WorldWideScience

Sample records for spacecraft charge build-up

  1. Study of Charge Build Up in UCN Storage Cell

    Science.gov (United States)

    Broering, Mark; Abney, Josh; Swank, Christopher; Filippone, Bradley; Yao, Weijun; Korsch, Wolfgang

    2017-09-01

    The neutron EDM collaboration at the Spallation Neutron Source(ORNL) is using ultra-cold neutrons in superfluid helium to improve the nEDM limit by about two orders of magnitude. These neutrons will be stored in target cells located in a strong, stable electric field. Local radiation will generate charged particles which may build up on the target cell walls reducing field strength over time. The field changes need to be kept below 1%, making it necessary to study this cell charging behavior, determine its effect on the experiment and find ways to mitigate this. In order to study this cell charging effect, a compact test setup was designed. Using this scaled down model, charged particles are generated by a 137Cs source and the electric field is monitored via the electo-optic Kerr effect. Liquid nitrogen has a much stronger response to electric fields than helium, making it an ideal candidate for first tests. Cell charging effects have been observed in liquid nitrogen. These results along with the experimental technique and progress toward a superfluid helium measurement will also be presented. This research is supported by DOE Grants: DE-FG02-99ER41101, DE-AC05-00OR22725.

  2. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  3. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  4. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    Charging of Large Spwc Structure• . in Polut Otbil.’" Prweedings of thre Air For’e Grespykirs fitrano, W4r4 nop em Natural Charging of large Space Stru, ures...3, p. 1433- 1440, 1991. Bowman, C., Bogorad, A., Brucker, G., Seehra, S., and Lloyd, T., "ITO-Coated RF Transparent Materials for Antenna Sunscreen

  5. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  6. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    and temperatures were applied in the 20 - 80°C range with gradients across the insulation of up to 15°C. In this paper, the observed charge phenomena in the bulk and at the interfaces are related to the external conditions, in particular to the temperature gradient. The measured space charge distributions...

  7. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  8. DC Model Cable under Polarity Inversion and Thermal Gradient: Build-Up of Design-Related Space Charge

    Directory of Open Access Journals (Sweden)

    Nugroho Adi

    2017-07-01

    Full Text Available In the field of energy transport, High-Voltage DC (HVDC technologies are booming at present due to the more flexible power converter solutions along with needs to bring electrical energy from distributed production areas to consumption sites and to strengthen large-scale energy networks. These developments go with challenges in qualifying insulating materials embedded in those systems and in the design of insulations relying on stress distribution. Our purpose in this communication is to illustrate how far the field distribution in DC insulation systems can be anticipated based on conductivity data gathered as a function of temperature and electric field. Transient currents and conductivity estimates as a function of temperature and field were recorded on miniaturized HVDC power cables with construction of 1.5 mm thick crosslinked polyethylene (XLPE insulation. Outputs of the conductivity model are compared to measured field distributions using space charge measurements techniques. It is shown that some features of the field distribution on model cables put under thermal gradient can be anticipated based on conductivity data. However, space charge build-up can induce substantial electric field strengthening when materials are not well controlled.

  9. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  10. Accumulation and dissipation of positive charges induced on a PMMA build-up cap of an ionisation chamber by 60Co gamma-ray irradiation

    International Nuclear Information System (INIS)

    Morishita, Y.; Takata, N.

    2013-01-01

    The signal current from an ionisation chamber with a PMMA build-up cap decreases with irradiation time due to electric fields produced by positive charges induced on the cap. In the present study, it was confirmed that the signal current decreases faster for irradiation using narrower 60 Co gamma-ray beams. This is because the number of secondary electrons that are emitted from surrounding materials and penetrate the build-up cap is smaller in a narrower gamma-ray beam, so that fewer positive charges are neutralised. The ionisation chamber was first subjected to continuous gamma-ray irradiation for 24 h, following which it was irradiated with shorter periodic gamma-ray bursts while measuring the current signal. This allowed the coefficients of positive charge accumulation and dissipation to be determined. It was found that the dissipation coefficient has a large constant value during gamma-ray irradiation and decreases asymptotically to a small value after irradiation is stopped. From the coefficients, the minimum signal current was calculated, which is the value when accumulation and dissipation balance each other under continuous irradiation. The time required for the signal current to recover following irradiation was also calculated. (authors)

  11. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  12. Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report

    Science.gov (United States)

    2014-09-19

    appears to work similarly in Internet Explorer, FireFox , and Opera, but fails in Safari and Chrome. Note that the SEE Spacecraft Charging Handbook is... Characteristics of Spacecraft Charging in Low Earth Orbit, J Geophys Res. 11 7, doi: 10.1029/20 11JA016875, 2012. 2 M. Cho, K. Saito, T. Hamanaga, Data

  13. Spacecraft charging and related effects during Halley encounter

    International Nuclear Information System (INIS)

    Young, D.T.

    1983-01-01

    Hypervelocity (69 km/s) impact of cometary material with surfaces of the GIOTTO spacecraft will induce a number of spurious and possibly harmful phenomena. The most serious of these is likely to be spacecraft charging that results from impact-produced plasma distributions surrounding GIOTTO. The ESA Plasma Environment Working Group, whose studies are the basis for this report, finds that charging may become significant within approx. 10 5 km of the nucleus where potentials of approx. = +20 V are to be expected. In addition to spacecraft charging, impact produced plasma may interfere with in situ plasma measurements, particularly those of ion plasma analyzers and mass spectrometers

  14. Charge Dissipating Transparent Conformal Coatings for Spacecraft Electronics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The space environment poses significant challenges to spacecraft electronics in the form of electrostatic discharge (ESD) as a result of exposure to highly charged...

  15. BUILD UP Skills Danmark

    DEFF Research Database (Denmark)

    Forsingdal, Charlotte Vartou; Lauridsen, Vagn Holk; Hougaard, Karsten Frøhlich

    opfyldelsen af 2020-målene, skal de rette kompetencer inden for energief-fektivitet og brug af vedvarende energi være til stede blandt de udførende i bygge- og an-lægsbranchen. Det er på denne baggrund, at Europa-Kommissionen har igangsat Build Up Skills projektet på tværs af Europa. Formålet med denne...

  16. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.

    Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  17. A solar cycle of spacecraft anomalies due to internal charging

    Directory of Open Access Journals (Sweden)

    G. L. Wrenn

    2002-07-01

    Full Text Available It is important to appreciate how the morphology of internal charging of spacecraft systems, due to penetrating electrons, differs from that of the more common surface charging, due to electrons with lower energy. A specific and recurrent anomaly on a geostationary communication satellite has been tracked for ten years so that solar cycle and seasonal dependencies can be clearly established. Concurrent measurements of sunspot number, solar wind speed and 2-day >2 MeV electron fluence are presented to highlight pertinent space weather relationships, and the importance of understanding the complex particle interaction processes involved.Key words. Magnetospheric physics (energetic particles; trapped; solar wind – magnetosphere interactions – space plasma physics (spacecraft sheaths, wakes, charging

  18. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  19. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    Science.gov (United States)

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  20. The purpose for GEO spacecraft deep charging and electrostatic discharging (ESD) experiment

    International Nuclear Information System (INIS)

    Yang Chuibai; Wang Shijin; Liang Jinbao

    2005-01-01

    This paper introduces the purpose for GEO spacecraft deep charging and electrostatic discharging (ESD) experiment. A method of experiment for the spacecraft deep charging and ESD aboard is proposed. Spacecraft deep charging and ESD event, frequency, energy and the level of pulse in wires due to EMP coupling into are measured. (authors)

  1. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  2. Injection of an electron beam into a plasma and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  3. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  4. Leo Spacecraft Charging Design Guidelines: A Proposed NASA Standard

    Science.gov (United States)

    Hillard, G. B.; Ferguson, D. C.

    2004-01-01

    Over the past decade, Low Earth Orbiting (LEO) spacecraft have gradually required ever-increasing power levels. As a rule, this has been accomplished through the use of high voltage systems. Recent failures and anomalies on such spacecraft have been traced to various design practices and materials choices related to the high voltage solar arrays. NASA Glenn has studied these anomalies including plasma chamber testing on arrays similar to those that experienced difficulties on orbit. Many others in the community have been involved in a comprehensive effort to understand the problems and to develop practices to avoid them. The NASA Space Environments and Effects program, recognizing the timeliness of this effort, commissioned and funded a design guidelines document intended to capture the current state of understanding. This document, which was completed in the spring of 2003, has been submitted as a proposed NASA standard. We present here an overview of this document and discuss the effort to develop it as a NASA standard.

  5. A spacecraft charging study on the SCEX 3 rocket

    International Nuclear Information System (INIS)

    Mullen, E.G.; Gussenhoven, M.S.; Hardy, D.A.; Murphy, G.P.; Lloyd, J.W.F.; Slutter, W.; Malcolm, P.; Kellogg, P.J.; Monson, S.

    1991-01-01

    Instruments on the SCEX 3 rocket payload flown from the Poker Flats Rocket Range in February 1990 were used to study charging during electron beam emissions. This paper reports that the data show that electrostatic analyzers can be used to measure vehicle charging and direct beam return currents in dense plasma conditions. The data also show return current dependencies on pitch angle, beam current and beam energy

  6. Injection and propagation of a nonrelativistic electron beam and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Berchem, J.

    1987-05-01

    Two-dimensional numerical simulations have been carried out in order to study the injection and propagation of a nonrelativistic electron beam from a spacecraft into a fully ionized plasma in a magnetic field. Contrary to the earlier results in one-dimension, a high density electron beam whose density is comparable to the ambient density can propagate into a plasma. A strong radial electric field resulting from the net charges in the beam causes the beam electrons to spread radially reducing the beam density. When the injection current exceeds the return current, significant charging of the spacecraft is observed along with the reflection of the injected electrons back to the spacecraft. Recent data on the electron beam injection from the Spacelab 1 (SEPAC) are discussed

  7. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  8. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    Science.gov (United States)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  9. Electron-Cloud Build-Up: Summary

    International Nuclear Information System (INIS)

    Furman, M.A.

    2007-01-01

    I present a summary of topics relevant to the electron-cloud build-up and dissipation that were presented at the International Workshop on Electron-Cloud Effects 'ECLOUD 07' (Daegu, S. Korea, April 9-12, 2007). This summary is not meant to be a comprehensive review of the talks. Rather, I focus on those developments that I found, in my personal opinion, especially interesting. The contributions, all excellent, are posted in http://chep.knu.ac.kr/ecloud07/

  10. The effects of spacecraft charging and outgassing on the LADEE ion measurements

    Science.gov (United States)

    Xie, Lianghai; Zhang, Xiaoping; Zheng, Yongchun; Guo, Dawei

    2017-05-01

    Abnormal ion signals can be usually seen in the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, including a suddenly enhanced current observed by the Lunar Dust Experiment (LDEX) near the sunlight-shadow boundary and an unexpected water ion measured by the neutral mass spectrometer (NMS), with their magnitudes insensitive to the convection electric field of solar wind but dependent on the SW density and the elapsed time of LADEE mission. By analyzing both the LDEX measurements and the NMS measurements, we find that the current enhancement can be caused by a negatively charged spacecraft in the shadow region while the significant water ions should be some artificial ions from spacecraft outgassing. The artificial water ions show a peak near 8:00 LT that may be related to a sunlight-controlled surface outgassing. In addition, the H2O flux can be enhanced near the end of the mission when the spacecraft has a lower altitude. It is found that the H2O enhancement is actually caused by an exosphere-contributed return flux, rather than a real water exosphere.

  11. Build-up and management of transuranium

    International Nuclear Information System (INIS)

    Uematsu, Kunihiko

    1984-01-01

    About 17,000,000 kW is generated by nuclear power station at present and this figure correspond to 20 % of total power generation in Japan, and is expected to increase year after year. Following the increase of power generation, build-up of Transuraium from nuclear power station will increase as a matter of course. In 2,000 AD; the build-up of Pu and TPu is expected to reach up to 200 T(TPu = 24 T). Effective management of TPu build-up is now an urgent problem Recycling of Pu and TPu including LWR-Pu recycling, ATR-Pu recycling and FBR-Pu recycling were investigated. In LWR-Pu recycling, recycling quantities of Pu and TPu, and generation of power increase following the repetition of recycling. In ATR-Pu recycling, the increase of TPu following recycling is more remakable than that of LWR-Pu recycling. On the contrary, in FBR-Pu recycling, TPu decreases following the repetition of recycling. The decrease of TPu is thought to be caused by extinction effect in FBR. All of these recycling are suitable for the utilization of Pu, but FBR-Pu recycling is most effective for utilization of Pu and decrease of TPu. Accordingly, when LWR or ATR recycling is applied, Pu shall be transferred to FBR after 1 - 2 recycling. For long-term management of TPu, recycling is not sufficient and some positive method such as oxtinction by strong neutron source like proton linear accelerator is necessary. Fundamental researches on nuclear fuel cycle, nuclide separation method and extinction process of TPu must be carried out. (Ishimitsu, A.)

  12. Measurement of Charged Particle Interactions in Spacecraft and Planetary Habitat Shielding Materials

    Science.gov (United States)

    Zeitlin, Cary J.; Heilbronn, Lawrence H.; Miller, Jack; Wilson, John W.; Singleterry, Robert C., Jr.

    2003-01-01

    Accurate models of health risks to astronauts on long-duration missions outside the geomagnetosphere will require a full understanding of the radiation environment inside a spacecraft or planetary habitat. This in turn requires detailed knowledge of the flux of incident particles and their propagation through matter, including the nuclear interactions of heavy ions that are a part of the Galactic Cosmic Radiation (GCR). The most important ions are likely to be iron, silicon, oxygen, and carbon. Transport of heavy ions through complex shielding materials including self-shielding of tissue modifies the radiation field at points of interest (e.g., at the blood-forming organs). The incident flux is changed by two types of interactions: (1) ionization energy loss, which results in reduced particle velocity and higher LET (Linear Energy Transfer); and (2) nuclear interactions that fragment the incident nuclei into less massive ions. Ionization energy loss is well understood, nuclear interactions less so. Thus studies of nuclear fragmentation at GCR-like energies are needed to fill the large gaps that currently exist in the database. These can be done at only a few accelerator facilities where appropriate beams are available. Here we report results from experiments performed at the Brookhaven National Laboratory s Alternating Gradient Synchrotron (AGS) and the Heavy Ion Medical Accelerator in Chiba, Japan (HIMAC). Recent efforts have focused on extracting charge-changing and fragment production cross sections from silicon beams at 400, 600, and 1200 MeV/nucleon. Some energy dependence is observed in the fragment production cross sections, and as in other data sets the production of fragments with even charge numbers is enhanced relative to those with odd charge numbers. These data are compared to the NASA-LaRC model NUCFRG2. The charge-changing cross section data are compared to recent calculations using an improved model due to Tripathi, which accurately predicts the

  13. Proceedings of the Spacecraft Charging Technology Conference Held in Monterey, California on 31 October - 3 November 1989. Volume 1

    Science.gov (United States)

    1989-11-01

    Technical Note I (Chapter 4), ESA Contract 8011/88. IASB , 1989. Williams, D..., E. Keppler, T.A. Fritz, B. Wilken and G. Wibberenz, The ISEE 1 and 2...either detector. 112 IV. THE HYPOTHESIS The above observations indicated that electrons played a role , ruled out cosmic-ray showers (i.e. pairing...F2 studies, in particular the role of spacecraft charging in generating the anomalies and the possibility of deep dielectric charging as an

  14. Understanding and Mitigating the Charging Behavior of Next Generation Complex and Active Spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft that are fundamentally more complex and higher powered are necessary to expand our scientific missions and take commercial space endeavors to the next...

  15. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    V, it is shown that secondary electrons supply a significant contribution to the return current to the spacecraft and thereby reduce the spacecraft potential. Our numerical results are in good agreement with observations from the CHARGE-2 sounding rocket experiment.A more detailed study of the BAI as it relates...

  16. Metal transfer and build-up in friction and cutting

    CERN Document Server

    Kuznetsov, V D

    1956-01-01

    Metal Transfer and Build-up in Friction and Cutting aims to systematize our knowledge of the metal build-up, to describe some of the investigations past and present carried out in SFTI (Tomsk), and to make an effort to explain a number of the phenomena in cutting, scratching, and sliding from the point of view of metal transfer theory. The book opens with a chapter on the temperature of the rubbing interface of two solids. This temperature is needed in order to elucidate the nature of the formation of a build-up in scratching, cutting, and sliding. Separate chapters follow on the seizure phen

  17. Build Up Your Bones! | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... turn Javascript on. Feature: Osteoporosis Build Up Your Bones! Past Issues / Winter 2011 Table of Contents Exercise ... who have been diagnosed with osteoporosis. The Best Bone-Building Exercise The best exercise for your bones ...

  18. Energy absorption and exposure build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2010-01-01

    Full text: Gamma and X-radiation are widely used in medical imaging and radiation therapy. The user of radioisotopes must have knowledge about how radiation interacts with matter, especially with the human body, because when photons enter the medium/body, they degrade their energy and build up in the medium, giving rise to secondary radiation which can be estimated by a factor which is called the 'build-up factor'. It is essential to study the exposure build up factor in radiation dosimetry. G.P. fitting method has been used to compute energy absorption and exposure build-up factor of teeth (enamel outer surface (EOS), enamel middle (EM), enamel dentin junction towards enamel (EDJE), enamel dentin junction towards dentin (EDJD), dentin middle (DM) and dentin inner surface (DIS)) for wide energy range (0.015 MeV-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption and exposure build up factor on incident photon energy, Penetration depth and effective atomic number has also been assessed. The relative dose distribution at a distance r from the point source is also estimated. The computed exposure and absorption build-up factors are useful to estimate the gamma and Bremsstrahlung radiation dose distribution teeth which is useful in clinical dosimetry

  19. Energy absorption build-up factors in teeth

    International Nuclear Information System (INIS)

    Manjunatha, H.C.; Rudraswamy, B.

    2012-01-01

    Geometric progression fitting method has been used to compute energy absorption build-up factor of teeth [enamel outer surface, enamel middle, enamel dentin junction towards enamel, enamel dentin junction towards dentin, dentin middle and dentin inner surface] for wide energy range (0.015-15 MeV) up to the penetration depth of 40 mean free path. The dependence of energy absorption build-up factor on incident photon energy, penetration depth, electron density and effective atomic number has also been studied. The energy absorption build-up factors increases with the penetration depth and electron density of teeth. So that the degree of violation of Lambert-Beer (I = I 0 e -μt ) law is less for least penetration depth and electron density. The energy absorption build-up factors for different regions of teeth are not same hence the energy absorbed by the different regions of teeth is not uniform which depends on the composition of the medium. The relative dose of gamma in different regions of teeth is also estimated. Dosimetric implication of energy absorption build-up factor in teeth has also been discussed. The estimated absorption build up factors in different regions of teeth may be useful in the electron spin resonance dosimetry. (author)

  20. Intel Legend and CERN would build up high speed Internet

    CERN Multimedia

    2002-01-01

    Intel, Legend and China Education and Research Network jointly announced on the 25th of April that they will be cooperating with each other to build up the new generation high speed internet, over the next three years (1/2 page).

  1. Spacecraft Charging Considerations and Design Efforts for the Orion Crew Module

    Science.gov (United States)

    Scully, Bob

    2017-01-01

    The Orion Crew Module (CM) is nearing completion for the next flight, designated as Exploration Mission 1 (EM-1). For the uncrewed mission, the flight path will take the CM through a Perigee Raise Maneuver (PRM) out to an altitude of approximately 1800 km, followed by a Trans-Lunar Injection burn, a pass through the Van Allen belts then out to the moon for a lunar flyby, a Distant Retrograde Insertion (DRI) burn, a Distant Retrograde Orbit (DRO), a Distant Retrograde Departure (DRD) burn, a second lunar flyby, an Earth Insertion (EI) burn, and finally entry and landing. All of this, with the exception of the DRO associated maneuvers, is similar to the previous Apollo 8 mission in late 1968. In recent discussions, it is now possible that EM-1 will be a crewed mission, and if this happens, the orbit may be quite different from that just described. In this case, the flight path may take the CM on an out and back pass through the Van Allen belts twice, then out to the moon, again passing through the Van Allen belts twice, then finally back home. Even if the current EM-1 mission doesn't end up as a crewed mission, EM-2 and subsequent missions will undoubtedly follow orbital trajectories that offer comparable exposures to heightened vehicle charging effects. Because of this, and regardless of flight path, the CM vehicle will likely experience a wide range of exposures to energetic ions and electrons, essentially covering the gamut between low earth orbit to geosynchronous orbit and beyond. National Aeronautical and Space Administration (NASA) and Lockheed Martin (LM) engineers and scientists have been working to fully understand and characterize the vehicle's immunity level with regard to surface and deep dielectric charging, and the ramifications of that immunity level pertaining to materials and impacts to operational avionics, communications, and navigational systems. This presentation attempts to chronicle these efforts in a summary fashion, and attempts to capture

  2. Regularities of radiation defects build up on oxide materials surface

    International Nuclear Information System (INIS)

    Bitenbaev, M.I.; Polyakov, A.I.; Tuseev, T.

    2005-01-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide→beryllium oxide→aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency

  3. Efforts to control radiation build-up in Ringhals

    Energy Technology Data Exchange (ETDEWEB)

    Egner, K.; Aronsson, P.O.; Erixon, O. [Vattenfall AB, Vaeroebacka (Sweden)

    1995-03-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the new (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up.

  4. Efforts to control radiation build-up in Ringhals

    International Nuclear Information System (INIS)

    Egner, K.; Aronsson, P.O.; Erixon, O.

    1995-01-01

    It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the new (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up

  5. PyECLOUD and build-up simulations at CERN

    International Nuclear Information System (INIS)

    Iadarola, G; Rumolo, G

    2013-01-01

    PyECLOUD is a newly developed code for the simulation of the electron cloud (EC) build-up in particle accelerators. Almost entirely written in Python, it is mostly based on the physical models already used in the ECLOUD code but, thanks to the implementation of new optimized algorithms, it exhibits a significantly improved performance in accuracy, speed, reliability and flexibility. Such new features of PyECLOUD have been already broadly exploited to study EC observations in the Large Hadron Collider (LHC) and its injector chain as well as for the extrapolation to high luminosity upgrade scenarios. (author)

  6. The evaluation of nylon and polyethylene as build-up material in a neutron therapy beam

    International Nuclear Information System (INIS)

    Hough, J.H.; Binns, P.J.

    1995-01-01

    In high-energy neutron beams a substantial amount of build-up material is required to irradiate biological samples under conditions of charged particle equilibrium. Ideally A-150 tissue-equivalent plastic is used for this purpose. This material is however not always readily available and hence the need for a substitute compound. The selected hydrocarbon should satisfy two requirements: the quality of the radiation on the distal side needs to be the same as that measured for A-150 plastic and the absorbed dose should remain consistent. A tissue-equivalent proportional counter operating at reduced pressure not only measures the absorbed dose accurately but provides a means for assessing the nature of a radiation field in terms of a secondary charged particle spectrum. Using build-up caps manufactured from nylon (type 6) and polyethylene, it is shown that the former is an acceptable substitute for A-150 plastic. The data further demonstrate that both the absorbed dose and the spectral character of the measured single-event distribution are altered when polyethylene is used and that these discrepancies are attributable to the higher hydrogen content of polyethylene. (Author)

  7. Scintiscanning of arthritis and analysis of build-up curves

    International Nuclear Information System (INIS)

    Yamagishi, Tsuneo; Omori, Shigeo; Miyawaki, Haruo; Maniwa, Masato; Yoshizaki, Kenichi

    1975-01-01

    In the present study 40 knee joints with rheumatoid arthritis, 23 knee joints with osteoarthrosis deformans, 3 knee joints with non-synovitis, one knee joint with pyogenic arthritis and 4 normal knee joints were scanned. By analysis of build-up curves obtained immediately after the intravenous injection of sup(99m)Tc-pertechnetate, the rate of accumulation of radioactivity (t 1/2) in the affected joints was simultaneously estimated in order to compare them with clinical findings. 1. Scintiscanning of arthritis, rheumatoid arthritis, osteoarthrosis deformans of the knee joint, non-specific synovitis, and pyogenic arthritis of the knee joint, yielded a positive scan for all of the joint diseases. 2. In the scintigram of healthy knee joints, there are no areas of RI accumulation or right to left difference. 3. In some instances abnormal uptake of RI was seen on scintigrams of arthritis even after normal clinical and laboratory findings had been achieved with therapy. 4. sup(99m)Tc-pertechnetate, a radionuclide with a short half-life, allows repeated scans and provides a useful radiologic means of evaluating therapeutic course and effectiveness. 5. Analysis of build-up curves revealed that the rate of accumulation of RI was faster in rheumatoid arthritis than in osteoarthrosis deformans. (auth.)

  8. Radiation production and absorption in human spacecraft shielding systems under high charge and energy Galactic Cosmic Rays: Material medium, shielding depth, and byproduct aspects

    Science.gov (United States)

    Barthel, Joseph; Sarigul-Klijn, Nesrin

    2018-03-01

    Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.

  9. Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    Science.gov (United States)

    Stevens, N. J.; Berkopec, F. D.; Blech, R. A.

    1976-01-01

    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance.

  10. Temperature rise and Heat build up inside a parked Car

    Science.gov (United States)

    Coady, Rose; Maheswaranathan, Ponn

    2001-11-01

    We have studied the heat build up inside a parked car under the hot summer Sun. Inside and outside temperatures were monitored every ten seconds from 9 AM to about 4 PM for a 2000 Toyota Camry parked in a Winthrop University parking lot without any shades or trees. Two PASCO temperature sensors, one inside the car and the other outside the car, are used along with PASCO-750 interface to collect the data. Data were collected under the following conditions while keeping track of the outside weather: fully closed windows, slightly open windows, half way open windows, fully open windows, and with window shades inside and outside. Inside temperatures reached as high as 150 degrees Fahrenheit on a sunny day with outside high temperature of about 100 degrees Fahrenheit. These results will be presented along with results from car cover and window tint manufacturers and suggestions to keep your car cool next time you park it under the Sun.

  11. Electron-Cloud Build-Up: Theory and Data

    International Nuclear Information System (INIS)

    Furman, M.A.

    2010-01-01

    We present a broad-brush survey of the phenomenology, history and importance of the electron-cloud effect (ECE). We briefly discuss the simulation techniques used to quantify the electron-cloud (EC) dynamics. Finally, we present in more detail an effective theory to describe the EC density build-up in terms of a few effective parameters. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire 'ECLOUD' series. In addition, the proceedings of the various flavors of Particle Accelerator Conferences contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC.

  12. Impact of eccentricity build-up and graveyard disposal Strategies on MEO navigation constellations

    Science.gov (United States)

    Radtke, Jonas; Domínguez-González, Raúl; Flegel, Sven K.; Sánchez-Ortiz, Noelia; Merz, Klaus

    2015-12-01

    With currently two constellations being in or close to the build-up phase, in a few years the Medium Earth Orbit (MEO) region will be populated with four complete navigation systems in relatively close orbital altitudes: The American GPS, Russian GLONASS, European Galileo, and Chinese BeiDou. To guarantee an appropriate visibility of constellation satellites from Earth, these constellations rely on certain defined orbits. For this, both the repeat pattern, which is basically defined by the semimajor axis and inclination, as well as the orbital planes, which are defined by the right ascension of ascending node, are determining values. To avoid an overcrowding of the region of interest, the disposal of satellites after their end-of-life is recommended. However, for the MEO region, no internationally agreed mitigation guidelines exist. Because of their distances to Earth, ordinary disposal manoeuvres leading to a direct or delayed re-entry due to atmospheric drag are not feasible: The needed fuel masses for such manoeuvres are by far above the reasonable limits and available fuel budgets. Thus, additional approaches have to be applied. For this, in general two options exist: disposal to graveyard orbits or the disposal to eccentricity build-up orbits. In the study performed, the key criterion for the graveyard strategy is that the disposed spacecraft must keep a safe minimum distance to the altitude of the active constellation on a long-term time scale of up to 200 years. This constraint imposes stringent requirements on the stability of the graveyard orbit. Similar disposals are also performed for high LEO satellites and disposed GEO payloads. The eccentricity build-up strategy on the other hand uses resonant effects between the Earth's geopotential, the Sun and the Moon. Depending on the initial conditions, these can cause a large eccentricity build-up, which finally can lead to a re-entry of the satellite. In this paper, the effects of applying either the first or

  13. Numerical Simulation of rivulet build up via lubrication equations

    Science.gov (United States)

    Suzzi, N.; Croce, G.

    2017-11-01

    A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

  14. Build up of Radioactive Krypton and Xenon Analysis System

    International Nuclear Information System (INIS)

    Lee, D. K.; Choi, C. S.; Chung, K. H.; Lee, W.; Cho, Y. H.; Lee, C. W.

    2008-03-01

    The objective of this project is to build up an analysis system to measure the activity of the atmospheric radioactive krypton and xenon in Korea. The work scopes of the project include the purchase and the installation of the analysis system to measure the activity of the radioactive krypton and xenon in air, and the establishment of the operation capability of the system through the training of the operator. The system consists of two air sampling systems, and one radioactivity analysis system, which incorporates the enrichment system, the gas chromatography to purify a mixture gas, and the gas proportional counter to count the activity of pure krypton and xenon gas. As planned originally, the establishment of the analysis system has been completed. At present, one air sampler is successfully being operated at a specific site of the South Korea to measure the background radioactivities of Kr-85 and Xe-133 in air. The other air sampler is being reserved at the KAERI in the Daejeon for a emergency like the second nuclear test of the North Korea. During the normal time, the reserved air sampler will be used to collect the air sample for the performance test of the analysis system and the cross analysis for the calibration of the system. The radioactivity analysis system has been installed at the KAERI, and is being used to measure the activity of Kr-85 and Xe-133 in the air sample from a domestic site

  15. FASHIONABLY LATE? BUILDING UP THE MILKY WAY'S INNER HALO

    International Nuclear Information System (INIS)

    Morrison, Heather L.; Harding, Paul; Helmi, Amina

    2009-01-01

    Using a sample of 246 metal-poor stars (RR Lyraes, red giants, and red horizontal branch stars) which is remarkable for the accuracy of its six-dimensional kinematical data, we find, by examining the distribution of stellar orbital angular momenta, a new component for the local halo which has an axial ratio c/a ∼ 0.2, a similar flattening to the thick disk. It has a small prograde rotation but is supported by velocity anisotropy, and contains more intermediate-metallicity stars (with -1.5 < [Fe/H] < -1.0) than the rest of our sample. We suggest that this component was formed quite late, during or after the formation of the disk. It formed either from the gas that was accreted by the last major mergers experienced by the Galaxy, or by dynamical friction of massive infalling satellite(s) with the halo and possibly the stellar disk or thick disk. The remainder of the halo stars in our sample, which are less closely confined to the disk plane, exhibit a clumpy distribution in energy and angular momentum, suggesting that the early, chaotic conditions under which the inner halo formed were not violent enough to erase the record of their origins. The clumpy structure suggests that a relatively small number of progenitors were responsible for building up the inner halo, in line with theoretical expectations. We find a difference in mean binding energy between the RR Lyrae variables and the red giants in our sample, suggesting that more of the RR Lyraes in the sample belong to the outer halo, and that the outer halo may be somewhat younger, as first suggested by Searle and Zinn. We also find that the RR Lyrae mean rotation is more negative than the red giants, which is consistent with the recent result of Carollo et al. that the outer halo has a retrograde rotation and with the difference in kinematics seen between RR Lyraes and blue horizontal branch stars by Kinman et al. (2007).

  16. Contribution of school to building up the partnership with parents

    Directory of Open Access Journals (Sweden)

    Polovina Nada

    2008-01-01

    Full Text Available This paper studies the way in which headmasters and class masters perceive and estimate the factors, obstacles and incentives to building up a partnership between school and parents. The sample consists of 60 headmasters and 305 class masters from 60 schools (37 urban and 23 rural in Serbia. Headmasters and teachers filled in separate, but parallel questionnaires (modified only in the segment of different roles that were created for the purposes of research. Questionnaire items inquire about the factors contributing to the inclusion of parents, the obstacles in developing the cooperation between parents and school and the peculiarities of school environment that can contribute to the development of that cooperation, as well as about the peculiarities of the communication with parents. Research findings indicate that headmasters and teachers assess the importance of different components in the field of cooperation with parents in a similar, but not identical way. Most similarities are found in the perception of obstacles for establishing cooperation (the problems of coordinating time periods for meetings, previous bad experiences of parents regarding cooperation. The majority of differences lie in perceiving the importance of cooperation factors (headmasters emphasise the "parent factor", while teachers do so both for the "parent factor" and "child factor", as well as in perceiving the necessary incentives for the improvement of cooperation between school and parents (headmasters emphasise the spatial-temporal organization components, and teachers do so for spatial components and personal initiatives. In the assessments of both the headmasters and teachers we obtained differences marked by gender, the longitude of years of service, size of the settlement where the school is located (town-village. The general conclusion indicates that the topic of cooperation between school and parents is highly and in many ways context sensitive, and that the

  17. Opacity Build-up in Impulsive Relativistic Sources

    International Nuclear Information System (INIS)

    Granot, Jonathan; Cohen-Tanugi, Johann; Silva, Eduardo do Couto e

    2007-01-01

    Opacity effects in relativistic sources of high-energy gamma-rays, such as gamma-ray bursts (GRBs) or Blazars, can probe the Lorentz factor of the outflow as well as the distance of the emission site from the source, and thus help constrain the composition of the outflow (protons, pairs, magnetic field) and the emission mechanism. Most previous works consider the opacity in steady state. Here we study the effects of the time dependence of the opacity to pair production (γγ → e + e - ) in an impulsive relativistic source, which may be relevant for the prompt gamma-ray emission in GRBs or flares in Blazars. We present a simple, yet rich, semi-analytic model for the time and energy dependence of the optical depth, τγγ, in which a thin spherical shell expands ultra-relativistically and emits isotropically in its own rest frame over a finite range of radii, R 0 (le) R (le) R 0 +ΔR. This is particularly relevant for GRB internal shocks. We find that in an impulsive source (ΔR ∼ 0 ), while the instantaneous spectrum (which is typically hard to measure due to poor photon statistics) has an exponential cutoff above the photon energy (var e psilon)1(T) where tγγ((var e psilon)1) = 1, the time integrated spectrum (which is easier to measure) has a power-law high-energy tail above the photon energy (var e psilon)1* ∼ (var e psilon)1(ΔT) where ΔT is the duration of the emission episode. Furthermore, photons with energies (var e psilon) > (var e psilon)1* are expected to arrive mainly near the onset of the spike in the light curve or flare, which corresponds to the short emission episode. This arises since in such impulsive sources it takes time to build-up the (target) photon field, and thus the optical depth τγγ((var e psilon)) initially increases with time and (var e psilon)1(T) correspondingly decreases with time, so that photons of energy (var e psilon) > (var e psilon)1* are able to escape the source mainly very early on while (var e psilon)1(T) > (var

  18. Understanding the build-up of SMBH and Galaxies

    Science.gov (United States)

    Carrera, Francisco; Georgakakis, Antonis; Ueda, Yoshihiro; Akylas, Thanassis; Lanzuisi, Giorgio; Castello, N.

    2015-09-01

    . The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  19. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  20. Characterizing polycyclic aromatic hydrocarbon build-up processes on urban road surfaces

    International Nuclear Information System (INIS)

    Liu, Liang; Liu, An; Li, Dunzhu; Zhang, Lixun; Guan, Yuntao

    2016-01-01

    Reliable prediction models are essential for modeling pollutant build-up processes on urban road surfaces. Based on successive samplings of road deposited sediments (RDS), this study presents empirical models for mathematical replication of the polycyclic aromatic hydrocarbon (PAH) build-up processes on urban road surfaces. The contaminant build-up behavior was modeled using saturation functions, which are commonly applied in US EPA's Stormwater Management Model (SWMM). Accurate fitting results were achieved in three typical urban land use types, and the applicability of the models was confirmed based on their acceptable relative prediction errors. The fitting results showed high variability in PAH saturation value and build-up rate among different land use types. Results of multivariate data and temporal-based analyses suggested that the quantity and property of RDS significantly influenced PAH build-up. Furthermore, pollution sources, traffic parameters, road surface conditions, and sweeping frequency could synthetically impact the RDS build-up and RDS property change processes. Thus, changes in these parameters could be the main reason for variations in PAH build-up in different urban land use types. - Highlights: • Sufficient robust prediction models were established for analysis of PAH build-up on urban road surfaces. • PAH build-up processes showed high variability among different land use types. • Pollution sources as well as the quantity and property of RDS mainly influenced PAH build-up. - Sufficient robust prediction models were established for analysis of PAH build-up on urban road surfaces. Pollution sources as well as the quantity and property of RDS mainly influenced PAH build-up.

  1. Use of the Charge/Discharge (C/D) ratio to aument voltage limit (V sub T) charge control in the ERBS spacecraft

    Science.gov (United States)

    Halpert, G.

    1982-01-01

    A 50-ampere hour nickel cadmium cell test pack was operated in a power profile simulating the orbit of the Earth Radiation Budget Satellite (ERBS). The objective was to determine the ability of the temperature compensated voltage limit (V sub T) charge control system to maintain energy balance in the half sine wave-type current profile expected of this mission. The four-cell pack (50 E) was tested at the Naval Weapons Support Center (NWSC) at Crane, Indiana. The ERBS evaluation test consisted of two distinct operating sequences, each having a specific purpose. The first phase was a parametric test involving the effect of V sub T level, temperature, and Beta angle on the charge/discharge (C/D) ratio, an indicator of the amount of overcharge. The second phase of testing made use of the C/D ratio limit to augment the V sub T charge limit control. When the C/D limit was reached, the current was switched from the taper mode to a C/67 (0.75 A) trickle charge. The use of an ampere hour integrator limiting the overcharge to a C/67 rate provided a fine tuning of the charge control technique which eliminated the sensitivity problems noted in the initial operating sequence.

