WorldWideScience

Sample records for spacecraft potential measured

  1. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  2. Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS

    Science.gov (United States)

    Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.

    2017-12-01

    Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.

  3. A small spacecraft for multipoint measurement of ionospheric plasma

    Science.gov (United States)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  4. Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements

    Directory of Open Access Journals (Sweden)

    A. Pedersen

    1995-02-01

    Full Text Available Several satellites (GEOS-1, GEOS-2, ISEE-1, Viking and CRRES carried electric field experiments on which probes were driven by a current from the satellite to be close to the plasma potential. The potential difference between an electric field probe and its spacecraft (with conductive surfaces can be used to determine the ambient electron density and/or electron flux with limited accuracy but with high time resolution, of the order of 10-100 ms. It is necessary for the development of this diagnostic method to understand the photoemission characteristics of probes and satellites. According to the electric field experiments on the above-mentioned satellites, all materials develop very similar photoemission properties when they are beyond the influence of atmospheric oxygen. The photoelectron yield steadily increases over the first few months in space and reaches values well above those measured on clean surfaces in the laboratory. The method can be used for solar radiation levels corresponding to distances from 0.4 to 5 AU from the Sun.

  5. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  6. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  7. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    Science.gov (United States)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  8. Particle-in-Cell Simulation Study on the Floating Potential of Spacecraft in the Low Earth Orbit

    International Nuclear Information System (INIS)

    Tang Daotan; Yang Shengsheng; Zheng Kuohai; Qin Xiaogang; Li Detian; Liu Qing; Zhao Chengxuan; Du Shanshan

    2015-01-01

    In order to further understand the characteristics of the floating potential of low earth orbit spacecraft, the effects of the electron current collection area, background electron temperature, photocurrent emission, spacecraft wake, and the shape of spacecraft on spacecraft floating potential were studied here by particle-in-cell simulation in the low earth orbit. The simulation results show that the electron current collection area and background electron temperature impact on the floating potential by changing the electron current collection of spacecraft. By increasing the electron current collection area or background electron temperature, the spacecraft will float at a lower electric potential with respect to the surrounding plasma. However, the spacecraft wake affects the floating potential by increasing the ion current collected by spacecraft. The emission of the photocurrent from the spacecraft surface, which compensates for the electrons collected from background plasma, causes the floating potential to increase. The shape of the spacecraft is also an important factor influencing the floating potential. (paper)

  9. Triple-root jump in spacecraft potential due to electron beam emission or impact

    International Nuclear Information System (INIS)

    Lai, S.T.

    1992-01-01

    Triple-root jump in spacecraft potential is well understood in the double Maxwellian model of the natural space environment. In this paper, however, the author points out that triple-root jumps in spacecraft potential may also occur during photoemission or electron beam emission from a spacecraft. Impact of an incoming electron beam on a spacecraft may also cause triple-root jumps provided that the beam, ambient plasma, and surface parameters satisfy certain inequality conditions. The parametric conditions under which such beam induced triple-root jumps may occur are presented

  10. Study of the Spacecraft Potential Under Active Control and Plasma Density Estimates During the MMS Commissioning Phase

    Science.gov (United States)

    Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.

    2016-01-01

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  11. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2002-03-01

    Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs  is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs  - Fp  between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs  can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed

  12. On-orbit assembly of a team of flexible spacecraft using potential field based method

    Science.gov (United States)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  13. Laser-based Relative Navigation Using GPS Measurements for Spacecraft Formation Flying

    Science.gov (United States)

    Lee, Kwangwon; Oh, Hyungjik; Park, Han-Earl; Park, Sang-Young; Park, Chandeok

    2015-12-01

    This study presents a precise relative navigation algorithm using both laser and Global Positioning System (GPS) measurements in real time. The measurement model of the navigation algorithm between two spacecraft is comprised of relative distances measured by laser instruments and single differences of GPS pseudo-range measurements in spherical coordinates. Based on the measurement model, the Extended Kalman Filter (EKF) is applied to smooth the pseudo-range measurements and to obtain the relative navigation solution. While the navigation algorithm using only laser measurements might become inaccurate because of the limited accuracy of spacecraft attitude estimation when the distance between spacecraft is rather large, the proposed approach is able to provide an accurate solution even in such cases by employing the smoothed GPS pseudo-range measurements. Numerical simulations demonstrate that the errors of the proposed algorithm are reduced by more than about 12% compared to those of an algorithm using only laser measurements, as the accuracy of angular measurements is greater than 0.001° at relative distances greater than 30 km.

  14. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  15. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  16. Electric potential structures and propagation of electron beams injected from a spacecraft into a plasma

    International Nuclear Information System (INIS)

    Singh, Nagendra; Hwang, K.S.

    1988-01-01

    The propagation of electron beams injected from a spacecraft into an ambient plasma and the associated potential structures are investigated by one-dimensional Vlasov simulations. For moderate beams, for which the time average spacecraft potential (Φ sa ) lies in the range T e much-lt eΦ sa approx-lt W B , where T e is the electron temperature in energy units and W B is the average beam energy, a double layer forms near the beam head which propagates into the ambient plasma much more slowly than the initial beam velocity. The double layer formation is being reported for the first time. For weak beams, for which |eΦ sa | approx-lt T e , the beam propagates with the initial beam velocity, and no double layer formation occurs. On the other hand, for strong beams for which eΦ sa > W B , the bulk of the beam is returned to the spacecraft, and the main feature of the potential structure is a sheath formation with an intense electric field limited to distances d near the spacecraft surface. These features of the potential structures are compared with those seen in laboratory and space experiments on electron beam injections

  17. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  18. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  19. Global Precipitation Measurement (GPM) Spacecraft Lithium Ion Battery Micro-Cycling Investigation

    Science.gov (United States)

    Dakermanji, George; Lee, Leonine; Spitzer, Thomas

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by NASA and JAXA. It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The power system is a Direct Energy Transfer (DET) system designed to support 1950 watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s by 84p batteries operated in parallel as a single battery. During instrument integration with the spacecraft, large current transients were observed in the battery. Investigation into the matter traced the cause to the Dual-Frequency Precipitation Radar (DPR) phased array radar which generates cyclical high rate current transients on the spacecraft power bus. The power system electronics interaction with these transients resulted in the current transients in the battery. An accelerated test program was developed to bound the effect, and to assess the impact to the mission.

  20. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  1. Electric potential structures of auroral acceleration region border from multi-spacecraft Cluster data

    Science.gov (United States)

    Sadeghi, S.; Emami, M. R.

    2018-04-01

    This paper studies an auroral event using data from three spacecraft of the Cluster mission, one inside and two at the poleward edge of the bottom of the Auroral Acceleration Region (AAR). The study reveals the three-dimensional profile of the region's poleward boundary, showing spatial segmentation of the electric potential structures and their decay in time. It also depicts localized magnetic field variations and field-aligned currents that appear to have remained stable for at least 80 s. Such observations became possible due to the fortuitous motion of the three spacecraft nearly parallel to each other and tangential to the AAR edge, so that the differences and variations can be seen when the spacecraft enter and exit the segmentations, hence revealing their position with respect to the AAR.

  2. The effects of spacecraft charging and outgassing on the LADEE ion measurements

    Science.gov (United States)

    Xie, Lianghai; Zhang, Xiaoping; Zheng, Yongchun; Guo, Dawei

    2017-05-01

    Abnormal ion signals can be usually seen in the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, including a suddenly enhanced current observed by the Lunar Dust Experiment (LDEX) near the sunlight-shadow boundary and an unexpected water ion measured by the neutral mass spectrometer (NMS), with their magnitudes insensitive to the convection electric field of solar wind but dependent on the SW density and the elapsed time of LADEE mission. By analyzing both the LDEX measurements and the NMS measurements, we find that the current enhancement can be caused by a negatively charged spacecraft in the shadow region while the significant water ions should be some artificial ions from spacecraft outgassing. The artificial water ions show a peak near 8:00 LT that may be related to a sunlight-controlled surface outgassing. In addition, the H2O flux can be enhanced near the end of the mission when the spacecraft has a lower altitude. It is found that the H2O enhancement is actually caused by an exosphere-contributed return flux, rather than a real water exosphere.

  3. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  4. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  5. Combined spacecraft orbit and attitude control through extended Kalman filtering of magnetometer, gyro, and GPS measurements

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2014-06-01

    Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.

  6. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  7. The Global Precipitation Measurement (GPM) Spacecraft Power System Design and Orbital Performance

    Science.gov (United States)

    Dakermanji, George; Burns, Michael; Lee, Leonine; Lyons, John; Kim, David; Spitzer, Thomas; Kercheval, Bradford

    2016-01-01

    The Global Precipitation Measurement (GPM) spacecraft was jointly developed by National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). It is a Low Earth Orbit (LEO) spacecraft launched on February 27, 2014. The spacecraft is in a circular 400 Km altitude, 65 degrees inclination nadir pointing orbit with a three year basic mission life. The solar array consists of two sun tracking wings with cable wraps. The panels are populated with triple junction cells of nominal 29.5% efficiency. One axis is canted by 52 degrees to provide power to the spacecraft at high beta angles. The power system is a Direct Energy Transfer (DET) system designed to support 1950 Watts orbit average power. The batteries use SONY 18650HC cells and consist of three 8s x 84p batteries operated in parallel as a single battery. The paper describes the power system design details, its performance to date and the lithium ion battery model that was developed for use in the energy balance analysis and is being used to predict the on-orbit health of the battery.

  8. Spacecraft charging and related effects during Halley encounter

    International Nuclear Information System (INIS)

    Young, D.T.

    1983-01-01

    Hypervelocity (69 km/s) impact of cometary material with surfaces of the GIOTTO spacecraft will induce a number of spurious and possibly harmful phenomena. The most serious of these is likely to be spacecraft charging that results from impact-produced plasma distributions surrounding GIOTTO. The ESA Plasma Environment Working Group, whose studies are the basis for this report, finds that charging may become significant within approx. 10 5 km of the nucleus where potentials of approx. = +20 V are to be expected. In addition to spacecraft charging, impact produced plasma may interfere with in situ plasma measurements, particularly those of ion plasma analyzers and mass spectrometers

  9. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  10. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  11. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    Science.gov (United States)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  12. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  13. Pose Self-Measurement of Noncooperative Spacecraft Based on Solar Panel Triangle Structure

    Directory of Open Access Journals (Sweden)

    Jingzhou Song

    2015-01-01

    Full Text Available Aiming at the recognition and location of noncooperative spacecraft, this paper presents a monocular vision pose measurement method based on solar triangle structure. First of all, an autonomous recognition algorithm of feature structure based on sliding window Hough transformation (SWHT and inscribed circle of a triangle is proposed, and the image coordinates of feature points on the triangle can be obtained relying on this algorithm, combined with the P4P algorithm and the structure of spacecraft, calculating the relative pose of target expressed by rotation and translation matrix. The whole algorithm can be loaded into the prewritten onboard program, which will get the autocomplete feature structure extraction and relative pose measurement without human intervention, and this method does not need to mount any markers on the target. Then compare the measured values with the accurate value of the laser tracker, so that a conclusion can be drawn that the maximum position error is lower than 5% and the rotation error is lower than 4%, which meets the requirements of noncooperative spacecraft’s pose measurement for observations, tracking, and docking in the final rendezvous phase.

  14. Absolute orbit determination using line-of-sight vector measurements between formation flying spacecraft

    Science.gov (United States)

    Ou, Yangwei; Zhang, Hongbo; Li, Bin

    2018-04-01

    The purpose of this paper is to show that absolute orbit determination can be achieved based on spacecraft formation. The relative position vectors expressed in the inertial frame are used as measurements. In this scheme, the optical camera is applied to measure the relative line-of-sight (LOS) angles, i.e., the azimuth and elevation. The LIDAR (Light radio Detecting And Ranging) or radar is used to measure the range and we assume that high-accuracy inertial attitude is available. When more deputies are included in the formation, the formation configuration is optimized from the perspective of the Fisher information theory. Considering the limitation on the field of view (FOV) of cameras, the visibility of spacecraft and the installation of cameras are investigated. In simulations, an extended Kalman filter (EKF) is used to estimate the position and velocity. The results show that the navigation accuracy can be enhanced by using more deputies and the installation of cameras significantly affects the navigation performance.

  15. Spacecraft Trajectory Estimation Using a Sampled-Data Extended Kalman Filter with Range-Only Measurements

    National Research Council Canada - National Science Library

    Erwin, R. S; Bernstein, Dennis S

    2005-01-01

    .... In this paper we use a sampled-data extended Kalman Filter to estimate the trajectory or a target satellite when only range measurements are available from a constellation or orbiting spacecraft...

  16. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  17. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  18. Prospects for Measuring Planetary Spin and Frame-Dragging in Spacecraft Timing Signals

    Energy Technology Data Exchange (ETDEWEB)

    Schärer, Andreas; Bondarescu, Ruxandra [Department of Physics, University of Zurich, Zurich (Switzerland); Saha, Prasenjit [Department of Physics, University of Zurich, Zurich (Switzerland); Institute for Computational Science, University of Zurich, Zurich (Switzerland); Angélil, Raymond [Institute for Computational Science, University of Zurich, Zurich (Switzerland); Helled, Ravit [Institute for Computational Science, University of Zurich, Zurich (Switzerland); Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Jetzer, Philippe, E-mail: andreas.schaerer@physik.uzh.ch [Department of Physics, University of Zurich, Zurich (Switzerland)

    2017-09-05

    Satellite tracking involves sending electromagnetic signals to Earth. Both the orbit of the spacecraft and the electromagnetic signals themselves are affected by the curvature of spacetime. The arrival time of the pulses is compared to the ticks of local clocks to reconstruct the orbital path of the satellite to high accuracy, and implicitly measure general relativistic effects. In particular, Schwarzschild space curvature (static) and frame-dragging (stationary) due to the planet's spin affect the satellite's orbit. The dominant relativistic effect on the path of the signal photons is Shapiro delays due to static space curvature. We compute these effects for some current and proposed space missions, using a Hamiltonian formulation in four dimensions. For highly eccentric orbits, such as in the Juno mission and in the Cassini Grand Finale, the relativistic effects have a kick-like nature, which could be advantageous for detecting them if their signatures are properly modeled as functions of time. Frame-dragging appears, in principle, measurable by Juno and Cassini, though not by Galileo 5 and 6. Practical measurement would require disentangling frame-dragging from the Newtonian “foreground” such as the gravitational quadrupole which has an impact on both the spacecraft's orbit and the signal propagation. The foreground problem remains to be solved.

  19. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  20. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  1. Application of square-root filtering for spacecraft attitude control

    Science.gov (United States)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  2. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  3. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  4. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  5. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  6. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  7. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  8. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  9. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  10. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  11. Space Weather Magnetometer Set with Automated AC Spacecraft Field Correction for GEO-KOMPSAT-2A

    Science.gov (United States)

    Auster, U.; Magnes, W.; Delva, M.; Valavanoglou, A.; Leitner, S.; Hillenmaier, O.; Strauch, C.; Brown, P.; Whiteside, B.; Bendyk, M.; Hilgers, A.; Kraft, S.; Luntama, J. P.; Seon, J.

    2016-05-01

    Monitoring the solar wind conditions, in particular its magnetic field (interplanetary magnetic field) ahead of the Earth is essential in performing accurate and reliable space weather forecasting. The magnetic condition of the spacecraft itself is a key parameter for the successful performance of the magnetometer onboard. In practice a condition with negligible magnetic field of the spacecraft cannot always be fulfilled and magnetic sources on the spacecraft interfere with the natural magnetic field measured by the space magnetometer. The presented "ready-to-use" Service Oriented Spacecraft Magnetometer (SOSMAG) is developed for use on any satellite implemented without magnetic cleanliness programme. It enables detection of the spacecraft field AC variations on a proper time scale suitable to distinguish the magnetic field variations relevant to space weather phenomena, such as sudden increase in the interplanetary field or southward turning. This is achieved through the use of dual fluxgate magnetometers on a short boom (1m) and two additional AMR sensors on the spacecraft body, which monitor potential AC disturbers. The measurements of the latter sensors enable an automated correction of the AC signal contributions from the spacecraft in the final magnetic vector. After successful development and test of the EQM prototype, a flight model (FM) is being built for the Korean satellite Geo-Kompsat 2A, with launch foreseen in 2018.

  12. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    Science.gov (United States)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  13. High-spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft

    Science.gov (United States)

    Hoang, H.; Røed, K.; Bekkeng, T. A.; Trondsen, E.; Clausen, L. B. N.; Miloch, W. J.; Moen, J. I.

    2017-11-01

    A method for evaluating electron density using a single fixed-bias Langmuir probe is presented. The technique allows for high-spatio-temporal resolution electron density measurements, which can be effectively carried out by tiny spacecraft for multi-point observations in the ionosphere. The results are compared with the multi-needle Langmuir probe system, which is a scientific instrument developed at the University of Oslo comprising four fixed-bias cylindrical probes that allow small-scale plasma density structures to be characterized in the ionosphere. The technique proposed in this paper can comply with the requirements of future small-sized spacecraft, where the cost-effectiveness, limited space available on the craft, low power consumption and capacity for data-links need to be addressed. The first experimental results in both the plasma laboratory and space confirm the efficiency of the new approach. Moreover, detailed analyses on two challenging issues when deploying the DC Langmuir probe on a tiny spacecraft, which are the limited conductive area of the spacecraft and probe surface contamination, are presented in the paper. It is demonstrated that the limited conductive area, depending on applications, can either be of no concern for the experiment or can be resolved by mitigation methods. Surface contamination has a small impact on the performance of the developed probe.

  14. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  15. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  16. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  17. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  18. Simultaneous spacecraft orbit estimation and control based on GPS measurements via extended Kalman filter

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2013-06-01

    Full Text Available The primary aim of this work is to provide simultaneous spacecraft orbit estimation and control based on the global positioning system (GPS measurements suitable for application to the next coming Egyptian remote sensing satellites. Disturbance resulting from earth’s oblateness till the fourth order (i.e., J4 is considered. In addition, aerodynamic drag and random disturbance effects are taken into consideration.

  19. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland

    2004-04-01

    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  20. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  1. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit

    International Nuclear Information System (INIS)

    Ren Junxue; Xie Kan; Qiu Qian; Tang Haibin; Li Juan; Tian Huabing

    2013-01-01

    Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the GPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1×10 6 . The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit

  2. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  3. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  4. Time maintenance system for the BMDO MSX spacecraft

    Science.gov (United States)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  5. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  6. Measurement of the inertial properties of the Helios F-1 spacecraft

    Science.gov (United States)

    Gayman, W. H.

    1975-01-01

    A gravity pendulum method of measuring lateral moments of inertia of large structures with an error of less than 1% is outlined. The method is based on the fact that in a physical pendulum with a knife-edge support the distance from the axis of rotation to the system center of gravity determines the minimal period of oscillation and is equal to the system centroidal radius of gyration. The method is applied to results of a test procedure in which the Helios F-1 spacecraft was placed in a roll fixture with crossed flexure pivots as elastic constraints and system oscillation measurements were made with each of a set of added moment-of-inertia increments. Equations of motion are derived with allowance for the effect of the finite pivot radius and an error analysis is carried out to find the criterion for maximum accuracy in determining the square of the centroidal radius of gyration. The test procedure allows all measurements to be made with the specimen in upright position.

  7. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    Science.gov (United States)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  8. Heat pipe applications for future Air Force spacecraft

    International Nuclear Information System (INIS)

    Mahefkey, T.; Barthelemy, R.R.

    1980-01-01

    This paper summarizes the envisioned, future usage of high and low temperature heat pipes in advanced Air Force spacecraft. Thermal control requirements for a variety of communications, surveillance, and space defense missions are forecast. Thermal design constraints implied by survivability to potential weapons effects are outlined. Applications of heat pipes to meet potential low and high power spacecraft mission requirements and envisioned design constraints are suggested. A brief summary of past Air Force sponsored heat pipe development efforts is presented and directions for future development outlined, including those applicable to advanced photovoltaic and nuclear power subsystem applications of heat pipes

  9. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  10. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    Science.gov (United States)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Osiris Team

    2017-09-01

    In a Rosetta/OSIRIS imaging activity in June 2015, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS Wide Angle Camera (WAC), these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 108 dust aggregates over a 130 minutes long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 m and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. We prefer a scenario where centimeter-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel when rotated towards the sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the sun and can be explain by a rocket effect, which requires a minimum ice fraction in the order of 0.1%

  11. Microscopic Electron Variations Measured Simultaneously By The Cluster Spacecraft

    Science.gov (United States)

    Buckley, A. M.; Carozzi, T. D.; Gough, M. P.; Beloff, N.

    Data is used from the Particle Correlator experiments running on each of the four Cluster spacecraft so as to determine common microscopic behaviour in the elec- tron population observed over the macroscopic Cluster separations. The Cluster par- ticle correlator experiments operate by forming on board Auto Correlation Functions (ACFs) generated from short time series of electron counts obtained, as a function of electron energy, from the PEACE HEEA sensor. The information on the microscopic variation of the electron flux covers the frequency range DC up to 41 kHz (encom- passing typical electron plasma frequencies and electron gyro frequencies and their harmonics), the electron energy range is that covered by the PEACE HEEA sensor (within the range 1 eV to 26 keV). Results are presented of coherent electron struc- tures observed simultaneously by the four spacecraft in the differing plasma interac- tion regions and boundaries encountered by Cluster. As an aid to understanding the plasma interactions, use is made of numerical simulations which model both the un- derlying statistical properties of the electrons and also the manner in which particle correlator experiments operate.

  12. A global study of hot flow anomalies using Cluster multi-spacecraft measurements

    Directory of Open Access Journals (Sweden)

    G. Facskó

    2009-05-01

    Full Text Available Hot flow anomalies (HFAs are studied using observations of the magnetometer and the plasma instrument aboard the four Cluster spacecraft. We study several specific features of tangential discontinuities on the basis of Cluster measurements from the time periods of February–April 2003, December 2005–April 2006 and January–April 2007, when the separation distance of spacecraft was large. The previously discovered condition (Facskó et al., 2008 for forming HFAs is confirmed, i.e. that the solar wind speed and fast magnetosonic Mach number values are higher than average. Furthermore, this constraint is independent of the Schwartz et al. (2000’s condition for HFA formation. The existence of this new condition is confirmed by simultaneous ACE magnetic field and solar wind plasma observations at the L1 point, at 1.4 million km distance from the Earth. The temperature, particle density and pressure parameters observed at the time of HFA formation are also studied and compared to average values of the solar wind plasma. The size of the region affected by the HFA was estimated by using two different methods. We found that the size is mainly influenced by the magnetic shear and the angle between the discontinuity normal and the Sun-Earth direction. The size grows with the shear and (up to a certain point with the angle as well. After that point it starts decreasing. The results are compared with the outcome of recent hybrid simulations.

  13. Marginalized particle filter for spacecraft attitude estimation from vector measurements

    Institute of Scientific and Technical Information of China (English)

    Yaqiu LIU; Xueyuan JIANG; Guangfu MA

    2007-01-01

    An algorithm based on the marginalized particle filters(MPF)is given in details in this paper to solve the spacecraft attitude estimation problem:attitude and gyro bias estimation using the biased gyro and vector observations.In this algorithm,by marginalizing out the state appearing linearly in the spacecraft model,the Kalman filter is associated with each particle in order to reduce the size of the state space and computational burden.The distribution of attitude vector is approximated by a set of particles and estimated using particle filter,while the estimation of gyro bias is obtained for each one of the attitude particles by applying the Kalman filter.The efficiency of this modified MPF estimator is verified through numerical simulation of a fully actuated rigid body.For comparison,unscented Kalman filter(UKF)is also used to gauge the performance of MPF.The results presented in this paper clearly demonstrate that the MPF is superior to UKF in coping with the nonlinear model.

  14. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  15. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  16. Spatial aliasing and distortion of energy distribution in the wave vector domain under multi-spacecraft measurements

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2009-08-01

    Full Text Available Aliasing is a general problem in the analysis of any measurements that make sampling at discrete points. Sampling in the spatial domain results in a periodic pattern of spectra in the wave vector domain. This effect is called spatial aliasing, and it is of particular importance for multi-spacecraft measurements in space. We first present the theoretical background of aliasing problems in the frequency domain and generalize it to the wave vector domain, and then present model calculations of spatial aliasing. The model calculations are performed for various configurations of the reciprocal vectors and energy spectra or distribution that are placed at different positions in the wave vector domain, and exhibit two effects on aliasing. One is weak aliasing, in which the true spectrum is distorted because of non-uniform aliasing contributions in the Brillouin zone. It is demonstrated that the energy distribution becomes elongated in the shortest reciprocal lattice vector direction in the wave vector domain. The other effect is strong aliasing, in which aliases have a significant contribution in the Brillouin zone and the energy distribution shows a false peak. These results give a caveat in multi-spacecraft data analysis in that spectral anisotropy obtained by a measurement has in general two origins: (1 natural and physical origins like anisotropy imposed by a mean magnetic field or a flow direction; and (2 aliasing effects that are imposed by the configuration of the measurement array (or the set of reciprocal vectors. This manuscript also discusses a possible method to estimate aliasing contributions in the Brillouin zone based on the measured spectrum and to correct the spectra for aliasing.

  17. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  18. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  19. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  20. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  1. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    Science.gov (United States)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  2. First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data

    Directory of Open Access Journals (Sweden)

    C. Vallat

    2005-07-01

    Full Text Available The inner magnetosphere's current mapping is one of the key elements for current loop closure inside the entire magnetosphere. A method for directly computing the current is the multi-spacecraft curlometer technique, which is based on the application of Maxwell-Ampère's law. This requires the use of four-point magnetic field high resolution measurements. The FGM experiment on board the four Cluster spacecraft allows, for the first time, an instantaneous calculation of the magnetic field gradients and thus a measurement of the local current density. This technique requires, however, a careful study concerning all the factors that can affect the accuracy of the J estimate, such as the tetrahedral geometry of the four spacecraft, or the size and orientation of the current structure sampled. The first part of this paper is thus providing a detailed analysis of the method accuracy, and points out the limitations of this technique in the region of interest. The second part is an analysis of the ring current region, which reveals, for the first time, the large latitudinal extent of the ring current, for all magnetic activity levels, as well as the latitudinal evolution of the perpendicular (and parallel components of the current along the diffuse auroral zone. Our analysis also points out the sharp transition between two distinct plasma regions, with the existence of high diamagnetic currents at the interface, as well as the filamentation of the current inside the inner plasma sheet. A statistical study over multiple perigee passes of Cluster (at about 4 RE from the Earth reveals the azimuthal extent of the partial ring current. It also reveals that, at these distances and all along the evening sector, there isn't necessarily a strong dependence of the local current density value on the magnetic activity level. This is a direct consequence of the ring current morphology evolution, as well as the relative

  3. Multi-Spacecraft 3D differential emission measure tomography of the solar corona: STEREO results.

    Science.gov (United States)

    Vásquez, A. M.; Frazin, R. A.

    We have recently developed a novel technique (called DEMT) for the em- pirical determination of the three-dimensional (3D) distribution of the so- lar corona differential emission measure through multi-spacecraft solar ro- tational tomography of extreme-ultaviolet (EUV) image time series (like those provided by EIT/SOHO and EUVI/STEREO). The technique allows, for the first time, to develop global 3D empirical maps of the coronal elec- tron temperature and density, in the height range 1.0 to 1.25 RS . DEMT constitutes a simple and powerful 3D analysis tool that obviates the need for structure specific modeling.

