed, built, and operated by Malin Space Science Systems of San Diego, CA. They share common electronics and focal plane designs but have different optics. There are two Mastcams of dissimilar focal length. The Mastcam-34 has an f/8, 34 mm focal length lens, and the M-100 an f/10, 100 mm focal length lens. The M-34 field of view is about 20° × 15° with an instantaneous field of view (IFOV) of 218 μrad; the M-100 field of view (FOV) is 6.8° × 5.1° with an IFOV of 74 μrad. The M-34 can focus from 0.5 m to infinity, and the M-100 from 1.6 m to infinity. All three cameras can acquire color images through a Bayer color filter array, and the Mastcams can also acquire images through seven science filters. Images are ≤1600 pixels wide by 1200 pixels tall. The Mastcams, mounted on the 2 m tall Remote Sensing Mast, have a 360° azimuth and 180° elevation field of regard. Mars Descent Imager is fixed-mounted to the bottom left front side of the rover at 66 cm above the surface. Its fixed focus lens is in focus from 2 m to infinity, but out of focus at 66 cm. The f/3 lens has a FOV of 70° by 52° across and along the direction of motion, with an IFOV of 0.76 mrad. All cameras can acquire video at 4 frames/second for full frames or 720p HD at 6 fps. Images can be processed using lossy Joint Photographic Experts Group and predictive lossless compression.

  9. The instrumental blank of the Mars Science Laboratory alpha particle X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.L., E-mail: icampbel@uoguelph.ca [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2012-10-01

    The alpha particle X-ray spectrometers on the Mars exploration rovers Spirit and Opportunity accomplished extensive elemental analysis of the Martian surface through a combination of XRF and PIXE. An advanced APXS is now part of the Mars Science Laboratory's Curiosity rover. APXS spectra contain contributions which enhance elemental peak areas but which do not arise from these elements within the sample under study, thereby introducing error into derived concentrations. A detailed examination of these effects in the MSL APXS enables us to test two schemes for making the necessary corrections.

  10. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  11. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  12. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  13. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  14. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  15. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  16. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    Science.gov (United States)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  17. Development of the science instrument CLUPI: the close-up imager on board the ExoMars rover

    Science.gov (United States)

    Josset, J.-L.; Beauvivre, S.; Cessa, V.; Martin, P.

    2017-11-01

    First mission of the Aurora Exploration Programme of ESA, ExoMars will demonstrate key flight and in situ enabling technologies, and will pursue fundamental scientific investigations. Planned for launch in 2013, ExoMars will send a robotic rover to the surface of Mars. The Close-UP Imager (CLUPI) instrument is part of the Pasteur Payload of the rover fixed on the robotic arm. It is a robotic replacement of one of the most useful instruments of the field geologist: the hand lens. Imaging of surfaces of rocks, soils and wind drift deposits at high resolution is crucial for the understanding of the geological context of any site where the Pasteur rover may be active on Mars. At the resolution provided by CLUPI (approx. 15 micrometer/pixel), rocks show a plethora of surface and internal structures, to name just a few: crystals in igneous rocks, sedimentary structures such as bedding, fracture mineralization, secondary minerals, details of the surface morphology, sedimentary bedding, sediment components, surface marks in sediments, soil particles. It is conceivable that even textures resulting from ancient biological activity can be visualized, such as fine lamination due to microbial mats (stromatolites) and textures resulting from colonies of filamentous microbes, potentially present in sediments and in palaeocavitites in any rock type. CLUPI is a complete imaging system, consisting of an APS (Active Pixel Sensor) camera with 27° FOV optics. The sensor is sensitive to light between 400 and 900 nm with 12 bits digitization. The fixed focus optics provides well focused images of 4 cm x 2.4 cm rock area at a distance of about 10 cm. This challenging camera system, less than 200g, is an independent scientific instrument linked to the rover on board computer via a SpaceWire interface. After the science goals and specifications presentation, the development of this complex high performance miniaturized imaging system will be described.

  18. New instrument for measuring student beliefs about physics and learning physics: The Colorado Learning Attitudes about Science Survey

    Science.gov (United States)

    Adams, W. K.; Perkins, K. K.; Podolefsky, N. S.; Dubson, M.; Finkelstein, N. D.; Wieman, C. E.

    2006-06-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a new instrument designed to measure student beliefs about physics and about learning physics. This instrument extends previous work by probing additional aspects of student beliefs and by using wording suitable for students in a wide variety of physics courses. The CLASS has been validated using interviews, reliability studies, and extensive statistical analyses of responses from over 5000 students. In addition, a new methodology for determining useful and statistically robust categories of student beliefs has been developed. This paper serves as the foundation for an extensive study of how student beliefs impact and are impacted by their educational experiences. For example, this survey measures the following: that most teaching practices cause substantial drops in student scores; that a student’s likelihood of becoming a physics major correlates with their “Personal Interest” score; and that, for a majority of student populations, women’s scores in some categories, including “Personal Interest” and “Real World Connections,” are significantly different from men’s scores.

  19. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  20. Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft

    Science.gov (United States)

    Kazama, Yoichi; Wang, Bo-Jhou; Wang, Shiang-Yu; Ho, Paul T. P.; Tam, Sunny W. Y.; Chang, Tzu-Fang; Chiang, Chih-Yu; Asamura, Kazushi

    2017-12-01

    In this report, we describe the low-energy electron instrument LEPe (low-energy particle experiments-electron analyzer) onboard the Arase (ERG) spacecraft. The instrument measures a three-dimensional distribution function of electrons with energies of ˜ 19 eV-19 keV. Electrons in this energy range dominate in the inner magnetosphere, and measurement of such electrons is important in terms of understanding the magnetospheric dynamics and wave-particle interaction. The instrument employs a toroidal tophat electrostatic energy analyzer with a passive 6-mm aluminum shield. To minimize background radiation effects, the analyzer has a background channel, which monitors counts produced by background radiation. Background counts are then subtracted from measured counts. Electronic components are radiation tolerant, and 5-mm-thick shielding of the electronics housing ensures that the total dose is less than 100 kRad for the one-year nominal mission lifetime. The first in-space measurement test was done on February 12, 2017, showing that the instrument functions well. On February 27, the first all-instrument run test was done, and the LEPe instrument measured an energy dispersion event probably related to a substorm injection occurring immediately before the instrument turn-on. These initial results indicate that the instrument works fine in space, and the measurement performance is good for science purposes.[Figure not available: see fulltext.

  1. Real-Time On-Board Airborne Demonstration of High-Speed On-Board Data Processing for Science Instruments (HOPS)

    Science.gov (United States)

    Beyon, Jeffrey Y.; Ng, Tak-Kwong; Davis, Mitchell J.; Adams, James K.; Bowen, Stephen C.; Fay, James J.; Hutchinson, Mark A.

    2015-01-01

    The project called High-Speed On-Board Data Processing for Science Instruments (HOPS) has been funded by NASA Earth Science Technology Office (ESTO) Advanced Information Systems Technology (AIST) program since April, 2012. The HOPS team recently completed two flight campaigns during the summer of 2014 on two different aircrafts with two different science instruments. The first flight campaign was in July, 2014 based at NASA Langley Research Center (LaRC) in Hampton, VA on the NASA's HU-25 aircraft. The science instrument that flew with HOPS was Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) CarbonHawk Experiment Simulator (ACES) funded by NASA's Instrument Incubator Program (IIP). The second campaign was in August, 2014 based at NASA Armstrong Flight Research Center (AFRC) in Palmdale, CA on the NASA's DC-8 aircraft. HOPS flew with the Multifunctional Fiber Laser Lidar (MFLL) instrument developed by Excelis Inc. The goal of the campaigns was to perform an end-to-end demonstration of the capabilities of the HOPS prototype system (HOPS COTS) while running the most computationally intensive part of the ASCENDS algorithm real-time on-board. The comparison of the two flight campaigns and the results of the functionality tests of the HOPS COTS are presented in this paper.

  2. Strategy For Implementing The UN "Zero-Gravity Instrument Project" To Promote Space Science Among School Children In Nigeria

    Science.gov (United States)

    Alabi, O.; Agbaje, G.; Akinyede, J.

    2015-12-01

    The United Nations "Zero Gravity Instrument Project" (ZGIP) is one of the activities coordinated under the Space Education Outreach Program (SEOP) of the African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E) to popularize space science among pre-collegiate youths in Nigeria. The vision of ZGIP is to promote space education and research in microgravity. This paper will deliberate on the strategy used to implement the ZGIP to introduce school children to authentic scientific data and inquiry. The paper highlights how the students learned to collect scientific data in a laboratory environment, analyzed the data with specialized software, obtained results, interpreted and presented the results of their study in a standard format to the scientific community. About 100 school children, aged between 7 and 21 years, from ten public and private schools located in Osun State, Nigeria participated in the pilot phase of the ZGIP which commenced with a 1-day workshop in March 2014. During the inauguration workshop, the participants were introduced to the environment of outer space, with special emphasis on the concept of microgravity. They were also taught the basic principle of operation of the Clinostat, a Zero-Gravity Instrument donated to ARCSSTE-E by the United Nations Office for Outer Space Affairs (UN-OOSA), Vienna, under the Human Space Technology Initiative (UN-HSTI). At the end of the workshop, each school designed a project, and had a period of 1 week, on a planned time-table, to work in the laboratory of ARCSSTE-E where they utilized the clinostat to examine the germination of indigenous plant seeds in simulated microgravity conditions. The paper also documents the post-laboratory investigation activities, which included presentation of the results in a poster competition and an evaluation of the project. The enthusiasm displayed by the students, coupled with the favorable responses recorded during an oral interview conducted to

  3. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  4. Highly integrated Pluto payload system (HIPPS): a sciencecraft instrument for the Pluto mission

    Science.gov (United States)

    Stern, S. Alan; Slater, David C.; Gibson, William; Reitsema, Harold J.; Delamere, W. Alan; Jennings, Donald E.; Reuter, D. C.; Clarke, John T.; Porco, Carolyn C.; Shoemaker, Eugene M.; Spencer, John R.

    1995-09-01

    We describe the design concept for the highly integrated Pluto payload system (HIPPS): a highly integrated, low-cost, light-weight, low-power instrument payload designed to fly aboard the proposed NASA Pluto flyby spacecraft destined for the Pluto/Charon system. The HIPPS payload is designed to accomplish all of the Pluto flyby prime (IA) science objectives, except radio science, set forth by NASA's Outer Planets Science Working Group (OPSWG) and the Pluto Express Science Definition Team (SDT). HIPPS contains a complement of three instrument components within one common infrastructure; these are: (1) a visible/near UV CCD imaging camera; (2) an infrared spectrograph; and (3) an ultraviolet spectrograph. A detailed description of each instrument is presented along with how they will meet the IA science requirements.

  5. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  6. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    Science.gov (United States)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  7. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  8. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  9. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Science.gov (United States)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  10. With hiccups and bumps: the development of a Rasch-based instrument to measure elementary students' understanding of the nature of science.

    Science.gov (United States)

    Peoples, Shelagh M; O'Dwyer, Laura M; Shields, Katherine A; Wang, Yang

    2013-01-01

    This research describes the development process, psychometric analyses and part validation study of a theoretically-grounded Rasch-based instrument, the Nature of Science Instrument-Elementary (NOSI-E). The NOSI-E was designed to measure elementary students' understanding of the Nature of Science (NOS). Evidence is provided for three of the six validity aspects (content, substantive and generalizability) needed to support the construct validity of the NOSI-E. A future article will examine the structural and external validity aspects. Rasch modeling proved especially productive in scale improvement efforts. The instrument, designed for large-scale assessment use, is conceptualized using five construct domains. Data from 741 elementary students were used to pilot the Rasch scale, with continuous improvements made over three successive administrations. The psychometric properties of the NOSI-E instrument are consistent with the basic assumptions of Rasch measurement, namely that the items are well-fitting and invariant. Items from each of the five domains (Empirical, Theory-Laden, Certainty, Inventive, and Socially and Culturally Embedded) are spread along the scale's continuum and appear to overlap well. Most importantly, the scale seems appropriately calibrated and responsive for elementary school-aged children, the target age group. As a result, the NOSI-E should prove beneficial for science education research. As the United States' science education reform efforts move toward students' learning science through engaging in authentic scientific practices (NRC, 2011), it will be important to assess whether this new approach to teaching science is effective. The NOSI-E can be used as one measure of whether this reform effort has an impact.

  11. Study on a conceptual design of a data acquisition and instrument control system for experimental suites at materials and life science facility (MLF) of J-PARC

    International Nuclear Information System (INIS)

    Nakajima, Kenji; Nakatani, Takeshi; Torii, Shuki; Higemoto, Wataru; Otomo, Toshiya

    2006-02-01

    The JAEA (Japan Atomic Energy Agency)-KEK (High Energy Accelerator Research Organization) joint project, Japan Proton Accelerator Research Complex (J-PARC), is now under construction. Materials and Life Science Facility (MLF) is one of planned facilities in this research complex. The neutron and muon sources will be installed at MLF and world's highest class intensive beam, which is utilized for variety of scientific research subject, will be delivered. To discuss the necessary computing environments for neutron and muon instruments at J-PARC, the MLF computing environment group (MLF-CEG) has been organized. We, members of the DAQ subgroup (DAQ-SG) are responsible for considering data acquisition and instrument control systems for the experimental suites at MLF. In the framework of the MLF-CEG, we are surveying the computer resources which is required for data acquisition and instrument control at future instruments, current situation of existing facilities and possible solutions those we can achieve. We are discussing the most suitable system that can bring out full performance of our instruments. This is the first interim report of the DAQ-SG, in which our activity of 2003-2004 is summarized. In this report, a conceptual design of the software, the related a data acquisition and instrument control system for experimental instruments at MLF are proposed. (author)

  12. Initial Results from the Miniature Imager for Neutral Ionospheric Atoms and Magnetospheric Electrons (MINI-ME) on the FASTSAT Spacecraft

    Science.gov (United States)

    Collier, Michael R.; Rowland, Douglas; Keller, John W.; Chornay, Dennis; Khazanov, George; Herrero, Federico; Moore, Thomas E.; Kujawski, Joseph; Casas, Joseph C.; Wilson, Gordon

    2011-01-01

    The MINI-ME instrument is a collaborative effort between NASA's Goddard Space Flight Center (GSFC) and the U.S. Naval Academy, funded solely through GSFC Internal Research and Development (IRAD) awards. It detects neutral atoms from about 10 eV to about 700 eV (in 30 energy steps) in its current operating configuration with an approximately 10 degree by 360 degree field-of-view, divided into six sectors. The instrument was delivered on August 3, 2009 to Marshall Space Flight Center (MSFC) for integration with the FASTSAT-HSV01 small spacecraft bus developed by MSFC and a commercial partner, one of six Space Experiment Review Board (SERB) experiments on FASTSAT and one of three GSFC instruments (PISA and TTI being the other two). The FASTSAT spacecraft was launched on November 21, 2010 from Kodiak, Alaska on a Minotaur IV as a secondary payload and inserted into a 650 km, 72 degree inclination orbit, very nearly circular. MINI-ME has been collecting science data, as spacecraft resources would permit, in "optimal science mode" since January 20, 2011. In this presentation, we report initial science results including the potential first observations of neutral molecular ionospheric outflow. At the time of this abstract, we have identified 15 possible molecular outflow events. All these events occur between about 65 and 82 degrees geomagnetic latitude and most map to the auroral oval. The MINI-ME results provide an excellent framework for interpretation of the MILENA data, two instruments almost identical to MINI-ME that will launch on the VISIONS suborbital mission

  13. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  14. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-02-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During the quantitative data collection phase, a new instrument—the Social Constructivist Learning Environment Survey (SCLES)—was developed and used to collect data from 1,955 grade 9 science students from 52 classes in 50 schools in the Western Cape province, South Africa. The data were analysed to evaluate the reliability and validity of the new instrument, which assessed six dimensions of the classroom learning environment, namely, Working with Ideas, Personal Relevance, Collaboration, Critical Voice, Uncertainty in Science and Respect for Difference. Two dimensions were developed specifically for the present study in order to contextualise the questionnaire to the requirements of the new South African curriculum (namely, Metacognition and Respect for Difference). In the qualitative data collection phase, two case studies were used to investigate whether profiles of class mean scores on the new instrument could provide an accurate and "trustworthy" description of the learning environment of individual science classes. The study makes significant contributions to the field of learning environments in that it is one of the first major studies of its kind in South Africa with a focus on social constructivism and because the instrument developed captures important aspects of the learning environment associated with social constructivism.