  2. How to permanently build up the prevention of occupational cancers

    International Nuclear Information System (INIS)

    Hery, Michel; Goutet, Pierre; Calvez, Olivier; Fontaine, Bernard; Bastos, Henri; Guseva-Canu, Irina; Telle-Lamberton, Maylis; Pourquet, Michel; Fontaine, Jean-Raymond; Silvente, Eric; Malenfer, Marc; Risse-Fleury, Mathilde; Lepocreau, Antoine; Guimon, Michele; Laine, Patrick; Fares, Nadim; Hermouet, Christine; Chauvet, Claire; Haeflinger, Raphael; Vogel, Laurent; Counil, Emilie; Bertin, Melanie; Thebaud-Mony, Annie; Certin, Jean-Francois; Goutet, Pierre; Brixi, Omar

    2015-01-01

    As about 2 millions of workers are exposed to carcinogenic agents in different industrial sectors, this expert opinion proposes a presentation of the state of the art of the prevention of carcinogenic risks. The different parts address the contribution of experimental and epidemiologic studies to the knowledge and prevention of occupational cancers (sure and possible factors, classifications and regulations), the knowledge of exposures in working environments (exposure modalities and principle of assessment of exposures, traceability and retrospective assessment), the risk management within a company (identification, suppression and substitution, design of work equipment, prevention of exposure for the personnel of subcontracting companies and in the waste and recycling sectors), the evolution from risk perception to risk prevention, the various strategies for action and professional sectors (general regime, prevention policy of the French national fund of prevention for territorial and hospital public services, the taking into charge of cancers as occupational disease by agriculture regimes of social protection), and the taking into care and restorative actions (medical and legal follow up and remedy, taking inequities into account, acknowledgement of occupational cancers in Europe, critical discussion of the European policy on occupational cancer prevention, lessons learned from Giscop93 inquiry)

  3. Electron-cloud build-up in hadron machines

    International Nuclear Information System (INIS)

    Furman, M.A.

    2004-01-01

    The first observations of electron-proton coupling effect for coasting beams and for long-bunch beams were made at the earliest proton storage rings at the Budker Institute of Nuclear Physics (BINP) in the mid-60's [1]. The effect was mainly a form of the two-stream instability. This phenomenon reappeared at the CERN ISR in the early 70's, where it was accompanied by an intense vacuum pressure rise. When the ISR was operated in bunched-beam mode while testing aluminum vacuum chambers, a resonant effect was observed in which the electron traversal time across the chamber was comparable to the bunch spacing [2]. This effect (''beam-induced multipacting''), being resonant in nature, is a dramatic manifestation of an electron cloud sharing the vacuum chamber with a positively-charged beam. An electron-cloud-induced instability has been observed since the mid-80's at the PSR (LANL) [3]; in this case, there is a strong transverse instability accompanied by fast beam losses when the beam current exceeds a certain threshold. The effect was observed for the first time for a positron beam in the early 90's at the Photon Factory (PF) at KEK, where the most prominent manifestation was a coupled-bunch instability that was absent when the machine was operated with an electron beam under otherwise identical conditions [4]. Since then, with the advent of ever more intense positron and hadron beams, and the development and deployment of specialized electron detectors [5-9], the effect has been observed directly or indirectly, and sometimes studied systematically, at most lepton and hadron machines when operated with sufficiently intense beams. The effect is expected in various forms and to various degrees in accelerators under design or construction. The electron-cloud effect (ECE) has been the subject of various meetings [10-15]. Two excellent reviews, covering the phenomenology, measurements, simulations and historical development, have been recently given by Frank Zimmermann [16

  4. History matching of transient pressure build-up in a simulation model using adjoint method

    Energy Technology Data Exchange (ETDEWEB)

    Ajala, I.; Haekal, Rachmat; Ganzer, L. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany); Almuallim, H. [Firmsoft Technologies, Inc., Calgary, AB (Canada); Schulze-Riegert, R. [SPT Group GmbH, Hamburg (Germany)

    2013-08-01

    The aim of this work is the efficient and computer-assisted history-matching of pressure build-up and pressure derivatives by small modification to reservoir rock properties on a grid by grid level. (orig.)

  5. The build-up and characterization of nuclear burn-up wave in a fast ...

    Indian Academy of Sciences (India)

    K V Anoop

    2018-02-07

    Feb 7, 2018 ... evaluating the quality of the wave by the researchers working in the field of nuclear burn-up wave build-up and propagation. Keywords. ... However, there are concerns relating to the nuclear safety, ... Simulation studies have.

  6. Analysis of the build-up of semi and non volatile organic compounds on urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Ayoko, Godwin A; Goonetilleke, Ashantha; Egodawatta, Prasanna

    2011-04-01

    Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75-300 μm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 μm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 were found to dominate SVOC and NVOC build-up on roads. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Determination of contamination-free build-up for 60Co

    International Nuclear Information System (INIS)

    Higgins, P.D.; Sibata, CH.; Paliwal, B.R.

    1985-01-01

    Experimental verification of the difference between absorbed dose in tissue and the collision fraction of kerma requires precise knowledge of the absorbed dose curve, particularly in the build-up and build-down regions. A simple method from direct measurement of contamination-free build-up for 60 Co, which should also be applicable for most of the photon energies commonly employed for treatment, is presented. It is shown that the contribution from air-scattered electrons to the surface dose may be removed by extrapolating measurements of build-up to zero field size. The remaining contribution to contamination from the collimators and other source-related hardware may be minimised by measuring these build-up curves sufficiently far from the source. These results were tested by measuring the build-up using a magnet to sweep scattered electrons from the primary photon beam and by measuring the surface dose in the limit of an evacuated beam path. The relative dose at zero depth in polystyrene was found to be approximately 8.9+-0.3% of the dose at the depth of maximum build-up. (author)

  8. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  9. The Liquid Sustainer Build-up Time Impact on the Emptying Spacecraft Fuel Tank in Free Orbiting Conditions

    Directory of Open Access Journals (Sweden)

    V. B. Sapozhnikov

    2015-01-01

    Full Text Available Trouble-free operation of liquid rocket engines (LRE depends, among other factors, on the nonstop supply of liquid rocket fuel components in the fuel tank feed line with continuous flow.This condition becomes especially relevant for the aerial vehicles (AV in orbital (suborbital environment. With a little filled fuel tanks discontinuity of flow may occur because of pressurizing gas blow-by in the feed line as a result of the funnel generation (with or without vortex formation and so-called phenomenon of dynamic failure of the interface "liquid-gas”.The paper presents a mathematical model of the process of emptying tank initially a little filled and having a reduced level of the gravity acceleration. Using the developed mathematical model a parametric study has been conducted to find how stabilization rate of liquid flow effects on the volume of drained liquid. The computational experiment defines gas blow-by points in the feed line and propellant residuals, depending on the flow rate, physical properties of the fuel components, residual value of the acceleration, and diameter of the feed line.As a result, an effect is discovered that previously has been never mentioned in publications on research of the emptying processes of the aircraft fuel tanks, namely: with abrupt bootstrap of the flow rate a blow-by of gas occurs at the initial stage of emptying tank. In this case, to ensure LRE trouble-free operation there is a need in a special inner-tank device to prevent premature blow-by of pressurizing gas in the tank feed line.

  10. A model for the build-up of disordered material in ion bombarded Si

    International Nuclear Information System (INIS)

    Nelson, R.S.

    1977-01-01

    A new model based on experimental observation is developed for the build-up of disordered material in ion bombarded silicon. The model assumes that disordered zones are created in a background of migrating point defects, these zones then act as neutral sinks for such defects which interact with the zones and cause recrystallization. A simple steady state rate theory is developed to describe the build-up of disordered material with ion dose as a function of temperature. In general the theory predicts two distinct behaviour patterns depending on the temperature and the ion mass, namely a linear build-up with dose to complete disorder for heavy bombarding ions and a build-up to saturation at a relatively low level for light ions such as protons. However, in some special circumstances a transition region is predicted where the build-up of disorder approximately follows a (dose)sup(1/2) relationship before reverting to a linear behaviour at high dose. (author)

  11. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    International Nuclear Information System (INIS)

    Liu, An; Liu, Liang; Li, Dunzhu; Guan, Yuntao

    2015-01-01

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse

  12. Characterizing heavy metal build-up on urban road surfaces: Implication for stormwater reuse

    Energy Technology Data Exchange (ETDEWEB)

    Liu, An [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Cooperative Research and Education Centre for Environmental Technology, Kyoto University–Tsinghua University, 518055 Shenzhen (China); Liu, Liang; Li, Dunzhu [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); Guan, Yuntao, E-mail: guanyt@tsinghua.edu.cn [Research Centre of Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, 518055 Shenzhen (China); School of Environment, Tsinghua University, Beijing 100084 (China)

    2015-05-15

    Stormwater reuse is increasingly popular in the worldwide. In terms of urban road stormwater, it commonly contains toxic pollutants such as heavy metals, which could undermine the reuse safety. The research study investigated heavy metal build-up characteristics on urban roads in a typical megacity of South China. The research outcomes show the high variability in heavy metal build-up loads among different urban road sites. The degree of traffic congestion and road surface roughness was found to exert a more significant influence on heavy metal build-up rather than traffic volume. Due to relatively higher heavy metal loads, stormwater from roads with more congested traffic conditions or rougher surfaces might be suitable for low-water-quality required activities while the stormwater from by-pass road sections could be appropriate for relatively high-water-quality required purposes since the stormwater could be relatively less polluted. Based on the research outcomes, a decision-making process for heavy metals based urban road stormwater reuse was proposed. The new finding highlights the importance to undertaking a “fit-for-purpose” road stormwater reuse strategy. Additionally, the research results can also contribute to enhancing stormwater reuse safety. - Highlights: • Heavy metal (HM) build-up varies with traffic and road surface conditions. • Traffic congestion and surface roughness exert a higher impact on HM build-up. • A “fit-for-purpose” strategy could suit urban road stormwater reuse.

  13. Build-up of actinides in irradiated fuel rods of the ET-RR-1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adib, M.; Naguib, K.; Morcos, H.N

    2001-09-01

    The content concentrations of actinides are calculated as a function of operating reactor regime and cooling time at different percentage of fuel burn-up. The build-up transmutation equations of actinides content in an irradiated fuel are solved numerically .A computer code BAC was written to operate on a PC computer to provide the required calculations. The fuel element of 10% {sup 235}U enrichment of ET-RR-1 reactor was taken as an example for calculations using the BAC code. The results are compared with other calculations for the ET-RR-1 fuel rod. An estimation of fissile build-up content of a proposed new fuel of 20% {sup 235}U enrichment for ET-RR-1 reactor is given. The sensitivity coefficients of build-up plutonium concentrations as a function of cross-section data uncertainties are also calculated.

  14. Analysis of surface and build up region dose for motorized wedge and omni wedge

    International Nuclear Information System (INIS)

    Panta, Raj Kumar; Sundarum, T.

    2008-01-01

    Megavoltage x-ray beam exhibits the well known phenomenon of dose build-up within the first few millimeters of incident phantom surface or skin. The skin sparing effect of high energy gamma or x-ray photon may be reduced or even lost, if the beam is contaminated with electron or low energy photons. Since skin dose in the treatment of deeply seated tumor may be a limiting factor in the delivery of tumoricidal dose due to possible complications such as erythema, desquamation, fibrosis, necrosis and epilation, the dose distribution in the build up region should be known. The objective of this study was to measure and investigate the surface and build-up region dose for 6 MV and 15 MV photon beam for Motorized wedge and Omni wedge in Precise Digital Linear Accelerator (Elekta)

  15. A-centres build-up kinetics in the conductive matrix of pulled n-type silicon with calculation of their recharges at defect clusters

    International Nuclear Information System (INIS)

    Dolgolenko, A.P.; Fishchuk, I.I.

    1981-01-01

    Pulled n-Si samples with rho approximately 40 Ωcm are investigated after irradiation with different doses of fast-pile neutrons. It is known that the simple defects are created not only in the conductive matrix but also in the region of the space charge of defect clusters. Then the charge state, for example, of A-centres in the region of the space charge is defined by both, the temperature and the value of the electrostatical potential. If this circumstance is not taken into account the calculation of the conductive volume is not precise enough. In the present paper the temperature dependence of the volume fraction is calculated, in which the space charge of defect clusters occurs, taking into account the recharges of A-centres in the region of the space charge. Using the expression obtained the A-centres build-up kinetics in the conductive matrix of pulled n-type silicon is calculated. (author)

  16. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation

    International Nuclear Information System (INIS)

    Hong, Nian; Zhu, Panfeng; Liu, An

    2017-01-01

    Urban road stormwater is an alternative water resource to mitigate water shortage issues in the worldwide. Heavy metals deposited (build-up) on urban road surface can enter road stormwater runoff, undermining stormwater reuse safety. As heavy metal build-up loads perform high variabilities in terms of spatial distribution and is strongly influenced by surrounding land uses, it is essential to develop an approach to identify hot-spots where stormwater runoff could include high heavy metal concentrations and hence cannot be reused if it is not properly treated. This study developed a robust modelling approach to estimating heavy metal build-up loads on urban roads using land use fractions (representing percentages of land uses within a given area) by an artificial neural network (ANN) model technique. Based on the modelling results, a series of heavy metal load spatial distribution maps and a comprehensive ecological risk map were generated. These maps provided a visualization platform to identify priority areas where the stormwater can be safely reused. Additionally, these maps can be utilized as an urban land use planning tool in the context of effective stormwater reuse strategy implementation. - Highlights: • A model was developed to simulate heavy metal build-up loads on urban roads. • This model is based on artificial neural networks. • Land use fractions was used to model build-up loads on different particle sizes. • The maps of heavy metal spatial distribution and ecological risk were generated. • This model can be used for effective stormwater reuse strategy implementation. - Development of a robust modelling approach to mapping heavy metals build-up and their ecological risks for stormwater reuse safety.

  17. The Effect of Sloshing on a Tank Pressure Build-up Unit

    OpenAIRE

    Banne, Håvard Bolstad

    2017-01-01

    This thesis work has aimed to identify how sloshing will affect a liquefied natural gas (LNG) fuel tank. The physical nature of LNG means it needs to be kept cooled and pressurized in order to remain in a liquid state. By implementing a pressure build-up unit (PBU) it is possible to pressurize the tank vaporizing the tank’s contents, for the vapour then to return to tank in a loop, building pressure in the process. A tank pressure build-up unit has been built in the laboratory ...

  18. The keys of the kingdom as paradigm for building up the church in reformed church government

    Directory of Open Access Journals (Sweden)

    A. le R. du Plooy

    1998-06-01

    Full Text Available This article adopts an ecclesiological approach and concentrates on the prominent concepts the keys of the kingdom and building up the church. The article attempts to determine the significance those concepts may have for the government of the church and emphasises the close relationship between the keys of the kingdom and the building up of the church. According to Reformational viewpoints the administering of the keys serves the edification of the church. It becomes clear that the notae ecclesiae and the keys of the kingdom function as the basic elements of the church order and must be regarded as the basis or pillars upon which the church is built.

  19. A method of the sensitivity analysis of build-up and decay of actinides

    International Nuclear Information System (INIS)

    Mitani, Hiroshi; Koyama, Kinji; Kuroi, Hideo

    1977-07-01

    To make sensitivity analysis of build-up and decay of actinides, mathematical methods related to this problem have been investigated in detail. Application of time-dependent perturbation technique and Bateman method to sensitivity analysis is mainly studied. For the purpose, a basic equation and its adjoint equation for build-up and decay of actinides are systematically solved by introducing Laplace and modified Laplace transforms and their convolution theorems. Then, the mathematical method of sensitivity analyses is formulated by the above technique; its physical significance is also discussed. Finally, application of eigenvalue-method is investigated. Sensitivity coefficients can be directly calculated by this method. (auth.)

  20. Basic principle of constant q/sub a/ current build-up in tokamaks

    International Nuclear Information System (INIS)

    Kikuchi, M.

    1985-05-01

    An analytic expression is derived such that the current profile shape is kept constant during the current build-up phase in tokamaks. The required conductivity profile is parametrized by two externally controllable parameters, I/sub p/ and a/sub p/ in the case of the Gaussian current profile. It is shown that a Gaussian current profile can be maintained for a realistically broad conductivity profile by using the constant q/sub a/ current build-up method even under the condition of a high I/sub p/

  1. Measurement of air kerma rates for 6- to 7-MeV high-energy gamma-ray field by ionisation chamber and build-up plate.

    Science.gov (United States)

    Kowatari, Munehiko; Tanimura, Yoshihiko; Tsutsumi, Masahiro

    2014-12-01

    The 6- to 7-MeV high-energy gamma-ray calibration field by the (19)F(p, αγ)(16)O reaction is to be served at the Japan Atomic Energy Agency. For the determination of air kerma rates using an ionisation chamber in the 6- to 7-MeV high-energy gamma-ray field, the establishment of the charged particle equilibrium must be achieved during measurement. In addition to measurement of air kerma rates by the ionisation chamber with a thick build-up cap, measurement using the ionisation chamber and a build-up plate (BUP) was attempted, in order to directly determine air kerma rates under the condition of regular calibration for ordinary survey meters and personal dosemeters. Before measurements, Monte Carlo calculations were made to find the optimum arrangement of BUP in front of the ionisation chamber so that the charged particle equilibrium could be well established. Measured results imply that air kerma rates for the 6- to 7-MeV high-energy gamma-ray field could be directly determined under the appropriate condition using an ionisation chamber coupled with build-up materials. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  3. Effect of heat build-up on carbon emissions in chimato compost piles ...

    African Journals Online (AJOL)

    A study was conducted to determine impacts of heat build-up of chimato compost piles TD0, TD20, TD40, TD50, TD60, TD80 and TD100, made by blending maize stalks with 0, 20, 40, 50, 60, 80 and 100% Tithonia diversifolia, respectively, on carbon losses and emissions during composting. Compost piles temperatures ...

  4. Does the QCD vacuum build up a colour chemical potential dynamically?

    International Nuclear Information System (INIS)

    Sailer, K.; Greiner, W.

    1998-01-01

    The one-loop effective theory is found for QCD assuming an overcritical homogeneous gluon vector potential background that corresponds to a non-vanishing colour chemical potential. It is found that the vacuum is unstable against building up a non-vanishing colour chemical potential for sufficiently large number of flavours. (author)

  5. Ebola expert says building up health systems is best defence | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-22

    May 22, 2018 ... Ebola expert says building up health systems is best defence ... community of public health experts to control viral epidemics in several countries. ... says the problem of infectious diseases has grown in the past 30 years, but ...

  6. Effect of heat build-up on carbon emissions in chimato compost piles

    African Journals Online (AJOL)

    A. Mlangeni

    atmospheric carbon compounds such as dioxide (CO2) and methane (CH4) into soil organic carbon compounds. (Biala, 2011; Gill et al., 2012; Biddlestone and Gray,. 1987). Maturity and stability of compost is partly dependent on type of feedstock that influence compost pile moisture content, aeration and heat build up. Well.

  7. Monte Carlo correction factors for a Farmer 0.6 cm3 ion chamber dose measurement in the build-up region of the 6 MV clinical beam

    International Nuclear Information System (INIS)

    Pena, J; Sanchez-Doblado, F; Capote, R; Terron, J A; Gomez, F

    2006-01-01

    Reference dosimetry of photon fields is a well-established subject and currently available protocols (such as the IAEA TRS-398 and AAPM TG-51) provide methods for converting the ionization chamber (IC) reading into dose to water, provided reference conditions of charged particle equilibrium (CPE) are fulfilled. But these protocols cannot deal with the build-up region, where the lack of CPE limits the applicability of the cavity theorems and so the chamber correction factors become depth dependent. By explicitly including the IC geometry in the Monte Carlo simulations, depth-dependent dose correction factors are calculated for a PTW 30001 0.6 cm 3 ion chamber in the build-up region of the 6 MV photon beam. The corrected percentage depth dose (PDD) agrees within 2% with that measured using the NACP 02 plane-parallel ion chamber in the build-up region at depths greater than 0.4 cm, where the Farmer chamber wall reaches the phantom surface

  8. Electron Cloud Build Up and Instability in the CLIC Damping Rings

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2008-01-01

    Electron cloud can be formed in the CLIC positron damping ring and cause intolerable tune shift and beam instability. Build up simulations with the Faktor2 code, developed at CERN, have been done to predict the cloud formation in the arcs and wigglers of the damping rings. HEADTAIL simulations have been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

  9. Effect of tungsten-187 in primary coolant on dose rate build-up in Vandellos 2

    International Nuclear Information System (INIS)

    Fernandez Lillo, E.; Llovet, R.; Boronat, M.

    1994-01-01

    The present work proposes a relationship between the Cobalt-60 piping deposited activity and the relatively high levels of Tungsten-187 in the coolant of Vandellos 2. The conclusions of this work can be applicable to other plants, since it proposes a tool to estimate and quantify the contribution of stellite to the generation of Cobalt-60 and the radiation dose build-up. (authors). 7 figs., 6 refs

  10. THE ROLE OF LANGUAGE GAME IN THE BUILDING UP OF A POLITICIAN'S IMAGE (PRAGMALINGUISTIC PERLOCUTIONARY EXPERIMENT)

    OpenAIRE

    Khanina E. A.

    2016-01-01

    The article discusses the results of the pragmalinguistic experiment. Since language game is a result of speech creative work, which manifests the individuality of a linguistic personality, the politician can intentionally use language game and thereby consciously form his attractive image. The politician, who uses different kinds of language game, makes some personal characteristics building up the portrait aspect of effective political image more distinguished and thus affects the election ...

  11. Build-up dynamics of heavy metals deposited on impermeable urban surfaces.

    Science.gov (United States)

    Wicke, D; Cochrane, T A; O'Sullivan, A

    2012-12-30

    A method using thin boards (3 cm thick, 0.56 m(2)) comprising different paving materials typically used in urban environments (2 asphalt types and concrete) was employed to specifically investigate air-borne deposition dynamics of TSS, zinc, copper and lead. Boards were exposed at an urban car park near vehicular traffic to determine the rate of contaminant build-up over a 13-day dry period. Concentration profiles from simulated rainfall wash-off were used to determine contaminant yields at different antecedent dry days. Maximum contaminant yields after 13 days of exposure were 2.7 kg ha(-1) for TSS, 35 g ha(-1) zinc, 2.3 g ha(-1) copper and 0.4 g ha(-1) lead. Accumulation of all contaminants increased over the first week and levelled off thereafter, supporting theoretical assumptions that contaminant accumulation on impervious surfaces asymptotically approaches a maximum. Comparison of different surface types showed approximately four times higher zinc concentrations in runoff from asphalt surfaces and two times higher TSS concentrations in runoff from concrete, which is attributed to different physical and chemical compositions of the pavement types. Contaminant build-up and wash-off behaviours were modelled using exponential and saturation functions commonly applied in the US EPA's Stormwater Management Model (SWMM) showing good correlation between measured and modelled concentrations. Maximum build-up, half-saturation time, build-up rate constants and wash-off coefficients, necessary for stormwater contaminant modelling, were determined for the four contaminants studied. These parameters are required to model contaminant concentrations in urban runoff assisting in stormwater management decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Building up STEM education professional learning community in school setting: Case of Khon Kaen Wittayayon School

    Science.gov (United States)

    Thana, Aduldej; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    The STEM education is new issue of teaching and learning in school setting. Building up STEM education professional learning community may provide some suggestions for further collaborative work of STEM Education from grounded up. This paper aimed to clarify the building up STEM education learning community in Khon Kaen Wittayayon (KKW) School setting. Participants included Khon Kaen University researchers, Khon Kaen Wittayayon School administrators and teachers. Methodology regarded interpretative paradigm. The tools of interpretation included participant observation, interview and document analysis. Data was analyzed to categories of condition for building up STEM education professional learning community. The findings revealed that the actions of developing STEM learning activities and research showed some issues of KKW STEM community of inquiry and improvement. The paper will discuss what and how the community learns about sharing vision of STEM Education, supportive physical and social conditions of KKW, sharing activities of STEM, and good things from some key STEM teachers' ambition. The paper may has implication of supporting STEM education in Thailand school setting.

  13. Modelling heavy metals build-up on urban road surfaces for effective stormwater reuse strategy implementation.

    Science.gov (United States)

    Hong, Nian; Zhu, Panfeng; Liu, An

    2017-12-01

    Urban road stormwater is an alternative water resource to mitigate water shortage issues in the worldwide. Heavy metals deposited (build-up) on urban road surface can enter road stormwater runoff, undermining stormwater reuse safety. As heavy metal build-up loads perform high variabilities in terms of spatial distribution and is strongly influenced by surrounding land uses, it is essential to develop an approach to identify hot-spots where stormwater runoff could include high heavy metal concentrations and hence cannot be reused if it is not properly treated. This study developed a robust modelling approach to estimating heavy metal build-up loads on urban roads using land use fractions (representing percentages of land uses within a given area) by an artificial neural network (ANN) model technique. Based on the modelling results, a series of heavy metal load spatial distribution maps and a comprehensive ecological risk map were generated. These maps provided a visualization platform to identify priority areas where the stormwater can be safely reused. Additionally, these maps can be utilized as an urban land use planning tool in the context of effective stormwater reuse strategy implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    Science.gov (United States)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  15. Prediction of moisture migration and pore pressure build-up in concrete at high temperatures

    International Nuclear Information System (INIS)

    Ichikawa, Y.; England, G.L.

    2004-01-01

    Prediction of moisture migration and pore pressure build-up in non-uniformly heated concrete is important for safe operation of concrete containment vessels in nuclear power reactors and for assessing the behaviour of fire-exposed concrete structures. (1) Changes in moisture content distribution in a concrete containment vessel during long-term operation should be investigated, since the durability and radiation shielding ability of concrete are strongly influenced by its moisture content. (2) The pressure build-up in a concrete containment vessel in a postulated accident should be evaluated in order to determine whether a venting system is necessary between liner and concrete to relieve the pore pressure. (3) When concrete is subjected to rapid heating during a fire, the concrete can suffer from spalling due to pressure build-up in the concrete pores. This paper presents a mathematical and computational model for predicting changes in temperature, moisture content and pore pressure in concrete at elevated temperatures. A pair of differential equations for one-dimensional heat and moisture transfer in concrete are derived from the conservation of energy and mass, and take into account the temperature-dependent release of gel water and chemically bound water due to dehydration. These equations are numerically solved by the finite difference method. In the numerical analysis, the pressure, density and dynamic viscosity of water in the concrete pores are calculated explicitly from a set of formulated equations. The numerical analysis results are compared with two different sets of experimental data: (a) long-term (531 days) moisture migration test under a steady-state temperature of 200 deg. C, and (b) short-term (114 min) pressure build-up test under transient heating. These experiments were performed to investigate the moisture migration and pressure build-up in the concrete wall of a reactor containment vessel at high temperatures. The former experiment simulated

  16. Uncertainty analysis of pollutant build-up modelling based on a Bayesian weighted least squares approach

    International Nuclear Information System (INIS)

    Haddad, Khaled; Egodawatta, Prasanna; Rahman, Ataur; Goonetilleke, Ashantha

    2013-01-01

    Reliable pollutant build-up prediction plays a critical role in the accuracy of urban stormwater quality modelling outcomes. However, water quality data collection is resource demanding compared to streamflow data monitoring, where a greater quantity of data is generally available. Consequently, available water quality datasets span only relatively short time scales unlike water quantity data. Therefore, the ability to take due consideration of the variability associated with pollutant processes and natural phenomena is constrained. This in turn gives rise to uncertainty in the modelling outcomes as research has shown that pollutant loadings on catchment surfaces and rainfall within an area can vary considerably over space and time scales. Therefore, the assessment of model uncertainty is an essential element of informed decision making in urban stormwater management. This paper presents the application of a range of regression approaches such as ordinary least squares regression, weighted least squares regression and Bayesian weighted least squares regression for the estimation of uncertainty associated with pollutant build-up prediction using limited datasets. The study outcomes confirmed that the use of ordinary least squares regression with fixed model inputs and limited observational data may not provide realistic estimates. The stochastic nature of the dependent and independent variables need to be taken into consideration in pollutant build-up prediction. It was found that the use of the Bayesian approach along with the Monte Carlo simulation technique provides a powerful tool, which attempts to make the best use of the available knowledge in prediction and thereby presents a practical solution to counteract the limitations which are otherwise imposed on water quality modelling. - Highlights: ► Water quality data spans short time scales leading to significant model uncertainty. ► Assessment of uncertainty essential for informed decision making in water

  17. Assessment of radon build up pattern in a closed room with minimal ventilation disturbance

    International Nuclear Information System (INIS)

    Singh, M.K.; Patnaik, R.L.; Jha, V.N.; Ravi, P.M.; Tripathi, R.M.

    2016-01-01

    Radon is ubiquitous in nature. The immediate source of Radon is 226 Ra is present in building materials underneath earth due to presence of natural uranium in terrestrial region. 222 Ra gas continuously diffused out into room atmosphere through the pores, cracks and fissures if any. The buildup of this 222 Rn is anticipated in a closed room lack of proper ventilation. A study was done to see the build up pattern of radon concentration by two different measurement techniques in a closed room of ESL, Jaduguda. Present paper summarizes the result of buildup study of 222 Rn in a closed room of lab for a period of 3 months

  18. Optimal Pile Arrangement for Minimizing Excess Pore Water Pressure Build-Up

    DEFF Research Database (Denmark)

    Barari, Amin; Saadati, Meysam; Ibsen, Lars Bo

    2013-01-01

    Numerical analysis of pile group in a liquefiable soil was considered to investigate the influence of pile spacing on excess pore pressure distribution and liquefaction potential. The analysis is conducted using a two-dimensional plain strain finite difference program considering a nonlinear...... constitutive model for sandy soil, strength and stiffness reduction, and pile-soil interaction. The Mohr-Coulomb constitutive model coupled with Byrne pore pressure build-up model have been employed in the analysis. Numerical analysis results show that pile groups have significant influence on the dynamic...... response of sandy soil as they reduce the amount of excess pore pressure development during seismic shaking and may even prevent liquefaction....

  19. Radiation Build-Up Of High Energy Gamma In Shielding Of High Atomic Number

    International Nuclear Information System (INIS)

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to observe effect of radiation build-up factor (b) in iron (Fe) and lead (Pb) for high energy gamma shielding from exp.137 Cs (E gamma : 662 keV) and exp.60 Co (E gamma : 1332 keV) sources has been carried out. Research was conducted bt counting of radiation intensity behind shielding with its thickness vary from 1 to 5 times of half value thickness (HVT). NaI (TI) detector which connected to multi channel analyzer (MCA) was used for the counting. Calculation result show that all of b value are near to 1 (b∼1) both for Fe and Pb. Without inserting b in calculation, from the experiment it was obtained HVT value of Fe for high gamma radiation of 662 and 1332 keV were : (12,94 n 0,03) mm and (17,33 n 0,01) mm with their deviation standards were 0,2% and 0,06% respectively. Value of HVT for Pb with the same energy were : (6,31 n 0,03) mm and (11,86 n 0,03) mm with their deviation standars were : 0,48% and 0,25% respectively. HVL concept could be applied directly to estimate shielding thickness of high atomic number of high energy gamma radiation, without inserting correction of radiation build-up factor

  20. Radiation Build-Up In Shielding Of Low Activity High Energia Gamma Source

    International Nuclear Information System (INIS)

    Helfi-Yuliati; Mukhlis-Akhadi

    2003-01-01

    Research to observe radiation build-up factor (b) in aluminium (Al), iron (Fe) and lead (Pb) for shielding of gamma radiation of high energy from 137 cs (E γ : 662 keV) source and 60 Co (E γ : 1332 keV) of low activity sources has been carried out. Al with Z =13 represent metal of low atomic number, Fe with Z =26 represent metal of medium atomic number, and Pb with Z = 82 represent metal of high atomic number. Low activity source in this research is source which if its dose rate decrease to 3 % of its initial dose rate became safe for the workers. Research was conducted by counting of radiation intensity behind shielding with its thickness vary from 1 to 5 times of half value thickness (HVT). NaI(TI) detector which connected to multi channel analyzer (MCA) was used for the counting. Calculation result show that all of b value are close to 1 (b ∼ 1) for all kinds of metals. No radiation build-up factor is required in estimating the shielding thickness from several kinds of metals for low activity of high energy gamma source. (author)

  1. French experience to reduce radiation field build-up and improve nuclear fuel performance

    International Nuclear Information System (INIS)

    Thomazet, J.; Beslu, P.; Noe, M.; Stora, J.P.

    1983-01-01

    Over these last years, considerable information has been obtained on primary coolant chemistry, activity build-up and nuclear fuel behavior. As of December 1982, twenty three 900 MWe type reactors were in operation in France and about 1.3 millions of rods had been loaded in power reactors among which six regions of 17x17 fuel assemblies had completed successfully their third cycle of irradiation with a lead assembly burn-up of 37,000 MWd/MtU. Visual examination shows that crud deposited on fuel clads is mostly thin or inexistent. This result is due to the appropriate B/Li coolant concentration control which is currently applied in French reactors since several years. Correlatively, radiation field build-up is minimized and excessive external corrosion has never been observed. Nevertheless for higher coolant temperature plants, where occurrence of nucleate boiling could increase crud deposition, and for load follow and high burn-up operation, an extensive programme is performed jointly by Commissariat a l'Energie Atomique (CEA), Electricite de France, FRAMATOME and FRAGEMA to reduce even more the radiation field. This programme, described in the paper, includes: loop tests; on site chemical and radiochemical surveys; radiation field measurements; on site fuel examination crud-scrapping, crud analysis and oxide thickness measurements; hot cells examination. Some key results are presented and discussed in this paper. (author)

  2. The Build-Up Course of Visuo-Motor and Audio-Motor Temporal Recalibration

    Directory of Open Access Journals (Sweden)

    Yoshimori Sugano

    2011-10-01

    Full Text Available The sensorimotor timing is recalibrated after a brief exposure to a delayed feedback of voluntary actions (temporal recalibration effect: TRE (Heron et al., 2009; Stetson et al., 2006; Sugano et al., 2010. We introduce a new paradigm, namely ‘synchronous tapping’ (ST which allows us to investigate how the TRE builds up during adaptation. In each experimental trial, participants were repeatedly exposed to a constant lag (∼150 ms between their voluntary action (pressing a mouse and a feedback stimulus (a visual flash / an auditory click 10 times. Immediately after that, they performed a ST task with the same stimulus as a pace signal (7 flashes / clicks. A subjective ‘no-delay condition’ (∼50 ms served as control. The TRE manifested itself as a change in the tap-stimulus asynchrony that compensated the exposed lag (eg, after lag adaptation, the tap preceded the stimulus more than in control and built up quickly (∼3–6 trials, ∼23–45 sec in both the visuo- and audio-motor domain. The audio-motor TRE was bigger and built-up faster than the visuo-motor one. To conclude, the TRE is comparable between visuo- and audio-motor domain, though they are slightly different in size and build-up rate.

  3. Correction of build-up factor one x-ray hvl measurement

    International Nuclear Information System (INIS)

    Yuliati, Helfi; Akhadi, Mukhlis

    2000-01-01

    Research to obtain the value build-up factor (b) on half value layers (HVL) measurement of diagnostic X-Rays using pocket dosimeter behind aluminium (AI) filter with its thickness vary from 1 to 4 mm. From the measurement it was obtained HVL value of 1.997, 2.596 and 2.718 mmAI for X-Rays of kVp : 80 Kv with 1, 2, 3 and 4 mm filter thickness respectively. HVL value significantly increase with increasing AI filter thickness. Increasing of HVL means increasing filter thickness. From the calculation it was obtained increasing b value relative to 1 mm AI filter of 18.26 and 46% for filter thickness of 2, 3 and 4 mm respectively. Experiment result shows the need of involving b value in HVL calculation of X-Rays if the filter is relatively thick. Calculation of HVL of X-Rays can be carried out with thin layers filter. Key words : x-rays, half value layer, build up factor

  4. The Build-Up to Eruptive Solar Events Viewed as the Development of Chiral Systems

    Science.gov (United States)

    Martin, S. F.; Panasenco, O.; Berger, M. A.; Engvold, O.; Lin, Y.; Pevtsov, A. A.; Srivastava, N.