  4. The purpose for GEO spacecraft deep charging and electrostatic discharging (ESD) experiment

    International Nuclear Information System (INIS)

    Yang Chuibai; Wang Shijin; Liang Jinbao

    2005-01-01

    This paper introduces the purpose for GEO spacecraft deep charging and electrostatic discharging (ESD) experiment. A method of experiment for the spacecraft deep charging and ESD aboard is proposed. Spacecraft deep charging and ESD event, frequency, energy and the level of pulse in wires due to EMP coupling into are measured. (authors)

  5. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  6. ASPI experiment: measurements of fields and waves on board the INTERBALL-1 spacecraft

    Directory of Open Access Journals (Sweden)

    S. Klimov

    1997-05-01

    Full Text Available The plasma-wave experiment ASPI (analysis of spectra of plasma waves and instabilities on board the INTERBALL spacecraft is a combined wave diagnostics experiment. It performs measurements of the DC and AC magnetic field vector by flux-gate and search-coil sensors, the DC and AC electric field vector by Langmuir double probes and the plasma current by Langmuir split probe. Preliminary data analysis shows the low noise levels of the sensors and the compatibility of new data with the results of previous missions. During several months of in-orbit operation a rich collection of data was acquired, examples of which at the magnetopause and plasma sheet are presented in second part of the paper.

  7. Close-Range Photogrammetry & Next Generation Spacecraft

    Science.gov (United States)

    Pappa, Richard S.

    2002-01-01

    NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.

  8. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    Science.gov (United States)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  9. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  10. Solitary waves observed in the auroral zone: the Cluster multi-spacecraft perspective

    Directory of Open Access Journals (Sweden)

    J. S. Pickett

    2004-01-01

    Full Text Available We report on recent measurements of solitary waves made by the Wideband Plasma Wave Receiver located on each of the four Cluster spacecraft at 4.5-6.5RE (well above the auroral acceleration region as they cross field lines that map to the auroral zones. These solitary waves are observed in the Wideband data as isolated bipolar and tripolar waveforms. Examples of the two types of pulses are provided. The time durations of the majority of both types of solitary waves observed in this region range from about 0.3 up to 5ms. Their peak-to-peak amplitudes range from about 0.05 up to 20mV/m, with a few reaching up to almost 70mV/m. There is essentially no potential change across the bipolar pulses. There appears to be a small, measurable potential change, up to 0.5V, across the tripolar pulses, which is consistent with weak or hybrid double layers. A limited cross-spacecraft correlation study was carried out in order to identify the same solitary wave on more than one spacecraft. We found no convincing correlations of the bipolar solitary waves. In the two cases of possible correlation of the tripolar pulses, we found that the solitary waves are propagating at several hundred to a few thousand km/s and that they are possibly evolving (growing, decaying as they propagate from one spacecraft to the next. Further, they have a perpendicular (to the magnetic field width of 50km or greater and a parallel width of about 2-5km. We conclude, in general, however, that the Cluster spacecraft at separations along and perpendicular to the local magnetic field direction of tens of km and greater are too large to obtain positive correlations in this region. Looking at the macroscale of the auroral zone at 4.5-6.5RE, we find that the onsets of the broadband electrostatic noise associated with the solitary waves observed in the spectrograms of the WBD data are generally consistent with propagation of the solitary waves up the field lines (away from Earth, or with

  11. SpaceX's Dragon America's next generation spacecraft

    CERN Document Server

    Seedhouse, Erik

    2016-01-01

    This book describes Dragon V2, a futuristic vehicle that not only provides a means for NASA to transport its astronauts to the orbiting outpost but also advances SpaceX’s core objective of reusability. A direct descendant of Dragon, Dragon V2 can be retrieved, refurbished and re-launched. It is a spacecraft with the potential to completely revolutionize the economics of an industry where equipment costing hundreds of millions of dollars is routinely discarded after a single use. It was presented by SpaceX CEO Elon Musk in May 2014 as the spaceship that will carry NASA astronauts to the International Space Station as soon as 2016 SpaceX’s Dragon – America’s Next Generation Spacecraft describes the extraordinary feats of engineering and human achievement that have placed this revolutionary spacecraft at the forefront of the launch industry and positioned it as the precursor for ultimately transporting humans to Mars. It describes the design and development of Dragon, provides mission highlights of the f...

  12. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  13. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  14. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  15. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  16. Final results of the Resonance spacecraft calibration effort

    Science.gov (United States)

    Sampl, Manfred; Macher, Wolfgang; Gruber, Christian; Oswald, Thomas; Rucker, Helmut O.

    2010-05-01

    We report our dedicated analyses of electrical field sensors onboard the Resonance spacecraft with a focus on the high-frequency electric antennas. The aim of the Resonance mission is to investigate wave-particle interactions and plasma dynamics in the inner magnetosphere of the Earth, with a focus on phenomena occurring along the same field line and within the same flux tube of the Earth's magnetic field. Four spacecraft will be launched, in the middle of the next decade, to perform these observations and measurements. Amongst a variety of instruments and probes several low- and high-frequency electric sensors will be carried which can be used for simultaneous remote sensing and in-situ measurements. The high-frequency electric sensors consist of cylindrical antennas mounted on four booms extruded from the central body of the spacecraft. In addition, the boom rods themselves are used together with the these sensors for mutual impedance measurements. Due to the parasitic effects of the conducting spacecraft body the electrical antenna representations (effective length vector, capacitances) do not coincide with their physical representations. The analysis of the reception properties of these antennas is presented, along with a contribution to the understanding of their impairment by other objects; in particular the influence of large magnetic loop sensors is studied. In order to analyse the antenna system, we applied experimental and numerical methods. The experimental method, called rheometry, is essentially an electrolytic tank measurement, where a scaled-down spacecraft model is immersed into an electrolytic medium (water) with corresponding measurements of voltages at the antennas. The numerical method consists of a numerical solution of the underlying field equations by means of computer programs, which are based on wire-grid and patch-grid models. The experimental and numerical results show that parasitic effects of the antenna-spacecraft assembly alter the

  17. Modes of uncontrolled rotational motion of the Progress M-29M spacecraft

    Science.gov (United States)

    Belyaev, M. Yu.; Matveeva, T. V.; Monakhov, M. I.; Rulev, D. N.; Sazonov, V. V.

    2018-01-01

    We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3-7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft's angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft's motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth-Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1-0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.

  18. A Satellite Data Analysis and CubeSat Instrument Simulator Tool for Simultaneous Multi-spacecraft Measurements of Solar Energetic Particles

    Science.gov (United States)

    Vannitsen, Jordan; Rizzitelli, Federico; Wang, Kaiti; Segret, Boris; Juang, Jyh-Ching; Miau, Jiun-Jih

    2017-12-01

    This paper presents a Multi-satellite Data Analysis and Simulator Tool (MDAST), developed with the original goal to support the science requirements of a Martian 3-Unit CubeSat mission profile named Bleeping Interplanetary Radiation Determination Yo-yo (BIRDY). MDAST was firstly designed and tested by taking into account the positions, attitudes, instruments field of view and energetic particles flux measurements from four spacecrafts (ACE, MSL, STEREO A, and STEREO B). Secondly, the simulated positions, attitudes and instrument field of view from the BIRDY CubeSat have been adapted for input. And finally, this tool can be used for data analysis of the measurements from the four spacecrafts mentioned above so as to simulate the instrument trajectory and observation capabilities of the BIRDY CubeSat. The onset, peak and end time of a solar particle event is specifically defined and identified with this tool. It is not only useful for the BIRDY mission but also for analyzing data from the four satellites aforementioned and can be utilized for other space weather missions with further customization.

  19. Spacecraft Fire Safety Research at NASA Glenn Research Center

    Science.gov (United States)

    Meyer, Marit

    2016-01-01

    Appropriate design of fire detection systems requires knowledge of both the expected fire signature and the background aerosol levels. Terrestrial fire detection systems have been developed based on extensive study of terrestrial fires. Unfortunately there is no corresponding data set for spacecraft fires and consequently the fire detectors in current spacecraft were developed based upon terrestrial designs. In low gravity, buoyant flow is negligible which causes particles to concentrate at the smoke source, increasing their residence time, and increasing the transport time to smoke detectors. Microgravity fires have significantly different structure than those in 1-g which can change the formation history of the smoke particles. Finally the materials used in spacecraft are different from typical terrestrial environments where smoke properties have been evaluated. It is critically important to detect a fire in its early phase before a flame is established, given the fixed volume of air on any spacecraft. Consequently, the primary target for spacecraft fire detection is pyrolysis products rather than soot. Experimental investigations have been performed at three different NASA facilities which characterize smoke aerosols from overheating common spacecraft materials. The earliest effort consists of aerosol measurements in low gravity, called the Smoke Aerosol Measurement Experiment (SAME), and subsequent ground-based testing of SAME smoke in 55-gallon drums with an aerosol reference instrument. Another set of experiments were performed at NASAs Johnson Space Center White Sands Test Facility (WSTF), with additional fuels and an alternate smoke production method. Measurements of these smoke products include mass and number concentration, and a thermal precipitator was designed for this investigation to capture particles for microscopic analysis. The final experiments presented are from NASAs Gases and Aerosols from Smoldering Polymers (GASP) Laboratory, with selected

  20. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    Science.gov (United States)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  1. Relativity time-delay experiments utilizing 'Mariner' spacecraft

    Science.gov (United States)

    Esposito, P. B.; Anderson, J. D.

    1974-01-01

    Relativity predicts that the transit time of a signal propagated from the earth to a spacecraft and retransmitted back to earth ought to exhibit an additional, variable time delay. The present work describes some of the analytical techniques employed in experiments using Mariner spacecraft designed to test the accuracy of this prediction. Two types of data are analyzed in these relativity experiments; these include phase-coherent, two-way Doppler shift and round-trip, transit-time measurements. Results of Mariner 6 and 7 relativistic time-delay experiments are in agreement with Einstein's theory of general relativity with an uncertainty of 3%.

  2. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  3. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  4. SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  5. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  6. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  7. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  8. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    Science.gov (United States)

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  9. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  10. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    very unusual properties of microbes. For ESA, this collection is an essential resource with which to evaluate the contamination potential of spacecraft-associated biology and validate new biological contamination control and reduction procedures.

  11. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Science.gov (United States)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  12. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  13. Multi-Spacecraft Study of Kinetic scale Turbulence Using MMS Observations in the Solar Wind

    Science.gov (United States)

    Chasapis, A.; Matthaeus, W. H.; Parashar, T.; Fuselier, S. A.; Maruca, B.; Burch, J.; Moore, T. E.; Phan, T.; Pollock, C. J.; Gershman, D. J.; Torbert, R. B.; Russell, C. T.; Strangeway, R. J.

    2017-12-01

    We present a study investigating kinetic scale turbulence in the solar wind. Most previous studies relied on single spacecraft measurements, employing the Taylor hypothesis in order to probe different scales. The small separation of MMS spacecraft, well below the ion inertial scale, allow us for the first time to directly probe turbulent fluctuations at the kinetic range. Using multi-spacecraft measurements, we are able to measure the spatial characteristics of turbulent fluctuations and compare with the traditional Taylor-based single spacecraft approach. Meanwhile, combining observations from Cluster and MMS data we were able to cover a wide range of scales from the inertial range where the turbulent cascade takes place, down to the kinetic range where the energy is eventually dissipated. These observations present an important step in understanding the nature of solar wind turbulence and the processes through which turbulent energy is dissipated into particle heating and acceleration. We compute statistical quantities such as the second order structure function and the scale-dependent kurtosis, along with their dependence on the parameters such as the mean magnetic field direction. Overall, we observe an overall agreement between the single spacecraft and the multi-spacecraft approach. However, a small but significant deviation is observed at the smaller scales near the electron inertial scale. The high values of the scale dependent kurtosis at very small scales, observed via two-point measurements, open up a compelling avenue of investigation for theory and numerical modelling.

  14. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  15. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    Science.gov (United States)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  16. Potentials of surfaces in space

    International Nuclear Information System (INIS)

    Whipple, E.C.

    1981-01-01

    The potential of a body in space is determined by a balance between various charging currents such as the transfer of charge from plasma particles, photoemission, and secondary electron emission. These processes are evaluated for bodies in the solar system and in interstellar space under the headings; an overview of charging, survey of early work on charging, charging processes, effects of non-isotropic plasmas and magnetic and electric fields, calculation of surface potentials, differential charging, potential barriers and discharge processes, measurements of potential, potential modification and control on spacecraft, and astrophysical applications. (U.K.)

  17. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    Science.gov (United States)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  18. X-Ray Detection and Processing Models for Spacecraft Navigation and Timing

    Science.gov (United States)

    Sheikh, Suneel; Hanson, John

    2013-01-01

    The current primary method of deepspace navigation is the NASA Deep Space Network (DSN). High-performance navigation is achieved using Delta Differential One-Way Range techniques that utilize simultaneous observations from multiple DSN sites, and incorporate observations of quasars near the line-of-sight to a spacecraft in order to improve the range and angle measurement accuracies. Over the past four decades, x-ray astronomers have identified a number of xray pulsars with pulsed emissions having stabilities comparable to atomic clocks. The x-ray pulsar-based navigation and time determination (XNAV) system uses phase measurements from these sources to establish autonomously the position of the detector, and thus the spacecraft, relative to a known reference frame, much as the Global Positioning System (GPS) uses phase measurements from radio signals from several satellites to establish the position of the user relative to an Earth-centered fixed frame of reference. While a GPS receiver uses an antenna to detect the radio signals, XNAV uses a detector array to capture the individual xray photons from the x-ray pulsars. The navigation solution relies on detailed xray source models, signal processing, navigation and timing algorithms, and analytical tools that form the basis of an autonomous XNAV system. Through previous XNAV development efforts, some techniques have been established to utilize a pulsar pulse time-of-arrival (TOA) measurement to correct a position estimate. One well-studied approach, based upon Kalman filter methods, optimally adjusts a dynamic orbit propagation solution based upon the offset in measured and predicted pulse TOA. In this delta position estimator scheme, previously estimated values of spacecraft position and velocity are utilized from an onboard orbit propagator. Using these estimated values, the detected arrival times at the spacecraft of pulses from a pulsar are compared to the predicted arrival times defined by the pulsar s pulse

  19. SHARP: A multi-mission artificial intelligence system for spacecraft telemetry monitoring and diagnosis

    Science.gov (United States)

    Lawson, Denise L.; James, Mark L.

    1989-01-01

    The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.

  20. Applicability of ISO 16697 Data to Spacecraft Fire Fighting Strategies

    Science.gov (United States)

    Hirsch, David B.; Beeson, Harold D.

    2012-01-01

    Presentation Agenda: (1) Selected variables affecting oxygen consumption during spacecraft fires, (2) General overview of ISO 16697, (3) Estimated amounts of material consumed during combustion in typical ISS enclosures, (4) Discussion on potential applications.

  1. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  2. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  3. Quaternion normalization in additive EKF for spacecraft attitude determination

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines, and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter (EKF) to spacecraft attitude determination, which is based on vector measurements. Two new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstrate the performance of all three schemes. A fourth scheme is suggested for future research. Although the schemes were tested for spacecraft attitude determination, the conclusions are general and hold for attitude determination of any three dimensional body when based on vector measurements, and use an additive EKF for estimation, and the quaternion for specifying the attitude.

  4. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    Science.gov (United States)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  5. First Results from ARTEMIS, A New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake

    Science.gov (United States)

    Halekas, J. S.; Angelopoulos, V.; Sibeck, D. G.; Khurana, K. K.; Russell, C. T.; Delory, G. T.; Farrell, W. M.; McFadden, J. P.; Bonnell, J. W.; Larson, D.; hide

    2014-01-01

    We present observations from the first passage through the lunar plasma wake by one of two spacecraft comprising ARTEMIS (Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun), a new lunar mission that re-tasks two of five probes from the THEMIS magnetospheric mission. On Feb 13, 2010, ARTEMIS probe P1 passed through the wake at approximately 3.5 lunar radii downstream from the Moon, in a region between those explored by Wind and the Lunar Prospector, Kaguya, Chandrayaan, and Chang'E missions. ARTEMIS observed interpenetrating proton, alpha particle, and electron populations refilling the wake along magnetic field lines from both flanks. The characteristics of these distributions match expectations from self-similar models of plasma expansion into vacuum, with an asymmetric character likely driven by a combination of a tilted interplanetary magnetic field and an anisotropic incident solar wind electron population. On this flyby, ARTEMIS provided unprecedented measurements of the interpenetrating beams of both electrons and ions naturally produced by the filtration and acceleration effects of electric fields set up during the refilling process. ARTEMIS also measured electrostatic oscillations closely correlated with counter-streaming electron beams in the wake, as previously hypothesized but never before directly measured. These observations demonstrate the capability of the comprehensively instrumented ARTEMIS spacecraft and the potential for new lunar science from this unique two spacecraft constellation.

  6. Trace Contaminant Monitor for Air in Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  7. In-Flight spacecraft magnetic field monitoring using scalar/vector gradiometry

    DEFF Research Database (Denmark)

    Primdahl, Fritz; Risbo, Torben; Merayo, José M.G.

    2006-01-01

    Earth magnetic field mapping from planetary orbiting satellites requires a spacecraft magnetic field environment control program combined with the deployment of the magnetic sensors on a boom in order to reduce the measurement error caused by the local spacecraft field. Magnetic mapping missions...... (Magsat, Oersted, CHAMP, SAC-C MMP and the planned ESA Swarm project) carry a vector magnetometer and an absolute scalar magnetometer for in-flight calibration of the vector magnetometer scale values and for monitoring of the inter-axes angles and offsets over time intervals from months to years...... sensors onboard the Oersted satellite. For Oersted, a large difference between the pre-flight determined spacecraft magnetic field and the in-flight estimate exists causing some concern about the general applicability of the dual sensors technique....

  8. System concepts and design examples for optical communication with planetary spacecraft

    Science.gov (United States)

    Lesh, James R.

    Systems concepts for optical communication with future deep-space (planetary) spacecraft are described. These include not only the optical transceiver package aboard the distant spacecraft, but the earth-vicinity optical-communications receiving station as well. Both ground-based, and earth-orbiting receivers are considered. Design examples for a number of proposed or potential deep-space missions are then presented. These include an orbital mission to Saturn, a Lander and Rover mission to Mars, and an astronomical mission to a distance of 1000 astronomical units.

  9. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  10. Electric Mars: The first direct measurement of an upper limit for the Martian "polar wind" electric potential

    Science.gov (United States)

    Collinson, Glyn; Mitchell, David; Glocer, Alex; Grebowsky, Joseph; Peterson, W. K.; Connerney, Jack; Andersson, Laila; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrei; Ma, Yingjuan; Bougher, Steven; Lillis, Robert; Ergun, Robert; Jakosky, Bruce

    2015-11-01

    An important mechanism in the generation of polar wind outflow is the ambipolar electric potential which assists ions in overcoming gravity and is a key mechanism for Terrestrial ionospheric escape. At Mars, open field lines are not confined to the poles, and outflow of ionospheric electrons is observed far into the tail. It has thus been hypothesized that a similar electric potential may be present at Mars, contributing to global ionospheric loss. However, no direct measurements of this potential have been made. In this pilot study, we examine photoelectron spectra measured by the Solar Wind Electron Analyzer instrument on the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout to put an initial upper bound on the total potential drop in the ionosphere of Mars of Φ♂ ≾⊥ 2V , with the possibility of a further ≾4.5 V potential drop above this in the magnetotail. If the total potential drop was close to the upper limit, then strong outflows of major ionospheric species (H+, O+, and O2+) would be expected. However, if most of the potential drop is confined below the spacecraft, as expected by current theory, then such a potential would not be sufficient on its own to accelerate O2+ to escape velocities, but would be sufficient for lighter ions. However, any potential would contribute to atmospheric loss through the enhancement of Jeans escape.

  11. Physical Properties of Asteroid (10302) 1989 ML, a Potential Spacecraft Target, from Spitzer Observations

    Science.gov (United States)

    Mueller, Michael; Harris, A. W.

    2006-09-01

    We report on results from recent Spitzer observations of near-Earth asteroid (10302) 1989 ML, which is among the lowest-ranking objects in terms of the specific momentum Δv required to reach it from Earth. It was originally considered as a target for Hayabusa and is now under consideration as a target of the planned ESA mission Don Quijote. Unfortunately, little is known about the physical properties of 1989 ML, in particular its size and albedo are unknown. Its exhibits an X type reflection spectrum, so depending on its albedo, 1989 ML may be an E, M, or P type asteroid. Provisional results from thermal-infrared observations carried out with Spitzer indicate that the albedo of 1989 ML is compatible with an M- or E-type classification. We will discuss our results and their implications for the physical properties and the rotation period of 1989 ML, and its importance as a potential spacecraft target. This work is based on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  12. FIRST MEASUREMENTS OF THE MASS OF CORONAL MASS EJECTIONS FROM THE EUV DIMMING OBSERVED WITH STEREO EUVI A+B SPACECRAFT

    International Nuclear Information System (INIS)

    Aschwanden, Markus J.; Nitta, Nariaki V.; Wuelser, Jean-Pierre; Lemen, James R.; Sandman, Anne; Vourlidas, Angelos; Colaninno, Robin C.

    2009-01-01

    The masses of coronal mass ejections (CMEs) have traditionally been determined from white-light coronagraphs (based on Thomson scattering of electrons), as well as from extreme ultraviolet (EUV) dimming observed with one spacecraft. Here we develop an improved method of measuring CME masses based on EUV dimming observed with the dual STEREO/EUVI spacecraft in multiple temperature filters that includes three-dimensional volume and density modeling in the dimming region and background corona. As a test, we investigate eight CME events with previous mass determinations from STEREO/COR2, of which six cases are reliably detected with the Extreme Ultraviolet Imager (EUVI) using our automated multi-wavelength detection code. We find CME masses in the range of m CME = (2-7) x 10 15 g. The agreement between the two EUVI/A and B spacecraft is m A /m B = 1.3 ± 0.6 and the consistency with white-light measurements by COR2 is m EUVI /m COR2 = 1.1 ± 0.3. The consistency between EUVI and COR2 implies no significant mass backflows (or inflows) at r sun and adequate temperature coverage for the bulk of the CME mass in the range of T ∼ 0.5-3.0 MK. The temporal evolution of the EUV dimming allows us to also model the evolution of the CME density n e (t), volume V(t), height-time h(t), and propagation speed v(t) in terms of an adiabatically expanding self-similar geometry. We determine e-folding EUV dimming times of t D = 1.3 ± 1.4 hr. We test the adiabatic expansion model in terms of the predicted detection delay (Δt ∼ 0.7 hr) between EUVI and COR2 for the fastest CME event (2008 March 25) and find good agreement with the observed delay (Δt ∼ 0.8 hr).

  13. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  14. Optimal Weighting of Multi-Spacecraft Data to Estimate Gradients of Physical Fields

    Science.gov (United States)

    Chanteur, G. M.; Le Contel, O.; Sahraoui, F.; Retino, A.; Mirioni, L.

    2016-12-01

    Multi-spacecraft missions like the ESA mission CLUSTER and the NASA mission MMS are essential to improve our understanding of physical processes in space plasmas. Several methods were designed in the 90's during the preparation phase of the CLUSTER mission to estimate gradients of physical fields from simultaneous multi-points measurements [1, 2]. Both CLUSTER and MMS involve four spacecraft with identical full scientific payloads including various sensors of electromagnetic fields and different type of particle detectors. In the standard methods described in [1, 2], which are presently in use, data from the four spacecraft have identical weights and the estimated gradients are most reliable when the tetrahedron formed by the four spacecraft is regular. There are three types of errors affecting the estimated gradients (see chapter 14 in [1]) : i) truncature errors are due to local non-linearity of spatial variations, ii) physical errors are due to instruments, and iii) geometrical errors are due to uncertainties on the positions of the spacecraft. An assessment of truncature errors for a given observation requires a theoretical model of the measured field. Instrumental errors can easily be taken into account for a given geometry of the cluster but are usually less than the geometrical errors which diverge quite fast when the tetrahedron flattens, a circumstance occurring twice per orbit of the cluster. Hence reliable gradients can be estimated only on part of the orbit. Reciprocal vectors of the tetrahedron were presented in chapter 4 of [1], they have the advantage over other methods to treat the four spacecraft symmetrically and to allow a theoretical analysis of the errors (see chapters 4 of [1] and 4 of [2]). We will present Generalized Reciprocal Vectors for weighted data and an optimization procedure to improve the reliability of the estimated gradients when the tetrahedron is not regular. A brief example using CLUSTER or MMS data will be given. This approach

  15. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  16. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    Science.gov (United States)

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  17. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  18. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    Directory of Open Access Journals (Sweden)

    Xiaokun Liu

    2016-04-01

    Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  19. Spacecraft electrical power subsystem: Failure behavior, reliability, and multi-state failure analyses

    International Nuclear Information System (INIS)

    Kim, So Young; Castet, Jean-Francois; Saleh, Joseph H.

    2012-01-01

    This article investigates the degradation and failure behavior of spacecraft electrical power subsystem (EPS) on orbit. First, this work provides updated statistical reliability and multi-state failure analyses of spacecraft EPS and its different constituents, namely the batteries, the power distribution, and the solar arrays. The EPS is shown to suffer from infant mortality and to be a major driver of spacecraft unreliability. Over 25% of all spacecraft failures are the result of EPS failures. As a result, satellite manufacturers may wish to pursue targeted improvement to this subsystem, either through better testing or burn-in procedures, better design or parts selection, or additional redundancy. Second, this work investigates potential differences in the EPS degradation and failure behavior for spacecraft in low earth orbits (LEO) and geosynchronous orbits (GEO). This analysis was motivated by the recognition that the power/load cycles and the space environment are significantly different in LEO and GEO, and as such, they may result in different failure behavior for the EPS in these two types of orbits. The results indicate, and quantify the extent to which, the EPS fails differently in LEO and GEO, both in terms of frequency and severity of failure events. A casual summary of the findings can be stated as follows: the EPS fails less frequently but harder (with fatal consequences to the spacecraft) in LEO than in GEO.

  20. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  1. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  2. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  3. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  4. Using neuromorphic optical sensors for spacecraft absolute and relative navigation

    Science.gov (United States)

    Shake, Christopher M.

    We develop a novel attitude determination system (ADS) for use on nano spacecraft using neuromorphic optical sensors. The ADS intends to support nano-satellite operations by providing low-cost, low-mass, low-volume, low-power, and redundant attitude determination capabilities with quick and straightforward onboard programmability for real time spacecraft operations. The ADS is experimentally validated with commercial-off-the-shelf optical devices that perform sensing and image processing on the same circuit board and are biologically inspired by insects' vision systems, which measure optical flow while navigating in the environment. The firmware on the devices is modified to both perform the additional biologically inspired task of tracking objects and communicate with a PC/104 form-factor embedded computer running Real Time Application Interface Linux used on a spacecraft simulator. Algorithms are developed for operations using optical flow, point tracking, and hybrid modes with the sensors, and the performance of the system in all three modes is assessed using a spacecraft simulator in the Advanced Autonomous Multiple Spacecraft (ADAMUS) laboratory at Rensselaer. An existing relative state determination method is identified to be combined with the novel ADS to create a self-contained navigation system for nano spacecraft. The performance of the method is assessed in simulation and found not to match the results from its authors using only conditions and equations already published. An improved target inertia tensor method is proposed as an update to the existing relative state method, but found not to perform as expected, but is presented for others to build upon.