  15. Measurement Instrument for Scientific Teaching (MIST): A Tool to Measure the Frequencies of Research-Based Teaching Practices in Undergraduate Science Courses.

    Science.gov (United States)

    Durham, Mary F; Knight, Jennifer K; Couch, Brian A

    2017-01-01

    The Scientific Teaching (ST) pedagogical framework provides various approaches for science instructors to teach in a way that more closely emulates how science is practiced by actively and inclusively engaging students in their own learning and by making instructional decisions based on student performance data. Fully understanding the impact of ST requires having mechanisms to quantify its implementation. While many useful instruments exist to document teaching practices, these instruments only partially align with the range of practices specified by ST, as described in a recently published taxonomy. Here, we describe the development, validation, and implementation of the Measurement Instrument for Scientific Teaching (MIST), a survey derived from the ST taxonomy and designed to gauge the frequencies of ST practices in undergraduate science courses. MIST showed acceptable validity and reliability based on results from 7767 students in 87 courses at nine institutions. We used factor analyses to identify eight subcategories of ST practices and used these categories to develop a short version of the instrument amenable to joint administration with other research instruments. We further discuss how MIST can be used by instructors, departments, researchers, and professional development programs to quantify and track changes in ST practices. © 2017 M. F. Durham et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. SMART-1: the first spacecraft of the future

    Science.gov (United States)

    2003-09-01

    This is the first of a series of missions designed to test key technologies for future spacecraft —SMART stands for 'Small Missions for Advanced Research and Technology'. In the case of SMART-1, the two main new technologies to be tested are a new 'solar-electric propulsion' system and miniaturised spacecraft and instrumentation. Together, these technologies make up a spacecraft with revolutionary qualities: smaller, lighter, capable of carrying more scientific instruments, greater fuel efficiency. All of which also considerably reduces the cost of the mission. So, the idea behind SMART-1 is to pioneer a futuristic philosophy, the motto of which could be: 'more science for less money'. Even though it is the first of a kind, SMART-1 has been developed in less than four years, and at about a fifth of the cost of a major science mission for ESA: only 110 million euros. That includes the launch, the operations and a dozen scientific experiments. This was achieved partly by using new management methods — such as working with smaller teams both within ESA and in the industry — and partly because of some of the new features inherent in SMART-1, such as the miniaturisation and novel design. Giuseppe Racca, SMART-1 Project Manager, explains: "What has been our trick? First, a short development period in itself means less money. But also, with its small size — which was a requirement of the mission because we are testing miniaturised hardware — the spacecraft is able to 'share' a commercial Ariane flight with two other passengers. Besides, since we were not constrained by any existing design or heritage, we could be more innovative and elegant in our architecture. For example, the new SMART-1 electrical architecture has enabled us to simplify the system tests considerably." SMART-1 could almost be a toy spacecraft — it weighs only 367 kilograms and fits into a cube just one metre across (the solar panel wings extend about 14 metres) — although one able to

  17. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  18. The development and validation of the Self-Efficacy Beliefs about Equitable Science Teaching and learning instrument for prospective elementary teachers

    Science.gov (United States)

    Ritter, Jennifer M.

    1999-12-01

    The purpose of this study was to develop, validate and establish the reliability of an instrument to assess the self-efficacy beliefs of prospective elementary teachers with regards to science teaching and learning for diverse learners. The study used Bandura's theoretical framework, in that the instrument would use the self-efficacy construct to explore the beliefs of prospective elementary science teachers with regards to science teaching and learning to diverse learners: specifically the two dimensions of self-efficacy beliefs defined by Bandura (1977): personal self-efficacy and outcome expectancy. A seven step plan was designed and followed in the process of developing the instrument, which was titled the Self-Efficacy Beliefs about Equitable Science Teaching or SEBEST. Diverse learners as recognized by Science for All Americans (1989) are "those who in the past who have largely been bypassed in science and mathematics education: ethnic and language minorities and girls" (p. xviii). That definition was extended by this researcher to include children from low socioeconomic backgrounds based on the research by Gomez and Tabachnick (1992). The SEBEST was administered to 226 prospective elementary teachers at The Pennsylvania State University. Using the results from factor analyses, Coefficient Alpha, and Chi-Square a 34 item instrument was found to achieve the greatest balance across the construct validity, reliability and item balance with the content matrix. The 34 item SEBEST was found to load purely on four factors across the content matrix thus providing evidence construct validity. The Coefficient Alpha reliability for the 34 item SEBEST was .90 and .82 for the PSE sub-scale and .78 for the OE sub-scale. A Chi-Square test (X2 = 2.7 1, df = 7, p > .05) was used to confirm that the 34 items were balanced across the Personal Self-Efficacy/Outcome Expectancy and Ethnicity/LanguageMinority/Gender Socioeconomic Status/dimensions of the content matrix. Based on

  19. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland

    2004-04-01

    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  20. Magnetometer instrument team studies for the definition phase of the outer planets grand tour

    Science.gov (United States)

    Coleman, P. J., Jr.

    1972-01-01

    The objectives of magnetic field investigations on missions to the outer planets were defined as well as an instrumentation system, a program of studies and instrument development tasks was proposed for the mission definition phase of the Outer Planets Grand Tour project. A report on the status of this program is given. Requirements were also established for the spacecraft and the mission which would insure their compatibility with the magnetic field investigation proposed for the outer planets missions and developed figures of merit for encounter trajectories. The spacecraft-instrumentation interface and the on-board data handling system were defined in various reports by the Project Team and in the reports by the Science Steering Group. The defining program for exploring the outer planets within the more restrictive constraints of the Mariner Jupiter-Saturn project included defining a limited magnetic field investigation.

  1. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  2. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  3. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

  4. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  5. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  6. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  7. Science Planning for the Solar Probe Plus NASA Mission

    Science.gov (United States)

    Kusterer, M. B.; Fox, N. J.; Turner, F. S.; Vandegriff, J. D.

    2015-12-01

    With a planned launch in 2018, there are a number of challenges for the Science Planning Team (SPT) of the Solar Probe Plus mission. The geometry of the celestial bodies and the spacecraft during some of the Solar Probe Plus mission orbits cause limited uplink and downlink opportunities. The payload teams must manage the volume of data that they write to the spacecraft solid-state recorders (SSR) for their individual instruments for downlink to the ground. The aim is to write the instrument data to the spacecraft SSR for downlink before a set of data downlink opportunities large enough to get the data to the ground and before the start of another data collection cycle. The SPT also intend to coordinate observations with other spacecraft and ground based systems. To add further complexity, two of the spacecraft payloads have the capability to write a large volumes of data to their internal payload SSR while sending a smaller "survey" portion of the data to the spacecraft SSR for downlink. The instrument scientists would then view the survey data on the ground, determine the most interesting data from their payload SSR, send commands to transfer that data from their payload SSR to the spacecraft SSR for downlink. The timing required for downlink and analysis of the survey data, identifying uplink opportunities for commanding data transfers, and downlink opportunities big enough for the selected data within the data collection period is critical. To solve these challenges, the Solar Probe Plus Science Working Group has designed a orbit-type optimized data file priority downlink scheme to downlink high priority survey data quickly. This file priority scheme would maximize the reaction time that the payload teams have to perform the survey and selected data method on orbits where the downlink and uplink availability will support using this method. An interactive display and analysis science planning tool is being designed for the SPT to use as an aid to planning. The

  8. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  9. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  10. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  11. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  12. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  13. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  14. Magnetospheric Multiscale Instrument Suite Operations and Data System

    Science.gov (United States)

    Baker, D. N.; Riesberg, L.; Pankratz, C. K.; Panneton, R. S.; Giles, B. L.; Wilder, F. D.; Ergun, R. E.

    2016-03-01

    The four Magnetospheric Multiscale (MMS) spacecraft will collect a combined volume of ˜100 gigabits per day of particle and field data. On average, only 4 gigabits of that volume can be transmitted to the ground. To maximize the scientific value of each transmitted data segment, MMS has developed the Science Operations Center (SOC) to manage science operations, instrument operations, and selection, downlink, distribution, and archiving of MMS science data sets. The SOC is managed by the Laboratory for Atmospheric and Space Physics (LASP) in Boulder, Colorado and serves as the primary point of contact for community participation in the mission. MMS instrument teams conduct their operations through the SOC, and utilize the SOC's Science Data Center (SDC) for data management and distribution. The SOC provides a single mission data archive for the housekeeping and science data, calibration data, ephemerides, attitude and other ancillary data needed to support the scientific use and interpretation. All levels of data products will reside at and be publicly disseminated from the SDC. Documentation and metadata describing data products, algorithms, instrument calibrations, validation, and data quality will be provided. Arguably, the most important innovation developed by the SOC is the MMS burst data management and selection system. With nested automation and "Scientist-in-the-Loop" (SITL) processes, these systems are designed to maximize the value of the burst data by prioritizing the data segments selected for transmission to the ground. This paper describes the MMS science operations approach, processes and data systems, including the burst system and the SITL concept.

  15. Radio science investigations with Voyager

    International Nuclear Information System (INIS)

    Eshleman, V.R.; Tyler, G.L.; Croft, T.A.

    1977-01-01

    The planned radio science investigations during the Voyager missions to the outer planets involve: (1) the use of the radio links to and from the spacecraft for occultation measurements of planetary and satellite atmospheres and ionospheres, the rings of Saturn, the solar corona, and the general-relativistic time delay for radiowave propagation through the Sun's gravity field; (2) radio link measurements of true or apparent spacecraft motion caused by the gravity fields of the planets, the masses of their larger satellites, and characteristics of the interplanetary medium; and (3) related measurements which could provide results in other areas, including the possible detection of long-wavelength gravitational radiation propagating through the Solar System. The measurements will be used to study: atmospheric and ionospheric structure, constituents, and dynamics; the sizes, radial distribution, total mass, and other characteristics of the particles in the rings of Saturn; interior models for the major planets and the mean density and bulk composition of a number of their satellites; the plasma density and dynamics of the solar corona and interplanetary medium; and certain fundamental questions involving gravitation and relativity. The instrumentation for these experiments is the same ground-based and spacecraft radio systems as will be used for tracking and communicating with the Voyager spacecraft, although several important features of these systems have been provided primarily for the radio science investigations. (Auth.)

  16. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  17. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  18. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    Science.gov (United States)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature

  19. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Science.gov (United States)

    Wiens, R.C.; Maurice, S.; Lasue, J.; Forni, O.; Anderson, R.B.; Clegg, S.; Bender, S.; Blaney, D.; Barraclough, B.L.; Cousin, A.; DeFlores, L.; Delapp, D.; Dyar, M.D.; Fabre, C.; Gasnault, O.; Lanza, N.; Mazoyer, J.; Melikechi, N.; Meslin, P.-Y.; Newsom, H.; Ollila, A.; Perez, R.; Tokar, R.; Vaniman, D.

    2013-01-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  20. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Mercury Orbiter: Report of the Science Working Team

    Science.gov (United States)

    Belcher, John W.; Slavin, James A.; Armstrong, Thomas P.; Farquhar, Robert W.; Akasofu, Syun I.; Baker, Daniel N.; Cattell, Cynthia A.; Cheng, Andrew F.; Chupp, Edward L.; Clark, Pamela E.

    1991-01-01

    The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems.

  2. The PESPERF Scale: An Instrument for Measuring Service Quality in the School of Physical Education and Sports Sciences (PESS)

    Science.gov (United States)

    Yildiz, Suleyman M.; Kara, Ali

    2009-01-01

    Purpose: HEdPERF (Higher Education PERFormance) is one of the most recently developed scales in the literature to measure service quality in higher education. However, HEdPERF is designed to measure service quality at a macro level (university level) and may be considered as a more generic measurement instrument. In higher education, new scales…

  3. What Do You Know about Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science

    Science.gov (United States)

    Cheong, Irene Poh-Ai; Johari, Marliza; Said, Hardimah; Treagust, David F.

    2015-01-01

    The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students' understanding and alternative conceptions about alternative…

  4. Construction and Validation of an Instrument to Measure Problem-Solving Skills of Suburban High School Physical Science Students

    Science.gov (United States)

    Herak, Patrick James

    2010-01-01

    The purpose of this study was to develop a problem-solving instrument that could easily be used by a classroom teacher. The research questions were (1) can the Problem-Solving Skills Assessments (PSSAs) differentiate between students with varying levels of selected problem-solving skills? (2) Can the PSSAs measure student growth due to…

  5. Detection of Reduced Nitrogen Compounds at Rocknest Using the Sample Analysis At Mars (SAM) Instrument on the Mars Science Laboratory (MSL)

    Science.gov (United States)

    Stern, J. C.; Steele, A.; Brunner, A.; Coll, P.; Eigenbrode, J.; Franz, H. B.; Freissinet, C.; Glavin, D.; Jones, J. H.; Navarro-Gonzalez, R.; hide

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected nitrogen-bearing compounds during the pyrolysis of Rocknest material at Gale Crater. Hydrogen cyanide and acetonitrile were identified by the quadrupole mass spectrometer (QMS) both in direct evolved gas analysis (EGA). SAM carried out four separate analyses from Rocknest Scoop 5. A significant low temperature release was present in Rocknest runs 1-4, while a smaller high temperature release was also seen in Rocknest runs 1-3. Here we evaluate whether these compounds are indigenous to Mars or a pyrolysis product resulting from known terrestrial materials that are part of the SAM derivatization.

  6. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  7. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  8. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  9. Compte rendu de : Charles T. Wolfe and Ofer Gal (eds., The body as object and instrument of knowledge. Embodied empiricism in early modern science

    Directory of Open Access Journals (Sweden)

    Bernard Joly

    2011-03-01

    Full Text Available Cet ouvrage collectif, qui résulte en partie des travaux d’un atelier sur l’empirisme incarné dans la science moderne qui s’est tenu à l’université de Sydney en février 2009, rassemble quinze communications regroupées en trois parties : « The Body as Object », « The Body as Instrument », « Embodies Minds ». L’objectif des auteurs est de corriger la conception dominante que se font les historiens des sciences et de la philosophie de l’émergence de la philosophie expérimentale, et de l’empirism...

  10. Spacecraft Fire Safety Demonstration

    Science.gov (United States)

    Urban, David L.; Ruff, Gary A.

    2016-01-01

    A presentation of the Saffire Experiment goals and scientific objectives for the Joint CSA/ESA/JAXA/NASA Increments 47 and 48 Science Symposium. The purpose of the presentation is to inform the ISS Cadre and the other investigators of the Saffire goals and objectives to enable them to best support a successful Saffire outcome.

  11. Soyuz Spacecraft Transported to Launch Pad

    Science.gov (United States)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  12. Early modern mathematical instruments.

    Science.gov (United States)

    Bennett, Jim

    2011-12-01

    In considering the appropriate use of the terms "science" and "scientific instrument," tracing the history of "mathematical instruments" in the early modern period is offered as an illuminating alternative to the historian's natural instinct to follow the guiding lights of originality and innovation, even if the trail transgresses contemporary boundaries. The mathematical instrument was a well-defined category, shared across the academic, artisanal, and commercial aspects of instrumentation, and its narrative from the sixteenth to the eighteenth century was largely independent from other classes of device, in a period when a "scientific" instrument was unheard of.

  13. Ambient Optomechanical Alignment and Pupil Metrology for the Flight Instruments Aboard the James Webb Space Telescope

    Science.gov (United States)

    Coulter, Phillip; Beaton, Alexander; Gum, Jeffrey S.; Hadjimichael, Theodore J.; Hayden, Joseph E.; Hummel, Susann; Hylan, Jason E.; Lee, David; Madison, Timothy J.; Maszkiewicz, Michael; hide

    2014-01-01

    The James Webb Space Telescope science instruments are in the final stages of being integrated into the Integrated Science Instrument Module (ISIM) element. Each instrument is tied into a common coordinate system through mechanical references that are used for optical alignment and metrology within ISIM after element-level assembly. In addition, a set of ground support equipment (GSE) consisting of large, precisely calibrated, ambient, and cryogenic structures are used as alignment references and gauges during various phases of integration and test (I&T). This GSE, the flight instruments, and ISIM structure feature different types of complimentary metrology targeting. These GSE targets are used to establish and track six degrees of freedom instrument alignment during I&T in the vehicle coordinate system (VCS). This paper describes the optomechanical metrology conducted during science instrument integration and alignment in the Spacecraft Systems Development and Integration Facility (SSDIF) cleanroom at NASA Goddard Space Flight Center (GSFC). The measurement of each instrument's ambient entrance pupil location in the telescope coordinate system is discussed. The construction of the database of target locations and the development of metrology uncertainties is also discussed.

  14. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  15. The Development and Validation of Test Instruments to Measure Observation and Comparison in Junior High School Science.