    2012-12-01

    When we examine the chirality or observed handedness of the chromospheric and coronal structures involved in the long-term build-up to eruptive events, we find that they evolve in very specific ways to form two and only two sets of large-scale chiral systems. Each system contains spatially separated components with both signs of chirality, the upper portion having negative (positive) chirality and the lower part possessing positive (negative) chirality. The components within a system are a filament channel (represented partially by sets of chromospheric fibrils), a filament (if present), a filament cavity, sometimes a sigmoid, and always an overlying arcade of coronal loops. When we view these components as parts of large-scale chiral systems, we more clearly see that it is not the individual components of chiral systems that erupt but rather it is the approximate upper parts of an entire evolving chiral system that erupts. We illustrate the typical pattern of build-up to eruptive solar events first without and then including the chirality in each stage of the build-up. We argue that a complete chiral system has one sign of handedness above the filament spine and the opposite handedness in the barbs and filament channel below the filament spine. If the spine has handedness, the observations favor its having the handedness of the filament cavity and coronal loops above. As the separate components of a chiral system form, we show that the system appears to maintain a balance of right-handed and left-handed features, thus preserving an initial near-zero net helicity. We further argue that the chiral systems allow us to identify key sites of energy transformation and stored energy later dissipated in the form of concurrent CMEs, erupting filaments and solar flares. Each individual chiral system may produce many successive eruptive events above a single filament channel. Because major eruptive events apparently do not occur independent of, or outside of, these unique

  5. Build-up Factor Calculation for Ordinary Concrete, Baryte Concrete and Blast-furnace Slugges Concrete as γ Radiation Shielding

    International Nuclear Information System (INIS)

    Isman MT; Elisabeth Supriatni; Tochrul Binowo

    2002-01-01

    Calculation of build up factor ordinary concrete, baryte concrete and blast-furnace sludge concrete have been carried out. The calculations have been carried out by dose rate measurement of Cs 137 source before and after passing through shielding. The investigated variables were concrete type, thickness of concrete and relative possession of concrete. Concrete type variables are ordinary concrete, baryte concrete and blast sludge furnace concrete. The thickness variables were 6, 12, 18, 24, 30 and 36 cm. The relative position variables were dose to the source and close to detector. The result showed that concrete type and position did not have significant effect to build-up factor value, while the concrete thickness (r) and the attenuation coefficient (μ) were influenced to the build-up factor. The higher μr value the higher build-up factor value. (author)

  6. Document turn-over analysis to determine need of NPP construction in build-up structures of reinforced concrete

    International Nuclear Information System (INIS)

    Vojpe, D.K.; Lyubavin, V.K.

    1986-01-01

    Document turn-over to determine used of NPP construction in build-up structures of reinforced concrete is carried out. Ways of improving determination of needs of NPP construction board in the mentioned structures are pointed out

  7. A modified method of calculating the lateral build-up ratio for small electron fields

    International Nuclear Information System (INIS)

    Tyner, E; McCavana, P; McClean, B

    2006-01-01

    This note outlines an improved method of calculating dose per monitor unit values for small electron fields using Khan's lateral build-up ratio (LBR). This modified method obtains the LBR directly from the ratio of measured, surface normalized, electron beam percentage depth dose curves. The LBR calculated using this modified method more accurately accounts for the change in lateral scatter with decreasing field size. The LBR is used along with Khan's dose per monitor unit formula to calculate dose per monitor unit values for a set of small fields. These calculated dose per monitor unit values are compared to measured values to within 3.5% for all circular fields and electron energies examined. The modified method was further tested using a small triangular field. A maximum difference of 4.8% was found. (note)

  8. Internal background build-up measurements in CaF2:Mn thermoluminescent dosimeters

    International Nuclear Information System (INIS)

    Balasybrahmanyam, V.; Measures, M.P.

    1977-01-01

    Some problems associated with the internal background build-up (IBB) of CaF 2 :Mn thermoluminescent dosimeters are reported. As a result of an investigation of batches of the EG and G model 15 dosimeter it is considered that measurements using this type of dosimeter are accurate and reproducible once the IBB has been determined. However, the use of the Manufacturer's claimed average of 0.064 mR/day can lead to erroneous results when determining environmental background dose rates. The authors therefore urge a rigid quality control program by the manufacturer and suggest that purchasers should be supplied with IBB information of each batch of dosimeters. Meanwhile each user should be aware of the IBB problem and be extremely cautious when using these dosimeters for environmental monitoring purposes. (U.K.)

  9. Resonant laser power build-up in ALPS. A 'light-shining-through-walls' experiment

    International Nuclear Information System (INIS)

    Ehret, Klaus; Ghazaryan, Samvel; Frede, Maik

    2009-05-01

    The ALPS collaboration runs a light-shining-through-walls (LSW) experiment to search for photon oscillations into weakly interacting sub-eV particles (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run. (orig.)

  10. Resonant laser power build-up in ALPS-A 'light shining through a wall' experiment

    International Nuclear Information System (INIS)

    Ehret, Klaus; Frede, Maik; Ghazaryan, Samvel; Hildebrandt, Matthias; Knabbe, Ernst-Axel; Kracht, Dietmar; Lindner, Axel; List, Jenny; Meier, Tobias; Meyer, Niels; Notz, Dieter; Redondo, Javier; Ringwald, Andreas; Wiedemann, Guenter; Willke, Benno

    2009-01-01

    The ALPS Collaboration runs a 'light shining through a wall' (LSW) experiment to search for photon oscillations into 'weakly interacting sub-eV particles' (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical resonant cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run.

  11. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  12. Comparison between the 30- to 80-keV electron channels at ATS 6 and 1976-059A during conjunction and application to spacecraft charging prediction

    International Nuclear Information System (INIS)

    Garrett, H.B.; Schwank, D.C.; Higbie, P.R.; Baker, D.N.

    1980-01-01

    The ATS 6 satellite, during an orbital maneuver in September 1976, passed within a few hundred kilometers of the geosynchronous satellite 1976-059A. Analysis of the 30- to 80-keV electron data from the University of California at San Diego (UCSD) electrostatic analyzers on ATS 6 and the 30- to 300-keV electron data from the Los Alamos Scientific Laboratory instrument on 1976-059A during this period reveals good agreement between the two instruments even when the separation is +- 7 0 . The low-energy UCSD ion data from ATS 6 allow a simultaneous determination of the potential difference between ATS 6 and th ambient medium. Use of the 1976-059A electron data to approximate the ambient plasma electron density and temperature during these charging periods indicates sufficient information exists in order to estimate the maximum potentials to which ATS 6 charges in sunlight an eclipse. As data from 1976-059A and similar satellites are potentially available in real time, the information therefore exists to create a satellite charging index for the geosynchronous regime that would be valid within at least +- 7 0 longitude of the position of each measurement

  13. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows.

    Science.gov (United States)

    Rolland, Joran

    2018-02-01

    This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T)=A_{p}r-B_{p}, with A_{p} and B_{p} positive. Moreover, A_{p} and B_{p} are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T≍exp[L(Ar-B)] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and

  14. Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows

    Science.gov (United States)

    Rolland, Joran

    2018-02-01

    This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability

  15. Uji ketahanan galur padi terhadap wereng coklat biotipe 3 melalui population build-up

    Directory of Open Access Journals (Sweden)

    Baehaki Suherlan Effendi

    2015-09-01

    Full Text Available Screening of rice lines resistance to brown planthopper (BPH through mass screening, filtering line resistance and the population build-up are essential for the release of resistant rice varieties. In addition, the stages of the endurance are important in determining the stability of resistance, as well as the type of resistant. The research was carried out in the screen house at Indonesian Center for Rice Research in 2007. The BPH used in the research was the off spring of BPH biotype 3 that had been rearing on IR42 (bph2 variety since 1994. The result of this research showed that 22.2% of 18 lines/varieties were moderately resistant to BPH biotype 3ft namely BP4130-1f-13-3-2*B, BP4188-7f-1-2-2*B, BP2870-4e- Kn-22-2-1-5*B, and Pulut Lewok. On the population build-up test, the above lines/varieties were moderately resistant to BPH biotype 3pb. The low FPLI values were found in BP4130-1f-13-3-2*B and Pulut Lewok. The highest tolerance index was found on BP4130-1f- 13-3-2*B and Pulut Lewok followed by BP2870-4e-Kn-22-2-1-5*B and BP4188-7f-1-2-2*B. Pulut Lewok has the highest antibiosis index and is not significantly different to BP4130-1f-13-3-2*B, while BP4188-7f-1-2-2*B was lowest. Although Pulut Lewok has antibiosis defense mechanism, it is not tolerant to BPH biotype 3. The BP4130-1f-13-3-2*B line have both antibiosis and tolerant to BPH biotype 3. BP4188-7f-1-2-2*B line has tolerance character, but does not have character of antibiosis to BPH biotype 3.

  16. An Empirical Model for Build-Up of Sodium and Calcium Ions in Small Scale Reverse Osmosis

    Directory of Open Access Journals (Sweden)

    Subriyer Nasir

    2011-05-01

    Full Text Available A simple models for predicting build-up of solute on membrane surface were formulated in this paper. The experiments were conducted with secondary effluent, groundwater and simulated feed water in small-scale of RO with capacity of 2000 L/d. Feed water used in the experiments contained varying concentrations of sodium, calcium, combined sodium and calcium. In order to study the effect of sodium and calcium ions on membrane performance, experiments with ground water and secondary effluent wastewater were also performed. Build-up of salts on the membrane surface was calculated by measuring concentrations of sodium and calcium ions in feed water permeate and reject streams using Atomic Absorption Spectrophotometer (AAS. Multiple linear regression of natural logarithmic transformation was used to develop the model based on four main parameters that affect the build-up of solute in a small scale of RO namely applied pressure, permeate flux, membrane resistance, and feed concentration. Experimental data obtained in a small scale RO unit were used to develop the empirical model. The predicted values of theoretical build-up of sodium and calcium on membrane surface were found in agreement with experimental data. The deviation in the prediction of build-up of sodium and calcium were found to be 1.4 to 10.47 % and 1.12 to 4.46%, respectively.

  17. A Conference on Spacecraft Charging Technology - 1978, held at U.S. Air Force Academy, Colorado Springs, Colorado, October 31 - November 2, 1978.

    Science.gov (United States)

    1978-01-01

    6 *0 * -8 - 0 0 0 0 -10 _ tcl ID-Kilovolt beam. td ) 12-Kilovolt beam. Figure 7. -Surface voltage profiles for solar-array (silicon dioxide, sejments...8217bis outward cis- 1011 ot F aC I eLt10! ;1 ( OSSihIVeCn iT’,drndscarges has also beeni oh-.t cld dire’ctl ivIretecrences 5,) . ’ ihQ ’Itiunt of charge...changc, in V must be of the proper polarity and thus costraints arc placed on f. Perturbations are represent, td as Ia. ral displacements of the reference

  18. Variations in 6MV x-ray radiotherapy build-up dose with treatment distance

    International Nuclear Information System (INIS)

    Butson, M.J.; Illawarra Cancer Care Centre, Wollongong, NSW; Cheung, T.; Yu, P.K.N.

    2003-01-01

    Dose in the build up region for high energy x-rays produced by a medical linear accelerator is affected by the x-ray source to patient surface distance (SSD). The use of isocentric treatments whereby the tumour is positions 100cm from the source means that depending of the depth of the tumour and the size of the patient, the SSD can vary from distances of 80cm to 100cm. To achieve larger field sizes, the SSD can also be extended out to 120cm at times. Results have shown that open fields are not significantly affected by SSD changes with deviations in percentage dose being less than 4% of maximum dose for SSD's from 80cm to 120cm SSD. With the introduction of beam modifying devices such as Perspex blocking trays, the effects are significant with a deviation of up to 22% measured at 6MV energy with a 6mm Perspex tray for SSD's from 80cm to 120cm. These variations are largest at the skin surface and reduce with depth. The use of a multi leaf collimator for blocking removes extra skin dose caused by the Perspex block trays with decreasing SSD. Copyright (2003) Australasian College of Physical Scientists and Engineers in Medicine

  19. SSD effects on high energy x-ray surface and build up dose

    International Nuclear Information System (INIS)

    Cheung, T.; Yu, P.K.N.; Butson, M.J.; Cancer Services, Wollongong, NSW

    2004-01-01

    Full text: Dose in the build up region for high energy x-rays produced by a medical linear accelerator is affected by the x-ray source to patient surface distance (SSD). The use of isocentric treatments whereby the tumour is positions 100cm from the source means that depending of the depth of the tumour and the size of the patient, the SSD can vary from distances of 80cm to 100cm. To achieve larger field sizes, the SSD can also be extended out to 120cm at times. Results have shown that open fields are not significantly affected by SSD changes with deviations in percentage dose being less than 4% of maximum dose for SSD's from 80cm to 120cm SSD. With the introduction of beam modifying devices such as Perspex blocking trays, the effects are significant with a deviation of up to 22% measured at 6MV energy with a 6mm Perspex tray for SSD's from 80cm to 120cm. These variations are largest at the skin surface and reduce with depth. The use of a multi leaf collimator for blocking removes extra skin dose caused by the Perspex block trays with decreasing SSD. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  20. Studies of E-Cloud Build up for the FNAL Main Injector and for the LHC

    International Nuclear Information System (INIS)

    Furman, M.A.

    2006-01-01

    We present a summary of recent simulation studies of the electron-cloud (EC) build-up for the FNAL MI and for the LHC. In the first case we pay particular attention to the dependence on bunch intensity N b at injection energy assuming the nominal bunch spacing t b = 19 ns, and we focus on the dipole magnets and field-free regions. The saturated value of the average EC density shows a clear threshold in N b beyond which the beam will be approximately neutralized on average. For the case of the LHC we limit our discussion to arc dipoles at collision energy, and bunch spacings t b = 25 ns or t b = 75 ns. The main variables exercised in this study are N b and the peak value of the secondary emission yield (SEY) (delta) max . For t b = 25 ns we conclude that the EC power deposition is comfortably below the available cooling capacity of the cryogenic system if (delta) max is below ∼ 1.2 at nominal N b . For t b = 75 ns, the EC power deposition is insignificant. As a byproduct of this exercise, we reach a detailed understanding of the significant role played by the backscattered secondary electrons. This article summarizes the results, an slightly extends the discussions, presented in Refs. 1 and 2

  1. Nonstationary pressure build up in full-pressure containments after a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Mansfeld, G.

    1977-01-01

    The time histories of pressure, temperature and pressure difference during the pressure build up phase of a loss-of-coolant accident (LOCA) in the primary system in full-pressure containments of water cooled nuclear power reactors are treated. These are important for the design of such containments. The experiments within the German research program RS 50 ''Druckverteilung im Containment'' offered, for the first time, the opportunity to observe experimentally fluid-dynamic processes in a multiple divided full-pressure containment, and to test at the same time, computer codes which serve to describe the physical processes during the LOCA. The comparison of the results calculated by the computer codes ZOCO VI and DDIFF with the experimental results showed apparent deviations by special arrangements of the compartments and the vent flow paths of a model containment for the calculation of time dependent pressure-, temperature- and pressure difference-histories. The deviations lead to the development of the analytical model and computer code COFLOW. This new model was primarily designed to deal with the fluid-dynamic processes in the beginning phase of the blowdown as maximal pressure differences appear. Furthermore, it can be used to determine the maximum containment pressure, as well as for long term calculations. The analytical model and computer code COFLOW shows a better correlation between theory and experiment than previous codes

  2. Simulations of the Electron Cloud Build Up and Instabilities for Various ILC Damping Ring Configurations

    International Nuclear Information System (INIS)

    Pivi, Mauro; Raubenheimer, Tor O.; Wang, Lanfa; Ohmi, Kazuhito; Wanzenberg, Rainer; Wolski, Andrzej

    2007-01-01

    In the beam pipe of the positron damping ring of the International Linear Collider (ILC), an electron cloud may be first produced by photoelectrons and ionization of residual gases and then increased by the secondary emission process. This paper reports the assessment of electron cloud effects in a number of configuration options for the ILC baseline configuration. Careful estimates were made of the secondary electron yield (sometimes in the literature also referred as secondary emission yield SEY or (delta), with a peak value (delta) max ) threshold for electron cloud build-up, and the related single- and coupled-bunch instabilities, as a function of beam current and surface properties for a variety of optics designs. When the configuration for the ILC damping rings was chosen at the end of 2005, the results from these studies were important considerations. On the basis of the joint theoretical and experimental work, the baseline configuration currently specifies a pair of 6 km damping rings for the positron beam, to mitigate the effects of the electron cloud that could present difficulties in a single 6 km ring. However, since mitigation techniques are now estimated to be sufficiently mature, a reduced single 6-km circumference is presently under consideration so as to reduce costs

  3. An Effective Strategy to Build Up a Balanced Test Suite for Spectrum-Based Fault Localization

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-01-01

    Full Text Available During past decades, many automated software faults diagnosis techniques including Spectrum-Based Fault Localization (SBFL have been proposed to improve the efficiency of software debugging activity. In the field of SBFL, suspiciousness calculation is closely related to the number of failed and passed test cases. Studies have shown that the ratio of the number of failed and passed test case has more significant impact on the accuracy of SBFL than the total number of test cases, and a balanced test suite is more beneficial to improving the accuracy of SBFL. Based on theoretical analysis, we proposed an PNF (Passed test cases, Not execute Faulty statement strategy to reduce test suite and build up a more balanced one for SBFL, which can be used in regression testing. We evaluated the strategy making experiments using the Siemens program and Space program. Experiments indicated that our PNF strategy can be used to construct a new test suite effectively. Compared with the original test suite, the new one has smaller size (average 90% test case was reduced in experiments and more balanced ratio of failed test cases to passed test cases, while it has the same statement coverage and fault localization accuracy.

  4. Process and equipment for pressure build-up in nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Heer, W.F.; Carli, E.V. de.

    1976-01-01

    The equipment makes possible the build-up of inert gas pressure in a filled and closed fuel can, i.e. in a complete fuel rod. Handling is simple, it is suitable for mass production and only causes low processing costs. The quality, e.g. the degree of purity of the contents of the rod, remains unchangedin processing. The equipment consists of a vacuum-tight space, into which the equally vacuum tight fuel rod is introduced, and can be fixed so that its position can be reproduced unmistakeably. The vacuum space contains a connection for the inert gases and a laser arrangement. After inserting a fuel rod into the facility, this is evacuated and the fuel can has a hole bored in it by a laser beam. After fast equalisation of pressure, an inert gas at the required pressure is introduced into the chamber and the fuel rod. After the filling process is completed, the fuel can is closed again with the same laser beam. The quality of the seal obtained, i.e the leak-tightness of the fuel can, can be checked after reduction of the inert gas pressure and before taking out the fuel rod, by repeated evacuation of the chamber. Laser light energies between 13,000 and 110,000 Joule/sq cm are sufficient. Optimum results were obtained for a Zircaloy fuel can with about 52,000 Joule/sq cm. (TK) [de

  5. Comparative study of mechanical properties of direct core build-up materials

    Directory of Open Access Journals (Sweden)

    Girish Kumar

    2015-01-01

    Full Text Available Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer′s recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success.

  6. Building up the standard gauge model of high energy physics. 11

    International Nuclear Information System (INIS)

    Rajasekaran, G.

    1989-01-01

    This chapter carefully builds up, step by step, the standard gauge model of particle physics based on the group SU(3) c x SU(2) x U(1). Spontaneous symmetry breaking via the Nambu-Goldstone mode, and then via the Higgs mode for gauge theories, are presented via examples, first for the Abelian U(1) and then for the non-Abelian SU(2) case. The physically interesting SU(2) x U(1) model is then taken up. The emergence of massive vector bosons is demonstrated. After this preparation, the 'standard model' of the late 60's prior to the gauge theory revolution, based on the V-A current-current weak interactions, minimal electromagnetism, and an unspecified strong interaction, all in quark-lepton language, is set up. It is then compared to the standard gauge model of SU(3) c x SU(2) x U(1). The compelling reasons for QCD as the gauge theory of strong interactions are spelt out. An introduction to renormalization group methods as the main calculational tool for QCD, asymptotic freedom, infrared problems, and physically motivated reasons for going beyond the standard model are presented. (author). 6 refs.; 19 figs.; 2 tabs

  7. VVER operational experience - effect of preconditioning and primary water chemistry on radioactivity build-up

    International Nuclear Information System (INIS)

    Zmitko, M.; Kysela, J.; Dudjakova, K.; Martykan, M.; Janesik, J.; Hanus, V.; Marcinsky, P.

    2004-01-01

    The primary coolant technology approaches currently used in VVER units are reviewed and compared with those used in PWR units. Standard and modified water chemistries differing in boron-potassium control are discussed. Preparation of the VVER Primary Water Chemistry Guidelines in the Czech Republic is noted. Operational experience of some VVER units, operated in the Czech Republic and Slovakia, in the field of the primary water chemistry, and radioactivity transport and build-up are presented. In Mochovce and Temelin units, a surface preconditioning (passivation) procedure has been applied during hot functional tests. The main principles of the controlled primary water chemistry applied during the hot functional tests are reviewed and importance of the water chemistry, technological and other relevant parameters is stressed regarding to the quality of the passive layer formed on the primary system surfaces. The first operational experience obtained in the course of beginning of these units operation is presented mainly with respect to the corrosion products coolant and surface activities. Effect of the initial passivation performed during hot functional tests and the primary water chemistry on corrosion products radioactivity level and radiation situation is discussed. (author)

  8. Understanding innovation system build up. The rise and fall of the Dutch PV Innovation System

    International Nuclear Information System (INIS)

    Negro, S.O.; Vasseur, V.; Hekkert, M.P.; Van Sark, W.G.J.H.M.

    2009-01-01

    Renewable energy technologies have a hard time to break through in the existing energy regime. In this paper we focus on analysing the mechanisms behind this problematic technology diffusion. We take the theoretical perspective of innovation system dynamics and apply this to photovoltaic solar energy technology (PV) in the Netherlands. The reason for this is that there is a long history of policy efforts in The Netherlands to stimulate PV but results in terms of diffusion of PV panels is disappointingly low, which clearly constitutes a case of slow diffusion. The history of the development of the PV innovation system is analysed in terms of seven key processes that are essential for the build up of innovation systems. We show that the processes related to knowledge development are very stable but that large fluctuations are present in the processes related to 'guidance of the search' and 'market formation'. Surprisingly, entrepreneurial activities are not too much affected by fluctuating market formation activities. We relate this to market formation in neighbouring countries and discuss the theoretical implications for the technological innovation system framework.

  9. Estimation of build up of dose rate on U3O8 product drum

    International Nuclear Information System (INIS)

    Pandey, J.P.N.; Shinde, A.M.; Deshpande, M.D.

    2008-01-01

    In fuel reprocessing plant, plutonium oxide and uranium oxide (U 3 O 8 ) are products. Approximately 180 kg U 3 O 8 is filled in SS drum and sealed firmly before storage. In PHWR natural uranium (UO 2 ) is used as fuel. In natural uranium, thorium-232 is present as an impurity at few tens of ppm level. During irradiation in power reactors, due to nuclear reaction formation of 232 U from 232 Th takes place. Natural decay of 232 U leads to the formation of 208 Tl. As time passes, there is buildup of 208 Tl and hence increase in dose rate on the drum containing U 3 O 8 . It is essential to estimate the buildup of dose rate considering the external radiological hazards involved during U 3 O 8 drum handling, transportation and fuel fabrication. This paper describes the calculation of dose rate on drum in future years using MCNP code. For dose rate calculation decay of fission product activity which remains as contamination in product and build up of '2 08 Tl from 232 U is considered. Some measured values of dose rate on U 3 O 8 drum are given for the comparisons with estimated dose rate based on MCNP code. (author)

  10. Submarines, spacecraft and exhaled breath.

    Science.gov (United States)

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  11. Aesthetic Closure of Maxillary and Mandibular Anterior Spaces Using Direct Composite Resin Build-Ups: A Case Report

    Directory of Open Access Journals (Sweden)

    Schick Simona-Georgiana

    2016-07-01

    Full Text Available The presence of multiple spaces in the anterior aesthetic zone can produce discomfort for patients and its treatment can be difficult for dental professionals. A variety of treatment options are available and these include orthodontic movement, prosthetic indirect restorations or direct composite resin build-ups. Among these, the closure of interdental spaces using composite build-ups combined with orthodontic treatment is considered to be most conservative. This type of treatment has several advantages like the maximum preservation of tooth substance (no tooth preparation, no need for anesthesia, no multiple time-consuming visits, no provisional restorations and also comparably low costs. Clinical Consideration: This case report describes the clinical restorative procedure of direct composite resin build-ups for the closure of multiple anterior spaces.

  12. The effect of plasma minor-radius expansion in the current build-up phase of a large tokamak

    International Nuclear Information System (INIS)

    Kobayashi, Tomofumi; Tazima, Teruhiko; Tani, Keiji; Tamura, Sanae

    1977-03-01

    A plasma simulation code has been developed to study the plasma current build-up process in JT-60. Plasma simulation is made with a model which represents well overall plasma behavior of the present-day tokamaks. The external electric circuit is taken into consideration in simulation calculation. An emphasis is placed on the simulation of minor-radius expansion of the plasma and behavior of neutral particles in the plasma during current build-up. A calculation with typical parameters of JT-60 shows a week skin distribution in the current density and the electron temperature, if the minor radius of the plasma expands with build-up of the plasma current. (auth.)

  13. Hydropower build-up and the timber floating in Northern Finland after the Second World War

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, N. (Univ. of Oulu, Thule Inst. (Finland)). email: niko.hanninen@oulu.fi

    2009-07-01

    During the Second World War, Finland lost a substantial amount of built and yet un-built hydropower capacity to Soviet Union due to loss of Karelia. The most significant energy user at the time was the forest industry, especially paper and pulp mills, which had to replace this loss and to secure uninterrupted supply of energy in the future; otherwise the industry could not realise their expansion plans. One solution was to harness the still untouched northern waters for the service of the industry and society in large. However, these rivers served already the forest industry in another way, as transport routes in floating of timber. Vast waterways had made the emergence of forest industry in Finland possible. Transportation of timber from distant forests, located more than hundreds of kilometres away from the mills, was possible using rivers and lakes. Especially in Northern Finland the industry had to rely on floating as the railway network was less extensive than in some other parts of the country. The objective of this paper is to study closer, how the emergence of vast hydropower dams in these northern rivers from late 1940's to 1970's changed the transportation of timber. Road transportation in particular could not compete with floating because of their higher costs and the lack of suitable trucks and roads, but this changed after the war. Despite the fact that expanding industries consumed more and more timber, the role of floating decreased. But how did these ratios change during this period? Did the build-up of hydropower plants contribute to this shift of timber transportations from waterways to the land? Salmon and logs did not fit on the same river, the fishermen had to yield in the end. Did the hydropower plants do the same to the floaters

  14. To integrate family planning into the building up of mental civilization by offering comprehensive services.

    Science.gov (United States)

    1988-03-01

    The government of Nangong City, a newly instituted city with a relatively large proportion of agricultural workers has integrated family planning into the building up of mental civilization. As a result, in 1986, the family planning practice rate was 98.4%. One way the government accomplished this was by developing production to eliminate poverty, to show that population development has a significant impact on socioeconomic development. To help change people's attitudes about family planning, the government 1) used publicity, such as speechmaking, mass media, and courses in population theory; 2) awarded those who made contributions; 3) carried out publicity and education in accordance with characteristics of different groups of people; and 4) encouraged bridegrooms to live with their wives' families if the wives' parents had had no son. Another technique the government used as the popularization of scientific knowledge about population theory, physiology and hygiene, birth control, and eugenics and health in births. A 4th method was to popularize knowledge of laws and regulations, such as of early marriage and consanguineous marriage. 5th, the government developed social security undertakings: 1) giving priority to single-child families and 2) taking care of the elderly. Finally, the government improved maternal and child care by 1) providing premarital health care; 2) creating a project for healthier births and better upbringing; 3) family planning workers showing warm concern for reproductive women; and 4) controlling women's diseases and providing health care knowledge, as well as family planning services. These 6 activities have resulted in 1) the decreasing momentum of per capita arable land being controlled, 2) 1-child couples having more time to learn, 3) the development of educational undertakings, 4) a change in people's traditional practices, and 5) improvement in the understanding of patriotism.

  15. How does the interaction between spelling and motor processes build up during writing acquisition?

    Science.gov (United States)

    Kandel, Sonia; Perret, Cyril

    2015-03-01

    How do we recall a word's spelling? How do we produce the movements to form the letters of a word? Writing involves several processing levels. Surprisingly, researchers have focused either on spelling or motor production. However, these processes interact and cannot be studied separately. Spelling processes cascade into movement production. For example, in French, producing letters PAR in the orthographically irregular word PARFUM (perfume) delays motor production with respect to the same letters in the regular word PARDON (pardon). Orthographic regularity refers to the possibility of spelling a word correctly by applying the most frequent sound-letter conversion rules. The present study examined how the interaction between spelling and motor processing builds up during writing acquisition. French 8-10 year old children participated in the experiment. This is the age handwriting skills start to become automatic. The children wrote regular and irregular words that could be frequent or infrequent. They wrote on a digitizer so we could collect data on latency, movement duration and fluency. The results revealed that the interaction between spelling and motor processing was present already at age 8. It became more adult-like at ages 9 and 10. Before starting to write, processing irregular words took longer than regular words. This processing load spread into movement production. It increased writing duration and rendered the movements more dysfluent. Word frequency affected latencies and cascaded into production. It modulated writing duration but not movement fluency. Writing infrequent words took longer than frequent words. The data suggests that orthographic regularity has a stronger impact on writing than word frequency. They do not cascade in the same extent. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Venom Immunotherapy in High-Risk Patients: The Advantage of the Rush Build-Up Protocol.

    Science.gov (United States)

    Rosman, Yossi; Confino-Cohen, Ronit; Goldberg, Arnon

    2017-01-01

    Venom immunotherapy (VIT) is considered to be the gold standard treatment for patients with hymenoptera venom allergy. This treatment induces systemic reactions (SR) in a significant number of patients. To evaluate the outcome of VIT in patients with known risk factors for VIT-induced SR and to compare rush VIT (RVIT) and conventional VIT (CVIT). All of the patients who received VIT and had at least one of the following risk factors were included: current cardiovascular disease, uncontrolled asthma, high basal serum tryptase, current treatment with β-blockers or angiotensin-converting enzyme inhibitors, and age >70 or bee venom. Thirty-five (54.7%) patients underwent RVIT and 29 CVIT. The incidence of patients who developed SR during the build-up phase was similar for RVIT and CVIT (25.7 and 27.5%, respectively; p = 1). However, the incidence of SR per injection was significantly higher in CVIT than in RVIT (5.6 and 2.75%, respectively; p = 0.01). Most reactions (79.1%) were mild, limited to the skin. Most of the patients (92.1%) reached the full maintenance dose of 100 μg. This dose was reached by a significantly larger number of patients receiving RVIT compared to CVIT (100 and 82.7%, respectively; p = 0.01). None of the patients experienced exacerbation of their concurrent chronic disease during VIT. VIT can be performed safely and efficiently in patients with risk factors for immunotherapy. In these patients RVIT appears to be safer and more efficient than CVIT. © 2017 S. Karger AG, Basel.

  17. Clinical comparison of various esthetic restorative options for coronal build-up of primary anterior teeth

    Directory of Open Access Journals (Sweden)

    Himanshu Duhan

    2015-01-01

    Full Text Available Background: This study was designed to compare the clinical performance of composite, strip crowns, biological restoration, and composite with stainless steel band when used for the coronal build-up of anterior teeth. Materials and Methods: A total of 20 patients aged 3-6 years presenting with mutilated primary anterior teeth due to caries or trauma were selected for the study using randomized simple sampling. A total of 52 primary anterior teeth were randomly divided into four equal groups having 13 teeth in each group. Teeth in Group I were restored with composite, in Group II with strip crowns, in Group III with biologic restoration and with stainless steel band reinforced composite in group IV. The restorations were evaluated for color match, retention, surface texture, and anatomic form according to Ryge′s Direct (US Public Health Service evaluation criteria at baseline (immediate postoperative, after 48 h, 3, 6, and 9 months. The data obtained were statistically analyzed using Chi-square test, and level of significance, that is, P value was determined. Results: At baseline, none of the groups showed any color changes. Other than Group III all other groups showed highly significant changes (P 0.05. Deterioration in surface texture was exhibited maximum by restorations in Group IV followed by Group I at 3 months. Whereas, no surface changes were seen in Group II and III. Only Group I and IV showed discontinuity in anatomic form after 3 months. After 6 months, except in Group II, discontinuity in anatomic form was observed in all the groups. Discontinuity in anatomic form was seen in all the 4 groups after 9 months although the difference was not significant (P > 0.05. Conclusion: Biological restoration was found to be most satisfying esthetically owing to color compatibility with the patient′s tooth. Thus, it has a great potential to be used as esthetic restorative option in primary anteriors.

  18. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  19. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  20. Public health policy and the building up of a Brazilian medical identity.

    Science.gov (United States)

    de Castro-Santos, L A

    2005-12-01

    Since George Herbert Mead studied "the social self" and the interactionists went further in distinguishing "images of self", a lecture on the building up of a Brazilian medical identity should try to focus on the patterns of self-images, presented images, and aspired-to images among the Brazilian medical elites during the First Republic (1889-1930). In no other period of Brazilian history were those "images" of professional identity so close--in contrast, later periods of Brazilian history witnessed an almost permanent "collision" or the clashing of such images among public health specialists. Oswaldo Cruz, Carlos Chagas, Artur Neiva and Belisário Pena are perhaps the best examples of successful careers as "sanitarians" (to recall John Duffy's historical work on luminaries before and after the "New Public Health" in the United States), and as important political actors during Brazil's First Republic. In light of the prominent political, policy-oriented, and scientific roles public health professionals played in Brazil, it is interesting to suggest that in large part such prominence resulted from the symbolic impact of the ideologies of sanitary reform on the political agenda of that period of Brazilian history. Where many studies look for personal rivalries and disputes around Chagas and Neiva as public figures, we may also see the importance of finding identity-building processes among public health specialists as an integrated group (e.g., trying to appear as "significant others" for the new generations of medical graduates in the country), regardless of existing rivalries. Cruz and Chagas, especially, were names with great impact in the Brazilian press (pro and con), a circumstance made possible largely by their easy and direct access to the Brazilian presidents Rodrigues Alves and Epitácio Pessoa, and, most clearly, by public health being one of Brazil's political priorities to find a place among the "civilized nations" of the world. A task that further

  1. Impacts of traffic and rainfall characteristics on heavy metals build-up and wash-off from urban roads.

    Science.gov (United States)

    Mahbub, Parvez; Ayoko, Godwin A; Goonetilleke, Ashantha; Egodawatta, Prasanna; Kokot, Serge

    2010-12-01

    An investigation into the effects of changes in urban traffic characteristics due to rapid urbanisation and the predicted changes in rainfall characteristics due to climate change on the build-up and wash-off of heavy metals was carried out in Gold Coast, Australia. The study sites encompassed three different urban land uses. Nine heavy metals commonly associated with traffic emissions were selected. The results were interpreted using multivariate data analysis and decision making tools, such as principal component analysis (PCA), fuzzy clustering (FC), PROMETHEE, and GAIA. Initial analyses established high, low, and moderate traffic scenarios as well as low, low to moderate, moderate, high, and extreme rainfall scenarios for build-up and wash-off investigations. GAIA analyses established that moderate to high traffic scenarios could affect the build-up, while moderate to high rainfall scenarios could affect the wash-off of heavy metals under changed conditions. However, in wash-off, metal concentrations in 1-75 μm fraction were found to be independent of the changes to rainfall characteristics. In build-up, high traffic activities in commercial and industrial areas influenced the accumulation of heavy metal concentrations in particulate size range from 75 - >300 μm, whereas metal concentrations in finer size range of 300 μm can be targeted for removal of Ni, Cu, Pb, Cd, Cr, and Zn from build-up, while organic matter from 300 μm can be targeted for removal of Cd, Cr, Pb, and Ni from wash-off. Cu and Zn need to be removed as free ions from most fractions in wash-off.

  2. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  3. Understanding the build-up of supermassive black holes and galaxies

    Science.gov (United States)

    Carrera, Francisco; Ueda, Yoshihiro; Georgakakis, Antonis

    2016-07-01

    . The excellent survey capabilities of Athena/WFI (effective area, angular resolution, field of view) will allow to measure the incidence of feedback in the shape of warm absorbers and Ultra Fast Outflows among the general population of AGN, as well as to complete the census of black hole growth by detecting and characterising significant samples of the most heavily obscured (including Compton thick) AGN, to redshifts z~3-4. The outstanding spectral throughput and resolution of Athena/X-IFU will permit measuring the energetics of those outflows to assess their influence on their host galaxies. The demographics of the heavily obscured and outflowing populations relative to their hosts are fundamental for understanding how major black hole growth events relate to the build-up of galaxies.