  5. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  6. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  7. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  8. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  9. Orbit Determination of Spacecraft in Earth-Moon L1 and L2 Libration Point Orbits

    Science.gov (United States)

    Woodard, Mark; Cosgrove, Daniel; Morinelli, Patrick; Marchese, Jeff; Owens, Brandon; Folta, David

    2011-01-01

    measurements that would be needed to meet the required orbit determination accuracies. Analysts used the Orbit Determination Error Analysis System (ODEAS) to perform covariance analyses using various tracking data schedules. From this analysis, it was determined that 3.5 hours of DSN TRK-2-34 range and Doppler tracking data every other day would suffice to meet the predictive orbit knowledge accuracies in the Lissajous region. The results of this analysis are presented. Both GTDS and ODTK have high-fidelity environmental orbit force models that allow for very accurate orbit estimation in the lunar Lissajous regime. These models include solar radiation pressure, Earth and Moon gravity models, third body gravitational effects from the Sun, and to a lesser extent third body gravitational effects from Jupiter, Venus, Saturn, and Mars. Increased position and velocity uncertainties following each maneuver, due to small execution performance errors, requires that several days of post-maneuver tracking data be processed to converge on an accurate post-maneuver orbit solution. The effects of maneuvers on orbit determination accuracy will be presented, including a comparison of the batch least squares technique to the extended Kalman filter/smoother technique. We will present the maneuver calibration results derived from processing post-maneuver tracking data. A dominant error in the orbit estimation process is the uncertainty in solar radiation pressure and the resultant force on the spacecraft. An estimation of this value can include many related factors, such as the uncertainty in spacecraft reflectivity and surface area which is a function of spacecraft orientation (spin-axis attitude), uncertainty in spacecraft wet mass, and potential seasonal variability due to the changing direction of the Sun line relative to the Earth-Moon Lissajous reference frame. In addition, each spacecraft occasionally enters into Earth or Moon penumbra or umbra and these shadow crossings reduche solar

  10. Space Evaporator Absorber Radiator (SEAR) for Thermal Storage on Manned Spacecraft

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future manned exploration spacecraft will need to operate in challenging thermal environments. State-of-the-art technology for active thermal control relies on sublimating water ice and venting the vapor overboard in very hot environments, and or heavy phase change material heat exchangers for thermal storage. These approaches can lead to large loss of water and a significant mass penalties for the spacecraft. This paper describes an innovative thermal control system that uses a Space Evaporator Absorber Radiator (SEAR) to control spacecraft temperatures in highly variable environments without venting water. SEAR uses heat pumping and energy storage by LiCl/water absorption to enable effective cooling during hot periods and regeneration during cool periods. The LiCl absorber technology has the potential to absorb over 800 kJ per kg of system mass, compared to phase change heat sink systems that typically achieve approx. 50 kJ/kg. This paper describes analysis models to predict performance and optimize the size of the SEAR system, estimated size and mass of key components, and an assessment of potential mass savings compared with alternative thermal management approaches. We also describe a concept design for an ISS test package to demonstrate operation of a subscale system in zero gravity.

  11. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  12. Omni-directional Particle Detector (ODPD) on Tiangong-2 Spacecraft

    Science.gov (United States)

    Guohong, S.; Zhang, S.; Yang, X.; Wang, C.

    2017-12-01

    Tiangong-2 spacecraft is the second space laboratory independently developed by china after Tiangong-1, which was launched on 15 September 2016. It is also the first real space laboratory in china, which will be used to further validate the space rendezvous and docking technology and to carry out a series of space tests. The spacecraft's orbit is 350km height and 42° inclination. The omni-directional particle detector (ODPD) on Tiangong-2 spacecraft is a new instrument developed by China. Its goal is the anisotropy and energy spectra of space particles on manned space flight orbit. The ODPD measures the energy spectra and pitch angle distributions of high energy electrons and protons. It consists of one electron spectrum telescope, one proton spectrum telescope and sixteen directional flux telescopes. The ODPD is designed to measure the protons spectrum from 2.5MeV to 150MeV, electrons spectrum from 0.2MeV to 1.5MeV, the flux of electrons energy >200keV and protons energy>1.5MeV on 2∏ space, also the ODPD has a small sensor to measure the LET spectrum from 1-100MeV/cm2sr. The primary advantage can give the particle's pitch angle distributions at any time because of the sixteen flux telescopes arrange form 0 to 180 degree. This is the first paper dealing with ODPD data, so we firstly spend some time describing the instrument, its theory of operation and its calibration. Then we give the preliminary detecting results.

  13. Protection of surface assets on Mars from wind blown jettisoned spacecraft components

    Science.gov (United States)

    Paton, Mark

    2017-07-01

    Jettisoned Entry, Descent and Landing System (EDLS) hardware from landing spacecraft have been observed by orbiting spacecraft, strewn over the Martian surface. Future Mars missions that land spacecraft close to prelanded assets will have to use a landing architecture that somehow minimises the possibility of impacts from these jettisoned EDLS components. Computer modelling is used here to investigate the influence of wind speed and direction on the distribution of EDLS components on the surface. Typical wind speeds encountered in the Martian Planetary Boundary Layer (PBL) were found to be of sufficient strength to blow items having a low ballistic coefficient, i.e. Hypersonic Inflatable Aerodynamic Decelerators (HIADs) or parachutes, onto prelanded assets even when the lander itself touches down several kilometres away. Employing meteorological measurements and careful characterisation of the Martian PBL, e.g. appropriate wind speed probability density functions, may then benefit future spacecraft landings, increase safety and possibly help reduce the delta v budget for Mars landers that rely on aerodynamic decelerators.

  14. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  15. Measurement of Charged Particle Interactions in Spacecraft and Planetary Habitat Shielding Materials

    Science.gov (United States)

    Zeitlin, Cary J.; Heilbronn, Lawrence H.; Miller, Jack; Wilson, John W.; Singleterry, Robert C., Jr.

    2003-01-01

    observed (slight) energy dependence. An additional set of data will be presented from an analysis of shielding material performance in the 1 GeV/nucleon iron beam at the AGS. A wide variety of candidate materials for spacecraft construction, as well as elemental targets, have been placed in this beam and their effects on transmitted dose and dose equivalent measured. The results support a prediction by J. Wilson et al. that hydrogen-loaded materials give the greatest dose reduction per unit mass.

  16. The interaction of a flowing plasma with a dipole magnetic field: measurements and modelling of a diamagnetic cavity relevant to spacecraft protection

    International Nuclear Information System (INIS)

    Bamford, R; Bradford, J; Bingham, R; Gargate, L; Hapgood, M; Stamper, R; Gibson, K J; Thornton, A J; Silva, L O; Fonseca, R A; Norberg, C; Todd, T

    2008-01-01

    Here we describe a new experiment to test the shielding concept of a dipole-like magnetic field and plasma, surrounding a spacecraft forming a 'mini magnetosphere'. Initial laboratory experiments have been conducted to determine the effectiveness of a magnetized plasma barrier to be able to expel an impacting, low beta, supersonic flowing energetic plasma representing the solar wind. Optical and Langmuir probe data of the plasma density, the plasma flow velocity and the intensity of the dipole field clearly show the creation of a narrow transport barrier region and diamagnetic cavity virtually devoid of energetic plasma particles. This demonstrates the potential viability of being able to create a small 'hole' in a solar wind plasma, of the order of the ion Larmor orbit width, in which an inhabited spacecraft could reside in relative safety. The experimental results have been quantitatively compared with a 3D particle-in-cell 'hybrid' code simulation that uses kinetic ions and fluid electrons, showing good qualitative agreement and excellent quantitative agreement. Together the results demonstrate the pivotal role of particle kinetics in determining generic plasma transport barriers.

  17. On-Orbit 3-Dimensional Electrostatic Detumble for Generic Spacecraft Geometries

    Science.gov (United States)

    Bennett, Trevor J.

    In recent years, there is a growing interest in active debris removal and on-orbit servicing of Earth orbiting assets. The growing need for such approaches is often exemplified by the Iridium-Kosmos collision in 2009 that generated thousands of debris fragments. There exists a variety of active debris removal and on-orbit servicing technologies in development. Conventional docking mechanisms and mechanical capture by actuated manipulators, exemplified by NASA's Restore-L mission, require slow target tumble rates or more aggressive circumnavigation rate matching. The tumble rate limitations can be overcome with flexible capture systems such nets, harpoons, or tethers yet these systems require complex deployment, towing, and/or interfacing strategies to avoid servicer and target damage. Alternatively, touchless methods overcome the tumble rate limitations by provide detumble control prior to a mechanical interface. This thesis explores electrostatic detumble technology to touchlessly reduce large target rotation rates of Geostationary satellites and debris. The technical challenges preceding flight implementation largely reside in the long-duration formation flying guidance, navigation, and control of a servicer spacecraft equipped with electrostatic charge transfer capability. Leveraging prior research into the electrostatic charging of spacecraft, electrostatic detumble control formulations are developed for both axisymmetric and generic target geometries. A novel relative position vector and associated relative orbit control approach is created to manage the long-duration proximity operations. Through detailed numerical simulations, the proposed detumble and relative motion control formulations demonstrate detumble of several thousand kilogram spacecraft tumbling at several degrees per second in only several days. The availability, either through modeling or sensing, of the relative attitude, relative position, and electrostatic potential are among key concerns

  18. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  19. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  20. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    Science.gov (United States)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  1. Guidance and Navigation for Rendezvous and Proximity Operations with a Non-Cooperative Spacecraft at Geosynchronous Orbit

    Science.gov (United States)

    Barbee, Brent William; Carpenter, J. Russell; Heatwole, Scott; Markley, F. Landis; Moreau, Michael; Naasz, Bo J.; VanEepoel, John

    2010-01-01

    The feasibility and benefits of various spacecraft servicing concepts are currently being assessed, and all require that the servicer spacecraft perform rendezvous, proximity, and capture operations with the target spacecraft to be serviced. Many high-value spacecraft, which would be logical targets for servicing from an economic point of view, are located in geosynchronous orbit, a regime in which autonomous rendezvous and capture operations are not commonplace. Furthermore, existing GEO spacecraft were not designed to be serviced. Most do not have cooperative relative navigation sensors or docking features, and some servicing applications, such as de-orbiting of a non-functional spacecraft, entail rendezvous and capture with a spacecraft that may be non-functional or un-controlled. Several of these challenges have been explored via the design of a notional mission in which a nonfunctional satellite in geosynchronous orbit is captured by a servicer spacecraft and boosted into super-synchronous orbit for safe disposal. A strategy for autonomous rendezvous, proximity operations, and capture is developed, and the Orbit Determination Toolbox (ODTBX) is used to perform a relative navigation simulation to assess the feasibility of performing the rendezvous using a combination of angles-only and range measurements. Additionally, a method for designing efficient orbital rendezvous sequences for multiple target spacecraft is utilized to examine the capabilities of a servicer spacecraft to service multiple targets during the course of a single mission.

  2. Mean of Microaccelerations Estimate in the Small Spacecraft Internal Environment with the Use of Fuzzy Sets

    Science.gov (United States)

    Sedelnikov, A. V.

    2018-05-01

    Assessment of parameters of rotary motion of the small spacecraft around its center of mass and of microaccelerations using measurements of current from silicon photocells is carried out. At the same time there is a problem of interpretation of ambiguous telemetric data. Current from two opposite sides of the small spacecraft is significant. The mean of removal of such uncertainty is considered. It is based on an fuzzy set. As membership function it is offered to use a normality condition of the direction cosines. The example of uncertainty removal for a prototype of the Aist small spacecraft is given. The offered approach can significantly increase the accuracy of microaccelerations estimate when using measurements of current from silicon photocells.

  3. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  4. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  5. Coupling dynamic analysis of spacecraft with multiple cylindrical tanks and flexible appendages

    Science.gov (United States)

    Wu, Wen-Jun; Yue, Bao-Zeng; Huang, Hua

    2016-02-01

    This paper is mainly concerned with the coupling dynamic analysis of a complex spacecraft consisting of one main rigid platform, multiple liquid-filled cylindrical tanks, and a number of flexible appendages. Firstly, the carrier potential function equations of liquid in the tanks are deduced according to the wall boundary conditions. Through employing the Fourier-Bessel series expansion method, the dynamic boundaries conditions on a curved free-surface under a low-gravity environment are transformed to general simple differential equations and the rigid-liquid coupled sloshing dynamic state equations of liquid in tanks are obtained. The state vectors of rigid-liquid coupled equations are composed with the modal coordinates of the relative potential function and the modal coordinates of wave height. Based on the Bernoulli-Euler beam theory and the D'Alembert's principle, the rigid-flexible coupled dynamic state equations of flexible appendages are directly derived, and the coordinate transform matrixes of maneuvering flexible appendages are precisely computed as time-varying. Then, the coupling dynamics state equations of the overall system of the spacecraft are modularly built by means of the Lagrange's equations in terms of quasi-coordinates. Lastly, the coupling dynamic performances of a typical complex spacecraft are studied. The availability and reliability of the presented method are also confirmed.

  6. Methodology for Developing a Probabilistic Risk Assessment Model of Spacecraft Rendezvous and Dockings

    Science.gov (United States)

    Farnham, Steven J., II; Garza, Joel, Jr.; Castillo, Theresa M.; Lutomski, Michael

    2011-01-01

    In 2007 NASA was preparing to send two new visiting vehicles carrying logistics and propellant to the International Space Station (ISS). These new vehicles were the European Space Agency s (ESA) Automated Transfer Vehicle (ATV), the Jules Verne, and the Japanese Aerospace and Explorations Agency s (JAXA) H-II Transfer Vehicle (HTV). The ISS Program wanted to quantify the increased risk to the ISS from these visiting vehicles. At the time, only the Shuttle, the Soyuz, and the Progress vehicles rendezvoused and docked to the ISS. The increased risk to the ISS was from an increase in vehicle traffic, thereby, increasing the potential catastrophic collision during the rendezvous and the docking or berthing of the spacecraft to the ISS. A universal method of evaluating the risk of rendezvous and docking or berthing was created by the ISS s Risk Team to accommodate the increasing number of rendezvous and docking or berthing operations due to the increasing number of different spacecraft, as well as the future arrival of commercial spacecraft. Before the first docking attempt of ESA's ATV and JAXA's HTV to the ISS, a probabilistic risk model was developed to quantitatively calculate the risk of collision of each spacecraft with the ISS. The 5 rendezvous and docking risk models (Soyuz, Progress, Shuttle, ATV, and HTV) have been used to build and refine the modeling methodology for rendezvous and docking of spacecrafts. This risk modeling methodology will be NASA s basis for evaluating the addition of future ISS visiting spacecrafts hazards, including SpaceX s Dragon, Orbital Science s Cygnus, and NASA s own Orion spacecraft. This paper will describe the methodology used for developing a visiting vehicle risk model.

  7. Potential measurements in tandem mirrors

    International Nuclear Information System (INIS)

    Glowienka, J.C.

    1985-11-01

    The US mirror program has begun conducting experiments with a thermal barrier tandem mirror configuration. This configuration requires a specific axial potential profile and implies measurements of potential for documentation and optimization of the configuration. This report briefly outlines the motivation for the thermal barrier tandem mirror and then outlines the techniques used to document the potential profile in conventional and thermal barrier tandem mirrors. Examples of typical data sets from the world's major tandem mirror experiments, TMX and TMX-U at Lawrence Livermore National Laboratory (LLNL) and Gamma 10 at Tsukuba University in Japan, and the current interpretation of the data are discussed together with plans for the future improvement of measurements of plasma potential

  8. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  9. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  10. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  11. Time-dependent polar distribution of outgassing from a spacecraft

    Science.gov (United States)

    Scialdone, J. J.

    1974-01-01

    A technique has been developed to obtain a characterization of the self-generated environment of a spacecraft and its variation with time, angular position, and distance. The density, pressure, outgassing flux, total weight loss, and other important parameters were obtained from data provided by two mass measuring crystal microbalances, mounted back to back, at distance of 1 m from the spacecraft equivalent surface. A major outgassing source existed at an angular position of 300 deg to 340 deg, near the rocket motor, while the weakest source was at the antennas. The strongest source appeared to be caused by a material diffusion process which produced a directional density at 1 m distance of about 1.6 x 10 to the 11th power molecules/cu cm after 1 hr in vacuum and decayed to 1.6 x 10 to the 9th power molecules/cu cm after 200 hr. The total average outgassing flux at the same distance and during the same time span changed from 1.2 x 10 to the minus 7th power to 1.4 x to the minus 10th power g/sq cm/s. These values are three times as large at the spacecraft surface. Total weight loss was 537 g after 10 hr and about 833 g after 200 hr. Self-contamination of the spacecraft was equivalent to that in orbit at about 300-km altitude.

  12. Evaluation of spacecraft technology programs (effects on communication satellite business ventures), volume 1

    Science.gov (United States)

    Greenburg, J. S.; Gaelick, C.; Kaplan, M.; Fishman, J.; Hopkins, C.

    1985-01-01

    Commercial organizations as well as government agencies invest in spacecraft (S/C) technology programs that are aimed at increasing the performance of communications satellites. The value of these programs must be measured in terms of their impacts on the financial performane of the business ventures that may ultimately utilize the communications satellites. An economic evaluation and planning capability was developed and used to assess the impact of NASA on-orbit propulsion and space power programs on typical fixed satellite service (FSS) and direct broadcast service (DBS) communications satellite business ventures. Typical FSS and DBS spin and three-axis stabilized spacecraft were configured in the absence of NASA technology programs. These spacecraft were reconfigured taking into account the anticipated results of NASA specified on-orbit propulsion and space power programs. In general, the NASA technology programs resulted in spacecraft with increased capability. The developed methodology for assessing the value of spacecraft technology programs in terms of their impact on the financial performance of communication satellite business ventures is described. Results of the assessment of NASA specified on-orbit propulsion and space power technology programs are presented for typical FSS and DBS business ventures.

  13. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  14. Research supporting potential modification of the NASA specification for dry heat microbial reduction of spacecraft hardware

    Science.gov (United States)

    Spry, James A.; Beaudet, Robert; Schubert, Wayne

    Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.

  15. A design for a reusable water-based spacecraft known as the spacecoach

    CERN Document Server

    McConnell, Brian

    2016-01-01

     Based on components already in existence, this manual details a reference design for an interplanetary spacecraft that is simple, durable, fully reusable and comprised mostly of water. Using such an accessible material leads to a spacecraft architecture that is radically simpler, safer and cheaper than conventional capsule based designs. If developed, the potential affordability of the design will substantially open all of the inner solar system to human exploration. A spacecraft that is comprised mostly of water will be much more like a living cell or a terrarium than a conventional rocket and capsule design. It will use water for many purposes before it is superheated in electric engines for propulsion, purposes which include radiation shielding, heat management, basic life support, crew consumption and comfort. The authors coined the term "spacecoaches" to describe them, as an allusion to the Prairie Schooners of the Old West, which were simple, rugged, and could live off the land.

  16. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    Science.gov (United States)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  17. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  18. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  19. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  20. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  1. Differential Evolution Optimization for Targeting Spacecraft Maneuver Plans

    Science.gov (United States)

    Mattern, Daniel

    2016-01-01

    Previous analysis identified specific orbital parameters as being safer for conjunction avoidance for the TDRS fleet. With TDRS-9 being considered an at-risk spacecraft, a potential conjunction concern was raised should TDRS-9 fail while at a longitude of 12W. This document summarizes the analysis performed to identify if these specific orbital parameters could be targeted using the remaining drift-termination maneuvers for the relocation of TDRS-9 from 41W longitude to 12W longitude.

  2. An Evaluation of a High Pressure Regulator for NASA's Robotic Lunar Lander Spacecraft

    Science.gov (United States)

    Burnside, Christopher G.; Trinh, Huu P.; Pedersen, Kevin W.

    2013-01-01

    The Robotic Lunar Lander (RLL) development project office at NASA Marshall Space Flight Center is currently studying several lunar surface science mission concepts. The focus is on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface or other air-less bodies in the solar system. Initial trade studies of launch vehicle options indicate the spacecraft will be significantly mass and volume constrained. Because of the investment by the DOD in low mass, highly volume efficient components, NASA has investigated the potential integration of some of these technologies in space science applications. A 10,000 psig helium pressure regulator test activity has been conducted as part of the overall risk reduction testing for the RLL spacecraft. The regulator was subjected to typical NASA acceptance testing to assess the regulator response to the expected RLL mission requirements. The test results show the regulator can supply helium at a stable outlet pressure of 740 psig within a +/- 5% tolerance band and maintain a lock-up pressure less than the +5% above nominal outlet pressure for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for the internal seat leakage at lock-up and less than 10-5 SCCS for external leakage through the regulator body. The successful test has shown the potential for 10,000 psig helium systems in NASA spacecraft and has reduced risk associated with hardware availability and hardware ability to meet RLL mission requirements.

  3. Detection of gravitational radiation by the Doppler tracking of spacecraft

    International Nuclear Information System (INIS)

    Mashhoon, B.

    1979-01-01

    It has been suggested that the residual Doppler shift in the precision electromagnetic tracking of spacecraft be used to search for gravitational radiation that may be incident on the Earth-spacecraft system. The influence of a gravitational wave on the Doppler shift is calculated, and it is found that the residual shift is dominated by two terms: one is due to the passage of electromagnetic waves through the gravitational radiation field, and the other depends on the change in the relative velocity of the Earth and the spacecraft caused by the external wave. A detailed analysis is given of the influence of gravitational radiation on a binary system with an orbital size small compared to the wavelength of the incident radiation. It is shown that, as a consequence of the interaction with the external wave, the system makes a transition from one Keplerian orbit into another which, in general, has a different energy and angular momentum. It is therefore proposed to search for such effects in the solar system. Observations of the orbit of an artificial Earth satellite, the lunar orbit, and especially the planetary orbits offer exciting possibilities for the detection of gravitational waves of various wavelengths. From the results of the lunar laser ranging experiment and the range measurement to Mars, certain interesting limits may be established on the frequency of incidence of gravitational waves of a given flux on the Earth-Moon and the Earth-Mars systems. This is followed by a brief and preliminary analysis of the possibility of detecting gravitational radiation by measuring a residual secular Doppler shift in the satellite-to-satellite Doppler tracking of two counterorbiting drag-free spacecraft around the Earth as in the Van Patten-Everitt experiment

  4. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  5. Toward Accurate On-Ground Attitude Determination for the Gaia Spacecraft

    Science.gov (United States)

    Samaan, Malak A.

    2010-03-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.

  6. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  7. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  8. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  9. Design feasibility via ascent optimality for next-generation spacecraft

    Science.gov (United States)

    Miele, A.; Mancuso, S.

    This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).

  10. Simulation of Tomographic Reconstruction of Magnetosphere Plasma Distribution By Multi-spacecraft Systems.

    Science.gov (United States)

    Kunitsyn, V.; Nesterov, I.; Andreeva, E.; Zelenyi, L.; Veselov, M.; Galperin, Y.; Buchner, J.

    A satellite radiotomography method for electron density distributions was recently proposed for closely-space multi-spacecraft group of high-altitude satellites to study the physics of reconnection process. The original idea of the ROY project is to use a constellation of spacecrafts (one main and several sub-satellites) in order to carry out closely-spaced multipoint measurements and 2D tomographic reconstruction of elec- tron density in the space between the main satellite and the subsatellites. The distances between the satellites were chosen to vary from dozens to few hundreds of kilometers. The easiest data interpretation is achieved when the subsatellites are placed along the plasma streamline. Then, whenever a plasma density irregularity moves between the main satellite and the subsatellites it will be scanned in different directions and we can get 2D distribution of plasma using these projections. However in general sub- satellites are not placed exactly along the plasma streamline. The method of plasma velocity determination relative to multi-spacecraft systems is considered. Possibilities of 3D tomographic imaging using multi-spacecraft systems are analyzed. The model- ing has shown that efficient scheme for 3D tomographic imaging would be to place spacecrafts in different planes so that the angle between the planes would make not more then ten degrees. Work is supported by INTAS PROJECT 2000-465.

  11. GEOS-2 measurements of cold ions in the magnetosheath

    International Nuclear Information System (INIS)

    Rodgers, D.J.; Johnstone, A.D.; Sojka, J.J.

    1985-01-01

    The Suprathermal Plasma Analysers on GEOS-2 are able to make differential energy measurements of plasma particles down to sub-eV energies because the entire sensor package can be biased relative to the spacecraft. When the package is biased negatively with respect to space potential, low energy positive ions are sucked in and are more easily detected against the background. Large fluxes of ions with temperatures of the order of 1 eV or less were consistently detected at space potential when the spacecraft was in the magnetosheath though not when it was in the nearby magnetosphere. This apparent geophysical correlation, suggesting that the ions were part of the magnetosheath ion population, was contradicted by the fact that the ions showed no signs of the large drift velocity associated with the electric field in the magnetosheath. It is concluded, after further investigation, that the observed ions were probably sputtered as neutrals from the spacecraft surface by the impact of solar wind ions and subsequently ionized by sunlight or electron impact. The effect of sputtering by solar wind ions has not been previously observed, although it could have consequences for the long-term stability of spacecraft surfaces. (author)

  12. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Science.gov (United States)

    Bevilacqua, R.; Lehmann, T.; Romano, M.

    2011-04-01

    This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

  13. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  14. Light Curve Simulation Using Spacecraft CAD Models and Empirical Material Spectral BRDFS

    Science.gov (United States)

    Willison, A.; Bedard, D.

    This paper presents a Matlab-based light curve simulation software package that uses computer-aided design (CAD) models of spacecraft and the spectral bidirectional reflectance distribution function (sBRDF) of their homogenous surface materials. It represents the overall optical reflectance of objects as a sBRDF, a spectrometric quantity, obtainable during an optical ground truth experiment. The broadband bidirectional reflectance distribution function (BRDF), the basis of a broadband light curve, is produced by integrating the sBRDF over the optical wavelength range. Colour-filtered BRDFs, the basis of colour-filtered light curves, are produced by first multiplying the sBRDF by colour filters, and integrating the products. The software package's validity is established through comparison of simulated reflectance spectra and broadband light curves with those measured of the CanX-1 Engineering Model (EM) nanosatellite, collected during an optical ground truth experiment. It is currently being extended to simulate light curves of spacecraft in Earth orbit, using spacecraft Two-Line-Element (TLE) sets, yaw/pitch/roll angles, and observer coordinates. Measured light curves of the NEOSSat spacecraft will be used to validate simulated quantities. The sBRDF was chosen to represent material reflectance as it is spectrometric and a function of illumination and observation geometry. Homogeneous material sBRDFs were obtained using a goniospectrometer for a range of illumination and observation geometries, collected in a controlled environment. The materials analyzed include aluminum alloy, two types of triple-junction photovoltaic (TJPV) cell, white paint, and multi-layer insulation (MLI). Interpolation and extrapolation methods were used to determine the sBRDF for all possible illumination and observation geometries not measured in the laboratory, resulting in empirical look-up tables. These look-up tables are referenced when calculating the overall sBRDF of objects, where

  15. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  16. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  17. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  18. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  19. Four-Spacecraft Magnetic Curvature and Vorticity Analyses on Kelvin-Helmholtz Waves in MHD Simulations

    Science.gov (United States)

    Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit

    2018-01-01

    Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.

  20. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  1. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    Science.gov (United States)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  2. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    Science.gov (United States)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  3. Comparison of candidate solar array maximum power utilization approaches. [for spacecraft propulsion

    Science.gov (United States)

    Costogue, E. N.; Lindena, S.

    1976-01-01

    A study was made of five potential approaches that can be utilized to detect the maximum power point of a solar array while sustaining operations at or near maximum power and without endangering stability or causing array voltage collapse. The approaches studied included: (1) dynamic impedance comparator, (2) reference array measurement, (3) onset of solar array voltage collapse detection, (4) parallel tracker, and (5) direct measurement. The study analyzed the feasibility and adaptability of these approaches to a future solar electric propulsion (SEP) mission, and, specifically, to a comet rendezvous mission. Such missions presented the most challenging requirements to a spacecraft power subsystem in terms of power management over large solar intensity ranges of 1.0 to 3.5 AU. The dynamic impedance approach was found to have the highest figure of merit, and the reference array approach followed closely behind. The results are applicable to terrestrial solar power systems as well as to other than SEP space missions.