    Science.gov (United States)

    Hungerford, Harold Ralph

    This study attempted to design tests for the purpose of measuring the acquisition of the science skills of observation and comparison, to determine if these skills, as measured by these tests, could be differentially improved using differing amounts of training, and to determine the effects of race and cultural status on performance with the…

  16. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  17. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  18. The Rosetta Science Archive: Status and Plans for Completing and Enhancing the Archive Content

    Science.gov (United States)

    Heather, D.; Barthelemy, M.; Fraga, D.; Grotheer, E.; O'Rourke, L.; Taylor, M.

    2017-09-01

    On 30 September 2016, Rosetta's signal flat-lined, confirming that the spacecraft had completed its incredible mission by landing on the surface of Comet 67P/Churyumov-Gerasimenko. Although this marked an end to the spacecraft's active operations, intensive work is still on-going with instrument teams preparing their final science data increments for delivery and ingestion into ESA's Planetary Science Archive (PSA). In addition to this, ESA is establishing contracts with a number of instrument teams to enhance and improve their data and documentation in an effort to provide the best long- term archive possible for the Rosetta mission. This presentation will outline the current status of the Rosetta archive, as well as highlighting some of the 'enhanced archiving' activities planned and underway with the various instrument teams on Rosetta to ensure the scientific legacy of the mission.

  19. Banque d’instruments de mesure en recherche : Une innovation au service des membres chercheurs en sciences infirmières

    Directory of Open Access Journals (Sweden)

    Sylvie Le May

    2017-04-01

    Full Text Available Résumé : Introduction : Face aux difficultés que rencontrent ses enseignants et étudiants à retrouver des instruments de mesure valides dans les bases de données, le Réseau de Recherche en Interventions en Sciences Infirmières du Québec (RRISIQ a récemment choisi de développer une banque d’instruments de mesure accessible et bien documentée utilisant le logiciel bibliographique Zotero. Cet article a pour but de décrire la Banque d’instruments du RRISIQ, d’en exposer les défis et ses perspectives de développement. Description : La Banque comprend plus de 1400 liens ou références à des instruments de mesure reliés aux interventions cliniques, à l’organisation des services infirmiers et à la formation infirmière. L’utilisateur a accès à des références bibliographiques d’articles scientifiques sur les instruments, en anglais et en français. En naviguant dans la Banque, il clique sur l'article de son choix, obtenant ainsi une description bibliographique complète, dont une adresse web lui permettant d’accéder en ligne au plein texte. Résultats : La Banque d’instruments Zotero nécessite un faible coût d’entretien technique pour effectuer des sauvegardes, résoudre les difficultés et gérer les demandes d'accès. Elle est appréciée par ses utilisateurs. Discussion : La Banque prendra de l’ampleur dans les années à venir et des démarches sont actuellement réalisées par l’équipe pour la publiciser davantage auprès de ses membres et de leurs étudiants. L’équipe envisage de la rendre disponible à d’autres équipes de recherche du Québec.

  20. International Conferences and Young Scientists Schools on Computational Information Technologies for Environmental Sciences (CITES) as a professional growth instrument

    Science.gov (United States)

    Gordov, E. P.; Lykosov, V. N.; Genina, E. Yu; Gordova, Yu E.

    2017-11-01

    The paper describes a regular events CITES consisting of young scientists school and international conference as a tool for training and professional growth. The events address the most pressing issues of application of information-computational technologies in environmental sciences and young scientists’ training, diminishing a gap between university graduates’ skill and concurrent challenges. The viability of the approach to the CITES organization is proved by the fact that single event organized in 2001 turned into a series, quite a few young participants successfully defended their PhD thesis and a number of researchers became Doctors of Science during these years. Young researchers from Russia and foreign countries show undiminishing interest to these events.

  1. Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover

    Energy Technology Data Exchange (ETDEWEB)

    Wiens, R.C., E-mail: rwiens@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Maurice, S.; Lasue, J.; Forni, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Anderson, R.B. [United States Geological Survey, Flagstaff, AZ (United States); Clegg, S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Bender, S. [Planetary Science Institute, Tucson, AZ (United States); Blaney, D. [Jet Propulsion Laboratory, Pasadena, CA (United States); Barraclough, B.L. [Planetary Science Institute, Tucson, AZ (United States); Cousin, A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Deflores, L. [Jet Propulsion Laboratory, Pasadena, CA (United States); Delapp, D. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Dyar, M.D. [Mount Holyoke College, South Hadley, MA (United States); Fabre, C. [Georessources, Nancy (France); Gasnault, O. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Lanza, N. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); Mazoyer, J. [LESIA, Observatoire de Paris, Meudon (France); Melikechi, N. [Delaware State University, Dover, DE (United States); Meslin, P.-Y. [Institut de Recherche en Astrophysique et Planetologie, Toulouse (France); Newsom, H. [University of New Mexico, Albuquerque, NM (United States); and others

    2013-04-01

    The ChemCam instrument package on the Mars Science Laboratory rover, Curiosity, is the first planetary science instrument to employ laser-induced breakdown spectroscopy (LIBS) to determine the compositions of geological samples on another planet. Pre-processing of the spectra involves subtracting the ambient light background, removing noise, removing the electron continuum, calibrating for the wavelength, correcting for the variable distance to the target, and applying a wavelength-dependent correction for the instrument response. Further processing of the data uses multivariate and univariate comparisons with a LIBS spectral library developed prior to launch as well as comparisons with several on-board standards post-landing. The level-2 data products include semi-quantitative abundances derived from partial least squares regression. A LIBS spectral library was developed using 69 rock standards in the form of pressed powder disks, glasses, and ceramics to minimize heterogeneity on the scale of the observation (350–550 μm dia.). The standards covered typical compositional ranges of igneous materials and also included sulfates, carbonates, and phyllosilicates. The provenance and elemental and mineralogical compositions of these standards are described. Spectral characteristics of this data set are presented, including the size distribution and integrated irradiances of the plasmas, and a proxy for plasma temperature as a function of distance from the instrument. Two laboratory-based clones of ChemCam reside in Los Alamos and Toulouse for the purpose of adding new spectra to the database as the need arises. Sensitivity to differences in wavelength correlation to spectral channels and spectral resolution has been investigated, indicating that spectral registration needs to be within half a pixel and resolution needs to match within 1.5 to 2.6 pixels. Absolute errors are tabulated for derived compositions of each major element in each standard using PLS regression

  2. Time maintenance system for the BMDO MSX spacecraft

    Science.gov (United States)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  3. A New Instrument Design for Imaging Low Energy Neutral Atoms

    Science.gov (United States)

    Keller, John W.; Collier, Michael R.; Chornay, Dennis; Rozmarynowski, Paul; Getty, Stephanie; Cooper, John F.; Smith, Billy

    2007-01-01

    The MidSTAR-2 satellite, to be built at the US Naval Academy as a follow-on to the successful MidSTAR-1 satellite (http://web.ew.usna.edu/midstar/), will launch in 2011 and carry three Goddard Space Flight Center (GSFC) experiments developed under Goddard's Internal Research and Development (IRAD) program. One of these GSFC instruments, the Miniature Imager for Neutral Ionospheric atoms and Magnetospheric Electrons (MINI-ME) builds on the heritage of the Goddard-developed Low-Energy Neutral Atom (LENA) imager launched on the IMAGE spacecraft in 2000. MINI-ME features a Venetian-blind conversion surface assembly that improves both light rejection and conversion efficiency in a smaller and lighter package than LENA making this an highly effective instrument for viewing solar wind charge exchange with terrestrial and planetary exospheres. We will describe the MINI-ME prototyping effort and its science targets.

  4. The Mercury Laser Altimeter Instrument for the MESSENGER Mission

    Science.gov (United States)

    Cavanaugh, John F.; Smith, James C.; Sun, Xiaoli; Bartels, Arlin E.; Ramos-Izquierdo, Luis; Krebs, Danny J.; Novo-Gradac, Anne marie; McGarry, Jan F.; Trunzo, Raymond; Britt, Jamie L.

    2006-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload science instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission, which launched on 3 August 2004. The altimeter will measure the round trip time-of-flight of transmitted laser pulses reflected from the surface of the planet that, in combination with the spacecraft orbit position and pointing data, gives a high-precision measurement of surface topography referenced to Mercury's center of mass. The altimeter measurements will be used to determine the planet's forced librations by tracking the motion of large-scale topographic features as a function of time. MLA's laser pulse energy monitor and the echo pulse energy estimate will provide an active measurement of the surface reflectivity at 1064 nm. This paper describes the instrument design, prelaunch testing, calibration, and results of post-launch testing.

  5. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  6. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  7. ``I Just Want The Credit!'' - Perceived Instrumentality as the Main Characteristic of Boys' Motivation in a Grade 11 Science Course

    Science.gov (United States)

    Nieswandt, Martina; Shanahan, Marie-Claire

    2008-01-01

    This case study examines the motivational structure of a group of male students ( n = 10) in a grade 11 General Science class at an independent single-sex school. We approach the concept of motivation through the integration of three different theoretical approaches: sociocultural theory, future time perspective and achievement goal theory. This framework allows us to stress the dialectical interdependence of motivation, as expressed through individual goals, and the socially and culturally influenced origins of these goals. Our results suggest that the boys internalised the administrative description of the course as meeting a diploma requirement, which they expressed in their perception of the course as being for “non-science” people who “just need a credit.” However, we also found situational changes in students’ motivational structure towards more intrinsic orientations when they were engaged in topics with personal everyday and future relevance. These situational changes in students’ goal structures illustrate that our participants did not internalise classroom and school goal messages wholly and, instead, selectively and constructively transformed these goal messages depending on their own motivational structure and beliefs. These results stress the importance of teachers scaffolding not only for conceptual learning but also for student motivation in science classes, especially those that purposefully teach towards scientific literacy.

  8. First Results from ARTEMIS, A New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    Science.gov (United States)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; hide

    2014-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.

  9. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  10. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  11. The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small Spacecraft

    Science.gov (United States)

    McComas, David; Wilmot, Jonathan; Cudmore, Alan

    2016-01-01

    In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board (CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being maintained in compliance with the NASA Class B software development process requirements and the open source release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is being used on multiple spacecraft and instrument development efforts. While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies being pursued, the development/verification tools and opportunities for the small satellite community to become engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.

  12. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  13. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  14. On-Orbit Assembly of a Universally Interlocking Modular Spacecraft (7224-110), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. and Advanced Solutions, Inc. propose a novel approach for on-orbit assembly of a modular spacecraft using a unique universal, intelligent,...

  15. On-Orbit Performance of the Helioseismic and Magnetic Imager Instrument onboard the Solar Dynamics Observatory

    Science.gov (United States)

    Hoeksema, J. T.; Baldner, C. S.; Bush, R. I.; Schou, J.; Scherrer, P. H.

    2018-03-01

    The Helioseismic and Magnetic Imager (HMI) instrument is a major component of NASA's Solar Dynamics Observatory (SDO) spacecraft. Since commencement of full regular science operations on 1 May 2010, HMI has operated with remarkable continuity, e.g. during the more than five years of the SDO prime mission that ended 30 September 2015, HMI collected 98.4% of all possible 45-second velocity maps; minimizing gaps in these full-disk Dopplergrams is crucial for helioseismology. HMI velocity, intensity, and magnetic-field measurements are used in numerous investigations, so understanding the quality of the data is important. This article describes the calibration measurements used to track the performance of the HMI instrument, and it details trends in important instrument parameters during the prime mission. Regular calibration sequences provide information used to improve and update the calibration of HMI data. The set-point temperature of the instrument front window and optical bench is adjusted regularly to maintain instrument focus, and changes in the temperature-control scheme have been made to improve stability in the observable quantities. The exposure time has been changed to compensate for a 20% decrease in instrument throughput. Measurements of the performance of the shutter and tuning mechanisms show that they are aging as expected and continue to perform according to specification. Parameters of the tunable optical-filter elements are regularly adjusted to account for drifts in the central wavelength. Frequent measurements of changing CCD-camera characteristics, such as gain and flat field, are used to calibrate the observations. Infrequent expected events such as eclipses, transits, and spacecraft off-points interrupt regular instrument operations and provide the opportunity to perform additional calibration. Onboard instrument anomalies are rare and seem to occur quite uniformly in time. The instrument continues to perform very well.

  16. Instruments for radiation measurement in life sciences (5), ''Development of imaging technology in life sciences'' III. Development of small animal PET scanners

    International Nuclear Information System (INIS)

    Yamaya, Taiga; Murayama, Hideo

    2006-01-01

    This paper summarizes the requisites for small animal PET scanners, present state of their market and of their development in National Institute of Radiological Sciences (NIRS). Relative to the apparatus clinically used, the requisites involve the high spatial resolution of 0.8-1.5 mm and high sensitivity of the equipment itself due to low dose of the tracer to be given to animals. At present, more than 20 institutions like universities, research facilities and companies are developing the PET equipment for small animals and about 10 machines are in the market. However, their resolution and sensitivity are not fully satisfactory and for their improvement, investigators are paying attention to the gamma ray measurement by depth-of-interaction (DOI) method. NIRS has been also developing the machine jPET-D4 and has proposed to manufacture jPET-RD having 4-layer DOI detectors with the absolute central sensitivity as high as 14.7%. jPET-RD is to have the spatial resolution as high as <1mm (central view) and -1.4 mm (periphery). (T.I.)

  17. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  18. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  19. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  20. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    Science.gov (United States)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  1. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  2. LDEF materials results for spacecraft applications: Executive summary

    Science.gov (United States)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  3. "A bare outpost of learned European culture on the edge of the jungles of Java": Johan Maurits Mohr (1716-1775) and the emergence of instrumental and institutional science in Dutch colonial Indonesia.

    Science.gov (United States)

    Zuidervaart, Huib J; Van Gent, Rob H

    2004-03-01

    The transits of Venus in 1761 and 1769 appear to mark the starting point of instrumental science in the Dutch East Indies (now Indonesia). This essay examines the conditions that triggered and constituted instrumental and institutional science on Indonesian soil in the late eighteenth century. In 1765 the Reverend J. M. Mohr, whose wife had received a large inheritance, undertook to build a fully equipped private observatory in Batavia (now Jakarta). There he made several major astronomical and meteorological observations. Mohr's initiative inspired other Europeans living on Java around 1770 to start a scientific movement. Because of the lack of governmental and other support, it was not until 1778 that this offspring of the Dutch-Indonesian Enlightenment became a reality. The Bataviaasch Genootschap van Kunsten en Wetenschappen tried from the beginning to put into effect the program Mohr had outlined. The members even bought his instruments from his widow, intending to continue his measurements. For a number of reasons, however, this instrumental program was more than the society could support. Around 1790 instrumental science in the former Dutch East Indies came to a standstill, not to be resumed for several decades.

  4. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  5. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  6. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    Science.gov (United States)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  7. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  8. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  9. Next Generation Space Telescope Integrated Science Module Data System

    Science.gov (United States)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  10. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  11. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  12. Instrumental interaction

    OpenAIRE

    Luciani , Annie

    2007-01-01

    International audience; The expression instrumental interaction as been introduced by Claude Cadoz to identify a human-object interaction during which a human manipulates a physical object - an instrument - in order to perform a manual task. Classical examples of instrumental interaction are all the professional manual tasks: playing violin, cutting fabrics by hand, moulding a paste, etc.... Instrumental interaction differs from other types of interaction (called symbolic or iconic interactio...

  13. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  14. Instrumentation and control and human machine interface science and technology road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Bond, L. J.; Dudenhoeffer, D.; Hallbert, B.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2006-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology road-map being developed to address the major challenges in this technical area for the Gen IV and other U.S. Dept. of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems as well as their licensing considerations. The ICHMI road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  15. Instrumentation and control and human machine interface science and technology Road-map in support of advanced reactors and fuel programs in the U.S

    International Nuclear Information System (INIS)

    Miller, D. W.; Arndt, S. A.; Dudenhoeffer, D.; Hallbert, B.; Bond, L. J.; Holcomb, D. E.; Wood, R. T.; Naser, J. A.; O'Hara, J.; Quinn, E. L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Road-map (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI Road-map will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues. (authors)

  16. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    Science.gov (United States)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  17. Instrumentation and Control and Human Machine Interface Science and Technology Roadmap in Support of Advanced Reactors and Fuel Programs in the U.S

    International Nuclear Information System (INIS)

    Miller, Don W.; Arndt, Steven A.; Dudenhoeffer, Donald D.; Hallbert, Bruce P.; Bond, Leonard J.; Holcomb, David E.; Wood, Richard T.; Naser, Joseph A.; O'Hara, John M.; Quinn, Edward L.