  4. Probing the Build-Up of Quiescent Galaxies at z>3

    Science.gov (United States)

    Finkelstein, Steven

    We propose to perform the most robust investigation to date into the evolution of massive quiescent and star-forming galaxies at z > 3, at a time when the universe was less than two billion years old. The build-up of quiescent galaxies in particular is poorly understood, primarily due to large Poisson and cosmic variance issues that have plagued previous studies that probed small volumes, leading to a disagreement on the quiescent fraction by a factor of >3 in the literature. Our proposed work is only now possible due to a new legacy survey led by our team: the Spitzer-HETDEX Exploratory Large Area Survey (SHELA), which is imaging a 23 deg^2 area of the sky at optical, and near, mid and far-infrared, and X-ray wavelengths. In particular, the wide area coverage of the Spitzer/IRAC data allows us to be sensitive to massive galaxies at very high redshifts, the Herschel data allows us to rule out lower-redshift counterparts, and the XMM-Newton data allows us to remove quasar contaminants from our sample. This survey covers a volume >14X that of the largest previous survey for quiescent galaxies at z=3.5, and ~6X larger than that of the largest previous survey for star-forming galaxies at z=4. All of these data exist in the region soon to be observed by the Hobby Eberly Telescope Dark Energy Experiment (HETDEX), which will provide high-precision measures of halo masses and local density at z~3. Using this exquisite multi-wavelength dataset, we will measure the abundance of massive quiescent galaxies at z ~ 3-5, and, combining with measures of the halo masses and environment, compare properties of quiescent galaxies to star-forming galaxies to investigate the physical cause behind the quenching. We will also investigate the onset of quenching in star-forming galaxies in two ways, first by studying the relation between star formation rate and stellar mass, to search for a break in the typically-linear relation at high masses, and second by constraining the feedback

  5. Inbreeding and building up small populations of stingless bees (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Paulo Nogueira-Neto

    2002-12-01

    Full Text Available A study of the viability of small populations of Hymenoptera is a matter of importance to gain a better zoological, ethological, genetical and ecological knowledge of these insects, and for conservation purposes, mainly because of the consequences to the survival of colonies of many species of bees, wasps, and ants. Based on the Whiting (1943 principle, Kerr & Vencovski (1982 presented a hypothesis that states that viable populations of stingless bees (Meliponini should have at least 40 colonies to survive. This number was later extended to 44 colonies by Kerr (1985. This would be necessary to avoid any substantial amount of homozygosis in the pair of chromosomic sexual loci, by keeping at least six different sexual gene alleles in a reproductive population. In most cases this would prevent the production of useless diploid males. However, several facts weigh against considering this as a general rule. From 1990 to 2001, 287 colony divisions were made, starting with 28 foundation colonies, in the inbreeding and population experiments with the Meliponini reported here. These experiments constitute the most extensive and longest scientific research ever made with Meliponini bees. In ten different experiments presented here, seven species (one with two subspecies of Meliponini bees were inbred in five localities inside their wide-reaching native habitats, and in two localities far away from these habitats. This was done for several years. On the whole, the number of colonies increased and the loss of colonies over the years was small. In two of these experiments, although these populations were far (1,000 km and 1,200 km from their native habitat, their foundation colonies were multiplied successfuly. It was possible to build up seven strong and three expanding medium populations, starting with one, two, three or even five colonies. However, in six other cases examined here, the Whiting (1943 principle and the hypothesis of Kerr & Vencovski (1982

  6. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  7. Humidity Build-Up in a Typical Electronic Enclosure Exposed to Cycling Conditions and Effect on Corrosion Reliability

    DEFF Research Database (Denmark)

    Conseil, Helene; Gudla, Visweswara Chakravarthy; Jellesen, Morten Stendahl

    2016-01-01

    The design of electronic device enclosures plays a major role in determining the humidity build-up inside the device as a response to the varying external humidity. Therefore, the corrosion reliability of electronic devices has direct connection to the enclosure design. This paper describes......, thermal mass, and port/opening size. The effect of the internal humidity build-up on corrosion reliability has been evaluated by measuring the leakage current (LC) on interdigitated test comb patterns, which are precontaminated with sodium chloride and placed inside the enclosure. The results showed...... that the exposure to cycling temperature causes significant change of internal water vapor concentration. The maximum value of humidity reached was a function of the opening size and the presence of thermal mass inside the enclosure. A pumping effect was observed due to cycling temperature, and the increase...

  8. Regularities of radiation defects build up on oxide materials surface; Zakonomernosti nakopleniya radiatsionnykh defektov na poverkhnosti oksidnykh materialov

    Energy Technology Data Exchange (ETDEWEB)

    Bitenbaev, M I; Polyakov, A I [Fiziko-Tekhnicheskij Inst., Almaty (Kazakhstan); Tuseev, T [Inst. Yadernoj Fiziki, Almaty (Kazakhstan)

    2005-07-01

    Analysis of experimental data by radiation defects study on different oxide elements (silicon, beryllium, aluminium, rare earth elements) irradiated by the photo-, gamma-, neutron-, alpha- radiation, protons and helium ions show, that gas adsorption process on the surface centers and radiation defects build up in metal oxide correlated between themselves. These processes were described by the equivalent kinetic equations for analysis of radiation defects build up in the different metal oxides. It was revealed in the result of the analysis: number of radiation defects are droningly increasing up to limit value with the treatment temperature growth. Constant of radicals death at ionizing radiation increases as well. Amount of surface defects in different oxides defining absorbing activity of these materials looks as: silicon oxide{yields}beryllium oxide{yields}aluminium oxide. So it was found, that most optimal material for absorbing system preparation is silicon oxide by it power intensity and berylium oxide by it adsorption efficiency.

  9. A study of energy and effective atomic number dependence of the exposure build-up factors in biological samples

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Singh, P.S.; Mudahar, G.S.

    2000-01-01

    A theoretical method is presented to determine the gamma-radiation build-up factors in various biological materials. The gamma energy range is 0.015-15.0 MeV, with penetration depths up to 40 mean free paths considered. The dependence of the exposure build-up factor on incident photon energy and the effective atomic number (Z eff ) has also been assessed. In a practical analysis of dose burden to gamma-irradiated biological materials, the sophistication of Monte Carlo computer techniques would be applied, with associated detailed modelling. However, a feature of the theoretical method presented is its ability to make the consequences of the physics of the scattering process in biological materials more transparent. In addition, it can be quickly employed to give a first-pass dose estimate prior to a more detailed computer study. (author)

  10. Calculation procedure of temperature carditions of building-up and high frequency current brazing of articles of complex shape

    International Nuclear Information System (INIS)

    Ivnitskij, B.Ya.

    1984-01-01

    A technique of calculating the temperature regime of building-up and high frequency current brazing of articles of complex shape is suggested. The technique consists in division of complex detail into several simple components. Heat balances equation is compiled for each of them taking into account the heat exchange with other elements. It is possible to determine optimum regimes for heating and cooling rather efficiently using a computer

  11. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials

    Directory of Open Access Journals (Sweden)

    César Augusto Galvão Arrais

    2010-06-01

    Full Text Available This study evaluated the Knoop Hardness (KHN values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore®-Dual, DMG; and FluoroCore®2, Dentsply Caulk, and one dual-cured resin cement (Rely X ARC, 3M ESPE were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter, and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr or were allowed to self-cure for 10 min in the dark (n = 5. All specimens were then stored in humidity at 37°C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001, regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001. LuxaCore®-Dual exhibited higher KHN values than FluoroCore®2 (p = 0.00001 when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available.

  12. Source term evaluation model for high-level radioactive waste repository with decay chain build-up.

    Science.gov (United States)

    Chopra, Manish; Sunny, Faby; Oza, R B

    2016-09-18

    A source term model based on two-component leach flux concept is developed for a high-level radioactive waste repository. The long-lived radionuclides associated with high-level waste may give rise to the build-up of activity because of radioactive decay chains. The ingrowths of progeny are incorporated in the model using Bateman decay chain build-up equations. The model is applied to different radionuclides present in the high-level radioactive waste, which form a part of decay chains (4n to 4n + 3 series), and the activity of the parent and daughter radionuclides leaching out of the waste matrix is estimated. Two cases are considered: one when only parent is present initially in the waste and another where daughters are also initially present in the waste matrix. The incorporation of in situ production of daughter radionuclides in the source is important to carry out realistic estimates. It is shown that the inclusion of decay chain build-up is essential to avoid underestimation of the radiological impact assessment of the repository. The model can be a useful tool for evaluating the source term of the radionuclide transport models used for the radiological impact assessment of high-level radioactive waste repositories.

  13. The effect of different initial densities of nematode (Meloidogyne javanica) on the build-up of Pasteuria penetrans population.

    Science.gov (United States)

    Darban, Daim Ali; Pathan, Mumtaz Ali; Bhatti, Abdul Ghaffar; Maitelo, Sultan Ahmed

    2005-02-01

    Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.

  14. The effect of build-up cap materials on the response of an ionization chamber to 60Co gamma rays

    International Nuclear Information System (INIS)

    Rocha, M.P.O.; Almeida, C.E. de

    1993-01-01

    Knowledge of the effect of wall and build-up cap materials on ionization chamber response is necessary to determine absorbed dose in a medium using a calibration factor based on exposure or kerma in air. Attenuation and scattering effects of 60 Co gamma rays in the ionization chamber wall and build-up cap, as well as their non-equivalence to air, were studied with an OFS ionization chamber (Delrin wall) and a set of build-up caps specially built for this purpose. Results for a specific material were plotted as functions of wall and cap total thickness, extrapolated to zero wall thickness, then corrected for mean centre of electron production in the wall (= 0.136 g cm -2 ). Correction factors for a specific thickness were analysed in relation to cap material, and to relative responses compared with values calculated by using AAPM, SEFM and IAEA formalisms for cap effects. A Monte Carlo calculation was performed to compare the experimental and theoretical values. Calculations showed an agreement within 0.1% with experimental values and a wall effect of approximately 1.6%. (Author)

  15. A One-Dimensional Particle-in-Cell Model of Plasma Build-Up in Vacuum Arcs

    CERN Document Server

    Timko, H; Kovermann, J; Taborelli, M; Nordlund, K; Descoeudres, A; Schneider, R; Calatroni, S; Matyash, K; Wuensch, W; Hansen, A; Grudiev, A

    2011-01-01

    Understanding the mechanism of plasma build-up in vacuum arcs is essential in many fields of physics. A one-dimensional particle-in-cell computer simulation model is presented, which models the plasma developing from a field emitter tip under electrical breakdown conditions, taking into account the relevant physical phenomena. As a starting point, only an external electric field and an initial enhancement factor of the tip are assumed. General requirements for plasma formation have been identified and formulated in terms of the initial local field and a critical neutral density. The dependence of plasma build-up on tip melting current, the evaporation rate of neutrals and external circuit time constant has been investigated for copper and simulations imply that arcing involves melting currents around 0.5-1 A/mu m(2),evaporation of neutrals to electron field emission ratios in the regime 0.01 - 0.05, plasma build-up timescales in the order of similar to 1 - 10 ns and two different regimes depending on initial ...

  16. Electrostatic Charging of Spacecraft in Geosynchronous Orbit

    Science.gov (United States)

    1992-12-17

    cycle variations, the transitions into and out of region I are very sharpl !,, defined, particularly for the higher Kp ranges where the mean boundary...spectrometer data. The electron beam tests would not have possible without the enthusiastic support of Mike Duck of Chemistry Division, Harwell

  17. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  18. The effect of electron collimator leaf shape on the build-up dose in narrow electron MLC fields

    International Nuclear Information System (INIS)

    Vatanen, T; Vaeaenaenen, A; Lahtinen, T; Traneus, E

    2009-01-01

    Previously, we have found that the build-up dose from abutting narrow electron beams formed with unfocussed electron multi-leaf collimator (eMLC) steal leaves was higher than with the respective open field. To investigate more closely the effect of leaf material and shape on dose in the build-up region, straight, round (radius 1.5 cm) and leaf ends with a different front face angle of α (leaf front face pointing towards the beam axis at an angle of 90 - α) made of steel, brass and tungsten were modelled using the BEAMnrc code. Based on a treatment head simulation of a Varian 2100 C/D linac, depth-dose curves and profiles in water were calculated for narrow 6, 12 and 20 MeV eMLC beams (width 1.0 cm, length 10 cm) at source-to-surface distances (SSD) of 102 and 105 cm. The effects of leaf material and front face angle were evaluated based on electron fluence, angle and energy spectra. With a leaf front face angle of 15 deg., the dose in the build-up region of the 6 MeV field varied between 91 and 100%, while for straight and round leaf shapes the dose varied between 89 and 100%. The variation was between 94 and 100% for 12 and 20 MeV. For abutting narrow 6 MeV fields with total field size 5 x 10 cm 2 , the build-up doses at 5 mm depth for the face angle 15 deg. and straight and round leaf shapes were 96% and 86% (SSD 102 cm) and 89% and 85% (SSD 105 cm). With higher energies, the effect of eMLC leaf shape on dose at 5 mm was slight (3-4% units with 12 MeV) and marginal with 20 MeV. The fluence, energy and angle spectra for total and leaf scattered electrons were practically the same for different leaf materials with 6 MeV. With high energies, the spectra for tungsten were more peaked due to lower leaf transmission. Compared with straight leaf ends, the face angle of 15 deg. and round leaf ends led to a 1 mm (for 6 MeV) and between 1 and 5 mm (12 and 20 MeV at a SSD of 105 cm) decrease of therapeutic range and increase of the field size, respectively. However

  19. Activity build-up on the circulation loops of boiling water reactors: Basics for modelling of transport and deposition processes

    International Nuclear Information System (INIS)

    Covelli, B.; Alder, H.P.

    1988-03-01

    In the past 20 years the radiation field of nuclear power plant loops outside the core zone was the object of investigations in many countries. In this context test loops were built and basic research done. At our Institute PSI the installation of a LWR-contamination loop is planned for this year. This experimental loop has the purpose to investigate the complex phenomena of activity deposition from the primary fluid of reactor plants and to formulate analytical models. From the literature the following conclusions can be drawn: The principal correlations of the activity build-up outside the core are known. The plant specific single phenomena as corrosion, crud-transport, activation and deposit of cobalt in the oxide layer are complex and only partially understood. The operational experience of particular plants with low contaminated loops (BWR-recirculation loops) show that in principle the problem is manageable. The reduction of the activity build-up in older plants necessitates a combination of measures to modify the crud balance in the primary circuit. In parallel to the experimental work several simulation models in the form of computer programs were developed. These models have the common feature that they are based on mass balances, in which the exchange of materials and the sedimentation processes are described by global empirical transport coefficients. These models yield satisfactory results and allow parameter studies; the application however is restricted to the particular installation. All programs lack models that describe the thermodynamic and hydrodynamic mechanisms on the surface of deposition layers. Analytical investigations on fouling of process equipment led to models that are also applicable to the activity build-up in reactor loops. Therefore it seems appropriate to combine the nuclear simulation models with the fundamental equations for deposition. 10 refs., 18 figs., 3 tabs

  20. Simulation of Electron-Cloud Build-Up for the Cold Arcs of the LHC and Comparison with Measured Data

    CERN Document Server

    Maury Cuna, H; Rumolo, G; Tavian, L; Zimmermann, F

    2011-01-01

    The electron cloud generated by synchrotron radiation or residual gas ionization is a concern for LHC operation and performance. We report the results of simulations studies which examine the electron cloud build-up, at injection energy, 3.5 TeV for various operation parameters. In particular, we determine the value of the secondary emission yield corresponding to the multipacting threshold, and investigate the electron density, and heat as a function of bunch intensity for dipoles and field-free regions. We also include a comparison between simulations results and measured heat-load data from the LHC scrubbing runs in 2011.

  1. Component build-up method for engineering analysis of missiles at low-to-high angles of attack

    Science.gov (United States)

    Hemsch, Michael J.

    1992-01-01

    Methods are presented for estimating the component build-up terms, with the exception of zero-lift drag, for missile airframes in steady flow and at arbitrary angles of attack and bank. The underlying and unifying bases of all these efforts are slender-body theory and its nonlinear extensions through the equivalent angle-of-attack concept. Emphasis is placed on the forces and moments which act on each of the fins, so that control cross-coupling effects as well as longitudinal and lateral-directional effects can be determined.

  2. Determination of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Dietrich, Daniel L.; Ruff, Gary A.; Urban, David

    2013-01-01

    This paper expands on previous work that examined how large a fire a crew member could successfully survive and extinguish in the confines of a spacecraft. The hazards to the crew and equipment during an accidental fire include excessive pressure rise resulting in a catastrophic rupture of the vehicle skin, excessive temperatures that burn or incapacitate the crew (due to hyperthermia), carbon dioxide build-up or accumulation of other combustion products (e.g. carbon monoxide). The previous work introduced a simplified model that treated the fire primarily as a source of heat and combustion products and sink for oxygen prescribed (input to the model) based on terrestrial standards. The model further treated the spacecraft as a closed system with no capability to vent to the vacuum of space. The model in the present work extends this analysis to more realistically treat the pressure relief system(s) of the spacecraft, include more combustion products (e.g. HF) in the analysis and attempt to predict the fire spread and limiting fire size (based on knowledge of terrestrial fires and the known characteristics of microgravity fires) rather than prescribe them in the analysis. Including the characteristics of vehicle pressure relief systems has a dramatic mitigating effect by eliminating vehicle overpressure for all but very large fires and reducing average gas-phase temperatures.

  3. Role of urban surface roughness in road-deposited sediment build-up and wash-off

    Science.gov (United States)

    Zhao, Hongtao; Jiang, Qian; Xie, Wenxia; Li, Xuyong; Yin, Chengqing

    2018-05-01

    Urban road surface roughness is one of the most important factors in estimation of surface runoff loads caused by road-deposited sediment (RDS) wash-off and design of its control measures. However, because of a lack of experimental data to distinguish the role of surface roughness, the effects of surface roughness on RDS accumulation and release are not clear. In this study, paired asphalt and concrete road surfaces and rainfall simulation designs were used to distinguish the role of surface roughness in RDS build-up and wash-off. Our results showed that typical asphalt surfaces often have higher depression depths than typical concrete surfaces, indicating that asphalt surfaces are relatively rougher than concrete surface. Asphalt surfaces can retain a larger RDS amount, relative higher percentage of coarser particles, larger RDS wash-off loads, and lower wash-off percentage, than concrete surfaces. Surface roughness has different effects in RDS motilities with different particle sizes during rainfall runoff, and the settleable particles (44-149 μm) were notably influenced by it. Furthermore, the first flush phenomenon tended to be greater on relatively smooth surfaces than relatively rough surfaces. Overall, surface roughness plays an important role in influencing the complete process of RDS build-up and wash-off on different road characteristics.

  4. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  5. Influence of Pressure Build-Up Time of Compression Chamber on Improving the Operation Frequency of a Single-Piston Hydraulic Free-Piston Engine

    Directory of Open Access Journals (Sweden)

    Hai-bo Xie

    2013-01-01

    Full Text Available A single-piston hydraulic free-piston engine with a two-cylinder four-stroke diesel engine as its driver is introduced. It takes the free-piston assembly a certain time to move after the pressure in the compression chamber starts to increase. The time difference between the pressure increasing and the piston starting to move is defined as the pressure build-up time. The characteristics of the pressure build-up time and its influence on the performance of the free-piston engine are introduced and analyzed. Based on the basic law of dynamics of the free-piston assembly, the parameters which influence the pressure build-up time are analyzed. And then improvement and optimization are proposed to shorten the pressure build-up time.

  6. Modeling Vacuum Arcs On Spacecraft Solar Panel Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft charging and subsequent vacuum arcing poses a significant threat to satellites in LEO and GEO plasma conditions. Localized arc discharges can cause a...

  7. Building up a citizen-based project of renewable energies. Energy transition by local actors: stakes and modalities - Recommendation guide

    International Nuclear Information System (INIS)

    2013-01-01

    This guide first presents the energy and social context which could lead to citizen-based projects, presents some European examples and identifies some French limitations, and defines a citizen-based project. The second part proposes an overview of such a project and its various steps, and outlines the importance of some basic actions: to build up a pilot group and to define the project, to choose the right moment and to retain control of the project, to communicate and to mobilise. The next part presents the project methodology: elaboration of specification, establishment of partnership, definition of a business model, choice of a legal status. The last part addresses how to mobilise local and citizen funding: own funds and bank loan, participation of citizen and local communities

  8. Resonant laser power build-up in ALPS-A 'light shining through a wall' experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehret, Klaus [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Frede, Maik [Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover (Germany); Ghazaryan, Samvel [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Hildebrandt, Matthias [Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover (Germany); Knabbe, Ernst-Axel [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kracht, Dietmar [Laser Zentrum Hannover e.V., Hollerithallee 8, D-30419 Hannover (Germany); Lindner, Axel, E-mail: axel.lindner@desy.d [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); List, Jenny [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Meier, Tobias [Max-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute, and Institut fuer Gravitationsphysik, Leibniz Universitaet, Hannover, Callinstrasse 38, D-30167 Hannover (Germany); Meyer, Niels; Notz, Dieter; Redondo, Javier; Ringwald, Andreas [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Wiedemann, Guenter [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Willke, Benno [Max-Planck-Institute for Gravitational Physics, Albert-Einstein-Institute, and Institut fuer Gravitationsphysik, Leibniz Universitaet, Hannover, Callinstrasse 38, D-30167 Hannover (Germany)

    2009-12-21

    The ALPS Collaboration runs a 'light shining through a wall' (LSW) experiment to search for photon oscillations into 'weakly interacting sub-eV particles' (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical resonant cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run.

  9. Evaluation of pollutant build-up and wash-off from selected land uses at the Port of Brisbane, Australia.

    Science.gov (United States)

    Goonetilleke, Ashantha; Egodawatta, Prasanna; Kitchen, Brad

    2009-02-01

    The quality of stormwater runoff from seaports can be an important source of pollution to the marine environment. Currently, little knowledge exists with regards to the pollutant generation capacity specific to seaports as they do not necessarily compare well with conventional urban land use. The research project focussed on the assessment of pollutant build-up and wash-off. The study was undertaken using rainfall simulation and small impervious plots for different port land uses with the results obtained compared to typical urban land uses. The study outcomes confirmed that the Port land uses exhibit comparatively lower pollutant concentrations. However, the pollutant characteristics varied across different land uses. Hence, the provision of stereotypical water quality improvement measures could be of limited value. Particle size < 150microm was predominant in suspended solids. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this particle size range needs to be removed.

  10. Resonant laser power build-up in ALPS. A 'light-shining-through-walls' experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ehret, Klaus; Ghazaryan, Samvel [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Frede, Maik [Laser Zentrum Hannover e.V. (DE)] (and others)

    2009-05-15

    The ALPS collaboration runs a light-shining-through-walls (LSW) experiment to search for photon oscillations into weakly interacting sub-eV particles (WISPs) inside of a superconducting HERA dipole magnet at the site of DESY. In this paper we report on the first successful integration of a large-scale optical cavity to boost the available power for WISP production in this type of experiments. The key elements are a frequency tunable narrow line-width continuous wave laser acting as the primary light source and an electronic feed-back control loop to stabilize the power build-up. We describe and characterize our apparatus and demonstrate the data analysis procedures on the basis of a brief exemplary run. (orig.)

  11. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  12. Evaluation of surface and build-up region dose for intensity-modulated radiation therapy in head and neck cancer

    International Nuclear Information System (INIS)

    Chung, Heeteak; Jin, Hosang; Dempsey, James F.; Liu, Chihray; Palta, Jatinder; Suh, Tae-Suk; Kim, Siyong

    2005-01-01

    Despite much development, there remains dosimetric uncertainty in the surface and build-up regions in intensity-modulated radiation therapy treatment plans for head and neck cancers. Experiments were performed to determine the dosimetric discrepancies in the surface and build-up region between the treatment planning system (TPS) prediction and experimental measurement using radiochromic film. A head and neck compression film phantom was constructed from two semicylindrical solid water slabs. Treatment plans were generated using two commercial TPSs (PINNACLE3 and CORVUS) for two cases, one with a shallow (∼0.5 cm depth) target and another with a deep (∼6 cm depth) target. The plans were evaluated for a 54 Gy prescribed dose. For each case, two pieces of radiochromic film were used for dose measurement. A small piece of film strip was placed on the surface and another was inserted within the phantom. Overall, both TPSs showed good agreement with the measurement. For the shallow target case, the dose differences were within ±300 cGy (5.6% with respect to the prescribed dose) for PINNACLE3 and ±240 cGy (4.4%) for CORVUS in 90% of the region of interest. For the deep target case, the dose differences were ±350 (6.5%) for PINNACLE3 and ±260 cGy (4.8%) for CORVUS in 90% of the region of interest. However, it was found that there were significant discrepancies from the surface to about 0.2 cm in depth for both the shallow and deep target cases. It was concluded that both TPSs overestimated the surface dose for both shallow and deep target cases. The amount of overestimation ranges from 400 to 1000 cGy (∼7.4% to 18.5% with respect to the prescribed dose, 5400 cGy)

  13. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    Science.gov (United States)

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  14. A 4-year clinical evaluation of direct composite build-ups for space closure after orthodontic treatment.

    Science.gov (United States)

    Demirci, Mustafa; Tuncer, Safa; Öztaş, Evren; Tekçe, Neslihan; Uysal, Ömer

    2015-12-01

    To evaluate the medium-term clinical performance of direct composite build-ups for diastema closures and teeth recontouring using a nano and a nanohybrid composite in combination with three- or two-step etch-and-rinse adhesives following treatment with fixed orthodontic appliances. A total of 30 patients (mean age, 19.5 years) received 147 direct composite additions for teeth recontouring and diastema closures. A nano and a nanohybrid composite (Filtek Supreme XT and CeramX Duo) were bonded to tooth structure by using a three-step (Scotchbond Multipurpose) or a two-step (XP Bond) etch and rinse adhesive. Ten out of 147 composite build-ups (composite addition) constituted tooth recontouring cases, and the remaining 137 constituted diastema closure cases. The restorations were evaluated by two experienced, calibrated examiners according to modified Ryge criteria at the following time intervals: baseline, 1, 2, 3, and 4 years. The 4-year survival rates were 92.8 % for Filtek Supreme XT/Scotchbond Multi-Purpose Plus and 93 % for CeramX Duo/XP Bond. Only ten restorations failed (5 Filtek Supreme XT and 5 CeramX Duo). Statistical analysis revealed no significant differences between the two composite-adhesive combinations with respect to color match, marginal discoloration, wear/loss of anatomical form, caries formation, marginal adaptation, and surface texture on comparing the five time periods (baseline, 1, 2, 3, and 4 years) The 4-year survival rates in the present study were favorable. The restorations exhibited excellent scores with regard to color match, marginal adaptation, surface texture, marginal discoloration, wear/loss of anatomical form, and caries formation, after 4 years of clinical evaluation. Clinical relevance An alternative clinical approach for correcting discrepancies in tooth size and form, such as performing direct composite restorations following fixed orthodontic treatment, may be an excellent and minimally invasive treatment.

  15. ESA's tools for internal charging

    International Nuclear Information System (INIS)

    Soerensen, J.; Rodgers, D.J.; Ryden, K.A.; Latham, P.M.; Wrenn, G.L.; Levy, L.; Panabiere, G.

    1999-01-01

    Electrostatic discharges, caused by bulk charging of spacecraft insulating materials, are a major cause of satellite anomalies. This is a presentation of ESA's tools to assess whether a given structure is liable to experience electrostatic discharges. (authors)

  16. Seizing the strategic opportunities of emerging technologies by building up innovation system: monoclonal antibody development in China.

    Science.gov (United States)

    Zhang, Mao-Yu; Li, Jian; Hu, Hao; Wang, Yi-Tao

    2015-11-04

    Monoclonal antibodies (mAbs), as an emerging technology, have become increasingly important in the development of human therapeutic agents. How developing countries such as China could seize this emerging technological opportunity remains a poorly studied issue in prior literature. Thus, this paper aims to investigate the research and development of mAbs in China based on an innovation system functions approach and probes into the question of how China has been taking advantage of emerging technologies to overcome its challenges of building up a complete innovation system in developing mAbs. Mixed research methods were applied by combining archival data and field interviews. Archival data from the China Food and Drug Administration, Web of Science, the United States Patent and Trademark Office, the Chinese Clinical Trial Registry, and the National Science and Technology Report Service were used to examine the status quo of the technology and research and development (R&D) activities in China, while the opinions of researchers and managers in this field were synthesized from the interviews. From the perspective of innovation system functions, technological development of mAb in China is being driven by incentives such as the subsidies from the State and corporate R&D funding. Knowledge diffusion has been well served over the last 10 years through exchanging information on networks and technology transfer with developed countries. The State has provided clear guidance on search of emerging mAb technologies. Legitimacy of mAb in China has gained momentum owing to the implementation of government policies stipulated in the "The Eleventh Five-year Plan" in 2007, as well as national projects such as the "973 Program" and "863 Program", among others. The potential of market formation stays high because of the rising local demand and government support. Entrepreneurial activities for mAb continue to prosper. In addition, the situation of resource supply has been improved

  17. Building up a collaborative network for the surveillance of HIV genetic diversity in Italy: A pilot study

    Directory of Open Access Journals (Sweden)

    Nunzia Sanarico

    2015-12-01

    Full Text Available INTRODUCTION: Prevalence of infection with HIV-1 non-B subtypes in Italy has been reported to raise, due to increased migration flows and travels. HIV-1 variants show different biological and immunological properties that impact on disease progression rate, response to antiretroviral therapy (ART and sensitivity of diagnostic tests with important implications for public health. Therefore, a constant surveillance of the dynamics of HIV variants in Italy should be a high public health priority. Organization of surveillance studies requires building up a platform constituted of a network of clinical centers, laboratories and institutional agencies, able to properly collect samples for the investigation of HIV subtypes heterogeneity and to provide a database with reliable demographic, clinical, immunological and virological data. AIM: We here report our experience in building up such a platform, co-ordinated by the National AIDS Center of the Istituto Superiore di Sanita, taking advantage of a pilot study aimed at evaluating HIV subtypes diversity in populations of HIV-infected migrant people in Italy. MATERIALS AND METHODS: Four hundred and thirty four HIV-infected migrants were enrolled in 9 Italian clinical centers located throughout the Italian territory. Standard Operating Procedures (SOPs for sample collection were provided by the National AIDS Center to each clinical center. In addition, clinical centers were required to fill up a case report form (crf for each patient, which included demographic, clinical, immunological and virological information. RESULTS: All centers properly collected and stored samples from each enrolled individual. Overall, the required information was correctly provided for more than 90% of the patients. However, some fields of the crf, particularly those including information on the last HIV-negative antibody test and presence of co-infections, were properly filled up in less than 80% of the enrolled migrants. Centers

  18. SU-E-T-59: Calculations of Collimator Scatter Factors (Sc) with and Without Custom-Made Build-Up Caps for CyberKnife

    Energy Technology Data Exchange (ETDEWEB)

    Wokoma, S; Yoon, J; Jung, J [East Carolina University, Greenville, NC (United States); Lee, S [Rhode Island Hospital / Warren Alpert Medical, Providence, RI (United States)

    2014-06-01

    Purpose: To investigate the impact of custom-made build-up caps for a diode detector in robotic radiosurgery radiation fields with variable collimator (IRIS) for collimator scatter factor (Sc) calculation. Methods: An acrylic cap was custom-made to fit our SFD (IBA Dosimetry, Germany) diode detector. The cap has thickness of 5 cm, corresponding to a depth beyond electron contamination. IAEA phase space data was used for beam modeling and DOSRZnrc code was used to model the detector. The detector was positioned at 80 cm source-to-detector distance. Calculations were performed with the SFD, with and without the build-up cap, for clinical IRIS settings ranging from 7.5 to 60 mm. Results: The collimator scatter factors were calculated with and without 5 cm build-up cap. They were agreed within 3% difference except 15 mm cone. The Sc factor for 15 mm cone without buildup was 13.2% lower than that with buildup. Conclusion: Sc data is a critical component in advanced algorithms for treatment planning in order to calculate the dose accurately. After incorporating build-up cap, we discovered differences of up to 13.2 % in Sc factors in the SFD detector, when compared against in-air measurements without build-up caps.

  19. Study of the Spacecraft Potential Under Active Control and Plasma Density Estimates During the MMS Commissioning Phase

    Science.gov (United States)

    Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.

    2016-01-01

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  20. Build-up of the silicon micro-strip detector array in ETF of HIRFL-CSR

    International Nuclear Information System (INIS)

    Wang Pengfei; Li Zhankui; Li Haixia

    2014-01-01

    Silicon micro-strip detectors have been widely used in the world-famous nuclear physics laboratories due to their better position resolution and energy resolution. Double-sided silicon micro-strip detectors with a position resolution of 0.5 mm × 0.5 mm, have been fabricated in the IMP (Institute of Modern Physics, CAS) by using microelectronics technology. These detectors have been used in the ETF (External Target Facility) of HIRFL-CSR, as ΔE detectors of the ΔE-E telescope system and the track detectors. With the help of flexibility printed circuit board (FPCB) and the integrated ASIC chips, a compact multi-channel front-end electronic board has been designed to fulfill the acquisition of the energy and position information of the Silicon micro-strip detectors. It is described in this paper that the build-up of the Silicon micro-strip detector array in ETF of HIRFL-CSR, the determination of the energy resolution of the detector units, and the energy resolution of approximately 1% obtained for 5∼9 MeV α particles in vacuum. (authors)

  1. Rigging dark haloes: why is hierarchical galaxy formation consistent with the inside-out build-up of thin discs?

    Science.gov (United States)

    Pichon, C.; Pogosyan, D.; Kimm, T.; Slyz, A.; Devriendt, J.; Dubois, Y.

    2011-12-01

    State-of-the-art hydrodynamical simulations show that gas inflow through the virial sphere of dark matter haloes is focused (i.e. has a preferred inflow direction), consistent (i.e. its orientation is steady in time) and amplified (i.e. the amplitude of its advected specific angular momentum increases with time). We explain this to be a consequence of the dynamics of the cosmic web within the neighbourhood of the halo, which produces steady, angular momentum rich, filamentary inflow of cold gas. On large scales, the dynamics within neighbouring patches drives matter out of the surrounding voids, into walls and filaments before it finally gets accreted on to virialized dark matter haloes. As these walls/filaments constitute the boundaries of asymmetric voids, they acquire a net transverse motion, which explains the angular momentum rich nature of the later infall which comes from further away. We conjecture that this large-scale driven consistency explains why cold flows are so efficient at building up high-redshift thin discs inside out.

  2. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  3. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  4. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  5. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  6. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  7. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  8. THE XMM CLUSTER SURVEY: THE BUILD-UP OF STELLAR MASS IN BRIGHTEST CLUSTER GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Stott, J. P.; Collins, C. A.; Hilton, M.; Capozzi, D.; Sahlen, M.; Lloyd-Davies, E.; Hosmer, M.; Liddle, A. R.; Mehrtens, N.; Romer, A. K.; Miller, C. J.; Stanford, S. A.; Viana, P. T. P.; Davidson, M.; Hoyle, B.; Kay, S. T.; Nichol, R. C.

    2010-01-01

    We present deep J- and K s -band photometry of 20 high redshift galaxy clusters between z = 0.8 and1.5, 19 of which are observed with the MOIRCS instrument on the Subaru telescope. By using near-infrared light as a proxy for stellar mass we find the surprising result that the average stellar mass of Brightest Cluster Galaxies (BCGs) has remained constant at ∼9 x 10 11 M sun since z ∼ 1.5. We investigate the effect on this result of differing star formation histories generated by three well-known and independent stellar population codes and find it to be robust for reasonable, physically motivated choices of age and metallicity. By performing Monte Carlo simulations we find that the result is unaffected by any correlation between BCG mass and cluster mass in either the observed or model clusters. The large stellar masses imply that the assemblage of these galaxies took place at the same time as the initial burst of star formation. This result leads us to conclude that dry merging has had little effect on the average stellar mass of BCGs over the last 9-10 Gyr in stark contrast to the predictions of semi-analytic models, based on the hierarchical merging of dark matter halos, which predict a more protracted mass build-up over a Hubble time. However, we discuss that there is potential for reconciliation between observation and theory if there is a significant growth of material in the intracluster light over the same period.

  9. Plasma Interactions with Spacecraft. Volume 2, NASCAP-2K Scientific Documentation for Version 4.1

    Science.gov (United States)

    2011-04-15

    surface is taken as the equipotential surface at  = ±ln2. This choice is made because the attracted species is absorbed by the sheath, so we have only...spacecraft-generated plasma environments on spacecraft systems. This document describes the physics and numeric models used in the surface charging...2 2.1 Surface Charging from Orbit Limited Currents

  10. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  11. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  12. Tendency of the 18-8 type corrosion-resistant steel to cracking in automatic building-up of copper and copper base alloys in argon

    International Nuclear Information System (INIS)

    Abramovich, V.R.; Andronik, V.A.

    1978-01-01

    Studied was the tendency of the 18-8 type corrosion-resistant steel to cracking during automatic building-up of copper and bronze in argon. The investigation was carried out on the 0kh18n10t steel in argon. It had been established, that the degree of copper penetration into the steel inceases with the increase in the time of the 0Kh18n10t steel contact with liquid copper. Liquid copper and copper base alloys have a detrimental effect on mechanical properties of the steel under external tensile load during intercontant. It is shown that in building-up of copper base alloys on the steel-0Kh18n10t, tendency of the steel to cracking decreases with increase in stiffness of a surfaced weld metal plate and with decrease in building-up energy per unit length. The causes of macrocracking in steel at building-up non-ferrous metals are explained. The technological procedures to avoid cracking are suggested

  13. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  14. Effect of various physical parameters on surface and build-up dose for 15-MV X-rays

    International Nuclear Information System (INIS)

    Yadav, Girigesh; Yadav, R.S.; Kumar, Alok

    2010-01-01

    The purpose of this study was to find out the effect of various physical parameters on the skin and build-up doses of 15-MV photon beams. The effects of field dimensions, acrylic shadow tray, focus to-skin distance (FSD) on surface and buildup dose were determined for open, motorized 60 deg wedge (MW) and blocked fields. A 'Markus' plane parallel plate chamber was used for these measurements in an Elekta (6-15MV) linear accelerator. The surface dose for MW fields was lower than the dose for an open field, but the trend reversed for large fields and higher degree wedges. With the use of an acrylic shadow tray, the surface dose increased for all field sizes, but the increase was dominant for large fields. The surface dose for blocked fields was lower than the dose for open fields. The percentage depth dose of 10 x 10 cm 2 field at surface (PDD 0 ) for open beam were 13.89%, 11.71%, and 10.74% at 80 cm, 100 cm, and 120 cm FSD, respectively. The blocking tray increased PDD 0 of 10 x 10 cm 2 field to 26.29%, 14.01%, and 11.53%, while the motorized 60 deg wedge decreased PDD 0 to 11.32%, 9.7%, and 8.9 % at these FSDs. The maximum PDD difference seen at surface (i.e. skin) for 5x5 cm 2 , 15x15 cm 2 , and 30x30 cm 2 are 0.5%, 4.6%, and 5.6% for open field and 0.9%, 4.7%, and 7.2% for motorized 60 deg wedge field, when FSDs varied from 80 cm to 120 cm. The maximum PDD difference seen at surface for 5x5 cm 2 , 15x15 cm 2 , and 30x30 cm 2 fields are 5.6%, 22.8%, and 29.6%, respectively, for a 1.0-cm perspex-blocking tray as the FSD is changed. The maximum PDD difference was seen at the surface (i.e. skin) and this decreased with increasing depth. (author)

  15. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  16. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  17. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  18. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Volnei; Vilhena, Marco Tullio, E-mail: borges@ufrgs.b, E-mail: vilhena@pq.cnpq.b [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Fernandes, Julio Cesar Lombaldo, E-mail: julio.lombaldo@ufrgs.b [Universidade Federal do Rio Grande do Sul (DMPA/UFRGS), Porto Alegre, RS (Brazil). Dept. de Matematica Pura e Aplicada. Programa de Pos Graduacao em Matematica Aplicada

    2011-07-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS{sub N} method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS{sub N} nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  19. A closed-form formulation for the build-up factor and absorbed energy for photons and electrons in the Compton energy range in Cartesian geometry

    International Nuclear Information System (INIS)

    Borges, Volnei; Vilhena, Marco Tullio; Fernandes, Julio Cesar Lombaldo

    2011-01-01

    In this work, we report on a closed-form formulation for the build-up factor and absorbed energy, in one and two dimensional Cartesian geometry for photons and electrons, in the Compton energy range. For the one-dimensional case we use the LTS N method, assuming the Klein-Nishina scattering kernel for the determination of the angular radiation intensity for photons. We apply the two-dimensional LTS N nodal solution for the averaged angular radiation evaluation for the two-dimensional case, using the Klein-Nishina kernel for photons and the Compton kernel for electrons. From the angular radiation intensity we construct a closed-form solution for the build-up factor and evaluate the absorbed energy. We present numerical simulations and comparisons against results from the literature. (author)

  20. Effect of ultraviolet light irradiation period on bond strengths between fiber-reinforced composite post and core build-up composite resin.