  4. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  5. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  6. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  7. Measurement of proton autoneutralization potential

    International Nuclear Information System (INIS)

    Garcia, M.

    1984-09-01

    A proton space charge having multi-MeV kinetic energy was injected through a thin ground plane to extract electrons and produce a time-dependent autoneutralization space potential. An electon-emitting floating-potential resistive divider was used to measure the space potential during 20 ns of the proton current pulse. During this time, proton kinetic energy fell from 10.6 MeV to 8.5 MeV and thus the space potential (taken as 1.09 x the floating potential) fell from 5.8 kV to 4.6 kV

  8. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  9. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  10. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  11. Streaming potential measurements of biosurfaces

    Science.gov (United States)

    Van Wagenen, R. A.; Andrade, J. D.; Hibbs, J. B., Jr.

    1976-01-01

    A technique based on the measurement of streaming potentials has been developed to evaluate the electrokinetic region of the cell periphery. This approach is feasible for cell lines propagated in in-vitro cell cultures in monolayer form. The advantage of this system is that cells may be evaluated in the living state atttached to a substrate; it is not necessary to subject the cells to enzymatic, chemical, or mechanical trauma required to obtain monodisperse suspensions which are then normally evaluated by microelectrophoresis. In this manner, it should be possible to study the influence of substrate and environmental factors on the charge density and potential at the cell periphery. The apparatus and procedure are described as well as some results concerning the electrokinetic potential of borosilicate capillaries as a function of ionic strength, pH, and temperature. The effect that turbulence and entrance flow conditions have on accurate streaming-potential measurements is discussed. The electrokinetic potential of BALB/c 3T12 fibroblasts has been quantified as a function of pH, ionic strength, glutaraldehyde fixation, and Giemsa staining.

  12. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  13. Effects of Space Weather on Geosynchronous Electromagnetic Spacecraft Perturbations Using Statistical Fluxes

    Science.gov (United States)

    Hughes, J.; Schaub, H.

    2017-12-01

    Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.

  14. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  15. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  16. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  17. Measurement of human potential in organizations

    Directory of Open Access Journals (Sweden)

    Rosa María Fuchs Ángeles

    2015-09-01

    Full Text Available Companies around the world are concerned about talent management in their organizations. The concern is to retain talented employees and this may not be possible if they are not properly identified. Performance and potential evaluations become then important. Performance evaluations qualify the historical record of the employee, so their measurement is provided. However, measuring the potential performance assesses potential future charges, therefore it is not a simple task. In this paper, characteristics evaluated in potential employees and tools that are commonly used are presented. Also, the case of four companies operating in Peru is shown.

  18. The trajectory prediction of spacecraft by grey method

    International Nuclear Information System (INIS)

    Wang, Qiyue; Wang, Zhongyu; Zhang, Zili; Wang, Yanqing; Zhou, Weihu

    2016-01-01

    The real-time and high-precision trajectory prediction of a moving object is a core technology in the field of aerospace engineering. The real-time monitoring and tracking technology are also significant guarantees of aerospace equipment. A dynamic trajectory prediction method called grey dynamic filter (GDF) which combines the dynamic measurement theory and grey system theory is proposed. GDF can use coordinates of the current period to extrapolate coordinates of the following period. At meantime, GDF can also keep the instantaneity of measured coordinates by the metabolism model. In this paper the optimal model length of GDF is firstly selected to improve the prediction accuracy. Then the simulation for uniformly accelerated motion and variably accelerated motion is conducted. The simulation results indicate that the mean composite position error of GDF prediction is one-fifth to that of Kalman filter (KF). By using a spacecraft landing experiment, the prediction accuracy of GDF is compared with the KF method and the primitive grey method (GM). The results show that the motion trajectory of spacecraft predicted by GDF is much closer to actual trajectory than the other two methods. The mean composite position error calculated by GDF is one-eighth to KF and one-fifth to GM respectively. (paper)

  19. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  20. Fast Plasma Potential Measurements Using an Emissive Probe

    Science.gov (United States)

    Ready, Amanda; Clark, Michael; Endrizzi, Douglass; Forest, Cary; Peterson, Ethan

    2017-10-01

    A heated emissive probe was developed for making direct plasma potential (Vp) measurements in rapidly fluctuating plasmas. Previous experiments on the Big Red Ball (BRB) were hindered by sudden potential drops, making Langmuir measurements of the plasma potential difficult. DC heating of a tungsten filament to emission allowed for fast (4 MHz) floating potential measurements that closely matched Vp. Two BRB experiments currently use the emissive probe. The investigation of unmagnetized, collisionless shocks used plasma potential measurements to study the sub-structure of strong plasma shocks. A separate investigation of emulated magnetospheres in laboratory plasmas used the plasma potential to map the equilibria and instabilities in the electric field of such structures. Results showing electric field measurements and comparison with cold Langmuir measurements will be presented. Future plans for probe modifications and applications to other experiments on the BRB will also be shown.

  1. Got risk? risk-centric perspective for spacecraft technology decision-making

    Science.gov (United States)

    Feather, Martin S.; Cornford, Steven L.; Moran, Kelly

    2004-01-01

    A risk-based decision-making methodology conceived and developed at JPL and NASA has been used to aid in decision making for spacecraft technology assessment, adoption, development and operation. It takes a risk-centric perspective, through which risks are used as a reasoning step to interpose between mission objectives and risk mitigation measures.

  2. Economic benefits of the use of non-toxic mono-propellants for spacecraft applications

    NARCIS (Netherlands)

    Bombelli, V.; Simon, D.; Marée, T.; Moerel, J.L.

    2003-01-01

    The European Space Agency and other institutions have identified the use of non-toxic (or "green") propellants as a substantial cost saving opportunity in manufacturing and ground operating of spacecrafts. This paper attempts to identify and quantify this potential by replacing, in the near future,

  3. Spacecraft reorientation control in presence of attitude constraint considering input saturation and stochastic disturbance

    Science.gov (United States)

    Cheng, Yu; Ye, Dong; Sun, Zhaowei; Zhang, Shijie

    2018-03-01

    This paper proposes a novel feedback control law for spacecraft to deal with attitude constraint, input saturation, and stochastic disturbance during the attitude reorientation maneuver process. Applying the parameter selection method to improving the existence conditions for the repulsive potential function, the universality of the potential-function-based algorithm is enhanced. Moreover, utilizing the auxiliary system driven by the difference between saturated torque and command torque, a backstepping control law, which satisfies the input saturation constraint and guarantees the spacecraft stability, is presented. Unlike some methods that passively rely on the inherent characteristic of the existing controller to stabilize the adverse effects of external stochastic disturbance, this paper puts forward a nonlinear disturbance observer to compensate the disturbance in real-time, which achieves a better performance of robustness. The simulation results validate the effectiveness, reliability, and universality of the proposed control law.

  4. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  5. Science objectives of the magnetic field experiment onboard Aditya-L1 spacecraft

    Science.gov (United States)

    Yadav, Vipin K.; Srivastava, Nandita; Ghosh, S. S.; Srikar, P. T.; Subhalakshmi, Krishnamoorthy

    2018-01-01

    The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018-19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models. The proposed FGM is a dual range magnetic sensor on a 6 m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6 m from the spacecraft) and other, midway (3 m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space. In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.

  6. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  7. Spacecraft Line-of-Sight Stabilization Using LWIR Earth Signature

    Science.gov (United States)

    Quadrelli, Marco B.; Piazzolla, Sabino

    2012-01-01

    The objective of this study is to investigate the potential of using the bright and near-uniform Earth infrared (or wavelength infrared, LWIR) signature as a stable reference for accurate (micro-rad or less) inertial pointing and tracking on-board an space vehicle, including the determination of the fundamental limits of applicability of the proposed method for space missions. We demonstrate sub-micro radian level pointing accuracy under a representative set of disturbances experienced by the spacecraft in orbit.

  8. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Science.gov (United States)

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA

  9. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  10. Standardized spacecraft: a methodology for decision making. AMS report No. 1199

    International Nuclear Information System (INIS)

    Greenberg, J.S.; Nichols, R.A.

    1974-01-01

    As the space program matures, more and more attention is being focused on ways to reduce the costs of performing space missions. Standardization has been suggested as a way of providing cost reductions. The question of standardization at the system level, in particular, the question of the desirability of spacecraft standardization for geocentric space missions is addressed. The spacecraft is considered to be a bus upon which mission oriented equipment, the payload, is mounted. Three basic questions are considered: (1) is spacecraft standardization economically desirable; (2) if spacecraft standardization is economically desirable, what standardized spacecraft configuration or mix of configurations and technologies should be developed; and (3) if standardized spacecraft are to be developed, what power levels should they be designed for. A methodology which has been developed and which is necessary to follow if the above questions are to be answered and informed decisions made relative to spacecraft standardization is described. To illustrate the decision making problems and the need for the developed methodology and the data requirements, typical standardized spacecraft have been considered. Both standardized solar and nuclear-powered spacecraft and mission specialized spacecraft have been conceptualized and performance and cost estimates have been made. These estimates are not considered to be of sufficient accuracy to allow decisions regarding spacecraft mix and power levels to be made at this time. The estimates are deemed of sufficient accuracy so as to demonstrate the desirability of spacecraft standardization and the methodology (as well as the need for the methodology) which is necessary to decide upon the best mix of standardized spacecraft and their design power levels. (U.S.)

  11. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  12. Analysis of an Interplanetary Coronal Mass Ejection by a Spacecraft Radio Signal: A Case Study

    Science.gov (United States)

    Molera Calvés, G.; Kallio, E.; Cimo, G.; Quick, J.; Duev, D. A.; Bocanegra Bahamón, T.; Nickola, M.; Kharinov, M. A.; Mikhailov, A. G.

    2017-11-01

    Tracking radio communication signals from planetary spacecraft with ground-based telescopes offers the possibility to study the electron density and the interplanetary scintillation of the solar wind. Observations of the telemetry link of planetary spacecraft have been conducted regularly with ground antennae from the European Very Long Baseline Interferometry Network, aiming to study the propagation of radio signals in the solar wind at different solar elongations and distances from the Sun. We have analyzed the Mars Express spacecraft radio signal phase fluctuations while, based on a 3-D heliosphere plasma simulation, an interplanetary coronal mass ejection (ICME) crossed the radio path during one of our observations on 6 April 2015. Our measurements showed that the phase scintillation indices increased by a factor of 4 during the passage of the ICME. The method presented here confirms that the phase scintillation technique based on spacecraft signals provides information of the properties and propagation of the ICMEs in the heliosphere.

  13. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  14. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  15. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  16. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  17. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    Science.gov (United States)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  18. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  19. Artificially injected charged particles as a tool for the measurement of the electric field in the magnetosphere

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-01-01

    Two methods of measuring the parallel electric field in the magnetosphere using artificially injected charged particles are discussed. One method uses electrons to measure the parallel electric field in the vicinity of the spacecraft. It is shown that a very good accuracy can be achieved for such a measurement. The principle of this method is briefly reviewed, the minimum theoretical value measurable by the method is shown, and the limitations on it due to the spacecraft environment are discussed. Most important among the latter is the high level of turbulence about the spacecraft. The second method uses ions to measure the electric potential along the magnetic field lines if the associated parallel electric field is directed downward. For such a field at a lower altitude, Li ions are used to maximize the returning fluxes and to increase the probability of detection. Rockets are more suitable than satellites to make such measurements. 17 references

  20. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    Teflon (AGT5, Ag-FEP) Thermal control surface (radiator) Spacecraft Exposure Soda-lime glass (74% SiO2 , 13% Na2O, 8% CaO, 4% MgO, 1% other oxide... Glass Solar panel cover Spacecraft Exposure Buna-N (acrylonitrile butadiene rubber) Seals Iodine Feed System Carbon fiber composite (epoxy resin...Fe Propellant isolator Spacecraft Exposure Lanthanum Hexaboride, LaB6 Cathode emitter Inside Cathode Yes MACOR (46% SiO2 , 17% MgO, 16% Al2O3, 10

  1. Relativistic effects of spacecraft with circumnavigating observer

    Science.gov (United States)

    Shanklin, Nathaniel; West, Joseph

    A variation of the recently introduced Trolley Paradox, itself is a variation of the Ehrenfest Paradox is presented. In the Trolley Paradox, a ``stationary'' set of observers tracking a wheel rolling with a constant velocity find that the wheel travels further than its rest length circumference during one revolution of the wheel, despite the fact that the Lorentz contracted circumference is less than its rest value. In the variation presented, a rectangular spacecraft with onboard observers moves with constant velocity and is circumnavigated by several small ``sloops'' forming teams of inertial observers. This whole precession moves relative to a set of ``stationary'' Earth observers. Two cases are presented, one in which the sloops are evenly spaced according to the spacecraft observers, and one in which the sloops are evenly spaced according to the Earth observes. These two cases, combined with the rectangular geometry and an emphasis on what is seen by, and what is measured by, each set of observers is very helpful in sorting out the apparent contradictions. To aid in the visualizations stationary representations in excel along with animation in Visual Python and Unity are presented. The analysis presented is suitable for undergraduate physics majors.

  2. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  3. 30-kW SEP Spacecraft as Secondary Payloads for Low-Cost Deep Space Science Missions

    Science.gov (United States)

    Brophy, John R.; Larson, Tim

    2013-01-01

    The Solar Array System contracts awarded by NASA's Space Technology Mission Directorate are developing solar arrays in the 30 kW to 50 kW power range (beginning of life at 1 AU) that have significantly higher specific powers (W/kg) and much smaller stowed volumes than conventional rigid-panel arrays. The successful development of these solar array technologies has the potential to enable new types of solar electric propulsion (SEP) vehicles and missions. This paper describes a 30-kW electric propulsion vehicle built into an EELV Secondary Payload Adapter (ESPA) ring. The system uses an ESPA ring as the primary structure and packages two 15-kW Megaflex solar array wings, two 14-kW Hall thrusters, a hydrazine Reaction Control Subsystem (RCS), 220 kg of xenon, 26 kg of hydrazine, and an avionics module that contains all of the rest of the spacecraft bus functions and the instrument suite. Direct-drive is used to maximize the propulsion subsystem efficiency and minimize the resulting waste heat and required radiator area. This is critical for packaging a high-power spacecraft into a very small volume. The fully-margined system dry mass would be approximately 1120 kg. This is not a small dry mass for a Discovery-class spacecraft, for example, the Dawn spacecraft dry mass was only about 750 kg. But the Dawn electric propulsion subsystem could process a maximum input power of 2.5 kW, and this spacecraft would process 28 kW, an increase of more than a factor of ten. With direct-drive the specific impulse would be limited to about 2,000 s assuming a nominal solar array output voltage of 300 V. The resulting spacecraft would have a beginning of life acceleration that is more than an order of magnitude greater than the Dawn spacecraft. Since the spacecraft would be built into an ESPA ring it could be launched as a secondary payload to a geosynchronous transfer orbit significantly reducing the launch costs for a planetary spacecraft. The SEP system would perform the escape

  4. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  5. SSS-A spacecraft and experiment description.

    Science.gov (United States)

    Longanecker, G. W.; Hoffman, R. A.

    1973-01-01

    The scientific objectives of the Explorer-45 mission are discussed. The primary objective is the study of the ring current responsible for the main phase of magnetic storms. Closely associated with this objective is the determination of the relationship between magnetic storms, substorms, and the acceleration of charged particles in the magnetosphere. Further objectives are the measurement of a wide range of proton, electron and alpha-particle energies, and studies of wave-particle interactions responsible for particle transport and loss in the inner magnetosphere. The orbital parameters, the spacecraft itself, and some of its unique features, such as the data handling system, which is programmable from the ground, are described.

  6. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  7. LDEF materials results for spacecraft applications: Executive summary

    Science.gov (United States)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  8. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  9. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  10. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  11. The Rosetta Mission - Where no Spacecraft has gone before

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    This Talk will provide an overview on the Scientific Highlights of the Rosetta Mission. After travelling through the Solar System for nearly 10 years Rosetta arrived at its main target, Comet 67/P Churyumov-Gerasimenko, in August 2014. Following an initial characterisation of the Comet, the lander unit Philae touched down on the partly active Nucleus on November 12 of the same year. The data acquired from the numerous instruments onboard the Spacecraft provides a unique insight into the properties of the Comets. While most of the measurements and processing of the data are still ongoing, the results from the Mission provide continuous surprises to the scientific community. While the Lander has been reactivated with some difficulties after a few months of inactivity due to low insolation levels, the Orbiter is pursuing its main mission objectives until the end of its extended Mission in Autumn 2016. During the long journey, the Spacecraft had encountered Earth, Mars and two Asteroids ( 2867 Šteins and 21 Lu...

  12. Research on intelligent power distribution system for spacecraft

    Science.gov (United States)

    Xia, Xiaodong; Wu, Jianju

    2017-10-01

    The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.

  13. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    Science.gov (United States)

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  14. SyZyGy: A straight interferometric spacecraft system for gravity wave observations

    International Nuclear Information System (INIS)

    Estabrook, F.B.; Armstrong, J.W.; Tinto, Massimo; Folkner, William

    2003-01-01

    We consider a spaceborne gravitational wave (GW) detector formed by three spacecraft in a linear array, coherently exchanging laser beams and using the data combinations of time-delay interferometry (TDI). We previously showed how the measured time series of Doppler shifts in the six one-way laser links between spacecraft pairs in a general unequal-arm triangular configuration can be combined, using TDI, to exactly cancel the otherwise overwhelming phase noise of the lasers while retaining sensitivity to GWs. Here we apply TDI, unfolding the general triangular configuration, to the special case of a linear array of three spacecraft. We show that such an array ('SyZyGy') has, compared with an equilateral triangle GW detector of the same scale, a degraded (but non-zero) sensitivity at low frequencies [f -4 -10 -1 Hz). SyZyGy with ∼1 light-second scale could, for the same instrumental assumptions as LISA, make observations in this intermediate frequency GW band with 5σ sensitivity to sinusoidal waves ≅2.5x10 -23 in a year's integration

  15. Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Adam, E-mail: a.j.clemens@qmul.ac.uk; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London (United Kingdom)

    2016-03-15

    Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.

  16. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  17. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  18. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    V, it is shown that secondary electrons supply a significant contribution to the return current to the spacecraft and thereby reduce the spacecraft potential. Our numerical results are in good agreement with observations from the CHARGE-2 sounding rocket experiment.A more detailed study of the BAI as it relates...

  19. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  20. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  1. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  2. How to emit a high-power electron beam from a magnetospheric spacecraft?

    Science.gov (United States)

    Delzanno, G. L.; Lucco Castello, F.; Borovsky, J.; Miars, G.; Leon, O.; Gilchrist, B. E.

    2017-12-01

    The idea of using a high-power electron beam to actively probe magnetic-field-line connectivity in space has been discussed since the 1970's. It could solve longstanding questions in magnetospheric/ionospheric physics by establishing causality between phenomena occurring in the magnetosphere and their image in the ionosphere. However, this idea has never been realized onboard a magnetospheric spacecraft because the tenuous magnetospheric plasma cannot provide the return current necessary to keep the charging of the spacecraft under control. Recently, Delzanno et al. [1] have proposed a spacecraft-charging mitigation scheme to enable the emission of a high-power electron beam from a magnetospheric spacecraft. It is based on the plasma contactor, i.e. a high-density neutral plasma emitted prior to and with the electron beam. The contactor acts as an ion emitter (not as an electron collector, as previously thought): a high ion current can be emitted off the quasi-spherical contactor surface, without the strong space-charge limitations typical of planar ion beams, and the electron-beam current can be successfully compensated. In this work, we will discuss our theoretical/simulation effort to improve the understanding of contactor-based ion emission. First, we will present a simple mathematical model useful for the interpretation of the results of [1]. The model is in spherical geometry and the contactor dynamics is described by only two surfaces (its quasi-neutral surface and the front of the outermost ions). It captures the results of self-consistent Particle-In-Cell (PIC) simulations with good accuracy and highlights the physics behind the charge-mitigation scheme clearly. PIC simulations connecting the 1D model to the actual geometry of the problem will be presented to obtain the scaling of the spacecraft potential varying contactor emission area. Finally, results for conditions relevant to an actual mission will also be discussed. [1] G. L. Delzanno, J. E. Borovsky

  3. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    Science.gov (United States)

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  4. Investigation of fast initialization of spacecraft bubble memory systems

    Science.gov (United States)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  5. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    International Nuclear Information System (INIS)

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Backer, D. C.; Bailes, M.; Bhat, N. D. R.; Van Straten, W.; Coles, W.; Demorest, P. B.; Ferdman, R. D.; Purver, M. B.; Folkner, W. M.; Hotan, A. W.; Kramer, M.; Lommen, A. N.; Nice, D. J.; Stairs, I. H.

    2010-01-01

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10 -4 M sun , being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.

  6. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  7. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  8. RFP to work on formation flying capabilities for spacecrafts for the GRACE project

    DEFF Research Database (Denmark)

    Riis, Troels; Thuesen, Gøsta; Kilsgaard, Søren

    1999-01-01

    The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts.......The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts....

  9. Concurrent System Engineering and Risk Reduction for Dual-Band (RF/optical) Spacecraft Communications

    Science.gov (United States)

    Fielhauer, Karl, B.; Boone, Bradley, G.; Raible, Daniel, E.

    2012-01-01

    This paper describes a system engineering approach to examining the potential for combining elements of a deep-space RF and optical communications payload, for the purpose of reducing the size, weight and power burden on the spacecraft and the mission. Figures of merit and analytical methodologies are discussed to conduct trade studies, and several potential technology integration strategies are presented. Finally, the NASA Integrated Radio and Optical Communications (iROC) project is described, which directly addresses the combined RF and optical approach.

  10. Autocorrelation Study of Solar Wind Plasma and IMF Properties as Measured by the MAVEN Spacecraft

    Science.gov (United States)

    Marquette, Melissa L.; Lillis, Robert J.; Halekas, J. S.; Luhmann, J. G.; Gruesbeck, J. R.; Espley, J. R.

    2018-04-01

    It has long been a goal of the heliophysics community to understand solar wind variability at heliocentric distances other than 1 AU, especially at ˜1.5 AU due to not only the steepening of solar wind stream interactions outside 1 AU but also the number of missions available there to measure it. In this study, we use 35 months of solar wind and interplanetary magnetic field (IMF) data taken at Mars by the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft to conduct an autocorrelation analysis of the solar wind speed, density, and dynamic pressure, which is derived from the speed and density, as well as the IMF strength and orientation. We found that the solar wind speed is coherent, that is, has an autocorrelation coefficient above 1/e, over roughly 56 hr, while the density and pressure are coherent over smaller intervals of roughly 25 and 20 hr, respectively, and that the IMF strength is coherent over time intervals of approximately 20 hr, while the cone and clock angles are considerably less steady but still somewhat coherent up to time lags of roughly 16 hr. We also found that when the speed, density, pressure, or IMF strength is higher than average, the solar wind or IMF becomes uncorrelated more quickly, while when they are below average, it tends to be steadier. This analysis allows us to make estimates of the values of solar wind plasma and IMF parameters when they are not directly measured and provide an approximation of the error associated with that estimate.

  11. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  12. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  13. A user's guide to the Flexible Spacecraft Dynamics and Control Program

    Science.gov (United States)

    Fedor, J. V.

    1984-01-01

    A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.

  14. A variation of the Davis-Smith method for in-flight determination of spacecraft magnetic fields.

    Science.gov (United States)

    Belcher, J. W.

    1973-01-01

    A variation of a procedure developed by Davis and Smith (1968) is presented for the in-flight determination of spacecraft magnetic fields. Both methods take statistical advantage of the observation that fluctuations in the interplanetary magnetic field over short periods of time are primarily changes in direction rather than in magnitude. During typical solar wind conditions between 0.8 and 1.0 AU, a statistical analysis of 2-3 days of continuous interplanetary field measurements yields an estimate of a constant spacecraft field with an uncertainty of plus or minus 0.25 gamma in the direction radial to the sun and plus or minus 15 gammas in the directions transverse to the radial. The method is also of use in estimating variable spacecraft fields with gradients of the order of 0.1 gamma/day and less and in other special circumstances.

  15. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  16. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  17. A localized swarm of low-resource CubeSat-class spacecraft for auroral ionospheric science

    Science.gov (United States)

    Clayton, R.; Lynch, K. A.; Gayetsky, L.; Guinther, J.; Slagle, A.; Currey, S.

    2012-12-01

    In interesting and dynamic auroral ionospheric plasmas, single-point in situ measurements are insufficient. Changes in measurements recorded from a single probe can be ascribed to either changes in position or to changes over time, and gradient scales can only be inferred. A localized array of sensors deployed as a low-resource swarm from a main deployer, can address these issues. We consider two aspects of designing such a swarm: (a) maintaining the localization in a low-cost manner, and (b) creating an extremely low-resource spacecraft by taking advantage of commercially available technologies. For a few-week low-altitude mission, STK (SatelliteToolKit) studies show that with proper deployment, an array of CubeSat-class spacecraft near 350 km altitude can regroup once per orbit to within a few 10s of km. Kepler's laws and Hill's equations allow us to put constraints on the capability of the deployer needed, in order to deploy the array with a minimal component of the ejection velocity along the orbital track. In order to keep the cost of each spacecraft low, we are exploring commercially available technologies such as Arduino controllers and video-game sensors. The Arduino on each payload will take in information from the sensors on the payload, and will send the information to a DNT-900MHz local area communications system. We show an example experiment measuring river flows on the Connecticut river, and discuss the design of our payload swarm.

  18. Injection of an electron beam into a plasma and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  19. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  20. An Evaluation of Ultra-High Pressure Regulator for Robotic Lunar Landing Spacecraft

    Science.gov (United States)

    Burnside, Christopher; Trinh, Huu; Pedersen, Kevin

    2011-01-01

    The Robotic Lunar Lander Development (RLLD) Project Office at NASA Marshall Space Flight Center (MSFC) has studied several lunar surface science mission concepts. These missions focus on spacecraft carrying multiple science instruments and power systems that will allow extended operations on the lunar surface. Initial trade studies of launch vehicle options for these mission concepts indicate that the spacecraft design will be significantly mass-constrained. To minimize mass and facilitate efficient packaging, the notional propulsion system for these landers has a baseline of an ultra-high pressure (10,000 psig) helium pressurization system that has been used on Defense missiles. The qualified regulator is capable of short duration use; however, the hardware has not been previously tested at NASA spacecraft requirements with longer duration. Hence, technical risks exist in using this missile-based propulsion component for spacecraft applications. A 10,000-psig helium pressure regulator test activity is being carried out as part of risk reduction testing for MSFC RLLD project. The goal of the test activity is to assess the feasibility of commercial off-the-shelf ultra-high pressure regulator by testing with a representative flight mission profile. Slam-start, gas blowdown, water expulsion, lock-up, and leak tests are also performed on the regulator to assess performance under various operating conditions. The preliminary test results indicated that the regulator can regulate helium to a stable outlet pressure of 740 psig within the +/- 5% tolerance band and maintain a lock-up pressure less than +5% for all tests conducted. Numerous leak tests demonstrated leakage less than 10-3 standard cubic centimeters per second (SCCS) for internal seat leakage at lock-up and less than10-5 SCCS for external leakage through the regulator ambient reference cavity. The successful tests have shown the potential for 10,000 psig helium systems in NASA spacecraft and have reduced risk

  1. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  2. Microbiological sampling of spacecraft cabling, antennas, solar panels and thermal blankets

    Science.gov (United States)

    Koukol, R. C.