    2008-01-01

    The purpose of this paper is to provide an overview of the current status of the Instrumentation, Control and Human Machine Interface (ICHMI) Science and Technology Roadmap (Reference xi) that was developed to address the major challenges in this technical area for the Gen IV and other U.S. Department of Energy (DOE) initiatives that support future deployments of nuclear energy systems. Reliable, capable ICHMI systems will be necessary for the advanced nuclear plants to be economically competitive. ICHMI enables measurement, control, protection, monitoring, and maintenance for processes and components. Through improvements in the technologies and demonstration of their use to facilitate licensing, ICHMI can contribute to the reduction of plant operations and maintenance costs while helping to ensure high plant availability. The impact of ICHMI can be achieved through effective use of the technologies to improve operational efficiency and optimize use of human resources. However, current licensing experience with digital I and C systems has provided lessons learned concerning the difficulties that can be encountered when introducing advanced technologies with expanded capabilities. Thus, in the development of advanced nuclear power designs, it will be important to address both the technical foundations of ICHMI systems and their licensing considerations. The ICHMI roadmap will identify the necessary research, development and demonstration activities that are essential to facilitate necessary technology advancement and resolve outstanding issues

  18. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  19. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  20. Spacecraft System Integration and Test: SSTI Lewis critical design audit

    Science.gov (United States)

    Brooks, R. P.; Cha, K. K.

    1995-01-01

    The Critical Design Audit package is the final detailed design package which provides a comprehensive description of the SSTI mission. This package includes the program overview, the system requirements, the science and applications activities, the ground segment development, the assembly, integration and test description, the payload and technology demonstrations, and the spacecraft bus subsystems. Publication and presentation of this document marks the final requirements and design freeze for SSTI.

  1. The scientific use of technological instruments

    NARCIS (Netherlands)

    Boon, Mieke; Hansson, Sven Ove

    2015-01-01

    One of the most obvious ways in which the natural sciences depend on technology is through the use of instruments. This chapter presents a philosophical analysis of the role of technological instruments in science. Two roles of technological instruments in scientific practices are distinguished:

  2. The Kepler Science Data Processing Pipeline Source Code Road Map

    Science.gov (United States)

    Wohler, Bill; Jenkins, Jon M.; Twicken, Joseph D.; Bryson, Stephen T.; Clarke, Bruce Donald; Middour, Christopher K.; Quintana, Elisa Victoria; Sanderfer, Jesse Thomas; Uddin, Akm Kamal; Sabale, Anima; hide

    2016-01-01

    We give an overview of the operational concepts and architecture of the Kepler Science Processing Pipeline. Designed, developed, operated, and maintained by the Kepler Science Operations Center (SOC) at NASA Ames Research Center, the Science Processing Pipeline is a central element of the Kepler Ground Data System. The SOC consists of an office at Ames Research Center, software development and operations departments, and a data center which hosts the computers required to perform data analysis. The SOC's charter is to analyze stellar photometric data from the Kepler spacecraft and report results to the Kepler Science Office for further analysis. We describe how this is accomplished via the Kepler Science Processing Pipeline, including, the software algorithms. We present the high-performance, parallel computing software modules of the pipeline that perform transit photometry, pixel-level calibration, systematic error correction, attitude determination, stellar target management, and instrument characterization.

  3. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    Science.gov (United States)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  4. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  5. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSats: instrument capabilities and early science analysis on the quiet Sun, active regions, and flares.

    Science.gov (United States)

    Moore, Christopher S.; Woods, Tom; Caspi, Amir; Dennis, Brian R.; MinXSS Instrument Team, NIST-SURF Measurement Team

    2018-01-01

    Detection of soft X-rays (sxr) from the Sun provide direct information on coronal plasma at temperatures in excess of ~1 MK, but there have been relatively few solar spectrally resolved measurements from 0.5 – 10. keV. The Miniature X-ray Solar Spectrometer (MinXSS) CubeSat is the first solar science oriented CubeSat mission flown for the NASA Science Mission Directorate, and has provided measurements from 0.8 -12 keV, with resolving power ~40 at 5.9 keV, at a nominal ~10 second time cadence. MinXSS design and development has involved over 40 graduate students supervised by professors and professionals at the University of Colorado at Boulder. Instrument radiometric calibration was performed at the National Institute for Standard and Technology (NIST) Synchrotron Ultraviolet Radiation Facility (SURF) and spectral resolution determined from radioactive X-ray sources. The MinXSS spectra allow for determining coronal abundance variations for Fe, Mg, Ni, Ca, Si, S, and Ar in active regions and during flares. Measurements from the first of the twin CubeSats, MinXSS-1, have proven to be consistent with the Geostationary Operational Environmental Satellite (GOES) 0.1 – 0.8 nm energy flux. Simultaneous MinXSS-1 and Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations have provided the most complete sxr spectral coverage of flares in recent years. These combined measurements are vital in estimating the heating flare loops by non-thermal accelerated electrons. MinXSS-1 measurements have been combined with the Hinode X-ray Telescope (XRT) and Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO-AIA) to further constrain the coronal temperature distribution during quiescent times. The structure of the temperature distribution (especially for T > 5 MK) is important for deducing heating processes in the solar atmosphere. MinXSS-1 observations yield some of the tightest constraints on the high temperature component of the coronal plasma, in the

  6. Instrumentation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides instrumentation support for flight tests of prototype weapons systems using a vast array of airborne sensors, transducers, signal conditioning and encoding...

  7. THOR Ion Mass Spectrometer instrument - IMS

    Science.gov (United States)

    Retinò, Alessandro; Kucharek, Harald; Saito, Yoshifumi; Fraenz, Markus; Verdeil, Christophe; Leblanc, Frederic; Techer, Jean-Denis; Jeandet, Alexis; Macri, John; Gaidos, John; Granoff, Mark; Yokota, Shoichiro; Fontaine, Dominique; Berthomier, Matthieu; Delcourt, Dominique; Kistler, Lynn; Galvin, Antoniette; Kasahara, Satoshi; Kronberg, Elena

    2016-04-01

    Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. Specifically, THOR will study how turbulent fluctuations at kinetic scales heat and accelerate particles in different turbulent environments within the near-Earth space. To achieve this goal, THOR payload is being designed to measure electromagnetic fields and particle distribution functions with unprecedented resolution and accuracy. Here we present the Ion Mass Spectrometer (IMS) instrument that will measure the full three-dimensional distribution functions of near-Earth main ion species (H+, He+, He++ and O+) at high time resolution (~ 150 ms for H+ , ~ 300 ms for He++) with energy resolution down to ~ 10% in the range 10 eV/q to 30 keV/q and angular resolution ~ 10°. Such high time resolution is achieved by mounting multiple sensors around the spacecraft body, in similar fashion to the MMS/FPI instrument. Each sensor combines a top-hat electrostatic analyzer with deflectors at the entrance together with a time-of-flight section to perform mass selection. IMS electronics includes a fast sweeping high voltage board that is required to make measurements at high cadence. Ion detection includes Micro Channel Plates (MCP) combined with Application-Specific Integrated Circuits (ASICs) for charge amplification, discrimination and time-to-digital conversion (TDC). IMS is being designed to address many of THOR science requirements, in particular ion heating and acceleration by turbulent fluctuations in foreshock, shock and magnetosheath regions. The IMS instrument is being designed and will be built by an international consortium of scientific institutes with main hardware contributions from France, USA, Japan and Germany.

  8. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  9. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  10. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  11. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  12. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  13. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  14. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  15. SciBox, an end-to-end automated science planning and commanding system

    Science.gov (United States)

    Choo, Teck H.; Murchie, Scott L.; Bedini, Peter D.; Steele, R. Josh; Skura, Joseph P.; Nguyen, Lillian; Nair, Hari; Lucks, Michael; Berman, Alice F.; McGovern, James A.; Turner, F. Scott

    2014-01-01

    SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.

  16. Measurement, instrumentation, and sensors handbook

    CERN Document Server

    Eren, Halit

    2014-01-01

    The Second Edition of the bestselling Measurement, Instrumentation, and Sensors Handbook brings together all aspects of the design and implementation of measurement, instrumentation, and sensors. Reflecting the current state of the art, it describes the use of instruments and techniques for performing practical measurements in engineering, physics, chemistry, and the life sciences and discusses processing systems, automatic data acquisition, reduction and analysis, operation characteristics, accuracy, errors, calibrations, and the incorporation of standards for control purposes. Organized acco

  17. Experimenting with string musical instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-03-01

    What follows are several investigations involving string musical instruments developed for and used in a Science of Sound & Light course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when used in physics, represent reality that can actually be observed, in this case, the operation of string musical instruments.

  18. Experimenting with String Musical Instruments

    Science.gov (United States)

    LoPresto, Michael C.

    2012-01-01

    What follows are several investigations involving string musical instruments developed for and used in a "Science of Sound & Light" course. The experiments make use of a guitar, orchestral string instruments and data collection and graphing software. They are designed to provide students with concrete examples of how mathematical formulae, when…

  19. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  20. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  1. The TESIS experiment on the CORONAS-PHOTON spacecraft

    Science.gov (United States)

    Kuzin, S. V.; Zhitnik, I. A.; Shestov, S. V.; Bogachev, S. A.; Bugaenko, O. I.; Ignat'ev, A. P.; Pertsov, A. A.; Ulyanov, A. S.; Reva, A. A.; Slemzin, V. A.; Sukhodrev, N. K.; Ivanov, Yu. S.; Goncharov, L. A.; Mitrofanov, A. V.; Popov, S. G.; Shergina, T. A.; Solov'ev, V. A.; Oparin, S. N.; Zykov, A. M.

    2011-04-01

    On February 26, 2009, the first data was obtained in the TESIS experiment on the research of the solar corona using imaging spectroscopy. The TESIS is a part of the scientific equipment of the CORONAS-PHO-TON spacecraft and is designed for imaging the solar corona in soft X-ray and extreme ultraviolet regions of the spectrum with high spatial, spectral, and temporal resolutions at altitudes from the transition region to three solar radii. The article describes the main characteristics of the instrumentation, management features, and operation modes.

  2. Space Science in Project SMART: A UNH High School Outreach Program

    Science.gov (United States)

    Smith, C. W.; Broad, L.; Goelzer, S.; Lessard, M.; Levergood, R.; Lugaz, N.; Moebius, E.; Schwadron, N.; Torbert, R. B.; Zhang, J.; Bloser, P. F.

    2016-12-01

    Every summer for the past 25 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. Recent research topics have included interplanetary waves and turbulence as recorded by the ACE and Voyager spacecraft, electromagnetic ion cyclotron (EMIC) waves seen by the RBSP spacecraft, interplanetary coronal mass ejections (ICME) acceleration and interstellar pickup ions as seen by the STEREO spacecraft, and prototyping CubeSat hardware. Student research efforts can provide useful results for future research efforts by the faculty while the students gain unique exposure to space physics and a science career. In addition, the students complete a team project. Since 2006, that project has been the construction and flight of a high-altitude balloon payload and instruments. The students typically build the instruments they fly. In the process, students learn circuit design and construction, microcontroller programming, and core atmospheric and space science. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute, an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  3. Instrumentation development

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.

    1988-01-01

    Instrumentation is developed for the Civilian Radioactive Waste Management Program to meet several different (and sometimes conflicting) objectives. This paper addresses instrumentation development for data needs that are related either directly or indirectly to a repository site, but does not touch on instrumentation for work with waste forms or other materials. Consequently, this implies a relatively large scale for the measurements, and an in situ setting for instrument performance. In this context, instruments are needed for site characterization to define phenomena, develop models, and obtain parameter values, and for later design and performance confirmation testing in the constructed repository. The former set of applications is more immediate, and is driven by the needs of program design and performance assessment activities. A host of general technical and nontechnical issues have arisen to challenge instrumentation development. Instruments can be classed into geomechanical, geohydrologic, or other specialty categories, but these issues cut across artificial classifications. These issues are outlined. Despite this imposing list of issues, several case histories are cited to evaluate progress in the area

  4. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  5. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    Science.gov (United States)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  6. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  7. BRITE-Constellation Science Operations

    Science.gov (United States)

    Kuschnig, R.

    2017-09-01

    BRITE-Constellation is a nanosatellite mission designed for stellar astrophysical research in collaboration between Austria, Canada and Poland. A fleet of six spacecrafts was funded, built and launched, two from each country, all designed to perform precise time-series photometry of the brightest stars in the sky. While the spacecrafts have the same basic design, three satellites host an instrument sensitive in a red bandpass, the others, for a blue wavelength range. From the six satellites launched, five are operational. The sixth one did not separate from the upper stage of the rocket and remains idle. The first pair, the Austrian satellites, started to collect science measurements with their wide field (˜24°) cameras in early December 2013. Since then, more than 340 stars were observed during 16 campaigns, the majority for more than 100 days (up to 168 days) continuously. In total, more than 2.1 million measurements have been collected so far. Originally, the limiting magnitude for target stars was set to \\mag(V)=4. However, even stars as faint as \\mag(V)=6.5 have been observed with sufficient precision. This is a review of science operations conducted during the past 3.5 years.

  8. science

    International Development Research Centre (IDRC) Digital Library (Canada)

    David Spurgeon

    Give us the tools: science and technology for development. Ottawa, ...... altered technical rela- tionships among the factors used in the process of production, and the en- .... to ourselves only the rights of audit and periodic substantive review." If a ...... and destroying scarce water reserves, recreational areas and a generally.

  9. Materials and processes for spacecraft and high reliability applications

    CERN Document Server

    D Dunn, Barrie

    2016-01-01

    The objective of this book is to assist scientists and engineers select the ideal material or manufacturing process for particular applications; these could cover a wide range of fields, from light-weight structures to electronic hardware. The book will help in problem solving as it also presents more than 100 case studies and failure investigations from the space sector that can, by analogy, be applied to other industries. Difficult-to-find material data is included for reference. The sciences of metallic (primarily) and organic materials presented throughout the book demonstrate how they can be applied as an integral part of spacecraft product assurance schemes, which involve quality, material and processes evaluations, and the selection of mechanical and component parts. In this successor edition, which has been revised and updated, engineering problems associated with critical spacecraft hardware and the space environment are highlighted by over 500 illustrations including micrographs and fractographs. Sp...

  10. A Technology Program that Rescues Spacecraft

    Science.gov (United States)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  11. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  12. Two Dual Ion Spectrometer Flight Units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS)

    Science.gov (United States)

    Adams, Mitzi

    2014-01-01

    Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.

  13. Spacecraft Environmental Interactions Technology 1983

    Science.gov (United States)

    1985-01-01

    recently acquired a NASA field office within the Technology Lenter; that is staffed by Mr. Wa~ne Hudson. We take our guidance from Air Force...apogee of 4.6 % geocentric and a perigee of 650 )a altitude. The DR-1 Nigh Altitude Plama instrument (DAPI) consists of five electrostatic analyzers

  14. Instrumental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-15

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  15. Instrumental analysis

    International Nuclear Information System (INIS)

    Kim, Seung Jae; Seo, Seong Gyu

    1995-03-01

    This textbook deals with instrumental analysis, which consists of nine chapters. It has Introduction of analysis chemistry, the process of analysis and types and form of the analysis, Electrochemistry on basic theory, potentiometry and conductometry, electromagnetic radiant rays and optical components on introduction and application, Ultraviolet rays and Visible spectrophotometry, Atomic absorption spectrophotometry on introduction, flame emission spectrometry and plasma emission spectrometry. The others like infrared spectrophotometry, X-rays spectrophotometry and mass spectrometry, chromatography and the other instrumental analysis like radiochemistry.

  16. LOFT instrumentation

    International Nuclear Information System (INIS)

    Bixby, W.W.