    Science.gov (United States)

    Asakawa, Yuya; Takahashi, Hidekazu; Iwasaki, Naohiko; Kobayashi, Masahiro

    2014-01-01

    The aim of the present study was to characterize the effects of the ultraviolet light (UV) irradiation period on the bond strength of fiber-reinforced composite (FRC) posts to core build-up resin. Three types of FRC posts were prepared using polymethyl methacrylate, urethane dimethacrylate, and epoxy resin. The surfaces of these posts were treated using UV irradiation at a distance of 15 mm for 0 to 600 s. The pull-out bond strength was measured and analyzed with the Dunnett's comparison test (α=0.05). The bond strengths of the post surfaces without irradiation were 6.9 to 7.4 MPa; those after irradiation were 4.2 to 26.1 MPa. The bond strengths significantly increased after 15 to 120-s irradiation. UV irradiation on the FRC posts improved the bond strengths between the FRC posts and core build-up resin regardless of the type of matrix resin.

  1. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  2. Spacecraft-plasma-debris interaction in an ion beam shepherd mission

    Science.gov (United States)

    Cichocki, Filippo; Merino, Mario; Ahedo, Eduardo

    2018-05-01

    This paper presents a study of the interaction between a spacecraft, a plasma thruster plume and a free floating object, in the context of an active space debris removal mission based on the ion beam shepherd concept. The analysis is performed with the EP2PLUS hybrid code and includes the evaluation of the transferred force and torque to the target debris, its surface sputtering due to the impinging hypersonic ions, and the equivalent electric circuit of the spacecraft-plasma-debris interaction. The electric potential difference that builds up between the spacecraft and the debris, the ion backscattering and the backsputtering contamination of the shepherd satellite are evaluated for a nominal scenario. A sensitivity analysis is carried out to evaluate quantitatively the effects of electron thermodynamics, ambient plasma, heavy species collisions, and debris position.

  3. Charging damage in floating metal-insulator-metal capacitors

    NARCIS (Netherlands)

    Ackaert, Jan; Wang, Zhichun; De Backer, E.; Coppens, P.

    2002-01-01

    In this paper, charging induced damage (CID) to metal-insulator-metal capacitors (MIMC) is reported. The damage is caused by the build up of a voltage potential difference between the two plates of the capacitor. A simple logarithmic relation is discovered between the damage by this voltage

  4. Spacecraft exploration of asteroids

    International Nuclear Information System (INIS)

    Veverka, J.; Langevin, Y.; Farquhar, R.; Fulchignoni, M.

    1989-01-01

    After two decades of spacecraft exploration, we still await the first direct investigation of an asteroid. This paper describes how a growing international interest in the solar system's more primitive bodies should remedy this. Plans are under way in Europe for a dedicated asteroid mission (Vesta) which will include multiple flybys with in situ penetrator studies. Possible targets include 4 Vesta, 8 Flora and 46 Hestia; launch its scheduled for 1994 or 1996. In the United States, NASA plans include flybys of asteroids en route to outer solar system targets

  5. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  6. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  7. SSS-A spacecraft and experiment description.

    Science.gov (United States)

    Longanecker, G. W.; Hoffman, R. A.

    1973-01-01

    The scientific objectives of the Explorer-45 mission are discussed. The primary objective is the study of the ring current responsible for the main phase of magnetic storms. Closely associated with this objective is the determination of the relationship between magnetic storms, substorms, and the acceleration of charged particles in the magnetosphere. Further objectives are the measurement of a wide range of proton, electron and alpha-particle energies, and studies of wave-particle interactions responsible for particle transport and loss in the inner magnetosphere. The orbital parameters, the spacecraft itself, and some of its unique features, such as the data handling system, which is programmable from the ground, are described.

  8. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  9. Build-up and wash-off dynamics of atmospherically derived Cu, Pb, Zn and TSS in stormwater runoff as a function of meteorological characteristics.

    Science.gov (United States)

    Murphy, Louise U; Cochrane, Thomas A; O'Sullivan, Aisling

    2015-03-01

    Atmospheric pollutants deposited on impermeable surfaces can be an important source of pollutants to stormwater runoff; however, modelling atmospheric pollutant loads in runoff has rarely been done, because of the challenges and uncertainties in monitoring their contribution. To overcome this, impermeable concrete boards (≈ 1m(2)) were deployed for 11 months in different locations within an urban area (industrial, residential and airside) throughout Christchurch, New Zealand, to capture spatially distributed atmospheric deposition loads in runoff over varying meteorological conditions. Runoff was analysed for total and dissolved Cu, Zn, Pb, and total suspended solids (TSS). Mixed-effect regression models were developed to simulate atmospheric pollutant loads in stormwater runoff. In addition, the models were used to explain the influence of different meteorological characteristics (e.g. antecedent dry days and rain depth) on pollutant build-up and wash-off dynamics. The models predicted approximately 53% to 69% of the variation in pollutant loads and were successful in predicting pollutant-load trends over time which can be useful for general stormwater planning processes. Results from the models illustrated the importance of antecedent dry days on pollutant build-up. Furthermore, results indicated that peak rainfall intensity and rain duration had a significant relationship with TSS and total Pb, whereas, rain depth had a significant relationship with total Cu and total Zn. This suggested that the pollutant speciation phase plays an important role in surface wash-off. Rain intensity and duration had a greater influence when the pollutants were predominantly in their particulate phase. Conversely, rain depth exerted a greater influence when a high fraction of the pollutants were predominantly in their dissolved phase. For all pollutants, the models were represented by a log-arctan relationship for pollutant build-up and a log-log relationship for pollutant wash

  10. MONJU experimental data analysis and its feasibility evaluation to build up the standard data base for large FBR nuclear core design

    International Nuclear Information System (INIS)

    Sugino, K.; Iwai, T.

    2006-01-01

    MONJU experimental data analysis was performed by using the detailed calculation scheme for fast reactor cores developed in Japan. Subsequently, feasibility of the MONJU integral data was evaluated by the cross-section adjustment technique for the use of FBR nuclear core design. It is concluded that the MONJU integral data is quite valuable for building up the standard data base for large FBR nuclear core design. In addition, it is found that the application of the updated data base has a possibility to considerably improve the prediction accuracy of neutronic parameters for MONJU. (authors)

  11. Reduced Order Electrostatic Force Field Modeling of 3D Spacecraft Shapes

    Data.gov (United States)

    National Aeronautics and Space Administration — The Autonomous Vehicles Systems (AVS) Lab at CU Boulder has been pursuing research in Coulomb charge control of spacecraft for several years. The electrostatic...

  12. E-mobility charging infrastructure. Wish and reality

    Energy Technology Data Exchange (ETDEWEB)

    Wunnerlich, Stephan [EnBW Energie Baden-Wuerttemberg AG, Karlsruhe (Germany)

    2013-06-01

    An adequate charging infrastructure for electric vehicles is necessary for the success of electric vehicles. The wishful thinking is, to build up quickly a charging infrastructure to the electric vehicles since they will be launched. The wishful thinking is to build up a cheap and easy to handle infrastructure in order to keep it cheap and simple for the customer. The wishful thinking is that the process of building up such infrastructure is smooth and based on clear rules, regulations and standards. The wishful thinking is that public charging infrastructure operators can earn money with the sales of kWh or with marketing their public charging stations. Reality shows a different picture. Public charging Infrastructure is expensive to install and to manage, public charging infrastructure is difficult to process as well, there are only few electric cars on the street and you cannot earn enough money with selling electricity or marketing. Only a large number of electric vehicles and new and innovative solutions can help to overcome this gap between wish and reality. (orig.)

  13. Lepton contamination and photon scatter produced by open field 18 MV X-ray beams in the build-up region

    International Nuclear Information System (INIS)

    Butson, M.J.; Cheung Tsang; Yu, P.K.N.

    2002-01-01

    18 MV X-ray beams used in radiotherapy have skin sparing properties as they produce a dose build-up effect whereby a smaller dose is delivered to the skin compared to dose at depth. Experimental results have shown that variations in the build-up dose significantly contribute to lepton contamination produced outside of the patient or the phantom in question. Monte Carlo simulations of 18 MV X-ray beams show that the surface dose contribution from in-phantom scatter alone is approximately 6% of the maximum dose. The contribution to dose from lepton contamination is found by comparison of Monte Carlo phantom photon scatter dose only and experimental data. Results show that the percentage contributions to dose from lepton contamination are approximately, 65%, 90% of dose at 0.05 mm (basal cell layer), 52%, 79% at 1 mm depth (dermal layer) and 15%, 26% at 10 mm depth (subcutaneous tissue) for 10 cmx10 cm 2 and 40 cmx40 cm 2 fields, respectively

  14. Lepton contamination and photon scatter produced by open field 18 MV X-ray beams in the build-up region

    Energy Technology Data Exchange (ETDEWEB)

    Butson, M.J. E-mail: mbutson@guessmail.com; Cheung Tsang; Yu, P.K.N

    2002-04-01

    18 MV X-ray beams used in radiotherapy have skin sparing properties as they produce a dose build-up effect whereby a smaller dose is delivered to the skin compared to dose at depth. Experimental results have shown that variations in the build-up dose significantly contribute to lepton contamination produced outside of the patient or the phantom in question. Monte Carlo simulations of 18 MV X-ray beams show that the surface dose contribution from in-phantom scatter alone is approximately 6% of the maximum dose. The contribution to dose from lepton contamination is found by comparison of Monte Carlo phantom photon scatter dose only and experimental data. Results show that the percentage contributions to dose from lepton contamination are approximately, 65%, 90% of dose at 0.05 mm (basal cell layer), 52%, 79% at 1 mm depth (dermal layer) and 15%, 26% at 10 mm depth (subcutaneous tissue) for 10 cmx10 cm{sup 2} and 40 cmx40 cm{sup 2} fields, respectively.

  15. Build up of radon, /sup 218/Po and /sup 214/Po in a Karlsruhe diffusion chamber as a function of time

    International Nuclear Information System (INIS)

    Fazal-ur-Rehman; Jamil, K.; Ali, S.; Khan, H.A.

    1996-01-01

    Passive radon /sup 222/Rn dosimeters employing particle detectors are widely used in concentration (p Ci/l) measurement in houses, mines and other areas of activity. These dosimeters yield track density which is needed to be converted into physically meaningful parameter of radon concentration in either p Ci/l or Bq m/sup -3/. Therefore, it is required to know the separate contributions of /sup 222/Rn and its progeny. In the present study we have measured the concentration of /sup 222/Rn and its daughters (/sup 218/Po and /sup 214/Po) separately in the Karlsruhe diffusion chamber radon dosimeter, with and without a filter, as a function of time by an active method using a surface barrier detector. The build up behavior of radon and its two daughters (/sup 218/Po and /sup 214/Po) as a function of time was studied by plotting the area under each peak versus collection time. The differential curves and the relative concentration of radon daughters as a function of time were also studied. The concentration of radon and its daughters shows a somewhat linear build up as a function of time for the presently studied time periods. The results of this experiment are expected to be useful in converting the integrated alpha track density as measured by a particle track detector, (used in passive radon dosimetry) to radon concentration levels and for determination of equilibrium factor. (author)

  16. Effects of internal and external scatter on the build-up characteristics of Monte Carlo calculated absorbed dose for electron irradiation

    International Nuclear Information System (INIS)

    Lin, H.; Wu, DS.; Wu, AD.

    2005-01-01

    The effects of internal and external scatter on surface, build-up and depth dose characteristics simulated by Monte Carlo code EGSnrc for varying field size and SSD for a 10 MeV monoenergetic electron beam with and without an accelerator model are extensively studied in this paper. In particular, sub-millimetre surface PDD was investigated. The percentage depth doses affected significantly by the external scatter show a larger build-up dose. A forward shifted Dmax depth and a sharper fall-off region compared to PDDs with only internal scatter considered. The surface dose with both internal and external scatter shows a marked decrease at 110 cm SSD, and then slight further changes with the increasing SSD since few external scattered particles from accelerator model can reach the phantom for large SSDs. The sharp PDD increase for the 5 cm x 5 cm field compared to other fields seen when only internal scatter is considered is significantly less when external scatter is also present. The effect of external scatter on surface PDD is more pronounced for large fields than small fields (5 cm x 5 cm field)

  17. Development of a fibre-optic dosemeter to measure the skin dose and percentage depth dose in the build-up region of therapeutic photon beams

    International Nuclear Information System (INIS)

    Kim, K. A.; Yoo, W. J.; Jang, K. W.; Moon, J.; Han, K. T.; Jeon, D.; Park, J. Y.; Cha, E. J.; Lee, B.

    2013-01-01

    In this study, a fibre-optic dosemeter (FOD) using an organic scintillator with a diameter of 0.5 mm for photon-beam therapy dosimetry was fabricated. The fabricated dosemeter has many advantages, including water equivalence, high spatial resolution, remote sensing and real-time measurement. The scintillating light generated from an organic-dosemeter probe embedded in a solid-water stack phantom is guided to a photomultiplier tube and an electrometer via 20 m of plastic optical fibre. Using this FOD, the skin dose and the percentage depth dose in the build-up region according to the depths of a solid-water stack phantom are measured with 6- and 15-MV photon-beam energies with field sizes of 10310 and 20320 cm 2 , respectively. The results are compared with those measured using conventional dosimetry films. It is expected that the proposed FOD can be effectively used in radiotherapy dosimetry for accurate measurement of the skin dose and the depth dose distribution in the build-up region due to its high spatial resolution. (authors)

  18. Comparison of build-up region doses in oblique tangential 6 MV photon beams calculated by AAA and CCC algorithms in breast Rando phantom

    Science.gov (United States)

    Masunun, P.; Tangboonduangjit, P.; Dumrongkijudom, N.

    2016-03-01

    The purpose of this study is to compare the build-up region doses on breast Rando phantom surface with the bolus covered, the doses in breast Rando phantom and also the doses in a lung that is the heterogeneous region by two algorithms. The AAA in Eclipse TPS and the collapsed cone convolution algorithm in Pinnacle treatment planning system were used to plan in tangential field technique with 6 MV photon beam at 200 cGy total doses in Breast Rando phantom with bolus covered (5 mm and 10 mm). TLDs were calibrated with Cobalt-60 and used to measure the doses in irradiation process. The results in treatment planning show that the doses in build-up region and the doses in breast phantom were closely matched in both algorithms which are less than 2% differences. However, overestimate of doses in a lung (L2) were found in AAA with 13.78% and 6.06% differences at 5 mm and 10 mm bolus thickness, respectively when compared with CCC algorithm. The TLD measurements show the underestimate in buildup region and in breast phantom but the doses in a lung (L2) were overestimated when compared with the doses in the two plannings at both thicknesses of the bolus.

  19. Suspension-firing of wood with coal ash addition: Probe measurements of ash deposit build-up at Avedøre Power Plant (AVV2)

    DEFF Research Database (Denmark)

    Shafique Bashir, Muhammad; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood-firing. Investigat...... to the gas phase as HCl(g). Effect of boiler operational parameters on gas emissions has also been investigated.......This report is about full-scale probe measurements of deposit build-up and removal conducted at the Avedøreværket Unit 2, a 800 MWth suspension boiler, firing wood and natural gas with the addition of coal ash. Coal ash was used as an additive to capture potassium (K) from wood...... and boiler load on ash deposition propensity was investigated. Results of ash deposition propensity showed increasing trend with increasing flue gas temperature. Video monitoring revealed that the deposits formed were not sticky and could be easily removed, and even at very high flue gas temperatures (> 1350...

  20. Charging of the Van Allen Probes: Theory and Simulations

    Science.gov (United States)

    Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Denton, M.

    2017-12-01

    The electrical charging of spacecraft has been a known problem since the beginning of the space age. Its consequences can vary from moderate (single event upsets) to catastrophic (total loss of the spacecraft) depending on a variety of causes, some of which could be related to the surrounding plasma environment, including emission processes from the spacecraft surface. Because of its complexity and cost, this problem is typically studied using numerical simulations. However, inherent unknowns in both plasma parameters and spacecraft material properties can lead to inaccurate predictions of overall spacecraft charging levels. The goal of this work is to identify and study the driving causes and necessary parameters for particular spacecraft charging events on the Van Allen Probes (VAP) spacecraft. This is achieved by making use of plasma theory, numerical simulations, and on-board data. First, we present a simple theoretical spacecraft charging model, which assumes a spherical spacecraft geometry and is based upon the classical orbital-motion-limited approximation. Some input parameters to the model (such as the warm plasma distribution function) are taken directly from on-board VAP data, while other parameters are either varied parametrically to assess their impact on the spacecraft potential, or constrained through spacecraft charging data and statistical techniques. Second, a fully self-consistent numerical simulation is performed by supplying these parameters to CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC simulations remove some of the assumptions of the theoretical model and also capture the influence of the full geometry of the spacecraft. The CPIC numerical simulation results will be presented and compared with on-board VAP data. This work will set the foundation for our eventual goal of importing the full plasma environment from the LANL-developed SHIELDS framework into CPIC, in order to more accurately

  1. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...

  2. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  3. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  4. Paraxial charge compensator for electron cryomicroscopy

    International Nuclear Information System (INIS)

    Berriman, John A.; Rosenthal, Peter B.

    2012-01-01

    We describe a multi-hole condenser aperture for the production of several electron beams in the transmission electron microscope (TEM) making it possible to simultaneously image and irradiate spatially separated regions of a specimen. When the specimen is a thin film of vitreous ice suspended over a holey carbon film, simultaneous irradiation of the adjacent carbon support with the off-axis beam compensates for some of the effects of charging in the image formed by a beam irradiating only the ice. Because the intervening region is not irradiated, charge-neutralization of frozen-hydrated specimens can occur by a through-space mechanism such as the emission of secondary electrons from a grounded carbon support film. We use paraxial charge compensation (PCC) to control the amount of charge build-up on the specimen and observe the effects of charge on images. The multi-hole aperture thus provides a tool for investigating the mechanism of charging and charge mitigation during the imaging of radiation sensitive biological specimens by cryomicroscopy. -- Highlights: ► A multi-hole condenser aperture produces multiple (paraxial) beams in TEM. ► Paraxial charge compensation is used to study electron-optical effects of charging. ► Emission of secondary electrons controls charging by a through space mechanism. ► Paraxial beams compensate for charging effects in frozen-hydrated specimens.

  5. Paraxial charge compensator for electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, John A. [Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA (United Kingdom); Rosenthal, Peter B., E-mail: peter.rosenthal@nimr.mrc.ac.uk [Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA (United Kingdom)

    2012-05-15

    We describe a multi-hole condenser aperture for the production of several electron beams in the transmission electron microscope (TEM) making it possible to simultaneously image and irradiate spatially separated regions of a specimen. When the specimen is a thin film of vitreous ice suspended over a holey carbon film, simultaneous irradiation of the adjacent carbon support with the off-axis beam compensates for some of the effects of charging in the image formed by a beam irradiating only the ice. Because the intervening region is not irradiated, charge-neutralization of frozen-hydrated specimens can occur by a through-space mechanism such as the emission of secondary electrons from a grounded carbon support film. We use paraxial charge compensation (PCC) to control the amount of charge build-up on the specimen and observe the effects of charge on images. The multi-hole aperture thus provides a tool for investigating the mechanism of charging and charge mitigation during the imaging of radiation sensitive biological specimens by cryomicroscopy. -- Highlights: Black-Right-Pointing-Pointer A multi-hole condenser aperture produces multiple (paraxial) beams in TEM. Black-Right-Pointing-Pointer Paraxial charge compensation is used to study electron-optical effects of charging. Black-Right-Pointing-Pointer Emission of secondary electrons controls charging by a through space mechanism. Black-Right-Pointing-Pointer Paraxial beams compensate for charging effects in frozen-hydrated specimens.

  6. Printed Spacecraft Separation System

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Holmans, Walter [Planetary Systems Corporation

    2016-10-01

    In this project Planetary Systems Corporation proposed utilizing additive manufacturing (3D printing) to manufacture a titanium spacecraft separation system for commercial and US government customers to realize a 90% reduction in the cost and energy. These savings were demonstrated via “printing-in” many of the parts and sub-assemblies into one part, thus greatly reducing the labor associated with design, procurement, assembly and calibration of mechanisms. Planetary Systems Corporation redesigned several of the components of the separation system based on additive manufacturing principles including geometric flexibility and the ability to fabricate complex designs, ability to combine multiple parts of an assembly into a single component, and the ability to optimize design for specific mechanical property targets. Shock absorption was specifically targeted and requirements were established to attenuate damage to the Lightband system from shock of initiation. Planetary Systems Corporation redesigned components based on these requirements and sent the designs to Oak Ridge National Laboratory to be printed. ORNL printed the parts using the Arcam electron beam melting technology based on the desire for the parts to be fabricated from Ti-6Al-4V based on the weight and mechanical performance of the material. A second set of components was fabricated from stainless steel material on the Renishaw laser powder bed technology due to the improved geometric accuracy, surface finish, and wear resistance of the material. Planetary Systems Corporation evaluated these components and determined that 3D printing is potentially a viable method for achieving significant cost and savings metrics.

  7. Spectra and spacecraft

    Science.gov (United States)

    Moroz, V. I.

    2001-02-01

    In June 1999, Dr. Regis Courtin, Associate Editor of PSS, suggested that I write an article for the new section of this journal: "Planetary Pioneers". I hesitated , but decided to try. One of the reasons for my doubts was my primitive English, so I owe the reader an apology for this in advance. Writing took me much more time than I supposed initially, I have stopped and again returned to manuscript many times. My professional life may be divided into three main phases: pioneering work in ground-based IR astronomy with an emphasis on planetary spectroscopy (1955-1970), studies of the planets with spacecraft (1970-1989), and attempts to proceed with this work in difficult times. I moved ahead using the known method of trials and errors as most of us do. In fact, only a small percentage of efforts led to some important results, a sort of dry residue. I will try to describe below how has it been in my case: what may be estimated as the most important, how I came to this, what was around, etc.

  8. Build-up and surface dose measurements on phantoms using micro-MOSFET in 6 and 10 MV x-ray beams and comparisons with Monte Carlo calculations

    International Nuclear Information System (INIS)

    Xiang, Hong F.; Song, Jun S.; Chin, David W. H.; Cormack, Robert A.; Tishler, Roy B.; Makrigiorgos, G. Mike; Court, Laurence E.; Chin, Lee M.

    2007-01-01

    This work is intended to investigate the application and accuracy of micro-MOSFET for superficial dose measurement under clinically used MV x-ray beams. Dose response of micro-MOSFET in the build-up region and on surface under MV x-ray beams were measured and compared to Monte Carlo calculations. First, percentage-depth-doses were measured with micro-MOSFET under 6 and 10 MV beams of normal incidence onto a flat solid water phantom. Micro-MOSFET data were compared with the measurements from a parallel plate ionization chamber and Monte Carlo dose calculation in the build-up region. Then, percentage-depth-doses were measured for oblique beams at 0 deg. - 80 deg. onto the flat solid water phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm below the surface. Measurements were compared to Monte Carlo calculations under these settings. Finally, measurements were performed with micro-MOSFET embedded in the first 1 mm layer of bolus placed on a flat phantom and a curved phantom of semi-cylindrical shape. Results were compared to superficial dose calculated from Monte Carlo for a 2 mm thin layer that extends from the surface to a depth of 2 mm. Results were (1) Comparison of measurements with MC calculation in the build-up region showed that micro-MOSFET has a water-equivalence thickness (WET) of 0.87 mm for 6 MV beam and 0.99 mm for 10 MV beam from the flat side, and a WET of 0.72 mm for 6 MV beam and 0.76 mm for 10 MV beam from the epoxy side. (2) For normal beam incidences, percentage depth dose agree within 3%-5% among micro-MOSFET measurements, parallel-plate ionization chamber measurements, and MC calculations. (3) For oblique incidence on the flat phantom with micro-MOSFET placed at depths of 2 cm, 1 cm, and 2 mm, measurements were consistent with MC calculations within a typical uncertainty of 3%-5%. (4) For oblique incidence on the flat phantom and a curved-surface phantom, measurements with micro-MOSFET placed at 1.0 mm agrees with the MC

  9. Flywheel Charge/Discharge Control Developed

    Science.gov (United States)

    Beach, Raymond.F.; Kenny, Barbara H.

    2001-01-01

    A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.

  10. AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE

    International Nuclear Information System (INIS)

    Panettieri, Vanessa; Barsoum, Pierre; Westermark, Mathias; Brualla, Lorenzo; Lax, Ingmar

    2009-01-01

    Background and purpose: In tangential beam treatments accurate dose calculation of the absorbed dose in the build-up region is of major importance, in particular when the target has superficial extension close to the skin. In most analytical treatment planning systems (TPSs) calculations depend on the experimental measurements introduced by the user in which accuracy might be limited by the type of detector employed to perform them. To quantify the discrepancy between analytically calculated and delivered dose in the build-up region, near the skin of a patient, independent Monte Carlo (MC) simulations using the PENELOPE code were performed. Dose distributions obtained with MC simulations were compared with those given by the Pencil Beam Convolution (PBC) algorithm and the Analytical Anisotropic Algorithm (AAA) implemented in the commercial TPS Eclipse. Material and methods: A cylindrical phantom was used to approximate the breast contour of a patient for MC simulations and the TPS. Calculations of the absorbed doses were performed for 6 and 18 MV beams for four different angles of incidence: 15 deg., 30 deg., 45 deg. and 75 deg. and different field sizes: 3 x 3 cm 2 , 10 x 10 cm 2 and 40 x 40 cm 2 . Absorbed doses along the phantom central axis were obtained with both the PBC algorithm and the AAA and compared to those estimated by the MC simulations. Additionally, a breast patient case was calculated with two opposed 6 MV photon beams using all the aforementioned analytical and stochastic algorithms. Results: For the 6 MV photon beam in the phantom case, both the PBC algorithm and the AAA tend to underestimate the absorbed dose in the build-up region in comparison to MC results. These differences are clinically irrelevant and are included in a 1 mm range. This tendency is also confirmed in the breast patient case. For the 18 MV beam the PBC algorithm underestimates the absorbed dose with respect to the AAA. In comparison to MC simulations the PBC algorithm tends

  11. GRAB - WRS system module number 60221 for calculating gamma-ray penetration in slab shields by the method of kernel integration with build-up factors

    International Nuclear Information System (INIS)

    Grimstone, M.J.

    1978-06-01

    The WRS Modular Programming System has been developed as a means by which programmes may be more efficiently constructed, maintained and modified. In this system a module is a self-contained unit typically composed of one or more Fortran routines, and a programme is constructed from a number of such modules. This report describes one WRS module, the function of which is to calculate the gamma-ray flux, dose, or heating rate in a slab shield using the build-up factor method. The information given in this manual is of use both to the programmer wishing to incorporate the module in a programme, and to the user of such a programme. (author)

  12. Together, slowly but surely: the role of social interaction and feedback in the build-up of benefit in collective decision-making

    DEFF Research Database (Denmark)

    Bahrami, Bahador; Olsen, Karsten; Bang, Dan

    2011-01-01

    That objective reference is necessary for formation of reliable beliefs about the external world is almost axiomatic. However, Condorcet (1785) suggested that purely subjective information-if shared and combined via social interaction-is enough for accurate understanding of the external world. We...... asked if social interaction and objective reference contribute differently to the formation and build-up of collective perceptual beliefs. In three experiments, dyads made individual and collective perceptual decisions in a two-interval, forced-choice, visual search task. In Experiment 1, participants...... negotiated their collective decisions with each other verbally and received feedback about accuracy at the end of each trial. In Experiment 2, feedback was not given. In Experiment 3, communication was not allowed but feedback was provided. Social interaction (Experiments 1 and 2 vs. 3) resulted...

  13. A theoretical investigation on optimal structures of ethane clusters (C2H6)n with n ≤ 25 and their building-up principle.

    Science.gov (United States)

    Takeuchi, Hiroshi

    2011-05-01

    Geometry optimization of ethane clusters (C(2)H(6))(n) in the range of n ≤ 25 is carried out with a Morse potential. A heuristic method based on perturbations of geometries is used to locate global minima of the clusters. The following perturbations are carried out: (1) the molecule or group with the highest energy is moved to the interior of a cluster, (2) it is moved to stable positions on the surface of a cluster, and (3) orientations of one and two molecules are randomly modified. The geometry obtained after each perturbation is optimized by a quasi-Newton method. The global minimum of the dimer is consistent with that previously reported. The putative global minima of the clusters with 3 ≤ n ≤ 25 are first proposed and their building-up principle is discussed. Copyright © 2010 Wiley Periodicals, Inc.

  14. Improvement of antiscuff properties and thermal stability of alloys of the Fe-Cr-Ni-Si system used for building-up of fittings

    International Nuclear Information System (INIS)

    Luzhanskij, I.B.; Runov, A.E.; Gel'man, A.S.; Stepin, V.S.

    1978-01-01

    Studied was the influence of the system and the degree of alloying of alloys of the Fe-Cr-Ni-Si system on their operational characteristics in the operation mode of the energy armature of superhigh parameters. The TsN18 alloy has been developed (containing 0.1 to 0.2% C; 3.5 to 6.0% Si; 0.5 to 3.0% Mn; 16 to 17% Cr; 10.5 to 12% Ni; 1.5 to 3% Mo; the balance being Fe), bombining a high resistance to scuffing with a fairly high heat resistance; the alloy lending itself to building up and to machining. The dependence of the wear resistance of the alloys of the Fe-Cr-Ni-Si system on two factors has been established; namely, - the antifriction characteristics of the film of secondary structures, and physico-mechanical properties of the alloy

  15. Regional cerebral perfusion measurements: a comparative study of xenon-enhanced CT and C15O2 build-up using dynamic PET

    International Nuclear Information System (INIS)

    St Lawrence, K.S.; Bews, J.; Dunscombe, P.B.

    1992-01-01

    Regional cerebral perfusion can be determined by monitoring the uptake of a diffusable tracer concurrently in cerebral tissue and arterial blood. Two techniques based on this methodology are xenon-enhanced computed tomography (Xe CT) and C 15 O 2 build-up using dynamic positron emission tomography (C 15 O 2 PET). Serial images are used by both Xe CT and C 15 O 2 PET to characterize the uptake of the tracer in cerebral tissue. The noise present in these images will reduce the precision of the perfusion measurements obtained by either technique. Using Monte Carlo type computer simulations, the precision of the two techniques as a function of image noise has been examined. On the basis of their results, they conclude that the precision of the Xe CT technique is comparable to the precision of C 15 O 2 PET when realistic clinical protocols are employed for both. (author)

  16. Short-Term Effects of Mixed Species Fallows on Soil Organic Matter Build-Up in the Soil of Western Kenya

    International Nuclear Information System (INIS)

    Ndufa, J.K; Candish, D.

    2007-01-01

    The rotations of crops with Nitrogen fixing legumes in improved fallows have become central agroforestry technology for soil fertility replenishments in smallholder farms because of high cost of inorganic fertilizers. The choice of the fallow species is important because the quality of residue incorporated into the soil determines it's distribution to soil organic matter (SOM) and nitrogen (N) release. High quality residues (high N content, low lignin and polyphenols) may decompose rapidly and it's unlikely to release N in synchrony with crop demand. In contrast, residues with wide C- to- N ratio, high lignin and high polyphenols may lead to long period of N immobilization and long term build up of SOM. Field experiments were conducted on farmers' fields on a Kandiudalfic eutrudox soil in Western Kenya to determine the fate of 1 5 N labelled residues in soil. Maize recovered significantly less N from single calliandra residue treatment (3 to 6%). About 70% of the residue N recovered in a mize was contained in the maize grain yield. In long rains 2000, there were no significant differences in residue-N recovery among the different single mixed residue treatment. The percentage 1 5N recovery of residues N by maize was significantly correlated with maize grain yield. At the end of short rains 1999, legume-15N recovery from 0 to 15 cm depth ranged from 30 to 80 % and was significantly higher for calliandra both in single and mixed treatment. 15N distribution in particle size fraction showed that most calliandra N was found in >20 um fraction but N from sesbania and macroptilium was mostly in the 20 um fraction. The high recovery of N of calliandra in the soil confirms the high contribution of polyphenol rich residues to soil organic matter build up

  17. Essential role of the electroneutral Na+-HCO3- cotransporter NBCn1 in murine duodenal acid-base balance and colonic mucus layer build-up in vivo.

    Science.gov (United States)

    Singh, Anurag Kumar; Xia, Weiliang; Riederer, Brigitte; Juric, Marina; Li, Junhua; Zheng, Wen; Cinar, Ayhan; Xiao, Fang; Bachmann, Oliver; Song, Penghong; Praetorius, Jeppe; Aalkjaer, Christian; Seidler, Ursula

    2013-04-15

    Duodenal epithelial cells need efficient defence strategies during gastric acidification of the lumen, while colonic mucosa counteracts damage by pathogens by building up a bacteria-free adherent mucus layer. Transport of HCO3(-) is considered crucial for duodenal defence against acid as well as for mucus release and expansion, but the transport pathways involved are incompletely understood. This study investigated the significance of the electroneutral Na(+)-HCO3(-) cotransporter NBCn1 for duodenal defence against acid and colonic mucus release. NBCn1 was localized to the basolateral membrane of duodenal villous enterocytes and of colonic crypt cells, with predominant expression in goblet cells. Duodenal villous enterocyte intracellular pH was studied before and during a luminal acid load by two-photon microscopy in exteriorized, vascularly perfused, indicator (SNARF-1 AM)-loaded duodenum of isoflurane-anaesthetized, systemic acid-base-controlled mice. Acid-induced HCO3(-) secretion was measured in vivo by single-pass perfusion and pH-stat titration. After a luminal acid load, NBCn1-deficient duodenocytes were unable to recover rapidly from intracellular acidification and could not respond adequately with protective HCO3(-) secretion. In the colon, build-up of the mucus layer was delayed, and a decreased thickness of the adherent mucus layer was observed, suggesting that basolateral HCO3(-) uptake is essential for optimal release of mucus. The electroneutral Na(+)-HCO3(-) cotransporter NBCn1 displays a differential cellular distribution in the murine intestine and is essential for HCO3(-)-dependent mucosal protective functions, such as recovery of intracellular pH and HCO3(-) secretion in the duodenum and secretion of mucus in the colon.

  18. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.)

  19. The Influence Of Modified Water Chemistries On Metal Oxide Films, Activity Build-Up And Stress Corrosion Cracking Of Structural Materials In Nuclear Power Plants

    International Nuclear Information System (INIS)

    Maekelae, K.; Laitinen, T.; Bojinov, M.

    1998-07-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of activated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for 60 Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (author)

  20. The influence of modified water chemistries on metal oxide films, activity build-up and stress corrosion cracking of structural materials in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Maekelae, K.; Laitinen, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    The primary coolant oxidises the surfaces of construction materials in nuclear power plants. The properties of the oxide films influence significantly the extent of incorporation of actuated corrosion products into the primary circuit surfaces, which may cause additional occupational doses for the maintenance personnel. The physical and chemical properties of the oxide films play also an important role in different forms of corrosion observed in power plants. This report gives a short overview of the factors influencing activity build-up and corrosion phenomena in nuclear power plants. Furthermore, the most recent modifications in the water chemistry to decrease these risks are discussed. A special focus is put on zinc water chemistry, and a preliminary discussion on the mechanism via which zinc influences activity build-up is presented. Even though the exact mechanisms by which zinc acts are not yet known, it is assumed that Zn may block the diffusion paths within the oxide film. This reduces ion transport through the oxide films leading to a reduced rate of oxide growth. Simultaneously the number of available adsorption sites for {sup 60}Co is also reduced. The current models for stress corrosion cracking assume that the anodic and the respective cathodic reactions contributing to crack growth occur partly on or in the oxide films. The rates of these reactions may control the crack propagation rate and therefore, the properties of the oxide films play a crucial role in determining the susceptibility of the material to stress corrosion cracking. Finally, attention is paid also on the novel techniques which can be used to mitigate the susceptibility of construction materials to stress corrosion cracking. (orig.) 127 refs.