    1973-01-01

    Sampling procedures and techniques described resulted from various flight project microbiological monitoring programs of unmanned planetary spacecraft. Concurrent with development of these procedures, compatibility evaluations were effected with the cognizant spacecraft subsystem engineers to assure that degradation factors would not be induced during the monitoring program. Of significance were those areas of the spacecraft configuration for which special handling precautions and/or nonstandard sample gathering techniques were evolved. These spacecraft component areas were: cabling, high gain antenna, solar panels, and thermal blankets. The compilation of these techniques provides a historical reference for both the qualification and quantification of sampling parameters as applied to the Mariner Spacecraft of the late 1960's and early 1970's.

  3. Cooper-Harper Experience Report for Spacecraft Handling Qualities Applications

    Science.gov (United States)

    Bailey, Randall E.; Jackson, E. Bruce; Bilimoria, Karl D.; Mueller, Eric R.; Frost, Chad R.; Alderete, Thomas S.

    2009-01-01

    A synopsis of experience from the fixed-wing and rotary-wing aircraft communities in handling qualities development and the use of the Cooper-Harper pilot rating scale is presented as background for spacecraft handling qualities research, development, test, and evaluation (RDT&E). In addition, handling qualities experiences and lessons-learned from previous United States (US) spacecraft developments are reviewed. This report is intended to provide a central location for references, best practices, and lessons-learned to guide current and future spacecraft handling qualities RDT&E.

  4. Overview of SDCM - The Spacecraft Design and Cost Model

    Science.gov (United States)

    Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.

    1988-01-01

    The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.

  5. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  6. Relative Status Determination for Spacecraft Relative Motion Based on Dual Quaternion

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2014-01-01

    Full Text Available For the two-satellite formation, the relative motion and attitude determination algorithm is a key component that affects the flight quality and mission efficiency. The relative status determination algorithm is proposed based on the Extended Kalman Filter (EKF and the system state optimal estimate linearization. Aiming at the relative motion of the spacecraft formation navigation problem, the spacecraft relative kinematics and dynamics model are derived from the dual quaternion in the algorithm. Then taking advantage of EKF technique, combining with the dual quaternion integrated dynamic models, considering the navigation algorithm using the fusion measurement by the gyroscope and star sensors, the relative status determination algorithm is designed. At last the simulation is done to verify the feasibility of the algorithm. The simulation results show that the EKF algorithm has faster convergence speed and higher accuracy.

  7. A Quantized State Approach to On-line Simulation for Spacecraft Autonomy

    DEFF Research Database (Denmark)

    Alminde, Lars; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2006-01-01

    Future space applications will require an increased level of operational autonomy. This calls for declarative methods for spacecraft state estimation and control, so that the spacecraft engineer can focus on modeling the spacecraft rather than implementing all details of the on-line system. Celeb...

  8. Standardization and Economics of Nuclear Spacecraft, Final Report, Phase I, Sense Study

    Energy Technology Data Exchange (ETDEWEB)

    1973-03-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft are investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 21000 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification. Three-axis stabilization is included. Several spacecraft can be stacked in the shuttle payload compartment for multi-mission launches. A reactor-powered thermoelectric generator system, operating at an electric power level of 5000 watts, is briefly studied for applicability to two test missions of divers requirements. A cost analysis indicates that use of the two standardized spacecraft offers sizable savings in comparison with specially designed solar-powered spacecraft. There is a duplicate copy.

  9. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  10. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  11. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  12. Deep Space Networking Experiments on the EPOXI Spacecraft

    Science.gov (United States)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  13. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  14. Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Science.gov (United States)

    Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.

    2014-01-01

    at the appropriate solar array switch in the power system. A metal-halide bulb, infrared imagers, and onboard spacecraft measurements are utilized to minimize risk of thermal damage during test. Data is provided to support test results for both passing and marginal panels. Prior to encapsulation in the launch vehicle, each panel is inspected for damage by the panel manufacturer. Cracked cells or other damage is amended on-site. Because the photovoltaic test system is inexpensive and portable, each repaired panel can be re-verified immediately. Post-launch, the photovoltaic system is again characterized for per-panel deviations from the manufacturer's performance test. This proved especially tricky as the LADEE spacecraft performs only one current measurement on the entire array. The algorithm for Matlab tools to assess panel performance based on spacecraft attitude is discussed. While not as precise and comprehensive as LAPSS, the LADEE approach leverages minimal resources into an ongoing assessment program that can be applied through numerous stages of the mission. The project takes a true Class D approach in assessing the technical value of a spacecraft level performance test versus the programmatic risk of shipping the spacecraft to another facility. The resources required are a fraction of that for a LAPSS test, and is easy to repeat. Further, the test equipment can be handed down to future projects without building an on-site facility.

  15. Miniaturized star tracker for micro spacecraft with high angular rate

    Science.gov (United States)

    Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi

    2017-10-01

    There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.

  16. Wave-Based Attitude Control of Spacecraft with Fuel Sloshing Dynamics

    Directory of Open Access Journals (Sweden)

    Thompson Joseph William

    2016-06-01

    Full Text Available Wave-Based Control has been previously applied successfully to simple under-actuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to non-uniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion is required.

  17. Four-point probe measurements using current probes with voltage feedback to measure electric potentials

    Science.gov (United States)

    Lüpke, Felix; Cuma, David; Korte, Stefan; Cherepanov, Vasily; Voigtländer, Bert

    2018-02-01

    We present a four-point probe resistance measurement technique which uses four equivalent current measuring units, resulting in minimal hardware requirements and corresponding sources of noise. Local sample potentials are measured by a software feedback loop which adjusts the corresponding tip voltage such that no current flows to the sample. The resulting tip voltage is then equivalent to the sample potential at the tip position. We implement this measurement method into a multi-tip scanning tunneling microscope setup such that potentials can also be measured in tunneling contact, allowing in principle truly non-invasive four-probe measurements. The resulting measurement capabilities are demonstrated for \

  18. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  19. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  20. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  1. The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results

    Directory of Open Access Journals (Sweden)

    H. Rème

    2005-11-01

    Full Text Available On 29 December 2003, the Chinese spacecraft Tan Ce 1 (TC-1, the first component of the Double Star mission, was successfully launched within a low-latitude eccentric orbit. In the framework of the scientific cooperation between the Academy of Sciences of China and ESA, several European instruments, identical to those developed for the Cluster spacecraft, were installed on board this spacecraft. The HIA (Hot Ion Analyzer instrument on board the TC-1 spacecraft is an ion spectrometer nearly identical to the HIA sensor of the CIS instrument on board the 4 Cluster spacecraft. This instrument has been specially adapted for TC-1. It measures the 3-D distribution functions of the ions between 5 eV/q and 32 keV/q without mass discrimination. TC-1 is like a fifth Cluster spacecraft to study the interaction of the solar wind with the magnetosphere and to study geomagnetic storms and magnetospheric substorms in the near equatorial plane. HIA was commissioned in February 2004. Due to the 2 RE higher apogee than expected, some in-flight improvements were needed in order to use HIA in the solar wind in the initial phase of the mission. Since this period HIA has obtained very good measurements in the solar wind, the magnetosheath, the dayside and nightside plasma sheet, the ring current and the radiation belts. We present here the first results in the different regions of the magnetosphere and in the solar wind. Some of them are very new and include, for example, ion dispersion structures in the bow shock and ion beams close to the magnetopause. The huge interest in the orbit of TC-1 is strongly demonstrated.

  2. The HIA instrument on board the Tan Ce 1 Double Star near-equatorial spacecraft and its first results

    Directory of Open Access Journals (Sweden)

    H. Rème

    2005-11-01

    Full Text Available On 29 December 2003, the Chinese spacecraft Tan Ce 1 (TC-1, the first component of the Double Star mission, was successfully launched within a low-latitude eccentric orbit. In the framework of the scientific cooperation between the Academy of Sciences of China and ESA, several European instruments, identical to those developed for the Cluster spacecraft, were installed on board this spacecraft.

    The HIA (Hot Ion Analyzer instrument on board the TC-1 spacecraft is an ion spectrometer nearly identical to the HIA sensor of the CIS instrument on board the 4 Cluster spacecraft. This instrument has been specially adapted for TC-1. It measures the 3-D distribution functions of the ions between 5 eV/q and 32 keV/q without mass discrimination.

    TC-1 is like a fifth Cluster spacecraft to study the interaction of the solar wind with the magnetosphere and to study geomagnetic storms and magnetospheric substorms in the near equatorial plane.

    HIA was commissioned in February 2004. Due to the 2 RE higher apogee than expected, some in-flight improvements were needed in order to use HIA in the solar wind in the initial phase of the mission. Since this period HIA has obtained very good measurements in the solar wind, the magnetosheath, the dayside and nightside plasma sheet, the ring current and the radiation belts. We present here the first results in the different regions of the magnetosphere and in the solar wind. Some of them are very new and include, for example, ion dispersion structures in the bow shock and ion beams close to the magnetopause. The huge interest in the orbit of TC-1 is strongly demonstrated.

  3. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  4. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  5. A Survey of LIDAR Technology and Its Use in Spacecraft Relative Navigation

    Science.gov (United States)

    Christian, John A.; Cryan, Scott P.

    2013-01-01

    points on a target spacecraft. As the name suggests, LIDAR sensors use light (typically a laser) to illuminate the target and measure the time it takes for the emitted signal to return to the sensor. Because the light must travel from the source, to

  6. The use of screening tests in spacecraft lubricant evaluation

    Science.gov (United States)

    Kalogeras, Chris; Hilton, Mike; Carre, David; Didziulis, Stephen; Fleischauer, Paul

    1993-01-01

    A lubricant screening test fixture has been devised in order to satisfy the need to obtain lubricant performance data in a timely manner. This fixture has been used to perform short-term tests on potential lubricants for several spacecraft applications. The results of these tests have saved time by producing qualitative performance rankings of lubricant selections prior to life testing. To date, this test fixture has been used to test lubricants for 3 particular applications. The qualitative results from these tests have been verified by life test results and have provided insight into the function of various anti-wear additives.

  7. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  8. Definition of the topological structure of the automatic control system of spacecrafts

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Zelenkov, P V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Karaseva, M V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Tsareva, E A; Tsarev, R Y

    2015-01-01

    The paper considers the problem of selection the topological structure of the automated control system of spacecrafts. The integer linear model of mathematical programming designed to define the optimal topological structure for spacecraft control is proposed. To solve the determination problem of topological structure of the control system of spacecrafts developed the procedure of the directed search of some structure variants according to the scheme 'Branch and bound'. The example of the automated control system of spacecraft development included the combination of ground control stations, managing the spacecraft of three classes with a geosynchronous orbit with constant orbital periods is presented

  9. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  10. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  11. Comparison of three methods for the estimation of cross-shock electric potential using Cluster data

    Directory of Open Access Journals (Sweden)

    A. P. Dimmock

    2011-05-01

    Full Text Available Cluster four point measurements provide a comprehensive dataset for the separation of temporal and spatial variations, which is crucial for the calculation of the cross shock electrostatic potential using electric field measurements. While Cluster is probably the most suited among present and past spacecraft missions to provide such a separation at the terrestrial bow shock, it is far from ideal for a study of the cross shock potential, since only 2 components of the electric field are measured in the spacecraft spin plane. The present paper is devoted to the comparison of 3 different techniques that can be used to estimate the potential with this limitation. The first technique is the estimate taking only into account the projection of the measured components onto the shock normal. The second uses the ideal MHD condition E·B = 0 to estimate the third electric field component. The last method is based on the structure of the electric field in the Normal Incidence Frame (NIF for which only the potential component along the shock normal and the motional electric field exist. All 3 approaches are used to estimate the potential for a single crossing of the terrestrial bow shock that took place on the 31 March 2001. Surprisingly all three methods lead to the same order of magnitude for the cross shock potential. It is argued that the third method must lead to more reliable results. The effect of the shock normal inaccuracy is investigated for this particular shock crossing. The resulting electrostatic potential appears too high in comparison with the theoretical results for low Mach number shocks. This shows the variability of the potential, interpreted in the frame of the non-stationary shock model.

  12. Influence of a new generation of operations support systems on current spacecraft operations philosophy: The users feedback

    Science.gov (United States)

    Darroy, Jean Michel

    1993-01-01

    Current trends in the spacecraft mission operations area (spacecraft & mission complexity, project duration, required flexibility are requiring a breakthrough for what concerns philosophy, organization, and support tools. A major evolution is related to space operations 'informationalization', i.e adding to existing operations support & data processing systems a new generation of tools based on advanced information technologies (object-oriented programming, artificial intelligence, data bases, hypertext) that automate, at least partially, operations tasks that used be performed manually (mission & project planning/scheduling, operations procedures elaboration & execution, data analysis & failure diagnosis). All the major facets of this 'informationalization' are addressed at MATRA MARCONI SPACE, operational applications were fielded and generic products are becoming available. These various applications have generated a significant feedback from the users (at ESA, CNES, ARIANESPACE, MATRA MARCONI SPACE), which is now allowing us to precisely measure how the deployment of this new generation of tools, that we called OPSWARE, can 'reengineer' current spacecraft mission operations philosophy, how it can make space operations faster, better, and cheaper. This paper can be considered as an update of the keynote address 'Knowledge-Based Systems for Spacecraft Control' presented during the first 'Ground Data Systems for Spacecraft Control' conference in Darmstadt, June 1990, with a special emphasis on these last two years users feedback.

  13. Application of software technology to a future spacecraft computer design

    Science.gov (United States)

    Labaugh, R. J.

    1980-01-01

    A study was conducted to determine how major improvements in spacecraft computer systems can be obtained from recent advances in hardware and software technology. Investigations into integrated circuit technology indicated that the CMOS/SOS chip set being developed for the Air Force Avionics Laboratory at Wright Patterson had the best potential for improving the performance of spaceborne computer systems. An integral part of the chip set is the bit slice arithmetic and logic unit. The flexibility allowed by microprogramming, combined with the software investigations, led to the specification of a baseline architecture and instruction set.

  14. 26th Conference of Spacecraft TT&C Technology in China

    CERN Document Server

    Qian, Weiping

    2013-01-01

    Proceedings of the 26th Conference of Spacecraft TT&C Technology in China collects selected papers from the 26th Conference of Spacecraft TT&C Technology in China held in Nanjing on October 16-19, 2012. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of “Shared and Flexible TT&C Systems”. The selected works can help  promote development of spacecraft TT&C technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book. Rongjun Shen is the Academician of Chinese Academy of Engineering; Weiping Qian is the Director General of Beijing Institute of Tracking and Telecommunications Technology.

  15. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  16. Autonomous spacecraft landing through human pre-attentive vision

    International Nuclear Information System (INIS)

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; De Croon, Guido C H E

    2012-01-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting. (paper)

  17. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    Science.gov (United States)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  18. Attention effects at auditory periphery derived from human scalp potentials: displacement measure of potentials.

    Science.gov (United States)

    Ikeda, Kazunari; Hayashi, Akiko; Sekiguchi, Takahiro; Era, Shukichi

    2006-10-01

    It is known in humans that electrophysiological measures such as the auditory brainstem response (ABR) are difficult to identify the attention effect at the auditory periphery, whereas the centrifugal effect has been detected by measuring otoacoustic emissions. This research developed a measure responsive to the shift of human scalp potentials within a brief post-stimulus period (13 ms), that is, displacement percentage, and applied it to an experiment to retrieve the peripheral attention effect. In the present experimental paradigm, tone pips were exposed to the left ear whereas the other ear was masked by white noise. Twelve participants each conducted two conditions of either ignoring or attending to the tone pips. Relative to averaged scalp potentials in the ignoring condition, the shift of the potentials was found within early component range during the attentive condition, and displacement percentage then revealed a significant magnitude difference between the two conditions. These results suggest that, using a measure representing the potential shift itself, the peripheral effect of attention can be detected from human scalp potentials.

  19. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  20. Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft

    Science.gov (United States)

    Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.

    2018-03-01

    The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the

  1. Rockets and spacecraft: Sine qua non of space science

    Science.gov (United States)

    1980-01-01

    The evolution of the national launch vehicle stable is presented along with lists of launch vehicles used in NASA programs. A partial list of spacecraft used throughout the world is also given. Scientific spacecraft costs are presented along with an historial overview of project development and funding in NASA.

  2. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  3. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  4. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  5. Effects of water chemistry and potential distribution on electrochemical corrosion potential measurements in 553 K pure water

    International Nuclear Information System (INIS)

    Ishida, Kazushige; Wada, Yoichi; Tachibana, Masahiko; Ota, Nobuyuki; Aizawa, Motohiro

    2013-01-01

    The effects of water chemistry distribution on the potential of a reference electrode and of the potential distribution on the measured potential should be known qualitatively to obtain accurate electrochemical corrosion potential (ECP) data in BWRs. First, the effects of oxygen on a platinum reference electrode were studied in 553 K pure water containing dissolved hydrogen (DH) concentration of 26 - 10 5 μg kg -1 (ppb). The platinum electrode worked in the same way as the theoretical hydrogen electrode under the condition that the molar ratio of DH to dissolved oxygen (DO) was more than 10 and that DO was less than 100 ppb. Second, the effects of potential distribution on the measured potential were studied by using the ECP measurement part without platinum deposition on the surfaces connected to another ECP measurement part with platinum deposition on the surfaces in 553 K pure water containing 100 - 130 ppb of DH or 100 - 130 ppb of DH plus 400 ppb of hydrogen peroxide. Measured potentials for each ECP measurement part were in good agreement with literature data for each surface condition. The lead wire connecting point did not affect the measured potential. Potential should be measured at the nearest point from the reference electrode in which case it will be not affected by either the potential distribution or the connection point of the lead wire in pure water. (author)

  6. Preliminary results on ocean dynamics from Skylab and their implications for future spacecraft

    Science.gov (United States)

    Hayes, J.; Pierson, W. J.; Cardone, V. J.

    1975-01-01

    The instrument aboard Skylab designated S193 - a combined passive and active microwave radar system acting as a radiometer, scatterometer, and altimeter - is used to measure the surface vector wind speeds in the planetary boundary layer over the oceans. Preliminary results corroborate the hypothesis that sea surface winds in the planetary boundary layer can be determined from satellite data. Future spacecraft plans for measuring a geoid with an accuracy up to 10 cm are discussed.

  7. Four-point potential drop measurements for materials characterization

    International Nuclear Information System (INIS)

    Bowler, Nicola

    2011-01-01

    The technique of measuring the voltage difference (potential drop) between two of the four electrodes of a four-point probe, in order to determine conductivity or surface resistivity of a test piece, is well established in the direct-current (dc) or quasi-dc regime. The technique finds wide usage in the semiconductor industry for the purpose of measuring surface resistivity of semiconductors, and also in the measurement of conductivity of metals, particularly of ferromagnetic metals for which conductivity cannot be easily measured using eddy-current nondestructive evaluation (NDE). In these applications, the conductivity of the test piece is deduced from an analytic formula that depends on the geometry of the probe and test piece. Such a formula requires, as an input, the measured value of the potential drop. Several analytical expressions exist for a variety of test-piece geometries and probe arrangements. Recently, it has been shown that broadband measurements of the potential drop, known as 'alternating current potential drop' (ac PD) measurements, can be used not only to obtain the conductivity of a test piece, but also its linear permeability μ. The beauty of this measurement is that the two parameters are completely decoupled in the quasi-static regime. In fact, μ does not appear in the quasi-static expression for σ. Hence, σ may be obtained from low-frequency ac PD measurements and then μ may be deduced as the frequency increases beyond the quasi-static regime, once σ is known. In this review, both dc and ac solutions that are useful in determining the conductivity of metals and semiconductors, and the permeability of ferromagnetic conductors, are summarized. In particular, flat test pieces with arbitrary thickness are considered. At the next level of complexity, a solution for a half-space coated with a surface layer is given, along with a discussion of the use of the four-point potential drop method for determining thickness of a surface layer, such

  8. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  9. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    Science.gov (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  10. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  11. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    Science.gov (United States)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  12. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    Science.gov (United States)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  13. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    Science.gov (United States)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  14. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  15. The Stardust spacecraft arrives at KSC

    Science.gov (United States)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  16. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance

  17. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  18. A multi-spacecraft survey of magnetic field line draping in the dayside magnetosheath

    Directory of Open Access Journals (Sweden)

    I. J. Coleman

    2005-03-01

    Full Text Available When the interplanetary magnetic field (IMF encounters the Earth's magnetosphere, it is compressed and distorted. This distortion is known as draping, and plays an important role in the interaction between the IMF and the geomagnetic field. This paper considers a particular aspect of draping, namely how the orientation of the IMF in a plane perpendicular to the Sun-Earth line (the clock angle is altered by draping in the magnetosheath close to the dayside magnetopause. The clock angle of the magnetosheath field is commonly estimated from the interplanetary magnetic field (IMF measured by upstream monitoring spacecraft either by assuming that the draping process does not significantly alter the clock angle ("perfect draping" or that the change in clock angle is reasonably approximated by a gas dynamic model. In this paper, the magnetosheath clock angles measured during 36 crossings of the magnetopause by the Geotail and Interball-Tail spacecraft are compared to the upstream IMF clock angles measured by the Wind spacecraft. Overall, about 30% of data points exhibit perfect draping within ±10°, and 70% are within 30°. The differences between the IMF and magnetosheath clock angles are not, in general, well-ordered in any systematic fashion which could be accounted for by hydrodynamic draping. The draping behaviour is asymmetric with respect to the y-component of the IMF, and the form of the draping distribution function is dependent on solar wind pressure. While the average clock angle observed in the magnetosheath does reflect the orientation of the IMF to within ~30° or less, the assumption that the magnetosheath field direction at any particular region of the magnetopause at any instant is approximately similar to the IMF direction is not justified. This study shows that reconnection models which assume laminar draping are unlikely to accurately reflect the distribution of reconnection sites across the dayside magnetopause.

  19. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  20. Preflight Calibration Test Results for Optical Navigation Camera Telescope (ONC-T) Onboard the Hayabusa2 Spacecraft

    Science.gov (United States)

    Kameda, S.; Suzuki, H.; Takamatsu, T.; Cho, Y.; Yasuda, T.; Yamada, M.; Sawada, H.; Honda, R.; Morota, T.; Honda, C.; Sato, M.; Okumura, Y.; Shibasaki, K.; Ikezawa, S.; Sugita, S.

    2017-07-01

    The optical navigation camera telescope (ONC-T) is a telescopic framing camera with seven colors onboard the Hayabusa2 spacecraft launched on December 3, 2014. The main objectives of this instrument are to optically navigate the spacecraft to asteroid Ryugu and to conduct multi-band mapping the asteroid. We conducted performance tests of the instrument before its installation on the spacecraft. We evaluated the dark current and bias level, obtained data on the dependency of the dark current on the temperature of the charge-coupled device (CCD). The bias level depends strongly on the temperature of the electronics package but only weakly on the CCD temperature. The dark-reference data, which is obtained simultaneously with observation data, can be used for estimation of the dark current and bias level. A long front hood is used for ONC-T to reduce the stray light at the expense of flatness in the peripheral area of the field of view (FOV). The central area in FOV has a flat sensitivity, and the limb darkening has been measured with an integrating sphere. The ONC-T has a wheel with seven bandpass filters and a panchromatic glass window. We measured the spectral sensitivity using an integrating sphere and obtained the sensitivity of all the pixels. We also measured the point-spread function using a star simulator. Measurement results indicate that the full width at half maximum is less than two pixels for all the bandpass filters and in the temperature range expected in the mission phase except for short periods of time during touchdowns.

  1. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    Science.gov (United States)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  2. Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer's Tutorial

    Directory of Open Access Journals (Sweden)

    Markus Wilde

    2018-04-01

    Full Text Available The paper provides a step-by-step tutorial on the Generalized Jacobian Matrix (GJM approach for modeling and simulation of spacecraft-manipulator systems. The General Jacobian Matrix approach describes the motion of the end-effector of an underactuated manipulator system solely by the manipulator joint rotations, with the attitude and position of the base-spacecraft resulting from the manipulator motion. The coupling of the manipulator motion with the base-spacecraft are thus expressed in a generalized inertia matrix and a GJM. The focus of the paper lies on the complete analytic derivation of the generalized equations of motion of a free-floating spacecraft-manipulator system. This includes symbolic analytic expressions for all inertia property matrices of the system, including their time derivatives and joint-angle derivatives, as well as an expression for the generalized Jacobian of a generic point on any link of the spacecraft-manipulator system. The kinematics structure of the spacecraft-manipulator system is described both in terms of direction-cosine matrices and unit quaternions. An additional important contribution of this paper is to propose a new and more detailed definition for the modes of maneuvering of a spacecraft-manipulator. In particular, the two commonly used categories free-flying and free-floating are expanded by the introduction of five categories, namely floating, rotation-floating, rotation-flying, translation-flying, and flying. A fully-symbolic and a partially-symbolic option for the implementation of a numerical simulation model based on the proposed analytic approach are introduced and exemplary simulation results for a planar four-link spacecraft-manipulator system and a spatial six-link spacecraft manipulator system are presented.

  3. Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report

    Science.gov (United States)

    2014-09-19

    appears to work similarly in Internet Explorer, FireFox , and Opera, but fails in Safari and Chrome. Note that the SEE Spacecraft Charging Handbook is... Characteristics of Spacecraft Charging in Low Earth Orbit, J Geophys Res. 11 7, doi: 10.1029/20 11JA016875, 2012. 2 M. Cho, K. Saito, T. Hamanaga, Data

  4. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  5. Problems associated with the investigation of the natural environment from manned spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, B V [Akademiia Nauk SSSR, Institut Okeanologii, Leningrad, USSR; Sevastianov, V I

    1980-01-01

    Recent Soviet research dealing with the remote sensing of the earth's surface from manned spacecraft is reviewed. Particular attention is given to visual observations, spectrophotometry, and monospectral and multispectral photography performed from the Soyuz and Salyut spacecraft. The use of spacecraft images in agriculture is emphasized economic factors are discussed.

  6. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    OpenAIRE

    Li, Dong-Xu; Liu, Wang; Hao, Dong

    2017-01-01

    Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections b...

  7. Potential drop crack measurement systems for CANDU components

    Energy Technology Data Exchange (ETDEWEB)

    Sahney, R [Carleton Univ., Ottawa, ON (Canada)

    1994-12-31

    A project to develop an automated crack measurement system for CANDU pressure tube burst testing is currently underway. The system will utilize either Direct Current Potential Drop (DCPD) or Alternating Current Potential Drop (ACPD) techniques for crack measurement. The preliminary stage of the project involves testing and comparison of both ACPD and DCPD methods on a Zr - 2.5% Nb alloy plate with saw cuts (used to simulate cracks). Preliminary results show that both ACPD and DCPD techniques are capable of detecting cracks; further testing is in progress to determine the ability of each of the two systems to make accurate crack depth measurements. This paper will describe the two potential drop techniques and will present test results from the experimental program. (author). 10 refs., 7 figs.

  8. Spacecraft early design validation using formal methods

    International Nuclear Information System (INIS)

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco

    2014-01-01

    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  9. Measurement of water potential in low-level waste management

    International Nuclear Information System (INIS)

    Jones, T.L.; Gee, G.W.; Kirkham, R.R.; Gibson, D.D.