    1979-01-01

    A description of instrumentation used in the Loss-of-Fluid Test (LOFT) large break Loss-of-Coolant Experiments is presented. Emphasis is placed on hydraulic and thermal measurements in the primary system piping and components, reactor vessel, and pressure suppression system. In addition, instrumentation which is being considered for measurement of phenomena during future small break testing is discussed. (orig.) 891 HP/orig. 892 BRE [de

  17. Adaptive Management of Computing and Network Resources for Spacecraft Systems

    Science.gov (United States)

    Pfarr, Barbara; Welch, Lonnie R.; Detter, Ryan; Tjaden, Brett; Huh, Eui-Nam; Szczur, Martha R. (Technical Monitor)

    2000-01-01

    It is likely that NASA's future spacecraft systems will consist of distributed processes which will handle dynamically varying workloads in response to perceived scientific events, the spacecraft environment, spacecraft anomalies and user commands. Since all situations and possible uses of sensors cannot be anticipated during pre-deployment phases, an approach for dynamically adapting the allocation of distributed computational and communication resources is needed. To address this, we are evolving the DeSiDeRaTa adaptive resource management approach to enable reconfigurable ground and space information systems. The DeSiDeRaTa approach embodies a set of middleware mechanisms for adapting resource allocations, and a framework for reasoning about the real-time performance of distributed application systems. The framework and middleware will be extended to accommodate (1) the dynamic aspects of intra-constellation network topologies, and (2) the complete real-time path from the instrument to the user. We are developing a ground-based testbed that will enable NASA to perform early evaluation of adaptive resource management techniques without the expense of first deploying them in space. The benefits of the proposed effort are numerous, including the ability to use sensors in new ways not anticipated at design time; the production of information technology that ties the sensor web together; the accommodation of greater numbers of missions with fewer resources; and the opportunity to leverage the DeSiDeRaTa project's expertise, infrastructure and models for adaptive resource management for distributed real-time systems.

  18. New Measurements of Suprathermal Ions, Energetic Particles, and Cosmic Rays in the Outer Heliosphere from the New Horizons PEPSSI Instrument

    Science.gov (United States)

    Hill, M. E.; Kollmann, P.; McNutt, R. L., Jr.; Stern, A.; Weaver, H. A., Jr.; Young, L. A.; Olkin, C.; Spencer, J. R.

    2017-12-01

    During the period from January 2012 to December 2017 the New Horizons spacecraft traveled from 22 to 41 AU from the Sun, making nearly continuous interplanetary plasma and particle measurements utilizing the SWAP and PEPSSI instruments. We report on newly extended measurements from PEPSSI (Pluto Energetic Particle Spectrometer Science Investigation) that now bring together suprathermal particles above 2 keV/nuc (including interstellar pickup ions), energetic particles with H, He, and O composition from 30 keV to 1 MeV, and cosmic rays above 65 MeV (with effective count-rate-limited upper energy of 1 GeV). Such a wide energy range allows us to look at the solar wind structures passing over the spacecraft, the energetic particles that are often accelerated by these structures, and the suppression of cosmic rays resulting from the increased turbulence inhibiting cosmic ray transport to the spacecraft position (i.e., Forbush decreases). This broad perspective provides simultaneous, previously unattainable diagnostics of outer heliospheric particle dynamics and acceleration. Besides the benefit of being recent, in-ecliptic measurements, unlike the historic Voyager 1 and 2 spacecraft, these PEPSSI observations are also totally unique in the suprathermal range; in this region only PEPSSI can span the suprathermal range, detecting a population that is a linchpin to understanding the outer heliosphere.

  19. Advanced optical instruments technology

    Science.gov (United States)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-08-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  20. Telemetry and Science Data Software System

    Science.gov (United States)

    Bates, Lakesha; Hong, Liang

    2011-01-01

    The Telemetry and Science Data Software System (TSDSS) was designed to validate the operational health of a spacecraft, ease test verification, assist in debugging system anomalies, and provide trending data and advanced science analysis. In doing so, the system parses, processes, and organizes raw data from the Aquarius instrument both on the ground and while in space. In addition, it provides a user-friendly telemetry viewer, and an instant pushbutton test report generator. Existing ground data systems can parse and provide simple data processing, but have limitations in advanced science analysis and instant report generation. The TSDSS functions as an offline data analysis system during I&T (integration and test) and mission operations phases. After raw data are downloaded from an instrument, TSDSS ingests the data files, parses, converts telemetry to engineering units, and applies advanced algorithms to produce science level 0, 1, and 2 data products. Meanwhile, it automatically schedules upload of the raw data to a remote server and archives all intermediate and final values in a MySQL database in time order. All data saved in the system can be straightforwardly retrieved, exported, and migrated. Using TSDSS s interactive data visualization tool, a user can conveniently choose any combination and mathematical computation of interesting telemetry points from a large range of time periods (life cycle of mission ground data and mission operations testing), and display a graphical and statistical view of the data. With this graphical user interface (GUI), the data queried graphs can be exported and saved in multiple formats. This GUI is especially useful in trending data analysis, debugging anomalies, and advanced data analysis. At the request of the user, mission-specific instrument performance assessment reports can be generated with a simple click of a button on the GUI. From instrument level to observatory level, the TSDSS has been operating supporting

  1. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  2. A historical overview of the electrical power systems in the US manned and some US unmanned spacecraft

    Science.gov (United States)

    Maisel, J. E.

    1984-01-01

    A historical overview of electrical power systems used in the U.S. manned spacecraft and some of the U.S. unmanned spacecraft is presented in this investigation. A time frame of approximately 25 years, the period for 1959 to 1984, is covered in this report. Results indicate that the nominal bus voltage was 28 volts dc in most spacecraft and all other voltage levels were derived from this voltage through such techniques as voltage inversion or rectification, or a combination. Most spacecraft used solar arrays for the main source of power except for those spacecraft that had a relatively short flight duration, or deep spaceprobes that were designed for very long flight duration. Fuel cells were used on Gemini, Apollo, and Space Shuttle (short duration flights) while radioisotope thermoelectric generators were employed on the Pioneer, Jupiter/Saturn, Viking Lander, and Voyager spacecraft (long duration flights). The main dc bus voltage was unregulated on the manned spacecraft with voltage regulation provided at the user loads. A combination of regulated, semiregulated, and unregulated buses were used on the unmanned spacecraft depending on the type of load. For example, scientific instruments were usually connected to regulated buses while fans, relays, etc. were energized from an unregulated bus. Different forms of voltage regulation, such as shunt, buck/boot, and pulse-width modulated regulators, were used. This report includes a comprehensive bibliography on spacecraft electrical power systems for the space programs investigated.

  3. Final results of the Resonance spacecraft calibration effort

    Science.gov (United States)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the

  4. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  5. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  6. Omni-directional Particle Detector (ODPD) on Tiangong-2 Spacecraft

    Science.gov (United States)

    Guohong, S.; Zhang, S.; Yang, X.; Wang, C.

    2017-12-01

    Tiangong-2 spacecraft is the second space laboratory independently developed by china after Tiangong-1, which was launched on 15 September 2016. It is also the first real space laboratory in china, which will be used to further validate the space rendezvous and docking technology and to carry out a series of space tests. The spacecraft's orbit is 350km height and 42° inclination. The omni-directional particle detector (ODPD) on Tiangong-2 spacecraft is a new instrument developed by China. Its goal is the anisotropy and energy spectra of space particles on manned space flight orbit. The ODPD measures the energy spectra and pitch angle distributions of high energy electrons and protons. It consists of one electron spectrum telescope, one proton spectrum telescope and sixteen directional flux telescopes. The ODPD is designed to measure the protons spectrum from 2.5MeV to 150MeV, electrons spectrum from 0.2MeV to 1.5MeV, the flux of electrons energy >200keV and protons energy>1.5MeV on 2∏ space, also the ODPD has a small sensor to measure the LET spectrum from 1-100MeV/cm2sr. The primary advantage can give the particle's pitch angle distributions at any time because of the sixteen flux telescopes arrange form 0 to 180 degree. This is the first paper dealing with ODPD data, so we firstly spend some time describing the instrument, its theory of operation and its calibration. Then we give the preliminary detecting results.

  7. Instrumental Capital

    Directory of Open Access Journals (Sweden)

    Gabriel Valerio

    2007-07-01

    Full Text Available During the history of human kind, since our first ancestors, tools have represented a mean to reach objectives which might otherwise seemed impossibles. In the called New Economy, where tangibles assets appear to be losing the role as the core element to produce value versus knowledge, tools have kept aside man in his dairy work. In this article, the author's objective is to describe, in a simple manner, the importance of managing the organization's group of tools or instruments (Instrumental Capital. The characteristic conditions of this New Economy, the way Knowledge Management deals with these new conditions and the sub-processes that provide support to the management of Instrumental Capital are described.

  8. The Wide Field Imager instrument for Athena

    Science.gov (United States)

    Meidinger, Norbert; Barbera, Marco; Emberger, Valentin; Fürmetz, Maria; Manhart, Markus; Müller-Seidlitz, Johannes; Nandra, Kirpal; Plattner, Markus; Rau, Arne; Treberspurg, Wolfgang

    2017-08-01

    ESA's next large X-ray mission ATHENA is designed to address the Cosmic Vision science theme 'The Hot and Energetic Universe'. It will provide answers to the two key astrophysical questions how does ordinary matter assemble into the large-scale structures we see today and how do black holes grow and shape the Universe. The ATHENA spacecraft will be equipped with two focal plane cameras, a Wide Field Imager (WFI) and an X-ray Integral Field Unit (X-IFU). The WFI instrument is optimized for state-of-the-art resolution spectroscopy over a large field of view of 40 amin x 40 amin and high count rates up to and beyond 1 Crab source intensity. The cryogenic X-IFU camera is designed for high-spectral resolution imaging. Both cameras share alternately a mirror system based on silicon pore optics with a focal length of 12 m and large effective area of about 2 m2 at an energy of 1 keV. Although the mission is still in phase A, i.e. studying the feasibility and developing the necessary technology, the definition and development of the instrumentation made already significant progress. The herein described WFI focal plane camera covers the energy band from 0.2 keV to 15 keV with 450 μm thick fully depleted back-illuminated silicon active pixel sensors of DEPFET type. The spatial resolution will be provided by one million pixels, each with a size of 130 μm x 130 μm. The time resolution requirement for the WFI large detector array is 5 ms and for the WFI fast detector 80 μs. The large effective area of the mirror system will be completed by a high quantum efficiency above 90% for medium and higher energies. The status of the various WFI subsystems to achieve this performance will be described and recent changes will be explained here.

  9. New Hubble Servicing Mission to upgrade instruments

    Science.gov (United States)

    2006-10-01

    The history of the NASA/ESA Hubble Space Telescope is dominated by the familiar sharp images and amazing discoveries that have had an unprecedented scientific impact on our view of the world and our understanding of the universe. Nevertheless, such important contributions to science and humankind have only been possible as result of regular upgrades and enhancements to Hubble’s instrumentation. Using the Space Shuttle for this fifth Servicing Mission underlines the important role that astronauts have played and continue to play in increasing the Space Telescope’s lifespan and scientific power. Since the loss of Columbia in 2003, the Shuttle has been successfully launched on three missions, confirming that improvements made to it have established the required high level of safety for the spacecraft and its crew. “There is never going to be an end to the science that we can do with a machine like Hubble”, says David Southwood, ESA’s Director of Science. “Hubble is our way of exploring our origins. Everyone should be proud that there is a European element to it and that we all are part of its success at some level.” This Servicing Mission will not just ensure that Hubble can function for perhaps as much as another ten years; it will also increase its capabilities significantly in key areas. This highly visible mission is expected to take place in 2008 and will feature several space walks. As part of the upgrade, two new scientific instruments will be installed: the Cosmic Origins Spectrograph and Wide Field Camera 3. Each has advanced technology sensors that will dramatically improve Hubble’s potential for discovery and enable it to observe faint light from the youngest stars and galaxies in the universe. With such an astounding increase in its science capabilities, this orbital observatory will continue to penetrate the most distant regions of outer space and reveal breathtaking phenomena. “Today, Hubble is producing more science than ever before in

  10. Innovative instrumentation

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all

  11. Innovative instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1983-11-15

    At this year's particle physics conference at Brighton, a parallel session was given over to instrumentation and detector development. While this work is vital to the health of research and its continued progress, its share of prime international conference time is limited. Instrumentation can be innovative three times — first when a new idea is outlined, secondly when it is shown to be feasible, and finally when it becomes productive in a real experiment, amassing useful data rather than operational experience. Hyams' examples showed that it can take a long time for a new idea to filter through these successive stages, if it ever makes it at all.

  12. Instrumental aspects

    Directory of Open Access Journals (Sweden)

    Qureshi Navid

    2017-01-01

    Full Text Available Every neutron scattering experiment requires the choice of a suited neutron diffractometer (or spectrometer in the case of inelastic scattering with its optimal configuration in order to accomplish the experimental tasks in the most successful way. Most generally, the compromise between the incident neutron flux and the instrumental resolution has to be considered, which is depending on a number of optical devices which are positioned in the neutron beam path. In this chapter the basic instrumental principles of neutron diffraction will be explained. Examples of different types of experiments and their respective expectable results will be shown. Furthermore, the production and use of polarized neutrons will be stressed.

  13. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  14. Cancellation of differential accelerations for the LISA spacecraft

    International Nuclear Information System (INIS)

    Bender, Peter L

    2006-01-01

    The three spacecraft of the Laser Interferometer Space Antenna will form a nearly equilateral triangle with nominal side lengths of 5 million km. However, the arm lengths and the corner angles will vary by very roughly 1% over 5-10 years. Part of this variation is due to the nature of Kepler orbits around the Sun. But Sweetser (2006 Astrodynamics 2005, Advances in the Astronautical Sciences vol 123 (San Diego, CA: Univelt Inc.) pp 693-712) has shown recently that differential secular accelerations due to the Earth for the three spacecraft prevent the minimal variations from being preserved for more than 2 or 3 years. Based on Sweetser's results, it appears possible to cancel out the differential secular acceleration due to the Earth by applying forces to the two proof masses in each spacecraft. The applied acceleration is at most 2.1 x 10 -9 m s -2 . However, the directions of the required accelerations would have substantial components along the sides of the triangle, and thus the amplitudes of the applied forces would have to have very low noise, even at frequencies down to below 0.1 mHz

  15. Development of Large-Scale Spacecraft Fire Safety Experiments

    DEFF Research Database (Denmark)

    Ruff, Gary A.; Urban, David L.; Fernandez-Pello, A. Carlos

    2013-01-01

    exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low...... of the spacecraft fire safety risk. The activity of this project is supported by an international topical team of fire experts from other space agencies who conduct research that is integrated into the overall experiment design. The large-scale space flight experiment will be conducted in an Orbital Sciences...

  16. Implementation of heaters on thermally actuated spacecraft mechanisms

    Science.gov (United States)

    Busch, John D.; Bokaie, Michael D.

    1994-01-01

    This paper presents general insight into the design and implementation of heaters as used in actuating mechanisms for spacecraft. Problems and considerations that were encountered during development of the Deep Space Probe and Science Experiment (DSPSE) solar array release mechanism are discussed. Obstacles included large expected fluctuations in ambient temperature, variations in voltage supply levels outgassing concerns, heater circuit design, materials selection, and power control options. Successful resolution of these issues helped to establish a methodology which can be applied to many of the heater design challenges found in thermally actuated mechanisms.

  17. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    Science.gov (United States)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  18. Global-scale Observations of the Limb and Disk (GOLD) Mission: Science from Geostationary Orbit on-board a Commercial Communications Satellite

    Science.gov (United States)

    Eastes, R.; Deaver, T.; Krywonos, A.; Lankton, M. R.; McClintock, W. E.; Pang, R.

    2011-12-01

    Geostationary orbits are ideal for many science investigations of the Earth system on global scales. These orbits allow continuous observations of the same geographic region, enabling spatial and temporal changes to be distinguished and eliminating the ambiguity inherent to observations from low Earth orbit (LEO). Just as observations from geostationary orbit have revolutionized our understanding of changes in the troposphere, they will dramatically improve our understanding of the space environment at higher altitudes. However, geostationary orbits are infrequently used for science missions because of high costs. Geostationary satellites are large, typically weighing tons. Consequently, devoting an entire satellite to a science mission requires a large financial commitment, both for the spacecraft itself and for sufficient science instrumentation to justify a dedicated spacecraft. Furthermore, the small number of geostationary satellites produced for scientific missions increases the costs of each satellite. For these reasons, it is attractive to consider flying scientific instruments on satellites operated by commercial companies, some of whom have fleets of ~40 satellites. However, scientists' lack of understanding of the capabilities of commercial spacecraft as well as commercial companies' concerns about risks to their primary mission have impeded the cooperation necessary for the shared use of a spacecraft. Working with a commercial partner, the GOLD mission has successfully overcome these issues. Our experience indicates that there are numerous benefits to flying on commercial communications satellites (e.g., it is possible to downlink large amounts of data) and the costs are low if the experimental requirements adequately match the capabilities and available resources of the host spacecraft. Consequently, affordable access to geostationary orbit aboard a communications satellite now appears possible for science payloads.