  1. Building up a reactor industry

    International Nuclear Information System (INIS)

    Mattick, W.

    1977-01-01

    The reactor industry has in common with any other industry the need to meet a requirement in a specific market with a specific product. However, it is distinguished from old established industries by its origins, its young age and by the fact that most of its development costs were paid by the governments in all developed countries. A comparison of the origins and the history of companies in this field in the United Kingdom , France and the Federal Republic of Germany should merit special interest. A historical survey of this kind is presented in this contribution. If a technological project acquires international ramifications in order to diminish the market risk, national goals frequently must give way to a common objective. Problems involving practical application must be solved by joint efforts of industrial consortia. In this way, these industries can both offer a commercially viable product and take into account national characteristics or habits in such a way as to improve the overall cost-benefit situation with all parties involved. (orig.) [de

  2. Spacecraft Charging Modeling - NASCAP-2K 2013 Annual Report

    Science.gov (United States)

    2013-09-20

    public release; distribution is unlimited. 1.4. Personnel The project staffing remains as specified in the proposal. Dr. Victoria A. Davis is the...Date and time of measurement. • Geocentric satellite position, used to determine if the satellite is in sunlight or eclipse. • Chassis potential

  3. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  4. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  5. Electromagnetic Dissociation and Spacecraft Electronics Damage

    Science.gov (United States)

    Norbury, John W.

    2016-01-01

    When protons or heavy ions from galactic cosmic rays (GCR) or solar particle events (SPE) interact with target nuclei in spacecraft, there can be two different types of interactions. The more familiar strong nuclear interaction often dominates and is responsible for nuclear fragmentation in either the GCR or SPE projectile nucleus or the spacecraft target nucleus. (Of course, the proton does not break up, except possibly to produce pions or other hadrons.) The less familiar, second type of interaction is due to the very strong electromagnetic fields that exist when two charged nuclei pass very close to each other. This process is called electromagnetic dissociation (EMD) and primarily results in the emission of neutrons, protons and light ions (isotopes of hydrogen and helium). The cross section for particle production is approximately defined as the number of particles produced in nucleus-nucleus collisions or other types of reactions. (There are various kinematic and other factors which multiply the particle number to arrive at the cross section.) Strong, nuclear interactions usually dominate the nuclear reactions of most interest that occur between GCR and target nuclei. However, for heavy nuclei (near Fe and beyond) at high energy the EMD cross section can be much larger than the strong nuclear interaction cross section. This paper poses a question: Are there projectile or target nuclei combinations in the interaction of GCR or SPE where the EMD reaction cross section plays a dominant role? If the answer is affirmative, then EMD mechanisms should be an integral part of codes that are used to predict damage to spacecraft electronics. The question can become more fine-tuned and one can ask about total reaction cross sections as compared to double differential cross sections. These issues will be addressed in the present paper.

  6. Effects of Space Weather on Geosynchronous Electromagnetic Spacecraft Perturbations Using Statistical Fluxes

    Science.gov (United States)

    Hughes, J.; Schaub, H.

    2017-12-01

    Spacecraft can charge to very negative voltages at GEO due to interactions with the space plasma. This can cause arcing which can damage spacecraft electronics or solar panels. Recently, it has been suggested that spacecraft charging may lead to orbital perturbations which change the orbits of lightweight uncontrolled debris orbits significantly. The motions of High Area to Mass Ratio objects are not well explained with just perturbations from Solar Radiation Pressure (SRP) and earth, moon, and sun gravity. A charged spacecraft will experience a Lorentz force as the spacecraft moves relative to Earth's magnetic field, as well as a Lorentz torque and eddy current torques if the object is rotating. Prior work assuming a constant "worst case" voltage has shown that Lorentz and eddy torques can cause quite large orbital changes by rotating the object to experience more or less SRP. For some objects, including or neglecting these electromagnetic torques can lead to differences of thousands of kilometers after only two orbits. This paper will further investigate the effects of electromagnetic perturbations by using a charging model that uses measured flux distributions to better simulate natural charging. This differs from prior work which used a constant voltage or Maxwellian distributions. This is done to a calm space weather case of Kp = 2 and a stormy case where Kp = 8. Preliminary analysis suggests that electrostatics will still cause large orbital changes even with the more realistic charging model.

  7. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  8. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    International Nuclear Information System (INIS)

    Furman, M.A.

    2010-01-01

    We present simulation results of the build-up of the electron-cloud density n e in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N t = (2-5) x 10 13 , and the beam kinetic energy in the range E k = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) (delta) max vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N t there is a clear threshold behavior of n e as a function of (delta) max in the range ∼ 1.1-1.3. (2) At fixed (delta) max , there is a threshold behavior of n e as a function of N t provided (delta) max is sufficiently high; the threshold value of N t is a function of the characteristics of the region being simulated. (3) The dependence on E k is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  9. A THEORETICAL STUDY OF THE BUILD-UP OF THE SUN’S POLAR MAGNETIC FIELD BY USING A 3D KINEMATIC DYNAMO MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, Gopal; Choudhuri, Arnab Rai [Department of Physics, Indian Institute of Science, Bangalore, 560012 (India); Miesch, Mark S., E-mail: ghazra@physics.iisc.ernet.in, E-mail: arnab@physics.iisc.ernet.in, E-mail: miesch@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80301 (United States)

    2017-01-20

    We develop a three-dimensional kinematic self-sustaining model of the solar dynamo in which the poloidal field generation is from tilted bipolar sunspot pairs placed on the solar surface above regions of strong toroidal field by using the SpotMaker algorithm, and then the transport of this poloidal field to the tachocline is primarily caused by turbulent diffusion. We obtain a dipolar solution within a certain range of parameters. We use this model to study the build-up of the polar magnetic field and show that some insights obtained from surface flux transport models have to be revised. We present results obtained by putting a single bipolar sunspot pair in a hemisphere and two symmetrical sunspot pairs in two hemispheres. We find that the polar fields produced by them disappear due to the upward advection of poloidal flux at low latitudes, which emerges as oppositely signed radial flux and which is then advected poleward by the meridional flow. We also study the effect that a large sunspot pair, violating Hale’s polarity law, would have on the polar field. We find that there would be some effect—especially if the anti-Hale pair appears at high latitudes in the mid-phase of the cycle—though the effect is not very dramatic.

  10. Ecloud Build-Up Simulations for the FNAL MI for a Mixed Fill Pattern: Dependence on Peak SEY and Pulse Intensity During the Ramp

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M. A.

    2010-12-11

    We present simulation results of the build-up of the electron-cloud density n{sub e} in three regions of the FNAL Main Injector (MI) for a beam fill pattern made up of 5 double booster batches followed by a 6th single batch. We vary the pulse intensity in the range N{sub t} = (2-5) x 10{sup 13}, and the beam kinetic energy in the range E{sub k} = 8-120 GeV. We assume a secondary electron emission model qualitatively corresponding to TiN, except that we let the peak value of the secondary electron yield (SEY) {delta}{sub max} vary as a free parameter in a fairly broad range. Our main conclusions are: (1) At fixed N{sub t} there is a clear threshold behavior of n{sub e} as a function of {delta}{sub max} in the range {approx} 1.1-1.3. (2) At fixed {delta}{sub max}, there is a threshold behavior of n{sub e} as a function of N{sub t} provided {delta}{sub max} is sufficiently high; the threshold value of N{sub t} is a function of the characteristics of the region being simulated. (3) The dependence on E{sub k} is weak except possibly at transition energy. Most of these results were informally presented to the relevant MI personnel in April 2010.

  11. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    Science.gov (United States)

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Building-Up of a DNA Barcode Library for True Bugs (Insecta: Hemiptera: Heteroptera) of Germany Reveals Taxonomic Uncertainties and Surprises

    Science.gov (United States)

    Raupach, Michael J.; Hendrich, Lars; Küchler, Stefan M.; Deister, Fabian; Morinière, Jérome; Gossner, Martin M.

    2014-01-01

    During the last few years, DNA barcoding has become an efficient method for the identification of species. In the case of insects, most published DNA barcoding studies focus on species of the Ephemeroptera, Trichoptera, Hymenoptera and especially Lepidoptera. In this study we test the efficiency of DNA barcoding for true bugs (Hemiptera: Heteroptera), an ecological and economical highly important as well as morphologically diverse insect taxon. As part of our study we analyzed DNA barcodes for 1742 specimens of 457 species, comprising 39 families of the Heteroptera. We found low nucleotide distances with a minimum pairwise K2P distance 2.2% were detected for 16 traditionally recognized and valid species. With a successful identification rate of 91.5% (418 species) our study emphasizes the use of DNA barcodes for the identification of true bugs and represents an important step in building-up a comprehensive barcode library for true bugs in Germany and Central Europe as well. Our study also highlights the urgent necessity of taxonomic revisions for various taxa of the Heteroptera, with a special focus on various species of the Miridae. In this context we found evidence for on-going hybridization events within various taxonomically challenging genera (e.g. Nabis Latreille, 1802 (Nabidae), Lygus Hahn, 1833 (Miridae), Phytocoris Fallén, 1814 (Miridae)) as well as the putative existence of cryptic species (e.g. Aneurus avenius (Duffour, 1833) (Aradidae) or Orius niger (Wolff, 1811) (Anthocoridae)). PMID:25203616

  13. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  14. Automatic charge control system for satellites

    Science.gov (United States)

    Shuman, B. M.; Cohen, H. A.

    1985-01-01

    The SCATHA and the ATS-5 and 6 spacecraft provided insights to the problem of spacecraft charging at geosychronous altitudes. Reduction of the levels of both absolute and differential charging was indicated, by the emission of low energy neutral plasma. It is appropriate to complete the transition from experimental results to the development of a system that will sense the state-of-charge of a spacecraft, and, when a predetermined threshold is reached, will respond automatically to reduce it. A development program was initiated utilizing sensors comparable to the proton electrostatic analyzer, the surface potential monitor, and the transient pulse monitor that flew in SCATHA, and combine these outputs through a microprocessor controller to operate a rapid-start, low energy plasma source.

  15. Laboratory investigation of antenna signals from dust impacts on spacecraft

    Science.gov (United States)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  16. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  17. New electromagnetic particle simulation code for the analysis of spacecraft-plasma interactions

    International Nuclear Information System (INIS)

    Miyake, Yohei; Usui, Hideyuki

    2009-01-01

    A novel particle simulation code, the electromagnetic spacecraft environment simulator (EMSES), has been developed for the self-consistent analysis of spacecraft-plasma interactions on the full electromagnetic (EM) basis. EMSES includes several boundary treatments carefully coded for both longitudinal and transverse electric fields to satisfy perfect conductive surface conditions. For the longitudinal component, the following are considered: (1) the surface charge accumulation caused by impinging or emitted particles and (2) the surface charge redistribution, such that the surface becomes an equipotential. For item (1), a special treatment has been adopted for the current density calculated around the spacecraft surface, so that the charge accumulation occurs exactly on the surface. As a result, (1) is realized automatically in the updates of the charge density and the electric field through the current density. Item (2) is achieved by applying the capacity matrix method. Meanwhile, the transverse electric field is simply set to zero for components defined inside and tangential to the spacecraft surfaces. This paper also presents the validation of EMSES by performing test simulations for spacecraft charging and peculiar EM wave modes in a plasma sheath.

  18. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  19. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  20. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  1. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  2. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.

    Science.gov (United States)

    D'Haese, Arnout; Le-Clech, Pierre; Van Nevel, Sam; Verbeken, Kim; Cornelissen, Emile R; Khan, Stuart J; Verliefde, Arne R D

    2013-09-15

    In this study, trace organics transport in closed-loop forward osmosis (FO) systems was assessed. The FO systems considered, consisted of an FO unit and a nanofiltration (NF) or reverse osmosis (RO) unit, with the draw solution circulating between both units. The rejection of trace organics by FO, NF and RO was tested. It was found that the rejection rates of FO were generally comparable with NF and lower than RO rejection rates. To assess the influence of fouling in FO on trace organics rejection, FO membranes were fouled with sodium alginate, bovine serum albumin or by biofilm growth, after which trace organics rejection was tested. A negative influence of fouling on FO rejection was found which was limited in most cases, while it was significant for some compounds such as paracetamol and naproxen, indicating specific compound-foulant interactions. The transport mechanism of trace organics in FO was tested, in order to differentiate between diffusive and convective transport. The concentration of trace organics in the final product water and the build-up of trace organics in the draw solution were modeled assuming the draw solution was reconcentrated by NF/RO and taking into account different transport mechanisms for the FO membrane and different rejection rates by NF/RO. Modeling results showed that if the FO rejection rate is lower than the RO rejection rate (as is the case for most compounds tested), the added value of the FO-RO cycle compared to RO only at steady-state was small for diffusively and negative for convectively transported trace organics. Modeling also showed that trace organics accumulate in the draw solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites

    Directory of Open Access Journals (Sweden)

    Keiichi YOSHIDA

    2014-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN of dual-cured core build-up resin composites (DCBRCs at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE] were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2at the top surface by irradiation for 20 seconds (20 s, 40 seconds (40 s, bonding agent plus 20 seconds (B+20 s, or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s. KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p0.05. In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05. Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity.

  4. IAEA Support for Building-Up a Highly Skilled Workforce Necessary for an Effective State System of Accounting for and Control of Nuclear Material

    International Nuclear Information System (INIS)

    Braunegger-Guelich, A.; Cisar, V.; Crete, J.-M.; Stevens, R.

    2015-01-01

    The need for highly qualified and well trained experts in the area of nuclear safeguards and non-proliferation has been emphasized at several International Atomic Energy Agency (IAEA) General Conferences and Board of Governors' meetings. To meet this need, the IAEA has developed a training programme dedicated to assisting Member States in building-up knowledge, skills and attitudes required for the sustainable establishment and maintenance of an effective State system of accounting for and control of nuclear material. The IAEA training programme in the area of nuclear safeguards and non-proliferation is designed for experts in governmental organizations, regulatory bodies, utilities and relevant industries and is provided on a regular basis at the regional and international level and, upon request, at the national level. It is based on training needs assessed, inter alia, during relevant IAEA advisory services and is updated periodically by applying the Systematic Approach to Training (SAT). In the framework of this human resources assistance programme, the IAEA also facilitates fellowship programmes for young professionals, regularly hosts the IAEA safeguards traineeship programme and supports safeguards related outreach activities organized by donor countries, universities or other institutions. This paper provides an overview of the IAEA's efforts in the area of nuclear safeguards and non-proliferation training and education, including assistance to Member States' initiatives and nuclear education networks, focusing on the development and delivery of nuclear safeguards training and academic courses. Further, it discusses the important role of IAEA advisory missions and other mechanisms that significantly contribute to the continuous improvement of the IAEA Member States training in the area of nuclear safeguards and non-proliferation. Finally, it outlines the forthcoming eLearning module on Safeguards that will complement the existing training

  5. Soil environmental conditions and microbial build-up mediate the effect of plant diversity on soil nitrifying and denitrifying enzyme activities in temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Xavier Le Roux

    Full Text Available Random reductions in plant diversity can affect ecosystem functioning, but it is still unclear which components of plant diversity (species number - namely richness, presence of particular plant functional groups, or particular combinations of these and associated biotic and abiotic drivers explain the observed relationships, particularly for soil processes. We assembled grassland communities including 1 to 16 plant species with a factorial separation of the effects of richness and functional group composition to analyze how plant diversity components influence soil nitrifying and denitrifying enzyme activities (NEA and DEA, respectively, the abundance of nitrifiers (bacterial and archaeal amoA gene number and denitrifiers (nirK, nirS and nosZ gene number, and key soil environmental conditions. Plant diversity effects were largely due to differences in functional group composition between communities of identical richness (number of sown species, though richness also had an effect per se. NEA was positively related to the percentage of legumes in terms of sown species number, the additional effect of richness at any given legume percentage being negative. DEA was higher in plots with legumes, decreased with increasing percentage of grasses, and increased with richness. No correlation was observed between DEA and denitrifier abundance. NEA increased with the abundance of ammonia oxidizing bacteria. The effect of richness on NEA was entirely due to the build-up of nitrifying organisms, while legume effect was partly linked to modified ammonium availability and nitrifier abundance. Richness effect on DEA was entirely due to changes in soil moisture, while the effects of legumes and grasses were partly due to modified nitrate availability, which influenced the specific activity of denitrifiers. These results suggest that plant diversity-induced changes in microbial specific activity are important for facultative activities such as denitrification

  6. The effect of temperature on guiding of slow highly charged ions through a mesoscopic glass capillary

    International Nuclear Information System (INIS)

    Bereczky, R J; Tökési, K; Kowarik, G; Ladinig, F; Schrempf, D; Aumayr, F

    2012-01-01

    We present first temperature dependent transmission measurements of slow highly charged ions through a single, straight Duran glass capillary with a high aspect ratio. By changing the temperature of the glass capillary the electrical conductivity of the Duran can be varied by several orders of magnitude. This held the promise to investigate the effect of conductivity on particle transport (build-up and removal of charge patches) through capillaries in more details.

  7. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  8. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  9. Ionization chamber with build-up cup spectral sensitivity to megavoltage (0.5-20 MeV) photon fluences in free air

    International Nuclear Information System (INIS)

    Gorlachev, G.E.

    2002-01-01

    In-air measurements of photon beam properties, used in radiation therapy, is common practice for determining radiation output dependence from the field size, known as head scatter factors (HSF). PMMA and brass build-up caps are most popular miniphantoms for providing electron equilibrium. Discrepancies up to 2% in HSF measurements by different combinations of detectors and equilibrium caps have been published. One of the main reasons of those discrepancies is the detector system spectral sensitivity and differences in primary and scatter radiation spectra. In the light of new model based dose calculation methods direct radiation fluence measurement is of great interest. So, understanding of detector spectral sensitivity is important task for modern dosimetry of radiation therapy. In the present study Monte Carlo (MC) method was employed to calculate ionization chamber response to monoenergetic photon fluences, normalized to water kerma units. Simulation was done using EGS4 package. Electron transport was performed with ESTEPE equal to 4%. PEGS cross sections were generated for maximal energy 20 MeV with cutoff kinetic energy 10 KeV both for photons and electrons. Scanditronix RK-05 ionization chamber was chosen as a prototype. Eight cylindrical miniphantoms, representing four materials (PMMA, Al, Cu, Pb) and two front wall thickness, were simulated. Results are presented. Miniphantom front wall thicknesses in each case are shown in the figure. Diameter depends on the material and equal respectively: PMMA - 4, Al - 2.5, Cu - 1.5, and PB - 1.5 cm. Ionization chamber outer diameter is equal to 0.7 cm. Detector sensitivity has considerable energy dependence. Two effects explain it. First is the radiation attenuation in the miniphantom. Second is pair production, which dominates in high atomic number miniphantoms for energies above 5 MeV. Depending on the miniphantom material detector response changes from 1.5 to 5 times in the energy range from 0.5 to 20 MeV. Correct

  10. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  11. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  12. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  13. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  14. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  15. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  16. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  17. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  18. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  19. Control Algorithms Charge Batteries Faster

    Science.gov (United States)

    2012-01-01

    On March 29, 2011, NASA s Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft beamed a milestone image to Earth: the first photo of Mercury taken from orbit around the solar system s innermost planet. (MESSENGER is also the first spacecraft to orbit Mercury.) Like most of NASA s deep space probes, MESSENGER is enabled by a complex power system that allows its science instruments and communications to function continuously as it travels millions of miles from Earth. "Typically, there isn't one particular power source that can support the entire mission," says Linda Taylor, electrical engineer in Glenn Research Center s Power Systems Analysis Branch. "If you have solar arrays and you are in orbit, at some point you re going to be in eclipse." Because of this, Taylor explains, spacecraft like MESSENGER feature hybrid power systems. MESSENGER is powered by a two-panel solar array coupled with a nickel hydrogen battery. The solar arrays provide energy to the probe and charge the battery; when the spacecraft s orbit carries it behind Mercury and out of the Sun s light, the spacecraft switches to battery power to continue operations. Typically, hybrid systems with multiple power inputs and a battery acting alternately as storage and a power source require multiple converters to handle the power flow between the devices, Taylor says. (Power converters change the qualities of electrical energy, such as from alternating current to direct current, or between different levels of voltage or frequency.) This contributes to a pair of major concerns for spacecraft design. "Weight and size are big drivers for any space application," Taylor says, noting that every pound added to a space vehicle incurs significant costs. For an innovative solution to managing power flows in a lightweight, cost-effective manner, NASA turned to a private industry partner.

  20. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  1. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  2. Installation of a radioactive waste disposal facility. The necessity of building up durable links between the general public and radioactive waste. Feedback from experience in France

    International Nuclear Information System (INIS)

    Comte, Annabelle; Farin, Sebastien

    2015-01-01

    2013 has been a banner year for Andra with widespread discussions on the question of long-term management of radioactive waste: a nationwide public discussion about the planned Cigeo deep disposal facility has been organized and national discussions on the energy source transition had inevitably brought up the question of what to do with future radioactive waste to be produced under the various scenarios put forward. In spite of an open institutional framework, with numerous legal provisions for citizen participation, 2013 showed that creation of a radioactive waste disposal facility is not, and cannot be, a question dealt with like breaking news, within a given temporal or spatial perimeter. Any attempts to bring up the subject under the spotlight of public scrutiny inevitably shift the discussions away from their central theme and abandon the underlying question - what should be done with the existing radioactive waste and the waste that is bound to be produced? - to move on to the other major question: ''Should we stop using nuclear power or not?'', which takes us away from our responsibilities towards future generations. Daring to face the question, anchor it in citizen discussions, and create awareness of our duties towards coming generations: this is the challenge that Andra had already set itself several years ago. Our position is a strong one; rather than seeking to mask the problem of radioactive waste, we must face up to our responsibilities: the waste is already there, and we have to do something with it. It will take time to be successful here. Long-term management of radioactive waste is clearly a really long-term matter. All the experience in the field has shown that it involves patience and careful listening, and requires building up a basis for solid trust among the potential neighboring population, who are the most directly concerned. Durable proximity human investment is one of the key factors of success. For over 20 years now

  3. Installation of a radioactive waste disposal facility. The necessity of building up durable links between the general public and radioactive waste. Feedback from experience in France

    Energy Technology Data Exchange (ETDEWEB)

    Comte, Annabelle; Farin, Sebastien [Andra, Chatenay-Malabry (France)

    2015-07-01

    2013 has been a banner year for Andra with widespread discussions on the question of long-term management of radioactive waste: a nationwide public discussion about the planned Cigeo deep disposal facility has been organized and national discussions on the energy source transition had inevitably brought up the question of what to do with future radioactive waste to be produced under the various scenarios put forward. In spite of an open institutional framework, with numerous legal provisions for citizen participation, 2013 showed that creation of a radioactive waste disposal facility is not, and cannot be, a question dealt with like breaking news, within a given temporal or spatial perimeter. Any attempts to bring up the subject under the spotlight of public scrutiny inevitably shift the discussions away from their central theme and abandon the underlying question - what should be done with the existing radioactive waste and the waste that is bound to be produced? - to move on to the other major question: ''Should we stop using nuclear power or not?'', which takes us away from our responsibilities towards future generations. Daring to face the question, anchor it in citizen discussions, and create awareness of our duties towards coming generations: this is the challenge that Andra had already set itself several years ago. Our position is a strong one; rather than seeking to mask the problem of radioactive waste, we must face up to our responsibilities: the waste is already there, and we have to do something with it. It will take time to be successful here. Long-term management of radioactive waste is clearly a really long-term matter. All the experience in the field has shown that it involves patience and careful listening, and requires building up a basis for solid trust among the potential neighboring population, who are the most directly concerned. Durable proximity human investment is one of the key factors of success. For over 20 years now

  4. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  5. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  6. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  7. Global Precipitation Measurement (GPM) Mission Core Spacecraft Systems Engineering Challenges

    Science.gov (United States)

    Bundas, David J.; ONeill, Deborah; Field, Thomas; Meadows, Gary; Patterson, Peter

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  8. Conceptual Design of an Electric Sail Technology Demonstration Mission Spacecraft

    Science.gov (United States)

    Wiegmann, Bruce M.

    2017-01-01

    There is great interest in examining the outer planets of our solar system and Heliopause region (edge of Solar System) and beyond regions of interstellar space by both the Planetary and Heliophysics communities. These needs are well docu-mented in the recent National Academy of Sciences Decadal Surveys. There is significant interest in developing revolutionary propulsion techniques that will enable such Heliopause scientific missions to be completed within 10 to15 years of the launch date. One such enabling propulsion technique commonly known as Electric Sail (E-Sail) propulsion employs positively charged bare wire tethers that extend radially outward from a rotating spacecraft spinning at a rate of one revolution per hour. Around the positively charged bare-wire tethers, a Debye Sheath is created once positive voltage is applied. This sheath stands off of the bare wire tether at a sheath diameter that is proportional to the voltage in the wire coupled with the flux density of solar wind ions within the solar system (or the location of spacecraft in the solar system. The protons that are expended from the sun (solar wind) at 400 to 800 km/sec are electrostatically repelled away from these positively charged Debye sheaths and propulsive thrust is produced via the resulting momentum transfer. The amount of thrust produced is directly proportional to the total wire length. The Marshall Space Flight Center (MSFC) Electric Sail team is currently funded via a two year Phase II NASA Innovative Advanced Concepts (NIAC) awarded in July 2015. The team's current activities are: 1) Developing a Particle in Cell (PIC) numeric engineering model from the experimental data collected at MSFC's Solar Wind Facility on the interaction between simulated solar wind interaction with a charged bare wire that can be applied to a variety of missions, 2) The development of the necessary tether deployers and tethers to enable successful de-ployment of multiple, multi km length bare tethers

  9. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  10. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  11. Jupiter's magnetosphere and aurorae observed by the Juno spacecraft during its first polar orbits

    DEFF Research Database (Denmark)

    Connerney, J. E. P.; Adriani, Alberto; Allegrini, F.

    2017-01-01

    The Juno spacecraft acquired direct observations of the jovian magnetosphere and auroral emissions from a vantage point above the poles. Juno's capture orbit spanned the jovian magnetosphere from bow shock to the planet, providing magnetic field, charged particle, and wave phenomena context...

  12. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  13. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  14. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  15. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  16. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Energy Technology Data Exchange (ETDEWEB)

    Ligorio, G.; Nardi, M. V. [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Steyrleuthner, R.; Neher, D. [Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht Str. 24, 14476 Potsdam (Germany); Ihiawakrim, D. [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, Cedex2 (France); Crespo-Monteiro, N.; Brinkmann, M. [Institut Charles Sadron CNRS, 23 rue du Loess, 67034 Strasbourg (France); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Erneuerbare Energien, Albert-Einstein Str. 15, 12489 Berlin (Germany)

    2016-04-11

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10{sup 4} due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  17. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    International Nuclear Information System (INIS)

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, R.; Neher, D.; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Koch, N.

    2016-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10 4 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  18. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    OpenAIRE

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, Robert; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Neher, D.; Koch, N.

    2017-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 104 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contr...

  19. ESA's tools for internal charging; Outils developpes par l'ESA pour evaluer les repartitions de charges electrostatiques

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J. [ESA/ESTEC (Netherlands); Rodgers, D.J.; Ryden, K.A.; Latham, P.M. [DERA, Farnborough (United Kingdom); Wrenn, G.L. [T.S. Space Systems (United Kingdom); Levy, L.; Panabiere, G. [Office National d' Etudes et de Recherches Aerospatiales (ONERA/DESP), 31 - Toulouse (France)

    1999-07-01

    Electrostatic discharges, caused by bulk charging of spacecraft insulating materials, are a major cause of satellite anomalies. This is a presentation of ESA's tools to assess whether a given structure is liable to experience electrostatic discharges. (authors)

  20. TTEthernet for Integrated Spacecraft Networks

    Science.gov (United States)

    Loveless, Andrew

    2015-01-01

    Aerospace projects have traditionally employed federated avionics architectures, in which each computer system is designed to perform one specific function (e.g. navigation). There are obvious downsides to this approach, including excessive weight (from so much computing hardware), and inefficient processor utilization (since modern processors are capable of performing multiple tasks). There has therefore been a push for integrated modular avionics (IMA), in which common computing platforms can be leveraged for different purposes. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and design complexity. However, the application of IMA principles introduces significant challenges, as the data network must accommodate traffic of mixed criticality and performance levels - potentially all related to the same shared computer hardware. Because individual network technologies are rarely so competent, the development of truly integrated network architectures often proves unreasonable. Several different types of networks are utilized - each suited to support a specific vehicle function. Critical functions are typically driven by precise timing loops, requiring networks with strict guarantees regarding message latency (i.e. determinism) and fault-tolerance. Alternatively, non-critical systems generally employ data networks prioritizing flexibility and high performance over reliable operation. Switched Ethernet has seen widespread success filling this role in terrestrial applications. Its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components make it desirable for inclusion in spacecraft platforms. Basic Ethernet configurations have been incorporated into several preexisting aerospace projects, including both the Space Shuttle and International Space Station (ISS). However, classical switched Ethernet cannot provide the high level of network

  1. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  2. Review on transactinium isotope build-up and decay in reactor fuel and related sensitivities to cross section changes and results and main conclusions of the IAEA-Advisory Group Meeting on Transactinium Nuclear Data, held at Karlsruhe, November 1975

    International Nuclear Information System (INIS)

    Kuesters, H.; Lalovic, M.

    1976-04-01

    In this report a review is given on the actinium isotope build-up and decay in LWRs, LMFBRs and HTRs. The dependence of the corresponding physical aspects on reactor type, fuel cycle strategy, calculational methods and cross section uncertainties is discussed. Results from postirradiation analyses and from integral experiments in fast zero power assemblies are compared with theoretical predictions. Some sensitivity studies about the influence of actinium nuclear data uncertainties on the isotopic concentration, decay heat, and the radiation out-put in fuel and waste are presented. In a second part, the main results of the IAEA-Advisory Group Meeting on Transactinium Nuclear Data are summarized and discussed. (orig.) [de

  3. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  4. Methodology and Data Sources for Assessing Extreme Charging Events within the Earth's Magnetosphere

    Science.gov (United States)

    Parker, L. N.; Minow, J. I.; Talaat, E. R.

    2016-12-01

    Spacecraft surface and internal charging is a potential threat to space technologies because electrostatic discharges on, or within, charged spacecraft materials can result in a number of adverse impacts to spacecraft systems. The Space Weather Action Plan (SWAP) ionizing radiation benchmark team recognized that spacecraft charging will need to be considered to complete the ionizing radiation benchmarks in order to evaluate the threat of charging to critical space infrastructure operating within the near-Earth ionizing radiation environments. However, the team chose to defer work on the lower energy charging environments and focus the initial benchmark efforts on the higher energy galactic cosmic ray, solar energetic particle, and trapped radiation belt particle environments of concern for radiation dose and single event effects in humans and hardware. Therefore, an initial set of 1 in 100 year spacecraft charging environment benchmarks remains to be defined to meet the SWAP goals. This presentation will discuss the available data sources and a methodology to assess the 1 in 100 year extreme space weather events that drive surface and internal charging threats to spacecraft. Environments to be considered are the hot plasmas in the outer magnetosphere during geomagnetic storms, relativistic electrons in the outer radiation belt, and energetic auroral electrons in low Earth orbit at high latitudes.

  5. Origin of interfacial charging in irradiated silicon nitride capacitors

    International Nuclear Information System (INIS)

    Hughes, R.C.

    1984-01-01

    Many experiments show that when metal-silicon nitride-silicon dioxide-silicon (MNOS) devices are irradiated in short circuit, a large interfacial charge builds up near the nitride-SiO 2 -Si interface. This effect cannot be explained by simple models of radiation-induced conductivity of the nitride, but it is reported here that inclusion of carrier diffusion and recombination in the photoconductivity equations can predict the observed behavior. Numerical solutions on a computer are required, however, when these complications are added. The simulations account for the magnitude and radiation dose dependence of the results, as well as the occurrence of a steady state during the irradiation. The location of the excess trapped charge near the interface is also predicted, along with the large number of new traps which must be introduced to influence the steady-state charge distribution

  6. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  7. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  8. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  9. The Young-Feynman two-slits experiment with single electrons: Build-up of the interference pattern and arrival-time distribution using a fast-readout pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Frabboni, Stefano [Department of Physics, University of Modena and Reggio Emilia, Via G. Campi 213/a, 41125 Modena (Italy); CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Gabrielli, Alessandro [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy); Carlo Gazzadi, Gian [CNR-Institute of Nanoscience-S3, Via G. Campi 213/a, 41125 Modena (Italy); Giorgi, Filippo [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy); Matteucci, Giorgio [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); Pozzi, Giulio, E-mail: giulio.pozzi@unibo.it [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); Cesari, Nicola Semprini; Villa, Mauro; Zoccoli, Antonio [Department of Physics, University of Bologna, Viale B. Pichat 6/2, 40127 Bologna (Italy); INFN, Viale B. Pichat 6/2, 40127 Bologna (Italy)

    2012-05-15

    The two-slits experiment for single electrons has been carried out by inserting in a conventional transmission electron microscope a thick sample with two nano-slits fabricated by Focused Ion Beam technique and a fast recording system able to measure the electron arrival-time. The detector, designed for experiments in future colliders, is based on a custom CMOS chip equipped with a fast readout chain able to manage up to 10{sup 6} frames per second. In this way, high statistic samples of single electron events can be collected within a time interval short enough to measure the distribution of the electron arrival-times and to observe the build-up of the interference pattern. -- Highlights: Black-Right-Pointing-Pointer We present the first results obtained regarding the two-slits Young-Feynman experiment with single electrons. Black-Right-Pointing-Pointer We use two nano-slits fabricated by Focused Ion Beam technique. Black-Right-Pointing-Pointer We insert in the transmission electron microscope a detector, designed for experiments in future colliders. Black-Right-Pointing-Pointer We record the build-up of high statistic single electron interference patterns. Black-Right-Pointing-Pointer We measure the time distribution of electron arrivals.

  10. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  11. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  12. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  13. SSTI- Lewis Spacecraft Nickel-Hydrogen Battery

    Science.gov (United States)

    Tobias, R. F.

    1997-01-01

    Topics considered include: NASA-Small Spacecraft Technology Initiative (SSTI) objectives, SSTI-Lewis overview, battery requirement, two cells Common Pressure Vessel (CPV) design summary, CPV electric performance, battery design summary, battery functional description, battery performance.

  14. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  15. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  16. Computational Model for Spacecraft/Habitat Volume

    Data.gov (United States)

    National Aeronautics and Space Administration — Please note that funding to Dr. Simon Hsiang, a critical co-investigator for the development of the Spacecraft Optimization Layout and Volume (SOLV) model, was...

  17. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  18. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  19. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  20. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  1. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  2. A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization

    Science.gov (United States)

    Fanchiang, Christine

    Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. The premise of this work relies on the idea that if an accurate predictive model exists to forecast crew performance issues as a result of spacecraft design and operations, it can help designers and managers make better decisions throughout the design process, and ensure that the crewmembers are well-integrated with the system from the very start. The result should be a high-quality, user-friendly spacecraft that optimizes the utilization of the crew while keeping them alive, healthy, and happy during the course of the mission. Therefore, the goal of this work was to develop an integrative framework to quantitatively evaluate a spacecraft design from the crew performance perspective. The approach presented here is done at a very fundamental level starting with identifying and defining basic terminology, and then builds up important axioms of human spaceflight that lay the foundation for how such a framework can be developed. With the framework established, a methodology for characterizing the outcome using a mathematical model was developed by pulling from existing metrics and data collected on human performance in space. Representative test scenarios were run to show what information could be garnered and how it could be applied as a useful, understandable metric for future spacecraft design. While the model is the primary tangible product from this research, the more interesting outcome of

  3. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  4. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  5. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  6. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    Science.gov (United States)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  7. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  8. How to emit a high-power electron beam from a magnetospheric spacecraft?

    Science.gov (United States)

    Delzanno, G. L.; Lucco Castello, F.; Borovsky, J.; Miars, G.; Leon, O.; Gilchrist, B. E.

    2017-12-01

    The idea of using a high-power electron beam to actively probe magnetic-field-line connectivity in space has been discussed since the 1970's. It could solve longstanding questions in magnetospheric/ionospheric physics by establishing causality between phenomena occurring in the magnetosphere and their image in the ionosphere. However, this idea has never been realized onboard a magnetospheric spacecraft because the tenuous magnetospheric plasma cannot provide the return current necessary to keep the charging of the spacecraft under control. Recently, Delzanno et al. [1] have proposed a spacecraft-charging mitigation scheme to enable the emission of a high-power electron beam from a magnetospheric spacecraft. It is based on the plasma contactor, i.e. a high-density neutral plasma emitted prior to and with the electron beam. The contactor acts as an ion emitter (not as an electron collector, as previously thought): a high ion current can be emitted off the quasi-spherical contactor surface, without the strong space-charge limitations typical of planar ion beams, and the electron-beam current can be successfully compensated. In this work, we will discuss our theoretical/simulation effort to improve the understanding of contactor-based ion emission. First, we will present a simple mathematical model useful for the interpretation of the results of [1]. The model is in spherical geometry and the contactor dynamics is described by only two surfaces (its quasi-neutral surface and the front of the outermost ions). It captures the results of self-consistent Particle-In-Cell (PIC) simulations with good accuracy and highlights the physics behind the charge-mitigation scheme clearly. PIC simulations connecting the 1D model to the actual geometry of the problem will be presented to obtain the scaling of the spacecraft potential varying contactor emission area. Finally, results for conditions relevant to an actual mission will also be discussed. [1] G. L. Delzanno, J. E. Borovsky

  9. Correcting PSP electron measurements for the effects of spacecraft electrostatic and magnetic fields

    Science.gov (United States)

    McGinnis, D.; Halekas, J. S.; Larson, D. E.; Whittlesey, P. L.; Kasper, J. C.