    1982-08-01

    The measurement of soil water is important to the shallow land burial of low-level waste. Soil water flow is the principle mechanism of radionuclide transport, allows the establishment of stabilizing vegetation and also governs the dissolution and release rates of the waste. This report focuses on the measurement of soil water potential and provides an evaluation of several field instruments that are available for use to monitor waste burial sites located in arid region soils. The theoretical concept of water potential is introduced and its relationship to water content and soil water flow is discussed. Next, four major areas of soils research are presented in terms of their dependence on the water potential concept. There are four basic types of sensors used to measure soil water potential. These are: (1) tensiometers; (2) soil psychrometers; (3) electrical resistance blocks; and (4) heat dissipation probes. Tensiometers are designed to measure the soil water potential directly by measuring the soil water pressure. Monitoring efforts at burial sites require measurements of soil water over long time periods. They also require measurements at key locations such as waste-soil interfaces and within any barrier system installed. Electrical resistance blocks are well suited for these types of measurements. The measurement of soil water potential can be a difficult task. There are several sensors commercially available; however, each has its own limitations. It is important to carefully select the appropriate sensor for the job. The accuracy, range, calibration, and stability of the sensor must be carefully considered. This study suggests that for waste management activities, the choice of sensor will be the tensiometer for precise soil characterization studies and the electrical resistance block for long term monitoring programs

  10. Comparison of media for detection of fungi on spacecraft

    Science.gov (United States)

    Herring, C. M.; Brandsberg, J. W.; Oxborrow, G. S.; Puleo, J. R.

    1974-01-01

    Five media, including Trypticase soy agar (TSA; BBL) pour plates, spread plates of TSA, Mycophil agar with chloromycetin, Mycophil agar with chloromycetin and Actidione, and cornmeal agar with chloromycetin were quantitatively and qualitatively compared for the detection of fungi on spacecraft. Cornmeal agar with chloromycetin yielded the highest number of fungal colonies, although not always significantly higher than Mycophil agar with chloromycetin or TSA spread plates. Cornmeal agar with chloromycetin also gave the best qualitative representation of fungi on the spacecraft, recovering 68% of the genera found from all media. This medium yielded 10 times the number of fungal colonies and 3 times the number of genera found on TSA pour plates as currently used for spacecraft assay.

  11. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  12. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    Science.gov (United States)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  13. A study of a space-station-associated multiple spacecraft Michelson spatial interferometer

    Science.gov (United States)

    Stachnik, R. V.

    1983-01-01

    One approach to Michelson spatial interferometry at optical wavelengths involves use of an array of spacecraft in which two widely-separated telescopes collect light from a star and direct it to a third, centrally-located, device which combines the beams in order to detect and measure interference fringes. The original version of a spacecraft array for Michelson spatial interferometry (SAMSI) was modified so that the system uses the fuel resupply capability of a space station. The combination of this fuel resupply capability with a method of obtaining image Fourier transform phase information, necessary for full image reconstruction, permits SAMSI to be used to synthesize images equivalent to those produced by huge apertures in space. Synthesis of apertures in the 100 to 500 meter range is discussed. Reconstruction can be performed to a visual magnitude of at least 8 for a 100 A passband in 9 hours. Data are simultaneously collected for image generation from 0.1 micron to 18 microns. In the one-dimensional mode, measurements can be made every 90 minutes (including acquisition and repointing time) for objects as faint as 19th magnitude in the visible.

  14. Thrusting maneuver control of a small spacecraft via only gimbaled-thruster scheme

    Science.gov (United States)

    Kabganian, Mansour; Kouhi, Hamed; Shahravi, Morteza; Fani Saberi, Farhad

    2018-05-01

    The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.

  15. Monitoring on board spacecraft by means of passive detectors

    International Nuclear Information System (INIS)

    Ambrozova, I.; Brabcova, K.; Spurny, F.; Shurshakov, V. A.; Kartsev, I. S.; Tolochek, R. V.

    2011-01-01

    To estimate the radiation risk of astronauts during space missions, it is necessary to measure dose characteristics in various compartments of the spacecraft; this knowledge can be further used for estimating the health hazard in planned missions. This contribution presents results obtained during several missions on board the International Space Station (ISS) during 2005-09. A combination of thermoluminescent and plastic nuclear track detectors was used to measure the absorbed dose and dose equivalent. These passive detectors have several advantages, especially small dimensions, which enabled their placement at various locations in different compartments inside the ISS or inside the phantom. Variation of dosimetric quantities with the phase of the solar cycle and the position inside the ISS is discussed. (authors)

  16. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  17. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    Science.gov (United States)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  18. Computer simulation of pitting potential measurements

    International Nuclear Information System (INIS)

    Laycock, N.J.; Noh, J.S.; White, S.P.; Krouse, D.P.

    2005-01-01

    A deterministic model for the growth of single pits in stainless steel has been combined with a purely stochastic model of pit nucleation. Monte-Carlo simulations have been used to compare the predictions of this model with potentiodynamic experimental measurements of the pitting potential. The quantitative agreement between model and experiment is reasonable for both 304 and 316 stainless steel, and the effects of varying surface roughness, solution chloride concentration and potential sweep rate have been considered

  19. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  20. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  1. Protecting Spacecraft Fragments from Exposure to Small Debris

    OpenAIRE

    V. V. Zelentsov

    2015-01-01

    Since the launch of the first artificial Earth satellite a large amount of space debris has been accumulated in near-earth space. This debris comprises the exhausted spacecrafts, final stages of rocket-carriers and boosters, technological space junk, consisting of the structure elements, which are separated when deploying the solar arrays, antennas etc., as well as when undocking a booster and a spacecraft. All the debris is divided into observable one of over 100 mm in size and unobservable ...

  2. Characterization of hydrogen peroxide-resistant Acinetobacter species isolated during the Mars Phoenix spacecraft assembly.

    Science.gov (United States)

    Derecho, I; McCoy, K B; Vaishampayan, P; Venkateswaran, K; Mogul, R

    2014-10-01

    The microbiological inventory of spacecraft and the associated assembly facility surfaces represent the primary pool of forward contaminants that may impact the integrity of life-detection missions. Herein, we report on the characterization of several strains of hydrogen peroxide-resistant Acinetobacter, which were isolated during the Mars Phoenix lander assembly. All Phoenix-associated Acinetobacter strains possessed very high catalase specific activities, and the specific strain, A. gyllenbergii 2P01AA, displayed a survival against hydrogen peroxide (no loss in 100 mM H2O2 for 1 h) that is perhaps the highest known among Gram-negative and non-spore-forming bacteria. Proteomic characterizations reveal a survival mechanism inclusive of proteins coupled to peroxide degradation (catalase and alkyl hydroperoxide reductase), energy/redox management (dihydrolipoamide dehydrogenase), protein synthesis/folding (EF-G, EF-Ts, peptidyl-tRNA hydrolase, DnaK), membrane functions (OmpA-like protein and ABC transporter-related protein), and nucleotide metabolism (HIT family hydrolase). Together, these survivability and biochemical parameters support the hypothesis that oxidative tolerance and the related biochemical features are the measurable phenotypes or outcomes for microbial survival in the spacecraft assembly facilities, where the low-humidity (desiccation) and clean (low-nutrient) conditions may serve as selective pressures. Hence, the spacecraft-associated Acinetobacter, due to the conferred oxidative tolerances, may ultimately hinder efforts to reduce spacecraft bioburden when using chemical sterilants, thus suggesting that non-spore-forming bacteria may need to be included in the bioburden accounting for future life-detection missions.

  3. Short rendezvous missions for advanced Russian human spacecraft

    Science.gov (United States)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  4. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  5. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  6. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  7. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  8. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  9. Space potential, temperature, and density profile measurements on RENTOR

    International Nuclear Information System (INIS)

    Schoch, P.M.

    1983-05-01

    Radial profiles of the space potential, electron temperature, and density have been measured on RENTOR with a heavy-ion-beam probe. The potential profile has been compared to predictions from a stochastic magnetic field fluctuation theory, using the measured temperature and density profiles. The comparison shows strong qualitative agreement in that the potential is positive and the order of T/sub e//e. There is some quantitative disagreement in that the measured radial electric fields are somewhat smaller than the theoretical predictions. To facilitate this comparison, a detailed analysis of the possible errors has been completed

  10. On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    There has recently been a push for adopting integrated modular avionics (IMA) principles in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEthernet can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Exploration Systems (AES) program.

  11. Carbon potential measurement on some actinide carbides

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Vasudeva Rao, P.R.; Mathews, C.K.; Jacob, K.T.

    1994-01-01

    Uranium-Plutonium mixed carbides with a Pu/(U+Pu) ratio of 0.55 are to be used as the fuel in the Fast Breeder Test Reactor (FBTR) at Kalpakkam, India. Carburization of the stainless steel clad by this fuel is determined by its carbon potential. Because the carbon potential of this fuel composition is not available in the literature, it was measured by the methane-hydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-to-hydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThC 2 as well as Mo-Mo 2 C system, which is an important binary in the actinide-fission product-carbon systems, were also measured by this technique in the temperature range 973 to 1,173 K. The data for the Mo-Mo 2 C system are in agreement with values reported in the literature. The results for the ThC-ThC 2 system are different from estimated values with large uncertainty limits given in the literature. The data on (U, Pu) mixed carbides indicates the possibility of stainless steel clad attack under isothermal equilibrium conditions

  12. Measurement of nuclear potentials from fusion excitation functions

    International Nuclear Information System (INIS)

    Huizenga, J.R.; Birkelund, J.R.

    1984-01-01

    The basis for measuring nuclear potentials from fusion excitation functions at energies above barrier is reviewed. It is argued that because of experimental and conceptual problems fusion excitation functions at high energies cannot lead to model independent measurements of internuclear potential at small separations. The Al 27 + Ne 20 reaction previously analyzed by others is used as an example of problems arising from the inability to distinguish complete and incomplete fusion in experimental data

  13. Potential barrier classification by short-time measurement

    International Nuclear Information System (INIS)

    Granot, Er'el; Marchewka, Avi

    2006-01-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function

  14. Potential barrier classification by short-time measurement

    Science.gov (United States)

    Granot, Er'El; Marchewka, Avi

    2006-03-01

    We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.

  15. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  16. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    Science.gov (United States)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  17. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  18. Space environment studies for the SZ-4 spacecraft

    International Nuclear Information System (INIS)

    Ye Zonghai

    2004-01-01

    The space environment, especially the solar-terrestrial space environment, has close bearings on mankind's astronautical activities. An overview is presented of the space environment and safeguard services on the 'SZ' series of spacecraft, with special reference to the SZ-4 spacecraft. These include monitoring of the space environment on SZ-4, studies on its distribution, variation and effects on astronautical performance, as well as space environment forecasts for safe launching, normal operation and safe return of SZ-4. Current progress both in China and overseas is covered

  19. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  20. Apollo Spacecraft 012 Command/Service Module being moved to Operations bldg

    Science.gov (United States)

    1967-01-01

    Transfer of Apollo Spacecraft 012 Command/Service Module for mating to the Saturn Lunar Module Adapter No. 05 in the Manned Spacecraft Operations bldg. S/C 012 will be flown on the Apollo/Saturn 204 mission.

  1. Proposed gravity-gradient dynamics experiments in lunar orbit using the RAE-B spacecraft

    Science.gov (United States)

    Blanchard, D. L.; Walden, H.

    1973-01-01

    A series of seven gravity-gradient dynamics experiments is proposed utilizing the Radio Astronomy Explorer (RAE-B) spacecraft in lunar orbit. It is believed that none of the experiments will impair the spacecraft structure or adversely affect the continuation of the scientific mission of the satellite. The first experiment is designed to investigate the spacecraft dynamical behavior in the absence of libration damper action and inertia. It requires stable gravity-gradient capture of the spacecraft in lunar orbit with small amplitude attitude librations as a prerequisite. Four subsequent experiments involve partial retraction, ultimately followed by full redeployment, of one or two of the 230-meter booms forming the lunar-directed Vee-antenna. These boom length change operations will induce moderate amplitude angular librations of the spacecraft.

  2. At the edge of the earth's magnetosphere: a survey by the AMPTE UKS spacecraft

    International Nuclear Information System (INIS)

    Bryant, D.A.; Riggs, S.

    1988-10-01

    A survey is made, using measurements from the AMPTE-UKS spacecraft, of the interaction between plasmas of solar and terrestrial origin at the outer edge of the Earth's magnetosphere. The first results are presented of a new type of analysis which aims to clarify the nature of the boundary layer that develops between the two plasmas by re-ordering, on the basis of a consistent relationship between electron density and temperature and the normally erratic progress made by a spacecraft across the constantly moving region. Distinctive patterns found consistently for the electron and ion transitions suggest that diffusion, viscosity and loss to the atmosphere govern the boundary layer. Electron acceleration within the boundary layer is identified; and its cause, and relevance to dayside auroral precipitation are discussed. (author)

  3. Surface contact potential patches and Casimir force measurements

    International Nuclear Information System (INIS)

    Kim, W. J.; Sushkov, A. O.; Lamoreaux, S. K.; Dalvit, D. A. R.

    2010-01-01

    We present calculations of contact potential surface patch effects that simplify previous treatments. It is shown that, because of the linearity of Laplace's equation, the presence of patch potentials does not affect an electrostatic calibration of a two-plate Casimir measurement apparatus. Using models that include long-range variations in the contact potential across the plate surfaces, a number of experimental observations can be reproduced and explained. For these models, numerical calculations show that if a voltage is applied between the plates which minimizes the force, a residual electrostatic force persists, and that the minimizing potential varies with distance. The residual force can be described by a fit to a simple two-parameter function involving the minimizing potential and its variation with distance. We show the origin of this residual force by use of a simple parallel capacitor model. Finally, the implications of a residual force that varies in a manner different from 1/d on the accuracy of previous Casimir measurements is discussed.

  4. Multipurpose Electric Potential Sensor for Spacecraft Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is based on a new, compact, solid-state electric potential sensor that has over an order of magnitude lower voltage noise than the prior...

  5. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  6. Darwinian Spacecraft: Soft Computing Strategies Breeding Better, Faster Cheaper

    Science.gov (United States)

    Noever, David A.; Baskaran, Subbiah

    1999-01-01

    Computers can create infinite lists of combinations to try to solve a particular problem, a process called "soft-computing." This process uses statistical comparables, neural networks, genetic algorithms, fuzzy variables in uncertain environments, and flexible machine learning to create a system which will allow spacecraft to increase robustness, and metric evaluation. These concepts will allow for the development of a spacecraft which will allow missions to be performed at lower costs.

  7. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  8. Astronaut L. Gordon Cooper is assisted into his spacecraft for tests

    Science.gov (United States)

    1963-01-01

    NASA and McDonnell Aircraft Corp. spacecraft technicians assist Astronaut L. Gordon Cooper into his spacecraft prior to undergoing tests in the altitude chamber. These tests are used to determine the operating characteristcs of the overall environmental control system.

  9. Laboratory Spacecraft Data Processing and Instrument Autonomy: AOSAT as Testbed

    Science.gov (United States)

    Lightholder, Jack; Asphaug, Erik; Thangavelautham, Jekan

    2015-11-01

    Recent advances in small spacecraft allow for their use as orbiting microgravity laboratories (e.g. Asphaug and Thangavelautham LPSC 2014) that will produce substantial amounts of data. Power, bandwidth and processing constraints impose limitations on the number of operations which can be performed on this data as well as the data volume the spacecraft can downlink. We show that instrument autonomy and machine learning techniques can intelligently conduct data reduction and downlink queueing to meet data storage and downlink limitations. As small spacecraft laboratory capabilities increase, we must find techniques to increase instrument autonomy and spacecraft scientific decision making. The Asteroid Origins Satellite (AOSAT) CubeSat centrifuge will act as a testbed for further proving these techniques. Lightweight algorithms, such as connected components analysis, centroid tracking, K-means clustering, edge detection, convex hull analysis and intelligent cropping routines can be coupled with the tradition packet compression routines to reduce data transfer per image as well as provide a first order filtering of what data is most relevant to downlink. This intelligent queueing provides timelier downlink of scientifically relevant data while reducing the amount of irrelevant downlinked data. Resulting algorithms allow for scientists to throttle the amount of data downlinked based on initial experimental results. The data downlink pipeline, prioritized for scientific relevance based on incorporated scientific objectives, can continue from the spacecraft until the data is no longer fruitful. Coupled with data compression and cropping strategies at the data packet level, bandwidth reductions exceeding 40% can be achieved while still downlinking data deemed to be most relevant in a double blind study between scientist and algorithm. Applications of this technology allow for the incorporation of instrumentation which produces significant data volumes on small spacecraft

  10. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  11. Ascent performance feasibility for next-generation spacecraft

    Science.gov (United States)

    Mancuso, Salvatore Massimo

    This thesis deals with the optimization of the ascent trajectories for single-stage suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem has been solved using the sequential gradient-restoration algorithm. For the TSTO case, some modifications to the original version of the algorithm have been necessary in order to deal with discontinuities due to staging and the fact that the functional being minimized depends on interface conditions. The optimization problem is studied for different values of the initial thrust-to-weight ratio in the range 1.3 to 1.6, engine specific impulse in the range 400 to 500 sec, and spacecraft structural factor in the range 0.08 to 0.12. For the TSTO configuration, two subproblems are studied: uniform structural factor between stages and nonuniform structural factor between stages. Due to the regular behavior of the results obtained, engineering approximations have been developed which connect the maximum payload weight to the engine specific impulse and spacecraft structural factor; in turn, this leads to useful design considerations. Also, performance sensitivity to the scale of the aerodynamic drag is studied, and it is shown that its effect on payload weight is relatively small, even for drag changes approaching ± 50%. The main conclusions are that: the design of a SSSO configuration appears to be feasible; the design of a SSTO configuration might be comfortably feasible, marginally feasible, or unfeasible, depending on the parameter values assumed; the design of a TSTO configuration is not only feasible, but its payload appears to be considerably larger than that of a SSTO configuration. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, it appears that aerodynamic improvements do not yield significant improvements in payload weight.

  12. Navigating the MESSENGER Spacecraft through End of Mission

    Science.gov (United States)

    Bryan, C. G.; Williams, B. G.; Williams, K. E.; Taylor, A. H.; Carranza, E.; Page, B. R.; Stanbridge, D. R.; Mazarico, E.; Neumann, G. A.; O'Shaughnessy, D. J.; McAdams, J. V.; Calloway, A. B.

    2015-12-01

    The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft orbited the planet Mercury from March 2011 until the end of April 2015, when it impacted the planetary surface after propellant reserves used to maintain the orbit were depleted. This highly successful mission was led by the principal investigator, Sean C. Solomon, of Columbia University. The Johns Hopkins University Applied Physics Laboratory (JHU/APL) designed and assembled the spacecraft and served as the home for spacecraft operations. Spacecraft navigation for the entirety of the mission was provided by the Space Navigation and Flight Dynamics Practice (SNAFD) of KinetX Aerospace. Orbit determination (OD) solutions were generated through processing of radiometric tracking data provided by NASA's Deep Space Network (DSN) using the MIRAGE suite of orbital analysis tools. The MESSENGER orbit was highly eccentric, with periapsis at a high northern latitude and periapsis altitude in the range 200-500 km for most of the orbital mission phase. In a low-altitude "hover campaign" during the final two months of the mission, periapsis altitudes were maintained within a narrow range between about 35 km and 5 km. Navigating a spacecraft so near a planetary surface presented special challenges. Tasks required to meet those challenges included the modeling and estimation of Mercury's gravity field and of solar and planetary radiation pressure, and the design of frequent orbit-correction maneuvers. Superior solar conjunction also presented observational modeling issues. One key to the overall success of the low-altitude hover campaign was a strategy to utilize data from an onboard laser altimeter as a cross-check on the navigation team's reconstructed and predicted estimates of periapsis altitude. Data obtained from the Mercury Laser Altimeter (MLA) on a daily basis provided near-real-time feedback that proved invaluable in evaluating alternative orbit estimation strategies, and

  13. Attitude tracking control of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  14. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  15. Data combinations accounting for LISA spacecraft motion

    International Nuclear Information System (INIS)

    Shaddock, Daniel A.; Tinto, Massimo; Estabrook, Frank B.; Armstrong, J.W.

    2003-01-01

    The laser interferometer space antenna is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers

  16. Quaternion normalization in additive EKF for spacecraft attitude determination. [Extended Kalman Filters

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter to spacecraft attitude determination, which is based on vector measurements. Three new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstate the performance of all four schemes.

  17. Potential measurement and radial transport in GAMMA 10 tandem mirror

    International Nuclear Information System (INIS)

    Ishii, K.; Katanuma, I.; Segawa, T.; Ohkawara, H.; Mase, A.; Miyoshi, S.

    1989-01-01

    GAMMA 10 is an effectively axisymmetric tandem mirror with thermal barriers. Potential information is important to investigate the plasma confinement. The barrier and central space potentials are determined by means of two gold neutral beam probes. Two-dimensional potential profiles have been measured in the barrier cell. In GAMMA 10, to assure magneto-hydrodynamic (MHD) stability, the nonaxisymmetric minimum-B mirror cells are contained between the central-solenoid and the plug/barrier cells at the ends of the machine. From the point of view of neoclassical resonant-plateau transport in circular equipotential contours, this effective axisymmetrization is successful. The measured potential profiles are slightly elongated during the onset of ω ce ECRH. In this paper we report the beam probe potential measurement, the neoclassical ion radial transport in the noncircular equipotential surface and the thermal barrier potential. (author) 6 refs., 5 figs

  18. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques

    NARCIS (Netherlands)

    Jager, D. H. J.; Vieira, A. M.; Ruben, J. L.; Huysmans, M. C. D. N. J. M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  19. Influence of beverage composition on the results of erosive potential measurement by different measurement techniques.

    NARCIS (Netherlands)

    Jager, D.H.; Vieira, A.M.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.

    2008-01-01

    The influence of beverage composition on the measurement of erosive potential is unclear. The aim of this study was to evaluate whether beverage composition influences the measurement of erosive potential and to evaluate the influence of exposure in small and large volumes. Eleven beverages were

  20. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  1. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  2. Results of Large-Scale Spacecraft Flammability Tests

    Science.gov (United States)

    Ferkul, Paul; Olson, Sandra; Urban, David L.; Ruff, Gary A.; Easton, John; T'ien, James S.; Liao, Ta-Ting T.; Fernandez-Pello, A. Carlos; Torero, Jose L.; Eigenbrand, Christian; hide

    2017-01-01

    For the first time, a large-scale fire was intentionally set inside a spacecraft while in orbit. Testing in low gravity aboard spacecraft had been limited to samples of modest size: for thin fuels the longest samples burned were around 15 cm in length and thick fuel samples have been even smaller. This is despite the fact that fire is a catastrophic hazard for spaceflight and the spread and growth of a fire, combined with its interactions with the vehicle cannot be expected to scale linearly. While every type of occupied structure on earth has been the subject of full scale fire testing, this had never been attempted in space owing to the complexity, cost, risk and absence of a safe location. Thus, there is a gap in knowledge of fire behavior in spacecraft. The recent utilization of large, unmanned, resupply craft has provided the needed capability: a habitable but unoccupied spacecraft in low earth orbit. One such vehicle was used to study the flame spread over a 94 x 40.6 cm thin charring solid (fiberglasscotton fabric). The sample was an order of magnitude larger than anything studied to date in microgravity and was of sufficient scale that it consumed 1.5 of the available oxygen. The experiment which is called Saffire consisted of two tests, forward or concurrent flame spread (with the direction of flow) and opposed flame spread (against the direction of flow). The average forced air speed was 20 cms. For the concurrent flame spread test, the flame size remained constrained after the ignition transient, which is not the case in 1-g. These results were qualitatively different from those on earth where an upward-spreading flame on a sample of this size accelerates and grows. In addition, a curious effect of the chamber size is noted. Compared to previous microgravity work in smaller tunnels, the flame in the larger tunnel spread more slowly, even for a wider sample. This is attributed to the effect of flow acceleration in the smaller tunnels as a result of hot

  3. Potential applications of MMC and aluminum-lithium alloys in cameras for CRAF spacecraft. [Comet Rendezvous Asteroid Flyby Mission

    Science.gov (United States)

    Lane, Marc; Hsieh, Cheng; Adams, Lloyd

    1989-01-01

    In undertaking the design of a 2000-mm focal length camera for the Mariner Mark II series of spacecraft, JPL sought novel materials with the requisite dimensional and thermal stability, outgassing and corrosion resistance, low mass, high stiffness, and moderate cost. Metal-matrix composites and Al-Li alloys have, in addition to excellent mechanical properties and low density, a suitably low coefficient of thermal expansion, high specific stiffness, and good electrical conductivity. The greatest single obstacle to application of these materials to camera structure design is noted to have been the lack of information regarding long-term dimensional stability.

  4. Electric field measurements on Cluster: comparing the double-probe and electron drift techniques

    Directory of Open Access Journals (Sweden)

    A. I. Eriksson

    2006-03-01

    Full Text Available The four Cluster satellites each carry two instruments designed for measuring the electric field: a double-probe instrument (EFW and an electron drift instrument (EDI. We compare data from the two instruments in a representative sample of plasma regions. The complementary merits and weaknesses of the two techniques are illustrated. EDI operations are confined to regions of magnetic fields above 30 nT and where wave activity and keV electron fluxes are not too high, while EFW can provide data everywhere, and can go far higher in sampling frequency than EDI. On the other hand, the EDI technique is immune to variations in the low energy plasma, while EFW sometimes detects significant nongeophysical electric fields, particularly in regions with drifting plasma, with ion energy (in eV below the spacecraft potential (in volts. We show that the polar cap is a particularly intricate region for the double-probe technique, where large nongeophysical fields regularly contaminate EFW measurments of the DC electric field. We present a model explaining this in terms of enhanced cold plasma wake effects appearing when the ion flow energy is higher than the thermal energy but below the spacecraft potential multiplied by the ion charge. We suggest that these conditions, which are typical of the polar wind and occur sporadically in other regions containing a significant low energy ion population, cause a large cold plasma wake behind the spacecraft, resulting in spurious electric fields in EFW data. This interpretation is supported by an analysis of the direction of the spurious electric field, and by showing that use of active potential control alleviates the situation.

  5. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    Science.gov (United States)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  6. High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2008-01-01

    Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.

  7. Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes

    Science.gov (United States)

    1998-07-01

    Meanwhile, the ESA/NASA investigation board concentrates its inquiry on three errors that appear to have led to the interruption of communications with SOHO on June 25. Officials remain hopeful that, based on ESA's successful recovery of the Olympus spacecraft after four weeks under similar conditions in 1991, recovery of SOHO may be possible. The SOHO Mission Interruption Joint ESA/NASA Investigation Board has determined that the first two errors were contained in preprogrammed command sequences executed on ground system computers, while the last error was a decision to send a command to the spacecraft in response to unexpected telemetry readings. The spacecraft is controlled by the Flight Operations Team, based at NASA's Goddard Space Flight Center, Greenbelt, MD. The first error was in a preprogrammed command sequence that lacked a command to enable an on-board software function designed to activate a gyro needed for control in Emergency Sun Reacquisition (ESR) mode. ESR mode is entered by the spacecraft in the event of anomalies. The second error, which was in a different preprogrammed command sequence, resulted in incorrect readings from one of the spacecraft's three gyroscopes, which in turn triggered an ESR. At the current stage of the investigation, the board believes that the two anomalous command sequences, in combination with a decision to send a command to SOHO to turn off a gyro in response to unexpected telemetry values, caused the spacecraft to enter a series of ESRs, and ultimately led to the loss of control. The efforts of the investigation board are now directed at identifying the circumstances that led to the errors, and at developing a recovery plan should efforts to regain contact with the spacecraft succeed. ESA and NASA engineers believe the spacecraft is currently spinning with its solar panels nearly edge-on towards the Sun, and thus not generating any power. Since the spacecraft is spinning around a fixed axis, as the spacecraft progresses

  8. Spacecraft observations of solar wind turbulence: an overview

    International Nuclear Information System (INIS)

    Horbury, T S; Forman, M A; Oughton, S

    2005-01-01

    Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic (MHD) turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and the presence of intermittency similar to that in neutral fluids. We also discuss the presence of anisotropy in wavevector space relative to the local magnetic field direction. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wavevectors either parallel to the magnetic field ('slab' fluctuations) or approximately perpendicular to it ('2D'). We review the existing evidence for such anisotropy, which has important consequences for the transport of energetic particles. Finally, we present the first results of a new analysis which provides the most accurate measurements to date of the wave-vector anisotropy of wavevector power in solar wind MHD turbulence

  9. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  10. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  11. Modeling and Simulation of Satellite Subsystems for End-to-End Spacecraft Modeling

    National Research Council Canada - National Science Library

    Schum, William K; Doolittle, Christina M; Boyarko, George A

    2006-01-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems...