  19. Optimizing Orbit-Instrument Configuration for Global Precipitation Mission (GPM) Satellite Fleet

    Science.gov (United States)

    Smith, Eric A.; Adams, James; Baptista, Pedro; Haddad, Ziad; Iguchi, Toshio; Im, Eastwood; Kummerow, Christian; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Following the scientific success of the Tropical Rainfall Measuring Mission (TRMM) spearheaded by a group of NASA and NASDA scientists, their external scientific collaborators, and additional investigators within the European Union's TRMM Research Program (EUROTRMM), there has been substantial progress towards the development of a new internationally organized, global scale, and satellite-based precipitation measuring mission. The highlights of this newly developing mission are a greatly expanded scope of measuring capability and a more diversified set of science objectives. The mission is called the Global Precipitation Mission (GPM). Notionally, GPM will be a constellation-type mission involving a fleet of nine satellites. In this fleet, one member is referred to as the "core" spacecraft flown in an approximately 70 degree inclined non-sun-synchronous orbit, somewhat similar to TRMM in that it carries both a multi-channel polarized passive microwave radiometer (PMW) and a radar system, but in this case it will be a dual frequency Ku-Ka band radar system enabling explicit measurements of microphysical DSD properties. The remainder of fleet members are eight orbit-synchronized, sun-synchronous "constellation" spacecraft each carrying some type of multi-channel PMW radiometer, enabling no worse than 3-hour diurnal sampling over the entire globe. In this configuration the "core" spacecraft serves as a high quality reference platform for training and calibrating the PMW rain retrieval algorithms used with the "constellation" radiometers. Within NASA, GPM has advanced to the pre-formulation phase which has enabled the initiation of a set of science and technology studies which will help lead to the final mission design some time in the 2003 period. This presentation first provides an overview of the notional GPM program and mission design, including its organizational and programmatic concepts, scientific agenda, expected instrument package, and basic flight

  20. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, J.; Al Hammadi, O.; DeWolfe, A. W.; Staley, B.; Schafer, C.; Pankratz, C. K.

    2017-12-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft.With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  1. Surgical Instrument

    NARCIS (Netherlands)

    Dankelman, J.; Horeman, T.

    2009-01-01

    The present invention relates to a surgical instrument for minimall-invasive surgery, comprising a handle, a shaft and an actuating part, characterised by a gastight cover surrounding the shaft, wherein the cover is provided with a coupler that has a feed- through opening with a loskable seal,

  2. Weather Instruments.

    Science.gov (United States)

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  3. Optical instrumentation engineering in science, technology and society; Proceedings of the Sixteenth Annual Technical Meeting, San Mateo, Calif., October 16-18, 1972

    Science.gov (United States)

    Katz, Y. H.

    1973-01-01

    Visual tracking performance in instrumentation is discussed together with photographic pyrometry in an aeroballistic range, optical characteristics of spherical vapor bubbles in liquids, and the automatic detection and control of surface roughness by coherent diffraction patterns. Other subjects explored are related to instruments, sensors, systems, holography, and pattern recognition. Questions of data handling are also investigated, taking into account minicomputer image storage for holographic interferometry analysis, the design of a video amplifier for a 90 MHz bandwidth, and autostereoscopic screens. Individual items are announced in this issue.

  4. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  5. The Development and Validation of an Instrument to Monitor the Implementation of Social Constructivist Learning Environments in Grade 9 Science Classrooms in South Africa

    Science.gov (United States)

    Luckay, Melanie B.; Laugksch, Rudiger C.

    2015-01-01

    This article describes the development and validation of an instrument that can be used to assess students' perceptions of their learning environment as a means of monitoring and guiding changes toward social constructivist learning environments. The study used a mixed-method approach with priority given to the quantitative data collection. During…

  6. Simulating multi-spacecraft Heliospheric Imager observations for tomographic reconstruction of interplanetary CMEs

    Science.gov (United States)

    Barnes, D.

    2017-12-01

    The multiple, spatially separated vantage points afforded by the STEREO and SOHO missions provide physicists with a means to infer the three-dimensional structure of the solar corona via tomographic imaging. The reconstruction process combines these multiple projections of the optically thin plasma to constrain its three-dimensional density structure and has been successfully applied to the low corona using the STEREO and SOHO coronagraphs. However, the technique is also possible at larger, inter-planetary distances using wide-angle imagers, such as the STEREO Heliospheric Imagers (HIs), to observe faint solar wind plasma and Coronal Mass Ejections (CMEs). Limited small-scale structure may be inferred from only three, or fewer, viewpoints and the work presented here is done so with the aim of establishing techniques for observing CMEs with upcoming and future HI-like technology. We use simulated solar wind densities to compute realistic white-light HI observations, with which we explore the requirements of such instruments for determining solar wind plasma density structure via tomography. We exploit this information to investigate the optimal orbital characteristics, such as spacecraft number, separation, inclination and eccentricity, necessary to perform the technique with HIs. Further to this we argue that tomography may be greatly enhanced by means of improved instrumentation; specifically, the use of wide-angle imagers capable of measuring polarised light. This work has obvious space weather applications, serving as a demonstration for potential future missions (such as at L1 and L5) and will prove timely in fully exploiting the science return from the upcoming Solar Orbiter and Parker Solar Probe missions.

  7. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  8. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  9. Development and Analysis of a Resource-Aware Power Management System as Applied to Small Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, Patrick [Univ. of Colorado, Boulder, CO (United States)

    2005-01-01

    In this thesis, an overall framework and solution method for managing the limited power resources of a small spacecraft is presented. Analogous to mobile computing technology, a primary limiting factor is the available power resources. In spite of the millions of dollars budgeted for research and development over decades, improvements in battery efficiency remains low. This situation is exacerbated by advances in payload technology that lead to increasingly power-hungry and data-intensive instruments. The challenge for the small spacecraft is to maximize capabilities and performance while meeting difficult design requirements and small project budgets.

  10. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  11. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  12. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  13. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  14. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  15. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  16. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  17. Thermal design and performance of the REgolith x-ray imaging spectrometer (REXIS) instrument

    Science.gov (United States)

    Stout, Kevin D.; Masterson, Rebecca A.

    2014-08-01

    The REgolith X-ray Imaging Spectrometer (REXIS) instrument is a student collaboration instrument on the OSIRIS-REx asteroid sample return mission scheduled for launch in September 2016. The REXIS science mission is to characterize the elemental abundances of the asteroid Bennu on a global scale and to search for regions of enhanced elemental abundance. The thermal design of the REXIS instrument is challenging due to both the science requirements and the thermal environment in which it will operate. The REXIS instrument consists of two assemblies: the spectrometer and the solar X-ray monitor (SXM). The spectrometer houses a 2x2 array of back illuminated CCDs that are protected from the radiation environment by a one-time deployable cover and a collimator assembly with coded aperture mask. Cooling the CCDs during operation is the driving thermal design challenge on the spectrometer. The CCDs operate in the vicinity of the electronics box, but a 130 °C thermal gradient is required between the two components to cool the CCDs to -60 °C in order to reduce noise and obtain science data. This large thermal gradient is achieved passively through the use of a copper thermal strap, a large radiator facing deep space, and a two-stage thermal isolation layer between the electronics box and the DAM. The SXM is mechanically mounted to the sun-facing side of the spacecraft separately from the spectrometer and characterizes the highly variable solar X-ray spectrum to properly interpret the data from the asteroid. The driving thermal design challenge on the SXM is cooling the silicon drift detector (SDD) to below -30 °C when operating. A two-stage thermoelectric cooler (TEC) is located directly beneath the detector to provide active cooling, and spacecraft MLI blankets cover all of the SXM except the detector aperture to radiatively decouple the SXM from the flight thermal environment. This paper describes the REXIS thermal system requirements, thermal design, and analyses, with

  18. Tracking and Navigation of Future NASA Spacecraft with the Square Kilometer Array

    Science.gov (United States)

    Resch, G. M.; Jones, D. L.; Connally, M. J.; Weinreb, S.; Preston, R. A.

    2001-12-01

    The international radio astronomy community is currently working on the design of an array of small radio antennas with a total collecting area of one square kilometer - more than a hundred times that of the largest existing (100-m) steerable antennas. An array of this size would provide obvious advantages for high data rate telemetry reception and for spacecraft navigation. Among these advantages are a two-orders-of-magnitude increase in sensitivity for telemetry downlink, flexible sub-arraying to track multiple spacecraft simultaneously, increased reliability through the use of large numbers of identical array elements, very accurate real-time angular spacecraft tracking, and a dramatic reduction in cost per unit area. NASA missions in many disciplines, including planetary science, would benefit from this increased ground-based tracking capability. The science return from planned missions could be increased, and opportunities for less expensive or completely new kinds of missions would be created.

  19. Management of science policy, sociology of science policy and economics of science policy

    CERN Document Server

    Ruivo, Beatriz

    2017-01-01

    'Management of science policy, sociology of science policy and economics of science policy' is a theoretical essay on the scientific foundation of science policy (formulation, implementation, instruments and procedures). It can be also used as a textbook.

  20. NASA Spacecraft Fault Management Workshop Results

    Science.gov (United States)

    Newhouse, Marilyn; McDougal, John; Barley, Bryan; Fesq, Lorraine; Stephens, Karen

    2010-01-01

    Fault Management is a critical aspect of deep-space missions. For the purposes of this paper, fault management is defined as the ability of a system to detect, isolate, and mitigate events that impact, or have the potential to impact, nominal mission operations. The fault management capabilities are commonly distributed across flight and ground subsystems, impacting hardware, software, and mission operations designs. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns due to underestimating the complexity and support requirements for fault management. As a result of this and other recent experiences, the NASA Science Mission Directorate (SMD) Planetary Science Division (PSD) commissioned a workshop to bring together invited participants across government, industry, academia to assess the state of the art in fault management practice and research, identify current and potential issues, and make recommendations for addressing these issues. The workshop was held in New Orleans in April of 2008. The workshop concluded that fault management is not being limited by technology, but rather by a lack of emphasis and discipline in both the engineering and programmatic dimensions. Some of the areas cited in the findings include different, conflicting, and changing institutional goals and risk postures; unclear ownership of end-to-end fault management engineering; inadequate understanding of the impact of mission-level requirements on fault management complexity; and practices, processes, and

  1. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  2. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  3. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  4. Nuclear instrumentation

    International Nuclear Information System (INIS)

    Weill, Jacky; Fabre, Rene.

    1981-01-01

    This article sums up the Research and Development effort at present being carried out in the five following fields of applications: Health physics and Radioprospection, Control of nuclear reactors, Plant control (preparation and reprocessing of the fuel, testing of nuclear substances, etc.), Research laboratory instrumentation, Detectors. It also sets the place of French industrial activities by means of an estimate of the French market, production and flow of trading with other countries [fr

  5. Divided Instruments

    Science.gov (United States)

    Chapman, A.; Murdin, P.

    2000-11-01

    Although the division of the zodiac into 360° probably derives from Egypt or Assyria around 2000 BC, there is no surviving evidence of Mesopotamian cultures embodying this division into a mathematical instrument. Almost certainly, however, it was from Babylonia that the Greek geometers learned of the 360° circle, and by c. 80 BC they had incorporated it into that remarkably elaborate device gener...

  6. Instrumentation development

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Areas being investigated for instrumentation improvement during low-level pollution monitoring include laser opto-acoustic spectroscopy, x-ray fluorescence spectroscopy, optical fluorescence spectroscopy, liquid crystal gas detectors, advanced forms of atomic absorption spectroscopy, electro-analytical chemistry, and mass spectroscopy. Emphasis is also directed toward development of physical methods, as opposed to conventional chemical analysis techniques for monitoring these trace amounts of pollution related to energy development and utilization

  7. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  8. Instrumentation maintenance

    International Nuclear Information System (INIS)

    Mack, D.A.

    1976-09-01

    It is essential to any research activity that accurate and efficient measurements be made for the experimental parameters under consideration for each individual experiment or test. Satisfactory measurements in turn depend upon having the necessary instruments and the capability of ensuring that they are performing within their intended specifications. This latter requirement can only be achieved by providing an adequate maintenance facility, staffed with personnel competent to understand the problems associated with instrument adjustment and repair. The Instrument Repair Shop at the Lawrence Berkeley Laboratory is designed to achieve this end. The organization, staffing and operation of this system is discussed. Maintenance policy should be based on studies of (1) preventive vs. catastrophic maintenance, (2) records indicating when equipment should be replaced rather than repaired and (3) priorities established to indicate the order in which equipment should be repaired. Upon establishing a workable maintenance policy, the staff should be instructed so that they may provide appropriate scheduled preventive maintenance, calibration and corrective procedures, and emergency repairs. The education, training and experience of the maintenance staff is discussed along with the organization for an efficient operation. The layout of the various repair shops is described in the light of laboratory space and financial constraints

  9. Xenia Mission: Spacecraft Design Concept

    Science.gov (United States)

    Hopkins, R. C.; Johnson, C. L.; Kouveliotou, C.; Jones, D.; Baysinger, M.; Bedsole, T.; Maples, C. C.; Benfield, P. J.; Turner, M.; Capizzo, P.; hide

    2009-01-01

    The proposed Xenia mission will, for the first time, chart the chemical and dynamical state of the majority of baryonic matter in the universe. using high-resolution spectroscopy, Xenia will collect essential information from major traces of the formation and evolution of structures from the early universe to the present time. The mission is based on innovative instrumental and observational approaches: observing with fast reaction gamma-ray bursts (GRBs) with a high spectral resolution. This enables the study of their (star-forming) environment from the dark to the local universe and the use of GRBs as backlight of large-scale cosmological structures, observing and surveying extended sources with high sensitivity using two wide field-of-view x-ray telescopes - one with a high angular resolution and the other with a high spectral resolution.

  10. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  11. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  12. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  13. Science of science.

    Science.gov (United States)

    Fortunato, Santo; Bergstrom, Carl T; Börner, Katy; Evans, James A; Helbing, Dirk; Milojević, Staša; Petersen, Alexander M; Radicchi, Filippo; Sinatra, Roberta; Uzzi, Brian; Vespignani, Alessandro; Waltman, Ludo; Wang, Dashun; Barabási, Albert-László

    2018-03-02

    Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Evaluation of instrumental parameters for obtaining acceptable analytical results of the Dosimetry Laboratory of Chemistry of the Regional Center of Nuclear Sciences, CNEN-NE, Recife, Brazil

    International Nuclear Information System (INIS)

    Souza, V.L.B.; Figueiredo, M.D.C.; Cunha, M.S.

    2008-01-01

    Instrumental parameters need to be evaluated for obtaining acceptable analytical results for a specific instrument. The performance of the UV-VIS spectrophotometer can be verified for wavelengths and absorbances with appropriate materials (solutions of different concentrations of K 2 CrO 4 , for example). The aim of this work was to demonstrate the results of the procedures to control the quality of the measurements carried out in the laboratory in the last four years. The samples were analyzed in the spectrophotometer and control graphics were obtained for K 2 CrO 4 and Fe 3+ absorbance values. The variation in the results obtained for the stability of the spectrophotometer and for the control of its calibration did not exceed 2%. (author)

  15. The Plasma Instrument for Magnetic Sounding (PIMS) on The Europa Clipper Mission

    Science.gov (United States)

    Westlake, J. H.; McNutt, R. L., Jr.; Kasper, J. C.; Battista, C.; Case, A. W.; Cochrane, C.; Grey, M.; Jia, X.; Kivelson, M.; Kim, C.; Korth, H.; Khurana, K. K.; Krupp, N.; Paty, C. S.; Roussos, E.; Rymer, A. M.; Stevens, M. L.; Slavin, J. A.; Smith, H. T.; Saur, J.; Coren, D.

    2017-12-01

    The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. The Plasma Instrument for Magnetic Sounding (PIMS) on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter's magnetosphere and Europa's ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa's magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa's surface into the atmosphere and ionosphere; and 3) understand how Europa influences its local space environment and Jupiter's magnetosphere and vice versa. Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa's ionosphere affecting the magnetic induction signal. Plasma from Io's temporally varying torus diffuses outward and mixes with the charged particles in Europa's own torus producing highly variable plasma conditions at Europa. PIMS works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa's subsurface ocean. This investigation exploits currents induced in Europa's interior by the moon's exposure to variable magnetic fields in the Jovian system to infer properties of Europa's subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa's global liquid ocean by

  16. IMIS desktop & smartphone software solutions for monitoring spacecrafts' payload from anywhere

    Science.gov (United States)

    Baroukh, J.; Queyrut, O.; Airaud, J.