    2017-12-01

    The near-Sun environment which the Parker Solar Probe will investigate presents a unique challenge for the measurement of thermal and suprathermal electrons. Over one orbital period, the ionizing photon flux and charged particle densities vary to such an extent that the spacecraft could charge to electrostatic potentials ranging from a few volts to tens of volts or more, and it may even develop negative electrostatic potentials near closest approach. In addition, significant permanent magnetic fields from spacecraft components will perturb thermal electron trajectories. Given these effects, electron distribution function (EDF) measurements made by the SWEAP/SPAN electron sensors will be significantly affected. It is thus important to try to understand the extent and nature of such effects, and to remediate them as much as possible. To this end, we have incorporated magnetic fields and a model electrostatic potential field into particle tracing simulations to predict particle trajectories through the near spacecraft environment. These simulations allow us to estimate how the solid angle elements measured by SPAN deflect and stretch in the presence of these fields and therefore how and to what extent EDF measurements will be distorted. In this work, we demonstrate how this technique can be used to produce a `dewarping' correction factor. Further, we show that this factor can correct synthetic datasets simulating the warped EDFs that the SPAN instruments are likely to measure over a wide range of spacecraft potentials and plasma Debye lengths.

  10. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  11. Origin of interface states and oxide charges generated by ionizing radiation

    International Nuclear Information System (INIS)

    Sah, C.T.

    1976-01-01

    The randomly located trivalent silicon atoms are shown to account for the thermally generated interface states at the SiO 2 -Si interface. The interface state density is greatly reduced in water containing ambients at low temperatures (450 0 C) by forming trivalent silicon hydroxide bonds. Interface states are regenerated when the /triple bond/Si-OH bonds are broken by ionizing radiation and the OH ions are drifted away. In the bulk of the oxide film, the trivalent silicon and the interstitial oxygen donor centers are shown to be responsible for the heat and radiation generated positive space charge build-up (oxide charge) in thermally grown silicon oxide

  12. Efficient photogeneration of charge carriers in silicon nanowires with a radial doping gradient

    International Nuclear Information System (INIS)

    Murthy, D H K; Houtepen, A J; Savenije, T J; Siebbeles, L D A; Xu, T; Nys, J P; Krzeminski, C; Grandidier, B; Stievenard, D; Chen, W H; Pareige, P; Jomard, F; Patriarche, G; Lebedev, O I

    2011-01-01

    by performing electrodeless time-resolved microwave conductivity measurements, the efficiency of charge carrier generation, their mobility, and the decay kinetics on photoexcitation were studied in arrays of Si nanowires grown by the vapor-liquid-solid mechanism. Large enhancements in the magnitude of the photoconductance and charge carrier lifetime are found depending on the incorporation of impurities during the growth. They are explained by the internal electric field that builds up, due to higher doped sidewalls, as revealed by detailed analysis of the nanowire morphology and chemical composition.

  13. Low-Impact Space Weather Sensors and the U.S. National Security Spacecraft

    Science.gov (United States)

    2016-09-01

    for deep space missions), also needs to orient its solar arrays toward the sun, none of which can be accomplished without the ability to control the...Spacecraft Thermal Control Handbook: Cryogenics. El Segundo, CA: The Aerospace Press. ESA and NASA. 2015. “ Solar and Heliospheric Observatory Home Page...Distribution is unlimited. 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) Incorporating inexpensive low-impact targeted surface charging

  14. CHARGE Association

    Directory of Open Access Journals (Sweden)

    Semanti Chakraborty

    2012-01-01

    Full Text Available We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy, gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age, GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 ΅IU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient′s karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness. [1] These anomalies have a higher probability of occurring together. In this report, we have

  15. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  16. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  17. 推进网络空间核心支援能力建设%Considerations on promoting the building-up of PLA's core supporting capabilities in cyberspace

    Institute of Scientific and Technical Information of China (English)

    柯宏发; 祝冀鲁; 赵荣

    2017-01-01

    从网络空间侦察能力、指挥控制能力、精确攻击能力、防御能力和评估能力等五个方面,对网络空间支援力量的核心支援能力进行了系统论述,提出建设军队网络支援力量、应对网络空间安全威胁的新思考和新观点.研究认为,当前我军在网络空间的安全意识、核心技术、均衡发展等方面面临严峻困难.为实现网络强国的奋斗目标,需要加强国家网络安全的顶层设计,增强网络技术自主创新能力,强化军民融合式建设和系统常态的攻防训练等.%Core supporting capabilities of cyberspace military forces, such as cyberspace reconnaissance, command and control, precise attack, defense and evaluation, are systematically discussed.New considerations and ideas about promoting the building up of PLA's cyberspace supporting forces and encountering security threats in cyberspace are proposed.It is concluded that a lot of difficulties exist in aspects such as security awareness of cyberspace, core technologies and balanced developing.In order to realize the goal of building up a powerful country in cyberspace, emphasis should be laid on enhancing top-level design of national cyber security, independent innovation of cyber technologies, civil-military integration, and systematical and regular attack-and-defense training, etc.

  18. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  19. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  20. Building Up the Milky Way's Skeleton

    Science.gov (United States)

    Kohler, Susanna

    2016-09-01

    A team of scientistshas now uncovered half of theentire skeleton of the Milky Way, using an automated method to identify large filaments of gas and dust hiding between stars in the galactic plane.Galactic distribution of 54 newly discovered filaments, plotted along with colored lines indicating six relevant spiral arms in our galaxy. The upper two plots show the consistency of the filaments motion with the spiral arms, while the lower shows their location within the galactic plane. [Wang et al. 2016]The Search for Nessie and FriendsThe Milky Ways interstellar medium is structured hierarchically into filaments. These structures are difficult to observe since they largely lie in the galactic plane, but if we can discover the distribution and properties of these filaments, we can better understand how our galaxy formed, and how the filaments affect star formation in our galaxy today.Some of the largest of the Milky Ways filaments are hundreds of light-years long like the infrared dark cloud nicknamed Nessie, declared in 2013 to be one of the bones of the Milky Way because of its position along the center of the Scutum-Centaurus spiral arm.Follow-up studies since the discovery of Nessie (like this one, or this) have found a number of additional large-scale filaments, but these studies all use different search methods and selection criteria, and the searches all start with visual inspection by humans to identify candidates.What if we could instead automate the detection process and build a homogeneous sample of the large filaments making up the skeleton of the Milky Way?Automated DetectionThis is exactly what a team of astronomers led by Ke Wang (European Southern Observatory) has done. The group used a customization of an algorithm called a minimum spanning tree the technique used to optimize the cost of internet networks, road networks, and electrical grids in our communities to perform an automated search of data from the Bolocam Galactic Plane Survey. The search was designed to identify long filaments that are coherent both in physical and velocity space.Using this method, Wang and collaborators found a total of 54 large-scale filaments that met all of their criteria. The survey covered nearly half of the galactic plane, and the team estimates that there may be a total of ~200 large-scale filaments like these in the Milky Way.Histograms of the mass and length of the newly discovered filaments (N=54). The distributions for the filaments that are bones (N=13) are overplotted in red. [Adapted from Wang et al. 2016]A Catalog of Bones and MoreThe authors generated a catalog of the newly discovered filaments, determining properties like their masses (1,000100,000 solar masses), lengths (30900 light-years), aspect ratios, temperatures, and more. They then used this catalog to make several statistical observations:The filaments are widely distributed across the galactic disk, with roughly 50% located within 65 light-years of the galactic plane (for reference, the Sun is 82 light-years above the galactic plane).Roughly a 1/3 of the filaments are part of the Milky Ways skeleton, lying along the centers of our galaxys spiral arms.Around 1% of the molecular interstellar medium in our galaxy is confined in large filaments like these.The formation of massive stars occurs more favorably in large filaments, compared to elsewhere in our galaxy.This catalog is an important building block in our understanding of the structure of the interstellar medium of our galaxy. The authors next plan to extend this census to the rest of our galaxy, providing us with the best picture yet of the skeleton of the Milky Way.BonusCheck out all 54 of the filaments discovered by Wang and collaborators in the gif below (or follow the link to the article to view the original images)! Submillimeter dust emission is shown in red, and Spitzer/WISE 24/22 m emission is shown in cyan. The connected dots show how the filament was identified by the minimum spanning tree algorithm.CitationKe Wang () et al 2016 ApJS 226 9. doi:10.3847/0067-0049/226/1/9

  1. Ergo project builds up to full production

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The East Rand Gold and Uranium Company (Ergo) - planned on a massive scale to recover gold, uranium and sulphuric acid from the slimes dams of the East Rand - captured imaginations both from a financial and a technical viewpoint. Operationally, the commissioning of the project is now well under way and satisfying profits have already been recorded. A broad look at the background and the design is given

  2. Ergo project builds up to full production

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The East Rand Gold and Uranium Company (ERGO) - planned on a massive scale to recover gold, uranium and sulphuric acid from the slimes dams of the East Rand - captured imaginations both from a financial and a technical viewpoint. Operationally, the commissioning of the project is now well under way and satisfying profits have already been recorded. A broad look at the background and the design is given

  3. Building up active membership in cooperatives

    NARCIS (Netherlands)

    Verhees, F.J.H.M.; Sergaki, P.; Dijk, van G.

    2015-01-01

    Abstract Active membership is crucial for agricultural cooperatives as it engenders better performance. It even is the key for cooperative competitiveness. Active membership, however, decreases in many cooperatives. Thus, it is important to know what galvanizes members to become active members. The

  4. Building up Autonomy Through Reading Strategies

    Directory of Open Access Journals (Sweden)

    Alexander Izquierdo Castillo

    2014-10-01

    Full Text Available This article reports on an action research project conducted with six ninth grade students in a rural public school in Colombia. The purpose of the study was to determine how the implementation of three reading strategies (skimming, scanning, and making predictions, when reading topics selected by learners, helps them to improve their reading comprehension and promotes their autonomy in the learning process. The results show that these learners developed some autonomous features such as making decisions for learning and doing assigned homework, increasing reading awareness and motivation. Additionally, the training on reading strategies allowed them to succeed in their reading comprehension. We conclude that these reading strategies are tools that take learners along the path of autonomy.

  5. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  6. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  7. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  8. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  9. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  10. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  11. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  12. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  13. Testing programs for the Multimission Modular Spacecraft

    Science.gov (United States)

    Greenwell, T. J.

    1978-01-01

    The Multimission Modular Spacecraft (MMS) provides a standard spacecraft bus to a user for a variety of space missions ranging from near-earth to synchronous orbits. The present paper describes the philosophy behind the MMS module test program and discusses the implementation of the test program. It is concluded that the MMS module test program provides an effective and comprehensive customer buy-off at the subsystem contractor's plant, is an optimum approach for checkout of the subsystems prior to use for on-orbit servicing in the Shuttle Cargo Bay, and is a cost-effective technique for environmental testing.

  14. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  15. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  16. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  17. An expert system for diagnosing environmentally induced spacecraft anomalies

    Science.gov (United States)

    Rolincik, Mark; Lauriente, Michael; Koons, Harry C.; Gorney, David

    1992-01-01

    A new rule-based, machine independent analytical tool was designed for diagnosing spacecraft anomalies using an expert system. Expert systems provide an effective method for saving knowledge, allow computers to sift through large amounts of data pinpointing significant parts, and most importantly, use heuristics in addition to algorithms, which allow approximate reasoning and inference and the ability to attack problems not rigidly defined. The knowledge base consists of over two-hundred (200) rules and provides links to historical and environmental databases. The environmental causes considered are bulk charging, single event upsets (SEU), surface charging, and total radiation dose. The system's driver translates forward chaining rules into a backward chaining sequence, prompting the user for information pertinent to the causes considered. The use of heuristics frees the user from searching through large amounts of irrelevant information and allows the user to input partial information (varying degrees of confidence in an answer) or 'unknown' to any question. The modularity of the expert system allows for easy updates and modifications. It not only provides scientists with needed risk analysis and confidence not found in algorithmic programs, but is also an effective learning tool, and the window implementation makes it very easy to use. The system currently runs on a Micro VAX II at Goddard Space Flight Center (GSFC). The inference engine used is NASA's C Language Integrated Production System (CLIPS).

  18. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    Science.gov (United States)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown

  19. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  20. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  1. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  2. Microgravity Flammability Experiments for Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Legros, Guillaume; Minster, Olivier; Tóth, Balazs

    2012-01-01

    As fire behaviour in manned spacecraft still remains poorly understood, an international topical team has been created to design a validation experiment that has an unprecedented large scale for a microgravity flammability experiment. While the validation experiment is being designed for a re-sup...

  3. Parameter Estimation of Spacecraft Fuel Slosh Model

    Science.gov (United States)

    Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles

    2004-01-01

    Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.

  4. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  5. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  6. Accelerated life testing of spacecraft subsystems

    Science.gov (United States)

    Wiksten, D.; Swanson, J.

    1972-01-01

    The rationale and requirements for conducting accelerated life tests on electronic subsystems of spacecraft are presented. A method for applying data on the reliability and temperature sensitivity of the parts contained in a sybsystem to the selection of accelerated life test parameters is described. Additional considerations affecting the formulation of test requirements are identified, and practical limitations of accelerated aging are described.

  7. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  8. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  9. Small Spacecraft Technology Initiative Education Program

    Science.gov (United States)

    1995-01-01

    A NASA engineer with the Commercial Remote Sensing Program (CRSP) at Stennis Space Center works with students from W.P. Daniels High School in New Albany, Miss., through NASA's Small Spacecraft Technology Initiative Program. CRSP is teaching students to use remote sensing to locate a potential site for a water reservoir to offset a predicted water shortage in the community's future.

  10. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  11. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  12. Morphology, structure, composition and build-up processes of the active channel-mouth lobe complex of the Congo deep-sea fan with inputs from remotely operated underwater vehicle (ROV) multibeam and video surveys

    Science.gov (United States)

    Dennielou, Bernard; Droz, Laurence; Babonneau, Nathalie; Jacq, Céline; Bonnel, Cédric; Picot, Marie; Le Saout, Morgane; Saout, Yohan; Bez, Martine; Savoye, Bruno; Olu, Karine; Rabouille, Christophe

    2017-08-01

    The detailed structure and composition of turbiditic channel-mouth lobes is still largely unknown because they commonly lie at abyssal water depths, are very thin and are therefore beyond the resolution of hull-mound acoustic tools. The morphology, structure and composition of the Congo turbiditic channel-mouth lobe complex (90×40 km; 2525 km2) were investigated with hull-mounted swath bathymetry, air gun seismics, 3.5 kHz sub-bottom profiler, sediment piston cores and also with high-resolution multibeam bathymetry and video acquired with a Remote Operating Vehicle (ROV). The lobe complex lies 760 km off the Congo River mouth in the Angola abyssal plain between 4740 and 5030 m deep. It is active and is fed by turbidity currents that deposit several centimetres of sediment per century. The lobe complex is subdivided into five lobes that have prograded. The lobes are dominantly muddy. Sand represents ca. 13% of the deposits and is restricted to the feeding channel and distributaries. The overall lobe body is composed of thin muddy to silty turbidites. The whole lobe complex is characterized by in situ mass wasting (slumps, debrites). The 1-m-resolution bathymetry shows pervasive slidings and block avalanches on the edges of the feeding channel and the channel mouth indicating that sliding occurs early and continuously in the lobe build-up. Mass wasting is interpreted as a consequence of very-high accumulation rates, over-steepening and erosion along the channels and is therefore an intrinsic process of lobe building. The bifurcation of feeding channels is probably triggered when the gradient in the distributaries at the top of a lobe becomes flat and when turbidity currents find their way on the higher gradient on the lobe side. It may also be triggered by mass wasting on the lobe side. When a new lobe develops, the abandoned lobes continue to collect significant turbiditic deposits from the feeding channel spillover, so that the whole lobe complex remains active. A

  13. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  14. Barriers to repeated assessment of verbal learning and memory: a comparison of international shopping list task and rey auditory verbal learning test on build-up of proactive interference.

    Science.gov (United States)

    Rahimi-Golkhandan, S; Maruff, P; Darby, D; Wilson, P

    2012-11-01

    Proactive interference (PI) that remains unidentified can confound the assessment of verbal learning, particularly when its effects vary from one population to another. The International Shopping List Task (ISLT) is a new measure that provides multiple forms that can be equated for linguistic factors across cultural groups. The aim of this study was to examine the build-up of PI on two measures of verbal learning-a traditional test of list learning (Rey Auditory Verbal Learning Test, RAVLT) and the ISLT. The sample consisted of 61 healthy adults aged 18-40. Each test had three parallel forms, each recalled three times. Results showed that repeated administration of the ISLT did not result in significant PI effects, unlike the RAVLT. Although these PI effects, observed during short retest intervals, may not be as robust under normal clinical administrations of the tests, the results suggest that the choice of the verbal learning test should be guided by the knowledge of PI effects and the susceptibility of particular patient groups to this effect.

  15. Enhancing the dewatering properties of sludge through aimed building-up of floc structures on the basis of detailed morphological analyses; Verbesserung der Entwaesserungseigenschaften von Schlaemmen durch den gezielten Aufbau von Flockenstrukturen auf der Basis detaillierter morphologischer Analysen

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, M.; Ay, P. [Brandenburgische Technische Univ. Cottbus (Germany). Lehrstuhl Aufbereitungstechnik

    1999-07-01

    Aimed building-up of aggregates as they originate in flocculation processes, for instance in sewage and sludge treatment, have especially lately been meeting with increasing resonance: they permit to influence, inter alia, important properties (e.g., the dewatering properties) of such systems. As conventional mathematical methods for the characterization of flocs - as a basis for process optimization - are inadequate or flawed, a concept for the effective characterization of the inner getup of such structures needs to be sought. One approach is cluster analysis, which is demonstrated and discussed in the present paper by means of the evaluation of sectional views of floc structures. (orig.) [German] Der gezielte Aufbau von Aggregaten, wie sie bei Flockungsprozessen z.B. in der Abwasser- und Schlammbehandlung entstehen, findet besonders in juengerer Zeit zunehmend Beachtung, da sich damit unter anderem wichtige Eigenschaften (z.B. die Entwaesserungseigenschaften) dieser Systeme beeinflussen lassen. Da herkoemmliche mathematische Methoden zur Charakterisierung von Flocken - als Basis fuer eine Prozessoptimierung - nur unzureichend bzw. fehlerbehaftet sind, ergibt sich daraus die Notwendigkeit, nach einem Konzept zur effektiven Charakterisierung des inneren Aufbaus solcher Strukturen zu suchen. Ein Ansatz ist die Clusteranalyse, die im Beitrag durch die Auswertung von Schnittbildern von Flockenstrukturen vorgestellt und diskutiert wird. (orig.)

  16. Energetic charged particles above thunderclouds

    International Nuclear Information System (INIS)

    Fullekrug, Martin; Diver, Declan; Pincon, Jean-Louis; Renard, Jean-Baptiste; Phelps, Alan D.R.; Bourdon, Anne; Helling, Christiane; Blanc, Elisabeth; Honary, Farideh; Kosch, Mike; Harrison, Giles; Sauvaud, Jean-Andre; Lester, Mark; Rycroft, Michael; Kosch, Mike; Horne, Richard B.; Soula, Serge; Gaffet, Stephane

    2013-01-01

    The French government has committed to launch the satellite TARANIS to study transient coupling processes between the Earth's atmosphere and near-Earth space. The prime objective of TARANIS is to detect energetic charged particles and hard radiation emanating from thunderclouds. The British Nobel prize winner C. T. R. Wilson predicted lightning discharges from the top of thunderclouds into space almost a century ago. However, new experiments have only recently confirmed energetic discharge processes which transfer energy from the top of thunderclouds into the upper atmosphere and near-Earth space; they are now denoted as transient luminous events, terrestrial gamma-ray flashes and relativistic electron beams. This meeting report builds on the current state of scientific knowledge on the physics of plasmas in the laboratory and naturally occurring plasmas in the Earth's atmosphere to propose areas of future research. The report specifically reflects presentations delivered by the members of a novel Franco-British collaboration during a meeting at the French Embassy in London held in November 2011. The scientific subjects of the report tackle ionization processes leading to electrical discharge processes, observations of transient luminous events, electromagnetic emissions, energetic charged particles and their impact on the Earth's atmosphere. The importance of future research in this area for science and society, and towards spacecraft protection, is emphasized. (authors)

  17. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    Science.gov (United States)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  18. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  19. Space tribology: its role in spacecraft mechanisms

    International Nuclear Information System (INIS)

    Roberts, E W

    2012-01-01

    The subject of tribology encompasses the friction, wear and lubrication of mechanical components such as bearings and gears. Tribological practices are aimed at ensuring that such components operate with high efficiency (low friction) and achieve long lives. On spacecraft mechanisms the route to achieving these goals brings its own unique challenges. This review describes the problems posed by the space environment, the types of tribological component used on spacecraft and the approaches taken to their lubrication. It is shown that in many instances lubrication needs can be met by synthetic oils having exceedingly low volatilities, but that at temperature extremes the only means of reducing friction and wear is by solid lubrication. As the demands placed on space engineering increase, innovatory approaches will be needed to solve future tribological problems. The direction that future developments might take is anticipated and discussed.

  20. MIDN: A spacecraft Micro-dosimeter mission

    International Nuclear Information System (INIS)

    Pisacane, V. L.; Ziegler, J. F.; Nelson, M. E.; Caylor, M.; Flake, D.; Heyen, L.; Youngborg, E.; Rosenfeld, A. B.; Cucinotta, F.; Zaider, M.; Dicello, J. F.

    2006-01-01

    MIDN (Micro-dosimetry instrument) is a payload on the MidSTAR-I spacecraft (Midshipman Space Technology Applications Research) under development at the United States Naval Academy. MIDN is a solid-state system being designed and constructed to measure Micro-dosimetric spectra to determine radiation quality factors for space environments. Radiation is a critical threat to the health of astronauts and to the success of missions in low-Earth orbit and space exploration. The system will consist of three separate sensors, one external to the spacecraft, one internal and one embedded in polyethylene. Design goals are mass <3 kg and power <2 W. The MidSTAR-I mission in 2006 will provide an opportunity to evaluate a preliminary version of this system. Its low power and mass makes it useful for the International Space Station and manned and unmanned interplanetary missions as a real-time system to assess and alert astronauts to enhanced radiation environments. (authors)

  1. Galileo spacecraft power management and distribution system

    International Nuclear Information System (INIS)

    Detwiler, R.C.; Smith, R.L.

    1990-01-01

    It has been twelve years since two Voyager spacecraft began the direct route to the outer planets. In October 1989 a single Galileo spacecraft started the return to Jupiter. Conceived as a simple Voyager look-alike, the Galileo power management and distribution (PMAD) system has undergone many iterations in configuration. Major changes to the PMAD resulted from dual spun slip ring limitations, variations in launch vehicle thrust capabilities, and launch delays. Lack of an adequate launch vehicle for an interplanetary mission of Galileo's size has resulted in an extremely long flight duration. A Venus-Earth-Earth Gravity Assist (VEEGA) tour, vital to attain the required energy, results in a 6 year trip to Jupiter and its moons. This paper provides a description of the Galileo PMAD and documents the design drivers that established the final as-built hardware

  2. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance

  3. Data combinations accounting for LISA spacecraft motion

    International Nuclear Information System (INIS)

    Shaddock, Daniel A.; Tinto, Massimo; Estabrook, Frank B.; Armstrong, J.W.

    2003-01-01

    The laser interferometer space antenna is an array of three spacecraft in an approximately equilateral triangle configuration which will be used as a low-frequency gravitational wave detector. We present here new generalizations of the Michelson- and Sagnac-type time-delay interferometry data combinations. These combinations cancel laser phase noise in the presence of different up and down propagation delays in each arm of the array, and slowly varying systematic motion of the spacecraft. The gravitational wave sensitivities of these generalized combinations are the same as previously computed for the stationary cases, although the combinations are now more complicated. We introduce a diagrammatic representation to illustrate that these combinations are actually synthesized equal-arm interferometers

  4. The Stardust spacecraft arrives at KSC

    Science.gov (United States)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  5. Close-Range Photogrammetry & Next Generation Spacecraft

    Science.gov (United States)

    Pappa, Richard S.

    2002-01-01

    NASA is focusing renewed attention on the topic of large, ultra-lightweight space structures, also known as 'gossamer' spacecraft. Nearly all of the details of the giant spacecraft are still to be worked out. But it's already clear that one of the most challenging aspects will be developing techniques to align and control these systems after they are deployed in space. A critical part of this process is creating new ground test methods to measure gossamer structures under stationary, deploying and vibrating conditions for validation of corresponding analytical predictions. In addressing this problem, I considered, first of all, the possibility of simply using conventional displacement or vibration sensor that could provide spatial measurements. Next, I turned my attention to photogrammetry, a method of determining the spatial coordinates of objects using photographs. The success of this research and development has convinced me that photogrammetry is the most suitable method to solve the gossamer measurement problem.

  6. Large Scale Experiments on Spacecraft Fire Safety

    DEFF Research Database (Denmark)

    Urban, David L.; Ruff, Gary A.; Minster, Olivier

    2012-01-01

    -based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal-gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame......Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due...... to the complexity, cost and risk associ-ated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground...

  7. Evaluation of Ultrafiltration for Spacecraft Water Reuse

    Science.gov (United States)

    Pickering, Karen D.; Wiesner, Mark R.

    2001-01-01

    Ultrafiltration is examined for use as the first stage of a primary treatment process for spacecraft wastewater. It is hypothesized that ultrafiltration can effectively serve as pretreatment for a reverse osmosis system, removing the majority of organic material in a spacecraft wastewater. However, it is believed that the interaction between the membrane material and the surfactant found in the wastewater will have a significant impact on the fouling of the ultrafiltration membrane. In this study, five different ultrafiltration membrane materials are examined for the filtration of wastewater typical of that expected to be produced onboard the International Space Station. Membranes are used in an unstirred batch cell. Flux, organic carbon rejection, and recovery from fouling are measured. The results of this evaluation will be used to select the most promising membranes for further study.

  8. FORTE spacecraft vibration mitigation. Final report

    International Nuclear Information System (INIS)

    Maly, J.R.

    1996-02-01

    This report documents work that was performed by CSA Engineering, Inc., for Los Alamos National Laboratory (LANL), to reduce vibrations of the FORTE spacecraft by retrofitting damped structural components into the spacecraft structure. The technical objective of the work was reduction of response at the location of payload components when the structure is subjected to the dynamic loading associated with launch and proto-qualification testing. FORTE is a small satellite that will be placed in orbit in 1996. The structure weighs approximately 425 lb, and is roughly 80 inches high and 40 inches in diameter. It was developed and built by LANL in conjunction with Sandia National Laboratories Albuquerque for the United States Department of Energy. The FORTE primary structure was fabricated primarily with graphite epoxy, using aluminum honeycomb core material for equipment decks and solar panel substrates. Equipment decks were bonded and bolted through aluminum mounting blocks to adjoining structure

  9. Redundancy for electric motors in spacecraft applications

    Science.gov (United States)

    Smith, Robert J.; Flew, Alastair R.

    1986-01-01

    The parts of electric motors which should be duplicated in order to provide maximum reliability in spacecraft application are identified. Various common types of redundancy are described. The advantages and disadvantages of each are noted. The principal types are illustrated by reference to specific examples. For each example, constructional details, basic performance data and failure modes are described, together with a discussion of the suitability of particular redundancy techniques to motor types.

  10. Research on spacecraft electrical power conversion

    Science.gov (United States)

    Wilson, T. G.

    1983-01-01

    The history of spacecraft electrical power conversion in literature, research and practice is reviewed. It is noted that the design techniques, analyses and understanding which were developed make today's contribution to power computers and communication installations. New applications which require more power, improved dynamic response, greater reliability, and lower cost are outlined. The switching mode approach in electronic power conditioning is discussed. Technical aspects of the research are summarized.

  11. Schema for Spacecraft-Command Dictionary

    Science.gov (United States)

    Laubach, Sharon; Garcia, Celina; Maxwell, Scott; Wright, Jesse

    2008-01-01

    An Extensible Markup Language (XML) schema was developed as a means of defining and describing a structure for capturing spacecraft command- definition and tracking information in a single location in a form readable by both engineers and software used to generate software for flight and ground systems. A structure defined within this schema is then used as the basis for creating an XML file that contains command definitions.

  12. Additive Manufacturing: Ensuring Quality for Spacecraft Applications

    Science.gov (United States)

    Swanson, Theodore; Stephenson, Timothy

    2014-01-01

    Reliable manufacturing requires that material properties and fabrication processes be well defined in order to insure that the manufactured parts meet specified requirements. While this issue is now relatively straightforward for traditional processes such as subtractive manufacturing and injection molding, this capability is still evolving for AM products. Hence, one of the principal challenges within AM is in qualifying and verifying source material properties and process control. This issue is particularly critical for applications in harsh environments and demanding applications, such as spacecraft.

  13. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  14. The Manned Spacecraft Center and medical technology

    Science.gov (United States)

    Johnston, R. S.; Pool, S. L.

    1974-01-01

    A number of medically oriented research and hardware development programs in support of manned space flights have been sponsored by NASA. Blood pressure measuring systems for use in spacecraft are considered. In some cases, complete new bioinstrumentation systems were necessary to accomplish a specific physiological study. Plans for medical research during the Skylab program are discussed along with general questions regarding space-borne health service systems and details concerning the Health Services Support Control Center.

  15. Artificial Intelligence and Spacecraft Power Systems

    Science.gov (United States)

    Dugel-Whitehead, Norma R.

    1997-01-01

    This talk will present the work which has been done at NASA Marshall Space Flight Center involving the use of Artificial Intelligence to control the power system in a spacecraft. The presentation will include a brief history of power system automation, and some basic definitions of the types of artificial intelligence which have been investigated at MSFC for power system automation. A video tape of one of our autonomous power systems using co-operating expert systems, and advanced hardware will be presented.

  16. THE FUTURE OF SPACECRAFT NUCLEAR PROPULSION

    OpenAIRE

    Jansen, Frank

    2014-01-01

    This paper summarizes the advantages of space nuclear power and propulsion systems. It describes the actual status of international power level dependent spacecraft nuclear propulsion missions, especially the high power EU-Russian MEGAHIT study including the Russian Megawatt-Class Nuclear Power Propulsion System, the NASA GRC project and the low and medium power EU DiPoP study. Space nuclear propulsion based mission scenarios of these studies are sketched as well.

  17. Spacecraft early design validation using formal methods

    International Nuclear Information System (INIS)

    Bozzano, Marco; Cimatti, Alessandro; Katoen, Joost-Pieter; Katsaros, Panagiotis; Mokos, Konstantinos; Nguyen, Viet Yen; Noll, Thomas; Postma, Bart; Roveri, Marco

    2014-01-01

    The size and complexity of software in spacecraft is increasing exponentially, and this trend complicates its validation within the context of the overall spacecraft system. Current validation methods are labor-intensive as they rely on manual analysis, review and inspection. For future space missions, we developed – with challenging requirements from the European space industry – a novel modeling language and toolset for a (semi-)automated validation approach. Our modeling language is a dialect of AADL and enables engineers to express the system, the software, and their reliability aspects. The COMPASS toolset utilizes state-of-the-art model checking techniques, both qualitative and probabilistic, for the analysis of requirements related to functional correctness, safety, dependability and performance. Several pilot projects have been performed by industry, with two of them having focused on the system-level of a satellite platform in development. Our efforts resulted in a significant advancement of validating spacecraft designs from several perspectives, using a single integrated system model. The associated technology readiness level increased from level 1 (basic concepts and ideas) to early level 4 (laboratory-tested)

  18. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  19. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  20. Delamination Assessment Tool for Spacecraft Composite Structures

    Science.gov (United States)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  1. Study of nickel hydrogen battery discharge performance after charge and stand at warm temperature

    International Nuclear Information System (INIS)

    Donley, S.W.; Verrier, D.C.

    1992-01-01

    Spacecraft batteries are normally installed in the discharged condition. It may be necessary that they be charged and trickle-charged prior to launch in an environment different from that in which they are intended to operate. The purpose of the testing described in this paper was to determine the battery capacity achieved after treatment at prelaunch conditions as a function of charge rate, charge temperature, trickle charge temperature, and time. In this testing the discharge in every case was performed under simulated space thermal conditions

  2. Space Environments and Spacecraft Effects Organization Concept

    Science.gov (United States)

    Edwards, David L.; Burns, Howard D.; Miller, Sharon K.; Porter, Ron; Schneider, Todd A.; Spann, James F.; Xapsos, Michael

    2012-01-01

    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while also expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. Each new destination presents an opportunity to increase our knowledge of the solar system and the unique environments for each mission target. NASA has multiple technical and science discipline areas specializing in specific space environments disciplines that will help serve to enable these missions. To complement these existing discipline areas, a concept is presented focusing on the development of a space environments and spacecraft effects (SENSE) organization. This SENSE organization includes disciplines such as space climate, space weather, natural and induced space environments, effects on spacecraft materials and systems and the transition of research information into application. This space environment and spacecraft effects organization will be composed of Technical Working Groups (TWG). These technical working groups will survey customers and users, generate products, and provide knowledge supporting four functional areas: design environments, engineering effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Engineering effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA, other federal

  3. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  4. Suprathermal ions in the solar wind from the Voyager spacecraft: Instrument modeling and background analysis

    International Nuclear Information System (INIS)

    Randol, B M; Christian, E R

    2015-01-01

    Using publicly available data from the Voyager Low Energy Charged Particle (LECP) instruments, we investigate the form of the solar wind ion suprathermal tail in the outer heliosphere inside the termination shock. This tail has a commonly observed form in the inner heliosphere, that is, a power law with a particular spectral index. The Voyager spacecraft have taken data beyond 100 AU, farther than any other spacecraft. However, during extended periods of time, the data appears to be mostly background. We have developed a technique to self-consistently estimate the background seen by LECP due to cosmic rays using data from the Voyager cosmic ray instruments and a simple, semi-analytical model of the LECP instruments

  5. SMART-1: the first spacecraft of the future

    Science.gov (United States)

    2003-09-01

    gather high-value scientific and technological data. Another innovation lies in the industrial policy applied to this mission. SMART-1 is a good example of an ESA mission in which a comparatively small company such as the Swedish Space Corporation (SSC) has been selected as prime contractor. “The experience of SSC in highly successful projects at national level was a key factor in the decision, as was ESA's goal of fostering a balanced industrial landscape in Europe,” says Niels Jensen of ESA’s Directorate of Industrial Matters and Technology Programmes. The magic of ion engines Solar-electric propulsion, one of the main technologies to be tested by SMART-1, is a new technique that uses 'ion engines'. These work by expelling a continuous beam of charged particles --ions-- at the back of the engine, which produces a thrust in the opposite direction and therefore pushes the spacecraft forward. The energy to feed the engine comes from the solar panels, hence the name 'solar-electric propulsion'. Engineers have been working on ion engines for decades, but only recently have obstacles such as the lack of power availability from a spacecraft’s solar panels been overcome. Recent missions have been using ion thrusters mainly for attitude control and orbit station keeping. In the recent case of ESA’s telecommunication satellite Artemis, the onboard availability of ion thrusters was actually what allowed the mission to be rescued. Having been left by the launcher on an unplanned orbit, Artemis was slowly - but safely - brought up to its final working orbit by the power of its ion engines, initially designed for orbit maintenance only. Starting with SMART-1, the first European spacecraft to use an ion engine as its main propulsion system, the amazing advantages of this method can now be fully exploited. Ion engines are very efficient: they deliver about ten times as much impulse per kilogram of propellant used. This gives a substantial reduction in the mass of the fuel

  6. Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith

    Science.gov (United States)

    Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon

    2010-01-01

    Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other

  7. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  8. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  9. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  10. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    Science.gov (United States)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  11. Spacecraft fabrication and test MODIL. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Saito, T.T.

    1994-05-01

    This report covers the period from October 1992 through the close of the project. FY 92 closed out with the successful briefing to industry and with many potential and important initiatives in the spacecraft arena. Due to the funding uncertainties, we were directed to proceed as if our funding would be approximately the same as FY 92 ($2M), but not to make any major new commitments. However, the MODIL`s FY 93 funding was reduced to $810K and we were directed to concentrate on the cryocooler area. The cryocooler effort completed its demonstration project. The final meetings with the cryocooler fabricators were very encouraging as we witnessed the enthusiastic reception of technology to help them reduce fabrication uncertainties. Support of the USAF Phillips Laboratory cryocooler program was continued including kick-off meetings for the Prototype Spacecraft Cryocooler (PSC). Under Phillips Laboratory support, Gill Cruz visited British Aerospace and Lucas Aerospace in the United Kingdom to assess their manufacturing capabilities. In the Automated Spacecraft & Assembly Project (ASAP), contracts were pursued for the analysis by four Brilliant Eyes prime contractors to provide a proprietary snap shot of their current status of Integrated Product Development. In the materials and structure thrust the final analysis was completed of the samples made under the contract (``Partial Automation of Matched Metal Net Shape Molding of Continuous Fiber Composites``) to SPARTA. The Precision Technologies thrust funded the Jet Propulsion Laboratory to prepare a plan to develop a Computer Aided Alignment capability to significantly reduce the time for alignment and even possibly provide real time and remote alignment capability of systems in flight.

  12. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  13. Resistive cooling circuits for charged particle traps using crystal resonators

    CERN Document Server

    Kaltenbacher, T; Doser, M; Kellerbauer, A; Pribyl, W

    2011-01-01

    The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally the trap capacity is converted into a resonator by means of an inductance. When normal conducting wires (e.g. copper) are applied to build up a coil, the unloaded Q value is limited to a value in the order of 1000. The tuned circuit’s Q factor is directly linked to the input impedance “seen” by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MOhm. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a broad range of frequencies.

  14. Soyuz Spacecraft Transported to Launch Pad

    Science.gov (United States)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  15. Effects of Spacecraft Landings on the Moon

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.

    2013-01-01

    The rocket exhaust of spacecraft landing on the Moon causes a number of observable effects that need to be quantified, including: disturbance of the regolith and volatiles at the landing site; damage to surrounding hardware such as the historic Apollo sites through the impingement of high-velocity ejecta; and levitation of dust after engine cutoff through as-yet unconfirmed mechanisms. While often harmful, these effects also beneficially provide insight into lunar geology and physics. Some of the research results from the past 10 years is summarized and reviewed here.

  16. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  17. Aircraft, ships, spacecraft, nuclear plants and quality

    International Nuclear Information System (INIS)

    Patrick, M.G.

    1984-05-01

    A few quality assurance programs outside the purview of the Nuclear Regulatory Commission were studied to identify features or practices which the NRC could use to enhance its program for assuring quality in the design and construction of nuclear power plants. The programs selected were: the manufacture of large commercial transport aircraft, regulated by the Federal Aviation Administration; US Navy shipbuilding; commercial shipbuilding regulated by the Maritime Administration and the US Coast Guard; Government-owned nuclear plants under the Department of Energy; spacecraft under the National Aeronautics and Space Administration; and the construction of nuclear power plants in Canada, West Germany, France, Japan, Sweden, and the United Kingdom

  18. Oppositely charged colloids out of equilibrium

    Science.gov (United States)

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface

  19. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  20. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  1. Solar Wind Charge Exchange During Geomagnetic Storms

    Science.gov (United States)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  2. Color and magnetic charge

    International Nuclear Information System (INIS)

    Kim, B.R.

    1976-01-01

    Schwinger's conjecture that the color degree of freedom of a quark is equivalent to its degree of freedom of taking different magnetic charges provides a plausible motivation for extending color to leptons. Leptons are just quarks with zero magnetic charges. It is shown that baryon number and lepton number can be replaced by fermion number and magnetic charge

  3. Small Rocket/Spacecraft Technology (SMART) Platform

    Science.gov (United States)

    Esper, Jaime; Flatley, Thomas P.; Bull, James B.; Buckley, Steven J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) and the Department of Defense Operationally Responsive Space (ORS) Office are exercising a multi-year collaborative agreement focused on a redefinition of the way space missions are designed and implemented. A much faster, leaner and effective approach to space flight requires the concerted effort of a multi-agency team tasked with developing the building blocks, both programmatically and technologically, to ultimately achieve flights within 7-days from mission call-up. For NASA, rapid mission implementations represent an opportunity to find creative ways for reducing mission life-cycle times with the resulting savings in cost. This in tum enables a class of missions catering to a broader audience of science participants, from universities to private and national laboratory researchers. To that end, the SMART (Small Rocket/Spacecraft Technology) micro-spacecraft prototype demonstrates an advanced avionics system with integrated GPS capability, high-speed plug-and-playable interfaces, legacy interfaces, inertial navigation, a modular reconfigurable structure, tunable thermal technology, and a number of instruments for environmental and optical sensing. Although SMART was first launched inside a sounding rocket, it is designed as a free-flyer.

  4. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  5. Relativistic effects of spacecraft with circumnavigating observer

    Science.gov (United States)

    Shanklin, Nathaniel; West, Joseph

    A variation of the recently introduced Trolley Paradox, itself is a variation of the Ehrenfest Paradox is presented. In the Trolley Paradox, a ``stationary'' set of observers tracking a wheel rolling with a constant velocity find that the wheel travels further than its rest length circumference during one revolution of the wheel, despite the fact that the Lorentz contracted circumference is less than its rest value. In the variation presented, a rectangular spacecraft with onboard observers moves with constant velocity and is circumnavigated by several small ``sloops'' forming teams of inertial observers. This whole precession moves relative to a set of ``stationary'' Earth observers. Two cases are presented, one in which the sloops are evenly spaced according to the spacecraft observers, and one in which the sloops are evenly spaced according to the Earth observes. These two cases, combined with the rectangular geometry and an emphasis on what is seen by, and what is measured by, each set of observers is very helpful in sorting out the apparent contradictions. To aid in the visualizations stationary representations in excel along with animation in Visual Python and Unity are presented. The analysis presented is suitable for undergraduate physics majors.

  6. Build-up and impact of volatile fatty acids on E. coli and A. lumbricoides during co-digestion of urine diverting dehydrating toilet (UDDT-F) faeces.

    Science.gov (United States)

    Riungu, Joy; Ronteltap, Mariska; van Lier, Jules B

    2018-06-01

    This study examined the potential of Escherichia coli (E. coli) and Ascaris lumbricoides (A. lumbricoides) eggs inactivation in faecal matter coming from urine diverting dehydrating toilets (UDDT-F) by applying high concentrations of volatile fatty acids (VFAs) during anaerobic stabilization. The impact of individual VFAs on E. coli and A. lumbricoides eggs inactivation in UDDT-F was assessed by applying various concentrations of store-bought acetate, propionate and butyrate. High VFA concentrations were also obtained by performing co-digestion of UDDT-F with organic market waste (OMW) using various mixing ratios. All experiments were performed under anaerobic conditions in laboratory scale batch assays at 35±1 °C. A correlation was observed between E. coli log inactivation and VFA concentration. Store bought VFA spiked UDDT-F substrates achieved E. coli inactivation up to 4.7 log units/day compared to UDDT-F control sample that achieved 0.6 log units/day. In co-digesting UDDT-F and organic market waste (OMW), a ND-VFA concentration of 4800-6000 mg/L was needed to achieve E. coli log inactivation to below detectable levels and complete A. lumbricoides egg inactivation in less than four days. E. coli and A. lumbricoides egg inactivation was found to be related to the concentration of non-dissociated VFA (ND-VFA), increasing with an increase in the OMW fraction in the feed substrate. Highest ND-VFA concentration of 6500 mg/L was obtained at a UDDT-F:OMW ratio 1:1, below which there was a decline, attributed to product inhibition of acidogenic bacteria. Results of our present research showed the potential for E. coli and A. lumbricoides inactivation from UDDT-F up to WHO standards by allowing VFA build-up during anaerobic stabilization of faecal matter. Copyright © 2018. Published by Elsevier Ltd.

  7. Methods of Increasing the Performance of Radionuclide Generators Used in Nuclear Medicine: Daughter Nuclide Build-Up Optimisation, Elution-Purification-Concentration Integration, and Effective Control of Radionuclidic Purity

    Directory of Open Access Journals (Sweden)

    Van So Le

    2014-06-01

    Full Text Available Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of “early elution schedule” was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement

  8. Spacecraft Dynamic Characterization by Strain Energies Method

    Science.gov (United States)

    Bretagne, J.-M.; Fragnito, M.; Massier, S.

    2002-01-01

    In the last years the significant increase in satellite broadcasting demand, with the wide band communication dawn, has given a great impulse to the telecommunication satellite market. The big demand is translated from operators (such as SES/Astra, Eutelsat, Intelsat, Inmarsat, EuroSkyWay etc.) in an increase of orders of telecom satellite to the world industrials. The largest part of these telecom satellite orders consists of Geostationary platforms which grow more and more in mass (over 5 tons) due to an ever longer demanded lifetime (up to 20 years), and become more complex due to the need of implementing an ever larger number of repeaters, antenna reflectors and feeds, etc... In this frame, the mechanical design and verification of these large spacecraft become difficult and ambitious at the same time, driven by the dry mass limitation objective. By the Finite Element Method (FEM), and on the basis of the telecom satellite heritage of a world leader constructor such as Alcatel Space Industries it is nowadays possible to model these spacecraft in a realistic and confident way in order to identify the main global dynamic aspects such as mode shapes, mass participation and/or dynamic responses. But on the other hand, one of the main aims consists in identifying soon in a program the most critical aspects of the system behavior in the launch dynamic environment, such as possible dynamic coupling between the different subsystems and secondary structures of the spacecraft (large deployable reflectors, thrusters, etc.). To this aim a numerical method has been developed in the frame of the Alcatel SPACEBUS family program, using MSC/Nastran capabilities and it is presented in this paper. The method is based on Spacecraft sub-structuring and strain energy calculation. The method mainly consists of two steps : 1) subsystem modal strain energy ratio (with respect to the global strain energy); 2) subsystem strain energy calculation for each mode according to the base driven

  9. Orbit-Attitude Changes of Objects in Near Earth Space Induced by Natural Charging

    Science.gov (United States)

    2017-05-02

    Program Manager Technical Advisor, Spacecraft Component Technology //SIGNED// JOHN BEAUCHEMIN Chief Engineer, Spacecraft Technology Division...istration (NASA) and the US Air Force to investigate the effects of charging and develop technologies to mitigate the same. Accumulated charges may...e2 [ Sesin f +T (1+ ecos f ) ] (217a) de dt = √ 1− e2 na [ S sin f +T (cos f + cosE) ] (217b) di dt = r cos(ω + f ) na2 √ 1− e2 W (217c) dΩ dt = r sin

  10. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  11. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  12. Charging Effects on Fluid Stream Droplets for Momentum Exchange Between Spacecraft

    Science.gov (United States)

    2009-01-01

    temperature where liquid polymers transition to a brittle glass like state and solid polymers transition to a rubbery state. A technical... Glen Research Center, Thermo Mechanical Systems Branch http://www.grc.nasa.gov/WWW/tmsb/concentrators.html [accessed Sep 29, 2006]. Purcell, E

  13. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  14. Electrostatic Model Applied to ISS Charged Water Droplet Experiment

    Science.gov (United States)

    Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.

    2015-01-01

    The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.

  15. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  16. Charged dust structures in plasmas

    International Nuclear Information System (INIS)

    Cramer, N.F.; Vladimirov, S.V.

    1999-01-01

    We report here on theoretical investigations of the mechanical-electrostatic modes of vibration of a dust-plasma crystal, extending earlier work on the transverse modes of a horizontal line of grains (where the ions flow vertically downward to a plane horizontal cathode), the modes of two such lines of grains, and the modes of a vertical string of grains. The last two arrangements have the unique feature that the effect of the background plasma on the mutual grain interaction is asymmetric because of the wake downstream of the grains studied in. The characteristic frequencies of the vibrations are dependent on the parameters of the plasma and the dust grains, such as the Debye length and the grain charge, and so measurement of the frequencies could provide diagnostics of these quantities. Although the current boom in dusty plasma research is driven mainly by such industrial applications as plasma etching, sputtering and deposition, the physical outcomes of investigations in this rapidly expanding field cover many important topics in space physics and astrophysics as well. Examples are the interaction of dust with spacecraft, the structure of planetary rings, star formation, supernova explosions and shock waves. In addition, the study of the influence of dust in environmental research, such as in the Earth's ionosphere and atmosphere, is important. The unique binding of dust particles in a plasma opens possibilities for so-called super-chemistry, where the interacting bound elements are not atoms but dust grains

  17. Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Adam, E-mail: a.j.clemens@qmul.ac.uk; Burgess, David [School of Physics and Astronomy, Queen Mary University of London, London (United Kingdom)

    2016-03-15

    Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambient solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.

  18. Three Dimensional Simulation of Ion Thruster Plume-Spacecraft Interaction Based on a Graphic Processor Unit

    International Nuclear Information System (INIS)

    Ren Junxue; Xie Kan; Qiu Qian; Tang Haibin; Li Juan; Tian Huabing

    2013-01-01

    Based on the three-dimensional particle-in-cell (PIC) method and Compute Unified Device Architecture (CUDA), a parallel particle simulation code combined with a graphic processor unit (GPU) has been developed for the simulation of charge-exchange (CEX) xenon ions in the plume of an ion thruster. Using the proposed technique, the potential and CEX plasma distribution are calculated for the ion thruster plume surrounding the DS1 spacecraft at different thrust levels. The simulation results are in good agreement with measured CEX ion parameters reported in literature, and the GPU's results are equal to a CPU's. Compared with a single CPU Intel Core 2 E6300, 16-processor GPU NVIDIA GeForce 9400 GT indicates a speedup factor of 3.6 when the total macro particle number is 1.1×10 6 . The simulation results also reveal how the back flow CEX plasma affects the spacecraft floating potential, which indicates that the plume of the ion thruster is indeed able to alleviate the extreme negative floating potentials of spacecraft in geosynchronous orbit

  19. Understanding electrostatic charge behaviour in aircraft fuel systems

    Science.gov (United States)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  20. Application of advanced electronics to a future spacecraft computer design

    Science.gov (United States)

    Carney, P. C.

    1980-01-01

    Advancements in hardware and software technology are summarized with specific emphasis on spacecraft computer capabilities. Available state of the art technology is reviewed and candidate architectures are defined.

  1. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  2. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  3. Determining Spacecraft Reaction Wheel Friction Parameters

    Science.gov (United States)

    Sarani, Siamak

    2009-01-01

    Software was developed to characterize the drag in each of the Cassini spacecraft's Reaction Wheel Assemblies (RWAs) to determine the RWA friction parameters. This tool measures the drag torque of RWAs for not only the high spin rates (greater than 250 RPM), but also the low spin rates (less than 250 RPM) where there is a lack of an elastohydrodynamic boundary layer in the bearings. RWA rate and drag torque profiles as functions of time are collected via telemetry once every 4 seconds and once every 8 seconds, respectively. Intermediate processing steps single-out the coast-down regions. A nonlinear model for the drag torque as a function of RWA spin rate is incorporated in order to characterize the low spin rate regime. The tool then uses a nonlinear parameter optimization algorithm based on the Nelder-Mead simplex method to determine the viscous coefficient, the Dahl friction, and the two parameters that account for the low spin-rate behavior.

  4. A spacecraft computer repairable via command.

    Science.gov (United States)

    Fimmel, R. O.; Baker, T. E.

    1971-01-01

    The MULTIPAC is a central data system developed for deep-space probes with the distinctive feature that it may be repaired during flight via command and telemetry links by reprogramming around the failed unit. The computer organization uses pools of identical modules which the program organizes into one or more computers called processors. The interaction of these modules is dynamically controlled by the program rather than hardware. In the event of a failure, new programs are entered which reorganize the central data system with a somewhat reduced total processing capability aboard the spacecraft. Emphasis is placed on the evolution of the system architecture and the final overall system design rather than the specific logic design.

  5. Cometary dust size distributions from flyby spacecraft

    International Nuclear Information System (INIS)

    Divine, N.

    1988-01-01

    Pior to the Halley flybys in 1986, the distribution of cometary dust grains with particle size were approximated using models which provided reasonable fits to the dynamics of dust tails, anti-tails, and infrared spectra. These distributions have since been improved using fluence data (i.e., particle fluxes integrated over time along the flyby trajectory) from three spacecraft. The fluence derived distributions are appropriate for comparison with simultaneous infrared photometry (from Earth) because they sample the particles in the same way as the IR data do (along the line of sight) and because they are directly proportional to the concentration distribution in that region of the coma which dominates the IR emission

  6. A corrector for spacecraft calculated electron moments

    Directory of Open Access Journals (Sweden)

    J. Geach

    2005-03-01

    Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature Te, density Ne and velocity vector Ve. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.

  7. Generating Animated Displays of Spacecraft Orbits

    Science.gov (United States)

    Candey, Robert M.; Chimiak, Reine A.; Harris, Bernard T.

    2005-01-01

    Tool for Interactive Plotting, Sonification, and 3D Orbit Display (TIPSOD) is a computer program for generating interactive, animated, four-dimensional (space and time) displays of spacecraft orbits. TIPSOD utilizes the programming interface of the Satellite Situation Center Web (SSCWeb) services to communicate with the SSC logic and database by use of the open protocols of the Internet. TIPSOD is implemented in Java 3D and effects an extension of the preexisting SSCWeb two-dimensional static graphical displays of orbits. Orbits can be displayed in any or all of the following seven reference systems: true-of-date (an inertial system), J2000 (another inertial system), geographic, geomagnetic, geocentric solar ecliptic, geocentric solar magnetospheric, and solar magnetic. In addition to orbits, TIPSOD computes and displays Sibeck's magnetopause and Fairfield's bow-shock surfaces. TIPSOD can be used by the scientific community as a means of projection or interpretation. It also has potential as an educational tool.

  8. Planning Inmarsat's second generation of spacecraft

    Science.gov (United States)

    Williams, W. P.

    1982-09-01

    The next generation of studies of the Inmarsat service are outlined, such as traffic forecasting studies, communications capacity estimates, space segment design, cost estimates, and financial analysis. Traffic forecasting will require future demand estimates, and a computer model has been developed which estimates demand over the Atlantic, Pacific, and Indian ocean regions. Communications estimates are based on traffic estimates, as a model converts traffic demand into a required capacity figure for a given area. The Erlang formula is used, requiring additional data such as peak hour ratios and distribution estimates. Basic space segment technical requirements are outlined (communications payload, transponder arrangements, etc), and further design studies involve such areas as space segment configuration, launcher and spacecraft studies, transmission planning, and earth segment configurations. Cost estimates of proposed design parameters will be performed, but options must be reduced to make construction feasible. Finally, a financial analysis will be carried out in order to calculate financial returns.

  9. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  10. High Gain Antenna Calibration on Three Spacecraft

    Science.gov (United States)

    Hashmall, Joseph A.

    2011-01-01

    This paper describes the alignment calibration of spacecraft High Gain Antennas (HGAs) for three missions. For two of the missions (the Lunar Reconnaissance Orbiter and the Solar Dynamics Observatory) the calibration was performed on orbit. For the third mission (the Global Precipitation Measurement core satellite) ground simulation of the calibration was performed in a calibration feasibility study. These three satellites provide a range of calibration situations-Lunar orbit transmitting to a ground antenna for LRO, geosynchronous orbit transmitting to a ground antenna fer SDO, and low Earth orbit transmitting to TDRS satellites for GPM The calibration results depend strongly on the quality and quantity of calibration data. With insufficient data the calibration Junction may give erroneous solutions. Manual intervention in the calibration allowed reliable parameters to be generated for all three missions.

  11. Human factors issues for interstellar spacecraft

    Science.gov (United States)

    Cohen, Marc M.; Brody, Adam R.

    1991-01-01

    Developments in research on space human factors are reviewed in the context of a self-sustaining interstellar spacecraft based on the notion of traveling space settlements. Assumptions about interstellar travel are set forth addressing costs, mission durations, and the need for multigenerational space colonies. The model of human motivation by Maslow (1970) is examined and directly related to the design of space habitat architecture. Human-factors technology issues encompass the human-machine interface, crew selection and training, and the development of spaceship infrastructure during transtellar flight. A scenario for feasible instellar travel is based on a speed of 0.5c, a timeframe of about 100 yr, and an expandable multigenerational crew of about 100 members. Crew training is identified as a critical human-factors issue requiring the development of perceptual and cognitive aids such as expert systems and virtual reality.

  12. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  13. Space power systems--''Spacecraft 2000''

    International Nuclear Information System (INIS)

    Faymon, K.A.

    1985-01-01

    The National Space programs of the 21st century will require abundant and relatively low cost power and energy produced by high reliability-low mass systems. Advancement of current power system related technologies will enable the U.S. to realize increased scientific payload for government missions or increased revenue producing payload for commercial space endeavors. Autonomous, unattended operation will be a highly desirable characteristic of these advanced power systems. Those space power-energy related technologies, which will comprise the space craft of the late 1990's and the early 2000's, will evolve from today's state-of-the-art systems and those long term technology development programs presently in place. However, to foster accelerated development of the more critical technologies which have the potential for high-payoffs, additional programs will be proposed and put in place between now and the end of the century. Such a program is ''Spacecraft 2000'', which is described in this paper

  14. Optimal trajectories of aircraft and spacecraft

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  15. Radiation shielding calculations for the vista spacecraft

    International Nuclear Information System (INIS)

    Sahin, Suemer; Sahin, Haci Mehmet; Acir, Adem

    2005-01-01

    The VISTA spacecraft design concept has been proposed for manned or heavy cargo deep space missions beyond earth orbit with inertial fusion energy propulsion. Rocket propulsion is provided by fusion power deposited in the inertial confined fuel pellet debris and with the help of a magnetic nozzle. The calculations for the radiation shielding have been revised under the fact that the highest jet efficiency of the vehicle could be attained only if the propelling plasma would have a narrow temperature distribution. The shield mass could be reduced from 600 tons in the original design to 62 tons. Natural and enriched lithium were the principle shielding materials. The allowable nuclear heating in the superconducting magnet coils (up to 5 mW/cm 3 ) is taken as the crucial criterion for dimensioning the radiation shielding structure of the spacecraft. The space craft mass is 6000 tons. Total peak nuclear power density in the coils is calculated as ∼5.0 mW/cm 3 for a fusion power output of 17 500 MW. The peak neutron heating density is ∼2.0 mW/cm 3 , and the peak γ-ray heating density is ∼3.0 mW/cm 3 (on different points) using natural lithium in the shielding. However, the volume averaged heat generation in the coils is much lower, namely 0.21, 0.71 and 0.92 mW/cm 3 for the neutron, γ-ray and total nuclear heating, respectively. The coil heating will be slightly lower if highly enriched 6 Li (90%) is used instead of natural lithium. Peak values are then calculated as 2.05, 2.15 and 4.2 mW/cm 3 for the neutron, γ-ray and total nuclear heating, respectively. The corresponding volume averaged heat generation in the coils became 0.19, 0.58 and 0.77 mW/cm 3

  16. Charge carrier dynamics in thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Strothkaemper, Christian

    2013-06-24

    This work investigates the charge carrier dynamics in three different technological approaches within the class of thin film solar cells: radial heterojunctions, the dye solar cell, and microcrystalline CuInSe{sub 2}, focusing on charge transport and separation at the electrode, and the relaxation of photogenerated charge carriers due to recombination and energy dissipation to the phonon system. This work relies mostly on optical-pump terahertz-probe (OPTP) spectroscopy, followed by transient absorption (TA) and two-photon photoemission (2PPE). The charge separation in ZnO-electrode/In{sub 2}S{sub 3}-absorber core/shell nanorods, which represent a model system of a radial heterojunction, is analyzed by OPTP. It is concluded, that the dynamics in the absorber are determined by multiple trapping, which leads to a dispersive charge transport to the electrode that lasts over hundreds of picoseconds. The high trap density on the order of 10{sup 19}/cm{sup 3} is detrimental for the injection yield, which exhibits a decrease with increasing shell thickness. The heterogeneous electron transfer from a series of model dyes into ZnO proceeds on a time-scale of 200 fs. However, the photoconductivity builds up just on a 2-10 ps timescale, and 2PPE reveals that injected electrons are meanwhile localized spatially and energetically at the interface. It is concluded that the injection proceeds through adsorbate induced interface states. This is an important result because the back reaction from long lived interface states can be expected to be much faster than from bulk states. While the charge transport in stoichiometric CuInSe{sub 2} thin films is indicative of free charge carriers, CuInSe{sub 2} with a solar cell grade composition (Cu-poor) exhibits signs of carrier localization. This detrimental effect is attributed to a high density of charged defects and a high degree of compensation, which together create a spatially fluctuating potential that inhibits charge transport. On

  17. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  18. Estruturas domésticas e grupos de interesse: a formação da posição Brasileira para Seattle Domestic structures and interest groups: the building up of the Brazilian position to Seattle

    Directory of Open Access Journals (Sweden)

    Maria Izabel V. de Carvalho

    2003-12-01

    Full Text Available O artigo examina o papel dos grupos de interesse dos empresários e dos trabalhadores na formação da posição oficial brasileira para a III Conferência Ministerial da OMC, em Seattle, em 1999. Argumenta-se que esse desempenho deve ser explicado considerando-se a influência de dois fatores: a internacionalização da economia a partir da década de 90 - que tornou a sociedade mais permeável ao ambiente externo - e as estruturas domésticas - que filtraram as preferências das organizações representativas do setor privado. Por um lado, a liberalização econômica e o desenvolvimento de um sistema de regulação internacional do comércio mais interventor desencadearam a mobilização dos grupos de interesse; por outro, a formulação do posicionamento do país esteve concentrada no Executivo, onde vínculos entre o setor empresarial e a burocracia governamental constituíram-se, contribuindo para a convergência de suas preferências. As centrais sindicais, por sua vez, agiram via alianças transnacionais, e suas preferências - divergentes das do empresariado e do governo - não estiveram presentes na posição negociadora do país. Estes resultados indicam que as estruturas domésticas para as negociações multilaterais de comércio na OMC não foram inclusivas. O artigo conclui ressaltando que a participação maior do Congresso nesse processo, por meio de mecanismos ex-ante, poderá contribuir para aumentar a representatividade da posição brasileira bem como a sua credibilidade externa.The article shows the role that business interest group and worker unions had in building up the Brazilian position for the Third Ministerial Summit of WTO, in Seattle, 1999. It argues that that role should be explained by considering two factors: the internationalization of Brazilian economy since the 90's - making the society more sensitive to the events developing in the external environment - and the domestic political structures - filtering the

  19. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  20. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  1. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  2. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  3. Contractor Software Charges

    National Research Council Canada - National Science Library

    Granetto, Paul

    1994-01-01

    .... Examples of computer software costs that contractors charge through indirect rates are material management systems, security systems, labor accounting systems, and computer-aided design and manufacturing...

  4. Cancer prevention: take charge of your lifestyle

    Science.gov (United States)

    ... tobacco use. Protect Yourself from UV Rays The ultraviolet radiation in sunlight can cause changes to your skin. ... is even better for your health. Eat Healthy Foods Good food choices can build up your immune ...

  5. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  6. Rockets and spacecraft: Sine qua non of space science

    Science.gov (United States)

    1980-01-01

    The evolution of the national launch vehicle stable is presented along with lists of launch vehicles used in NASA programs. A partial list of spacecraft used throughout the world is also given. Scientific spacecraft costs are presented along with an historial overview of project development and funding in NASA.

  7. Design feasibility via ascent optimality for next-generation spacecraft

    Science.gov (United States)

    Miele, A.; Mancuso, S.

    This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).

  8. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  9. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  10. A Comparison of Learning Technologies for Teaching Spacecraft Software Development

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    The development of software for spacecraft represents a particular challenge and is, in many ways, a worst case scenario from a design perspective. Spacecraft software must be "bulletproof" and operate for extended periods of time without user intervention. If the software fails, it cannot be manually serviced. Software failure may…

  11. Spacecraft Software Maintenance: An Effective Approach to Reducing Costs and Increasing Science Return

    Science.gov (United States)

    Shell, Elaine M.; Lue, Yvonne; Chu, Martha I.

    1999-01-01

    -orbit environment, may find the developer unprepared for the challenges. The second approach is to train a member of the flight operations team to maintain the spacecraft software. This can prove to be a costly and inflexible solution. The person assigned to this duty may not have enough work to do during a problem free period and may have too much to do when a problem arises. If the person is a talented software engineer, he/she may not enjoy the limited software opportunities available in this position; and may eventually leave for newer technology computer science opportunities. Training replacement flight software personnel can be a difficult and lengthy process. The third approach is to assemble a center of excellence for on-orbit spacecraft software maintenance. Personnel in this specialty center can be managed to support flight software of multiple missions at once. The variety of challenges among a set of on-orbit missions, can result in a dedicated, talented staff which is fully trained and available to support each mission's needs. Such staff are not software developers but are rather spacecraft software systems engineers. The cost to any one mission is extremely low because the software staff works and charges, minimally on missions with no current operations issues; and their professional insight into on-orbit software troubleshooting and maintenance methods ensures low risk, effective and minimal-cost solutions to on-orbit issues.

  12. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  13. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  14. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  15. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  16. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  17. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  18. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  19. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  20. Unilateral CHARGE association

    NARCIS (Netherlands)

    Trip, J; van Stuijvenberg, M; Dikkers, FG; Pijnenburg, MWH

    A case with a predominantly unilateral CHARGE association is reported. The CHARGE association refers to a combination of congenital malformations. This boy had left-sided anomalies consisting of choanal atresia. coloboma and peripheral facial palsy. The infant had a frontal encephalocele. an anomaly

  1. Nondissipative optimum charge regulator

    Science.gov (United States)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  2. A Technology Program that Rescues Spacecraft

    Science.gov (United States)

    Deutsch, Leslie J.; Lesh, J. R.

    2004-03-01

    There has never been a long-duration deep space mission that did not have unexpected problems during operations. JPL's Interplanetary Network Directorate (IND) Technology Program was created to develop new and improved methods of communication, navigation, and operations. A side benefit of the program is that it maintains a cadre of human talent and experimental systems that can be brought to bear on unexpected problems that may occur during mission operations. Solutions fall into four categories: applying new technology during operations to enhance science performance, developing new operational strategies, providing domain experts to help find solutions, and providing special facilities to trouble-shoot problems. These are illustrated here using five specific examples of spacecraft anomalies that have been solved using, at least in part, expertise or facilities from the IND Technology Program: Mariner 10, Voyager, Galileo, SOHO, and Cassini/Huygens. In this era of careful cost management, and emphasis on returns-on-investment, it is important to recognize this crucial additional benefit from such technology program investments.

  3. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  4. An AFDX Network for Spacecraft Data Handling

    Science.gov (United States)

    Deredempt, Marie-Helene; Kollias, Vangelis; Sun, Zhili; Canamares, Ernest; Ricco, Philippe

    2014-08-01

    In aeronautical domain, ARINC-664 Part 7 specification (AFDX) [4] provides the enabling technology for interfacing equipment in Integrated Modular Avionics (IMA) architectures. The complementary part of AFDX for a complete interoperability - Time and Space Partitioning (ARINC 653) concepts [1]- was already studied as part of space domain ESA roadmap (i.e. IMA4Space project)Standardized IMA based architecture is already considered in aeronautical domain as more flexible, reliable and secure. Integration and validation become simple, using a common set of tools and data base and could be done by part on different means with the same definition (hardware and software test benches, flight control or alarm test benches, simulator and flight test installation).In some area, requirements in terms of data processing are quite similar in space domain and the concept could be applicable to take benefit of the technology itself and of the panel of hardware and software solutions and tools available on the market. The Mission project (Methodology and assessment for the applicability of ARINC-664 (AFDX) in Satellite/Spacecraft on-board communicatION networks), as an FP7 initiative for bringing terrestrial SME research into the space domain started to evaluate the applicability of the standard in space domain.

  5. Spacecraft attitude and velocity control system

    Science.gov (United States)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  6. Humidity Testing for Human Rated Spacecraft

    Science.gov (United States)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  7. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  8. NASA Medical Response to Human Spacecraft Accidents

    Science.gov (United States)

    Patlach, Robert

    2011-01-01

    This slide presentation reviews NASA's role in the response to spacecraft accidents that involve human fatalities or injuries. Particular attention is given to the work of the Mishap Investigation Team (MIT), the first response to the accidents and the interface to the accident investigation board. The MIT does not investigate the accident, but the objective of the MIT is to gather, guard, preserve and document the evidence. The primary medical objectives of the MIT is to receive, analyze, identify, and transport human remains, provide assistance in the recovery effort, and to provide family Casualty Coordinators with latest recovery information. The MIT while it does not determine the cause of the accident, it acts as the fact gathering arm of the Mishap Investigation Board (MIB), which when it is activated may chose to continue to use the MIT as its field investigation resource. The MIT membership and the specific responsibilities and tasks of the flight surgeon is reviewed. The current law establishing the process is also reviewed.

  9. Medical Significance of Microorganisms in Spacecraft Environment

    Science.gov (United States)

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  10. Programs To Optimize Spacecraft And Aircraft Trajectories

    Science.gov (United States)

    Brauer, G. L.; Petersen, F. M.; Cornick, D.E.; Stevenson, R.; Olson, D. W.

    1994-01-01

    POST/6D POST is set of two computer programs providing ability to target and optimize trajectories of powered or unpowered spacecraft or aircraft operating at or near rotating planet. POST treats point-mass, three-degree-of-freedom case. 6D POST treats more-general rigid-body, six-degree-of-freedom (with point masses) case. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Applications include computation of performance or capability of vehicle in ascent, or orbit, and during entry into atmosphere, simulation and analysis of guidance and flight-control systems, dispersion-type analyses and analyses of loads, general-purpose six-degree-of-freedom simulation of controlled and uncontrolled vehicles, and validation of performance in six degrees of freedom. Written in FORTRAN 77 and C language. Two machine versions available: one for SUN-series computers running SunOS(TM) (LAR-14871) and one for Silicon Graphics IRIS computers running IRIX(TM) operating system (LAR-14869).

  11. Spaceborne intensity interferometry via spacecraft formation flight

    Science.gov (United States)

    Ribak, Erez N.; Gurfil, Pini; Moreno, Coral

    2012-07-01

    Interferometry in space has marked advantages: long integration times and observation in spectral bands where the atmosphere is opaque. When installed on separate spacecraft, it also has extended and flexible baselines for better filling of the uv plane. Intensity interferometry has an additional advantage, being insensitive to telescope and path errors, but is unfortunately much less light-sensitive. In planning towards such a mission, we are experimenting with some fundamental research issues. Towards this end, we constructed a system of three vehicles floating on an air table in formation flight, with an autonomous orbit control. Each such device holds its own light collector, detector, and transmitter, to broadcast its intensity signal towards a central receiving station. At this station we implement parallel radio receivers, analogue to digital converters, and a digital three-way correlator. Current technology limits us to ~1GHz transmission frequency, which corresponds to a comfortable 0.3m accuracy in light-bucket shape and in its relative position. Naïve calculations place our limiting magnitude at ~7 in the blue and ultraviolet, where amplitude interferometers are limited. The correlation signal rides on top of this huge signal with its own Poisson noise, requiring a very large dynamic range, which needs to be transmitted in full. We are looking at open questions such as deployable optical collectors and radio antennae of similar size of a few meters, and how they might influence our data transmission and thus set our flux limit.

  12. Spacecraft with gradual acceleration of solar panels

    Science.gov (United States)

    Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)

    1996-01-01

    A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.

  13. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  14. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  15. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  16. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  17. Electrostatic interaction between Interball-2 and the ambient plasma. 1. Determination of the spacecraft potential from current calculations

    Directory of Open Access Journals (Sweden)

    M. Bouhram

    2002-03-01

    Full Text Available The Interball-2 spacecraft travels at altitudes extending up to 20 000 km, and becomes positively charged due to the low-plasma densities encountered and the photoemission on its sunlit surface. Therefore, a knowledge of the spacecraft potential Fs is required for correcting accurately thermal ion measurements on Interball-2. The determination of Fs  is based on the balance of currents between escaping photoelectrons and incoming plasma electrons. A three-dimensional model of the potential structure surrounding Interball-2, including a realistic geometry and neglecting the space-charge densities, is used to find, through particle simulations, current-voltage relations of impacting plasma electrons Ie (Fs and escaping photoelectrons Iph (Fs . The inferred relations are compared to analytic relationships in order to quantify the effects of the spacecraft geometry, the ambient magnetic field B0 and the electron temperature Te . We found that the complex geometry has a weak effect on the inferred currents, while the presence of B0 tends to decrease their values. Providing that the photoemission saturation current density Jph0 is known, a relation between Fs and the plasma density Ne can be derived by using the current balance. Since Jph0 is critical to this process, simultaneous measurements of Ne from Z-mode observations in the plasmapause, and data on the potential difference Fs  - Fp  between the spacecraft and an electric probe (p are used in order to reverse the process. A value Jph0 ~ = 32 µAm-2 is estimated, close to laboratory tests, but less than typical measurements in space. Using this value, Ne and Fs  can be derived systematically from electric field measurements without any additional calculation. These values are needed for correcting the distributions of low-energy ions measured by the Hyperboloid experiment on Interball-2. The effects of the potential structure on ion trajectories reaching Hyperboloid are discussed

  18. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland

    2004-04-01

    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  19. Charge carrier dynamics investigation of CuInS{sub 2} quantum dots films using injected charge extraction by linearly increasing voltage (i-CELIV): the role of ZnS Shell

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Ke; Sui, Ning; Zhang, Liquan; Wang, Yinghui, E-mail: yinghui-wang@outlook.com; Liu, Qinghui, E-mail: liuqinghui@jlu.edu.cn; Tan, Mingrui [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China); Zhou, Qiang [Jilin University, Key Laboratory of Superhard Materials, College of Physics (China); Zhang, Hanzhuang, E-mail: zhanghz@jlu.edu.cn [Jilin University, Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics (China)

    2016-12-15

    The role of ZnS shell on the photo-physical properties within CuInS{sub 2}/ZnS quantum dots (QDs) is carefully studied in optoelectronic devices. Linearly increasing voltage technique has been employed to investigate the charge carrier dynamics of both CuInS{sub 2} and CuInS{sub 2}/ZnS QDs films. This study shows that charge carriers follow a similar behavior of monomolecular recombination in this film, with their charge transfer rate correlates to the increase of applied voltage. It turns out that the ZnS shell could affect the carrier diffusion process through depressing the trapping states and would build up a potential barrier.

  20. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).