  12. Multi-kilowatt modularized spacecraft power processing system development

    International Nuclear Information System (INIS)

    Andrews, R.E.; Hayden, J.H.; Hedges, R.T.; Rehmann, D.W.

    1975-07-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations

  13. FORTE spacecraft vibration mitigation. Final report

    International Nuclear Information System (INIS)

    Maly, J.R.

    1996-02-01

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure

  14. Measurement of Redox Potential in Nanoecotoxicological Investigations

    Directory of Open Access Journals (Sweden)

    Ratna Tantra

    2012-01-01

    Full Text Available Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO or cerium oxide (CeO2 dispersions were measured using an oxidation-reduction potential (ORP electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe.

  15. Measurement of redox potential in nanoecotoxicological investigations.

    Science.gov (United States)

    Tantra, Ratna; Cackett, Alex; Peck, Roger; Gohil, Dipak; Snowden, Jacqueline

    2012-01-01

    Redox potential has been identified by the Organisation for Economic Co-operation and Development (OECD) as one of the parameters that should be investigated for the testing of manufactured nanomaterials. There is still some ambiguity concerning this parameter, i.e., as to what and how to measure, particularly when in a nanoecotoxicological context. In this study the redox potentials of six nanomaterials (either zinc oxide (ZnO) or cerium oxide (CeO(2))) dispersions were measured using an oxidation-reduction potential (ORP) electrode probe. The particles under testing differed in terms of their particle size and dispersion stability in deionised water and in various ecotox media. The ORP values of the various dispersions and how they fluctuate relative to each other are discussed. Results show that the ORP values are mainly governed by the type of liquid media employed, with little contributions from the nanoparticles. Seawater was shown to have reduced the ORP value, which was attributed to an increase in the concentration of reducing agents such as sulphites or the reduction of dissolved oxygen concentration. The lack of redox potential value contribution from the particles themselves is thought to be due to insufficient interaction of the particles at the Pt electrode of the ORP probe.

  16. Flight Plasma Diagnostics for High-Power, Solar-Electric Deep-Space Spacecraft

    Science.gov (United States)

    Johnson, Lee; De Soria-Santacruz Pich, Maria; Conroy, David; Lobbia, Robert; Huang, Wensheng; Choi, Maria; Sekerak, Michael J.

    2018-01-01

    NASA's Asteroid Redirect Robotic Mission (ARRM) project plans included a set of plasma and space environment instruments, the Plasma Diagnostic Package (PDP), to fulfill ARRM requirements for technology extensibility to future missions. The PDP objectives were divided into the classes of 1) Plasma thruster dynamics, 2) Solar array-specific environmental effects, 3) Plasma environmental spacecraft effects, and 4) Energetic particle spacecraft environment. A reference design approach and interface requirements for ARRM's PDP was generated by the PDP team at JPL and GRC. The reference design consisted of redundant single-string avionics located on the ARRM spacecraft bus as well as solar array, driving and processing signals from multiple copies of several types of plasma, effects, and environments sensors distributed over the spacecraft and array. The reference design sensor types were derived in part from sensors previously developed for USAF Research Laboratory (AFRL) plasma effects campaigns such as those aboard TacSat-2 in 2007 and AEHF-2 in 2012.

  17. Auditory evoked potential measurements in elasmobranchs

    Science.gov (United States)

    Casper, Brandon; Mann, David

    2005-04-01

    Auditory evoked potentials (AEP) were first used to examine hearing in elasmobranchs by Corwin and Bullock in the late 1970s and early 1980s, marking the first time AEPs had been measured in fishes. Results of these experiments identified the regions of the ear and brain in which sound is processed, though no actual hearing thresholds were measured. Those initial experiments provided the ground work for future AEP experiments to measure fish hearing abilities in a manner that is much faster and more convenient than classical conditioning. Data will be presented on recent experiments in which AEPs were used to measure the hearing thresholds of two species of elasmobranchs: the nurse shark, Ginglymostoma cirratum, and the yellow stingray, Urobatis jamaicencis. Audiograms were analyzed and compared to previously published audiograms obtained using classical conditioning with results indicating that hearing thresholds were similar for the two methods. These data suggest that AEP testing is a viable option when measuring hearing in elasmobranchs and can increase the speed in which future hearing measurements can be obtained.

  18. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    Science.gov (United States)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  19. Determining Spacecraft Reaction Wheel Friction Parameters

    Science.gov (United States)

    Sarani, Siamak

    2009-01-01

    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  20. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  1. A Database of Interplanetary and Interstellar Dust Detected by the Wind Spacecraft

    Science.gov (United States)

    Malaspina, David M.; Wilson, Lynn B., III

    2016-01-01

    It was recently discovered that the WAVES instrument on the Wind spacecraft has been detecting, in situ, interplanetary and interstellar dust of approximately 1 micron radius for the past 22 years. These data have the potential to enable advances in the study of cosmic dust and dust-plasma coupling within the heliosphere due to several unique properties: the Wind dust database spans two full solar cycles; it contains over 107,000 dust detections; it contains information about dust grain direction of motion; it contains data exclusively from the space environment within 350 Earth radii of Earth; and it overlaps by 12 years with the Ulysses dust database. Further, changes to the WAVES antenna response and the plasma environment traversed by Wind over the lifetime of the Wind mission create an opportunity for these data to inform investigations of the physics governing the coupling of dust impacts on spacecraft surfaces to electric field antennas. A Wind dust database has been created to make the Wind dust data easily accessible to the heliophysics community and other researchers. This work describes the motivation, methodology, contents, and accessibility of the Wind dust database.

  2. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  3. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    Science.gov (United States)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown

  4. Measurement of event-related potentials and placebo

    Directory of Open Access Journals (Sweden)

    Sovilj Platon

    2014-01-01

    Full Text Available ERP is common abbreviation for event-related brain potentials, which are measured and used in clinical practice as well as in research practice. Contemporary studies of placebo effect are often based on functional neuromagnetic resonance (fMRI, positron emission tomography (PET, and event related potentials (ERP. This paper considers an ERP instrumentation system used in experimental researches of placebo effect. This instrumentation system can be divided into four modules: electrodes and cables, conditioning module, digital measurement module, and PC module for stimulations, presentations, acquisition and data processing. The experimental oddball paradigm is supported by the software of the instrumentation. [Projekat Ministarstva nauke Republike Srbije, br. TR32019 and Provincial Secretariat for Science and Technological Development of Autonomous Province of Vojvodina (Republic of Serbia under research grant No. 114-451-2723

  5. Measuring Polanyi Potentials for Chemsorb 1000 and Chemsorb 3800

    Science.gov (United States)

    Monje, Oscar; Surma, Jan M.; Kayatin, Matthew J.; Perry, Jay L.

    2016-01-01

    Polanyi adsorption potential plots are used to predict the adsorptive capacities of volatile organic compounds onto activated carbons. The design and construction of a test rig for measuring equilibrium adsorption capacities suitable for constructing Polanyi adsorption potential plots for candidate sorbents suitable for use in ECLS systems is presented. The adsorptive capacities of Chemsorb(TradeMark) 1000 and Chemsorb(TradeMark) 800 for ethanol and acetone were measured. The capacities and Polanyi adsorption potential plots for these commercially-available sorbents were compared to that of Barnebey Sutcliffe Type 3032, an acid-impregnated activated carbon utilized aboard the International Space Station.

  6. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  7. Temperature control of the Mariner class spacecraft - A seven mission summary.

    Science.gov (United States)

    Dumas, L. N.

    1973-01-01

    Mariner spacecraft have completed five missions of scientific investigation of the planets. Two additional missions are planned. A description of the thermal design of these seven spacecraft is given herein. The factors which have influenced the thermal design include the mission requirements and constraints, the flight environment, certain programmatic considerations and the experience gained as each mission is completed. These factors are reviewed and the impact of each on thermal design and developmental techniques is assessed. It is concluded that the flight success of these spacecraft indicates that adequate temperature control has been obtained, but that improvements in design data, hardware performance and analytical techniques are needed.

  8. ADRC for spacecraft attitude and position synchronization in libration point orbits

    Science.gov (United States)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  9. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  10. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  11. Results of induced atmosphere measurements from the Apollo program. [possible effects of the induced environment in the vicinity of manned spacecraft on future manned laboratory experiments

    Science.gov (United States)

    Naumann, R. J.

    1974-01-01

    Experiments on Apollo missions 15, 16, and 17 were utilized in an attempt to learn about the induced environment in the vicinity of manned spacecraft. Photographic sequences were examined to obtain scattered light data from the spacecraft-generated particulates during quiescence periods and after liquid dumps. The results allowed estimates of the obscuration factor and the clearing times after dumps. It was found that the clearing times were substantially longer than anticipated. The mass spectrometer detected a high molecular flux in lunar orbit which was induced by the spacecraft. It is shown that this is most likely caused by small ice crystals being continually produced in lunar orbit. Other data from the ultraviolet spectrometer and the stellar camera are also analyzed, and estimated values or upper limits are placed on the total scattering background, the size and number of particles generated, the velocity range, and the column density.

  12. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  13. LP MOON SPACECRAFT ATTITUDE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Prospector attitude data set consists of values for the spacecraft spin rate and spin axis orientation (attitude) as a function of time. These values are...

  14. Cancellation of differential accelerations for the LISA spacecraft

    International Nuclear Information System (INIS)

    Bender, Peter L

    2006-01-01

    The three spacecraft of the Laser Interferometer Space Antenna will form a nearly equilateral triangle with nominal side lengths of 5 million km. However, the arm lengths and the corner angles will vary by very roughly 1% over 5-10 years. Part of this variation is due to the nature of Kepler orbits around the Sun. But Sweetser (2006 Astrodynamics 2005, Advances in the Astronautical Sciences vol 123 (San Diego, CA: Univelt Inc.) pp 693-712) has shown recently that differential secular accelerations due to the Earth for the three spacecraft prevent the minimal variations from being preserved for more than 2 or 3 years. Based on Sweetser's results, it appears possible to cancel out the differential secular acceleration due to the Earth by applying forces to the two proof masses in each spacecraft. The applied acceleration is at most 2.1 x 10 -9 m s -2 . However, the directions of the required accelerations would have substantial components along the sides of the triangle, and thus the amplitudes of the applied forces would have to have very low noise, even at frequencies down to below 0.1 mHz

  15. Vibration Antiresonance Design for a Spacecraft Multifunctional Structure

    Directory of Open Access Journals (Sweden)

    Dong-Xu Li

    2017-01-01

    Full Text Available Spacecraft must withstand rigorous mechanical environment experiences such as acceleration, noise, vibration, and shock during the process of launching, satellite-vehicle separation, and so on. In this paper, a new spacecraft multifunctional structure concept designed by us is introduced. The multifunctional structure has the functions of not only load bearing, but also vibration reduction, energy source, thermal control, and so on, and we adopt a series of viscoelastic parts as connections between substructures. Especially in this paper, a vibration antiresonance design method is proposed to realize the vibration reduction. The complex zero-point equations of the vibration system are firstly established, and then the vibration antiresonance design for the system is achieved. For solving the difficulties due to viscoelastic characteristics of the connecting parts, we present the determining formulas to obtain the structural parameters, so that the complex zero-point equations can be satisfied. Numerical simulation and ground experiment demonstrate the correctness and effectiveness of the proposed method. This method can solve the structural vibration control problem under the function constraints of load bearing and energy supplying and will expand the performance of spacecraft functional modules.

  16. Project Overview of the Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment

    National Research Council Canada - National Science Library

    Reuer, Charles

    2001-01-01

    The Naval Postgraduate School's current attempt at getting another spacecraft into orbit is focusing on Naval Postgraduate School Spacecraft Architecture and Technology Demonstration Experiment (NPSAT1...

  17. New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions

    International Nuclear Information System (INIS)

    Miyake, Yohei; Usui, Hideyuki

    2009-01-01

    A novel particle simulation code, the electromagnetic spacecraft environment simulator (EMSES), has been developed for the self-consistent analysis of spacecraft-plasma interactions on the full electromagnetic (EM) basis. EMSES includes several boundary treatments carefully coded for both longitudinal and transverse electric fields to satisfy perfect conductive surface conditions. For the longitudinal component, the following are considered: (1) the surface charge accumulation caused by impinging or emitted particles and (2) the surface charge redistribution, such that the surface becomes an equipotential. For item (1), a special treatment has been adopted for the current density calculated around the spacecraft surface, so that the charge accumulation occurs exactly on the surface. As a result, (1) is realized automatically in the updates of the charge density and the electric field through the current density. Item (2) is achieved by applying the capacity matrix method. Meanwhile, the transverse electric field is simply set to zero for components defined inside and tangential to the spacecraft surfaces. This paper also presents the validation of EMSES by performing test simulations for spacecraft charging and peculiar EM wave modes in a plasma sheath.

  18. Temperature Condition and Spherical Shell Shape Variation of Space Gauge-Alignment Spacecraft

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2016-01-01

    Full Text Available A high precision spherical shell is one of the geometrical shape embodiments of a gaugealignment spacecraft to determine and control a radar channel energy potential of the ground-based complex for the traffic control of space objects. Passive relays of signals and some types of smallsized instrumentation standard reflectors used for radar gauge and alignment have the same shape. Orbits of the considered spacecraft can be either circular with a height of about 1000 km, including those close to the polar, or elliptical with an apogee of up to 2200 km.In case there is no thermal control system in spacecrafts of these types the solar radiation is a major factor to define the thermal state of a spherical shell in the illuminated orbit area. With the shell in fixed position with respect to direction towards the Sun an arising uneven temperature distribution over its surface leads to variation of the spherically ideal shell shape, which may affect the functional characteristics of the spacecraft. The shell rotation about an axis perpendicular to the direction towards the Sun may reduce an unevenness degree of the temperature distribution.The uneven temperature distribution over the spherical shell surface in conditions of the lowEarth space and this unevenness impact on the shell shape variation against its spherical shape can be quantively estimated by the appropriate methods of mathematical modeling using modification of a previously developed mathematical model to describe steady temperature state of such shell on the low-Earth orbit. The paper considers the shell made from a polymeric composite material. Its original spherical shape is defined by rather low internal pressure. It is assumed that equipment in the shell, if any, is quite small-sized. This allows us to ignore its impact on the radiative transfer in the shell cavity. Along with defining the steady temperature distribution over the shell surface at its fixed orientation with respect to

  19. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  20. Electrostatic interaction between Interball-2 and the ambient plasma. 2. Influence on the low energy ion measurements with Hyperboloid

    Directory of Open Access Journals (Sweden)

    M. Hamelin

    2002-03-01

    Full Text Available The measurement of the thermal ion distributions in space is always strongly influenced by the ion motion through the complex 3D electrostatic potential structure built around a charged spacecraft. In this work, we study the related aberrations of the ion distribution detected on board, with special application to the case of the Hyperboloid instrument borne by the Interball-2 auroral satellite. Most of the time, the Interball-2 high altitude auroral satellite is charged at some non-negligible positive potential with respect to the ambient plasma, as shown in part 1; in consequence, the measurement of magnetospheric low energy ions (< 80 eV with the Hyperboloid instrument can be disturbed by the complex electric potential environment of the satellite. In the case of positive charging, as in previous experiments, a negative bias is applied to the Hyperboloid structure in order to reduce this effect and to keep as much as possible the opportunity to detect very low energy ions. Then, the ions reaching the Hyperboloid entrance windows would have travelled across a continuous huge electrostatic lens involving various spatial scales from ~ 10 cm (detector radius to ~ 10 m (satellite antennas. Neglecting space charge effects, we have computed the ion trajectories that are able to reach the Hyperboloid windows within their acceptance angles. There are three main results: (i for given values of the satellite potential, and for each direction of arrival (each window, we deduced the related energy cutoff; (ii we found that all ions in the energy channel, including the cutoff, can come from a large range of directions in the unperturbed plasma, especially when the solar panels or antennas act as electrostatic mirrors; (iii for higher energy channels, the disturbances are reduced to small angular shifts. Biasing of the aperture is not very effective with the Hyperboloid instrument (as on previous missions with instruments installed close to the spacecraft

  1. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  2. Materials and structures technology insertion into spacecraft systems: Successes and challenges

    Science.gov (United States)

    Rawal, Suraj

    2018-05-01

    Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.

  3. SCANNING VOLTA POTENTIALS MEASUREMENTS OF METALS IN IRRADIATED AIR.

    Energy Technology Data Exchange (ETDEWEB)

    ISAACS, H.S.; ADZIC, G.; AND ENERGY SCIENCES AND TECHNOLOGY DEPARTMENT; JEFFCOATE, C.S.

    2000-10-22

    A method for direct dc measurement of the Volta potential is presented. High intensity synchrotron x-ray beams were used to locally irradiate the atmosphere adjacent to the metal surface and produce a conducting path between a sample and a reference probe. The direct measurements of potential in the ionized air could be made at probe heights of around 1 mm compared to less than 0.1 mm for the Kelvin probe. The measurements were similar to traditional Kelvin probe measurements, but had a poorer spatial resolution. In contrast to the Kelvin probe methods, the approach described allows observation of the current as a function of impressed voltage. Methods to improve the special resolution of the technique and applications to corrosion under coating will be presented.

  4. Singular formalism and admissible control of spacecraft with rotating flexible solar array

    Directory of Open Access Journals (Sweden)

    Lu Dongning

    2014-02-01

    Full Text Available This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identities about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a spacecraft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov’s method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.

  5. Measuring Soil Water Potential for Water Management in Agriculture: A Review

    Directory of Open Access Journals (Sweden)

    Marco Bittelli

    2010-05-01

    Full Text Available Soil water potential is a soil property affecting a large variety of bio-physical processes, such as seed germination, plant growth and plant nutrition. Gradients in soil water potential are the driving forces of water movement, affecting water infiltration, redistribution, percolation, evaporation and plants’ transpiration. The total soil water potential is given by the sum of gravity, matric, osmotic and hydrostatic potential. The quantification of the soil water potential is necessary for a variety of applications both in agricultural and horticultural systems such as optimization of irrigation volumes and fertilization. In recent decades, a large number of experimental methods have been developed to measure the soil water potential, and a large body of knowledge is now available on theory and applications. In this review, the main techniques used to measure the soil water potential are discussed. Subsequently, some examples are provided where the measurement of soil water potential is utilized for a sustainable use of water resources in agriculture.

  6. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  7. Nonlinear Growth Models as Measurement Models: A Second-Order Growth Curve Model for Measuring Potential.

    Science.gov (United States)

    McNeish, Daniel; Dumas, Denis

    2017-01-01

    Recent methodological work has highlighted the promise of nonlinear growth models for addressing substantive questions in the behavioral sciences. In this article, we outline a second-order nonlinear growth model in order to measure a critical notion in development and education: potential. Here, potential is conceptualized as having three components-ability, capacity, and availability-where ability is the amount of skill a student is estimated to have at a given timepoint, capacity is the maximum amount of ability a student is predicted to be able to develop asymptotically, and availability is the difference between capacity and ability at any particular timepoint. We argue that single timepoint measures are typically insufficient for discerning information about potential, and we therefore describe a general framework that incorporates a growth model into the measurement model to capture these three components. Then, we provide an illustrative example using the public-use Early Childhood Longitudinal Study-Kindergarten data set using a Michaelis-Menten growth function (reparameterized from its common application in biochemistry) to demonstrate our proposed model as applied to measuring potential within an educational context. The advantage of this approach compared to currently utilized methods is discussed as are future directions and limitations.

  8. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  9. Empirical reconstruction and long-duration tracking of the magnetospheric boundary in single- and multi-spacecraft contexts

    Directory of Open Access Journals (Sweden)

    J. De Keyser

    2005-06-01

    Full Text Available The magnetospheric boundary is always moving, making it difficult to establish its structure. This paper presents a novel method for tracking the motion of the boundary, based on in-situ observations of the plasma velocity and of one or more additional observables. This method allows the moving boundary to be followed for extended periods of time (up to several hours and aptly deals with limitations on the time resolution of the data, with measurement errors, and with occasional data gaps; it can exploit data from any number of spacecraft and any type of instrument. At the same time the method is an empirical reconstruction technique that determines the one-dimensional spatial structure of the boundary. The method is illustrated with single- and multi-spacecraft applications using data from Ampte/Irm and Cluster.

  10. Schema for Spacecraft-Command Dictionary

    Science.gov (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  11. Remote sensing of a NTC radio source from a Cluster tilted spacecraft pair

    Directory of Open Access Journals (Sweden)

    P. M. E. Décréau

    2013-11-01

    Full Text Available The Cluster mission operated a "tilt campaign" during the month of May 2008. Two of the four identical Cluster spacecraft were placed at a close distance (~50 km from each other and the spin axis of one of the spacecraft pair was tilted by an angle of ~46°. This gave the opportunity, for the first time in space, to measure global characteristics of AC electric field, at the sensitivity available with long boom (88 m antennas, simultaneously from the specific configuration of the tilted pair of satellites and from the available base of three satellites placed at a large characteristic separation (~1 RE. This paper describes how global characteristics of radio waves, in this case the configuration of the electric field polarization ellipse in 3-D-space, are identified from in situ measurements of spin modulation features by the tilted pair, validating a novel experimental concept. In the event selected for analysis, non-thermal continuum (NTC waves in the 15–25 kHz frequency range are observed from the Cluster constellation placed above the polar cap. The observed intensity variations with spin angle are those of plane waves, with an electric field polarization close to circular, at an ellipticity ratio e = 0.87. We derive the source position in 3-D by two different methods. The first one uses ray path orientation (measured by the tilted pair combined with spectral signature of magnetic field magnitude at source. The second one is obtained via triangulation from the three spacecraft baseline, using estimation of directivity angles under assumption of circular polarization. The two results are not compatible, placing sources widely apart. We present a general study of the level of systematic errors due to the assumption of circular polarization, linked to the second approach, and show how this approach can lead to poor triangulation and wrong source positioning. The estimation derived from the first method places the NTC source region in the

  12. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  13. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  14. Artificial Neural Network Based Mission Planning Mechanism for Spacecraft

    Science.gov (United States)

    Li, Zhaoyu; Xu, Rui; Cui, Pingyuan; Zhu, Shengying

    2018-04-01

    The ability to plan and react fast in dynamic space environments is central to intelligent behavior of spacecraft. For space and robotic applications, many planners have been used. But it is difficult to encode the domain knowledge and directly use existing techniques such as heuristic to improve the performance of the application systems. Therefore, regarding planning as an advanced control problem, this paper first proposes an autonomous mission planning and action selection mechanism through a multiple layer perceptron neural network approach to select actions in planning process and improve efficiency. To prove the availability and effectiveness, we use autonomous mission planning problems of the spacecraft, which is a sophisticated system with complex subsystems and constraints as an example. Simulation results have shown that artificial neural networks (ANNs) are usable for planning problems. Compared with the existing planning method in EUROPA, the mechanism using ANNs is more efficient and can guarantee stable performance. Therefore, the mechanism proposed in this paper is more suitable for planning problems of spacecraft that require real time and stability.

  15. Space tribology: its role in spacecraft mechanisms

    International Nuclear Information System (INIS)

    Roberts, E W

    2012-01-01

    The subject of tribology encompasses the friction, wear and lubrication of mechanical components such as bearings and gears. Tribological practices are aimed at ensuring that such components operate with high efficiency (low friction) and achieve long lives. On spacecraft mechanisms the route to achieving these goals brings its own unique challenges. This review describes the problems posed by the space environment, the types of tribological component used on spacecraft and the approaches taken to their lubrication. It is shown that in many instances lubrication needs can be met by synthetic oils having exceedingly low volatilities, but that at temperature extremes the only means of reducing friction and wear is by solid lubrication. As the demands placed on space engineering increase, innovatory approaches will be needed to solve future tribological problems. The direction that future developments might take is anticipated and discussed.

  16. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  17. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  18. Measuring learning potential in people with schizophrenia: A comparison of two tasks.

    Science.gov (United States)

    Rempfer, Melisa V; McDowd, Joan M; Brown, Catana E

    2017-12-01

    Learning potential measures utilize dynamic assessment methods to capture performance changes following training on a cognitive task. Learning potential has been explored in schizophrenia research as a predictor of functional outcome and there have been calls for psychometric development in this area. Because the majority of learning potential studies have utilized the Wisconsin Card Sorting Test (WCST), we extended this work using a novel measure, the Rey Osterrieth Complex Figure Test (ROCFT). This study had the following aims: 1) to examine relationships among different learning potential indices for two dynamic assessment tasks, 2) to examine the association between WCST and ROCFT learning potential measures, and 3) to address concurrent validity with a performance-based measure of functioning (Test of Grocery Shopping Skills; TOGSS). Eighty-one adults with schizophrenia or schizoaffective disorder completed WCST and ROCFT learning measures and the TOGSS. Results indicated the various learning potential computational indices are intercorrelated and, similar to other studies, we found support for regression residuals and post-test scores as optimal indices. Further, we found modest relationships between the two learning potential measures and the TOGSS. These findings suggest learning potential includes both general and task-specific constructs but future research is needed to further explore this question. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    Directory of Open Access Journals (Sweden)

    Shu-Nan Wu

    2013-01-01

    Full Text Available The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller.

  20. Laser Ranging in Solar System: Technology Developments and New Science Measurement Capabilities

    Science.gov (United States)

    Sun, X.; Smith, D. E.; Zuber, M. T.; Mcgarry, J.; Neumann, G. A.; Mazarico, E.

    2015-12-01

    Laser Ranging has played a major role in geodetic studies of the Earth over the past 40 years. The technique can potentially be used in between planets and spacecrafts within the solar system to advance planetary science. For example, a direct measurement of distances between planets, such as Mars and Venus would make significant improvements in understanding the dynamics of the whole solar system, including the masses of the planets and moons, asteroids and their perturbing interactions, and the gravity field of the Sun. Compared to the conventional radio frequency (RF) tracking systems, laser ranging is potentially more accurate because it is much less sensitive to the transmission media. It is also more efficient because the laser beams are much better focused onto the targets than RF beams. However, existing laser ranging systems are all Earth centric, that is, from ground stations on Earth to orbiting satellites in near Earth orbits or lunar orbit, and to the lunar retro-reflector arrays deployed by the astronauts in the early days of lunar explorations. Several long distance laser ranging experiments have been conducted with the lidar in space, including a two-way laser ranging demonstration between Earth and the Mercury Laser Altimeter (MLA) on the MESSENGER spacecraft over 24 million km, and a one way laser transmission and detection experiment over 80 million km between Earth and the Mars Orbiting Laser Altimeter (MOLA) on the MGS spacecraft in Mars orbit. A one-way laser ranging operation has been carried out continuously from 2009 to 2014 between multiple ground stations to LRO spacecraft in lunar orbit. The Lunar Laser Communication Demonstration (LLCD) on the LADEE mission has demonstrated that a two way laser ranging measurements, including both the Doppler frequency and the phase shift, can be obtained from the subcarrier or the data clocks of a high speed duplex laser communication system. Plans and concepts presently being studied suggest we may be

  1. Colorimetric Solid Phase Extraction (CSPE): Using Color to Monitor Spacecraft Water Quality

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2010-01-01

    In August 2009, an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE) technology was delivered to the International Space Station (ISS). The kit, called the Colorimetric Water Quality Monitoring Kit (CWQMK), was launched as a Station Development Test Objective (SDTO) experiment to evaluate the suitability of CSPE technology for routine use monitoring water quality on the ISS. CSPE is a sorption-spectrophotometric technique that combines colorimetric reagents, solid-phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water samples. In CSPE, a known volume of sample is metered through a membrane disk that has been impregnated with an analyte-specific colorimetric reagent and any additives required to optimize the formation of the analyte-reagent complex. As the sample flows through the membrane disk, the target analyte is selectively extracted, concentrated, and complexed. Formation of the analyte-reagent complex causes a detectable change in the color of the membrane disk that is proportional to the amount of analyte present in the sample. The analyte is then quantified by measuring the color of the membrane disk surface using a hand-held diffuse reflectance spectrophotometer (DRS). The CWQMK provides the capability to measure the ionic silver (Ag +) and molecular iodine (I2) in water samples on-orbit. These analytes were selected for the evaluation of CSPE technology because they are the biocides used in the potable water storage and distribution systems on the ISS. Biocides are added to the potable water systems on spacecraft to inhibit microbial growth. On the United States (US) segment of the ISS molecular iodine serves as the biocide, while the Russian space agency utilizes silver as a biocide in their systems. In both cases, the biocides must be maintained at a level sufficient to control bacterial growth, but low enough to avoid any negative effects on crew health. For example, the

  2. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    Science.gov (United States)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  3. Trajectories for spacecraft encounters with Comet Honda-Mrkos-Pajdusakova in 1996

    Science.gov (United States)

    Dunham, David W.; Jen, Shao-Chiang; Farquhar, Robert W.

    1989-01-01

    Early in 1996, the relatively bright short-period Comet Honda-Mrkos-Pajdusakova (HMP) will pass only 0.17 astronomical unit from the earth, providing both an unusually favorable apparition for ground-based observers and an opportunity for a spacecraft to reach Comet HMP on relatively low-energy trajectories. The Japanense Institute of Space and Astronautical Sciences Sakigake spacecraft is expected to fly by Comet HMP on February 3, 1996, after utilizing four earth swingbys to modify its orbit. If the camera on the ESA Giotto spacecraft is inoperable, Giotto may also be sent to Comet HMP. In addition, 1-year earth-return trajectories to Comet HMP are described, along with some that can be extended to encounter Comet Giacobini-Zinner in 1998.

  4. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  5. Multi-objective optimisation for spacecraft design for demise and survivability

    OpenAIRE

    Trisolini, Mirko; Colombo, Camilla; Lewis, Hugh

    2017-01-01

    The paper presents the development of a multi-objective optimisation framework to study the effects that preliminary design choices have on the demisability and the survivability of a spacecraft. Building a spacecraft such that most of it will demise during the re-entry through design-for-demise strategies may lead to design that are more vulnerable to space debris impacts, thus compromising the reliability of the mission. The two models developed to analyse the demisability and the survivabi...

  6. Trajectories of inner and outer heliospheric spacecraft: Predicted through 1999

    Science.gov (United States)

    Parthasarathy, R.; King, Joseph H.

    1991-01-01

    Information is presented in tabular and graphical form on the trajectories of the international fleet of spacecraft that will be probing the far reaches of the heliosphere during the 1990s. In particular, the following spacecraft are addressed: Pioneer 10 and 11, Pioneer Venus Orbiter (PVO), Voyager 1 and 2, Galileo, Ulysses, Suisei, Sakigake, Giotto, International Cometary Explorer (ICE), and Interplanetary Monitoring Platform 8 (IMP 8). Yearly resolution listing of position information in inertial space are given for Pioneer and Voyager spacecraft from the times of their launches in the 1970s. One series of plots shows the radial distances, latitudes, and longitudes of the Pioneers and Voyagers. The solar ecliptic inertial coordinate system is used. In this system, the Z axis is normal to the ecliptic plane and the X axis is towards the first point of Aries (from Sun to Earth on the vernal equinox).

  7. An initial investigation of the long-term trends in the fluxgate magnetometer (FGM) calibration parameters on the four Cluster spacecraft

    Science.gov (United States)

    Alconcel, L. N. S.; Fox, P.; Brown, P.; Oddy, T. M.; Lucek, E. L.; Carr, C. M.

    2014-07-01

    Over the course of more than 10 years in operation, the calibration parameters of the outboard fluxgate magnetometer (FGM) sensors on the four Cluster spacecraft are shown to be remarkably stable. The parameters are refined on the ground during the rigorous FGM calibration process performed for the Cluster Active Archive (CAA). Fluctuations in some parameters show some correlation with trends in the sensor temperature (orbit position). The parameters, particularly the offsets, of the spacecraft 1 (C1) sensor have undergone more long-term drift than those of the other spacecraft (C2, C3 and C4) sensors. Some potentially anomalous calibration parameters have been identified and will require further investigation in future. However, the observed long-term stability demonstrated in this initial study gives confidence in the accuracy of the Cluster magnetic field data. For the most sensitive ranges of the FGM instrument, the offset drift is typically 0.2 nT per year in each sensor on C1 and negligible on C2, C3 and C4.

  8. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  9. 2000 Survey of Distributed Spacecraft Technologies and Architectures for NASA's Earth Science Enterprise in the 2010-2025 Timeframe

    Science.gov (United States)

    Ticker, Ronald L.; Azzolini, John D.

    2000-01-01

    The study investigates NASA's Earth Science Enterprise needs for Distributed Spacecraft Technologies in the 2010-2025 timeframe. In particular, the study focused on the Earth Science Vision Initiative and extrapolation of the measurement architecture from the 2002-2010 time period. Earth Science Enterprise documents were reviewed. Interviews were conducted with a number of Earth scientists and technologists. fundamental principles of formation flying were also explored. The results led to the development of four notional distribution spacecraft architectures. These four notional architectures (global constellations, virtual platforms, precision formation flying, and sensorwebs) are presented. They broadly and generically cover the distributed spacecraft architectures needed by Earth Science in the post-2010 era. These notional architectures are used to identify technology needs and drivers. Technology needs are subsequently grouped into five categories: Systems and architecture development tools; Miniaturization, production, manufacture, test and calibration; Data networks and information management; Orbit control, planning and operations; and Launch and deployment. The current state of the art and expected developments are explored. High-value technology areas are identified for possible future funding emphasis.

  10. Electromagnetic Dissociation and Spacecraft Electronics Damage

    Science.gov (United States)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  11. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  12. A Research on the Electrical Test Fault Diagnostic and Data Mining of a Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Yang Feng

    2017-01-01

    Full Text Available The paper introduces the modeling method and modeling tool for the fault diagnosis of manned spacecraft, the multi-signal flow graph model of a manned space equipment was established using this method; the framework of the fault detection and diagnosis system of manned spacecraft is proposed, the function of ground system and function of the spacecraft are clearly defined. The structure of the functional module is given separately; finally, the tool builds the fault detection and diagnosis system, the application of fault diagnosis method for manned spacecraft is used for reference.

  13. Automatic emissive probe apparatus for accurate plasma and vacuum space potential measurements

    Science.gov (United States)

    Jianquan, LI; Wenqi, LU; Jun, XU; Fei, GAO; Younian, WANG

    2018-02-01

    We have developed an automatic emissive probe apparatus based on the improved inflection point method of the emissive probe for accurate measurements of both plasma potential and vacuum space potential. The apparatus consists of a computer controlled data acquisition card, a working circuit composed by a biasing unit and a heating unit, as well as an emissive probe. With the set parameters of the probe scanning bias, the probe heating current and the fitting range, the apparatus can automatically execute the improved inflection point method and give the measured result. The validity of the automatic emissive probe apparatus is demonstrated in a test measurement of vacuum potential distribution between two parallel plates, showing an excellent accuracy of 0.1 V. Plasma potential was also measured, exhibiting high efficiency and convenient use of the apparatus for space potential measurements.

  14. Hard-real-time resource management for autonomous spacecraft

    Science.gov (United States)

    Gat, E.

    2000-01-01

    This paper describes tickets, a computational mechanism for hard-real-time autonomous resource management. Autonomous spacecraftcontrol can be considered abstractly as a computational process whose outputs are spacecraft commands.

  15. Internal Mass Motion for Spacecraft Dynamics and Control

    National Research Council Canada - National Science Library

    Hall, Christopher D

    2008-01-01

    We present a detailed description of the application of a noncanonical Hamiltonian formulation to the modeling, analysis, and simulation of the dynamics of gyrostat spacecraft with internal mass motion...

  16. The Near Earth Object Scout Spacecraft: A Low Cost Approach to in-situ Characterization of the NEO Population

    Science.gov (United States)

    Koontz, Steven L.; Condon, Gerald; Graham, Lee; Bevilacqua, Ricardo

    2014-01-01

    In this paper we describe a micro/nano satellite spacecraft and a supporting mission profile and architecture designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonable cost. The spacecraft will be referred to as the NEO Scout. NEO Scout spacecraft are to be placed in GTO, GEO, or cis-lunar space as secondary payloads on launch vehicles headed for GTO or beyond and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO scout system is to design the mission timeline and spacecraft to rendezvous with and land on the target NEOs during close approach to the Earth-Moon system using low-thrust/high- impulse propulsion systems. Mission feasibility and preliminary design analysis are presented along with detailed trajectory calculations. The use of micro/nano satellites in low-cost interplanetary exploration is attracting increasing attention and is the subject of several annual workshops and published design studies (1-4). The NEO population consists of those asteroids and short period comets orbiting the Sun with a perihelion of 1.3 astronomical units or less (5-8). As of July 30, 2013 10065 Near-Earth objects have been discovered. The spin rate, mass, density, surface physical (especially mechanical) properties, composition, and mineralogy of the vast majority of these objects are highly uncertain and the limited available telescopic remote sensing data imply a very diverse population (5-8). In-situ measurements by robotic spacecraft are urgently needed to provide the characterization data needed to support hardware and mission design for more ambitious human and robotic NEO operations. Large numbers of NEOs move into close proximity with the Earth-Moon system every year (9). The JPL Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) (10) has produced detailed mission profile and delta V requirements for various NEO missions ranging from 30

  17. Studies of Fission Fragment Rocket Engine Propelled Spacecraft

    Science.gov (United States)

    Werka, Robert O.; Clark, Rodney; Sheldon, Rob; Percy, Thomas K.

    2014-01-01

    The NASA Office of Chief Technologist has funded from FY11 through FY14 successive studies of the physics, design, and spacecraft integration of a Fission Fragment Rocket Engine (FFRE) that directly converts the momentum of fission fragments continuously into spacecraft momentum at a theoretical specific impulse above one million seconds. While others have promised future propulsion advances if only you have the patience, the FFRE requires no waiting, no advances in physics and no advances in manufacturing processes. Such an engine unequivocally can create a new era of space exploration that can change spacecraft operation. The NIAC (NASA Institute for Advanced Concepts) Program Phase 1 study of FY11 first investigated how the revolutionary FFRE technology could be integrated into an advanced spacecraft. The FFRE combines existent technologies of low density fissioning dust trapped electrostatically and high field strength superconducting magnets for beam management. By organizing the nuclear core material to permit sufficient mean free path for escape of the fission fragments and by collimating the beam, this study showed the FFRE could convert nuclear power to thrust directly and efficiently at a delivered specific impulse of 527,000 seconds. The FY13 study showed that, without increasing the reactor power, adding a neutral gas to the fission fragment beam significantly increased the FFRE thrust through in a manner analogous to a jet engine afterburner. This frictional interaction of gas and beam resulted in an engine that continuously produced 1000 pound force of thrust at a delivered impulse of 32,000 seconds, thereby reducing the currently studied DRM 5 round trip mission to Mars from 3 years to 260 days. By decreasing the gas addition, this same engine can be tailored for much lower thrust at much higher impulse to match missions to more distant destinations. These studies created host spacecraft concepts configured for manned round trip journeys. While the

  18. Low Cost Rapid Response Spacecraft, (LCRRS): A Research Project in Low Cost Spacecraft Design and Fabrication in a Rapid Prototyping Environment

    Science.gov (United States)

    Spremo, Stevan; Bregman, Jesse; Dallara, Christopher D.; Ghassemieh, Shakib M.; Hanratty, James; Jackson, Evan; Kitts, Christopher; Klupar, Pete; Lindsay, Michael; Ignacio, Mas; hide

    2009-01-01

    The Low Cost Rapid Response Spacecraft (LCRRS) is an ongoing research development project at NASA Ames Research Center (ARC), Moffett Field, California. The prototype spacecraft, called Cost Optimized Test for Spacecraft Avionics and Technologies (COTSAT) is the first of what could potentially be a series of rapidly produced low-cost satellites. COTSAT has a target launch date of March 2009 on a SpaceX Falcon 9 launch vehicle. The LCRRS research system design incorporates use of COTS (Commercial Off The Shelf), MOTS (Modified Off The Shelf), and GOTS (Government Off The Shelf) hardware for a remote sensing satellite. The design concept was baselined to support a 0.5 meter Ritchey-Chretien telescope payload. This telescope and camera system is expected to achieve 1.5 meter/pixel resolution. The COTSAT team is investigating the possibility of building a fully functional spacecraft for $500,000 parts and $2,000,000 labor. Cost is dramatically reduced by using a sealed container, housing the bus and payload subsystems. Some electrical and RF designs were improved/upgraded from GeneSat-1 heritage systems. The project began in January 2007 and has yielded two functional test platforms. It is expected that a flight-qualified unit will be finished in December 2008. Flight quality controls are in place on the parts and materials used in this development with the aim of using them to finish a proto-flight satellite. For LEO missions the team is targeting a mission class requiring a minimum of six months lifetime or more. The system architecture incorporates several design features required by high reliability missions. This allows for a true skunk works environment to rapidly progress toward a flight design. Engineering and fabrication is primarily done in-house at NASA Ames with flight certifications on materials. The team currently employs seven Full Time Equivalent employees. The success of COTSATs small team in this effort can be attributed to highly cross trained

  19. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  20. Application of dynamic uncertain causality graph in spacecraft fault diagnosis: Logic cycle

    Science.gov (United States)

    Yao, Quanying; Zhang, Qin; Liu, Peng; Yang, Ping; Zhu, Ma; Wang, Xiaochen

    2017-04-01

    Intelligent diagnosis system are applied to fault diagnosis in spacecraft. Dynamic Uncertain Causality Graph (DUCG) is a new probability graphic model with many advantages. In the knowledge expression of spacecraft fault diagnosis, feedback among variables is frequently encountered, which may cause directed cyclic graphs (DCGs). Probabilistic graphical models (PGMs) such as bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning, but BN does not allow DCGs. In this paper, DUGG is applied to fault diagnosis in spacecraft: introducing the inference algorithm for the DUCG to deal with feedback. Now, DUCG has been tested in 16 typical faults with 100% diagnosis accuracy.

  1. Superimposed disturbance in the ionosphere triggered by spacecraft launches in China

    OpenAIRE

    L. M. He; L. X. Wu; L. X. Wu; S. J. Liu; S. N. Liu

    2015-01-01

    Using GPS dual-frequency observations collected by continuously operating GPS tracking stations in China, superimposed disturbances caused by the integrated action of spacecraft's physical effect and chemical effect on ionosphere during the launches of the spacecrafts Tiangong-1 and Shenzhou-8 in China were firstly determined. The results show that the superimposed disturbance was composed of remarkable ionospheric waves and significant ionospheric depletion emerged after bo...

  2. Aircraft versus spacecraft for remote monitoring of water quality in U.S. coastal zones

    Science.gov (United States)

    Darnell, W. L.

    1977-01-01

    To provide guidance for conducting future water monitoring missions over U.S. coasts, aircraft and spacecraft approaches were defined and quantitatively compared. Sensors, aircraft and spacecraft were selected from current or developmental types for the hardware concepts and monitoring was assumed to begin in 1981-1983. Comparative data are presented on capabilities and costs to monitor both recognized pollution sites and broad shelf areas. For these mission requirements, a large fleet of light aircraft provided better coverage and at lower costs generally than one spacecraft, assuming a single, multi-spectral sensor on each platform. This result could change, however, should additional useful sensors with low cost penalties be found for the spacecraft.

  3. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  4. Characteristic features of net information measures for constrained Coulomb potentials

    International Nuclear Information System (INIS)

    Patil, S H; Sen, K D; Watson, N A; Jr, H E Montgomery

    2007-01-01

    The dimensional analyses of the position and momentum variance based quantum mechanical Heisenberg uncertainty measure and the other useful net entropic information measures for the bound states of two constrained Coulomb potentials are reported for the first time. The potentials describe an electron moving in the central field due to a nucleus of charge Z with radius R defining the constraints as (a) the truncated potential given by -Z/(r n +R n ) 1/n , and (b) the radius of the impenetrable spherical wall. The net information measures for the two potentials are explicitly shown to be independent of the scaling of the set [Z, R] at a fixed value of ZR. Analytic proof is presented, for the first time, showing the presence of a characteristic extremum in the variation of the net information entropy as a function of the radius R with its location scaling as Z -1 . Numerical results are presented which support the validity of the scaling properties

  5. A Sustainable Spacecraft Component Database Solution, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Numerous spacecraft component databases have been developed to support NASA, DoD, and contractor design centers and design tools. Despite the clear utility of...

  6. High-Performance Contaminant Monitor for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vision for Space Exploration demands increasing reliance on real-time trace gas monitors onboard spacecraft. Present grab samples and badges will be inadequate...

  7. A Fault-tolerant RISC Microprocessor for Spacecraft Applications

    Science.gov (United States)

    Timoc, Constantin; Benz, Harry

    1990-01-01

    Viewgraphs on a fault-tolerant RISC microprocessor for spacecraft applications are presented. Topics covered include: reduced instruction set computer; fault tolerant registers; fault tolerant ALU; and double rail CMOS logic.

  8. The artificially injected charged particles as a tool for the measurement of the electric field in the magnetosphere

    International Nuclear Information System (INIS)

    Pirre, M.

    1982-01-01

    This chapter discusses two methods of measuring the parallel electric field using artificially injected charged particles. The first method uses electrons to measure the parallel electric field in the vicinity of the spacecraft. The second method uses ions to measure electric potential along the magnetic field lines if the associated parallel electric field is directed downward. The use of electrons for the measurement has many limitations due to the disturbed regions surrounding the spacecraft and to the high level of turbulence which could significantly reduce accuracy. Even if the parallel electric fields are too low to be measured owing to the broadening of the fluxes by turbulence, the electrons can still be used to study the turbulence. It is demonstrated that if parallel electric fields are predominantly directed upward at high altitude, a downward parallel electric field can exist at lower altitude. Lithium ions can be used to maximize the returning fluxes and to increase the probability of detection. Rockets are shown to be more suitable than satellites with regard to measurement

  9. Envisioning a 21st Century, National, Spacecraft Servicing and Protection Infrastructure and Demand Potential: A Logical Development of the Earth Orbit Economy

    Science.gov (United States)

    Horsham, Gary A.

    2003-01-01

    The modern world is extremely dependent on thin strings of several hundred civil, military, and commercial spacecraft/satellites currently stationed in space. They provide a steady stream of commerce, defense, and knowledge data. This dependency will in all likelihood increase significantly during this century. A major disruption of any kind in these essential systems and networks could be socially, economically, and politically catastrophic, on a global scale. The development of a space-based, robotic services economy could be useful in mitigating this growing risk, from an efficiency and security standpoint. This paper attempts to suggest what makes sense to invest in next for the logical, economic development of Earth orbit i.e., after ISS completion. It expands on the results of an advanced market research and analysis study that sampled the opinions of several satellite industry executives and presents these results within a broad policy context. The concept of a spacecraft carrier that serves as the nucleus of a national, space-based or on-orbit, robotic services infrastructure is introduced as the next logical step for United States leadership in space. This is viewed as a reasonable and appropriate followon to the development of ELVs and satellites in the 1950s and 1960s, the Space Shuttle/PRLV in the 1970s and 1980s, and the International Space Station (ISS) in the 1980s, 1990s and 2000s. Large-scale experience in LEO-to-GEO spacecraft/satellite servicing and protection by robotic means is assumed to be an indispensable prerequisite or stepping-stone toward the development and preservation of the large scientific exploration facilities that are envisioned by NASA for operation beyond GEO. A balanced, return on national investment (RONI) strategy for space, focused on the provision of enhanced national/homeland security for increased protection, national economic/industrial expansion for increased revenue, and national scientific exploration for increased

  10. Delamination Assessment Tool for Spacecraft Composite Structures

    Science.gov (United States)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  11. Properties of Coronal Shocks at the Origin of SEP events Observed by Only One Single Spacecraft

    Science.gov (United States)

    Lario, D.; Kwon, R.

    2017-12-01

    The simultaneous observation of solar energetic particle (SEP) events by multiple spacecraft distributed in the interplanetary medium depends not only on the spatial separation among the different spacecraft, but also on the properties of the particle sources and the characteristics of the SEP transport in interplanetary space. Among the SEP events observed by STEREO-A, STEREO-B and/or near-Earth spacecraft during solar cycle 24, we select SEP events observed by a single spacecraft (specifically, the SEP events observed only by near-Earth spacecraft on 2012 April 5, 2011 September 4, and 2013 August 17). We analyze whether the properties of the coronal shock associated with the origin of the events (as seen in extreme-ultraviolet and white-light coronal images) differ from those associated with SEP events observed by two or three spacecraft. For the selected events we find that the associated CMEs are, in general, narrower than those associated with SEP events observed by two or three spacecraft. The confined extension of the parent coronal shock and the absence of magnetic connection between distant spacecraft and the regions of the expanding coronal shock able to efficiently accelerate SEPs seem to be the conditions leading to intense SEP events observed only over narrow regions of interplanetary space by spacecraft magnetically connected to regions close to the parent eruption site. Weak and gradual intensity increases observed in extended regions of space might involve transport processes and/or later connections established with interplanetary shocks. Systematic analyses of a larger number of events are required before drawing firm conclusions.

  12. Measurement of gastrointestinal transmural electric potential difference in man.

    Science.gov (United States)

    Geall, M G; Code, C F; McIlrath, D C; Summerskill, W H

    1970-01-01

    Measurement, in man, of the electric potential difference between venous blood and the mucosal surface of the gastrointestinal tract gave identical values to the potential difference between mucosa and serosa. Various parts of the peritoneum were equipotential with venous blood. By contrast, skin-enteric potential difference varied with time and among different subjects because of a potential difference between skin and blood that is unpredictably reduced by skin injury. The results with electrolyte bridges of KCl in agar or of flowing KCl were identical.

  13. SMART-1: the first spacecraft of the future

    Science.gov (United States)

    2003-09-01

    This is the first of a series of missions designed to test key technologies for future spacecraft —SMART stands for 'Small Missions for Advanced Research and Technology'. In the case of SMART-1, the two main new technologies to be tested are a new 'solar-electric propulsion' system and miniaturised spacecraft and instrumentation. Together, these technologies make up a spacecraft with revolutionary qualities: smaller, lighter, capable of carrying more scientific instruments, greater fuel efficiency. All of which also considerably reduces the cost of the mission. So, the idea behind SMART-1 is to pioneer a futuristic philosophy, the motto of which could be: 'more science for less money'. Even though it is the first of a kind, SMART-1 has been developed in less than four years, and at about a fifth of the cost of a major science mission for ESA: only 110 million euros. That includes the launch, the operations and a dozen scientific experiments. This was achieved partly by using new management methods — such as working with smaller teams both within ESA and in the industry — and partly because of some of the new features inherent in SMART-1, such as the miniaturisation and novel design. Giuseppe Racca, SMART-1 Project Manager, explains: "What has been our trick? First, a short development period in itself means less money. But also, with its small size — which was a requirement of the mission because we are testing miniaturised hardware — the spacecraft is able to 'share' a commercial Ariane flight with two other passengers. Besides, since we were not constrained by any existing design or heritage, we could be more innovative and elegant in our architecture. For example, the new SMART-1 electrical architecture has enabled us to simplify the system tests considerably." SMART-1 could almost be a toy spacecraft — it weighs only 367 kilograms and fits into a cube just one metre across (the solar panel wings extend about 14 metres) — although one able to

  14. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  15. Odor Control in Spacecraft Waste Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  16. Passive Wireless Sensors for Spacecraft Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — New classes of sensors are needed on spacecraft that can be interrogated remotely using RF signals and respond with the sensor's identity as well as the...

  17. The use of twin-screen-based WIMPS in spacecraft control

    Science.gov (United States)

    Klim, R. D.

    1990-10-01

    The ergonomic problems of designing a sophisticated Windows Icons Mouse Pop-up (WIMP) based twin screen workstation are outlined. These same problems will be encountered by future spacecraft controllers. The design of a modern, advanced workstation for use on a distributed multicontrol center in a multisatellite control system is outlined. The system uses access control mechanisms to ensure that only authorized personnel can undertake certain operations on the workstation. Rules governing the use of windowing features, screen attributes, icons, keyboard and mouse in spacecraft control are discussed.

  18. Dynamics and control of robotic spacecrafts for the transportation of flexible elements

    International Nuclear Information System (INIS)

    Wen, Hao; Chen, Ti; Yu, Bensong; Jin, Dongping

    2016-01-01

    The technology of robotic spacecrafts has been identified as one of the most appealing solutions to the on-orbit construction of large space structures in future space missions. As a prerequisite of a successful on-orbit construction, it is needed to use small autonomous spacecrafts for the transportation of flexible elements. To this end, the paper presents an energy-based scheme to control a couple of robotic spacecrafts carrying a flexible slender structure to its desired position. The flexible structure is modelled as a long beam based on the formulation of absolute nodal coordinates to account for the geometrical nonlinearity due to large displacement. Meanwhile, the robotic spacecrafts are actuated on their rigid-body degrees of freedom and modelled as two rigid bodies attached to the flexible beam. The energy-based controller is designed using the technique of energy shaping and damping injection such that translational and rotational maneuvers can be achieved with the suppression of the flexible vibrations of the beam. Finally, numerical case studies are performed to demonstrate the proposed schemes. (paper)

  19. Simultaneous Measurements of Substorm-Related Electron Energization in the Ionosphere and the Plasma Sheet

    Science.gov (United States)

    Sivadas, N.; Semeter, J.; Nishimura, Y.; Kero, A.

    2017-10-01

    On 26 March 2008, simultaneous measurements of a large substorm were made using the Poker Flat Incoherent Scatter Radar, Time History of Events and Macroscale Interactions during Substorm (THEMIS) spacecraft, and all sky cameras. After the onset, electron precipitation reached energies ≳100 keV leading to intense D region ionization. Identifying the source of energetic precipitation has been a challenge because of lack of quantitative and magnetically conjugate measurements of loss cone electrons. In this study, we use the maximum entropy inversion technique to invert altitude profiles of ionization measured by the radar to estimate the loss cone energy spectra of primary electrons. By comparing them with magnetically conjugate measurements from THEMIS-D spacecraft in the nightside plasma sheet, we constrain the source location and acceleration mechanism of precipitating electrons of different energy ranges. Our analysis suggests that the observed electrons ≳100 keV are a result of pitch angle scattering of electrons originating from or tailward of the inner plasma sheet at 9RE, possibly through interaction with electromagnetic ion cyclotron waves. The electrons of energy 10-100 keV are produced by pitch angle scattering due to a potential drop of ≲10 kV in the auroral acceleration region (AAR) as well as wave-particle interactions in and tailward of the AAR. This work demonstrates the utility of magnetically conjugate ground- and space-based measurements in constraining the source of energetic electron precipitation. Unlike in situ spacecraft measurements, ground-based incoherent scatter radars combined with an appropriate inversion technique can be used to provide remote and continuous-time estimates of loss cone electrons in the plasma sheet.

  20. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.