    In the past years, the demand for satellite remote operations has increased guided by on one hand, the will to reduce operations cost (on-call operators out of business hours), and on the other hand, the development of cooperation space missions resulting in a world wide distribution of engineers and science team members. Only a few off-the-shelf solutions exist to fulfill the need of remote payload monitoring, and they mainly use proprietary devices. The recent advent of mobile technologies (laptops, smartphones and tablets) as well as the worldwide deployment of broadband networks (3G, Wi-Fi hotspots), has opened up a technical window that brings new options. As part of the Mars Science Laboratory (MSL) mission, the Centre National D'Etudes Spatiales (CNES, the French space agency) has developed a new software solution for monitoring spacecraft payloads. The Instrument Monitoring Interactive Software (IMIS) offers state-of-the-art operational features for payload monitoring, and can be accessed remotely. It was conceived as a generic tool that can be used for heterogeneous payloads and missions. IMIS was designed as a classical client/server architecture. The server is hosted at CNES and acts as a data provider while two different kinds of clients are available depending on the level of mobility required. The first one is a rich client application, built on Eclipse framework, which can be installed on usual operating systems and communicates with the server through the Internet. The second one is a smartphone application for any Android platform, connected to the server thanks to the mobile broadband network or a Wi-Fi connection. This second client is mainly devoted to on-call operations and thus only contains a subset of the IMIS functionalities. This paper describes the operational context, including security aspects, that led IMIS development, presents the selected software architecture and details the various features of both clients: the desktop and the sm

  17. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  18. Cassini's Grand Finale Science Highlights

    Science.gov (United States)

    Spilker, Linda

    2017-10-01

    After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini returned its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere satisfying planetary protection requirements. Cassini's Grand Finale covered a period of roughly five months and ended with the first time exploration of the region between the rings and planet.The final close flyby of Titan in late April 2017 propelled Cassini across Saturn’s main rings and into its Grand Finale orbits; 22 orbits that repeatedly dove between Saturn’s innermost rings and upper atmosphere making Cassini the first spacecraft to explore this region. The last orbit turned the spacecraft into the first Saturn upper atmospheric probe.The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet.Science highlights and new mysteries gleaned to date from the Grand Finale orbits will be discussed.The research described in this paper was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Copyright 2017

  19. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  20. SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  1. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    Science.gov (United States)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  2. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  3. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  4. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  5. Van Allen Probes Science Gateway: Single-Point Access to Long-Term Radiation Belt Measurements and Space Weather Nowcasting

    Science.gov (United States)

    Romeo, G.; Barnes, R. J.; Ukhorskiy, A. Y.; Sotirelis, T.; Stephens, G.

    2017-12-01

    The Science Gateway gives single-point access to over 4.5 years of comprehensive wave and particle measurements from the Van Allen Probes NASA twin-spacecraft mission. The Gateway provides a set of visualization and data analysis tools including: HTML5-based interactive visualization of high-level data products from all instrument teams in the form of: line plots, orbital content plots, dynamical energy spectra, L-shell context plots (including two-spacecraft plotting), FFT spectra of wave data, solar wind and geomagnetic indices data, etc.; download custom multi-instrument CDF data files of selected data products; publication quality plots of digital data; combined orbit predicts for mission planning and coordination including: Van Allen Probes, MMS, THEMIS, Arase (ERG), Cluster, GOES, Geotail, FIREBIRD; magnetic footpoint calculator for coordination with LEO and ground-based assets; real-time computation and processing of empirical magnetic field models - computation of magnetic ephemeris, computation of adiabatic invariants. Van Allen Probes is the first spacecraft mission to provide a nowcast of the radiation environment in the heart of the radiation belts, where the radiation levels are the highest and most dangerous for spacecraft operations. For this purpose, all instruments continuously broadcast a subset of their science data in real time. Van Allen Probes partners with four foreign institutions who operate ground stations that receive the broadcast: Korea (KASI), the Czech republic (CAS), Argentina (CONAE), and Brazil (INPE). The SpWx broadcast is then collected at APL and delivered to the community via the Science Gateway.

  6. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  7. Optimal Weighting of Multi-Spacecraft Data to Estimate Gradients of Physical Fields

    Science.gov (United States)

    Chanteur, G. M.; Le Contel, O.; Sahraoui, F.; Retino, A.; Mirioni, L.

    2016-12-01

    Multi-spacecraft missions like the ESA mission CLUSTER and the NASA mission MMS are essential to improve our understanding of physical processes in space plasmas. Several methods were designed in the 90's during the preparation phase of the CLUSTER mission to estimate gradients of physical fields from simultaneous multi-points measurements [1, 2]. Both CLUSTER and MMS involve four spacecraft with identical full scientific payloads including various sensors of electromagnetic fields and different type of particle detectors. In the standard methods described in [1, 2], which are presently in use, data from the four spacecraft have identical weights and the estimated gradients are most reliable when the tetrahedron formed by the four spacecraft is regular. There are three types of errors affecting the estimated gradients (see chapter 14 in [1]) : i) truncature errors are due to local non-linearity of spatial variations, ii) physical errors are due to instruments, and iii) geometrical errors are due to uncertainties on the positions of the spacecraft. An assessment of truncature errors for a given observation requires a theoretical model of the measured field. Instrumental errors can easily be taken into account for a given geometry of the cluster but are usually less than the geometrical errors which diverge quite fast when the tetrahedron flattens, a circumstance occurring twice per orbit of the cluster. Hence reliable gradients can be estimated only on part of the orbit. Reciprocal vectors of the tetrahedron were presented in chapter 4 of [1], they have the advantage over other methods to treat the four spacecraft symmetrically and to allow a theoretical analysis of the errors (see chapters 4 of [1] and 4 of [2]). We will present Generalized Reciprocal Vectors for weighted data and an optimization procedure to improve the reliability of the estimated gradients when the tetrahedron is not regular. A brief example using CLUSTER or MMS data will be given. This approach

  8. The Rosetta Mission - Where no Spacecraft has gone before

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This Talk will provide an overview on the Scientific Highlights of the Rosetta Mission. After travelling through the Solar System for nearly 10 years Rosetta arrived at its main target, Comet 67/P Churyumov-Gerasimenko, in August 2014. Following an initial characterisation of the Comet, the lander unit Philae touched down on the partly active Nucleus on November 12 of the same year. The data acquired from the numerous instruments onboard the Spacecraft provides a unique insight into the properties of the Comets. While most of the measurements and processing of the data are still ongoing, the results from the Mission provide continuous surprises to the scientific community. While the Lander has been reactivated with some difficulties after a few months of inactivity due to low insolation levels, the Orbiter is pursuing its main mission objectives until the end of its extended Mission in Autumn 2016. During the long journey, the Spacecraft had encountered Earth, Mars and two Asteroids ( 2867 Šteins and 21 Lu...

  9. Earth Glint Observations Conducted During the Deep Impact Spacecraft Flyby

    Science.gov (United States)

    Barry, R. K.; Deming, L. D.; Robinson, T.; Hewagama, T.

    2010-01-01

    We describe observations of Earth conducted using the High Resolution Instrument (HRI) - a 0.3 m f/35 telescope - on the Deep Impact (DI) spacecraft during its recent flybys. Earth was observed on five occasions: 2008-Mar-18 18:18 UT, 2008-May-28 20:05 UT, 2008-Jun-4 16:57 UT, 2009-Mar-27 16:19 and 2009-Oct-4 09:37 UT. Each set of observations was conducted over a full 24-hour rotation of Earth and a total of thirteen NIR spectra were taken on two-hour intervals during each observing period. Photometry in the 450, SSO, 650 and 8S0 nm filters was taken every fifteen minutes and every hour for the 350, 750 and 950 nm filters. The spacecraft was located over the equator for the three sets of observations in 2008, while the 2009- Mar and 2009-Oct were taken over the north and south Polar Regions, respectively. Observations of calibrator stars Canopus and Achernar were conducted on multiple occasions through all filters. The observations detected a strong specular glint not necessarily associated with a body of water. We describe spectroscopic characterization of the glint and evidence for the possibility of detection of reflection from high cirrus clouds. We describe implications for observations of extrasolar planets.

  10. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  11. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  12. Cassini radar: Instrument description and performance status

    Science.gov (United States)

    Johnson, W. T. K.; Im, E.; Borgarelli, L.; ZampoliniFaustini, E.

    1995-01-01

    The spacecraft of the Cassini mission is planned to be launched towards Saturn in October 1997. The mission is designed to study the physical structure and chemical composition of Titan. The results of the tests performed on the Cassini radar engineering qualification model (EQM) are summarized. The approach followed in the verification and evaluation of the performance of the radio frequency subsystem EQM is presented. The results show that the instrument satisfies the most relevant mission requirements.

  13. Testing of Environmental Satellite Bus-Instrument Interfaces Using Engineering Models

    Science.gov (United States)

    Gagnier, Donald; Hayner, Rick; Nosek, Thomas; Roza, Michael; Hendershot, James E.; Razzaghi, Andrea I.

    2004-01-01

    This paper discusses the formulation and execution of a laboratory test of the electrical interfaces between multiple atmospheric scientific instruments and the spacecraft bus that carries them. The testing, performed in 2002, used engineering models of the instruments and the Aura spacecraft bus electronics. Aura is one of NASA s Earth Observatory System missions. The test was designed to evaluate the complex interfaces in the command and data handling subsystems prior to integration of the complete flight instruments on the spacecraft. A problem discovered during the flight integration phase of the observatory can cause significant cost and schedule impacts. The tests successfully revealed problems and led to their resolution before the full-up integration phase, saving significant cost and schedule. This approach could be beneficial for future environmental satellite programs involving the integration of multiple, complex scientific instruments onto a spacecraft bus.

  14. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  15. Integration of a Fire Detector into a Spacecraft

    Science.gov (United States)

    Linford, R. M. F.

    1972-01-01

    A detector sensitive to only the ultraviolet radiation emitted by flames has been selected as the basic element of the NASA Skylab fire detection system. It is sensitive to approximately 10(exp -12)W of radiation and will detect small flames at distances in excess of 3m. The performance of the detector was verified by experiments in an aircraft flying zero-gravity parabolas to simulate the characteristics of a fire which the detector must sense. Extensive investigation and exacting design was necessary to exclude all possible sources of false alarms. Optical measurements were made on all the spacecraft windows to determine the amount of solar radiation transmitted. The lighting systems and the onboard experiments also were appraised for ultraviolet emissions. Proton-accelerator tests were performed to determine the interaction of the Earth's trapped radiation belts with the detectors and the design of the instrument was modified to negate these effects.

  16. On Representative Spaceflight Instrument and Associated Instrument Sensor Web Framework

    Science.gov (United States)

    Kizhner, Semion; Patel, Umeshkumar; Vootukuru, Meg

    2007-01-01

    Sensor Web-based adaptation and sharing of space flight mission resources, including those of the Space-Ground and Control-User communication segment, could greatly benefit from utilization of heritage Internet Protocols and devices applied for Spaceflight (SpaceIP). This had been successfully demonstrated by a few recent spaceflight experiments. However, while terrestrial applications of Internet protocols are well developed and understood (mostly due to billions of dollars in investments by the military and industry), the spaceflight application of Internet protocols is still in its infancy. Progress in the developments of SpaceIP-enabled instrument components will largely determine the SpaceIP utilization of those investments and acceptance in years to come. Likewise SpaceIP, the development of commercial real-time and instrument colocated computational resources, data compression and storage, can be enabled on-board a spacecraft and, in turn, support a powerful application to Sensor Web-based design of a spaceflight instrument. Sensor Web-enabled reconfiguration and adaptation of structures for hardware resources and information systems will commence application of Field Programmable Arrays (FPGA) and other aerospace programmable logic devices for what this technology was intended. These are a few obvious potential benefits of Sensor Web technologies for spaceflight applications. However, they are still waiting to be explored. This is because there is a need for a new approach to spaceflight instrumentation in order to make these mature sensor web technologies applicable for spaceflight. In this paper we present an approach in developing related and enabling spaceflight instrument-level technologies based on the new concept of a representative spaceflight Instrument Sensor Web (ISW).

  17. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  18. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  19. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  20. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  1. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  2. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  3. Engineering design of the Regolith X-ray Imaging Spectrometer (REXIS) instrument: an OSIRIS-REx student collaboration

    Science.gov (United States)

    Jones, Michael; Chodas, Mark; Smith, Matthew J.; Masterson, Rebecca A.

    2014-07-01

    OSIRIS-REx is a NASA New Frontiers mission scheduled for launch in 2016 that will travel to the asteroid Bennu and return a pristine sample of the asteroid to Earth. The REgolith X-ray Imaging Spectrometer (REXIS) is a student collaboration instrument on-board the OSIRIS-REx spacecraft. REXIS is a NASA risk Class D instrument, and its design and development is largely student led. The engineering team consists of MIT graduate and undergraduate students and staff at the MIT Space Systems Laboratory. The primary goal of REXIS is the education of science and engineering students through participation in the development of light hardware. In light, REXIS will contribute to the mission by providing an elemental abundance map of the asteroid and by characterizing Bennu among the known meteorite groups. REXIS is sensitive to X-rays between 0.5 and 7 keV, and uses coded aperture imaging to map the distribution of iron with 50 m spatial resolution. This paper describes the science goals, concept of operations, and overall engineering design of the REXIS instrument. Each subsystem of the instrument is addressed with a high-level description of the design. Critical design elements such as the Thermal Isolation Layer (TIL), radiation cover, coded-aperture mask, and Detector Assembly Mount (DAM) are discussed in further detail.

  4. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  5. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  6. Spacecraft Architecture and environmental pshychology

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  7. Spacecraft Architecture and well being

    Science.gov (United States)

    Ören, Ayşe

    2016-07-01

    As we embark on a journey for new homes in the new worlds to lay solid foundations, we should consider not only the survival of frontiers but also well-being of those to live in zero gravity. As a versatile science, architecture encompasses abstract human needs as well. On our new different direction in the course of the Homo sapiens evolution, we can do this with designs addressing both our needs and senses. Well-being of humans can be achieved by creating environments supporting the cognitive and social stages in the evolution process. Space stations are going through their own evolution process. Any step taken can serve as a reference for further attempts. When studying the history of architecture, window designing is discussed in a later phase, which is the case for building a spaceship as well. We lean on the places we live both physically and metaphorically. The feeling of belonging is essential here, entailing trans-humanism, which is significant since the environment therein is like a dress comfortable enough to fit in, meeting needs without any burden. Utilizing the advent of technology, we can create moods and atmospheres to regulate night and day cycles, thus we can turn claustrophobic places into cozy or dream-like places. Senses provoke a psychological sensation going beyond cultural codes as they are rooted within consciousness, which allows designers to create a mood within a space that tells a story and evokes an emotional impact. Color, amount of light, sound and odor are not superficial. As much as intangible, they are real and powerful tools with a physical presence. Tapping into induction, we can solve a whole system based on a part thereof. Therefore, fractal designs may not yield good results unless used correctly in terms of design although they are functional, which makes geometric arrangement critical.

  8. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  9. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  10. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  11. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  12. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  13. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  14. Simulated Aging of Spacecraft External Materials on Orbit

    Science.gov (United States)

    Khatipov, S.

    Moscow State Engineering Physics Institute (MIFI), in cooperation with Air Force Research Laboratory's Satellite Assessment Center (SatAC), the European Office of Aerospace Research and Development (EOARD), and the International Science and Technology Center (ISTC), has developed a database describing the changes in optical properties of materials used on the external surfaces of spacecraft due to space environmental factors. The database includes data acquired from tests completed under contract with the ISTC and EOARD, as well as from previous Russian materials studies conducted within the last 30 years. The space environmental factors studied are for those found in Low Earth Orbits (LEO) and Geosynchronous orbits (GEO), including electron irradiation at 50, 100, and 200 keV, proton irradiation at 50, 150, 300, and 500 keV, and ultraviolet irradiation equivalent to 1 sun-year. The material characteristics investigated were solar absorption (aS), spectral reflectance (rl), solar reflectance (rS), emissivity (e), spectral transmission coefficient (Tl), solar transmittance (TS), optical density (D), relative optical density (D/x), Bi-directional Reflectance Distribution Function (BRDF), and change of appearance and color in the visible wavelengths. The materials tested in the project were thermal control coatings (paints), multilayer insulation (films), and solar cells. The ability to predict changes in optical properties of spacecraft materials is important to increase the fidelity of space observation tools, better understand observation of space objects, and increase the longevity of spacecraft. The end goal of our project is to build semi-empirical mathematical models to predict the long-term effects of space aging as a function of time and orbit.

  15. Instruments to assess integrated care

    DEFF Research Database (Denmark)

    Lyngsø, Anne Marie; Godtfredsen, Nina Skavlan; Høst, Dorte

    2014-01-01

    INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how to mea...... was prevalent. It is uncertain whether development of a single 'all-inclusive' model for assessing integrated care is desirable. We emphasise the continuing need for validated instruments embedded in theoretical contexts.......INTRODUCTION: Although several measurement instruments have been developed to measure the level of integrated health care delivery, no standardised, validated instrument exists covering all aspects of integrated care. The purpose of this review is to identify the instruments concerning how...... to measure the level of integration across health-care sectors and to assess and evaluate the organisational elements within the instruments identified. METHODS: An extensive, systematic literature review in PubMed, CINAHL, PsycINFO, Cochrane Library, Web of Science for the years 1980-2011. Selected...

  16. Scientific Instruments and Epistemology Engines

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Tomáš

    2012-01-01

    Roč. 34, č. 4 (2012), s. 529-540 ISSN 1210-0250 R&D Projects: GA ČR(CZ) GAP401/11/2338 Institutional support: RVO:67985955 Keywords : material culture of science * scientific instruments * epistemology engines * experimental systems Subject RIV: AA - Philosophy ; Religion

  17. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    Science.gov (United States)

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  18. Increasing Robotic Science Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — The principal objectives are to demonstrate robotic-based scientific investigations and resource prospecting, and develop and demonstrate modular science instrument...

  19. Seismic instrumentation

    International Nuclear Information System (INIS)

    1984-06-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The aim of this RFS is to define the type, location and operating conditions for seismic instrumentation needed to determine promptly the seismic response of nuclear power plants features important to safety to permit comparison of such response with that used as the design basis

  20. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  1. Discovering the cosmos with small spacecraft the American explorer program

    CERN Document Server

    Harvey, Brian

    2018-01-01

    Explorer was the original American space program and Explorer 1 its first satellite, launched in 1958. Sixty years later, it is the longest continuously running space program in the world, demonstrating to the world how we can explore the cosmos with small spacecraft. Almost a hundred Explorers have already been launched.  Explorers have made some of the fundamental discoveries of the Space Age.Explorer 1 discovered Earth’s radiation belts. Later Explorers surveyed the Sun, the X-ray and ultraviolet universes, black holes, magnetars and gamma ray bursts. An Explorer found the remnant of the Big Bang. One Explorer chased and was the first to intercept a comet. The program went through a period of few launches during the crisis of funding for space science in the 1980s. However, with the era of ‘faster, cheaper, better,’ the program was reinvented, and new exiting missions began to take shape, like Swift and the asteroid hunter WISE.  Discovering the Cosmos with Small Spacecraft gives an account of ...

  2. Trajectories for spacecraft encounters with Comet Honda-Mrkos-Pajdusakova in 1996

    Science.gov (United States)

    Dunham, David W.; Jen, Shao-Chiang; Farquhar, Robert W.

    1989-01-01

    Early in 1996, the relatively bright short-period Comet Honda-Mrkos-Pajdusakova (HMP) will pass only 0.17 astronomical unit from the earth, providing both an unusually favorable apparition for ground-based observers and an opportunity for a spacecraft to reach Comet HMP on relatively low-energy trajectories. The Japanense Institute of Space and Astronautical Sciences Sakigake spacecraft is expected to fly by Comet HMP on February 3, 1996, after utilizing four earth swingbys to modify its orbit. If the camera on the ESA Giotto spacecraft is inoperable, Giotto may also be sent to Comet HMP. In addition, 1-year earth-return trajectories to Comet HMP are described, along with some that can be extended to encounter Comet Giacobini-Zinner in 1998.

  3. Combined Raman/Infrared Reflectance Instrument for In Situ Mineral Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Science Instruments, Observatories, and Sensor Systems Roadmap calls for instruments capable of in situ mineralogical analysis in support of planetary...

  4. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  5. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  6. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  7. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  8. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  9. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  10. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  11. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  12. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  13. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  14. Technology thrusts for future Earth science applications

    Science.gov (United States)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  15. Technology Thrust for Future Earth Science Applications

    Science.gov (United States)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  16. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  17. Radiological instrument

    International Nuclear Information System (INIS)

    Kronenberg, S.; McLaughlin, W.L.; Seibentritt, C.R. Jr.

    1986-01-01

    An instrument is described for measuring radiation, particularly nuclear radiation, comprising: a radiation sensitive structure pivoted toward one end and including a pair of elongated solid members contiguously joined together along their length dimensions and having a common planar interface therebetween. One of the pairs of members is comprised of radiochromic material whose index of refraction changes due to anomolous dispersion as a result of being exposed to nuclear radiation. The pair of members further has mutually different indices of refraction with the member having the larger index of refraction further being transparent for the passage of light and of energy therethrough; means located toward the other end of the structure for varying the angle of longitudinal elevation of the pair of members; means for generating and projecting a beam of light into one end of the member having the larger index of refraction. The beam of light is projected toward the planar interface where it is reflected out of the other end of the same member as a first output beam; means projecting a portion of the beam of light into one end of the member having the larger index of refraction where it traverses therethrough without reflection and out of the other end of the same member as a second output beam; and means adjacent the structure for receiving the first and second output beams, whereby a calibrated change in the angle of elevation of the structure between positions of equal intensity of the first and second output beams prior to and following exposure provides a measure of the radiation sensed due to a change of refraction of the radiochromic material

  18. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    Science.gov (United States)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  19. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Eng., P.J.; Jaski, Y.R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M. [CARS, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL (United States)

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P{approx_gt}360 GPa and T{approximately}6000 K with the diamond anvil cell and P{approximately}25 GPa and T{approximately}2500{degree}C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers. {copyright} {ital 1996 American Institute of Physics.}

  20. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  1. Utilizing Multifaceted Rasch Measurement through Facets to Evaluate Science Education Data Sets Composed of Judges, Respondents, and Rating Scale Items: An Exemplar Utilizing the Elementary Science Teaching Analysis Matrix Instrument

    Science.gov (United States)

    Boone, William J.; Townsend, J. Scott; Staver, John R.

    2016-01-01

    When collecting data, science education researchers frequently have multiple respondents evaluate multiple artifacts using multiple criteria. Herein, the authors introduce Multifaceted Rasch Measurement (MFRM) analysis and explain why MFRM must be used when "judges'" data are collected. The authors use data from elementary science…

  2. The Plasma Instrument for Magnetic Sounding (PIMS) onboard the Europa Clipper Mission

    Science.gov (United States)

    Westlake, Joseph H.; McNutt, Ralph L.; Kasper, Justin C.; Rymer, Abigail; Case, Anthony; Battista, Corina; Cochrane, Corey; Coren, David; Crew, Alexander; Grey, Matthew; Jia, Xianzhe; Khurana, Krishan; Kim, Cindy; Kivelson, Margaret G.; Korth, Haje; Krupp, Norbert; Paty, Carol; Roussos, Elias; Stevens, Michael; Slavin, James A.; Smith, Howard T.; Saur, Joachim

    2017-10-01

    Europa is embedded in a complex Jovian magnetospheric plasma, which rotates with the tilted planetary field and interacts dynamically with Europa’s ionosphere affecting the magnetic induction signal. Plasma from Io’s temporally varying torus diffuses outward and mixes with the charged particles in Europa’s own torus producing highly variable plasma conditions. Onboard the Europa Clipper spacecraft the Plasma Instrument for Magnetic Sounding (PIMS) works in conjunction with the Interior Characterization of Europa using Magnetometry (ICEMAG) investigation to probe Europa’s subsurface ocean. This investigation exploits currents induced in Europa’s interior by the moon’s exposure to variable magnetic fields in the Jovian system to infer properties of Europa’s subsurface ocean such as its depth, thickness, and conductivity. This technique was successfully applied to Galileo observations and demonstrated that Europa indeed has a subsurface ocean. While these Galileo observations contributed to the renewed interest in Europa, due to limitations in the observations the results raised major questions that remain unanswered. PIMS will greatly refine our understanding of Europa’s global liquid ocean by accounting for contributions to the magnetic field from plasma currents.The Europa Clipper mission is equipped with a sophisticated suite of 9 instruments to study Europa's interior and ocean, geology, chemistry, and habitability from a Jupiter orbiting spacecraft. PIMS on Europa Clipper is a Faraday Cup based plasma instrument whose heritage dates back to the Voyager spacecraft. PIMS will measure the plasma that populates Jupiter’s magnetosphere and Europa’s ionosphere. The science goals of PIMS are to: 1) estimate the ocean salinity and thickness by determining Europa’s magnetic induction response, corrected for plasma contributions; 2) assess mechanisms responsible for weathering and releasing material from Europa’s surface into the atmosphere and

  3. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  4. MESA - A new approach to low cost scientific spacecraft

    Science.gov (United States)

    Keyes, G. W.; Case, C. M.

    1982-09-01

    Today, the greatest obstacle to science and exploration in space is its cost. The present investigation is concerned with approaches for reducing this cost. Trends in the scientific spacecraft market are examined, and a description is presented for the MESA space platform concept. The cost drivers are considered, taking into account planning, technical aspects, and business factors. It is pointed out that the primary function of the MESA concept is to provide a satellite system at the lowest possible price. In order to reach this goal an attempt is made to benefit from all of the considered cost drivers. It is to be tried to work with the customer early in the mission analysis stage in order to assist in finding the right compromise between mission cost and return. A three phase contractual arrangement is recommended for MESA platforms. The phases are related to mission feasibility, specification definition, and design and development. Modular kit design promotes flexibility at low cost.

  5. A Thermal Imaging Instrument with Uncooled Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposed work, we will perform an instrument concept study for sustainable thermal imaging over land with uncooled detectors. We will define the science and...

  6. Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes

    Science.gov (United States)

    1998-07-01

    three months after the incident. Equipment damage was sustained as a result of the low temperatures, but nothing significant enough to prevent the successful resumption of the mission. The experience of Olympus is being applied, where possible, to SOHO and increases the hope of also recovering this mission. Estimating the probability of recovery is made difficult by a number of unknown spacecraft conditions. Like Olympus, the hydrazine fuel and batteries may be frozen. Thermal stress may have damaged some of the scientific instruments as well. If the rate of spin is excessive, there may have been structural damage. SOHO engineers can reliably predict the spacecraft's orbit through November 1998. After that time, the long-term orbital behavior becomes dependent on the initial velocity conditions of the spacecraft at the time of the telemetry loss. These are not known precisely, due to spacecraft thruster activity that continued after loss of telemetry, so orbital prediction becomes very difficult.

  7. Global auroral imaging instrumentation for the dynamics explorer mission

    International Nuclear Information System (INIS)

    Frank, L.A.; Craven, J.D.; Ackerson, K.L.; English, M.R.; Eather, R.H.; Carovillano, R.L.

    1981-01-01

    The instrumentation for gaining global images of the auroral oval from the high-altitude spacecraft of the Dynamics Explorer Mission is described. Three spin-scan auroral imaging (SAI) photometers are expected to be able to effectively view the dim emissions from earth in the presence of strong stray light sources near their fields-of-view along the sunlit portion of the spacecraft orbit. A special optical design which includes an off-axis parabolic mirror as the focusing element and super-reflecting mirror surfaces is used to minimize the effects of stray light. The rotation of the spacecraft and an instrument scanning mirror provide the two-dimensional array of pixels comprising an image frame. (orig.)

  8. Development of an Infrared Lamp Array for the Smap Spacecraft Thermal Balance Test

    Science.gov (United States)

    Miller, Jennifer R.; Emis, Nickolas; Forgette, Daniel

    2015-01-01

    NASA launched the SMAP observatory in January 2015 aboard a Delta II into a sun-synchronous orbit around Earth. The science payload of a radar and a radiometer utilizes a shared rotating six-meter antenna to provide a global map of the Earth's soil moisture content and its freeze/thaw state on a global, high-resolution scale in this three-year mission. An observatory-level thermal balance test conducted in May/June 2014 validated the thermal design and demonstrated launch readiness as part of the planned environmental test campaign. An infrared lamp array was designed and used in the thermal balance test to replicate solar heating on the solar array and sunlit side of the spacecraft that would normally be seen in orbit. The design, implementation, and operation of an infrared lamp array used for this nineteen-day system thermal test are described in this paper. Instrumental to the smooth operation of this lamp array was a characterization test performed in the same chamber two months prior to the observatory test to provide insight into its array operation and flux uniformity. This knowledge was used to identify the lamp array power settings that would provide the worst case predicted on-orbit fluxes during eclipse, cold, and hot cases. It also showed the lamp array variation when adjustments in flux were needed. Calorimeters calibrated prior to testing determined a relationship between calorimeter temperature and lamp array flux. This allowed the team to adjust the lamp output for the desired absorbed flux on the solar array. Flux levels were within 10% of the desired value at the center of the solar array with an ability to maintain these levels within 5% during steady state cases. All tests demonstrated the infrared lamp array functionality and furthered lamp array understanding for modeling purposes. This method contributed to a high-fidelity environmental simulation, which was required to replicate the extreme on-orbit thermal environments.

  9. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  10. Asteroid electrostatic instrumentation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L; Bowles, N E; Urbak, E [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Keane, D; Sawyer, E C, E-mail: k.aplin1@physics.ox.ac.uk [RAL Space, R25, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2011-06-23

    Asteroid surface material is expected to become photoelectrically charged, and is likely to be transported through electrostatic levitation. Understanding any movement of the surface material is relevant to proposed space missions to return samples to Earth for detailed isotopic analysis. Motivated by preparations for the Marco Polo sample return mission, we present electrostatic modelling for a real asteroid, Itokawa, for which detailed shape information is available, and verify that charging effects are likely to be significant at the terminator and at the edges of shadow regions for the Marco Polo baseline asteroid, 1999JU3. We also describe the Asteroid Charge Experiment electric field instrumentation intended for Marco Polo. Finally, we find that the differing asteroid and spacecraft potentials on landing could perturb sample collection for the short landing time of 20min that is currently planned.

  11. The LION instrument on SOHO and its scientific objectives

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    Full Text Available A technical description is presented of the low-energy ion and electron (LION instrument on the SOHO spacecraft and its scientific goals are discussed. LION forms part of the comprehensive suprathermal and energetic particle analyzer (COSTEP, which is, in turn, a subset of the COSTEP/ERNE particle analyser collaboration (CEPAC.

  12. The LION instrument on SOHO and its scientific objectives

    Directory of Open Access Journals (Sweden)

    S. M. P. McKenna-Lawlor

    1997-01-01

    Full Text Available A technical description is presented of the low-energy ion and electron (LION instrument on the SOHO spacecraft and its scientific goals are discussed. LION forms part of the comprehensive suprathermal and energetic particle analyzer (COSTEP, which is, in turn, a subset of the COSTEP/ERNE particle analyser collaboration (CEPAC.

  13. Instruments and accessories for neutron scattering research

    International Nuclear Information System (INIS)

    Ishii, Yoshinobu; Morii, Yukio

    2000-04-01

    This report describes neutron scattering instruments and accessories installed by four neutron scattering research groups at the ASRC (Advanced Science Research Center) of the JAERI and the recent topics of neutron scattering research using these instruments. The specifications of nine instruments (HRPD, BIX-I, TAS-1 and PNO in the reactor hall, RESA, BIX-II, TAS-2, LTAS and SANS-J in the guide hall of the JRR-3M) are summarized in this booklet. (author)

  14. IAEA programme on maintenance of nuclear instruments

    International Nuclear Information System (INIS)

    Vuister, P.H.

    1986-01-01

    The Medical Applications Section in the Division of Life Sciences of the International Atomic Energy Agency has been engaged since 1975 in activities aimed at the more effective use of nuclear instruments. Activities and achievements are described concerning the conditioning of laboratories, preventive maintenance and repair of instruments, the management thereof, space parts and the promotion of local training in these subjects. (author)

  15. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    Science.gov (United States)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  16. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  17. NASA's Newest SeaWinds Instrument Breezes Into Operation

    Science.gov (United States)

    2003-01-01

    One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international

  18. Space tribology: its role in spacecraft mechanisms

    International Nuclear Information System (INIS)

    Roberts, E W

    2012-01-01

    The subject of tribology encompasses the friction, wear and lubrication of mechanical components such as bearings and gears. Tribological practices are aimed at ensuring that such components operate with high efficiency (low friction) and achieve long lives. On spacecraft mechanisms the route to achieving these goals brings its own unique challenges. This review describes the problems posed by the space environment, the types of tribological component used on spacecraft and the approaches taken to their lubrication. It is shown that in many instances lubrication needs can be met by synthetic oils having exceedingly low volatilities, but that at temperature extremes the only means of reducing friction and wear is by solid lubrication. As the demands placed on space engineering increase, innovatory approaches will be needed to solve future tribological problems. The direction that future developments might take is anticipated and discussed.

  19. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  20. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance