WorldWideScience

Sample records for spacecraft cabin atmospheric

  1. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  2. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  3. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  4. Operational Philosophy Concerning Manned Spacecraft Cabin Leaks

    Science.gov (United States)

    DeSimpelaere, Edward

    2011-01-01

    The last thirty years have seen the Space Shuttle as the prime United States spacecraft for manned spaceflight missions. Many lessons have been learned about spacecraft design and operation throughout these years. Over the next few decades, a large increase of manned spaceflight in the commercial sector is expected. This will result in the exposure of commercial crews and passengers to many of the same risks crews of the Space Shuttle have encountered. One of the more dire situations that can be encountered is the loss of pressure in the habitable volume of the spacecraft during on orbit operations. This is referred to as a cabin leak. This paper seeks to establish a general cabin leak response philosophy with the intent of educating future spacecraft designers and operators. After establishing a relative definition for a cabin leak, the paper covers general descriptions of detection equipment, detection methods, and general operational methods for management of a cabin leak. Subsequently, all these items are addressed from the perspective of the Space Shuttle Program, as this will be of the most value to future spacecraft due to similar operating profiles. Emphasis here is placed upon why and how these methods and philosophies have evolved to meet the Space Shuttle s needs. This includes the core ideas of: considerations of maintaining higher cabin pressures vs. lower cabin pressures, the pros and cons of a system designed to feed the leak with gas from pressurized tanks vs. using pressure suits to protect against lower cabin pressures, timeline and consumables constraints, re-entry considerations with leaks of unknown origin, and the impact the International Space Station (ISS) has had to the standard Space Shuttle cabin leak response philosophy. This last item in itself includes: procedural management differences, hardware considerations, additional capabilities due to the presence of the ISS and its resource, and ISS docking/undocking considerations with a

  5. The Incidence and Fate of Volatile Methyl Siloxanes in a Crewed Spacecraft Cabin

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2017-01-01

    Volatile methyl siloxanes (VMS) arise from diverse, pervasive sources aboard crewed spacecraft ranging from materials offgassing to volatilization from personal care products. These sources lead to a persistent VMS compound presence in the cabin environment that must be considered for robust life support system design. Volatile methyl siloxane compound stability in the cabin environment presents an additional technical issue because degradation products such as dimethylsilanediol (DMSD) are highly soluble in water leading to a unique load challenge for water purification processes. The incidence and fate of VMS compounds as observed in the terrestrial atmosphere, water, and surface (soil) environmental compartments have been evaluated as an analogy for a crewed cabin environment. Volatile methyl siloxane removal pathways aboard crewed spacecraft are discussed and a material balance accounting for a DMSD production mechanism consistent with in-flight observations is presented.

  6. Spacecraft Cabin Particulate Monitor, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design, build and test an optical extinction monitor for the detection of spacecraft cabin particulates. This monitor will be sensitive to particle...

  7. Spacecraft Cabin Particulate Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We have built and tested an optical extinction monitor for the detection of spacecraft cabin particulates. This sensor sensitive to particle sizes ranging from a few...

  8. Volatile organic components in the Skylab 4 spacecraft atmosphere

    Science.gov (United States)

    Liebich, H. M.; Bertsch, W.; Zlatkis, A.; Schneider, H. J.

    1975-01-01

    The volatile organic components in the spacecraft cabin atmosphere of Skylab 4 were trapped on a solid adsorbent at various times during the mission. In post-flight analyses, more than 300 compounds in concentrations from less than 1 ppb up to 8000 ppb could be detected by high-resolution gas chromatography. In the samples of the 11th, 47th, and 77th day of the mission, approximately 100 components in the molecular weight range from 58 to 592 were identified by mass spectrometry. Besides components known from other environments, such as alkanes, alkenes, and alkylated aromatic hydrocarbons, components typical of the human metabolism, such as ketones and alcohols, were found. Other typical components in the spacecraft atmosphere included fluorocarbons and various silicone compounds, mostly normal and cyclic methylsiloxanes.

  9. Spacecraft cabin environment effects on the growth and behavior of Chlorella vulgaris for life support applications

    Science.gov (United States)

    Niederwieser, Tobias; Kociolek, Patrick; Klaus, David

    2018-02-01

    An Environmental Control and Life Support System (ECLSS) is necessary for humans to survive in the hostile environment of space. As future missions move beyond Earth orbit for extended durations, reclaiming human metabolic waste streams for recycled use becomes increasingly important. Historically, these functions have been accomplished using a variety of physical and chemical processes with limited recycling capabilities. In contrast, biological systems can also be incorporated into a spacecraft to essentially mimic the balance of photosynthesis and respiration that occurs in Earth's ecosystem, along with increasing the reuse of biomass throughout the food chain. In particular, algal photobioreactors that use Chlorella vulgaris have been identified as potential multifunctional components for use as part of such a bioregenerative life support system (BLSS). However, a connection between the biological research examining C. vulgaris behavior and the engineered spacecraft cabin environmental conditions has not yet been thoroughly established. This review article characterizes the ranges of prior and expected cabin parameters (e.g. temperature, lighting, carbon dioxide, pH, oxygen, pressure, growth media, contamination, gravity, and radiation) and reviews algal metabolic response (e.g. growth rate, composition, carbon dioxide fixation rates, and oxygen evolution rates) to changes in those parameters that have been reported in prior space research and from related Earth-based experimental observations. Based on our findings, it appears that C. vulgaris offers many promising advantages for use in a BLSS. Typical atmospheric conditions found in spacecraft such as elevated carbon dioxide levels are, in fact, beneficial for algal cultivation. Other spacecraft cabin parameters, however, introduce unique environmental factors, such as reduced total pressure with elevated oxygen concentration, increased radiation, and altered gravity, whose effects on the biological responses

  10. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  11. Acoustic Measurements of an Uninstalled Spacecraft Cabin Ventilation Fan Prototype

    Science.gov (United States)

    Koch, L. Danielle; Brown, Clifford A.; Shook, Tony D.; Winkel, James; Kolacz, John S.; Podboy, Devin M.; Loew, Raymond A.; Mirecki, Julius H.

    2012-01-01

    Sound pressure measurements were recorded for a prototype of a spacecraft cabin ventilation fan in a test in the NASA Glenn Acoustical Testing Laboratory. The axial fan is approximately 0.089 m (3.50 in.) in diameter and 0.223 m (9.00 in.) long and has nine rotor blades and eleven stator vanes. At design point of 12,000 rpm, the fan was predicted to produce a flow rate of 0.709 cu m/s (150 cfm) and a total pressure rise of 925 Pa (3.72 in. of water) at 12,000 rpm. While the fan was designed to be part of a ducted atmospheric revitalization system, no attempt was made to throttle the flow or simulate the installed configuration during this test. The fan was operated at six speeds from 6,000 to 13,500 rpm. A 13-microphone traversing array was used to collect sound pressure measurements along two horizontal planes parallel to the flow direction, two vertical planes upstream of the fan inlet and two vertical planes downstream of the fan exhaust. Measurements indicate that sound at blade passing frequency harmonics contribute significantly to the overall audible noise produced by the fan at free delivery conditions.

  12. Effects of Cabin Upsets on Adsorption Columns for Air Revitalization

    Science.gov (United States)

    LeVan, Douglas

    1999-01-01

    The National Aeronautics and Space Administration (NASA) utilizes adsorption technology as part of contaminant removal systems designed for long term missions. A variety of trace contaminants can be effectively removed from gas streams by adsorption onto activated carbon. An activated carbon adsorption column meets NASA's requirements of a lightweight and efficient means of controlling trace contaminant levels aboard spacecraft and space stations. The activated carbon bed is part of the Trace Contaminant Control System (TCCS) which is utilized to purify the cabin atmosphere. TCCS designs oversize the adsorption columns to account for irregular fluctuations in cabin atmospheric conditions. Variations in the cabin atmosphere include changes in contaminant concentrations, temperature, and relative humidity. Excessively large deviations from typical conditions can result from unusual crew activity, equipment malfunctions, or even fires. The research carried out under this award focussed in detail on the effects of cabin upsets on the performance of activated carbon adsorption columns. Both experiments and modeling were performed with an emphasis on the roll of a change in relative humidity on adsorption of trace contaminants. A flow through fixed-bed apparatus was constructed at the NASA Ames Research Center, and experiments were performed there. Modeling work was performed at the University of Virginia.

  13. Impacts of an Ammonia Leak on the Cabin Atmosphere of the International Space Station

    Science.gov (United States)

    Duchesne, Stephanie M.; Sweterlitsch, Jeffrey J.; Son, Chang H.; Perry Jay L.

    2012-01-01

    Toxic chemical release into the cabin atmosphere is one of the three major emergency scenarios identified on the International Space Station (ISS). The release of anhydrous ammonia, the coolant used in the U.S. On-orbit Segment (USOS) External Active Thermal Control Subsystem (EATCS), into the ISS cabin atmosphere is one of the most serious toxic chemical release cases identified on board ISS. The USOS Thermal Control System (TCS) includes an Internal Thermal Control Subsystem (ITCS) water loop and an EATCS ammonia loop that transfer heat at the interface heat exchanger (IFHX). Failure modes exist that could cause a breach within the IFHX. This breach would result in high pressure ammonia from the EATCS flowing into the lower pressure ITCS water loop. As the pressure builds in the ITCS loop, it is likely that the gas trap, which has the lowest maximum design pressure within the ITCS, would burst and cause ammonia to enter the ISS atmosphere. It is crucial to first characterize the release of ammonia into the ISS atmosphere in order to develop methods to properly mitigate the environmental risk. This paper will document the methods used to characterize an ammonia leak into the ISS cabin atmosphere. A mathematical model of the leak was first developed in order to define the flow of ammonia into the ISS cabin atmosphere based on a series of IFHX rupture cases. Computational Fluid Dynamics (CFD) methods were then used to model the dispersion of the ammonia throughout the ISS cabin and determine localized effects and ventilation effects on the dispersion of ammonia. Lastly, the capabilities of the current on-orbit systems to remove ammonia were reviewed and scrubbing rates of the ISS systems were defined based on the ammonia release models. With this full characterization of the release of ammonia from the USOS TCS, an appropriate mitigation strategy that includes crew and system emergency response procedures, personal protection equipment use, and atmosphere monitoring

  14. Rationale and Methods for Archival Sampling and Analysis of Atmospheric Trace Chemical Contaminants On Board Mir and Recommendations for the International Space Station

    Science.gov (United States)

    Perry, J. L.; James, J. T.; Cole, H. E.; Limero, T. F.; Beck, S. W.

    1997-01-01

    Collection and analysis of spacecraft cabin air samples are necessary to assess the cabin air quality with respect to crew health. Both toxicology and engineering disciplines work together to achieve an acceptably clean cabin atmosphere. Toxicology is concerned with limiting the risk to crew health from chemical sources, setting exposure limits, and analyzing air samples to determine how well these limits are met. Engineering provides the means for minimizing the contribution of the various contaminant generating sources by providing active contamination control equipment on board spacecraft and adhering to a rigorous material selection and control program during the design and construction of the spacecraft. A review of the rationale and objectives for sampling spacecraft cabin atmospheres is provided. The presently-available sampling equipment and methods are reviewed along with the analytical chemistry methods employed to determine trace contaminant concentrations. These methods are compared and assessed with respect to actual cabin air quality monitoring needs. Recommendations are presented with respect to the basic sampling program necessary to ensure an acceptably clean spacecraft cabin atmosphere. Also, rationale and recommendations for expanding the scope of the basic monitoring program are discussed.

  15. The Effect of Golden Pothos in Reducing the Level of Volatile Organic Compounds in a Simulated Spacecraft Cabin

    Science.gov (United States)

    Ursprung, Matthew; Amiri, Azita; Kayatin, Matthew; Perry, Jay

    2016-01-01

    The impact of Golden Pothos on indoor air quality was studied against a simulated spacecraft trace contaminant load model, consistent with the International Space Station (ISS), containing volatile organic compounds (VOCs) and formaldehyde. Previous research provides inconclusive results on the efficacy of plant VOC removal which this projects seeks to rectify through a better experimental design. This work develops a passive system for removing common VOC's from spacecraft and household indoor air and decreasing the necessity for active cabin trace contaminant removal systems.

  16. Design Concept for a Minimal Volume Spacecraft Cabin to Serve as a Mars Ascent Vehicle Cabin and Other Alternative Pressurized Vehicle Cabins

    Science.gov (United States)

    Howard, Robert L., Jr.

    2016-01-01

    The Evolvable Mars Campaign is developing concepts for human missions to the surface of Mars. These missions are round-trip expeditions, thereby requiring crew launch via a Mars Ascent Vehicle (MAV). A study to identify the smallest possible pressurized cabin for this mission has developed a conceptual vehicle referred to as the minimal MAV cabin. The origin of this concept will be discussed as well as its initial concept definition. This will lead to a description of possible configurations to integrate the minimal MAV cabin with ascent vehicle engines and propellant tanks. Limitations of this concept will be discussed, in particular those that argue against the use of the minimal MAV cabin to perform the MAV mission. However, several potential alternative uses for the cabin are identified. Finally, recommended forward work will be discussed, including current work in progress to develop a full scale mockup and conduct usability evaluations.

  17. Tone Noise Predictions for a Spacecraft Cabin Ventilation Fan Ingesting Distorted Inflow and the Challenges of Validation

    Science.gov (United States)

    Koch, L. Danielle; Shook, Tony D.; Astler, Douglas T.; Bittinger, Samantha A.

    2012-01-01

    A fan tone noise prediction code has been developed at NASA Glenn Research Center that is capable of estimating duct mode sound power levels for a fan ingesting distorted inflow. This code was used to predict the circumferential and radial mode sound power levels in the inlet and exhaust duct of an axial spacecraft cabin ventilation fan. Noise predictions at fan design rotational speed were generated. Three fan inflow conditions were studied: an undistorted inflow, a circumferentially symmetric inflow distortion pattern (cylindrical rods inserted radially into the flowpath at 15deg, 135deg, and 255deg), and a circumferentially asymmetric inflow distortion pattern (rods located at 15deg, 52deg and 173deg). Noise predictions indicate that tones are produced for the distorted inflow cases that are not present when the fan operates with an undistorted inflow. Experimental data are needed to validate these acoustic predictions, as well as the aerodynamic performance predictions. Given the aerodynamic design of the spacecraft cabin ventilation fan, a mechanical and electrical conceptual design study was conducted. Design features of a fan suitable for obtaining detailed acoustic and aerodynamic measurements needed to validate predictions are discussed.

  18. Cabin Environment Physics Risk Model

    Science.gov (United States)

    Mattenberger, Christopher J.; Mathias, Donovan Leigh

    2014-01-01

    This paper presents a Cabin Environment Physics Risk (CEPR) model that predicts the time for an initial failure of Environmental Control and Life Support System (ECLSS) functionality to propagate into a hazardous environment and trigger a loss-of-crew (LOC) event. This physics-of failure model allows a probabilistic risk assessment of a crewed spacecraft to account for the cabin environment, which can serve as a buffer to protect the crew during an abort from orbit and ultimately enable a safe return. The results of the CEPR model replace the assumption that failure of the crew critical ECLSS functionality causes LOC instantly, and provide a more accurate representation of the spacecraft's risk posture. The instant-LOC assumption is shown to be excessively conservative and, moreover, can impact the relative risk drivers identified for the spacecraft. This, in turn, could lead the design team to allocate mass for equipment to reduce overly conservative risk estimates in a suboptimal configuration, which inherently increases the overall risk to the crew. For example, available mass could be poorly used to add redundant ECLSS components that have a negligible benefit but appear to make the vehicle safer due to poor assumptions about the propagation time of ECLSS failures.

  19. Multifunctional Coating for Crew Cabin Surfaces and Fabrics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's crewed spacecrafts require routine cleaning of particulate, moisture, organic, and salt contaminants on the crew cabin surfaces and fabrics. Self-cleaning...

  20. Cabin fuselage structural design with engine installation and control system

    Science.gov (United States)

    Balakrishnan, Tanapaal; Bishop, Mike; Gumus, Ilker; Gussy, Joel; Triggs, Mike

    1994-01-01

    Design requirements for the cabin, cabin system, flight controls, engine installation, and wing-fuselage interface that provide adequate interior volume for occupant seating, cabin ingress and egress, and safety are presented. The fuselage structure must be sufficient to meet the loadings specified in the appropriate sections of Federal Aviation Regulation Part 23. The critical structure must provide a safe life of 10(exp 6) load cycles and 10,000 operational mission cycles. The cabin seating and controls must provide adjustment to account for various pilot physiques and to aid in maintenance and operation of the aircraft. Seats and doors shall not bind or lockup under normal operation. Cabin systems such as heating and ventilation, electrical, lighting, intercom, and avionics must be included in the design. The control system will consist of ailerons, elevator, and rudders. The system must provide required deflections with a combination of push rods, bell cranks, pulleys, and linkages. The system will be free from slack and provide smooth operation without binding. Environmental considerations include variations in temperature and atmospheric pressure, protection against sand, dust, rain, humidity, ice, snow, salt/fog atmosphere, wind and gusts, and shock and vibration. The following design goals were set to meet the requirements of the statement of work: safety, performance, manufacturing and cost. To prevent the engine from penetrating the passenger area in the event of a crash was the primary safety concern. Weight and the fuselage aerodynamics were the primary performance concerns. Commonality and ease of manufacturing were major considerations to reduce cost.

  1. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    Science.gov (United States)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the

  2. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the cabin (both air and its structure if manned) and electronic equipment within a narrow temperature range even though...

  3. Prediction of car cabin environment by means of 1D and 3D cabin model

    Science.gov (United States)

    Fišer, J.; Pokorný, J.; Jícha, M.

    2012-04-01

    Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry) and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry). Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  4. Prediction of car cabin environment by means of 1D and 3D cabin model

    Directory of Open Access Journals (Sweden)

    Jícha M.

    2012-04-01

    Full Text Available Thermal comfort and also reduction of energy requirements of air-conditioning system in vehicle cabins are currently very intensively investigated and up-to-date issues. The article deals with two approaches of modelling of car cabin environment; the first model was created in simulation language Modelica (typical 1D approach without cabin geometry and the second one was created in specialized software Theseus-FE (3D approach with cabin geometry. Performance and capabilities of this tools are demonstrated on the example of the car cabin and the results from simulations are compared with the results from the real car cabin climate chamber measurements.

  5. The Cabin Crew Blues. Middle-aged Cabin Attendants and Their Working Conditions

    Directory of Open Access Journals (Sweden)

    Ann Bergman

    2015-12-01

    Full Text Available This article examines how an airline company uses the labor of a group of middle-aged cabin attendants in an industry increasingly characterized by deregulation and competiveness. The study was based on in-depth interviews with seven women, all with between 24 and 30 years of work experience as cabin attendants. The article focuses on the women’s working conditions and well-being and the analysis reveals three key aspects—intensification of work, vulnerability, and aging—that affect the cabin attendants’ experiences and emotions in relation to the work. It is at the intersection of these three aspects that the cabin attendants’ concerns must be understood. The study’s findings indicated that positive emotions such as job satisfaction and commitment have diminished because of exploitative and otherwise poor working conditions. Taking the cabin attendants’ concerns as its point of departure, the article shows that there is a need to move away from a discussion about emotional labor toward a discussion of working conditions.

  6. Sustainable development of cabins. An investigation of cabin owners' attitudes towards the environment and energy

    International Nuclear Information System (INIS)

    Velvin, Jan

    2004-01-01

    An investigation on private cabin owners in the three Buskerud (Norway) municipalities: Sigdal, Rollag and Hol. The main purpose has been to evaluate the state of local value-creation related to cabin tourism, energy and environmental aspects of the cabin-usage, and other conditions related to sustainable development. This report deals in specific with environment and energy questions concerning cabin owners, and their attitudes towards energy-saving measures. Results from the investigation show that the standard on facilities of cabins has increased, indicating that the energy consumption will rise accordingly. Income is the primary explanation factor in relation to energy consumption. More results are presented in the report (ml)

  7. 14 CFR 23.841 - Pressurized cabins.

    Science.gov (United States)

    2010-01-01

    ... probable failure or malfunction in the pressurization system. (b) Pressurized cabins must have at least the following valves, controls, and indicators, for controlling cabin pressure: (1) Two pressure relief valves... compressor or to divert airflow from the cabin if continued rotation of an engine-driven cabin compressor or...

  8. In-flight cabin smoke control.

    Science.gov (United States)

    Eklund, T I

    1996-12-31

    Fatal accidents originating from in-flight cabin fires comprise only about 1% of all fatal accidents in the civil jet transport fleet. Nevertheless, the impossibility of escape during flight accentuates the hazards resulting from low visibility and toxic gases. Control of combustion products in an aircraft cabin is affected by several characteristics that make the aircraft cabin environment unique. The aircraft fuselage is pressurized in flight and has an air distribution system which provides ventilation jets from the ceiling level air inlets running along the cabin length. A fixed quantity of ventilation air is metered into the cabin and air discharge is handled primarily by pressure controlling outflow valves in the rear lower part of the fuselage. Earlier airplane flight tests on cabin smoke control used generators producing minimally buoyant smoke products that moved with and served as a telltales for overall cabin ventilation flows. Analytical studies were done with localized smoke production to predict the percent of cabin length that would remain smoke-free during continuous generation. Development of a buoyant smoke generator allowed simulation of a fire plume with controllable simulated temperature and heat release rates. Tests on a Boeing 757, modified to allow smoke venting out through the top of the cabin, showed that the buoyant smoke front moved at 0.46m/s (1.5ft/sec) with and 0.27m/sec (0.9ft/sec) against, the axial ventilation airflow. Flight tests in a modified Boeing 727 showed that a ceiling level counterflow of about 0.55m/sec (1.8ft/sec) was required to arrest the forward movement of buoyant smoke. A design goal of 0.61m/s (2ft/sec) axial cabin flow would require a flow rate of 99m3/min (3500ft3/min) in a furnished Boeing 757. The current maximum fresh air cabin ventilation flow is 78m3/min (2756 ft3/min). Experimental results indicate that buoyancy effects cause smoke movement behaviour that is not predicted by traditional design analyses and

  9. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    Science.gov (United States)

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  10. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  11. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  12. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  13. Strong scintillations during atmospheric occultations Theoretical intensity spectra. [radio scattering during spacecraft occultations by planetary atmospheres

    Science.gov (United States)

    Hinson, D. P.

    1986-01-01

    Each of the two Voyager spacecraft launched in 1977 has completed a reconnaissance of the Jovian and Saturnian systems. In connection with occultation experiments, strong scintillations were observed. Further theoretical work is required before these scintillations can be interpreted. The present study is, therefore, concerned with the derivation of a theory for strong scattering during atmospheric occultation experiments, taking into account as fundamental quantity of interest the spatial spectrum (or spectral density) of intensity fluctuations. Attention is given to a theory for intensity spectra, and numerical calculations. The new formula derived for Phi-i accounts for strong scattering of electromagnetic waves during atmospheric occultations.

  14. A new calcineurin inhibition domain in Cabin1

    International Nuclear Information System (INIS)

    Jang, Hyonchol; Cho, Eun-Jung; Youn, Hong-Duk

    2007-01-01

    Calcineurin (CN), a calcium-activated phosphatase, plays a critical role in various biological processes including T cell activation. Cabin1, a calcineurin binding protein 1, has been shown to bind directly to CN using its C-terminal region and inhibit CN activity. However, no increase in CN activity has been found in Cabin1ΔC T cells, which produce a truncated Cabin1 lacking the C-terminal CN binding region. Here, we report that Cabin1 has additional CN binding domain in its 701-900 amino acid residues. Cabin1 (701-900) blocked both CN-mediated dephosphorylation and nuclear import of NFAT and thus inhibited IL-2 production in response to PMA/ionomycin stimulation. This fact may explain why Cabin1ΔC mice previously showed no significant defect in CN-mediated signaling pathway

  15. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  16. Estimating Torque Imparted on Spacecraft Using Telemetry

    Science.gov (United States)

    Lee, Allan Y.; Wang, Eric K.; Macala, Glenn A.

    2013-01-01

    There have been a number of missions with spacecraft flying by planetary moons with atmospheres; there will be future missions with similar flybys. When a spacecraft such as Cassini flies by a moon with an atmosphere, the spacecraft will experience an atmospheric torque. This torque could be used to determine the density of the atmosphere. This is because the relation between the atmospheric torque vector and the atmosphere density could be established analytically using the mass properties of the spacecraft, known drag coefficient of objects in free-molecular flow, and the spacecraft velocity relative to the moon. The density estimated in this way could be used to check results measured by science instruments. Since the proposed methodology could estimate disturbance torque as small as 0.02 N-m, it could also be used to estimate disturbance torque imparted on the spacecraft during high-altitude flybys.

  17. Crane cabins' interior space multivariate anthropometric modeling.

    Science.gov (United States)

    Essdai, Ahmed; Spasojević Brkić, Vesna K; Golubović, Tamara; Brkić, Aleksandar; Popović, Vladimir

    2018-01-01

    Previous research has shown that today's crane cabins fail to meet the needs of a large proportion of operators. Performance and financial losses and effects on safety should not be overlooked as well. The first aim of this survey is to model the crane cabin interior space using up-to-date crane operator anthropometric data and to compare the multivariate and univariate method anthropometric models. The second aim of the paper is to define the crane cabin interior space dimensions that enable anthropometric convenience. To facilitate the cabin design, the anthropometric dimensions of 64 crane operators in the first sample and 19 more in the second sample were collected in Serbia. The multivariate anthropometric models, spanning 95% of the population on the basis of a set of 8 anthropometric dimensions, have been developed. The percentile method was also used on the same set of data. The dimensions of the interior space, necessary for the accommodation of the crane operator, are 1174×1080×1865 mm. The percentiles results for the 5th and 95th model are within the obtained dimensions. The results of this study may prove useful to crane cabin designers in eliminating anthropometric inconsistencies and improving the health of operators, but can also aid in improving the safety, performance and financial results of the companies where crane cabins operate.

  18. Risk factors for skin cancer among Finnish airline cabin crew.

    Science.gov (United States)

    Kojo, Katja; Helminen, Mika; Pukkala, Eero; Auvinen, Anssi

    2013-07-01

    Increased incidence of skin cancers among airline cabin crew has been reported in several studies. We evaluated whether the difference in risk factor prevalence between Finnish airline cabin crew and the general population could explain the increased incidence of skin cancers among cabin crew, and the possible contribution of estimated occupational cosmic radiation exposure. A self-administered questionnaire survey on occupational, host, and ultraviolet radiation exposure factors was conducted among female cabin crew members and females presenting the general population. The impact of occupational cosmic radiation dose was estimated in a separate nested case-control analysis among the participating cabin crew (with 9 melanoma and 35 basal cell carcinoma cases). No considerable difference in the prevalence of risk factors of skin cancer was found between the cabin crew (N = 702) and the general population subjects (N = 1007) participating the study. The mean risk score based on all the conventional skin cancer risk factors was 1.43 for cabin crew and 1.44 for general population (P = 0.24). Among the cabin crew, the estimated cumulative cosmic radiation dose was not related to the increased skin cancer risk [adjusted odds ratio (OR) = 0.75, 95% confidence interval (CI): 0.57-1.00]. The highest plausible risk of skin cancer for estimated cosmic radiation dose was estimated as 9% per 10 mSv. The skin cancer cases had higher host characteristics scores than the non-cases among cabin crew (adjusted OR = 1.43, 95% CI: 1.01-2.04). Our results indicate no difference between the female cabin crew and the general female population in the prevalence of factors generally associated with incidence of skin cancer. Exposure to cosmic radiation did not explain the excess of skin cancer among the studied cabin crew in this study.

  19. Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation

    Science.gov (United States)

    Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.

  20. Benefits of a Single-Person Spacecraft for Weightless Operations. [(Stop Walking and Start Flying)

    Science.gov (United States)

    Griffin, Brand N.

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work.1 A single-person spacecraft with 90 percent efficiency provides productive new capabilities for maintaining the International Space Station (ISS), exploring asteroids, and servicing telescopes or satellites. With suits, going outside to inspect, service or repair a spacecraft is time-consuming, requiring pre-breathe time, donning a fitted space suit, and pumping down an airlock. For ISS, this is between 12.5 and 16 hours for each EVA, not including translation and work-site set up. The work is physically demanding requiring a day of rest between EVAs and often results in suit-induced trauma with frequent injury to astronauts fingers2. For maximum mobility, suits use a low pressure, pure oxygen atmosphere. This represents a fire hazard and requires pre-breathing to reduce the risk of decompression sickness (bends). With virtually no gravity, humans exploring asteroids cannot use legs for walking. The Manned Maneuvering Unit offers a propulsive alternative however it is no longer in NASA s flight inventory. FlexCraft is a single person spacecraft operating at the same cabin atmosphere as its host so there is no risk of the bends and no pre-breathing. This allows rapid, any-time access to space for repeated short or long EVAs by different astronauts. Integrated propulsion eliminates hand-over-hand translation or having another crew member operate the robotic arm. The one-size-fits-all FlexCraft interior eliminates the suit part inventory and crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used and because the work is not strenuous no rest days are required. Furthermore, there is no need for hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job.

  1. Exploitation Strategies of Cabin and Galley Thermal Dynamics

    OpenAIRE

    Schlabe, Daniel; Zimmer, Dirk; Pollok, Alexander

    2017-01-01

    The thermal inertia of aircraft cabins and galleys is significant for commercial aircraft. The aircraft cabin is controlled by the Environment Control System (ECS) to reach, among other targets, a prescribed temperature. By allowing a temperature band of ± 2 K instead of a fixed temperature, it is possible to use this thermal dynamic of the cabin as energy storage. This storage can then be used to reduce electrical peak power, increase efficiency of the ECS, reduce thermal cooling peak power...

  2. Irregular working hours and fatigue of cabin crew.

    Science.gov (United States)

    Castro, Marta; Carvalhais, José; Teles, Júlia

    2015-01-01

    Beyond workload and specific environmental factors, flight attendants can be exposed to irregular working hours, conflicting with their circadian rhythms and having a negative impact in sleep, fatigue, health, social and family life, and performance which is critical to both safety and security in flight operations. This study focuses on the irregular schedules of cabin crew as a trigger of fatigue symptoms in a wet lease Portuguese airline. The aim was to analyze: what are the requirements of the cabin crew work; whether the schedules being observed and effective resting timeouts are triggering factors of fatigue; and the existence of fatigue symptoms in the cabin crew. A questionnaire has been adapted and applied to a sample of 73 cabin crew-members (representing 61.9% of the population), 39 females and 34 males, with an average age of 27.68 ± 4.27 years. Our data indicate the presence of fatigue and corresponding health symptoms among the airline cabin crew, despite of the sample favorable characteristics. Senior workers and women are more affected. Countermeasures are required. Recommendations can be made regarding the fatigue risk management, including work organization, education and awareness training programmes and specific countermeasures.

  3. A Cabin Air Separator for EVA Oxygen

    Science.gov (United States)

    Graf, John C.

    2011-01-01

    Presently, the Extra-Vehicular Activities (EVAs) conducted from the Quest Joint Airlock on the International Space Station use high pressure, high purity oxygen that is delivered to the Space Station by the Space Shuttle. When the Space Shuttle retires, a new method of delivering high pressure, high purity oxygen to the High Pressure Gas Tanks (HPGTs) is needed. One method is to use a cabin air separator to sweep oxygen from the cabin air, generate a low pressure/high purity oxygen stream, and compress the oxygen with a multistage mechanical compressor. A main advantage to this type of system is that the existing low pressure oxygen supply infrastructure can be used as the source of cabin oxygen. ISS has two water electrolysis systems that deliver low pressure oxygen to the cabin, as well as chlorate candles and compressed gas tanks on cargo vehicles. Each of these systems can feed low pressure oxygen into the cabin, and any low pressure oxygen source can be used as an on-board source of oxygen. Three different oxygen separator systems were evaluated, and a two stage Pressure Swing Adsorption system was selected for reasons of technical maturity. Two different compressor designs were subjected to long term testing, and the compressor with better life performance and more favorable oxygen safety characteristics was selected. These technologies have been used as the basis of a design for a flight system located in Equipment Lock, and taken to Preliminary Design Review level of maturity. This paper describes the Cabin Air Separator for EVA Oxygen (CASEO) concept, describes the separator and compressor technology trades, highlights key technology risks, and describes the flight hardware concept as presented at Preliminary Design Review (PDR)

  4. Optimised Sound Absorbing Trim Panels for the Reduction of Aircraft Cabin Noise

    NARCIS (Netherlands)

    Hannink, M.H.C.; Wijnant, Ysbrand H.; de Boer, Andries; Ivanov, N.I.; Crocker, M.J.

    2004-01-01

    The EU project FACE (Friendly Aircraft Cabin Environment) aims to improve the environmental comfort in aircraft cabins. As part of this project, this paper focuses on the reduction of noise in aircraft cabins. For modern aircraft flying at cruise conditions, this cabin noise is known to be dominated

  5. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  6. 14 CFR 23.571 - Metallic pressurized cabin structures.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Metallic pressurized cabin structures. 23... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Structure Fatigue Evaluation § 23.571 Metallic pressurized cabin structures. For normal, utility, and acrobatic...

  7. Ship cabin leakage alarm based on ARM SCM

    Science.gov (United States)

    Qu, Liyan

    2018-03-01

    If there is a leakage in the cabin of a sailing ship, it is a major accident that threatens the personnel and property of the ship. If we can’t take timely measures, there will be a devastating disaster. In order to judge the leakage of the cabin, it is necessary to set up a leakage alarm system, so as to achieve the purpose of detecting and alarming the leakage of the cabin, and avoid the occurrence of accidents. This paper discusses the design of ship cabin leakage alarm system based on ARM SCM. In order to ensure the stability and precision of the product, the hardware design of the alarm system is carried out, such as circuit design, software design, the programming of SCM, the software programming of upper computer, etc. It is hoped that it can be of reference value to interested readers.

  8. Human Factors in Cabin Accident Investigations

    Science.gov (United States)

    Chute, Rebecca D.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Human factors has become an integral part of the accident investigation protocol. However, much of the investigative process remains focussed on the flight deck, airframe, and power plant systems. As a consequence, little data has been collected regarding the human factors issues within and involving the cabin during an accident. Therefore, the possibility exists that contributing factors that lie within that domain may be overlooked. The FAA Office of Accident Investigation is sponsoring a two-day workshop on cabin safety accident investigation. This course, within the workshop, will be of two hours duration and will explore relevant areas of human factors research. Specifically, the three areas of discussion are: Information transfer and resource management, fatigue and other physical stressors, and the human/machine interface. Integration of these areas will be accomplished by providing a suggested checklist of specific cabin-related human factors questions for investigators to probe following an accident.

  9. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  10. Interference elimination: nuclear spin in the cabin

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Constructed on Michael Faraday's cage principle, such cabins enable nuclear spin tomographs to operate undisturbed by foreign radiation. The working signals of these medical research apparatus are screened from the environment so that radio and television reception are not affected. Details are given of the structure of the cabin, of the prefabricated structural elements of non-magnetic materials (chromium-nickel steel). (Auth.)

  11. Comparison of different decontaminant delivery methods for sterilizing unoccupied commercial airliner cabins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Chen, Qingyan [National Air Transport Center of Excellence for Research in the Intermodal Transport Environment (RITE), School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47905 (United States)

    2010-09-15

    Effective decontamination is crucial if an airliner cabin is contaminated by biological contaminants, such as infectious disease viruses or intentionally released biological agents. This study used computational fluid dynamics (CFD) method as a tool and vaporized hydrogen peroxide (VHP) as an exemplary decontaminant and Geobacillus stearothermophilus spores as a simulant contaminant to investigate three VHP delivery methods for sterilizing two different airliner cabins. The CFD first determined the airflow and the transient distributions of the contaminant and decontaminant in cabins. Auxiliary equations were implemented into the CFD model for evaluating efficacy of the sterilization process. The improved CFD model was validated by the measured airflow and simulated contaminant distributions obtained from a cabin mockup and the measured efficacy data from the literature. The three decontaminant delivery methods were (1) to supply the mixed VHP and air through the environmental control system of a cabin, (2) to send mixed VHP and air through a front door and to extract them from a back door of a cabin, and (3) to send directly VHP to a cabin and enhance the mixing with air in the cabin by fans. The two air cabins studied were a single-aisle and a twin-aisle airliner one. The results show that the second decontaminant delivery method (displacement method) was the best because the VHP distributions in the cabins were most uniform, the sterilization time was moderate, and the corrosion risk was low. The method displaced the existing air by the air/disinfectant solution, rather than dispersive mixing as the other two methods. (author)

  12. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  13. Large-Scale Spacecraft Fire Safety Experiments in ISS Resupply Vehicles

    Science.gov (United States)

    Ruff, Gary A.; Urban, David

    2013-01-01

    Our understanding of the fire safety risk in manned spacecraft has been limited by the small scale of the testing we have been able to conduct in low-gravity. Fire growth and spread cannot be expected to scale linearly with sample size so we cannot make accurate predictions of the behavior of realistic scale fires in spacecraft based on the limited low-g testing to date. As a result, spacecraft fire safety protocols are necessarily very conservative and costly. Future crewed missions are expected to be longer in duration than previous exploration missions outside of low-earth orbit and accordingly, more complex in terms of operations, logistics, and safety. This will increase the challenge of ensuring a fire-safe environment for the crew throughout the mission. Based on our fundamental uncertainty of the behavior of fires in low-gravity, the need for realistic scale testing at reduced gravity has been demonstrated. To address this concern, a spacecraft fire safety research project is underway to reduce the uncertainty and risk in the design of spacecraft fire safety systems by testing at nearly full scale in low-gravity. This project is supported by the NASA Advanced Exploration Systems Program Office in the Human Exploration and Operations Mission Directorate. The activity of this project is supported by an international topical team of fire experts from other space agencies to maximize the utility of the data and to ensure the widest possible scrutiny of the concept. The large-scale space flight experiment will be conducted on three missions; each in an Orbital Sciences Corporation Cygnus vehicle after it has deberthed from the ISS. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew allows the fire products to be released into the cabin. The tests will be fully automated with the data downlinked at the conclusion of the test before the Cygnus vehicle reenters the

  14. Transport of expiratory droplets in an aircraft cabin.

    Science.gov (United States)

    Gupta, Jitendra K; Lin, Chao-Hsin; Chen, Qingyan

    2011-02-01

    The droplets exhaled by an index patient with infectious disease such as influenza or tuberculosis may be the carriers of contagious agents. Indoor environments such as the airliner cabins may be susceptible to infection from such airborne contagious agents. The present investigation computed the transport of the droplets exhaled by the index patient seated in the middle of a seven-row, twin-aisle, fully occupied cabin using the CFD simulations. The droplets exhaled were from a single cough, a single breath, and a 15-s talk of the index patient. The expiratory droplets were tracked by using Lagrangian method, and their evaporation was modeled. It was found that the bulk airflow pattern in the cabin played the most important role on the droplet transport. The droplets were contained in the row before, at, and after the index patient within 30 s and dispersed uniformly to all the seven rows in 4 minutes. The total airborne droplet fraction reduced to 48, 32, 20, and 12% after they entered the cabin for 1, 2, 3, and 4 min, respectively, because of the ventilation from the environmental control system. It is critical to predict the risk of airborne infection to take appropriate measures to control and mitigate the risk. Most of the studies in past either assume a homogenous distribution of contaminants or use steady-state conditions. The present study instead provides information on the transient movement of the droplets exhaled by an index passenger in an aircraft cabin. These droplets may contain active contagious agents and can be potent enough to cause infection. The findings can be used by medical professionals to estimate the spatial and temporal distribution of risk of infection to various passengers in the cabin. © 2010 John Wiley & Sons A/S.

  15. Benefits of a Single-Person Spacecraft for Weightless Operations

    Science.gov (United States)

    Griffin, Brand Norman

    2012-01-01

    Historically, less than 20 percent of crew time related to extravehicular activity (EVA) is spent on productive external work. For planetary operations space suits are still the logical choice; however for safe and rapid access to the weightless environment, spacecraft offer compelling advantages. FlexCraft, a concept for a single-person spacecraft, enables any-time access to space for short or long excursions by different astronauts. For the International Space Station (ISS), going outside is time-consuming, requiring pre-breathing, donning a fitted space suit, and pumping down an airlock. For each ISS EVA this is between 12.5 and 16 hours. FlexCraft provides immediate access to space because it operates with the same cabin atmosphere as its host. Furthermore, compared to the space suit pure oxygen environment, a mixed gas atmosphere lowers the fire risk and allows use of conventional materials and systems. For getting to the worksite, integral propulsion replaces hand-over-hand translation or having another crew member operate the robotic arm. This means less physical exertion and more time at the work site. Possibly more important, in case of an emergency, FlexCraft can return from the most distant point on ISS in less than a minute. The one-size-fits-all FlexCraft means no on-orbit inventory of parts or crew time required to fit all astronauts. With a shirtsleeve cockpit, conventional displays and controls are used, there is no suit trauma and because the work is not strenuous, no rest days are required. Furthermore, there is no need to collect hand tools because manipulators are equipped with force multiplying end-effectors that can deliver the precise torque for the job. FlexCraft is an efficient solution for asteroid exploration allowing all crew to use one vehicle with no risk of contamination. And, because FlexCraft is a vehicle, its design offers better radiation and micro-meteoroid protection than space suits.

  16. Studies of the atmosphere of Venus by means of spacecraft: Solved and unsolved problems

    Science.gov (United States)

    Moroz, V. I.

    Many spacecraft were used for exploration of the atmosphere of Venus. Their list consists of 25 items, including fly-by missions, orbiters, descent and landing probes and even balloons. VENERA-4 (1967) was near the beginning of this list, providing the first time in situ experiments on other planet. It started a long sequence of successful Soviet Venera missions. However after the year 1985 there were no missions to Venus in Russia. It probably was a strategic error. Now several groups of scientists in other countries work on proposals for new missions to Venus. The goal of this paper is to present a brief review of already solved and still unsolved problems in the studies of the Venus' atmosphere and to possible future aims in this field.

  17. Application of automation for low cost aircraft cabin simulator

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Boomen, van den G.J.A.; Rauterberg, G.W.M.

    2010-01-01

    This paper presents an application of automation for low cost aircraft cabin simulator. The aircraft cabin simulator is a testbed that was designed for research on aircraft passenger comfort mprovement product. The simulator consists of an economy class section, a business class section, a lavatory

  18. Towards comfortable and efficient man-machine interaction in the cabins of vehicles

    NARCIS (Netherlands)

    Looze, M.P. de; Roetting, M.; Vink, P.; Luczak, H.

    2000-01-01

    The comfort of the operators in the cabins of vehicles is getting an increasingly important issue. At first glance, the cabins of professional machines (earth-moving equipment, busses, harvesting equipment) might look modern and highly comfortable. However, this does not imply that the cabins

  19. A parametric study of influence of material properties on car cabin environment

    Directory of Open Access Journals (Sweden)

    Pokorny Jan

    2014-03-01

    Full Text Available Recently the author presented the paper describing a car cabin heat load model for the prediction of the car cabin environment. The model allowed to simulate a transient behavior of the car cabin, i.e. radiant temperature of surfaces, air temperature and relative humidity. The model was developed in Dymola and was built on the basic principles of thermodynamics and heat balance equations. The model was validated by experiments performed on the Škoda Felicia during various operational conditions. In this paper the authors present a parametric study investigating influence of material properties on a car cabin environment. The Matlab version of the car cabin heat load model has been developed and used. The model was extended by simple graphical user interface and it was deployed into the stand alone executable application. The aim of this parametric study is to identify most important material properties and its effect on the cabin environment during specific operational conditions of car. By means of a sensitive analysis it can identified which material parameters have to be defined precisely and which parameters are not so important for the prediction of the air temperature inside cabin.

  20. Mixing Ventilation System in a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Zhang, Chen; Wojcik, Kamil

    2014-01-01

    . It is also proven possible to create an acceptable draught level in the cabin. Experiments with tracer gas indicated that the contaminant from exhalation of one manikin is fully mixed in the cabin, and the experiment with personalised ventilation did not show much improvement in this situation....

  1. Towards an Integrated Approach to Cabin Service English Curriculum Design: A Case Study of China Southern Airlines' Cabin Service English Training Course

    Science.gov (United States)

    Xiaoqin, Liu; Wenzhong, Zhu

    2016-01-01

    This paper has reviewed the history of EOP (training) development and then illustrated the curriculum design of cabin service English training from the three perspectives of ESP, CLIL and Business Discourse. It takes the cabin crew English training of China Southern Airlines (CZ) as the case and puts forward an operational framework composed of…

  2. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    Science.gov (United States)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  3. Atmospheric analyzer, carbon monoxide monitor and toluene diisocyanate monitor

    Science.gov (United States)

    Shannon, A. V.

    1977-01-01

    The purpose of the atmospheric analyzer and the carbon monoxide and toluene diisocyanate monitors is to analyze the atmospheric volatiles and to monitor carbon monoxide and toluene diisocyanate levels in the cabin atmosphere of Skylab. The carbon monoxide monitor was used on Skylab 2, 3, and 4 to detect any carbon monoxide levels above 25 ppm. Air samples were taken once each week. The toluene diisocyanate monitor was used only on Skylab 2. The loss of a micrometeoroid shield following the launch of Skylab 1 resulted in overheating of the interior walls of the Orbital Workshop. A potential hazard existed from outgassing of an isocyanate derivative resulting from heat-decomposition of the rigid polyurethane wall insulation. The toluene diisocyanate monitor was used to detect any polymer decomposition. The atmospheric analyzer was used on Skylab 4 because of a suspected leak in the Skylab cabin. An air sample was taken at the beginning, middle, and the end of the mission.

  4. Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering

  5. Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: Results from the October 1991 experiments

    Science.gov (United States)

    Jenkins, Jon M.; Steffes, Paul G.; Hinson, David P.; Twicken, Joseph D.; Tyler, G. Leonard

    1994-01-01

    On October 5 and 6, 1991, three dual-frequency ingress radio occultation experiments were conducted at Venus during consecutive orbits of the Magellan spacecraft. The radio signals probed a region of the atmosphere near 65 deg N, with a solar zenith angle of 108 deg, reaching below 35 km at 3.6 cm, and below 34 km at 13 cm (above a mean radius of 6052 km). The high effective isotropic radiated power (EIRP) of the Magellan spacecraft and highly successful attitude maneuvers allowed these signals to probe deeper than any previous radio occultation experiment and also resulted in the most accurate thermal and sulfuric acid vapor abundance profiles ever obtained at Venus through radio occultation techniques. The performance of the spacecraft and the experiment design are discussed in an accompanying paper. Average electron density profiles retrieved from the data possess peaks between 2600 and 6000/cu cm, well below typical values of 10,000/cu cm retrieved in 1979 by Pioneer Venus at similar solar zenith angles. Other basic results include vertical profiles of temperature, pressure, and density in the neutral atmosphere, 13- and 3.6-cm absorpttivity, and H2SO4 (g) abundance below the main cloud layer. H2SO4 (g) becomes significant below 50 km, reaching peaks between 18 and 24 ppm near 39 km before dropping precipitously below 38 km. These sharp decreases confirm the thermal decomposition of sulfuric acid vapor below 39 km. Since the Venus atmosphere rotated approximately 10 deg between experiments, the data contain information about the horizontal variability of the atmosphere. All derived profiles exhibit significant variations from orbit to orbit, indicating the presence of dynamical processes between 33 and 200 km. In particular, the orbit-to-orbit variations in temperature and in H2SO4 (g) abundance appear to be correlated, suggesting that a common mechanism may be responsible for the observed spatial variations.

  6. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  7. Propagation Measurements and Comparison with EM Techniques for In-Cabin Wireless Networks

    Directory of Open Access Journals (Sweden)

    Nektarios Moraitis

    2009-01-01

    Full Text Available This paper presents results of a narrowband measurement campaign conducted inside a Boeing 737–400 aircraft, the objective being the development of a propagation prediction model which can be used in the deployment of in-cabin wireless networks. The measurements were conducted at three different frequency bands: 1.8, 2.1, and 2.45 GHz, representative of several wireless services. Both a simple, empirical, inverse distance power law and a deterministic, site-specific model were investigated. Parameters for the empirical model were extracted from the measurements at different locations inside the cabin: aisle and seats. Additionally, a statistical characterization of the multipath scenario created by the transmitted signal and the various cabin elements is presented. The deterministic model, based on Physical Optics (PO techniques, provides a reasonable match with the empirical results. Finally, measurements and modeling results are provided for the penetration loss into the cabin (or out of the cabin, representative of interference scenarios.

  8. Experimental Study of Airborne Contaminant Migration in an Aircraft Cabin Model

    Science.gov (United States)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2007-11-01

    The cabin air ventilation system in wide body jetliners is designed to provide a comfortable and controlled environment for passengers. Inside the cabin, the air flows continuously from overhead vents into sidewall exhausts, forming a circular pattern designed to minimize cross flow between adjacent seat rows. However, spreading of gaseous or particulate contaminants is possible when flight attendants or passengers walk along an aisle, perturbing the ventilation flow. Such unsteady flow perturbations have been found to alter the cabin air distribution and quality. A better fundamental understanding of the turbulent transport phenomena is needed to improve air quality monitoring and control systems and to validate numerical simulations. The velocity field in a 15:1 model of a simplified aircraft cabin is probed to investigate the wake of a rectangular body moving through a steady two-dimensional flow at a Reynolds number (based on body height) of the order of 50,000. Planar Laser Induced Fluorescence is used to visualize wake structure and scalar contaminant transport. The interaction between the wake and the ventilation flow is measured with PIV. The data are compared to numerical studies of cabin airflows in the literature.

  9. Occupational cosmic radiation exposure and cancer in airline cabin crew

    International Nuclear Information System (INIS)

    Kojo, K.

    2013-03-01

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  10. Occupational cosmic radiation exposure and cancer in airline cabin crew.

    Energy Technology Data Exchange (ETDEWEB)

    Kojo, K.

    2013-03-15

    Cosmic radiation dose rates are considerably higher at cruising altitudes of airplanes than at ground level. Previous studies have found increased risk of certain cancers among aircraft cabin crew, but the results are not consistent across different studies. Despite individual cosmic radiation exposure assessment is important for evaluating the relation between cosmic radiation exposure and cancer risk, only few previous studies have tried to develop an exposure assessment method. The evidence for adverse health effects in aircrews due to ionizing radiation is inconclusive because quantitative dose estimates have not been used. No information on possible confounders has been collected. For an occupational group with an increased risk of certain cancers it is very important to assess if the risk is related to occupational exposure. The goal of this thesis was to develop two separate retrospective exposure assessment methods for occupational exposure to cosmic radiation. The methods included the assessment based on survey on flight histories and based on company flight timetables. Another goal was to describe the cancer incidence among aircraft cabin crew with a large cohort in four Nordic countries, i.e., Finland, Iceland, Norway, and Sweden. Also the contribution of occupational as well as non-occupational factors to breast and skin cancer risk among the cabin crew was studied with case-control studies. Using the survey method of cosmic radiation exposure assessment, the median annual radiation dose of Finnish airline cabin crew was 0.6 milliSievert (mSv) in the 1960s, 3.3 mSv in the 1970s, and 3.6 mSv in the 1980s. With the flight timetable method, the annual radiation dose increased with time being 0.7 mSv in the 1960 and 2.1 mSv in the 1995. With the survey method, the median career dose was 27.9 mSv and with the timetable method 20.8 mSv. These methods provide improved means for individual cosmic radiation exposure assessment compared to studies where cruder

  11. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  12. Experimental Study of Interior Temperature Distribution Inside Parked Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Issam Mohammed Ali Aljubury

    2015-03-01

    Full Text Available Temperature inside the vehicle cabin is very important to provide comfortable conditions to the car passengers. Temperature inside the cabin will be increased, when the car is left or parked directly under the sunlight. Experimental studies were performed in Baghdad, Iraq (33.3 oN, 44.4 oE to investigate the effects of solar radiation on car cabin components (dashboard, steering wheel, seat, and inside air. The test vehicle was oriented to face south to ensure maximum (thermal sun load on the front windscreen. Six different parking conditions were investigated. A suggested car cover was examined experimentally. The measurements were recorded for clear sky summer days started at 8 A.M. till 5 P.M. Results show that interior air temperature in unshaded parked car reaches 70oC and dashboard temperature can approach 100 oC. While, cardboard car shade inside the car not reduce the air temperature inside it. Suggested car cover with 1 cm part-down side windows reduced temperature of cabin components by 70 % in average compare to the base case.

  13. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter

    2007-01-01

    enables subjective assessments of the symptoms commonly experienced by passengers and crew during flights. Six investigations with subject exposure have subsequently been carried out in the aircraft cabin facility covering four environmental areas of study, i.e. humidity, air purification techniques...... but intensified complaints of headache, dizziness and claustrophobia, suggesting that air pollutants rather than low humidity cause the distress reported by airline passengers. Three investigations studying the efficacy of various air purification technologies showed that a gas phase adsorption purification unit......A 3-row, 21-seat section of a simulated Boeing 767 aircraft cabin has been built in a climate chamber, simulating the cabin environment not only in terms of materials and geometry, but also in terms of cabin air and wall temperatures and ventilation with very dry air. This realistic simulation...

  14. Cancer incidence among Nordic airline cabin crew.

    Science.gov (United States)

    Pukkala, Eero; Helminen, Mika; Haldorsen, Tor; Hammar, Niklas; Kojo, Katja; Linnersjö, Anette; Rafnsson, Vilhjálmur; Tulinius, Hrafn; Tveten, Ulf; Auvinen, Anssi

    2012-12-15

    Airline cabin crew are occupationally exposed to cosmic radiation and jet lag with potential disruption of circadian rhythms. This study assesses the influence of work-related factors in cancer incidence of cabin crew members. A cohort of 8,507 female and 1,559 male airline cabin attendants from Finland, Iceland, Norway and Sweden was followed for cancer incidence for a mean follow-up time of 23.6 years through the national cancer registries. Standardized incidence ratios (SIRs) were defined as ratios of observed and expected numbers of cases. A case-control study nested in the cohort (excluding Norway) was conducted to assess the relation between the estimated cumulative cosmic radiation dose and cumulative number of flights crossing six time zones (indicator of circadian disruption) and cancer risk. Analysis of breast cancer was adjusted for parity and age at first live birth. Among female cabin crew, a significantly increased incidence was observed for breast cancer [SIR 1.50, 95% confidence interval (95% CI) 1.32-1.69], leukemia (1.89, 95% CI 1.03-3.17) and skin melanoma (1.85, 95% CI 1.41-2.38). Among men, significant excesses in skin melanoma (3.00, 95% CI 1.78-4.74), nonmelanoma skin cancer (2.47, 95% CI 1.18-4.53), Kaposi sarcoma (86.0, 95% CI 41.2-158) and alcohol-related cancers (combined SIR 3.12, 95% CI 1.95-4.72) were found. This large study with complete follow-up and comprehensive cancer incidence data shows an increased incidence of several cancers, but according to the case-control analysis, excesses appear not to be related to the cosmic radiation or circadian disruptions from crossing multiple time zones. Copyright © 2012 UICC.

  15. Long-term orbit prediction for Tiangong-1 spacecraft using the mean atmosphere model

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Cheng, Haowen; Hu, Songjie; Duan, Jianfeng

    2015-03-01

    China is planning to complete its first space station by 2020. For the long-term management and maintenance, the orbit of the space station needs to be predicted for a long period of time. Since the space station is expected to work in a low-Earth orbit, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 20 days, the error in the a priori atmosphere model, if not properly corrected, could induce a semi-major axis error of up to a few kilometers and an overall position error of several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSISE00. The a priori reference mean density can be corrected during the orbit determination. For the long-term orbit prediction, we use sufficiently long period of observations and obtain a series of the diurnal mean densities. This series contains the recent variation of the atmosphere density and can be analyzed for various periodic components. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. Here we carry out the test with China's Tiangong-1 spacecraft at the altitude of about 340 km and we show that this method is simple and flexible. The densities predicted with this approach can serve in the long-term orbit prediction. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700 m and overall position errors better than 400 km.

  16. An under-aisle air distribution system facilitating humidification of commercial aircraft cabins

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tengfei; Yin, Shi; Wang, Shugang [School of Civil and Hydraulic Engineering, Dalian University of Technology (DUT), 2 Linggong Road, Dalian 116024 (China)

    2010-04-15

    Air environment in aircraft cabins has long been criticized especially for the dryness of the air within. Low moisture content in cabins is known to be responsible for headache, tiredness and many other non-specific symptoms. In addition, current widely used air distribution systems on airplanes dilute internally generated pollutants by promoting air mixing and thus impose risks of infectious airborne disease transmission. To boost air humidity level while simultaneously restricting air mixing, this investigation uses a validated computational fluid dynamics (CFD) program to design a new under-aisle air distribution system for wide-body aircraft cabins. The new system supplies fully outside, dry air at low momentum through a narrow channel passage along both side cabin walls to middle height of the cabin just beneath the stowage bins, while simultaneously humidified air is supplied through both perforated under aisles. By comparing with the current mixing air distribution system in terms of distribution of relative humidity, CO{sub 2} concentration, velocity, temperature and draught risk, the new system is found being able to improve the relative humidity from the existent 10% to the new level of 20% and lessen the inhaled CO{sub 2} concentration by 30%, without causing moisture condensation on cabin interior and inducing draught risks for passengers. The water consumption rate in air humidification is only around 0.05 kg/h per person, which should be affordable by airliners. (author)

  17. Factors affecting ozone removal rates in a simulated aircraft cabin environment

    DEFF Research Database (Denmark)

    Tamas, Gyöngyi; Weschler, Charles J.; Bako-Biro, Zsolt

    2006-01-01

    of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone...... present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently...

  18. Loss of cabin pressurization in U.S. Naval aircraft: 1969-90.

    Science.gov (United States)

    Bason, R; Yacavone, D W

    1992-05-01

    During the 22-year period from 1 January 1969 to 31 December 1990, there were 205 reported cases of loss of cabin pressure in US Naval aircraft; 21 were crew-initiated and 184 were deemed accidental. The ambient altitudes varied from 10,000 ft (3048 m) to 40,000 ft. (12192 m). The most common reason for crew-initiated decompression was to clear smoke and fumes from the cockpit/cabin (95%). The most common cause for accidental loss of cabin pressure was mechanical (73.37%), with aircraft structural damage accounting for the remaining 26.63%. Serious physiological problems included 1 pneumothorax, 11 cases of Type I decompression sickness, 23 cases of mild to moderate hypoxia with no loss of consciousness, 18 cases of hypoxia with loss of consciousness, and 3 lost aircraft with 4 fatalities due to incapacitation by hypoxia. In addition, 12 ejections were attributed to loss of cockpit pressure. Nine of the ejections were deliberate and three were accidental, caused by wind blast activation of the face curtain. Three aviators lost their lives following ejection and seven aircraft were lost. While the incidence of loss of cabin pressure in Naval aircraft appears low, it none-the-less presents a definite risk to the aircrew. Lectures on the loss of cabin/cockpit pressurization should continue during indoctrination and refresher physiology training.

  19. Prevalence of neck pain among cabin crew of Saudi Airlines.

    Science.gov (United States)

    Ezzat, Hesham M; Al-Sultan, Alanood; Al-Shammari, Anwar; Alyousef, Dana; Al-Hamidi, Hager; Al-Dossary, Nafla; Al-Zahrani, Nuha; Al-Abdulqader, Wala

    2015-01-01

    Neck pain is considered to be a major health problem in modern societies. Many previous studies found that certain occupations are related to this problem or are associated with the risk of developing it in future. Although the pain is caused by mechanical factors, it may progress to a serious problem and give rise to other abnormal symptoms such as vertigo, headache, or migraine. To investigate the prevalence of neck pain among the cabin crew of Saudi Airlines. A cross-sectional study was carried out on the available Saudi Airlines cabin crews in King Fahad Airport during our visits, using questionnaires and measurements of several parameters. Neck Pain Questionnaires were distributed to the cabin crews on Saudi Airlines and assessment sheets were completed by all participants of the study to evaluate the prevalence and distribution of neck pain. Physical therapy examination of neck motions in different directions and specific tests were performed by all the participants to identify any symptoms. Using these data the prevalence of neck pain among the cabin crews was calculated. Collected data were analyzed statistically using SPSS software calculating the mean, median, and score of the questionnaire. According to the scoring system of the study, 31 (30.09%) of 105 cabin crew staff of Saudi Airlines had neck pain. Our study confirmed a positive correlation between this occupation and neck pain, and in fact found that according to the results of logistic regression analysis, this occupation is the only significant factor that affects the positive compression test. The prevalence of neck pain among the cabin crews of Saudi Airlines was emphasized. The results show a high prevalence of neck pain in the participants of the study, with most cases appearing to run a chronic - episodic course. Further research is needed to help us understand more about the long-term course of neck pain and its broader outcomes and impacts.

  20. The application of Cold Atmospheric Plasma (CAP) for the sterilisation of spacecraft materials

    Science.gov (United States)

    Rettberg, Petra; Barczyk, Simon; Morfill, Gregor; Thomas, Hubertus; Satoshi Shimizu, .; Shimizu, Tetsuji; Klaempfl, Tobias

    2012-07-01

    Plasma, oft called the fourth state of matter after solid, liquid and gas, is defined by its ionized state. Ionization can be induced by different means, such as a strong electromagnetic field applied with a microwave generator. The concentration and composition of reactive atoms and molecules produced in Cold Atmospheric Plasma (CAP) depends on the gases used, the gas flow, the power applied, the humidity level etc.. In medicine, low-temperature plasma is already used for the sterilization of surgical instruments, implants and packaging materials as plasma works at the atomic level and is able to reach all surfaces, even the interior of small hollow items like needles. Its ability to sterilise is due to the generation of biologically active bactericidal agents, such as free radicals and UV radiation. In the project PLASMA-DECON (DLR/BMWi support code 50JR1005) a prototype of a device for sterilising spacecraft material and components was built based on the surface micro-discharge (SMD) plasma technology. The produced plasma species are directed into a closed chamber which contains the parts that need to be sterilised. To test the inactivation efficiency of this new device bacterial spores were used as model organisms because in the COSPAR Planetary Protection Policy all bioburden constraints are defined with respect to the number of spores (and other heat-tolerant aerobic microorganisms). Spores from different Bacillus species and strains, i.e. wildtype strains from culture collections and isolates from spacecraft assembly cleanrooms, were dried on three different spacecraft relevant materials and exposed to CAP. The specificity, linearity, precision, and effective range of the device was investigated. From the results obtained it can be concluded that the application of CAP proved to be a suitable method for bioburden reduction / sterilisation in the frame of planetary protection measures and the design of a larger plasma device is planned in the future.

  1. Investigating ozone-induced decomposition of surface-bound permethrin for conditions in aircraft cabins.

    Science.gov (United States)

    Coleman, B K; Wells, J R; Nazaroff, W W

    2010-02-01

    The reaction of ozone with permethrin can potentially form phosgene. Published evidence on ozone levels and permethrin surface concentrations in aircraft cabins indicated that significant phosgene formation might occur in this setting. A derivatization technique was developed to detect phosgene with a lower limit of detection of 2 ppb. Chamber experiments were conducted with permethrin-coated materials (glass, carpet, seat fabric, and plastic) exposed to ozone under cabin-relevant conditions (150 ppb O(3), 4.5/h air exchange rate, means of material-balance modeling indicates that the upper limit on the phosgene level in aircraft cabins resulting from this chemistry is approximately 1 microg/m(3) or approximately 0.3 ppb. It was thus determined that phosgene formation, if it occurs in aircraft cabins, is not likely to exceed relevant, health-based phosgene exposure guidelines. Phosgene formation from ozone-initiated oxidation of permethrin in the aircraft cabin environment, if it occurs, is estimated to generate levels below the California Office of Environmental Health Hazard Assessment acute reference exposure level of 4 microg/m(3) or approximately 1 ppb.

  2. Redesign of Transjakarta Bus Driver's Cabin

    Science.gov (United States)

    Mardi Safitri, Dian; Azmi, Nora; Singh, Gurbinder; Astuti, Pudji

    2016-02-01

    Ergonomic risk at work stations with type Seated Work Control was one of the problems faced by Transjakarta bus driver. Currently “Trisakti” type bus, one type of bus that is used by Transjakarta in corridor 9, serving route Pinang Ranti - Pluit, gained many complaints from drivers. From the results of Nordic Body Map questionnaires given to 30 drivers, it was known that drivers feel pain in the neck, arms, hips, and buttocks. Allegedly this was due to the seat position and the button/panel bus has a considerable distance range (1 meter) to be achieved by drivers. In addition, preliminary results of the questionnaire using Workstation Checklist identified their complaints about uncomfortable cushion, driver's seat backrest, and the exact position of the AC is above the driver head. To reduce the risk level of ergonomics, then did research to design the cabin by using a generic approach to designing products. The risk analysis driver posture before the design was done by using Rapid Upper Limb Assessment (RULA), Rapid Entire Body Assessment (REBA), and Quick Exposure Checklist (QEC), while the calculation of the moment the body is done by using software Mannequin Pro V10.2. Furthermore, the design of generic products was done through the stages: need metric-matrix, house of quality, anthropometric data collection, classification tree concept, concept screening, scoring concept, design and manufacture of products in the form of two-dimensional. While the design after design risk analysis driver posture was done by using RULA, REBA, and calculation of moments body as well as the design visualized using software 3DMax. From the results of analysis before the draft design improvements cabin RULA obtained scores of 6, REBA 9, and the result amounted to 57.38% QEC and moment forces on the back is 247.3 LbF.inch and on the right hip is 72.9 LbF.in. While the results of the proposed improvements cabin design RULA obtained scores of 3, REBA 4, and the moment of force on

  3. Aircraft Instrument, Fire Protection, Warning, Communication, Navigation and Cabin Atmosphere Control System (Course Outline), Aviation Mechanics 3 (Air Frame): 9067.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with manipulative skills and theoretical knowledge concerning aircraft instrument systems like major flight and engine instruments; fire protection and fire fighting systems; warning systems and navigation systems; aircraft cabin control systems, such as…

  4. The Airplane Cabin Microbiome.

    Science.gov (United States)

    Weiss, Howard; Hertzberg, Vicki Stover; Dupont, Chris; Espinoza, Josh L; Levy, Shawn; Nelson, Karen; Norris, Sharon

    2018-06-06

    Serving over three billion passengers annually, air travel serves as a conduit for infectious disease spread, including emerging infections and pandemics. Over two dozen cases of in-flight transmissions have been documented. To understand these risks, a characterization of the airplane cabin microbiome is necessary. Our study team collected 229 environmental samples on ten transcontinental US flights with subsequent 16S rRNA sequencing. We found that bacterial communities were largely derived from human skin and oral commensals, as well as environmental generalist bacteria. We identified clear signatures for air versus touch surface microbiome, but not for individual types of touch surfaces. We also found large flight-to-flight beta diversity variations with no distinguishing signatures of individual flights, rather a high between-flight diversity for all touch surfaces and particularly for air samples. There was no systematic pattern of microbial community change from pre- to post-flight. Our findings are similar to those of other recent studies of the microbiome of built environments. In summary, the airplane cabin microbiome has immense airplane to airplane variability. The vast majority of airplane-associated microbes are human commensals or non-pathogenic, and the results provide a baseline for non-crisis-level airplane microbiome conditions.

  5. Cabin crew collectivism: labour process and the roots of mobilization

    OpenAIRE

    Taylor, P.; Moore, S.

    2015-01-01

    The protracted dispute (2009–11) between British Airways and BASSA (British Airways Stewards and Stewardesses Association) was notable for the strength of collective action by cabin crew. In-depth interviews reveal collectivism rooted in the labour process and highlight the key agency of BASSA in effectively articulating worker interests. This data emphasizes crews’ relative autonomy, sustained by unionate on-board Cabin Service Directors who have defended the frontier of control against mana...

  6. Advanced air distribution for minimizing airborne cross infection in aircraft cabin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Dzhartov, Viktor

    2012-01-01

    was ventilated at 180 L/s. The concentration of Freon mixed with air exhaled by the “infected” manikin was measured. The personalized flow pushed the contaminated exhaled air backwards where it was pulled by the suction and exhausted before mixing with the cabin air. This resulted in substantial decrease...... simulated “infected” polluting passenger and another simulated “exposed” passenger. Personalized ventilation supplied clean air at 10 L/s from front against manikins’ face. Air was sucked at 10 L/s by a suction system of two nozzles positioned on the sides of “infected” manikin’s head. The cabin...... of the tracer gas concentration in the air inhaled by the “exposed” manikin and the exhausted cabin air....

  7. Test of Different Air Distribution Concepts for a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Damsgaard, Charlotte; Liu, Li

    2013-01-01

    Traditionally, air is supplied to the aircraft cabin either by individual nozzles or by supply slots. The air is expected to be fully mixed in the cabin, and the system is considered to be a mixing ventilation system. This paper will describe different air distribution systems known from other ap...

  8. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  9. Occupant evaluation of 7-hour exposures in a simulated aircraft cabin - Part 2: Thermal effects

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Zukowska, Daria

    2005-01-01

    Experiments were carried out in a simulated section of an aircraft cabin with 21 seats installed in a climate chamber, to determine the extent to which passengers’ perception of cabin air quality is affected by air temperature. The temperature inside the cabin was set at three differ-ent levels, 20......, and thermal sensation - the lower the temperature, the higher the perceived air quality and freshness....

  10. Design and Testing of a Thermal Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; WolfeIV, Edward [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; LaClair, Tim J [ORNL; Gao, Zhiming [ORNL; Abdelaziz, Omar [ORNL

    2016-01-01

    Without the waste heat available from the engine of a conventional automobile, electric vehicles (EVs) must provide heat to the cabin for climate control using energy stored in the vehicle. In current EV designs, this energy is typically provided by the traction battery. In very cold climatic conditions, the power required to heat the EV cabin can be of a similar magnitude to that required for propulsion of the vehicle. As a result, the driving range of an EV can be reduced very significantly during winter months, which limits consumer acceptance of EVs and results in increased battery costs to achieve a minimum range while ensuring comfort to the EV driver. To minimize the range penalty associated with EV cabin heating, a novel climate control system that includes thermal energy storage has been designed for use in EVs and plug-in hybrid electric vehicles (PHEVs). The system uses the stored latent heat of an advanced phase change material (PCM) to provide cabin heating. The PCM is melted while the EV is connected to the electric grid for charging of the electric battery, and the stored energy is subsequently transferred to the cabin during driving. To minimize thermal losses when the EV is parked for extended periods, the PCM is encased in a high performance insulation system. The electrical PCM-Assisted Thermal Heating System (ePATHS) was designed to provide enough thermal energy to heat the EV s cabin for approximately 46 minutes, covering the entire daily commute of a typical driver in the U.S.

  11. Research on release rate of volatile organic compounds in typical vessel cabin

    Directory of Open Access Journals (Sweden)

    ZHANG Jinlan

    2018-02-01

    Full Text Available [Objectives] Volatile Organic Compounds (VOC should be efficiently controlled in vessel cabins to ensure the crew's health and navigation safety. As an important parameter, research on release rate of VOCs in cabins is required. [Methods] This paper develops a method to investigate this parameter of a ship's cabin based on methods used in other closed indoor environments. A typical vessel cabin is sampled with Tenax TA tubes and analyzed by Automated Thermal Desorption-Gas Chromatography-Mass Spectrometry (ATD-GC/MS. The lumped mode is used and the release rate of Benzene, Toluene, Ethylbenzene and Xylene (BTEX, the typical representatives of VOCs, is obtained both in closed and ventilated conditions. [Results] The results show that the content of xylene and Total Volatile Organic Compounds (TVOC exceed the indoor environment standards in ventilated conditions. The BTEX release rate is similar in both conditions except for the benzene. [Conclusions] This research builds a method to measure the release rate of VOCs, providing references for pollution character evaluation and ventilation and purification system design.

  12. International Space Station Common Cabin Air Assembly Condensing Heat Exchanger Hydrophilic Coating Operation, Recovery, and Lessons Learned

    Science.gov (United States)

    Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.

    2013-01-01

    The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin air is controlled by the Common Cabin Air Assembly (CCAA). The CCAA consists of a fan, a condensing heat exchanger (CHX), an air/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent air. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the air is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat exchanger will be

  13. Early and late Holocene glacial fluctuations and tephrostratigraphy, Cabin Lake, Alaska

    Science.gov (United States)

    Zander, Paul D.; Kaufman, Darrell S.; Kuehn, Stephen C.; Wallace, Kristi L.; Anderson, R. Scott

    2013-01-01

    Marked changes in sediment types deposited in Cabin Lake, near Cordova, Alaska, represent environmental shifts during the early and late Holocene, including fluctuations in the terminal position of Sheridan Glacier. Cabin Lake is situated to receive meltwater during periods when the outwash plain of the advancing Sheridan Glacier had aggraded. A brief early Holocene advance from 11.2 to 11.0 cal ka is represented by glacial rock flour near the base of the sediment core. Non-glacial lake conditions were restored for about 1000 years before the water level in Cabin Lake lowered and the core site became a fen. The fen indicates drier-than-present conditions leading up to the Holocene thermal maximum. An unconformity spanning 5400 years during the mid-Holocene is overlain by peat until 1110 CE when meltwater from Sheridan Glacier returned to the basin. Three intervals of an advanced Sheridan Glacier are recorded in the Cabin Lake sediments during the late Holocene: 1110–1180, 1260–1540 and 1610–1780 CE. The sedimentary sequence also contains the first five reported tephra deposits from the Copper River delta region, and their geochemical signatures suggest that the sources are the Cook Inlet volcanoes Redoubt, Augustine and Crater Peak, and possibly Mt Churchill in the Wrangell Volcanic field.

  14. Astronaut Ronald Sega in crew cabin

    Science.gov (United States)

    1994-01-01

    Astronaut Ronald M. Sega suspends himself in the weightlessness aboard the Space Shuttle Discovery's crew cabin, as the Remote Manipulator System (RMS) arm holds the Wake Shield Facility (WSF) aloft. The mission specialist is co-principle investigator on the the WSF project. Note the University of Colorado, Colorado Springs banner above his head.

  15. On the wave induced responses for a high-speed hydrofoil catamaran. Part 2. Cabin connected to hull by spring and response to vibration; Suichuyokutsuki kosoku sodotei no harochu oto ni tsuite. 2. Dokuritsu kozogata cabin to yodo oto

    Energy Technology Data Exchange (ETDEWEB)

    Nobukawa, H; Kitamura, M; Kawamura, T [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1996-04-10

    A high-speed hydrofoil catamaran under development has such a structure that an independent cabin is mounted on catamaran hulls, the cabin is connected with the hulls by using four soft springs, and hydrofoils are attached to the front and rear of the cabin. The structural design conception was as follows: the self-weight of the cabin is supported by lifting power of the hydrofoils while the boat is cruising; longitudinal motions of the catamaran hulls are absorbed by soft spring struts to make the motions more difficult to be transmitted into the cabin; and vibration excited by engines rotating at high speeds, attached to rear of the catamaran hulls, is not transmitted directly to the cabin structurally. A towing experiment was carried out by using divided models of about 1/10 scale in counter waves and regular waves to investigate their vibration response characteristics in waves. Furthermore, an experimental boat made of aluminum alloy with about 1/3 scale of the design boat was attached with composite structural struts made of springs and rubber parts to perform cruising experiments on an actual sea area. As a result, it was found that vibration excited by main engines in the catamaran hulls is transmitted very little to the cabin. 2 refs., 10 figs., 1 tab.

  16. Controlling active cabin suspensions in commercial vehicles

    NARCIS (Netherlands)

    Evers, W.J.E.; Besselink, I.J.M.; Teerhuis, A.P.; Knaap, van der A.C.M.; Nijmeijer, H.

    2009-01-01

    The field of automotive suspensions is changing. Semi-active and active suspensions are starting to become viable options for vehicle designers. Suspension design for commercial vehicles is especially interesting given its potential. An active cabin suspension for a heavy-duty truck is considered,

  17. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, M.; Akyol, S.M. [Uludag University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Bursa (Turkey)

    2012-08-15

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO{sub 2}) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO{sub 2} concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO{sub 2} level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin. (orig.)

  18. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Science.gov (United States)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  19. Future aircraft cabins and design thinking: optimisation vs. win-win scenarios

    Directory of Open Access Journals (Sweden)

    A. Hall

    2013-06-01

    Full Text Available With projections indicating an increase in mobility over the next few decades and annual flight departures expected to rise to over 16 billion by 2050, there is a demand for the aviation industry and associated stakeholders to consider new forms of aircraft and technology. Customer requirements are recognized as a key driver in business. The airline is the principal customer for the aircraft manufacture. The passenger is, in turn, the airline's principal customer but they are just one of several stakeholders that include aviation authorities, airport operators, air-traffic control and security agencies. The passenger experience is a key differentiator used by airlines to attract and retain custom and the fuselage that defines the cabin envelope for the in-flight passenger experience and cabin design therefore receives significant attention for new aircraft, service updates and refurbishments. Decision making in design is crucial to arriving at viable and worthwhile cabin formats. Too little innovation will result in an aircraft manufacturer and airlines using its products falling behind its competitors. Too much may result in an over-extension with, for example, use of immature technologies that do not have the necessary reliability for a safety critical industry or sufficient value to justify the development effort. The multiple requirements associated with cabin design, can be viewed as an area for optimisation, accepting trade-offs between the various parameters. Good design, however, is often defined as developing a concept that resolves the contradictions and takes the solution towards a win-win scenario. Indeed our understanding and practice of design allows for behaviors that enhance design thinking through divergence and convergence, the use of abductive reasoning, experimentation and systems thinking. This paper explores and defines the challenges of designing the aircraft cabin of the future that will deliver on the multiple

  20. Passenger thermal comfort and behavior: a field investigation in commercial aircraft cabins.

    Science.gov (United States)

    Cui, W; Wu, T; Ouyang, Q; Zhu, Y

    2017-01-01

    Passengers' behavioral adjustments warrant greater attention in thermal comfort research in aircraft cabins. Thus, a field investigation on 10 commercial aircrafts was conducted. Environment measurements were made and a questionnaire survey was performed. In the questionnaire, passengers were asked to evaluate their thermal comfort and record their adjustments regarding the usage of blankets and ventilation nozzles. The results indicate that behavioral adjustments in the cabin and the use of blankets or nozzle adjustments were employed by 2/3 of the passengers. However, the thermal comfort evaluations by these passengers were not as good as the evaluations by passengers who did not perform any adjustments. Possible causes such as differences in metabolic rate, clothing insulation and radiation asymmetry are discussed. The individual difference seems to be the most probable contributor, suggesting possibly that passengers who made adjustments had a narrower acceptance threshold or a higher expectancy regarding the cabin environment. Local thermal comfort was closely related to the adjustments and significantly influenced overall thermal comfort. Frequent flying was associated with lower ratings for the cabin environment. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Interior noise analysis of a construction equipment cabin based on airborne and structure-borne noise predictions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hee; Hong, Suk Yoon [Seoul National University, Seoul (Korea, Republic of); Song, Jee Hun [Chonnam National University, Gwangju (Korea, Republic of); Joo, Won Ho [Hyundai Heavy Industries Co. Ltd, Ulsan (Korea, Republic of)

    2012-04-15

    Noise from construction equipment affects not only surrounding residents, but also the operators of the machines. Noise that affects drivers must be evaluated during the preliminary design stage. This paper suggests an interior noise analysis procedure for construction equipment cabins. The analysis procedure, which can be used in the preliminary design stage, was investigated for airborne and structure borne noise. The total interior noise of a cabin was predicted from the airborne noise analysis and structure-borne noise analysis. The analysis procedure consists of four steps: modeling, vibration analysis, acoustic analysis and total interior noise analysis. A mesh model of a cabin for numerical analysis was made at the modeling step. At the vibration analysis step, the mesh model was verified and modal analysis and frequency response analysis are performed. At the acoustic analysis step, the vibration results from the vibration analysis step were used as initial values for radiated noise analysis and noise reduction analysis. Finally, the total cabin interior noise was predicted using the acoustic results from the acoustic analysis step. Each step was applied to a cabin of a middle-sized excavator and verified by comparison with measured data. The cabin interior noise of a middle-sized wheel loader and a large-sized forklift were predicted using the analysis procedure of the four steps and were compared with measured data. The interior noise analysis procedure of construction equipment cabins is expected to be used during the preliminary design stage.

  2. Interior noise analysis of a construction equipment cabin based on airborne and structure-borne noise predictions

    International Nuclear Information System (INIS)

    Kim, Sung Hee; Hong, Suk Yoon; Song, Jee Hun; Joo, Won Ho

    2012-01-01

    Noise from construction equipment affects not only surrounding residents, but also the operators of the machines. Noise that affects drivers must be evaluated during the preliminary design stage. This paper suggests an interior noise analysis procedure for construction equipment cabins. The analysis procedure, which can be used in the preliminary design stage, was investigated for airborne and structure borne noise. The total interior noise of a cabin was predicted from the airborne noise analysis and structure-borne noise analysis. The analysis procedure consists of four steps: modeling, vibration analysis, acoustic analysis and total interior noise analysis. A mesh model of a cabin for numerical analysis was made at the modeling step. At the vibration analysis step, the mesh model was verified and modal analysis and frequency response analysis are performed. At the acoustic analysis step, the vibration results from the vibration analysis step were used as initial values for radiated noise analysis and noise reduction analysis. Finally, the total cabin interior noise was predicted using the acoustic results from the acoustic analysis step. Each step was applied to a cabin of a middle-sized excavator and verified by comparison with measured data. The cabin interior noise of a middle-sized wheel loader and a large-sized forklift were predicted using the analysis procedure of the four steps and were compared with measured data. The interior noise analysis procedure of construction equipment cabins is expected to be used during the preliminary design stage

  3. Trace contaminant control simulation computer program, version 8.1

    Science.gov (United States)

    Perry, J. L.

    1994-01-01

    The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.

  4. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  5. Dual direction blower system powered by solar energy to reduce car cabin temperature in open parking condition

    Science.gov (United States)

    Hamdan, N. S.; Radzi, M. F. M.; Damanhuri, A. A. M.; Mokhtar, S. N.

    2017-10-01

    El-nino phenomenon that strikes Malaysia with temperature recorded more than 35°C can lead to extreme temperature rise in car cabin up to 80°C. Various problems will arise due to this extreme rising of temperature such as the occupant are vulnerable to heat stroke, emission of benzene gas that can cause cancer due to reaction of high temperature with interior compartments, and damage of compartments in the car. The current solution available to reduce car cabin temperature including tinted of window and portable heat rejection device that are available in the market. As an alternative to reduce car cabin temperature, this project modifies the car’s air conditioning blower motor into dual direction powered by solar energy and identifies its influence to temperature inside the car, parked under scorching sun. By reducing the car cabin temperature up to 10°C which equal to 14% of reduction in the car cabin temperature, this simple proposed system aims to provide comfort to users due to its capability in improving the quality of air and moisture in the car cabin.

  6. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    Science.gov (United States)

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  7. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    Science.gov (United States)

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  8. Incidence of cancer among Finnish airline cabin attendants. 1967-92

    Energy Technology Data Exchange (ETDEWEB)

    Pukkala, E. [Finnish Cancer Registry, Helsinki (Finland); Auvinen, A. [Finnish Centre for Radiation and Nuclear Safety (STUK), Helsinki (Finland); Wahlberg, G. [Finnish Flight Attendants Association, Helsinki (Finland)

    1995-09-09

    The objective was to assess whether occupational exposure among commercial airline cabin attendants are associated with risk of cancer. A significant excess of breast cancer (standardised incidence ratio 1.87 (95% confidence interval 1.15 to 2.23)) and bone cancer (15.10 (1.82 to 54.40)) was found among female workers. The risk of breast cancer was most prominent 15 years after recruitment. Risks of leukaemia (3.57 (0.43 to 12.9)) and skin melanoma (2.11 (0.43 to 6.15)) were not significantly raised. Among men, one lymphoma and one Kaposi`s sarcoma were found (expected number of cases 1.6). Although the lifestyle of cabin attendants is different from that of the reference population - for example, in terms of social status and parity - concentration of the excess risks to primary sites sensitive to radiation suggests that ionising radiation during flights may add to that cancer risk of all flight personnel. Otherwise the lifestyle of cabin attendants did not seem to affect their risks of cancer. (author).

  9. Incidence of cancer among Finnish airline cabin attendants. 1967-92

    International Nuclear Information System (INIS)

    Pukkala, E.; Auvinen, A.; Wahlberg, G.

    1995-01-01

    The objective was to assess whether occupational exposure among commercial airline cabin attendants are associated with risk of cancer. A significant excess of breast cancer (standardised incidence ratio 1.87 (95% confidence interval 1.15 to 2.23)) and bone cancer (15.10 (1.82 to 54.40)) was found among female workers. The risk of breast cancer was most prominent 15 years after recruitment. Risks of leukaemia (3.57 (0.43 to 12.9)) and skin melanoma (2.11 (0.43 to 6.15)) were not significantly raised. Among men, one lymphoma and one Kaposi's sarcoma were found (expected number of cases 1.6). Although the lifestyle of cabin attendants is different from that of the reference population - for example, in terms of social status and parity - concentration of the excess risks to primary sites sensitive to radiation suggests that ionising radiation during flights may add to that cancer risk of all flight personnel. Otherwise the lifestyle of cabin attendants did not seem to affect their risks of cancer. (author)

  10. Simultaneously reducing CO2 and particulate exposures via fractional recirculation of vehicle cabin air.

    Science.gov (United States)

    Jung, Heejung S; Grady, Michael L; Victoroff, Tristan; Miller, Arthur L

    2017-07-01

    Prior studies demonstrate that air recirculation can reduce exposure to nanoparticles in vehicle cabins. However when people occupy confined spaces, air recirculation can lead to carbon dioxide (CO 2 ) accumulation which can potentially lead to deleterious effects on cognitive function. This study proposes a fractional air recirculation system for reducing nanoparticle concentration while simultaneously suppressing CO 2 levels in the cabin. Several recirculation scenarios were tested using a custom-programmed HVAC (heat, ventilation, air conditioning) unit that varied the recirculation door angle in the test vehicle. Operating the recirculation system with a standard cabin filter reduced particle concentrations to 1000 particles/cm 3 , although CO 2 levels rose to 3000 ppm. When as little as 25% fresh air was introduced (75% recirculation), CO 2 levels dropped to 1000 ppm, while particle concentrations remained below 5000 particles/cm 3 . We found that nanoparticles were removed selectively during recirculation and demonstrated the trade-off between cabin CO 2 concentration and cabin particle concentration using fractional air recirculation. Data showed significant increases in CO 2 levels during 100% recirculation. For various fan speeds, recirculation fractions of 50-75% maintained lower CO 2 levels in the cabin, while still reducing particulate levels. We recommend fractional recirculation as a simple method to reduce occupants' exposures to particulate matter and CO 2 in vehicles. A design with several fractional recirculation settings could allow air exchange adequate for reducing both particulate and CO 2 exposures. Developing this technology could lead to reductions in airborne nanoparticle exposure, while also mitigating safety risks from CO 2 accumulation.

  11. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the Lunar Atmosphere Dust Environment Explorer (LADEE) Spacecraft

    Science.gov (United States)

    Genova, Anthony L.; Loucks, Michael; Carrico, John

    2014-01-01

    The purpose of this extended abstract is to present results from a failed lunar-orbit insertion (LOI) maneuver contingency analysis for the Lunar Atmosphere Dust Environment Explorer (LADEE) mission, managed and operated by NASA Ames Research Center in Moffett Field, CA. The LADEE spacecrafts nominal trajectory implemented multiple sub-lunar phasing orbits centered at Earth before eventually reaching the Moon (Fig. 1) where a critical LOI maneuver was to be performed [1,2,3]. If this LOI was missed, the LADEE spacecraft would be on an Earth-escape trajectory, bound for heliocentric space. Although a partial mission recovery is possible from a heliocentric orbit (to be discussed in the full paper), it was found that an escape-prevention maneuver could be performed several days after a hypothetical LOI-miss, allowing a return to the desired science orbit around the Moon without leaving the Earths sphere-of-influence (SOI).

  12. Creative thinking of design and redesign on SEAT aircraft cabin testbed: a case study

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    this paper, the intuition approach in the design and redesign of the environmental friendly innovative aircraft cabin simulator is presented.. The aircraft cabin simulator is a testbed that used for European Project SEAT (Smart tEchnologies for Stress free Air Travel). The SEAT project aims to

  13. Multi-Objective Optimization for Solid Amine CO2 Removal Assembly in Manned Spacecraft

    Directory of Open Access Journals (Sweden)

    Rong A

    2017-07-01

    Full Text Available Carbon Dioxide Removal Assembly (CDRA is one of the most important systems in the Environmental Control and Life Support System (ECLSS for a manned spacecraft. With the development of adsorbent and CDRA technology, solid amine is increasingly paid attention due to its obvious advantages. However, a manned spacecraft is launched far from the Earth, and its resources and energy are restricted seriously. These limitations increase the design difficulty of solid amine CDRA. The purpose of this paper is to seek optimal design parameters for the solid amine CDRA. Based on a preliminary structure of solid amine CDRA, its heat and mass transfer models are built to reflect some features of the special solid amine adsorbent, Polyethylenepolyamine adsorbent. A multi-objective optimization for the design of solid amine CDRA is discussed further in this paper. In this study, the cabin CO2 concentration, system power consumption and entropy production are chosen as the optimization objectives. The optimization variables consist of adsorption cycle time, solid amine loading mass, adsorption bed length, power consumption and system entropy production. The Improved Non-dominated Sorting Genetic Algorithm (NSGA-II is used to solve this multi-objective optimization and to obtain optimal solution set. A design example of solid amine CDRA in a manned space station is used to show the optimal procedure. The optimal combinations of design parameters can be located on the Pareto Optimal Front (POF. Finally, Design 971 is selected as the best combination of design parameters. The optimal results indicate that the multi-objective optimization plays a significant role in the design of solid amine CDRA. The final optimal design parameters for the solid amine CDRA can guarantee the cabin CO2 concentration within the specified range, and also satisfy the requirements of lightweight and minimum energy consumption.

  14. An innovative HVAC control system: Implementation and testing in a vehicular cabin.

    Science.gov (United States)

    Fojtlín, Miloš; Fišer, Jan; Pokorný, Jan; Povalač, Aleš; Urbanec, Tomáš; Jícha, Miroslav

    2017-12-01

    Personal vehicles undergo rapid development in every imaginable way. However, a concept of managing a cabin thermal environment remains unchanged for decades. The only major improvement has been an automatic HVAC controller with one user's input - temperature. In this case, the temperature is often deceiving because of thermally asymmetric and dynamic nature of the cabins. As a result, the effects of convection and radiation on passengers are not captured in detail what also reduces the potential to meet thermal comfort expectations. Advanced methodologies are available to assess the cabin environment in a fine resolution (e.g. ISO 14505:2006), but these are used mostly in laboratory conditions. The novel idea of this work is to integrate equivalent temperature sensors into a vehicular cabin in proximity of an occupant. Spatial distribution of the sensors is expected to provide detailed information about the local environment that can be used for personalised, comfort driven HVAC control. The focus of the work is to compare results given by the implemented system and a Newton type thermal manikin. Three different ambient settings were examined in a climate chamber. Finally, the results were compared and a good match of equivalent temperatures was found. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of noise in the airplane cabin environment.

    Science.gov (United States)

    Zevitas, Christopher D; Spengler, John D; Jones, Byron; McNeely, Eileen; Coull, Brent; Cao, Xiaodong; Loo, Sin Ming; Hard, Anna-Kate; Allen, Joseph G

    2018-03-15

    To measure sound levels in the aircraft cabin during different phases of flight. Sound level was measured on 200 flights, representing six aircraft groups using continuous monitors. A linear mixed-effects model with random intercept was used to test for significant differences in mean sound level by aircraft model and across each flight phase as well as by flight phase, airplane type, measurement location and proximity to engine noise. Mean sound levels across all flight phases and aircraft groups ranged from 37.6 to >110 dB(A) with a median of 83.5 dB(A). Significant differences in noise levels were also observed based on proximity to the engines and between aircraft with fuselage- and wing mounted engines. Nine flights (4.5%) exceeded the recommended 8-h TWA exposure limit of 85 dB(A) by the NIOSH and ACGIH approach, three flights (1.5%) exceeded the 8-h TWA action level of 85 dB(A) by the OSHA approach, and none of the flights exceeded the 8-h TWA action level of 90 dB(A) by the OSHA PEL approach. Additional characterization studies, including personal noise dosimetry, are necessary to document accurate occupational exposures in the aircraft cabin environment and identify appropriate response actions. FAA should consider applying the more health-protective NIOSH/ACGIH occupational noise recommendations to the aircraft cabin environment.

  16. 77 FR 75600 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers...

    Science.gov (United States)

    2012-12-21

    ... [Docket No. FAA-2012-0953] Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin... announced a proposed policy statement regarding the regulation of some occupational safety and health conditions affecting cabin crewmembers on aircraft by the Occupational Safety and Health Administration. The...

  17. An Evacuation Model for Passenger Ships That Includes the Influence of Obstacles in Cabins

    Directory of Open Access Journals (Sweden)

    Baocheng Ni

    2017-01-01

    Full Text Available Passenger behavior and ship environment are the key factors affecting evacuation efficiency. However, current studies ignore the interior layout of passenger ship cabins and treat the cabins as empty rooms. To investigate the influence of obstacles (e.g., tables and stools on cabin evacuation, we propose an agent-based social force model for advanced evacuation analysis of passenger ships; this model uses a goal-driven submodel to determine a plan and an extended social force submodel to govern the movement of passengers. The extended social force submodel considers the interaction forces between the passengers, crew, and obstacles and minimises the range of these forces to improve computational efficiency. We drew the following conclusions based on a series of evacuation simulations conducted in this study: (1 the proposed model endows the passenger with the behaviors of bypassing and crossing obstacles, (2 funnel-shaped exits from cabins can improve evacuation efficiency, and (3 as the exit angle increases, the evacuation time also increases. These findings offer ship designers some insight towards increasing the safety of large passenger ships.

  18. The Perforated Curtain: Configuring the Public and the Private in Calcutta’s Cabin Culture

    Directory of Open Access Journals (Sweden)

    Twisha Deb

    2017-04-01

    Full Text Available When I was very young, eating out was not a regular activity for our family. On one of such rare occasion we ended up in a restaurant where the waiter made us sit in a cubicle with a curtain on one side. You pull the curtain and it creates a weird sense of privacy. That idea of intimate space in the middle of a busy city intrigued me. Later I found many restaurants in Kolkata where they have this sort of cabin, a private eating area. Starting from pre-independence when they were there to provide some privacy to the ladies of the family who were not allowed to eat in public, the cabin witnessed many private affairs with time, from political discussions to lovers’ silence. With changing time and the emergence of posh cafes with quirky interiors, the shabby little cabins have lost their charm, but the almost empty cabins, some even without the curtains stand there to tell a story of a time gone by.

  19. Modeling the Fate of Expiratory Aerosols and the Associated Infection Risk in an Aircraft Cabin Environment

    DEFF Research Database (Denmark)

    Wan, M.P.; To, G.N.S.; Chao, C.Y.H.

    2009-01-01

    to estimate the risk of infection by contact. The environmental control system (ECS) in a cabin creates air circulation mainly in the lateral direction, making lateral dispersions of aerosols much faster than longitudinal dispersions. Aerosols with initial sizes under 28 m in diameter can stay airborne......The transport and deposition of polydispersed expiratory aerosols in an aircraft cabin were simulated using a Lagrangian-based model validated by experiments conducted in an aircraft cabin mockup. Infection risk by inhalation was estimated using the aerosol dispersion data and a model was developed...

  20. Measurements of cosmic-ray doses in commercial airline cabins

    International Nuclear Information System (INIS)

    Okano, M.; Fujitaka, K.; Izumo, K.

    1996-01-01

    Cosmic radiation doses which aircrew and air passengers receive in airplanes have been calling attention in many countries especially in the last decade. In this relation, various types of information had been reported on cosmic radiation intensity. In Japan, the cosmic radiation intensity had been measured in commercial airline cabins as well as chartered flights. While the intensity depends on altitude, geomagnetic latitude (or cutoff rigidity), and temporal variation of the solar activity, their doses are often speculated based on paper records on airflights combined with the intensity-altitude relationship. In this study, however, efforts were made to estimate more realistic integrated doses in airline cabins based on actual on-board measurements which had been conducted several dozens of times in each year (e.g., 45 times in 1994 and 27 times in 1995). (author)

  1. Simulations of heat transfer through the cabin walls of rail vehicle

    Directory of Open Access Journals (Sweden)

    Schuster M.

    2007-10-01

    Full Text Available This paper deals with industrial application of numerical methods to the prediction of thermal situation in the rail vehicle interior. Basic principles of heat transfer are summarised to explain both theoretical background of simulations and engineering approach to solving temperature conditions in the vehicle interior. The main part of the contribution describes the solution of the locomotive driver’s cabin heating and controlling the temperature levels. This contribution is a brief overview of both possibilities of engineering modelling of heat transfer modes and results in the simulation of the real locomotive cabin heating/ventilation system design.

  2. A method for Perceptual Assessment of Automotive Audio Systems and Cabin Acoustics

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Sakari, Tervo

    2016-01-01

    This paper reports the design and implementation of a method to perceptually assess the acoustical prop- erties of a car cabin and the subsequent sound reproduction properties of automotive audio systems. Here, we combine Spatial Decomposition Method and Rapid Sensory Analysis techniques. The for......This paper reports the design and implementation of a method to perceptually assess the acoustical prop- erties of a car cabin and the subsequent sound reproduction properties of automotive audio systems. Here, we combine Spatial Decomposition Method and Rapid Sensory Analysis techniques...

  3. Individual and collective climate control in aircraft cabins

    NARCIS (Netherlands)

    Jacobs, P.; Gids, W.F. de

    2006-01-01

    A new concept for aircraft cabin climatisation has been developed in which the seat is the main Indoor Air Quality (IAQ) and temperature control system for the passengers containing provisions for local supply and local exhaust of air. Direct supply of clean outside air in the breathing zone,

  4. Ozone-initiated chemistry in an occupied simulated aircraft cabin.

    Science.gov (United States)

    Weschler, Charles J; Wisthaler, Armin; Cowlin, Shannon; Tamás, Gyöngyi; Strøm-Tejsen, Peter; Hodgson, Alfred T; Destaillats, Hugo; Herrington, Jason; Zhang, Junfeng; Nazaroff, William W

    2007-09-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each exposed to four conditions: low air exchange (4.4 (h-1)), exchange, 61-64 ppb ozone; high air exchange (8.8 h(-1)), exchange, 73-77 ppb ozone. The addition of ozone to the cabin air increased the levels of identified byproducts from approximately 70 to 130 ppb at the lower air exchange rate and from approximately 30 to 70 ppb at the higher air exchange rate. Most of the increase was attributable to acetone, nonanal, decanal, 4-oxopentanal (4-OPA), 6-methyl-5-hepten-2-one (6-MHO), formic acid, and acetic acid, with 0.25-0.30 mol of quantified product volatilized per mol of ozone consumed. Several of these compounds reached levels above their reported odor thresholds. Most byproducts were derived from surface reactions with occupants and their clothing, consistent with the inference that occupants were responsible for the removal of >55% of the ozone in the cabin. The observations made in this study have implications for other indoor settings. Whenever human beings and ozone are simultaneously present, one anticipates production of acetone, nonanal, decanal, 6-MHO, geranyl acetone, and 4-OPA.

  5. Thermal comfort assessment in civil aircraft cabins

    Directory of Open Access Journals (Sweden)

    Pang Liping

    2014-04-01

    Full Text Available Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft cabins, especially in some short-haul continental flights. It is necessary to develop an easy way to predict the thermal sensation of passengers and to direct the crew to control ECS. Due to the assessment consistency of the corrected PMV model and the adaptive model, the adaptive model of thermal neutrality temperature can be used as a method to predict the cabin optimal operative temperature. Because only the mean outdoor effective temperature ET∗ of a departure city is an input variable for the adaptive model, this method can be easily understood and implemented by the crew and can satisfy 80–90% of the thermal acceptability levels of passengers.

  6. Chemical Pollution from Combustion of Modern Spacecraft Materials

    Science.gov (United States)

    Mudgett, Paul D.

    2013-01-01

    Fire is one of the most critical contingencies in spacecraft and any closed environment including submarines. Currently, NASA uses particle based technology to detect fires and hand-held combustion product monitors to track the clean-up and restoration of habitable cabin environment after the fire is extinguished. In the future, chemical detection could augment particle detection to eliminate frequent nuisance false alarms triggered by dust. In the interest of understanding combustion from both particulate and chemical generation, NASA Centers have been collaborating on combustion studies at White Sands Test Facility using modern spacecraft materials as fuels, and both old and new technology to measure the chemical and particulate products of combustion. The tests attempted to study smoldering pyrolysis at relatively low temperatures without ignition to flaming conditions. This paper will summarize the results of two 1-week long tests undertaken in 2012, focusing on the chemical products of combustion. The results confirm the key chemical products are carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen fluoride (HF) and hydrogen chloride (HCl), whose concentrations depend on the particular material and test conditions. For example, modern aerospace wire insulation produces significant concentration of HF, which persists in the test chamber longer than anticipated. These compounds are the analytical targets identified for the development of new tunable diode laser based hand-held monitors, to replace the aging electrochemical sensor based devices currently in use on the International Space Station.

  7. Mars Molniya Orbit Atmospheric Resource Mining

    Science.gov (United States)

    Mueller, Robert P.; Braun, Robert D.; Sibille, Laurent; Sforzo, Brandon; Gonyea, Keir; Ali, Hisham

    2016-01-01

    This NIAC (NASA Advanced Innovative Concepts) work will focus on Mars and will build on previous efforts at analyzing atmospheric mining at Earth and the outer solar system. Spacecraft systems concepts will be evaluated and traded, to assess feasibility. However the study will primarily examine the architecture and associated missions to explore the closure, constraints and critical parameters through sensitivity studies. The Mars atmosphere consists of 95.5 percent CO2 gas which can be converted to methane fuel (CH4) and Oxidizer (O2) for chemical rocket propulsion, if hydrogen is transported from electrolyzed water on the Mars surface or from Earth. By using a highly elliptical Mars Molniya style orbit, the CO2 atmosphere can be scooped, ram-compressed and stored while the spacecraft dips into the Mars atmosphere at periapsis. Successive orbits result in additional scooping of CO2 gas, which also serves to aerobrake the spacecraft, resulting in a decaying Molniya orbit.

  8. Radiation Effects on Spacecraft Structural Materials

    International Nuclear Information System (INIS)

    Wang, Jy-An J.; Ellis, Ronald J.; Hunter, Hamilton T.; Singleterry, Robert C. Jr.

    2002-01-01

    Research is being conducted to develop an integrated technology for the prediction of aging behavior for space structural materials during service. This research will utilize state-of-the-art radiation experimental apparatus and analysis, updated codes and databases, and integrated mechanical and radiation testing techniques to investigate the suitability of numerous current and potential spacecraft structural materials. Also included are the effects on structural materials in surface modules and planetary landing craft, with or without fission power supplies. Spacecraft structural materials would also be in hostile radiation environments on the surface of the moon and planets without appreciable atmospheres and moons around planets with large intense magnetic and radiation fields (such as the Jovian moons). The effects of extreme temperature cycles in such locations compounds the effects of radiation on structural materials. This paper describes the integrated methodology in detail and shows that it will provide a significant technological advance for designing advanced spacecraft. This methodology will also allow for the development of advanced spacecraft materials through the understanding of the underlying mechanisms of material degradation in the space radiation environment. Thus, this technology holds a promise for revolutionary advances in material damage prediction and protection of space structural components as, for example, in the development of guidelines for managing surveillance programs regarding the integrity of spacecraft components, and the safety of the aging spacecraft. (authors)

  9. Lifetime predictions for the Solar Maximum Mission (SMM) and San Marco spacecraft

    Science.gov (United States)

    Smith, E. A.; Ward, D. T.; Schmitt, M. W.; Phenneger, M. C.; Vaughn, F. J.; Lupisella, M. L.

    1989-01-01

    Lifetime prediction techniques developed by the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) are described. These techniques were developed to predict the Solar Maximum Mission (SMM) spacecraft orbit, which is decaying due to atmospheric drag, with reentry predicted to occur before the end of 1989. Lifetime predictions were also performed for the Long Duration Exposure Facility (LDEF), which was deployed on the 1984 SMM repair mission and is scheduled for retrieval on another Space Transportation System (STS) mission later this year. Concepts used in the lifetime predictions were tested on the San Marco spacecraft, which reentered the Earth's atmosphere on December 6, 1988. Ephemerides predicting the orbit evolution of the San Marco spacecraft until reentry were generated over the final 90 days of the mission when the altitude was less than 380 kilometers. The errors in the predicted ephemerides are due to errors in the prediction of atmospheric density variations over the lifetime of the satellite. To model the time dependence of the atmospheric densities, predictions of the solar flux at the 10.7-centimeter wavelength were used in conjunction with Harris-Priester (HP) atmospheric density tables. Orbital state vectors, together with the spacecraft mass and area, are used as input to the Goddard Trajectory Determination System (GTDS). Propagations proceed in monthly segments, with the nominal atmospheric drag model scaled for each month according to the predicted monthly average value of F10.7. Calibration propagations are performed over a period of known orbital decay to obtain the effective ballistic coefficient. Progagations using plus or minus 2 sigma solar flux predictions are also generated to estimate the despersion in expected reentry dates. Definitive orbits are compared with these predictions as time expases. As updated vectors are received, these are also propagated to reentryto continually update the lifetime predictions.

  10. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  11. The spacecraft encounters of Comet Halley

    Science.gov (United States)

    Asoka Mendis, D.; Tsurutani, Bruce T.

    1986-01-01

    The characteristics of the Comet Halley spacecraft 'fleet' (VEGA 1 and VEGA 2, Giotto, Suisei, and Sakigake) are presented. The major aims of these missions were (1) to discover and characterize the nucleus, (2) to characterize the atmosphere and ionosphere, (3) to characterize the dust, and (4) to characterize the nature of the large-scale comet-solar wind interaction. While the VEGA and Giotto missions were designed to study all four areas, Suisei addressed the second and fourth. Sakigake was designed to study the solar wind conditions upstream of the comet. It is noted that NASA's Deep Space Network played an important role in spacecraft tracking.

  12. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  13. The risk of melanoma in airline pilots and cabin crew: a meta-analysis.

    Science.gov (United States)

    Sanlorenzo, Martina; Wehner, Mackenzie R; Linos, Eleni; Kornak, John; Kainz, Wolfgang; Posch, Christian; Vujic, Igor; Johnston, Katia; Gho, Deborah; Monico, Gabriela; McGrath, James T; Osella-Abate, Simona; Quaglino, Pietro; Cleaver, James E; Ortiz-Urda, Susana

    2015-01-01

    Airline pilots and cabin crew are occupationally exposed to higher levels of cosmic and UV radiation than the general population, but their risk of developing melanoma is not yet established. To assess the risk of melanoma in pilots and airline crew. PubMed (1966 to October 30, 2013), Web of Science (1898 to January 27, 2014), and Scopus (1823 to January 27, 2014). All studies were included that reported a standardized incidence ratio (SIR), standardized mortality ratio (SMR), or data on expected and observed cases of melanoma or death caused by melanoma that could be used to calculate an SIR or SMR in any flight-based occupation. Primary random-effect meta-analyses were used to summarize SIR and SMR for melanoma in any flight-based occupation. Heterogeneity was assessed using the χ2 test and I2 statistic. To assess the potential bias of small studies, we used funnel plots, the Begg rank correlation test, and the Egger weighted linear regression test. Summary SIR and SMR of melanoma in pilots and cabin crew. Of the 3527 citations retrieved, 19 studies were included, with more than 266 431 participants. The overall summary SIR of participants in any flight-based occupation was 2.21 (95% CI, 1.76-2.77; P < .001; 14 records). The summary SIR for pilots was 2.22 (95% CI, 1.67-2.93; P = .001; 12 records). The summary SIR for cabin crew was 2.09 (95% CI, 1.67-2.62; P = .45; 2 records). The overall summary SMR of participants in any flight-based occupation was 1.42 (95% CI, 0.89-2.26; P = .002; 6 records). The summary SMR for pilots was 1.83 (95% CI, 1.27-2.63, P = .33; 4 records). The summary SMR for cabin crew was 0.90 (95% CI, 0.80-1.01; P = .97; 2 records). Pilots and cabin crew have approximately twice the incidence of melanoma compared with the general population. Further research on mechanisms and optimal occupational protection is needed.

  14. Molecular bacterial diversity and bioburden of commercial airliner cabin air

    Energy Technology Data Exchange (ETDEWEB)

    La Duc, M.T.; Stuecker, T.; Venkateswaran, K. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Laboratory, Biotechnology and Planetary Protection Group

    2007-11-15

    Microorganisms that exist in aircraft air systems are considered to be the primary source of microbial contamination that can lead to illness shortly after flying. More than 600 million passengers board commercial airline flights annually in the United States alone. In this study, culture-independent, biomarker-targeted bacterial enumeration and identification strategies were used to estimate total bacterial burden and diversity within the cabin air of commercial airliners. Air-impingement was used to collect samples of microorganisms from 4 flights on 2 commercial carriers. The total viable microbial population ranged from below detection limits to 4.1 x 10{sup 6} cells/m{sup 3} of air. Microbes were found to gradually accumulate from the time of passenger boarding through mid-flight. A sharp decline in bacterial abundance was then observed. Representatives of the {alpha}, {beta} and {gamma} Proteobacteria, as well as Gram-positive bacteria, were isolated in varying abundance. Airline A had large abundances of Neisseria meningitidis rRNA gene sequences and Streptococcus oralis/mitis sequences. Airline B was dominated by pseudomonas synxantha sequences as well as N. meningitidis and S. oralis/mitis. The cabin air samples housed low bacterial diversity and were typically dominated by a particular subset of bacteria, notably opportunistic pathogenic inhabitants of the human respiratory tract and oral cavity. The microbes were found largely around the ventilation ducts and gasper conduits that supply cabin air. 45 refs., 4 tabs., 3 figs.

  15. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  16. Ozone-Initiated Chemistry in an Occupied Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Cowlin, Shannon

    2007-01-01

    We have used multiple analytical methods to characterize the gas-phase products formed when ozone was added to cabin air during simulated 4-hour flights that were conducted in a reconstructed section of a B-767 aircraft containing human occupants. Two separate groups of 16 females were each expos...

  17. Assessment of the thermal environment in an aircraft cabin

    DEFF Research Database (Denmark)

    Ingers, S.; Melikov, Arsen Krikor

    2004-01-01

    equivalent temperature, up to 5.8°C, was identified in the outer seats. The results reveal that in an aircraft cabin, passengers in the outer seats may be exposed to thermal asymmetry and draught and may not find the thermal environment acceptable if the ventilation air is not properly supplied....

  18. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    Science.gov (United States)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  19. Radiation Protection: The Specific Case of Cabin Crew

    International Nuclear Information System (INIS)

    Lecouturier, B.

    1999-01-01

    Exposure to cosmic radiation is one important element of the in-flight working environment. The new requirements of the Council Directive 96/29 Euratom set out basic safety standards in radiation protection which are particularly important to cabin crew. There are two major reasons why they relate specifically to this category of crew member. One is the great diversity of or in some cases the lack of, medical requirements and surveillance. The situation in this area notably differs from that relating to the cockpit crew, who have an aeronautical licence with detailed and rigid medical requirements. The other major reason is the very high percentage of women among the cabin crew (from 65% to 100% depending on the airline concerned), which emphasises the question of protection during pregnancy. The issue of radiation protection of aircrew therefore differs not only according to country and airline, but also according to the crew members concerned. The need is stressed for a harmonised application of the new requirements of the Council Directive 96/29 Euratom and, hopefully in the future, for equivalent protective provisions to be applied worldwide. (author)

  20. Design for thermal sensation and comfort states in vehicles cabins

    International Nuclear Information System (INIS)

    Alahmer, Ali; Abdelhamid, Mahmoud; Omar, Mohammed

    2012-01-01

    This manuscript investigates the analysis and modeling of vehicular thermal comfort parameters using a set of designed experiments aided by thermography measurements. The experiments are conducted using a full size climatic chamber to host the test vehicle, to accurately assess the transient and steady state temperature distributions of the test vehicle cabin. Further investigate the thermal sensation (overall and local) and the human comfort states under artificially created relative humidity scenarios. The thermal images are calibrated through a thermocouples network, while the outside temperature and relative humidity are manipulated through the climatic environmental chamber with controlled soaking periods to guarantee the steady state conditions for each test scenario. The relative humidity inside the passenger cabin is controlled using a Total Humidity Controller (THC). The simulation uses the experimentally extracted boundary conditions via a 3-D Berkeley model that is set to be fully transient to account for the interactions in the velocity and temperature fields in the passenger compartment, which included interactions from turbulent flow, thermal buoyancy and the three modes of heat transfer conduction, convection and radiation. The model investigates the human comfort by analyzing the effect of the in-cabin relative humidity from two specific perspectives; firstly its effect on the body temporal variation of temperature within the cabin. Secondly, the Local Sensation (LS) and Comfort (LC) are analyzed for the different body segments in addition to the Overall Sensation (OS) and the Overall Comfort (OC). Furthermore, the human sensation is computed using the Fanger model in terms of the Predicted Mean Value (PMV) and the Predicted Percentage Dissatisfied (PPD) indices. The experimental and simulation results show that controlling the RH levels during the heating and the cooling processes (winter and summer conditions respectively) aid the A/C system to

  1. Health Effects of Airline Cabin Environments in Simulated 8-Hour Flights.

    Science.gov (United States)

    2017-07-01

    Commercial air travel is usually without health incidents. However, there is a view that cabin environments may be detrimental to health, especially flights of 8 h or more. Concerns have been raised about deep vein thrombosis, upper respiratory tract infections, altitude sickness, and toxins from the engines. Passenger cabin simulators were used to achieve a comparative observational study with 8-h flights at pressures equivalent to terrestrial altitudes of ground, 4000, 6000, and 8000 ft. Biomarkers of thrombosis (D-Dimer), inflammation (interleukin-6), and respiratory dysfunction (FEV1) and oxygen saturation (Spo2) were measured, as well as pulse and blood pressure. The wellbeing of the passengers was also monitored. During 36 flights, 1260 healthy subjects [626 women (F) and 634 men (M) (mean age = 43, SD = 16)] were assessed. Additionally, 72 subjects with chronic obstructive pulmonary disease (F = 32, M = 40, mean age = 48, SD = 17) and 74 with heart failure (F = 50, M = 24, mean age = 54, SD = 14) contributed to 11 flights. Additionally, 76 normal controls were observed while engaged in a usual day's work (F = 38, M = 38, mean age = 39, SD = 15). There were no health-significant changes in D-Dimer, interleukin-6, or FEV1. Spo2 varied as expected, with lowest values at 8000 ft and in patients with cardiopulmonary disease. The only differences from the controls were the loss of the normal diurnal variations in interleukin-6 and D-Dimer. This very large, comparative, controlled study provides much reassurance for the traveling public, who use airline flights of up to 8 h. We did not show evidence of the development of venous thrombosis, inflammation, respiratory embarrassment, nor passenger distress. No significant symptoms or adverse effects were reported.Ideal Cabin Environment (ICE) Research Consortium of the European Community 6th Framework Programme. Health effects of airline cabin environments in simulated 8-hour flights. Aerosp Med Hum Perform. 2017; 88(7):651-656.

  2. Tracking reliability for space cabin-borne equipment in development by Crow model.

    Science.gov (United States)

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  3. The effect of the descent technique and truck cabin layout on the landing impact forces.

    Science.gov (United States)

    Patenaude, S; Marchand, D; Samperi, S; Bélanger, M

    2001-12-01

    The majority of injuries to truckers are caused by falls during the descent from the cab of the truck. Several studies have shown that the techniques used to descend from the truck and the layout of the truck's cabin are the principal cause of injury. The goal of the present study was to measure the effects of the descent techniques used by the trucker and the layout of the truck's cabin on the impact forces absorbed by the lower limbs and the back. Kinematic data, obtained with the aid of a video camera, were combined with the force platform data to allow for calculation of the lower limb and L5-S1 torques as well as L5-S1 compressive forces. The trucker descended from two different conventional tractor cabin layouts. Each trucker descended from cabin using either "facing the truck" (FT) or "back to the truck" (BT) techniques. The results demonstrate that the BT technique produces greater ground impact forces than the FT technique, particularly when the truck does not have a handrail. The BT technique also causes an increase in the compressive forces exerted on the back. In conclusion, the use of the FT technique along with the aids (i.e., handrails and all the steps) help lower the landing impact forces as well as the lumbosacral compressive forces.

  4. Muscle oxygenation, EMG, and cardiovascular responses for cabin attendants vs. controls

    DEFF Research Database (Denmark)

    Sandfeld, Jesper; Larsen, Lisbeth Højkjær; Crenshaw, Albert Guy

    2013-01-01

    The goal was to investigate the effect of acute moderate hypobaric exposure on the physiological responses to sustained contractions (local) and light to moderate dynamic exercise (systemic) for cabin attendants (CAB) and a matched control group (CON)....

  5. Three-dimensional modeling, estimation, and fault diagnosis of spacecraft air contaminants.

    Science.gov (United States)

    Narayan, A P; Ramirez, W F

    1998-01-01

    A description is given of the design and implementation of a method to track the presence of air contaminants aboard a spacecraft using an accurate physical model and of a procedure that would raise alarms when certain tolerance levels are exceeded. Because our objective is to monitor the contaminants in real time, we make use of a state estimation procedure that filters measurements from a sensor system and arrives at an optimal estimate of the state of the system. The model essentially consists of a convection-diffusion equation in three dimensions, solved implicitly using the principle of operator splitting, and uses a flowfield obtained by the solution of the Navier-Stokes equations for the cabin geometry, assuming steady-state conditions. A novel implicit Kalman filter has been used for fault detection, a procedure that is an efficient way to track the state of the system and that uses the sparse nature of the state transition matrices.

  6. A Self-Regulating Freezable Heat Exchanger for Spacecraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A spacecraft thermal control system must keep the vehicle, avionics and atmosphere (if crewed) within a defined temperature range. Since water is non-toxic and good...

  7. Atmospheric electricity. [lightning protection criteria in spacecraft design

    Science.gov (United States)

    Daniels, G. E.

    1973-01-01

    Atmospheric electricity must be considered in the design, transportation, and operation of aerospace vehicles. The effect of the atmosphere as an insulator and conductor of high voltage electricity, at various atmospheric pressures, must also be considered. The vehicle can be protected as follows: (1) By insuring that all metallic sections are connected by electrical bonding so that the current flow from a lightning stroke is conducted over the skin without any gaps where sparking would occur or current would be carried inside; (2) by protecting buildings and other structures on the ground with a system of lightning rods and wires over the outside to carry the lightning stroke into the ground; (3) by providing a zone of protection for launch complexes; (4) by providing protection devices in critical circuits; (5) by using systems which have no single failure mode; and (6) by appropriate shielding of units sensitive to electromagnetic radiation.

  8. Effect of relative humidity and temperature control on in-cabin thermal comfort state: Thermodynamic and psychometric analyses

    International Nuclear Information System (INIS)

    Alahmer, A.; Omar, M.A.; Mayyas, A.; Dongri, Shan

    2011-01-01

    This manuscript discusses the effect of manipulating the Relative Humidity RH of in-cabin environment on the thermal comfort and human occupants' thermal sensation. The study uses thermodynamic and psychometric analyses, to incorporate the effect of changing RH along with the dry bulb temperature on human comfort. Specifically, the study computes the effect of changing the relative humidity on the amount of heat rejected from the passenger compartment and the effect of relative humidity on occupants comfort zone. A practical system implementation is also discussed in terms of an evaporative cooler design. The results show that changing the RH along with dry bulb temperature inside vehicular cabins can improve the air conditioning efficiency by reducing the heat removed while improving the Human comfort sensations as measured by the Predicted Mean Value PMV and the Predicted Percentage Dissatisfied PPD indices. - Highlights: → Investigates the effect of controlling the RH and dry bulb temperature on in-cabin thermal comfort and sensation. → Conducts the thermodynamic and psychometric analyses for changing the RH and temperature for in-cabin air conditioning. → Discusses a possible system implementation through an evaporative cooler design.

  9. Transient thermal model of passenger car's cabin and implementation to saturation cycle with alternative working fluids

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Song, Ilguk; Jang, Kilsang

    2015-01-01

    A transient thermal model of a passenger car's cabin is developed to investigate the dynamic behavior of cabin thermal conditions. The model is developed based on a lumped-parameter model and solved using integral methods. Solar radiation, engine heat through the firewall, and engine heat to the air ducts are all considered. Using the thermal model, transient temperature profiles of the interior mass and cabin air are obtained. This model is used to investigate the transient behavior of the cabin under various operating conditions: the recirculation mode in the idling state, the fresh air mode in the idling state, the recirculation mode in the driving state, and fresh air mode in the driving state. The developed model is validated by comparing with experimental data and is within 5% of deviation. The validated model is then applied for evaluating the mobile air conditioning system's design. The study found that a saturation cycle concept (four-stage cycle with two-phase refrigerant injection) could improve the system efficiency by 23.9% and reduce the power consumption by 19.3%. Lastly, several alternative refrigerants are applied and their performance is discussed. When the saturation cycle concept is applied, R1234yf MAC (mobile air conditioning) shows the largest COP (coefficient of performance) improvement and power consumption reduction. - Highlights: • The transient thermal model of the passenger car cabin is developed. • The developed model is validated with experimental data and showed 5% deviation. • Saturation cycle concept is applied to the developed cabin model. • There is 24% COP improvement by applying the saturation cycle concept. • R1234yf showed the highest potential when it is applied to the saturation cycle.

  10. DETERMINATION OF AGRICULTURAL MACHINERY OPERATORS’ OPINIONS ABOUT THE CABIN COMFORT IN ESKİŞEHİR

    Directory of Open Access Journals (Sweden)

    Özge ACARBAŞ BALTACI

    2015-08-01

    Full Text Available Comfort has a great importance in the interior design of tractor and agricultural machinery cabins. Operators are exposed to muscoskeletal system disorders since they spend long time periods during the day in these vehicles. There is a few work in the literature reporting operators’ opinions about cabin comfort of these machineries. In this study, a questionnaire was conducted in order to get information about agricultural machinery operators’ opinions about the comfort of their vehicles. Tractor cabins and combine harvester machine cabins were selected as machineries. The study was conducted in Eskişehir in Turkey. Questionnaire was composed of four groups of questions and five ordered response levels were used in the Likert's scale. Demographic questions, general questions about the machine, personal evaluation questions and open ended questions were asked to the operators. After the questionnaire completed, collected data were classified according to the machine type. Frequency tables were used to present the results. Visibility and the accessibility were the most satisfied issues for the tractor operators with 55.9% and 55.4% percentages, respectively. Seat comfort has the highest satisfaction degree with 43.7% for the combine harvester operators. Cronbach Alpha reliability coefficient was used for the satisfaction questions in the applied questionnaire. The reliability of the study was high with coefficients of 0.878 and 0.940 for the tractor and combine harvester questionnaires, respectively. This study will support design and development process of new products by considering operator opinions.

  11. Study of air flow and temperature distribution in ship's crew cabins

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Ali, A.A.; Nasr, A.N. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Marine Engineering Technology

    2007-07-01

    Because of low internal heights in ship's crew cabins, the supplied air is directed to the persons at low mixing ratios. However, this does not allow the mixing process between the supplied air and the indoor air to be completed before the air enters human lungs. This paper presented an experimental and numerical simulation study that used computational fluid dynamics (CFD) to investigate the effect of the air supply location on thermal air diffusion in the ship's crew cabins space. The paper presented the results in terms of air diffusion performance index. The paper presented the CFD model, including selected space configurations; CFD simulation; boundary conditions; and CFD results. The CFD airflow simulation programs CFD were utilized to calculate the spatial distribution of temperature and velocity. The study focused on the typical Middle East region working vessel under thermal and boundary conditions including the high cooling load used in this region. Experimental data were also introduced to verify the CFD results package. It was concluded that the supply should be located near the high sidewall of the cabin. This gives better air distribution inside the space rather than the center of the room. 5 refs., 1 tab., 6 figs.

  12. Quelling Cabin Noise in Turboprop Aircraft via Active Control

    Science.gov (United States)

    Kincaid, Rex K.; Laba, Keith E.; Padula, Sharon L.

    1997-01-01

    Cabin noise in turboprop aircraft causes passenger discomfort, airframe fatigue, and employee scheduling constraints due to OSHA standards for exposure to high levels of noise. The noise levels in the cabins of turboprop aircraft are typically 10 to 30 decibels louder than commercial jet noise levels. However. unlike jet noise the turboprop noise spectrum is dominated by a few low frequency tones. Active structural acoustic control is a method in which the control inputs (used to reduce interior noise) are applied directly to a vibrating structural acoustic system. The control concept modeled in this work is the application of in-plane force inputs to piezoceramic patches bonded to the wall of a vibrating cylinder. The goal is to determine the force inputs and locations for the piezoceramic actuators so that: (1) the interior noise is effectively damped; (2) the level of vibration of the cylinder shell is not increased; and (3) the power requirements needed to drive the actuators are not excessive. Computational experiments for data taken from a computer generated model and from a laboratory test article at NASA Langley Research Center are provided.

  13. The development and validation of a thermal model for the cabin of a vehicle

    International Nuclear Information System (INIS)

    Marcos, David; Pino, Francisco J.; Bordons, Carlos; Guerra, José J.

    2014-01-01

    Energy management in modern vehicles is a crucial issue, especially in the case of electric vehicles (EV) or hybrid vehicles (HV), in which different energy sources and loads must be considered for the operation of a vehicle. Air conditioning is an important load that must be thoroughly analysed because it can constitute a considerable percentage of the energy demand. In this paper, a simplified and dynamic thermal model for the cabin of a vehicle is proposed and validated. The developed model can be used for the design and testing of the heating, ventilation, and air conditioning (HVAC) system of a vehicle and for the study of its effects on the performance and fuel consumption of vehicles, such as EVs or HVs. The model is based on theoretical heat transfer, thermal inertia, and radiation treatment equations. The model results obtained from simulations are compared with the cabin air temperature of a vehicle under different conditions. This comparison demonstrates the accuracy between the simulation results and actual results. - Highlights: •A thermal model of a vehicle cabin with two thermal inertias is developed. •The model is validated with experimental data. •The simulation results and the experimental data fit

  14. Intuitive thinking of design and redesign on innovative aircraft cabin simulator

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    In this paper, the intuition approach in the design and redesign of the environmental friendly innovative aircraft cabin simulator is presented. The simulator is a testbed that was designed and built for research on aircraft passenger comfort improvement of long haul air travel. The simulation

  15. Application and Simulation of Fuzzy Neural Network PID Controller in the Aircraft Cabin Temperature

    Directory of Open Access Journals (Sweden)

    Ding Fang

    2013-06-01

    Full Text Available Considering complex factors of affecting ambient temperature in Aircraft cabin, and some shortages of traditional PID control like the parameters difficult to be tuned and control ineffective, this paper puts forward the intelligent PID algorithm that makes fuzzy logic method and neural network together, scheming out the fuzzy neural net PID controller. After the correction of the fuzzy inference and dynamic learning of neural network, PID parameters of the controller get the optimal parameters. MATLAB simulation results of the cabin temperature control model show that the performance of the fuzzy neural network PID controller has been greatly improved, with faster response, smaller overshoot and better adaptability.

  16. Vaporized Hydrogen Peroxide (VHP) Decontamination of a Section of a Boeing 747 Cabin

    National Research Council Canada - National Science Library

    Shaffstall, Robert M; Garner, Robert P; Bishop, Joshua; Cameron-Landis, Lora; Eddington, Donald L; Hau, Gwen; Spera, Shawn; Mielnik, Thaddeus; Thomas, James A

    2006-01-01

    The use of STERIS Corporation's Vaporized Hydrogen Peroxide (VHP)* technology as a potential biocide for aircraft decontamination was demonstrated in a cabin section of the Aircraft Environment Research Facility...

  17. Apollo Soyuz mission, toxic gas entered cabin during earth landing sequence

    Science.gov (United States)

    1975-01-01

    A postflight analysis is presented of the sequence which caused toxic gas to enter the cabin during repressurization for 30 seconds from manual deployment of the drogue parachutes at 18,550 feet to disabling of the reaction control system at 9600 feet. Results and conclusions are discussed.

  18. Advanced air distribution for minimizing airborne cross-infection in aircraft cabins

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Dzhartov, Viktor

    2013-01-01

    The performance of personalized ventilation combined with local exhaust at each seat was studied for the purpose of minimizing airborne cross-infection in spaces whose occupants are sedentary, such as transportation environments. Experiments were carried out in a simulated aircraft cabin section (3...... rows, 21 seats). One breathing thermal manikin simulated an infected passenger as a source of pollution, and a second breathing manikin simulated an exposed passenger. The personalized ventilation supplied clean air at 6 or 10 L/s (12.7 of 21.2 cfm) from in front of each manikin's face. Air...... was withdrawn at a rate of 6 or 10 L/s (12.7 or (21.2 cfm) by the local exhaust system, which consisted of two exhaust terminals, one on each side of the head of the infected manikin. The cabin was ventilated with 180 L/s (381 cfm) of fresh air. Freon was mixed with the air exhaled by the infected manikin...

  19. Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rugh, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.

  20. Products of Ozone-initiated Chemistry during 4-hour Exposures of Human Subjects in a Simulated Aircraft Cabin

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Wisthaler, Armin; Tamás, Gyöngyi

    2006-01-01

    Proton-transfer-reaction mass spectrometry (PTR-MS) was used to examine organic compounds in the air of a simulated aircraft cabin under four conditions: low ozone, low air exchange rate; low ozone, high air exchange rate; high ozone, low air exchange rate; high ozone, high air exchange rate....... The results showed large differences in the chemical composition of the cabin air between the low and high ozone conditions. These differences were more pronounced at the low air exchange condition....

  1. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  2. An Orbit Propagation Software for Mars Orbiting Spacecraft

    Directory of Open Access Journals (Sweden)

    Young-Joo Song

    2004-12-01

    Full Text Available An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods, the results show about maximum ±5 meter errors, in every position state components(radial, cross-track and along-track, when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

  3. Aerogel Insulation for the Thermal Protection of Venus Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of NASA's primary goals for the next decade is the design, development and launch of a spacecraft aimed at the in-situ exploration of the deep atmosphere and...

  4. Differences in physical workload between military helicopter pilots and cabin crew

    NARCIS (Netherlands)

    van den Oord, Marieke H. A.; Sluiter, Judith K.; Frings-Dresen, Monique H. W.

    2014-01-01

    The 1-year prevalence of regular or continuous neck pain in military helicopter pilots of the Dutch Defense Helicopter Command (DHC) is 20%, and physical work exposures have been suggested as risk factors. Pilots and cabin crew perform different tasks when flying helicopters. The aims of the current

  5. PTR-MS Assessment of Photocatalytic and Sorption-Based Purification of Recirculated Cabin Air during Simulated 7-h Flights with High Passenger Density

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefil-ter; and a two-stage sorptionbased air filter...... (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h...... flights with 17 occupants. Protontransfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was effi-ciently reduced by all three units. The photocatalytic units...

  6. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David P.

    2005-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evalu-ate the air cleaning effects of two air purification devices using Photocatalytic Oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjec-tive human assessments ...

  7. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David Peter

    2008-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evaluate the air cleaning effects of two air purification devices that used photocatalytic oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjective human assessment...

  8. Control of interior surface materials for speech privacy in high-speed train cabins.

    Science.gov (United States)

    Jang, H S; Lim, H; Jeon, J Y

    2017-05-01

    The effect of interior materials with various absorption coefficients on speech privacy was investigated in a 1:10 scale model of one high-speed train cabin geometry. The speech transmission index (STI) and privacy distance (r P ) were measured in the train cabin to quantify speech privacy. Measurement cases were selected for the ceiling, sidewall, and front and back walls and were classified as high-, medium- and low-absorption coefficient cases. Interior materials with high absorption coefficients yielded a low r P , and the ceiling had the largest impact on both the STI and r P among the interior elements. Combinations of the three cases were measured, and the maximum reduction in r P by the absorptive surfaces was 2.4 m, which exceeds the space between two rows of chairs in the high-speed train. Additionally, the contribution of the interior elements to speech privacy was analyzed using recorded impulse responses and a multiple regression model for r P using the equivalent absorption area. The analysis confirmed that the ceiling was the most important interior element for improving speech privacy. These results can be used to find the relative decrease in r P in the acoustic design of interior materials to improve speech privacy in train cabins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. An evaluation of an airline cabin safety education program for elementary school children.

    Science.gov (United States)

    Liao, Meng-Yuan

    2014-04-01

    The knowledge, attitude, and behavior intentions of elementary school students about airline cabin safety before and after they took a specially designed safety education course were examined. A safety education program was designed for school-age children based on the cabin safety briefings airlines given to their passengers, as well as on lessons learned from emergency evacuations. The course is presented in three modes: a lecture, a demonstration, and then a film. A two-step survey was used for this empirical study: an illustrated multiple-choice questionnaire before the program, and, upon completion, the same questionnaire to assess its effectiveness. Before the program, there were significant differences in knowledge and attitude based on school locations and the frequency that students had traveled by air. After the course, students showed significant improvement in safety knowledge, attitude, and their behavior intention toward safety. Demographic factors, such as gender and grade, also affected the effectiveness of safety education. The study also showed that having the instructor directly interact with students by lecturing is far more effective than presenting the information using only video media. A long-term evaluation, the effectiveness of the program, using TV or video accessible on the Internet to deliver a cabin safety program, and a control group to eliminate potential extraneous factors are suggested for future studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Spacecraft TT&C and information transmission theory and technologies

    CERN Document Server

    Liu, Jiaxing

    2015-01-01

    Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems. Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.

  11. Experimental study on brain injury in Beagle dogs caused by adjacent cabin explosion in warship

    Directory of Open Access Journals (Sweden)

    Yan-teng LI

    2017-04-01

    Full Text Available Objective  Through the establishment of adjacent cabin blast injury model of Beagle dog, to investigate the pathophysiological changes in the experimental animals in this scenario, then speculate on the mechanisms of injury. Methods  Several adjacent cabins were built in the same size with the real warship. Seven Beagle dogs were subjected to injuries from the explosion, from whom one was selected randomly to implant intracranial pressure transducers before blast, the others were tested on the pathophysiological changes after blast. The dogs were mounted on the platform of a cabinet in the adjacent cabin, subjected to injury from 650g bare TNT explosive blast. The transducers recorded the value of space and intracranial shock wave pressure. Following blast treatment, the serum levels of IL -6, IL -8, neuron specific enolase (NSE, brain and chest CT and pathological changes of the brain tissue were observed. Results  Serum levels of IL-6, IL-8 and NSE were elevated to varying degrees after blast. All of them increased significantly at different time points after blast (P<0.05. Brain and chest CT examinations did not show any significant positive results. Pathological results showed that there was a little necrosis in the brain, some neurons had karyopycnosis, karyolysis or disappearance of the nucleoli, and the cell boundaries were blurred. The blast wave was blocked greatly by the scalp and skull (about 90%, but could still penetrate them and cause brain injuries. Conclusions  Explosion in the adjacent cabin causes mainly mild traumatic brain injuries. Blast wave can be blocked by the scalp and skull greatly. DOI: 10.11855/j.issn.0577-7402.2017.03.11

  12. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  13. Design of aircraft cabin testbed for stress free air travel experiment

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    The paper presents an aircraft cabin testbed that is designed and built for the stress free air travel experiment. The project is funded by European Union in the aim of improving air travel comfort during long haul flight. The testbed is used to test and validate the adaptive system that is capable

  14. Occupant evaluation of 7-hour exposures in a simulated aircraft cabin - Part 1: Optimum balance between fresh air supply and humidity

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Lagercrantz, Love Per

    2005-01-01

    Low humidity in the aircraft cabin environment has been identified as a possible cause of symptoms experienced during long flights. A mock-up of a 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber, capable of providing fresh outside air at very...

  15. 78 FR 52848 - Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2013-08-27

    ... air quality issues; food/beverage carts; and ergonomics. OSHA's noise, bloodborne pathogens, and... exposure, cabin air quality, food and beverage cart and ergonomic issues are not being considered at this... comments from the National Institute for Occupational Safety and Health that cited several studies it...

  16. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    Science.gov (United States)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as

  17. Passenger evaluation of the optimum balance between fresh air supply and humidity from 7-h exposures in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Lagercrantz, Love Per

    2007-01-01

    A 21-seat section of an aircraft cabin with realistic pollution sources was built inside a climate chamber capable of providing fresh outside air at very low humidity. Maintaining a constant 200 l/s rate of total air supply, i.e. recircu-lated and make-up air, to the cabin, experiments simulating 7...

  18. METRIC: A Dedicated Earth-Orbiting Spacecraft for Investigating Gravitational Physics and the Space Environment

    Directory of Open Access Journals (Sweden)

    Roberto Peron

    2017-07-01

    Full Text Available A dedicated mission in low Earth orbit is proposed to test predictions of gravitational interaction theories and to directly measure the atmospheric density in a relevant altitude range, as well as to provide a metrological platform able to tie different space geodesy techniques. The concept foresees a small spacecraft to be placed in a dawn-dusk eccentric orbit between 450 and 1200 km of altitude. The spacecraft will be tracked from the ground with high precision, and a three-axis accelerometer package on-board will measure the non-gravitational accelerations acting on its surface. Estimates of parameters related to fundamental physics and geophysics should be obtained by a precise orbit determination, while the accelerometer data will be instrumental in constraining the atmospheric density. Along with the mission scientific objectives, a conceptual configuration is described together with an analysis of the dynamical environment experienced by the spacecraft and the accelerometer.

  19. The perceptual influence of the cabin acoustics on the reproduced sound of a car audio system

    DEFF Research Database (Denmark)

    Kaplanis, Neofytos; Bech, Søren; Sakari, Tervo

    2015-01-01

    -end car audio system was performed for different physical settings of the car's cabin. A novel spatial auralization methodology was then used, and participants were asked to describe verbally the perceived acoustical characteristics of the stimuli. The elicited attributes were then analyzed following...... a previous review [Kaplanis et al., in 55th Int. Conf. Aud. Eng. Soc. (2014)] and possible links to the acoustical properties of the car cabin are discussed. [This study is a part of Marie Curie Network on Dereverberation and Reverberation of Audio, Music, and Speech. EU-FP7 under agreement ITN-GA-2012-316969.]...

  20. European SpaceCraft for the study of Atmospheric Particle Escape (ESCAPE): a mission proposed in response to the ESA M5-call

    Science.gov (United States)

    Dandouras, Iannis; Yamauchi, Masatoshi; Rème, Henri; De Keyser, Johan; Marghitu, Octav; Fazakerley, Andrew; Grison, Benjamin; Kistler, Lynn; Milillo, Anna; Nakamura, Rumi; Paschalidis, Nikolaos; Paschalis, Antonis; Pinçon, Jean-Louis; Sakanoi, Takeshi; Wieser, Martin; Wurz, Peter; Yoshikawa, Ichiro; Häggström, Ingemar; Liemohn, Mike; Tian, Feng

    2017-04-01

    ESCAPE is a mission proposed in response to the ESA-M5 call that will quantitatively estimate the amount of escaping particles of the major atmospheric components (nitrogen and oxygen), as neutral and ionised species, escaping from the Earth as a magnetised planet. The spatial distribution and temporal variability of the flux of these species and their isotopic composition will be for the first time systematically investigated in an extended altitude range, from the exobase/upper ionosphere (500 km altitude) up to the magnetosphere. The goal is to understand the importance of each escape mechanism, its dependence on solar and geomagnetic activity, and to infer the history of the Earth's atmosphere over a long (geological scale) time period. Since the solar EUV and solar wind conditions during solar maximum at present are comparable to the solar minimum conditions 1-2 billion years ago, the escaping amount and the isotope and N/O ratios should be obtained as a function of external forcing (solar and geomagnetic conditions) to allow a scaling to the past. The result will be used as a reference to understand the atmospheric/ionospheric evolution of magnetised planets. To achieve this goal, a slowly spinning spacecraft is proposed equipped with a suite of instruments developed and supplied by an international consortium. These instruments will detect the upper atmosphere and magnetosphere escaping populations by a combination of in-situ measurements and of remote-sensing observations.

  1. Damping layout optimization for ship's cabin noise reduction based on statistical energy analysis

    Directory of Open Access Journals (Sweden)

    WU Weiguo

    2017-08-01

    Full Text Available An optimization analysis study concerning the damping control of ship's cabin noise was carried out in order to improve the effect and reduce the weight of damping. Based on the Statistical Energy Analysis (SEA method, a theoretical deduction and numerical analysis of the first-order sensitivity analysis of the A-weighted sound pressure level concerning the damping loss factor of the subsystem were carried out. On this basis, a mathematical optimization model was proposed and an optimization program developed. Next, the secondary development of VA One software was implemented through the use of MATLAB, while the cabin noise damping control layout optimization system was established. Finally, the optimization model of the ship was constructed and numerical experiments of damping control optimization conducted. The damping installation region was divided into five parts with different damping thicknesses. The total weight of damping was set as an objective function and the A-weighted sound pressure level of the target cabin was set as a constraint condition. The best damping thickness was obtained through the optimization program, and the total damping weight was reduced by 60.4%. The results show that the damping noise reduction effect of unit weight is significantly improved through the optimization method. This research successfully solves the installation position and thickness selection problems in the acoustic design of damping control, providing a reliable analysis method and guidance for the design.

  2. Integration and Validation of a Thermal Energy Storage System for Electric Vehicle Cabin Heating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingyu [MAHLE Behr Troy Inc.; Craig, Timothy [MAHLE Behr Troy Inc.; Wolfe, Edward [MAHLE Behr Troy Inc.; LaClair, Tim J. [ORNL; Gao, Zhiming [ORNL; Levin, Michael [Ford Motor Company; Demitroff, Danrich [Ford Motor Company; Shaikh, Furqan [Ford Motor Company

    2017-03-01

    It is widely recognized in the automotive industry that, in very cold climatic conditions, the driving range of an Electric Vehicle (EV) can be reduced by 50% or more. In an effort to minimize the EV range penalty, a novel thermal energy storage system has been designed to provide cabin heating in EVs and Plug-in Hybrid Electric Vehicles (PHEVs) by using an advanced phase change material (PCM). This system is known as the Electrical PCM-based Thermal Heating System (ePATHS) [1, 2]. When the EV is connected to the electric grid to charge its traction battery, the ePATHS system is also “charged” with thermal energy. The stored heat is subsequently deployed for cabin comfort heating during driving, for example during commuting to and from work.The ePATHS system, especially the PCM heat exchanger component, has gone through substantial redesign in order to meet functionality and commercialization requirements. The final system development for EV implementation has occurred on a mid-range EV and has been evaluated for its capability to extend the driving range. Both simulated driving in a climatic tunnel and actual road testing have been carried out. The ePATHS has demonstrated its ability to supply the entire cabin heating needs for a round trip commute totaling 46 minutes, including 8 hours of parking, at an ambient temperature of -10°C.

  3. Vega-1 and Vega-2: vertical profiles of wind velocity according to Doppler measurements data at landing spacecrafts

    International Nuclear Information System (INIS)

    Kerzhanovich, V.V.; Antsibor, N.M.; Bakit'ko, R.V.

    1987-01-01

    Results of the measurements of the Venus atmosphere vertical motion using the ''Vega'' landing spacecrafts are presented. Signal emitted by the landing spacecraft transmitter was received by flying apparatus and retranslated to the Earth. The difference between the measured frequency of the retranslated signal and reference one (Doppler's shift) permitted to determine the velocity of the landing spacecraft with the accuracy of 2 cm/s with the pitch of 1 s

  4. Comparing on-road real-time simultaneous in-cabin and outdoor particulate and gaseous concentrations for a range of ventilation scenarios

    Science.gov (United States)

    Leavey, Anna; Reed, Nathan; Patel, Sameer; Bradley, Kevin; Kulkarni, Pramod; Biswas, Pratim

    2017-10-01

    Advanced automobile technology, developed infrastructure, and changing economic markets have resulted in increasing commute times. Traffic is a major source of harmful pollutants and consequently daily peak exposures tend to occur near roadways or while travelling on them. The objective of this study was to measure simultaneous real-time particulate matter (particle numbers, lung-deposited surface area, PM2.5, particle number size distributions) and CO concentrations outside and in-cabin of an on-road car during regular commutes to and from work. Data was collected for different ventilation parameters (windows open or closed, fan on, AC on), whilst travelling along different road-types with varying traffic densities. Multiple predictor variables were examined using linear mixed-effects models. Ambient pollutants (NOx, PM2.5, CO) and meteorological variables (wind speed, temperature, relative humidity, dew point) explained 5-44% of outdoor pollutant variability, while the time spent travelling behind a bus was statistically significant for PM2.5, lung-deposited SA, and CO (adj-R2 values = 0.12, 0.10, 0.13). The geometric mean diameter (GMD) for outdoor aerosol was 34 nm. Larger cabin GMDs were observed when windows were closed compared to open (b = 4.3, p-value = <0.01). When windows were open, cabin total aerosol concentrations tracked those outdoors. With windows closed, the pollutants took longer to enter the vehicle cabin, but also longer to exit it. Concentrations of pollutants in cabin were influenced by outdoor concentrations, ambient temperature, and the window/ventilation parameters. As expected, particle number concentrations were impacted the most by changes to window position/ventilation, and PM2.5 the least. Car drivers can expect their highest exposures when driving with windows open or the fan on, and their lowest exposures during windows closed or the AC on. Final linear mixed-effects models could explain between 88 and 97% of cabin pollutant

  5. Prevalence of risk factors for breast cancer in German airline cabin crew: a cross-sectional study.

    Science.gov (United States)

    Winter, Mareen; Blettner, Maria; Zeeb, Hajo

    2014-01-01

    Many epidemiological studies point to an increased risk of breast cancer among female airline cabin crew. Possible causes include occupational factors (e.g. cosmic radiation exposure, chronodisruption), as well as lifestyle and reproductive factors. To investigate the frequency of various risk factors in German flight attendants which are recognised to be associated with breast cancer. 2708 current and former female cabin crew were randomly selected by a flight attendants' union and mailed a questionnaire; 1311 responded (48% response). Descriptive statistics were used to compare the distribution of breast cancer risk factors with general German population data. On average, cabin crew were 3.0 cm (95% CI 2.7-3.3) taller than the comparison group, while their body mass index was 2.5 kg/m(2) (95% CI 2.4-2.6) lower. We found less use of hormone replacement therapy, but longer average use of oral contraceptives. Nulliparity among respondents aged 45+ was 57% (95% CI 54%-60%) compared to 16%. Average age at first birth was 32.1 years (95% CI 31.7-32.4) vs. 25.5 years. The birth rate was 0.62 (95% CI 0.58-0.67), less than half the population average of 1.34. Alcohol consumption was considerably higher, whereas cabin crew tended to smoke less and performed more physical exercise. We found important differences in terms of anthropometric, gynaecological, reproductive and lifestyle factors. Some of these differences (e.g. higher nulliparity, alcohol consumption, taller size) could contribute to a higher breast cancer risk, whereas others could lead to a reduction (e.g. increased physical exercise, lower BMI, less HRT use).

  6. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    Science.gov (United States)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  7. The Atsa Suborbital Observatory: An Observatory for a Commercial Suborbital Spacecraft

    Science.gov (United States)

    Vilas, F.; Sollitt, L. S.

    2012-12-01

    The advantages of astronomical observations made above Earth's atmosphere have long been understood: free access to spectral regions inaccessible from Earth (e.g., UV) or affected by the atmosphere's content (e.g., IR). Most robotic, space-based telescopes maintain large angular separation between the Sun and an observational target in order to avoid accidental damage to instruments from the Sun. For most astronomical targets, this possibility is easily avoided by waiting until objects are visible away from the Sun. For the Solar System objects inside Earth's orbit, this is never the case. Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. Commercial suborbital spacecraft are largely expected to go to ~100 km altitude above Earth, providing a limited amount of time for astronomical observations. The unique scientific advantage to these observations is the ability to point close to the Sun: if a suborbital spacecraft accidentally turns too close to the Sun and fries an instrument, it is easy to land the spacecraft and repair the hardware for the next flight. Objects uniquely observed during the short observing window include inner-Earth asteroids, Mercury, Venus, and Sun-grazing comets. Both open-FOV and target-specific observations are possible. Despite many space probes to the inner Solar System, scientific questions remain. These include inner-Earth asteroid size and bulk density informing Solar System evolution studies and efforts to develop methods of mitigation against imminent impactors to Earth; chemistry and dynamics of Venus' atmosphere addressing physical phenomena such as greenhouse effect, atmospheric super-rotation and global resurfacing on Venus. With the Atsa Suborbital Observatory, we combine the strengths of both ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with both in-house facility

  8. Exploring the Atmosphere with Lidars

    Indian Academy of Sciences (India)

    the source is beyond the control of the observer, e.g. radiometer, photometer ... of the atmosphere, environmental monitoring, measurement of air quality ... able for the development of mobile systems for vehicles, aircraft and spacecraft ...

  9. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  10. Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions

    Science.gov (United States)

    Simons, Rainee N.

    2015-01-01

    NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.

  11. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    Science.gov (United States)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  12. Implication of Emotional Labor, Cognitive Flexibility, and Relational Energy among Cabin Crew: A Review.

    Science.gov (United States)

    Baruah, Rithi; Reddy, K Jayasankara

    2018-01-01

    The primary aim of the civil aviation industry is to provide a secured and comfortable service to their customers and clients. This review concentrates on the cabin crew members, who are the frontline employees of the aviation industry and are salaried to smile. The objective of this review article is to analyze the variables of emotional labor, cognitive flexibility, and relational energy using the biopsychosocial model and identify organizational implications among cabin crew. Online databases such as EBSCOhost, JSTOR, Springerlink, and PubMed were used to gather articles for the review. The authors analyzed 17 articles from 2001 to 2016 and presented a comprehensive review. The review presented an integrative approach and suggested a hypothetical model that can prove to be a signitficant contribution to the avaition industry in particular and to research findings of aviation psychology.

  13. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  14. Contingency Trajectory Design for a Lunar Orbit Insertion Maneuver Failure by the LADEE Spacecraft

    Science.gov (United States)

    Genova, A. L.

    2014-01-01

    This paper presents results from a contingency trajectory analysis performed for the Lunar Atmosphere & Dust Environment Explorer (LADEE) mission in the event of a missed lunar-orbit insertion (LOI) maneuver by the LADEE spacecraft. The effects of varying solar perturbations in the vicinity of the weak stability boundary (WSB) in the Sun-Earth system on the trajectory design are analyzed and discussed. It is shown that geocentric recovery trajectory options existed for the LADEE spacecraft, depending on the spacecraft's recovery time to perform an Earth escape-prevention maneuver after the hypothetical LOI maneuver failure and subsequent path traveled through the Sun-Earth WSB. If Earth-escape occurred, a heliocentric recovery option existed, but with reduced science capacapability for the spacecraft in an eccentric, not circular near-equatorial retrograde lunar orbit.

  15. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    Science.gov (United States)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  16. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    Science.gov (United States)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  17. New Platforms for Suborbital Astronomical Observations and In Situ Atmospheric Measurements: Spacecraft, Instruments, and Facilities

    Science.gov (United States)

    Rodway, K.; DeForest, C. E.; Diller, J.; Vilas, F.; Sollitt, L. S.; Reyes, M. F.; Filo, A. S.; Anderson, E.

    2014-12-01

    Suborbital astronomical observations have over 50 years' history using NASA's sounding rockets and experimental space planes. The new commercial space industry is developing suborbital reusable launch vehicles (sRLV's) to provide low-cost, flexible, and frequent access to space at ~100 km altitude. In the case of XCOR Aerospace's Lynx spacecraft, the vehicle design and capabilities work well for hosting specially designed experiments that can be flown with a human-tended researcher or alone with the pilot on a customized mission. Some of the first-generation instruments and facilities that will conduct solar observations on dedicated Lynx science missions include the SwRI Solar Instrument Pointing Platform (SSIPP) and Atsa Suborbital Observatory, as well as KickSat sprites, which are picosatellites for in situ atmospheric and solar phenomena measurements. The SSIPP is a demonstration two-stage pointed solar observatory that operates inside the Lynx cockpit. The coarse pointing stage includes the pilot in the feedback loop, and the fine stage stabilizes the solar image to achieve arcsecond class pointing. SSIPP is a stepping-stone to future external instruments that can operate with larger apertures and shorter wavelengths in the solar atmosphere. The Planetary Science Institute's Atsa Suborbital Observatory combines the strengths of ground-based observatories and space-based observing to create a facility where a telescope is maintained and used interchangeably with either in-house facility instruments or user-provided instruments. The Atsa prototype is a proof of concept, hand-guided camera that mounts on the interior of the Lynx cockpit to test target acquisition and tracking for human-operated suborbital astronomy. KickSat sprites are mass-producible, one inch printed circuit boards (PCBs) populated by programmable off the shelf microprocessors and radios for real time data transmission. The sprite PCBs can integrate chip-based radiometers, magnetometers

  18. Test of Advanced Fine Water Mist Nozzles in a Representative Spacecraft Atmosphere, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fine water mist is being considered as a replacement technology for fire suppression on the next generation of manned spacecraft. It offers advantages in...

  19. Contributions of microgravity test results to the design of spacecraft fire-safety systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  20. Contributions of Microgravity Test Results to the Design of Spacecraft Fire Safety Systems

    Science.gov (United States)

    Friedman, Robert; Urban, David L.

    1993-01-01

    Experiments conducted in spacecraft and drop towers show that thin-sheet materials have reduced flammability ranges and flame-spread rates under quiescent low-gravity environments (microgravity) as compared to normal gravity. Furthermore, low-gravity flames may be suppressed more easily by atmospheric dilution or decreasing atmospheric total pressure than their normal-gravity counterparts. The addition of a ventilating air flow to the low-gravity flame zone, however, can greatly enhance the flammability range and flame spread. These results, along with observations of flame and smoke characteristics useful for microgravity fire-detection 'signatures', promise to be of considerable value to spacecraft fire-safety designs. The paper summarizes the fire detection and suppression techniques proposed for the Space Station Freedom and discusses both the application of low-gravity combustion knowledge to improve fire protection and the critical needs for further research.

  1. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    Science.gov (United States)

    Marble, Elizabeth

    1996-01-01

    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  2. Assistive technology and passengers with special assistance needs in air transport: contributions to cabin design

    Directory of Open Access Journals (Sweden)

    Carina Campese

    2016-06-01

    Full Text Available Abstract There has been significant growth in air transport worldwide, as well as in Brazil. However, studies have emphasized that disabled, obese, and elderly passengers face difficulties when using this means of transport. Among these difficulties, issues related to passengers’ own assistive devices, including damage, loss, or the impossibility of using during the entire flight, stand out. Therefore, the present study aims to understand the trends in assistive technology focusing on cabin design. This research is based upon literature review, interviews with manufacturers and research centers, visits to specialized trade fairs, and patent search. The results revealed a great diversity of assistive products, its trends, and an increase in their use, which affect aircraft cabin design, especially in terms of space, access, and stowage of these devices.

  3. Quantifying air distribution, ventilation effectiveness and airborne pollutant transport in an aircraft cabin mockup

    Science.gov (United States)

    Wang, Aijun

    The health, safety and comfort of passengers during flight inspired this research into cabin air quality, which is closely related to its airflow distribution, ventilation effectiveness and airborne pollutant transport. The experimental facility is a full-scale aircraft cabin mockup. A volumetric particle tracking velocimetry (VPTV) technique was enhanced by incorporating a self-developed streak recognition algorithm. Two stable recirculation regions, the reverse flows above the seats and the main air jets from the air supply inlets formed the complicated airflow patterns inside the cabin mockup. The primary air flow was parallel to the passenger rows. The small velocity component in the direction of the cabin depth caused less net air exchange between the passenger rows than that parallel to the passenger rows. Different total air supply rate changed the developing behaviors of the main air jets, leading to different local air distribution patterns. Two indices, Local mean age of air and ventilation effectiveness factor (VEF), were measured at five levels of air supply rate and two levels of heating load. Local mean age of air decreased linearly with an increase in the air supply rate, while the VEF remained consistent when the air supply rate varied. The thermal buoyancy force from the thermal plume generated the upside plume flow, opposite to the main jet flow above the boundary seats and thus lowered the local net air exchange. The airborne transport dynamics depends on the distance between the source and the receptors, the relative location of pollutant source, and air supply rate. Exposure risk was significantly reduced with increased distance between source and receptors. Another possible way to decrease the exposure risk was to position the release source close to the exhaust outlets. Increasing the air supply rate could be an effective solution under some emergency situations. The large volume of data regarding the three-dimensional air velocities was

  4. Laboratory investigations: Low Earth orbit environment chemistry with spacecraft surfaces

    Science.gov (United States)

    Cross, Jon B.

    1990-01-01

    Long-term space operations that require exposure of material to the low earth orbit (LEO) environment must take into account the effects of this highly oxidative atmosphere on material properties and the possible contamination of the spacecraft surroundings. Ground-based laboratory experiments at Los Alamos using a newly developed hyperthermal atomic oxygen (AO) source have shown that not only are hydrocarbon based materials effected but that inorganic materials such as MoS2 are also oxidized and that thin protective coatings such as Al2O3 can be breached, producing oxidation of the underlying substrate material. Gas-phase reaction products, such as SO2 from oxidation of MoS2 and CO and CO2 from hydrocarbon materials, have been detected and have consequences in terms of spacecraft contamination. Energy loss through gas-surface collisions causing spacecraft drag has been measured for a few select surfaces and has been found to be highly dependent on the surface reactivity.

  5. Effects of ozone chemistry and outside air supply on passenger self-evalua-tion of symptoms during 4-hour exposures in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Tamás, Gyöngyi; Myśków, Danuta

    2006-01-01

    Experiments were carried out in a simulated 21-seat section of an aircraft cabin, installed in a climate chamber, to determine the extent to which cabin air quality and passenger symptoms are affected by ozone chemistry. A total of 30 subjects were exposed to four conditions: two rates of outside...

  6. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    Science.gov (United States)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  7. On the wave induced responses for a high-speed hydrofoil catamaran. Part 1. Cabin connected to hull by spring and its riding comfort in waves; Suichuyokutsuki kosoku sodotei no harochu oto ni tsuite. 1. Dokuritsu kozogata cabin to harochu norigokochi

    Energy Technology Data Exchange (ETDEWEB)

    Saito, K; Nobukawa, H; Honda, Y [Hiroshima University, Hiroshima (Japan)

    1996-04-10

    Riding comfort in a cabin of a high-speed hydrofoil catamaran was evaluated by comparing with that in ordinary boats as to acceleration in the vertical direction as one of the responses of the catamaran in waves. First, an equation of motion in waves was introduced, and considerations were given while comparing the result of calculations in regular waves with that of model experiments. Comparison and verification were also performed on response characteristics in irregular waves. A new-type boat, whose cabin is supported with four springs, and provided with hydrofoils in front and rear thereof, was verified to have much less motions of the catamaran bodies and the cabin than in the ordinary boats both in regular and irregular waves. This result was proven by numerical calculations and model experiments. Hydrofoils affect largely the reduction in motions. The correlational data between the results of calculations and experiments are considered sufficient to provide design data, although there are still some points to be improved. These results revealed that the riding comfort of the new-type boat has been improved over that in the ordinary boats. 6 refs., 11 figs., 3 tabs.

  8. Science driven restoration: A candle in a demon haunted world—response to cabin

    Science.gov (United States)

    Christian P. Giardina; Creighton M. Litton; Jarrod M. Thaxton; Susan Cordell; Lisa J. Hadway; Darren R. Sandquist

    2007-01-01

    Cabin (2007) asks whether formal science is an effective framework and methodology for designing and implementing ecological restoration programs. He argues that beyond certain ancillary benefits, restoration science has little of practical value to offer the practice of restoration. He goes on to suggest that restoration science most often represents an impediment to...

  9. the Martian atmospheric boundary layer

    DEFF Research Database (Denmark)

    Petrosyan, A.; Galperin, B.; Larsen, Søren Ejling

    2011-01-01

    . This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free...

  10. Experimental study on occupant's thermal responses under the non-uniform conditions in vehicle cabin during the heating period

    Science.gov (United States)

    Zhang, Wencan; Chen, Jiqing; Lan, Fengchong

    2014-03-01

    The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperature and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in

  11. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    Science.gov (United States)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  12. 77 FR 72998 - Policy Statement on Occupational Safety and Health Standards for Aircraft Cabin Crewmembers

    Science.gov (United States)

    2012-12-07

    ... [Docket No.: FAA-2012-0953] Policy Statement on Occupational Safety and Health Standards for Aircraft... regarding the regulation of some occupational safety and health conditions affecting cabin crewmembers on aircraft by the Occupational Safety and Health Administration (OSHA). This policy statement will enhance...

  13. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  14. Large Scale Experiments on Spacecraft Fire Safety

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Minster, Olivier; Fernandez-Pello, A. Carlos; Tien, James S.; Torero, Jose L.; Legros, Guillaume; Eigenbrod, Christian; Smirnov, Nickolay; Fujita, Osamu; hide

    2012-01-01

    Full scale fire testing complemented by computer modelling has provided significant knowhow about the risk, prevention and suppression of fire in terrestrial systems (cars, ships, planes, buildings, mines, and tunnels). In comparison, no such testing has been carried out for manned spacecraft due to the complexity, cost and risk associated with operating a long duration fire safety experiment of a relevant size in microgravity. Therefore, there is currently a gap in knowledge of fire behaviour in spacecraft. The entire body of low-gravity fire research has either been conducted in short duration ground-based microgravity facilities or has been limited to very small fuel samples. Still, the work conducted to date has shown that fire behaviour in low-gravity is very different from that in normal gravity, with differences observed for flammability limits, ignition delay, flame spread behaviour, flame colour and flame structure. As a result, the prediction of the behaviour of fires in reduced gravity is at present not validated. To address this gap in knowledge, a collaborative international project, Spacecraft Fire Safety, has been established with its cornerstone being the development of an experiment (Fire Safety 1) to be conducted on an ISS resupply vehicle, such as the Automated Transfer Vehicle (ATV) or Orbital Cygnus after it leaves the ISS and before it enters the atmosphere. A computer modelling effort will complement the experimental effort. Although the experiment will need to meet rigorous safety requirements to ensure the carrier vehicle does not sustain damage, the absence of a crew removes the need for strict containment of combustion products. This will facilitate the possibility of examining fire behaviour on a scale that is relevant to spacecraft fire safety and will provide unique data for fire model validation. This unprecedented opportunity will expand the understanding of the fundamentals of fire behaviour in spacecraft. The experiment is being

  15. The influence of ozone on self-evaluation of symptoms in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Weschler, Charles J.; Wargocki, Pawel

    2008-01-01

    Simulated 4-h flights were carried out in a realistic model of a three-row, 21-seat section of an aircraft cabin that was reconstructed inside a climate chamber. Twenty-nine female subjects, age 19-27 years, were split into two groups; each group was exposed to four conditions: two levels of ozone (...

  16. Estimated radiation exposure of German commercial airline cabin crew in the years 1960-2003 modeled using dose registry data for 2004-2015.

    Science.gov (United States)

    Wollschläger, Daniel; Hammer, Gaël Paul; Schafft, Thomas; Dreger, Steffen; Blettner, Maria; Zeeb, Hajo

    2018-05-01

    Exposure to ionizing radiation of cosmic origin is an occupational risk factor in commercial aircrew. In a historic cohort of 26,774 German aircrew, radiation exposure was previously estimated only for cockpit crew using a job-exposure matrix (JEM). Here, a new method for retrospectively estimating cabin crew dose is developed. The German Federal Radiation Registry (SSR) documents individual monthly effective doses for all aircrew. SSR-provided doses on 12,941 aircrew from 2004 to 2015 were used to model cabin crew dose as a function of age, sex, job category, solar activity, and male pilots' dose; the mean annual effective dose was 2.25 mSv (range 0.01-6.39 mSv). In addition to an inverse association with solar activity, exposure followed age- and sex-dependent patterns related to individual career development and life phases. JEM-derived annual cockpit crew doses agreed with SSR-provided doses for 2004 (correlation 0.90, 0.40 mSv root mean squared error), while the estimated average annual effective dose for cabin crew had a prediction error of 0.16 mSv, equaling 7.2% of average annual dose. Past average annual cabin crew dose can be modeled by exploiting systematic external influences as well as individual behavioral determinants of radiation exposure, thereby enabling future dose-response analyses of the full aircrew cohort including measurement error information.

  17. Market Potential Study for Standing Cabin Concept for Domestic Low-Cost Commercial Airlines in Malaysia

    Science.gov (United States)

    Romli, Fairuz I.; Dasuki, Norhafizah; Yazdi Harmin, Mohammad

    2016-02-01

    An affordable air transportation has become the operational aim of many airlines these days. This is to cater the growing air travel demands from people of different social and economic status. One of the revolutionary proposals to reduce the operational costs, hence the flight ticket price, is by introducing the so-called standing cabin concept. This concept involves transporting passengers during the entire flight in their standing position with a proper support of a vertical seat. As can be expected with many new inventions, despite its clear advantages, the concept has been met with mixed reactions from the public. This study intends to establish whether the standing cabin concept has a market potential to be implemented for domestic flights in Malaysia. The public perception is determined from collected data through a survey done at two major local low-cost airport terminals. It can be concluded from the results that the concept has a good market potential for application on flights with duration of less than two hours.

  18. An Exploratory Analysis of Sound Field Characteristics using the Impulse Response in a Car Cabin

    Directory of Open Access Journals (Sweden)

    Yoshiharu Soeta

    2018-03-01

    Full Text Available Sound environments in cars are becoming quieter and receiving attention because of the prevalence of low-noise engines such as hybrid and electric engines and the manifestation of automated driving. Although the car cabin has potential as a listening space, its acoustic quality has not been examined in detail. The present study investigated sound field characteristics in the car cabin using acoustic parameters obtained by impulse response analysis. In particular, effects of the passenger position, open windows and the use of an air conditioner on acoustic parameters were investigated. The passenger position affected the sound strength at low frequencies. Rear seats, except for the rear central seat, had lower interaural correlation than the front seats, suggesting that rear seats have more diffused sound fields. The opening of windows and use of air conditioners attenuated the ratio of early- and late-arriving energy at high frequencies, suggesting a loss of clarity for music.

  19. Structure of the Venusian atmosphere from surface up to 100 km

    Science.gov (United States)

    Zasova, L. V.; Moroz, V. I.; Linkin, V. M.; Khatuntsev, I. V.; Maiorov, B. S.

    2006-07-01

    The goal of this paper is to summarize the experimental data on the atmosphere of Venus obtained after 1985, when the VIRA (Venus International Reference Atmosphere) or COSPAR model was published. Among the most important results that have appeared since then are the following: measurements of the vertical temperature profile by the VEGA spacecraft with high precision and high altitude resolution; measurements made with balloons of the VEGA spacecraft; radio occultation measurements of Magellan, Venera-15, and Venera-16; and temperature profiles derived from the data of infrared spectrometry obtained by Venera-15. The new result as compared to VIRA is the creation of a model of the atmosphere in the altitude range 55 to 100 km dependent on local time. This model is presented in our paper in tabulated form.

  20. Analysis of Solar Wind Precipitation on Mars Using MAVEN/SWIA Observations of Spacecraft-Scattered Ions

    Science.gov (United States)

    Lue, C.; Halekas, J. S.

    2017-12-01

    Particle sensors on the MAVEN spacecraft (SWIA, SWEA, STATIC) observe precipitating solar wind ions during MAVEN's periapsis passes in the Martian atmosphere (at 120-250 km altitude). The signature is observed as positive and negative particles at the solar wind energy, traveling away from the Sun. The observations can be explained by the solar wind penetrating the Martian magnetic barrier in the form of energetic neutral atoms (ENAs) due to charge-exchange with the Martian hydrogen corona, and then being reionized in positive or negative form upon impact with the atmosphere (1). These findings have elucidated solar wind precipitation dynamics at Mars, and can also be used to monitor the solar wind even when MAVEN is at periapsis (2). In the present study, we focus on a SWIA instrument background signal that has been interpreted as spacecraft/instrument-scattered ions (2). We aim to model and subtract the scattered ion signal from the observations including those of reionized solar wind. We also aim to use the scattered ion signal to track hydrogen ENAs impacting the spacecraft above the reionization altitude. We characterize the energy spectrum and directional scattering function for solar wind scattering off the SWIA aperture structure, the radome and the spacecraft body. We find a broad scattered-ion energy spectrum up to the solar wind energy, displaying increased energy loss and reduced flux with increasing scattering angle, allowing correlations with the solar wind direction, energy, and flux. We develop models that can be used to predict the scattered signal based on the direct solar wind observations or to infer the solar wind properties based on the observed scattered signal. We then investigate deviations to the models when the spacecraft is in the Martian atmosphere and evaluate the plausibility of that these are caused by ENAs. We also perform SIMION modeling of the scattering process and the resulting signal detection by SWIA, to study the results from

  1. High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration

    Science.gov (United States)

    Scott, James R.; Martini, Michael C.

    2010-01-01

    It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body

  2. Experimental investigation of airborne contaminant transport by a human wake moving in a ventilated aircraft cabin

    Science.gov (United States)

    Poussou, Stephane B.

    The air ventilation system in jetliners provides a comfortable and healthy environment for passengers. Unfortunately, the increase in global air traffic has amplified the risks presented by infectious aerosols or noxious material released during flight. Inside the cabin, air typically flows continuously from overhead outlets into sidewall exhausts in a circular pattern that minimizes secondary flow between adjacent seat rows. However, disturbances frequently introduced by individuals walking along an aisle may alter air distribution, and contribute to spreading of contaminants. Numerical simulation of these convoluted transient flow phenomena is difficult and complex, and experimental assessment of contaminant distribution in real cabins often impractical. A fundamental experimental study was undertaken to examine the transport phenomena, to validate computations and to improve air monitoring systems. A finite moving body was modeled in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body diameter) of the order of 10,000. An experimental facility was designed and constructed to permit measurements of the ventilation and wake velocity fields using particle image velocimetry (PIV). Contaminant migration was imaged using the planar laser induced fluorescence (PLIF) technique. The effect of ventilation was estimated by comparison with a companion baseline study. Results indicate that the evolution of a downwash predominant behind finite bodies of small aspect ratio is profoundly perturbed by the ventilation flow. The reorganization of vortical structures in the near-wake leads to a shorter longitudinal recirculation region. Furthermore, mixing in the wake is modified and contaminant is observed to convect to higher vertical locations corresponding to seated passenger breathing level.

  3. Spacecraft Cabin Air CO2 Recovery, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced Environmental Control and Life Support System (ECLSS) for long duration manned space missions ?such as planetary flight missions or planetary bases-...

  4. Programs To Optimize Spacecraft And Aircraft Trajectories

    Science.gov (United States)

    Brauer, G. L.; Petersen, F. M.; Cornick, D.E.; Stevenson, R.; Olson, D. W.

    1994-01-01

    POST/6D POST is set of two computer programs providing ability to target and optimize trajectories of powered or unpowered spacecraft or aircraft operating at or near rotating planet. POST treats point-mass, three-degree-of-freedom case. 6D POST treats more-general rigid-body, six-degree-of-freedom (with point masses) case. Used to solve variety of performance, guidance, and flight-control problems for atmospheric and orbital vehicles. Applications include computation of performance or capability of vehicle in ascent, or orbit, and during entry into atmosphere, simulation and analysis of guidance and flight-control systems, dispersion-type analyses and analyses of loads, general-purpose six-degree-of-freedom simulation of controlled and uncontrolled vehicles, and validation of performance in six degrees of freedom. Written in FORTRAN 77 and C language. Two machine versions available: one for SUN-series computers running SunOS(TM) (LAR-14871) and one for Silicon Graphics IRIS computers running IRIX(TM) operating system (LAR-14869).

  5. The Prospect of Responsive Spacecraft Using Aeroassisted, Trans-Atmospheric Maneuvers

    Science.gov (United States)

    2014-06-19

    99 V. Design of Experiments Approach to Atmospheric Skip Entry Maneuver Optimization .....100 Chapter Overview...Transfer Diagram .................................................................................................11 3.1. Comparison of Geocentric ...Comparison of Geocentric /Geodetic Latitude for Apollo 10 (2-Gravity Model, Fourth-Order Runge-Kutta Solver

  6. Interactive aircraft cabin testbed for stress-free air travel system experiment: an innovative concurrent design approach

    NARCIS (Netherlands)

    Tan, C.F.; Chen, W.; Rauterberg, G.W.M.

    2009-01-01

    In this paper, a study of the concurrent engineering design for the environmental friendly low cost aircraft cabin simulator is presented. The study describes the used of concurrent design technique in the design activity. The simulator is a testbed that was designed and built for research on

  7. L4-L5 compression and anterior/posterior joint shear forces in cabin attendants during the initial push/pull actions of airplane meal carts

    DEFF Research Database (Denmark)

    Sandfeld, Jesper; Rosgaard, Christian; Jensen, Bente Rona

    2014-01-01

    The aim of the present study was to assess the acute low back load of cabin attendants during cart handling and to identify working situations which present the highest strain on the worker. In a setup, 17 cabin attendants (ten females and seven males) pushed, pulled and turned a 20kg standard meal...... was used to calculate the acute L4-L5 load. No working situations created loads greater than the accepted values for single exertions, however compression and anterior/posterior shear forces during pulling and turning were much higher when compared with pushing. There were significant effects of handling...... the cart on different floor types, at the varying inclinations and with different cart weights. Additionally, when external forces were reduced, the cabin attendants did not decrease push/pull force proportionally and thus the L4-L5 load did not decrease as much as expected....

  8. All-theoretical prediction of cabin noise due to impingement of propeller vortices on a wing structure

    Science.gov (United States)

    Martinez, R.; Cole, J. E., III; Martini, K.; Westagard, A.

    1987-01-01

    Reported calculations of structure-borne cabin noise for a small twin engine aircraft powered by tractor propellers rely on the following three-stage methodological breakup of the problem: (1) the unsteady-aerodynamic prediction of wing lift harmonics caused by the whipping action of the vortex system trailed from each propeller; (2) the associated wing/fuselage structural response; (3) the cabin noise field for the computed wall vibration. The first part--the estimate of airloads--skirts a full-fledged aeroelastic situation by assuming the wing to be fixed in space while cancelling the downwash field of the cutting vortices. The model is based on an approximate high-frequency lifting-surface theory justified by the blade rate and flight Mach number of application. Its results drive a finite-element representation of the wing accounting for upper and lower skin surfaces, spars, ribs, and the presence of fuel. The fuselage, modeled as a frame-stiffened cylindrical shell, is bolted to the wing.

  9. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    Science.gov (United States)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  10. The effect of low ceiling on the external combustion of the cabin fire

    Science.gov (United States)

    Su, Shichuan; Chen, Changyun; Wang, Liang; Wei, Chengyin; Cui, Haibing; Guo, Chengyu

    2018-06-01

    External combustion is a phenomenon where the flame flares out of the window and burns outside. Because of the particularity of the ship's cabin structure, there is a great danger in the external combustion. In this paper, the numerical calculation and analysis of three kinds of low ceiling ship cabin fire are analyzed based on the large eddy numerical simulation technique. Through the analysis of temperature, flue gas velocity, heat flux density and so on, the external combustion phenomenon of fire development is calculated. The results show that when external combustion occurs, the amount of fuel escaping decreases with the roof height. The temperature above the window increases with the height of the ceiling. The heat flux density in the external combustion flame is mainly provided by radiation, and convection is only a small part; In the plume area there is a time period, in this time period, the convective heat flux density is greater than the radiation heat flux, this time with the ceiling height increases. No matter which ceiling height, the external combustion will seriously damage the structure of the ship after a certain period of time. The velocity distribution of the three roof is similar, but with the height of the ceiling, the area size is also increasing.

  11. Experimental Study of Dispersion and Deposition of Expiratory Aerosols in Aircraft Cabins and Impact on Infectious Disease Transmission

    DEFF Research Database (Denmark)

    To, G.N.S.; Wan, M.P.; Chao, C.Y.H.

    2009-01-01

    The dispersion and deposition characteristics of polydispersed expiratory aerosols were investigated in an aircraft cabin mockup to study the transmission of infectious diseases. The airflow was characterized by particle image velocimetry (PIV) measurements. Aerosol dispersionwas measured...

  12. Basic data report for borehole Cabin Baby-1 deepening and hydrologic testing. Waste Isolation Pilot Plant (WIPP) project, southeastern New Mexico

    International Nuclear Information System (INIS)

    Beauheim, R.L.; Hassinger, B.W.; Klaiber, J.A.

    1983-12-01

    Borehole Cabin Baby-1 was originally drilled to a depth of 4159.0 feet below kelly bushing (8.0 feet above ground surface) in 1974 and 1975 as a ''wildcat'' hydrocarbon exploratory well. Control of the borehole was given to the US Department of Energy (DOE) after it was found to be a ''dry hole''. Cabin Baby-1 was reentered, deepened, and hydrologically tested in August and September 1983. The well is located in Section 5, T23S, R31E, just outside the limit of WIPP Zone III, approximately 2.5 miles south of the WIPP exploratory shaft. The deepening and testing of Cabin Baby-1 was undertaken for several reasons: to provide data on the hydrologic properties, including hydrostatic head potential of selected permeable zones in the Bell Canyon Formation; to provide representative fluid samples from selected permeable zones in the Bell Canyon Formation for determination of fluid composition and density; and to define further the stratigraphy of the upper Bell Canyon Formation at the Cabin Baby-1 location. The borehole was deepened from the previous total depth to a new depth of 4298.6 feet below kelly bushing by continuous coring. Field operations related to deepening and logging of the borehole began August 12, 1983 and were completed August 30, 1983. Hydrologic testing activities began August 30, 1983 and were completed September 29, 1983. Drill-stem tests were conducted in four zones in the Bell Canyon Formation, and one test of the Salado Formation was performed. Fluid samples were collected from the Hays and Olds sandstones of the Bell Canyon Formation

  13. High efficiency cabin air filter in vehicles reduces drivers' roadway particulate matter exposures and associated lipid peroxidation.

    Science.gov (United States)

    Yu, Nu; Shu, Shi; Lin, Yan; She, Jianwen; Ip, Ho Sai Simon; Qiu, Xinghua; Zhu, Yifang

    2017-01-01

    Commuters who spend long hours on roads are exposed to high levels of traffic related air pollutants (TRAPs). Despite some well-known multiple adverse effects of TRAPs on human health, limited studies have focused on mitigation strategies to reduce these effects. In this study, we measured fine particulate matter (PM2.5) and ultrafine particle (UFP) concentrations inside and outside 17 taxis simultaneously while they were driven on roadways. The drivers' urinary monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and malondialdehyde (MDA) concentrations just before and right after the driving tests were also determined. Data were collected under three driving conditions (i.e. no mitigation (NM), window closed (WC), and window closed plus using high efficiency cabin air filters (WC+HECA)) for each taxi and driver. The results show that, compared to NM, the WC+HECA reduced in-cabin PM2.5 and UFP concentrations, by 37% and 47% respectively (p health.

  14. The effects of spacecraft charging and outgassing on the LADEE ion measurements

    Science.gov (United States)

    Xie, Lianghai; Zhang, Xiaoping; Zheng, Yongchun; Guo, Dawei

    2017-05-01

    Abnormal ion signals can be usually seen in the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, including a suddenly enhanced current observed by the Lunar Dust Experiment (LDEX) near the sunlight-shadow boundary and an unexpected water ion measured by the neutral mass spectrometer (NMS), with their magnitudes insensitive to the convection electric field of solar wind but dependent on the SW density and the elapsed time of LADEE mission. By analyzing both the LDEX measurements and the NMS measurements, we find that the current enhancement can be caused by a negatively charged spacecraft in the shadow region while the significant water ions should be some artificial ions from spacecraft outgassing. The artificial water ions show a peak near 8:00 LT that may be related to a sunlight-controlled surface outgassing. In addition, the H2O flux can be enhanced near the end of the mission when the spacecraft has a lower altitude. It is found that the H2O enhancement is actually caused by an exosphere-contributed return flux, rather than a real water exosphere.

  15. Investigation of in-cabin volatile organic compounds (VOCs) in taxis; influence of vehicle's age, model, fuel, and refueling.

    Science.gov (United States)

    Bakhtiari, Reza; Hadei, Mostafa; Hopke, Philip K; Shahsavani, Abbas; Rastkari, Noushin; Kermani, Majid; Yarahmadi, Maryam; Ghaderpoori, Afshin

    2018-06-01

    The air pollutant species and concentrations in taxis' cabins can present significant health impacts on health. This study measured the concentrations of benzene, toluene, ethylbenzene, xylene (BTEX), formaldehyde, and acetaldehyde in the cabins of four different taxi models. The effects of taxi's age, fuel type, and refueling were investigated. Four taxi models in 3 age groups were fueled with 3 different fuels (gas, compressed natural gas (CNG), and liquefied petroleum gas (LPG)), and the concentrations of 6 air pollutants were measured in the taxi cabins before and after refueling. BTEX, formaldehyde, and acetaldehyde sampling were actively sampled using NIOSH methods 1501, 2541, and 2538, respectively. The average BTEX concentrations for all taxi models were below guideline values. The average concentrations (±SD) of formaldehyde in Model 1 to Model 4 taxis were 889 (±356), 806 (±323), 1144 (±240), and 934 (±167) ppbv, respectively. Acetaldehyde average concentrations (±SD) in Model 1 to Model 4 taxis were 410 (±223), 441 (±241), 443 (±210), and 482 (±91) ppbv, respectively. Refueling increased the in-vehicle concentrations of pollutants primarily the CNG and LPG fuels. BTEX concentrations in all taxi models were significantly higher for gasoline. Taxi age inversely affected formaldehyde and acetaldehyde. In conclusion, it seems that refueling process and substitution of gasoline with CNG and LPG can be considered as solutions to improve in-vehicle air concentrations for taxis. Copyright © 2018. Published by Elsevier Ltd.

  16. Improving driver comfort in commercial vehicles : modeling and control of a low-power active cabin suspension system

    NARCIS (Netherlands)

    Evers, W.J.E.

    2010-01-01

    Comfort enhancement of commercial vehicles has been an engineering topic ever since the first trucks emerged around 1900. Since then, significant improvements have been made by implementing cabin (secondary) and seat suspensions. Moreover, the invention of the air spring and its application to the

  17. Experimental identification of noise reduction properties of honeycomb panels using a small cabin

    OpenAIRE

    D'Ortona, Vittorio; Vivolo, Marianna; Pluymers, Bert; Vandepitte, Dirk; Desmet, Wim

    2013-01-01

    A procedure to identify the noise reduction properties of panels by means of a single cabin test setup is discussed. The complexity of the sound pressure field that builds up in the acoustic volume requires the support of advanced numerical techniques allowing for the evaluation of noise and vibration performances. Numerical models are used to predict the structural dynamics and the vibro-acoustic behaviour of the tested panel. Both Finite Element and Boundary Element simulations are validate...

  18. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  19. Results of the Second U.S. Manned Orbital Space Flight

    Science.gov (United States)

    1962-05-24

    malfunctioning scanner which mitter was maintained in a standby condition 6 36- Turnaround 32- -- 0Automatic Gyro window alinement . Manual 28 A ASCS...system primarily controls the environment in which the astronaut oper- ates, both in the spacecraft cabin and in the pressure suit. Total pressure... controls and other objects within the first, the clamp ring explosive bolts, and then, cabin were relative to myself. I could reach the louder noise of

  20. Determination of thermal and acoustic comfort inside a vehicle's cabin

    Science.gov (United States)

    Ene, Alexandra; Catalina, Tiberiu; Vartires, Andreea

    2018-02-01

    Thermal and acoustic comfort, inside a vehicle's cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  1. Radioisotopic heater units warm an interplanetary spacecraft

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.

    1998-01-01

    The Cassini orbiter and Huygens probe, which were successfully launched on October 15, 1997, constitute NASA's last grand-scale interplanetary mission of this century. The mission, which consists of a four-year, close-up study of Saturn and its moons, begins in July 2004 with Cassini's 60 orbits of Saturn and about 33 fly-bys of the large moon Titan. The Huygens probe will descend and land on Titan. Investigations will include Saturn's atmosphere, its rings and its magnetosphere. The atmosphere and surface of Titan and other icy moons also will be characterized. Because of the great distance of Saturn from the sun, some of the instruments and equipment on both the orbiter and the probe require external heaters to maintain their temperature within normal operating ranges. These requirements are met by Light Weight Radioisotope Heater Units (LWRHUs) designed, fabricated and safety tested at Los Alamos National Laboratory, New Mexico. An improved gas tungsten arc welding procedure lowered costs and decreased processing time for heat units for the Cassini spacecraft

  2. Show in the Sky: A Research on Emotional Labor Processes of Cabin Crew

    OpenAIRE

    İyem, Cemal; Yıldız, Fatma Zehra

    2017-01-01

    It seems that emotions of the workers gain a commercial quality with internal behaviors as similing entering working life such. The element of emotion requests that the workers must adapt their own feelings to the aim of organization. Competitive politics off service sector have been turning the feelings of workers into pleasure of costumers. In the education of cabin attendants working on the field of aviation sector which emotional labour is very condense, are told to be patient and have ha...

  3. Magnetic Particles Are Found In The Martian Atmosphere

    Science.gov (United States)

    1976-01-01

    The dark bullseye pattern seen at the top of Viking l's camera calibration chart indicates the presence of magnetic particles in the fine dust in the Martian atmosphere. A tiny magnet is mounted at that spot to catch wind-borne magnetic particles. The particles may have been tossed into the atmosphere surrounding the spacecraft at the time of landing and during the digging and delivery of the Mars soil sample by the surface sampler scoop. This picture was taken August 4.

  4. Plasma density enhancements created by the ionization of the Earth's upper atmosphere by artificial electron beams

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P.M.

    line) and down-going differential energy flux. The equations are solved numerically, using the MSIS atmospheric model and the IRI ionospheric model. The results from the model compare well with recent observations from the CHARGE 2 sounding rocket experiment. Two aspects of the beam-neutral atmosphere...... interaction are discussed: First we investigate the limits on the electron beam current that can be emitted from a space. craft without substantial spacecraft charging. This question is important because the charging of the spacecraft to positive potentials limits the current and the escape energy of the beam...... electrons and thereby limits the ionization of the neutral atmosphere. As an example we find from CHARGE 2 observations and from the model calculations that below about 180 km, secondary electrons generated through the ionization of the neutral atmosphere by 1-10 keV electron beams from sounding rockets...

  5. Water electrolysis system - H2 and O2 generation. [for spacecraft atmosphere revitalization

    Science.gov (United States)

    Schubert, F. H.; Lee, M. K.; Davenport, R. J.; Quattrone, P. D.

    1978-01-01

    An oxygen generation system design based on the static feed water electrolysis concept is described. The system is designed to generate 4.20 kg/d of oxygen to satisfy the metabolic needs of a three-person crew, to compensate for spacecraft leakage, and to provide the oxygen required by the electrochemical depolarized CO2 concentrator. The system has a fixed hardware weight of 75 kg, occupies a volume of 0.11 cu m, and requires only 1.1 kw of electrical power. The static feed electrolysis concept is discussed, and experimental data on the high-performance electrode are presented.

  6. Analytical evaluation of the protection offered by sealed tractor cabins during crop pulverization with fenitrothion.

    Science.gov (United States)

    Barcellos, Michelle; Faletti, Milena Michele; Madureira, Luiz Augusto Dos Santos; Bauer, Fernando Cesar

    2016-12-01

    The practice of large-scale agriculture requires the use of pesticides in order to maximize production. This activity has gained increasing attention in recent years, especially from rural workers, due to the risks associated with long-term exposure to pesticides. To minimize these risks, personal protection equipment (e.g., covers, gloves, and goggles) and collective protection equipment (e.g., agricultural tractors with sealed cabins) have been developed. In general, these approaches are intended to reduce the contact of farmers and agricultural machinery operators with the more toxic and stable compounds, an example of which is fenitrothion. In this study, fenitrothion was used as a marker to evaluate the protection afforded inside a sealed tractor cabin. To simulate the pesticide exposure, tests were performed using artificial cotton targets as passive adsorptive agents inside the cabin during the pesticide application. Samples were extracted according to the US Environmental Protection Agency (USEPA) procedure using ultrasonic extraction and as proposed by the Brazilian Standard for Solid Waste Classification (NBR 10004). The extracts were analyzed by high-performance liquid chromatography with diode array detection (HPLC-DAD). The chromatographic method was optimized using a factorial design. The combined results indicated that the best conditions were achieved using a mobile phase with a water/acetonitrile ratio of 35:65, a column temperature of 40 °C, and a flow rate of 1.0 mL/min, with a total analysis time of <10 min. The method was evaluated in the linear range of 0.50 to 2.01 mg/kg, with a determination coefficient of 0.9886. The precision was evaluated on different days and the relative standard deviations were between 0.17 and 3.41 %. In relation to the accuracy, recovery values of 95 to 104 % were obtained. The detection and quantification limits were 0.18 and 0.50 mg/kg, respectively. None of the target cottons showed concentrations of

  7. Innovative measurement within the atmosphere of Venus.

    Science.gov (United States)

    Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander

    The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.

  8. Crosslink Radio Occultation for the Remote Sensing of Planetary Atmospheres

    Science.gov (United States)

    Mannucci, A. J.; Ao, C. O.; Asmar, S.; Edwards, C. D.; Kahan, D. S.; Paik, M.; Pi, X.; Williamson, W.

    2015-12-01

    Radio occultation utilizing deep space telecommunication signals has been used with great success in the profiling of planetary atmospheres and ionospheres since the 1960s. A shortcoming of this technique, however, is the limited temporal and spatial sampling that it provides. We consider a different approach where radio occultation measurements are taken between two spacecraft orbiting an extra-terrestrial body. Such "crosslink" radio occultations between the Global Positioning System satellites and low-earth orbiting spacecraft have been routinely acquired to provide global observations of the Earth's atmosphere and ionosphere that are used for weather forecast, climate analysis, and space weather applications. The feasibility of applying this concept to other planets has recently been demonstrated for the first time, where crosslink occultation measurements have been acquired between the Mars Odyssey and Mars Reconnaissance Orbiter spacecraft. These measurements leverage the proximity link telecommunication payloads on each orbiter, which are nominally used to provide relay communication and navigation services to Mars landers and rovers. In this presentation, we will describe the Mars crosslink experiments and the corresponding data analysis in detail. In addition, we will discuss how the crosslink occultation concepts can be effectively applied in future space exploration missions.

  9. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  10. Benefits of Spacecraft Level Vibration Testing

    Science.gov (United States)

    Gordon, Scott; Kern, Dennis L.

    2015-01-01

    NASA-HDBK-7008 Spacecraft Level Dynamic Environments Testing discusses the approaches, benefits, dangers, and recommended practices for spacecraft level dynamic environments testing, including vibration testing. This paper discusses in additional detail the benefits and actual experiences of vibration testing spacecraft for NASA Goddard Space Flight Center (GSFC) and Jet Propulsion Laboratory (JPL) flight projects. JPL and GSFC have both similarities and differences in their spacecraft level vibration test approach: JPL uses a random vibration input and a frequency range usually starting at 5 Hz and extending to as high as 250 Hz. GSFC uses a sine sweep vibration input and a frequency range usually starting at 5 Hz and extending only to the limits of the coupled loads analysis (typically 50 to 60 Hz). However, both JPL and GSFC use force limiting to realistically notch spacecraft resonances and response (acceleration) limiting as necessary to protect spacecraft structure and hardware from exceeding design strength capabilities. Despite GSFC and JPL differences in spacecraft level vibration test approaches, both have uncovered a significant number of spacecraft design and workmanship anomalies in vibration tests. This paper will give an overview of JPL and GSFC spacecraft vibration testing approaches and provide a detailed description of spacecraft anomalies revealed.

  11. Flow and contaminant transport in an airliner cabin induced by a moving body: Model experiments and CFD predictions

    Science.gov (United States)

    Poussou, Stephane B.; Mazumdar, Sagnik; Plesniak, Michael W.; Sojka, Paul E.; Chen, Qingyan

    2010-08-01

    The effects of a moving human body on flow and contaminant transport inside an aircraft cabin were investigated. Experiments were performed in a one-tenth scale, water-based model. The flow field and contaminant transport were measured using the Particle Image Velocimetry (PIV) and Planar Laser-Induced Fluorescence (PLIF) techniques, respectively. Measurements were obtained with (ventilation case) and without (baseline case) the cabin environmental control system (ECS). The PIV measurements show strong intermittency in the instantaneous near-wake flow. A symmetric downwash flow was observed along the vertical centerline of the moving body in the baseline case. The evolution of this flow pattern is profoundly perturbed by the flow from the ECS. Furthermore, a contaminant originating from the moving body is observed to convect to higher vertical locations in the presence of ventilation. These experimental data were used to validate a Computational Fluid Dynamic (CFD) model. The CFD model can effectively capture the characteristic flow features and contaminant transport observed in the small-scale model.

  12. Direct oxidation of strong waste waters, simulating combined wastes in extended-mission space cabins

    Science.gov (United States)

    Ross, L. W.

    1973-01-01

    The applications of modern technology to the resolution of the problem of solid wastes in space cabin environments was studied with emphasis on the exploration of operating conditions that would permit lowering of process temperatures in wet oxidation of combined human wastes. It was found that the ultimate degree of degradation is not enhanced by use of a catalyst. However, the rate of oxidation is increased, and the temperature of oxidation is reduced to 400 F.

  13. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  14. Printable Spacecraft: Flexible Electronic Platforms for NASA Missions. Phase One

    Science.gov (United States)

    Short, Kendra (Principal Investigator); Van Buren, David (Principal Investigator)

    2012-01-01

    Atmospheric confetti. Inchworm crawlers. Blankets of ground penetrating radar. These are some of the unique mission concepts which could be enabled by a printable spacecraft. Printed electronics technology offers enormous potential to transform the way NASA builds spacecraft. A printed spacecraft's low mass, volume and cost offer dramatic potential impacts to many missions. Network missions could increase from a few discrete measurements to tens of thousands of platforms improving areal density and system reliability. Printed platforms could be added to any prime mission as a low-cost, minimum resource secondary payload to augment the science return. For a small fraction of the mass and cost of a traditional lander, a Europa flagship mission might carry experimental printed surface platforms. An Enceladus Explorer could carry feather-light printed platforms to release into volcanic plumes to measure composition and impact energies. The ability to print circuits directly onto a variety of surfaces, opens the possibility of multi-functional structures and membranes such as "smart" solar sails and balloons. The inherent flexibility of a printed platform allows for in-situ re-configurability for aerodynamic control or mobility. Engineering telemetry of wheel/soil interactions are possible with a conformal printed sensor tape fit around a rover wheel. Environmental time history within a sample return canister could be recorded with a printed sensor array that fits flush to the interior of the canister. Phase One of the NIAC task entitled "Printable Spacecraft" investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. This final report captures the results and conclusions of the Phase One study. First, the report presents the approach taken in conducting the study and a mapping of results against the proposed

  15. Validation by numerical simulation of the behaviour of protective structures of machinery cabins subjected to standardized shocks

    Science.gov (United States)

    Dumitrache, P.; Goanţă, A. M.

    2017-08-01

    The ability of the cabins to insure the operator protection in the case of the shock loading that appears at the roll-over of the machine or when the cab is struck by the falling objects, it’s one of the most important performance criterions that it must comply by the machines and the mobile equipments. The experimental method provides the most accurate information on the behaviour of protective structures, but generates high costs due to experimental installations and structures which may be compromised during the experiments. In these circumstances, numerical simulation of the actual problem (mechanical shock applied to a strength structure) is a perfectly viable alternative, given that the hardware and software current performances provides the necessary support to obtain results with an acceptable level of accuracy. In this context, the paper proposes using FEA platforms for virtual testing of the actual strength structures of the cabins using their finite element models based on 3D models generated in CAD environments. In addition to the economic advantage above mentioned, although the results obtained by simulation using the finite element method are affected by a number of simplifying assumptions, the adequate modelling of the phenomenon can be a successful support in the design process of structures to meet safety performance criteria imposed by current standards. In the first section of the paper is presented the general context of the security performance requirements imposed by current standards on the cabins strength structures. The following section of the paper is dedicated to the peculiarities of finite element modelling in problems that impose simulation of the behaviour of structures subjected to shock loading. The final section of the paper is dedicated to a case study and to the future objectives.

  16. Evaluating the Adsorptive Capabilites of Chemsorb 1000 and Chemsorb 1425

    Science.gov (United States)

    Mejia, Oscar Alberto Monje; Surma, Jan M.; Johnsey, Marissa; Melendez, Orlando

    2014-01-01

    The removal of trace contaminants from spacecraft cabin air is necessary for crew health and comfort during long duration space exploration missions. The air revitalization technologies used in these future exploration missions will evolve from current ISS ISS State-of-Art (SOA) and is being designed and tested by the Advanced Exploration Systems (AES) Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project. The ARREM project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures to enable exploration beyond Lower Earth Orbit (LEO). The Air Revitalization Lab at KSC is one of six NASA field centers participating in the ARREM that specializes in adsorbent and catalyst characterization with simulated spacecraft gas streams using combinations of pressure, O2 partial pressure, CO2 partial pressure, and humidity that are representative of a range of anticipated cabin atmospheric conditions and loads. On board ISS, the Trace Contaminant Control Subassembly (TCCS) provides active control of trace contaminants from the cabin atmosphere utilizing physical adsorption, thermal catalytic oxidation, and chemical adsorption processes. High molecular weight contaminants and ammonia (NH3) are removed a granular activated carbon treated with approx. 10% by weight phosphoric acid (H3PO4) (B-S Type 3032 4×6 mesh), which is expendable and is periodically refurbished. The Type 3032 granular activated carbon bed is no longer commercially available and therefore it is important to characterize the efficiency and capacity of commercially available NH3 sorbents. This paper describes the characterization of two Molecular Products LTD activated carbons: Chemsorb 1000 and Chemsorb 1425. Untreated activated carbons (e.g. Chemsorb 1000) remove contaminants by physisorption, which concentrates the contaminant within the pores of the carbon while letting air to pass through the sorbent4. Low molecular weight or polar

  17. Development of an advanced spacecraft tandem mass spectrometer

    Science.gov (United States)

    Drew, Russell C.

    1992-03-01

    The purpose of this research was to apply current advanced technology in electronics and materials to the development of a miniaturized Tandem Mass Spectrometer that would have the potential for future development into a package suitable for spacecraft use. The mass spectrometer to be used as a basis for the tandem instrument would be a magnetic sector instrument, of Nier-Johnson configuration, as used on the Viking Mars Lander mission. This instrument configuration would then be matched with a suitable second stage MS to provide the benefits of tandem MS operation for rapid identification of unknown organic compounds. This tandem instrument is configured with a newly designed GC system to aid in separation of complex mixtures prior to MS analysis. A number of important results were achieved in the course of this project. Among them were the development of a miniaturized GC subsystem, with a unique desorber-injector, fully temperature feedback controlled oven with powered cooling for rapid reset to ambient conditions, a unique combination inlet system to the MS that provides for both membrane sampling and direct capillary column sample transfer, a compact and ruggedized alignment configuration for the MS, an improved ion source design for increased sensitivity, and a simple, rugged tandem MS configuration that is particularly adaptable to spacecraft use because of its low power and low vacuum pumping requirements. The potential applications of this research include use in manned spacecraft like the space station as a real-time detection and warning device for the presence of potentially harmful trace contaminants of the spacecraft atmosphere, use as an analytical device for evaluating samples collected on the Moon or a planetary surface, or even use in connection with monitoring potentially hazardous conditions that may exist in terrestrial locations such as launch pads, environmental test chambers or other sensitive areas. Commercial development of the technology

  18. Computer simulation of spacecraft/environment interaction

    International Nuclear Information System (INIS)

    Krupnikov, K.K.; Makletsov, A.A.; Mileev, V.N.; Novikov, L.S.; Sinolits, V.V.

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language

  19. Computer simulation of spacecraft/environment interaction

    CERN Document Server

    Krupnikov, K K; Mileev, V N; Novikov, L S; Sinolits, V V

    1999-01-01

    This report presents some examples of a computer simulation of spacecraft interaction with space environment. We analysed a set data on electron and ion fluxes measured in 1991-1994 on geostationary satellite GORIZONT-35. The influence of spacecraft eclipse and device eclipse by solar-cell panel on spacecraft charging was investigated. A simple method was developed for an estimation of spacecraft potentials in LEO. Effects of various particle flux impact and spacecraft orientation are discussed. A computer engineering model for a calculation of space radiation is presented. This model is used as a client/server model with WWW interface, including spacecraft model description and results representation based on the virtual reality markup language.

  20. Determination of thermal and acoustic comfort inside a vehicle’s cabin

    Directory of Open Access Journals (Sweden)

    2018-01-01

    Full Text Available Thermal and acoustic comfort, inside a vehicle’s cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  1. Vibro-acoustic model of an active aircraft cabin window

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2017-06-01

    This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the

  2. Aircraft interior noise models - Sidewall trim, stiffened structures, and cabin acoustics with floor partition

    Science.gov (United States)

    Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.

    1983-01-01

    As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.

  3. Expansion connection of socket in flow distributed cabin of heavy water research reactor inner shell

    International Nuclear Information System (INIS)

    Jiang Zhiliang; Li Yanshui

    1995-01-01

    Expansion connection of aluminium alloy LT21 socket in flow distributed cabin of Heavy Water Research Reactor (HWRR) inner shell is described systematically. The expansion connection technology parameters of products are determined through tests. They are as following: bounce value of inner diameter after expansion, expansion degree, space between socket and plate hole, device for expanding pipes, selection of tools for enlarging or reaming holes, manufacture for socket inner hole and cleaning after expansion

  4. Experiments with the Skylab fire detectors in zero gravity

    Science.gov (United States)

    Linford, R. M. F.

    1972-01-01

    The Skylab fire detector was evaluated in a zero gravity environment. To conduct the test, small samples of spacecraft materials were ignited in a 5 psi oxygen-rich atmosphere inside a combustion chamber. The chamber free-floated in the cabin of a C-135 aircraft, as the aircraft executed a Keplerian parabola. Up to 10 seconds of zero-gravity combustion were achieved. The Skylab fire-detector tubes viewed the flames from a simulated distance of 3m, and color movies were taken to record the nature of the fire. The experiments established the unique form of zero-gravity fires for a wide range of materials. From the tube-output data, the alarm threshold and detector time constant were verified for the Skylab Fire Detection System.

  5. Four-spacecraft determination of magnetopause orientation, motion and thickness: comparison with results from single-spacecraft methods

    Directory of Open Access Journals (Sweden)

    S. E. Haaland

    2004-04-01

    Full Text Available In this paper, we use Cluster data from one magnetopause event on 5 July 2001 to compare predictions from various methods for determination of the velocity, orientation, and thickness of the magnetopause current layer. We employ established as well as new multi-spacecraft techniques, in which time differences between the crossings by the four spacecraft, along with the duration of each crossing, are used to calculate magnetopause speed, normal vector, and width. The timing is based on data from either the Cluster Magnetic Field Experiment (FGM or the Electric Field Experiment (EFW instruments. The multi-spacecraft results are compared with those derived from various single-spacecraft techniques, including minimum-variance analysis of the magnetic field and deHoffmann-Teller, as well as Minimum-Faraday-Residue analysis of plasma velocities and magnetic fields measured during the crossings. In order to improve the overall consistency between multi- and single-spacecraft results, we have also explored the use of hybrid techniques, in which timing information from the four spacecraft is combined with certain limited results from single-spacecraft methods, the remaining results being left for consistency checks. The results show good agreement between magnetopause orientations derived from appropriately chosen single-spacecraft techniques and those obtained from multi-spacecraft timing. The agreement between magnetopause speeds derived from single- and multi-spacecraft methods is quantitatively somewhat less good but it is evident that the speed can change substantially from one crossing to the next within an event. The magnetopause thickness varied substantially from one crossing to the next, within an event. It ranged from 5 to 10 ion gyroradii. The density profile was sharper than the magnetic profile: most of the density change occured in the earthward half of the magnetopause.

    Key words. Magnetospheric physics (magnetopause, cusp and

  6. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  7. Next Generation Life Support Project Status

    Science.gov (United States)

    Barta, Daniel J.; Chullen, Cinda; Vega, Leticia; Cox, Marlon R.; Aitchison, Lindsay T.; Lange, Kevin E.; Pensinger, Stuart J.; Meyer, Caitlin E.; Flynn, Michael; Jackson, W. Andrew; hide

    2014-01-01

    Next Generation Life Support (NGLS) is one of over twenty technology development projects sponsored by NASA's Game Changing Development Program. The NGLS Project develops selected life support technologies needed for humans to live and work productively in space, with focus on technologies for future use in spacecraft cabin and space suit applications. Over the last three years, NGLS had five main project elements: Variable Oxygen Regulator (VOR), Rapid Cycle Amine (RCA) swing bed, High Performance (HP) Extravehicular Activity (EVA) Glove, Alternative Water Processor (AWP) and Series-Bosch Carbon Dioxide Reduction. The RCA swing bed, VOR and HP EVA Glove tasks are directed at key technology needs for the Portable Life Support System (PLSS) and pressure garment for an Advanced Extravehicular Mobility Unit (EMU). Focus is on prototyping and integrated testing in cooperation with the Advanced Exploration Systems (AES) Advanced EVA Project. The HP EVA Glove Element, new this fiscal year, includes the generation of requirements and standards to guide development and evaluation of new glove designs. The AWP and Bosch efforts focus on regenerative technologies to further close spacecraft cabin atmosphere revitalization and water recovery loops and to meet technology maturation milestones defined in NASA's Space Technology Roadmaps. These activities are aimed at increasing affordability, reliability, and vehicle self-sufficiency while decreasing mass and mission cost, supporting a capability-driven architecture for extending human presence beyond low-Earth orbit, along a human path toward Mars. This paper provides a status of current technology development activities with a brief overview of future plans.

  8. Charging in the environment of large spacecraft

    International Nuclear Information System (INIS)

    Lai, S.T.

    1993-01-01

    This paper discusses some potential problems of spacecraft charging as a result of interactions between a large spacecraft, such as the Space Station, and its environment. Induced electric field, due to VXB effect, may be important for large spacecraft at low earth orbits. Differential charging, due to different properties of surface materials, may be significant when the spacecraft is partly in sunshine and partly in shadow. Triple-root potential jump condition may occur because of differential charging. Sudden onset of severe differential charging may occur when an electron or ion beam is emitted from the spacecraft. The beam may partially return to the ''hot spots'' on the spacecraft. Wake effects, due to blocking of ambient ion trajectories, may result in an undesirable negative potential region in the vicinity of a large spacecraft. Outgassing and exhaust may form a significant spacecraft induced environment; ionization may occur. Spacecraft charging and discharging may affect the electronic components on board

  9. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  10. 49 CFR 39.39 - How do PVOs ensure that passengers with disabilities are able to use accessible cabins?

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false How do PVOs ensure that passengers with disabilities are able to use accessible cabins? 39.39 Section 39.39 Transportation Office of the Secretary of... to Services § 39.39 How do PVOs ensure that passengers with disabilities are able to use accessible...

  11. Thru-life impacts of driver aggression, climate, cabin thermal management, and battery thermal management on battery electric vehicle utility

    Science.gov (United States)

    Neubauer, Jeremy; Wood, Eric

    2014-08-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility that is affected by driver aggression and effects of climate-both directly on battery temperature and indirectly through the loads of cabin and battery thermal management systems. Utility is further affected as the battery wears through life in response to travel patterns, climate, and other factors. In this paper we apply the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to driver aggression and climate effects over the life of the vehicle. We find the primary challenge to cold-climate BEV operation to be inefficient cabin heating systems, and to hot-climate BEV operation to be high peak on-road battery temperatures and excessive battery degradation. Active cooling systems appear necessary to manage peak battery temperatures of aggressive, hot-climate drivers, which can then be employed to maximize thru-life vehicle utility.

  12. At the edge of the earth's magnetosphere: a survey by the AMPTE UKS spacecraft

    International Nuclear Information System (INIS)

    Bryant, D.A.; Riggs, S.

    1988-10-01

    A survey is made, using measurements from the AMPTE-UKS spacecraft, of the interaction between plasmas of solar and terrestrial origin at the outer edge of the Earth's magnetosphere. The first results are presented of a new type of analysis which aims to clarify the nature of the boundary layer that develops between the two plasmas by re-ordering, on the basis of a consistent relationship between electron density and temperature and the normally erratic progress made by a spacecraft across the constantly moving region. Distinctive patterns found consistently for the electron and ion transitions suggest that diffusion, viscosity and loss to the atmosphere govern the boundary layer. Electron acceleration within the boundary layer is identified; and its cause, and relevance to dayside auroral precipitation are discussed. (author)

  13. Effect of human movement on airborne disease transmission in an airplane cabin: study using numerical modeling and quantitative risk analysis.

    Science.gov (United States)

    Han, Zhuyang; To, Gin Nam Sze; Fu, Sau Chung; Chao, Christopher Yu-Hang; Weng, Wenguo; Huang, Quanyi

    2014-08-06

    Airborne transmission of respiratory infectious disease in indoor environment (e.g. airplane cabin, conference room, hospital, isolated room and inpatient ward) may cause outbreaks of infectious diseases, which may lead to many infection cases and significantly influences on the public health. This issue has received more and more attentions from academics. This work investigates the influence of human movement on the airborne transmission of respiratory infectious diseases in an airplane cabin by using an accurate human model in numerical simulation and comparing the influences of different human movement behaviors on disease transmission. The Eulerian-Lagrangian approach is adopted to simulate the dispersion and deposition of the expiratory aerosols. The dose-response model is used to assess the infection risks of the occupants. The likelihood analysis is performed as a hypothesis test on the input parameters and different human movement pattern assumptions. An in-flight SARS outbreak case is used for investigation. A moving person with different moving speeds is simulated to represent the movement behaviors. A digital human model was used to represent the detailed profile of the occupants, which was obtained by scanning a real thermal manikin using the 3D laser scanning system. The analysis results indicate that human movement can strengthen the downward transport of the aerosols, significantly reduce the overall deposition and removal rate of the suspended aerosols and increase the average infection risk in the cabin. The likelihood estimation result shows that the risk assessment results better fit the outcome of the outbreak case when the movements of the seated passengers are considered. The intake fraction of the moving person is significantly higher than most of the seated passengers. The infection risk distribution in the airplane cabin highly depends on the movement behaviors of the passengers and the index patient. The walking activities of the crew

  14. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    Science.gov (United States)

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  15. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  16. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Operating Missions as Nodes on the Internet (OMNI) project has shown that Internet technology works in space missions through a demonstration using the UoSAT-12 spacecraft. An Internet Protocol (IP) stack was installed on the orbiting UoSAT-12 spacecraft and tests were run to demonstrate Internet connectivity and measure performance. This also forms the basis for demonstrating subsequent scenarios. This approach provides capabilities heretofore either too expensive or simply not feasible such as reconfiguration on orbit. The OMNI project recognized the need to reduce the risk perceived by mission managers and did this with a multi-phase strategy. In the initial phase, the concepts were implemented in a prototype system that includes space similar components communicating over the TDRS (space network) and the terrestrial Internet. The demonstration system includes a simulated spacecraft with sample instruments. Over 25 demonstrations have been given to mission and project managers, National Aeronautics and Space Administration (NASA), Department of Defense (DoD), contractor technologists and other decisions makers, This initial phase reached a high point with an OMNI demonstration given from a booth at the Johnson Space Center (JSC) Inspection Day 99 exhibition. The proof to mission managers is provided during this second phase with year 2000 accomplishments: testing the use of Internet technologies onboard an actual spacecraft. This was done with a series of tests performed using the UoSAT-12 spacecraft. This spacecraft was reconfigured on orbit at very low cost. The total period between concept and the first tests was only 6 months! On board software was modified to add an IP stack to support basic IP communications. Also added was support for ping, traceroute and network timing protocol (NTP) tests. These tests show that basic Internet functionality can be used onboard spacecraft. The performance of data was measured to show no degradation from current

  17. Standard Test Method to Determine Color Change and Staining Caused by Aircraft Maintenance Chemicals upon Aircraft Cabin Interior Hard Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of color change and staining from liquid solutions, such as cleaning or disinfecting chemicals or both, on painted metallic surfaces and nonmetallic surfaces of materials being used inside the aircraft cabin. The effects upon the exposed specimens are measured with the AATCC Gray Scale for Color Change and AATCC Gray Color Scale for Staining. Note 1—This test method is applicable to any colored nonmetallic hard surface in contact with liquids. The selected test specimens are chosen because these materials are present in the majority of aircraft cabin interiors. 1.2This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  18. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  19. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  20. Kilometer-Scale Transient Atmospheres for Kinetic Payload Deposition on Icy Bodies

    Science.gov (United States)

    Koch, James

    Entry, descent, and landing technologies for space exploration missions to atmospheric bodies traditionally exploit the body's ambient atmosphere as a medium through which a spacecraft or probe can interact to transfer momentum and energy for a soft landing. For bodies with no appreciable atmosphere, a significant engineering challenge exists to overcome the lack of passive methods to decelerate a spacecraft or probe. Proposed is a novel means for the creation of a transient atmosphere for airless icy bodies through the use of a two stage payload-penetrator probe. The first stage is a hyper-velocity penetrator that impacts the icy body. The second stage is an aero-braking-capable probe directed to pass through the ejecta plume from the hyper-velocity impact. Both experimental and computational studies show that a controlled high-energy impact can direct and transfer energy and momentum to a probe via a collimated ejecta plume. In an effort to provide clarity to this unexplored class of missions, a modeling-based engineering approach is taken to provide a first-order estimation of some of the involved physical phenomena. Three sub-studies are presented: an examination and characterization of ice plumes, modeling plume-probe interaction, and the extension of plume modeling as the basis for conceptual mission design. The modeling efforts are centered about two modeling formulations: smoothed particle hydrodynamics (SPH) and the arbitrary Largrangian-Eulerian (ALE) set of techniques. A database of fully-developed hypervelocity impacts and their associated plumes is created and used as inputs to a 1-D mathematical model for the interaction of a continuum-based plume and probe. A parametric study based on the hyper-velocity impact and staging of the probe-penetrator system is presented and discussed. Shown is that a tuned penetrator-probe mission has the potential to increase spacecraft payload mass fraction over conventional soft landing schemes.

  1. Modification of spacecraft charging and the near-plasma environment caused by the interaction of an artificial electron beam with the earth's upper atmosphere

    DEFF Research Database (Denmark)

    Neubert, Torsten; Banks, P. M.; Gilchrist, B.E.

    1991-01-01

    V, it is shown that secondary electrons supply a significant contribution to the return current to the spacecraft and thereby reduce the spacecraft potential. Our numerical results are in good agreement with observations from the CHARGE-2 sounding rocket experiment.A more detailed study of the BAI as it relates...

  2. Outer atmospheric research

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability. 16 references

  3. Taylor Series Trajectory Calculations Including Oblateness Effects and Variable Atmospheric Density

    Science.gov (United States)

    Scott, James R.

    2011-01-01

    Taylor series integration is implemented in NASA Glenn's Spacecraft N-body Analysis Program, and compared head-to-head with the code's existing 8th- order Runge-Kutta Fehlberg time integration scheme. This paper focuses on trajectory problems that include oblateness and/or variable atmospheric density. Taylor series is shown to be significantly faster and more accurate for oblateness problems up through a 4x4 field, with speedups ranging from a factor of 2 to 13. For problems with variable atmospheric density, speedups average 24 for atmospheric density alone, and average 1.6 to 8.2 when density and oblateness are combined.

  4. Jupiter's interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

    DEFF Research Database (Denmark)

    Bolton, S. J.; Adriani, Alberto; Adumitroaie, V.

    2017-01-01

    On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter's poles show a chaotic scene, unlike Saturn's poles. Microwave sounding reveals weather features at pressures deeper than 100 bars,...... of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter's core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content....

  5. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  6. Catalyst Substrates Remove Contaminants, Produce Fuel

    Science.gov (United States)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  7. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  8. Airborne aldehydes in cabin-air of commercial aircraft: Measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones.

    Science.gov (United States)

    Rosenberger, Wolfgang; Beckmann, Bibiana; Wrbitzky, Renate

    2016-04-15

    This paper presents the strategy and results of in-flight measurements of airborne aldehydes during normal operation and reported "smell events" on commercial aircraft. The aldehyde-measurement is a part of a large-scale study on cabin-air quality. The aims of this study were to describe cabin-air quality in general and to detect chemical abnormalities during the so-called "smell-events". Adsorption and derivatization of airborne aldehydes on 2,4-dinitrophenylhydrazine coated silica gel (DNPH-cartridge) was applied using tailor-made sampling kits. Samples were collected with battery supplied personal air sampling pumps during different flight phases. Furthermore, the influence of ozone was investigated by simultaneous sampling with and without ozone absorption unit (ozone converter) assembled to the DNPH-cartridges and found to be negligible. The method was validated for 14 aldehydes and found to be precise (RSD, 5.5-10.6%) and accurate (recovery, 98-103 %), with LOD levels being 0.3-0.6 μg/m(3). According to occupational exposure limits (OEL) or indoor air guidelines no unusual or noticeable aldehyde pollution was observed. In total, 353 aldehyde samples were taken from two types of aircraft. Formaldehyde (overall average 5.7 μg/m(3), overall median 4.9 μg/m(3), range 0.4-44 μg/m(3)), acetaldehyde (overall average 6.5 μg/m(3), overall median 4.6, range 0.3-90 μg/m(3)) and mostly very low concentrations of other aldehydes were measured on 108 flights. Simultaneous adsorption and derivatization of airborne aldehydes on DNPH-cartridges to the Schiff bases and their HPLC analysis with UV absorbance detection is a useful method to measure aldehydes in cabin-air of commercial aircraft. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Plasma Methane Pyrolysis for Spacecraft Oxygen Loop Closure

    Science.gov (United States)

    Greenwood, Z. W.

    2018-01-01

    Life support is a critical function of any crewed space vehicle or habitat. Human life support systems on the International Space Station (ISS) include a number of atmosphere revitalization (AR) technologies to provide breathable air and a comfortable living environment to the crew. The Trace Contaminant Control System removes harmful volatile organic compounds and other trace contaminants from the circulating air. The Carbon Dioxide Removal Assembly (CDRA) removes metabolic carbon dioxide (CO2) and returns air to the cabin. Humidity is kept at comfortable levels by a number of condensing heat exchangers. The Oxygen Generation Assembly (OGA) electrolyzes water to produce oxygen for the crew and hydrogen (H2) as a byproduct. A Sabatier reaction-based CO2 Reduction Assembly (CRA) was launched to the ISS in 2009 and became fully operational in June 2011.The CRA interfaces with both the OGA and CDRA. Carbon dioxide from the CDRA is compressed and stored in tanks until hydrogen is available from OGA water electrolysis. When the OGA is operational and there is CO2 available, the CRA is activated and produces methane and water via the Sabatier reaction shown in Equation 1... One approach to achieve these higher recovery rates builds upon the ISS AR architecture and includes adding a methane post-processor to recover H2 from CRA methane. NASA has been developing the Plasma Pyrolysis Assembly (PPA) to fill the role of a methane post-processor.

  10. Monitoring of Air Quality in Passenger Cabins of the Athens Metro

    Science.gov (United States)

    Tsairidi, Evangelia; Assimakopoulos, Vasiliki D.; Assimakopoulos, Margarita-Niki; Barbaresos, Nicolaos; Karagiannis, Athanassios

    2013-04-01

    The air pollution induced by various transportation means combines the emission of pollutants with the simultaneous presence of people. In this respect, the scientific community has focused its efforts in studying both the air quality within busy streets and inside cars, buses and the underground railway network in order to identify the pollutants' sources and levels as well as the human exposure. The impact of the air pollution on commuters of the underground may be more severe because it is a confined space, extended mostly under heavily trafficked urban streets, relies on mechanical ventilation for air renewal and gathers big numbers of passengers. The purpose of the present work is to monitor the air quality of the city of Athens Metro Network cabins and platforms during the unusually hot summer of 2012. For that cause particulate matter (PM10, PM2.5, PM1), carbon dioxide (CO2), the number of commuters along with temperature (T) and humidity (RH) were recorded inside the Athens Metro Blue Line trains (covering a route from the centre of Athens (Aigaleo) to the Athens International Airport) and on the platforms of a central (Syntagma) and a suburban-traffic (Doukissis Plakentias) station between June and August. The data collection included six different experiments that took place for 2 consecutive working days each, for a time period of 6 weeks from 6:30 am too 7:00 pm in order to account for different outdoor climatic conditions and for morning and evening rush hours respectively. Measurements were taken in the middle car of the moving trains and the platform end of the selected stations. The results show PM concentrations to be higher (approximately 2 to 5 times) inside the cabins and o the platforms of the underground network as compared to the outdoor levels monitored routinely by the Ministry of Environment. Moreover, PM1, PM2.5 and PM10 average concentrations recorded at the Syntagma Station Platform were almost constantly higher reaching 11 μg m-3 47

  11. Evaluation of an improved air distribution system for aircraft cabin

    DEFF Research Database (Denmark)

    Pang, Liping; Xu, Jie; Fang, Lei

    2013-01-01

    An improved air distribution system for aircraft cabin was proposed in this paper. Personalized outlets were introduced and placed at the bottom of the baggage hold. Its ratio of fresh air to recirculation air and the conditioned temperature of different types of inlets were also designed carefully...... to meet the goals of high air quality, thermal comfort and energy saving. Some experiments were conducted to evaluate and compare its performances with two other systems. First the Flow Visualization with Green Laser (FVGL) technology was used to analyze the air flow. The top-in-side bottom-out pattern...... may have the disadvantages of an indirect path to deliver fresh air to passengers, a low fresh air utilization ratio and the potential to widely spreading airborne infectious diseases. The bottom-in-top-out pattern can overcome these disadvantages very well, but it also faces the stratification...

  12. 50 CFR 36.33 - What do I need to know about using cabins and related structures on Alaska National Wildlife...

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false What do I need to know about using cabins and related structures on Alaska National Wildlife Refuges? 36.33 Section 36.33 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE...

  13. On the atmospheric drag in orbit determination for low Earth orbit

    Science.gov (United States)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    2012-07-01

    The atmosphere model is always a major limitation for low Earth orbit (LEO) in orbit prediction and determination. The accelerometer can work around the non-gravitational perturbations in orbit determination, but it helps little to improve the atmosphere model or to predict the orbit. For certain satellites, there may be some specific software to handle the orbit problem. This solution can improve the orbit accuracy for both prediction and determination, yet it always contains empirical terms and is exclusive for certain satellites. This report introduces a simple way to handle the atmosphere drag for LEO, which does not depend on instantaneous atmosphere conditions and improves accuracy of predicted orbit. This approach, which is based on mean atmospheric density, is supported by two reasons. One is that although instantaneous atmospheric density is very complicated with time and height, the major pattern is determined by the exponential variation caused by hydrostatic equilibrium and periodic variation caused by solar radiation. The mean density can include the major variations while neglect other minor details. The other reason is that the predicted orbit is mathematically the result from integral and the really determinant factor is the mean density instead of instantaneous density for every time and spot. Using the mean atmospheric density, which is mainly determined by F10.7 solar flux and geomagnetic index, can be combined into an overall parameter B^{*} = C_{D}(S/m)ρ_{p_{0}}. The combined parameter contains several less accurate parameters and can be corrected during orbit determination. This approach has been confirmed in various LEO computations and an example is given below using Tiangong-1 spacecraft. Precise orbit determination (POD) is done using one-day GPS positioning data without any accurate a-priori knowledge on spacecraft or atmosphere conditions. Using the corrected initial state vector of the spacecraft and the parameter B^* from POD, the

  14. Multi-parameter decoupling and slope tracking control strategy of a large-scale high altitude environment simulation test cabin

    Directory of Open Access Journals (Sweden)

    Li Ke

    2014-12-01

    Full Text Available A large-scale high altitude environment simulation test cabin was developed to accurately control temperatures and pressures encountered at high altitudes. The system was developed to provide slope-tracking dynamic control of the temperature–pressure two-parameter and overcome the control difficulties inherent to a large inertia lag link with a complex control system which is composed of turbine refrigeration device, vacuum device and liquid nitrogen cooling device. The system includes multi-parameter decoupling of the cabin itself to avoid equipment damage of air refrigeration turbine caused by improper operation. Based on analysis of the dynamic characteristics and modeling for variations in temperature, pressure and rotation speed, an intelligent controller was implemented that includes decoupling and fuzzy arithmetic combined with an expert PID controller to control test parameters by decoupling and slope tracking control strategy. The control system employed centralized management in an open industrial ethernet architecture with an industrial computer at the core. The simulation and field debugging and running results show that this method can solve the problems of a poor anti-interference performance typical for a conventional PID and overshooting that can readily damage equipment. The steady-state characteristics meet the system requirements.

  15. L4-L5 compression and anterior/posterior joint shear forces in cabin attendants during the initial push/pull actions of airplane meal carts.

    Science.gov (United States)

    Sandfeld, Jesper; Rosgaard, Christian; Jensen, Bente Rona

    2014-07-01

    The aim of the present study was to assess the acute low back load of cabin attendants during cart handling and to identify working situations which present the highest strain on the worker. In a setup, 17 cabin attendants (ten females and seven males) pushed, pulled and turned a 20 kg standard meal cart (L: 0.5m × W: 0.3 m × H: 0.92 m) loaded with extra 20 kg and 40 kg, respectively on two different surfaces (carpet and linoleum) and at three floor inclinations (-2°, 0° and +2°). Two force transducers were mounted as handles. Two-dimensional movement analysis was performed and a 4D WATBAK modelling tool was used to calculate the acute L4-L5 load. No working situations created loads greater than the accepted values for single exertions, however compression and anterior/posterior shear forces during pulling and turning were much higher when compared with pushing. There were significant effects of handling the cart on different floor types, at the varying inclinations and with different cart weights. Additionally, when external forces were reduced, the cabin attendants did not decrease push/pull force proportionally and thus the L4-L5 load did not decrease as much as expected. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  17. The atmosphere and climate of Mars

    CERN Document Server

    Clancy, R Todd; Forget, François; Smith, Michael D; Zurek, Richard W

    2017-01-01

    Humanity has long been fascinated by the planet Mars. Was its climate ever conducive to life? What is the atmosphere like today and why did it change so dramatically over time? Eleven spacecraft have successfully flown to Mars since the Viking mission of the 1970s and early 1980s. These orbiters, landers and rovers have generated vast amounts of data that now span a Martian decade (roughly eighteen years). This new volume brings together the many new ideas about the atmosphere and climate system that have emerged, including the complex interplay of the volatile and dust cycles, the atmosphere-surface interactions that connect them over time, and the diversity of the planet's environment and its complex history. Including tutorials and explanations of complicated ideas, students, researchers and non-specialists alike are able to use this resource to gain a thorough and up-to-date understanding of this most Earth-like of planetary neighbours.

  18. Contemporary state of spacecraft/environment interaction research

    CERN Document Server

    Novikov, L S

    1999-01-01

    Various space environment effects on spacecraft materials and equipment, and the reverse effects of spacecrafts and rockets on space environment are considered. The necessity of permanent updating and perfection of our knowledge on spacecraft/environment interaction processes is noted. Requirements imposed on models of space environment in theoretical and experimental researches of various aspects of the spacecraft/environment interaction problem are formulated. In this field, main problems which need to be solved today and in the nearest future are specified. The conclusion is made that the joint analysis of both aspects of spacecraft/environment interaction problem promotes the most effective solution of the problem.

  19. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  20. Exposición a estireno en cabinas prefabricadas: Estudio comparativo 2003 - 2005 Styrene exposure in pre-built cabins: Comparative study 2003 - 2005

    Directory of Open Access Journals (Sweden)

    Adriana Cousillas

    2007-12-01

    Full Text Available Los objetos fabricados con las resinas reforzadas pueden liberar al medio ambiente, vapor de estireno, lo que conlleva a tener una exposición al disolvente. En Uruguay, para el desarrollo de diferentes tareas administrativas, de vigilancia, de comercio, etc. se utilizan unas cabinas que son fabricadas con resinas de poliester no saturadas. En un trabajo anterior se comprobó que existía exposición a estireno en este tipo de cabinas. El objetivo de este trabajo fue estudiar los riesgos higiénicos a los que está expuesto el personal de empresa que desarrolla sus tareas administrativas en cabinas de fibra de vidrio reforzadas de resina. Se realizaron muestreos ambientales en cabinas ubicadas en diferentes zonas del Montevideo durante el año 2004 y 2005. Los valores de referencia que se utilizaron fueron los de la American Conference of Governmental Industrial Hygienists (ACGIH de 2006. El trabajo realizado demuestra que no existe exposición del personal a vapores de estireno en sus lugares de trabajo con el consiguiente riesgo descrito para estos productos. Considerando los resultados del año 2003, se concluye que los valores obtenidos ese año fueron puntuales del tipo de cabinas.The objects made with reinforced resins can release styrene steam to the indoor environment, which involves worker´s exposure to this toxic solvent. In Uruguay, some administrative, commerce, and more tasks are carried out in those fiber glass cabins which are manufactured with those resins. In a previous study we had high values of styrene in air and his metabolites in urine for people working in this buildings. The aim of this study is the evaluation of the hygienic risks to exposed workers from different companies who perform their administrative tasks in reinforced fiber glass cabins. Environmental samplings were made. The reference values used were those of the American Conference of Industrial Governmental Hygienists of 2005 (ACGIH. The results obtained

  1. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  2. Probability Estimates of Solar Particle Event Doses During a Period of Low Sunspot Number for Thinly-Shielded Spacecraft and Short Duration Missions

    Science.gov (United States)

    Atwell, William; Tylka, Allan J.; Dietrich, William; Rojdev, Kristina; Matzkind, Courtney

    2016-01-01

    In an earlier paper (Atwell, et al., 2015), we investigated solar particle event (SPE) radiation exposures (absorbed dose) to small, thinly-shielded spacecraft during a period when the sunspot number (SSN) was less than 30. These SPEs contain Ground Level Events (GLE), sub-GLEs, and sub-sub-GLEs (Tylka and Dietrich, 2009, Tylka and Dietrich, 2008, and Atwell, et al., 2008). GLEs are extremely energetic solar particle events having proton energies extending into the several GeV range and producing secondary particles in the atmosphere, mostly neutrons, observed with ground station neutron monitors. Sub-GLE events are less energetic, extending into the several hundred MeV range, but do not produce secondary atmospheric particles. Sub-sub GLEs are even less energetic with an observable increase in protons at energies greater than 30 MeV, but no observable proton flux above 300 MeV. In this paper, we consider those SPEs that occurred during 1973-2010 when the SSN was greater than 30 but less than 50. In addition, we provide probability estimates of absorbed dose based on mission duration with a 95% confidence level (CL). We also discuss the implications of these data and provide some recommendations that may be useful to spacecraft designers of these smaller spacecraft.

  3. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, Exploration, and Human Health and Safety

    Science.gov (United States)

    Koontz, Steve

    2015-01-01

    In this presentation a review of galactic cosmic ray (GCR) effects on microelectronic systems and human health and safety is given. The methods used to evaluate and mitigate unwanted cosmic ray effects in ground-based, atmospheric flight, and space flight environments are also reviewed. However not all GCR effects are undesirable. We will also briefly review how observation and analysis of GCR interactions with planetary atmospheres and surfaces and reveal important compositional and geophysical data on earth and elsewhere. About 1000 GCR particles enter every square meter of Earth’s upper atmosphere every second, roughly the same number striking every square meter of the International Space Station (ISS) and every other low- Earth orbit spacecraft. GCR particles are high energy ionized atomic nuclei (90% protons, 9% alpha particles, 1% heavier nuclei) traveling very close to the speed of light. The GCR particle flux is even higher in interplanetary space because the geomagnetic field provides some limited magnetic shielding. Collisions of GCR particles with atomic nuclei in planetary atmospheres and/or regolith as well as spacecraft materials produce nuclear reactions and energetic/highly penetrating secondary particle showers. Three twentieth century technology developments have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems and assess effects on human health and safety effects. The key technology developments are: 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems. Space and geophysical exploration needs drove the development of the instruments and analytical tools needed to recover compositional and structural data from GCR induced nuclear reactions and secondary particle showers. Finally, the

  4. An Application of the "Virtual Spacecraft" Concept in Evaluation of the Mars Pathfinder Lander Low Gain Antenna

    Science.gov (United States)

    Pogorzelski, R. J.; Beckon, R. J.

    1997-01-01

    The virtual spacecraft concept is embodied in a set of subsystems, either in the form of hardware or computational models, which together represent all, or a portion of, a spacecraft. For example, the telecommunications transponder may be a hardware prototype while the propulsion system may exist only as a simulation. As the various subsystems are realized in hardware, the spacecraft becomes progressively less virtual. This concept is enabled by JPL's Mission System Testbed which is a set of networked workstations running a message passing operating system called "TRAMEL" which stands for Task Remote Asynchronous Message Exchange Layer. Each simulation on the workstations, which may in fact be hardware controlled by the workstation, "publishes" its operating parameters on TRAMEL and other simulations requiring those parameters as input may "subscribe" to them. In this manner, the whole simulation operates as a single virtual system. This paper describes a simulation designed to evaluate a communications link between the earth and the Mars Pathfinder Lander module as it descends under a parachute through the Martian atmosphere toward the planet's surface. This link includes a transmitter and a low gain antenna on the spacecraft and a receiving antenna and receiver on the earth as well as a simulation of the dynamics of the spacecraft. The transmitter, the ground station antenna, the receiver and the dynamics are all simulated computationally while the spacecraft antenna is implemented in hardware on a very simple spacecraft mockup. The dynamics simulation is a record of one output of the ensemble of outputs of a Monte Carlo simulation of the descent. Additionally, the antenna/spacecraft mock-up system was simulated using APATCH, a shooting and bouncing ray code developed by Demaco, Inc. The antenna simulation, the antenna hardware, and the link simulation are all physically located in different facilities at JPL separated by several hundred meters and are linked via

  5. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  6. Large-Scale Spacecraft Fire Safety Tests

    Science.gov (United States)

    Urban, David; Ruff, Gary A.; Ferkul, Paul V.; Olson, Sandra; Fernandez-Pello, A. Carlos; T'ien, James S.; Torero, Jose L.; Cowlard, Adam J.; Rouvreau, Sebastien; Minster, Olivier; hide

    2014-01-01

    An international collaborative program is underway to address open issues in spacecraft fire safety. Because of limited access to long-term low-gravity conditions and the small volume generally allotted for these experiments, there have been relatively few experiments that directly study spacecraft fire safety under low-gravity conditions. Furthermore, none of these experiments have studied sample sizes and environment conditions typical of those expected in a spacecraft fire. The major constraint has been the size of the sample, with prior experiments limited to samples of the order of 10 cm in length and width or smaller. This lack of experimental data forces spacecraft designers to base their designs and safety precautions on 1-g understanding of flame spread, fire detection, and suppression. However, low-gravity combustion research has demonstrated substantial differences in flame behavior in low-gravity. This, combined with the differences caused by the confined spacecraft environment, necessitates practical scale spacecraft fire safety research to mitigate risks for future space missions. To address this issue, a large-scale spacecraft fire experiment is under development by NASA and an international team of investigators. This poster presents the objectives, status, and concept of this collaborative international project (Saffire). The project plan is to conduct fire safety experiments on three sequential flights of an unmanned ISS re-supply spacecraft (the Orbital Cygnus vehicle) after they have completed their delivery of cargo to the ISS and have begun their return journeys to earth. On two flights (Saffire-1 and Saffire-3), the experiment will consist of a flame spread test involving a meter-scale sample ignited in the pressurized volume of the spacecraft and allowed to burn to completion while measurements are made. On one of the flights (Saffire-2), 9 smaller (5 x 30 cm) samples will be tested to evaluate NASAs material flammability screening tests

  7. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    Science.gov (United States)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  8. SHARP - Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. G.

    1990-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  9. SHARP: Automated monitoring of spacecraft health and status

    Science.gov (United States)

    Atkinson, David J.; James, Mark L.; Martin, R. Gaius

    1991-01-01

    Briefly discussed here are the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory (JPL). Some of the difficulties associated with the existing technology used in mission operations are highlighted. A new automated system based on artificial intelligence technology is described which seeks to overcome many of these limitations. The system, called the Spacecraft Health Automated Reasoning Prototype (SHARP), is designed to automate health and status analysis for multi-mission spacecraft and ground data systems operations. The system has proved to be effective for detecting and analyzing potential spacecraft and ground systems problems by performing real-time analysis of spacecraft and ground data systems engineering telemetry. Telecommunications link analysis of the Voyager 2 spacecraft was the initial focus for evaluation of the system in real-time operations during the Voyager spacecraft encounter with Neptune in August 1989.

  10. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    Science.gov (United States)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  11. High-angular-resolution stellar imaging with occultations from the Cassini spacecraft - III. Mira

    Science.gov (United States)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Hedman, Matthew M.

    2016-04-01

    We present an analysis of spectral and spatial data of Mira obtained by the Cassini spacecraft, which not only observed the star's spectra over a broad range of near-infrared wavelengths, but was also able to obtain high-resolution spatial information by watching the star pass behind Saturn's rings. The observed spectral range of 1-5 microns reveals the stellar atmosphere in the crucial water-bands which are unavailable to terrestrial observers, and the simultaneous spatial sampling allows the origin of spectral features to be located in the stellar environment. Models are fitted to the data, revealing the spectral and spatial structure of molecular layers surrounding the star. High-resolution imagery is recovered revealing the layered and asymmetric nature of the stellar atmosphere. The observational data set is also used to confront the state-of-the-art cool opacity-sampling dynamic extended atmosphere models of Mira variables through a detailed spectral and spatial comparison, revealing in general a good agreement with some specific departures corresponding to particular spectral features.

  12. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  13. Investigation on the Temporal Surface Thermal Conditions for Thermal Comfort Researches Inside A Vehicle Cabin Under Summer Season Climate

    Directory of Open Access Journals (Sweden)

    Zhang Wencan

    2016-01-01

    Full Text Available With the proposes of improving occupant's thermal comfort and reducing the air conditioning power consumption, the present research carried out a comprehensive study on the surface thermal conductions and their influence parameters. A numerical model was built considering the transient conduction, convective and radiation heat transfer inside a vehicle cabin. For more accurate simulation of the radiation heat transfer behaviors, the radiation was considered into two spectral bands (short wave and long wave radiation, and the solar radiation was calculated by two solar fluxes (beam and diffuse solar radiation. An experiment was conducted to validate the numerical approach, showing a good agreement with the surface temperature. The surface thermal conditions were numerically simulated. The results show that the solar radiation is the most important factor in determining the internal surface thermal conditions. Effects of the window glass properties and the car body surface conditions were investigated. The numerical calculation results indicate that reducing the transitivity of window glass can effectively reduce the internal surface temperature. And the reflectivity of the vehicle cabin also has an important influence on the surface temperature, however, it's not so obvious as comparison to the window glass.

  14. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  15. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  16. Recurrence of Neurological Deficits in an F/A-18D Pilot Following Loss of Cabin Pressure at Altitude.

    Science.gov (United States)

    Robinson, Tom; Evangelista, Jose S; Latham, Emi; Mukherjee, Samir T; Pilmanis, Andrew

    2016-08-01

    Supersonic, high altitude aviation places its pilots and aircrew in complex environments, which may lead to injury that is not easily diagnosed or simply treated. Decompression illness (either venous or arterial) and environmental conditions (e.g., abnormal gases and pressure) are the most likely adverse effects aircrew often face. Though symptomatic aircrew personnel may occasionally require hyperbaric oxygen treatment, it is rare to require more than one treatment before returning to baseline function. This challenging aviation case details the clinical course and discusses the salient physiological factors of an F/A-18D pilot who presented with neurological symptoms following loss of cabin pressure at altitude. Most crucial to this discussion was the requirement for multiple hyperbaric oxygen treatments over several days due to recurrence of symptoms. The likelihood of recurrence during and after future flights cannot be estimated with accuracy. This case illustrates a degree of recurrences for neurological symptoms in aviation (hypobaric exposure to hyperbaric baseline environment) that has not previously been described. Robinson T, Evangelista JS III, Latham E, Mukherjee ST, Pilmanis A. Recurrence of neurological deficits in an F/A-18D pilot following loss of cabin pressure at altitude. Aerosp Med Hum Perform. 2016; 87(8):740-744.

  17. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong.

    Science.gov (United States)

    Barnes, Natasha Maria; Ng, Tsz Wai; Ma, Kwok Keung; Lai, Ka Man

    2018-03-27

    Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM 0.3 and PM 2.5 ), total volatile organic compounds (TVOCs), carbon monoxide (CO), carbon dioxide (CO₂), airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM 0.3 , PM 2.5 , TVOCs, CO, and CO₂ during engine idling. In general, during driving PM 2.5 levels in-cabin reduced overtime, but not PM 0.3 . For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ) level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC) concentration positively correlated with the age of the vehicle. Carbon monoxide (CO) levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO₂ level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  18. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    Directory of Open Access Journals (Sweden)

    Natasha Maria Barnes

    2018-03-01

    Full Text Available Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5, total volatile organic compounds (TVOCs, carbon monoxide (CO, carbon dioxide (CO2, airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC concentration positively correlated with the age of the vehicle. Carbon monoxide (CO levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  19. Vibration and Acoustic Testing for Mars Micromission Spacecraft

    Science.gov (United States)

    Kern, Dennis L.; Scharton, Terry D.

    1999-01-01

    The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the

  20. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  1. Effects of vehicle ventilation system, fuel type, and in-cabin smoking on the concentration of toluene and ethylbenzene in Pride cars

    Directory of Open Access Journals (Sweden)

    Masoud Rismanchian

    2013-01-01

    Conclusion: The ventilation condition, fuel type, and in-cabin smoking were not significantly impressive on the toluene and ethylbenzene concentrations inside the cars. However, simultaneous usage of the vehicle ventilation system and natural ventilation (windows could lead to little decrease in toluene concentration levels inside the car, while smoking consumption by passengers can increase them.

  2. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  3. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    Science.gov (United States)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  4. Finger temperature as a predictor of thermal comfort for sedentary passengers in a simulated aircraft cabin

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wyon, David Peter; Zukowska, Daria

    2009-01-01

    .1°C. A total of 68 subjects were exposed to each of the three conditions. The subjects completed questionnaires to provide subjective assessments of air quality, cabin environment, intensity of symptoms commonly experienced during flight, and thermal comfort. Objective physiological measurements...... that were made included finger temperature. The purpose of the present paper is to show that mean finger temperature is a good predictor of mean thermal vote (MTV) on the seven-point scale of thermal sensation. The results indicate that women and younger subjects have slightly colder fingers....

  5. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  6. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  7. Space and Atmospheric Environments: From Low Earth Orbits to Deep Space

    Science.gov (United States)

    Barth, Janet L.

    2003-01-01

    Natural space and atmospheric environments pose a difficult challenge for designers of technological systems in space. The deleterious effects of environment interactions with the systems include degradation of materials, thermal changes, contamination, excitation, spacecraft glow, charging, radiation damage, and induced background interference. Design accommodations must be realistic with minimum impact on performance while maintaining a balance between cost and risk. The goal of applied research in space environments and effects is to limit environmental impacts at low cost relative to spacecraft cost and to infuse enabling and commercial off-the-shelf technologies into space programs. The need to perform applied research to understand the space environment in a practical sense and to develop methods to mitigate these environment effects is frequently underestimated by space agencies and industry. Applied science research in this area is critical because the complexity of spacecraft systems is increasing, and they are exposed simultaneously to a multitude of space environments.

  8. Passive Plasma Contact Mechanisms for Small-Scale Spacecraft

    Science.gov (United States)

    McTernan, Jesse K.

    Small-scale spacecraft represent a paradigm shift in how entities such as academia, industry, engineering firms, and the scientific community operate in space. However, although the paradigm shift produces unique opportunities to build satellites in unique ways for novel missions, there are also significant challenges that must be addressed. This research addresses two of the challenges associated with small-scale spacecraft: 1) the miniaturization of spacecraft and associated instrumentation and 2) the need to transport charge across the spacecraft-environment boundary. As spacecraft decrease in size, constraints on the size, weight, and power of on-board instrumentation increase--potentially limiting the instrument's functionality or ability to integrate with the spacecraft. These constraints drive research into mechanisms or techniques that use little or no power and efficiently utilize existing resources. One limited resource on small-scale spacecraft is outer surface area, which is often covered with solar panels to meet tight power budgets. This same surface area could also be needed for passive neutralization of spacecraft charging. This research explores the use of a transparent, conductive layer on the solar cell coverglass that is electrically connected to spacecraft ground potential. This dual-purpose material facilitates the use of outer surfaces for both energy harvesting of solar photons as well as passive ion collection. Mission capabilities such as in-situ plasma measurements that were previously infeasible on small-scale platforms become feasible with the use of indium tin oxide-coated solar panel coverglass. We developed test facilities that simulate the space environment in low Earth orbit to test the dual-purpose material and the various application of this approach. Particularly, this research is in support of two upcoming missions: OSIRIS-3U, by Penn State's Student Space Programs Lab, and MiTEE, by the University of Michigan. The purpose of

  9. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  10. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  11. Artist concept of Galileo spacecraft

    Science.gov (United States)

    1988-01-01

    Galileo spacecraft is illustrated in artist concept. Gallileo, named for the Italian astronomer, physicist and mathematician who is credited with construction of the first complete, practical telescope in 1620, will make detailed studies of Jupiter. A cooperative program with the Federal Republic of Germany the Galileo mission will amplify information acquired by two Voyager spacecraft in their brief flybys. Galileo is a two-element system that includes a Jupiter-orbiting observatory and an entry probe. Jet Propulsion Laboratory (JPL) is Galileo project manager and builder of the main spacecraft. Ames Research Center (ARC) has responsibility for the entry probe, which was built by Hughes Aircraft Company and General Electric. Galileo will be deployed from the payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during mission STS-34.

  12. Radiation protection cabin for catheter-directed liver interventions: operator dose assessment

    International Nuclear Information System (INIS)

    Maleux, Geert; Bosmans, Hilde; Bergans, Niki; Bogaerts, Ria

    2016-01-01

    The number and complexity of interventional radiological procedures and in particular catheter-directed liver interventions have increased substantially. The current study investigates the reduction of personal doses when using a dedicated radiation protection cabin (RPC) for these procedures. Operator and assistant doses were assessed for 3 series of 20 chemo-infusion/chemoembolisation interventions, including an equal number of procedures with and without RPC. Whole body doses, finger doses and doses at the level of knees and eyes were evaluated with different types of TLD-100 Harshaw dosemeters. Dosemeters were also attached on the three walls of the RPC. The operator doses were significantly reduced by the RPC, but also without RPC, the doses appear to be limited as a result of thorough optimisation with existing radiation protection tools. The added value of the RPC should thus be determined by the outcome of balancing dose reduction and other aspects such as ergonomic benefits. (authors)

  13. The laser absorption spectrometer - A new remote sensing instrument for atmospheric pollution monitoring

    Science.gov (United States)

    Shumate, M. S.

    1974-01-01

    An instrument capable of remotely monitoring trace atmospheric constituents is described. The instrument, called a laser absorption spectrometer, can be operated from an aircraft or spacecraft to measure the concentration of selected gases in three dimensions. This device will be particularly useful for rapid determination of pollutant levels in urban areas.

  14. How Spacecraft Fly Spaceflight Without Formulae

    CERN Document Server

    Swinerd, Graham

    2009-01-01

    About half a century ago a small satellite, Sputnik 1, was launched. The satellite did very little other than to transmit a radio signal to announce its presence in orbit. However, this humble beginning heralded the dawn of the Space Age. Today literally thousands of robotic spacecraft have been launched, many of which have flown to far-flung regions of the Solar System carrying with them the human spirit of scientific discovery and exploration. Numerous other satellites have been launched in orbit around the Earth providing services that support our technological society on the ground. How Spacecraft Fly: Spaceflight Without Formulae by Graham Swinerd focuses on how these spacecraft work. The book opens with a historical perspective of how we have come to understand our Solar System and the Universe. It then progresses through orbital flight, rocket science, the hostile environment within which spacecraft operate, and how they are designed. The concluding chapters give a glimpse of what the 21st century may ...

  15. Optimal Autonomous Spacecraft Resiliency Maneuvers Using Metaheuristics

    Science.gov (United States)

    2014-09-15

    This work was accepted for published by the American Institute of Aeronautics and Astronautics (AIAA) Journal of Spacecraft and Rockets in July 2014...publication in the AIAA Journal of Spacecraft and Rockets . Chapter 5 introduces an impulsive maneuvering strategy to deliver a spacecraft to its final...upon arrival r2 and v2 , respectively. The variable T2 determines the time of flight needed to make the maneuver, and the variable θ2 determines the

  16. Integrating standard operating procedures with spacecraft automation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft automation has the potential to assist crew members and spacecraft operators in managing spacecraft systems during extended space missions. Automation can...

  17. Quick Spacecraft Thermal Analysis Tool, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — For spacecraft design and development teams concerned with cost and schedule, the Quick Spacecraft Thermal Analysis Tool (QuickSTAT) is an innovative software suite...

  18. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  19. Search for atmospheric holes with the Viking cameras

    International Nuclear Information System (INIS)

    Frank, L.A.; Sigwarth, J.B.; Craven, J.D.

    1989-01-01

    Images taken with the two ultraviolet cameras on board the Viking spacecraft were examined for evidence of transient decreases of Earth's ultraviolet dayglow. Comparison of near-limb observations of dayglow intensities with those at smaller angles to the nadir with the camera sensitive to OI 130.4 nm emissions supports the existence of transient decreases in the near-nadir dayglow. However, the amount of near-nadir imaging is severely limited and only several significant events are found. More decisive confirmation of the existence of such transient decreases must await a larger survey from another spacecraft. The diameters of these regions as detected with Viking are ∼50 to 100 km. Occurrence frequencies, intensity decreases, and dimensions for these clusters of darkened pixels are similar to those previously reported for such events, or atmospheric holes, as seen in images of the ultraviolet dayglow with Dynamics Explorer 1

  20. Avaliação ergonômica do projeto interno de cabines de Forwarders e Skidders

    OpenAIRE

    Gustavo Fontana

    2005-01-01

    O presente trabalho teve por objetivo realizar a avaliação ergonômica da cabine de seis modelos de máquinas florestais utilizadas na extração de madeira (quatro “forwarders” e dois “skidders”), quanto ao posicionamento de comandos e instrumentos e o campo visual do operador, com base nas características antropométricas do operador brasileiro. As análises foram feitas em máquinas operando em áreas de colheita de madeira pertencentes a duas empresas florestais, localizadas nos municípios de Mog...

  1. Design feasibility via ascent optimality for next-generation spacecraft

    Science.gov (United States)

    Miele, A.; Mancuso, S.

    This paper deals with the optimization of the ascent trajectories for single-stage-sub-orbit (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft. The maximum payload weight problem is studied for different values of the engine specific impulse and spacecraft structural factor. The main conclusions are that: feasibility of SSSO spacecraft is guaranteed for all the parameter combinations considered; feasibility of SSTO spacecraft depends strongly on the parameter combination chosen; not only feasibility of TSTO spacecraft is guaranteed for all the parameter combinations considered, but the TSTO payload is several times the SSTO payload. Improvements in engine specific impulse and spacecraft structural factor are desirable and crucial for SSTO feasibility; indeed, aerodynamic improvements do not yield significant improvements in payload. For SSSO, SSTO, and TSTO spacecraft, simple engineering approximations are developed connecting the maximum payload weight to the engine specific impulse and spacecraft structural factor. With reference to the specific impulse/structural factor domain, these engineering approximations lead to the construction of zero-payload lines separating the feasibility region (positive payload) from the unfeasibility region (negative payload).

  2. Research-Based Monitoring, Prediction, and Analysis Tools of the Spacecraft Charging Environment for Spacecraft Users

    Science.gov (United States)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti A.; Maddox, Marlo M.; Mays, Mona Leila

    2015-01-01

    The Space Weather Research Center (http://swrc. gsfc.nasa.gov) at NASA Goddard, part of the Community Coordinated Modeling Center (http://ccmc.gsfc.nasa.gov), is committed to providing research-based forecasts and notifications to address NASA's space weather needs, in addition to its critical role in space weather education. It provides a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, and weekly summaries and reports. In this paper, we focus on how (near) real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the integrated Space Weather Analysis system (http://iswa.gsfc.nasa.gov), enable monitoring, analyzing, and predicting the spacecraft charging environment for spacecraft users. Relevant tools and resources are discussed.

  3. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  4. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  5. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  6. Multiple spacecraft observations of interplanetary shocks: four spacecraft determination of shock normals

    International Nuclear Information System (INIS)

    Russell, C.T.; Mellott, M.M.; Smith, E.J.; King, J.H.

    1983-01-01

    ISEE 1,2,3 IMP8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for furture techniques. When the angle between upstream and downstream magnetic field is greater than 20, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, we recommend using overdetermined shock normal solutions whenever possible, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints

  7. Low cost spacecraft computers: Oxymoron or future trend?

    Science.gov (United States)

    Manning, Robert M.

    1993-01-01

    Over the last few decades, application of current terrestrial computer technology in embedded spacecraft control systems has been expensive and wrought with many technical challenges. These challenges have centered on overcoming the extreme environmental constraints (protons, neutrons, gamma radiation, cosmic rays, temperature, vibration, etc.) that often preclude direct use of commercial off-the-shelf computer technology. Reliability, fault tolerance and power have also greatly constrained the selection of spacecraft control system computers. More recently, new constraints are being felt, cost and mass in particular, that have again narrowed the degrees of freedom spacecraft designers once enjoyed. This paper discusses these challenges, how they were previously overcome, how future trends in commercial computer technology will simplify (or hinder) selection of computer technology for spacecraft control applications, and what spacecraft electronic system designers can do now to circumvent them.

  8. Spacecraft design project: Low Earth orbit communications satellite

    Science.gov (United States)

    Moroney, Dave; Lashbrook, Dave; Mckibben, Barry; Gardener, Nigel; Rivers, Thane; Nottingham, Greg; Golden, Bill; Barfield, Bill; Bruening, Joe; Wood, Dave

    1991-01-01

    This is the final product of the spacecraft design project completed to fulfill the academic requirements of the Spacecraft Design and Integration 2 course (AE-4871) taught at the U.S. Naval Postgraduate School. The Spacecraft Design and Integration 2 course is intended to provide students detailed design experience in selection and design of both satellite system and subsystem components, and their location and integration into a final spacecraft configuration. The design team pursued a design to support a Low Earth Orbiting (LEO) communications system (GLOBALSTAR) currently under development by the Loral Cellular Systems Corporation. Each of the 14 team members was assigned both primary and secondary duties in program management or system design. Hardware selection, spacecraft component design, analysis, and integration were accomplished within the constraints imposed by the 11 week academic schedule and the available design facilities.

  9. First ever in situ observations of Venus' polar upper atmosphere density using the tracking data of the Venus Express Atmospheric Drag Experiment (VExADE)

    Science.gov (United States)

    Rosenblatt, P.; Bruinsma, S. L.; Müller-Wodarg, I. C. F.; Häusler, B.; Svedhem, H.; Marty, J. C.

    2012-02-01

    On its highly elliptical 24 h orbit around Venus, the Venus Express (VEX) spacecraft briefly reaches a periapsis altitude of nominally 250 km. Recently, however, dedicated and intense radio tracking campaigns have taken place in August 2008, October 2009, February and April 2010, for which the periapsis altitude was lowered to the 186-176 km altitude range in order to be able to probe the upper atmosphere of Venus above the North Pole for the first time ever in situ. As the spacecraft experiences atmospheric drag, its trajectory is measurably perturbed during the periapsis pass, allowing us to infer total atmospheric mass density at the periapsis altitude. A Precise Orbit Determination (POD) of the VEX motion is performed through an iterative least-squares fitting process to the Doppler tracking data, acquired by the VEX radioscience experiment (VeRa). The drag acceleration is modelled using an initial atmospheric density model (VTS3 model, Hedin, A.E., Niemann, H.B., Kasprzak, W.T., Seiff, A. [1983]. J. Geophys. Res. 88, 73-83). A scale factor of the drag acceleration is estimated for each periapsis pass, which scales Hedin's density model in order to best fit the radio tracking data. Reliable density scale factors have been obtained for 10 passes mainly from the second (October 2009) and third (April 2010) VExADE campaigns, which indicate a lower density by a factor of about 1.8 than Hedin's model predicts. These first ever in situ polar density measurements at solar minimum have allowed us to construct a diffusive equilibrium density model for Venus' thermosphere, constrained in the lower thermosphere primarily by SPICAV-SOIR measurements and above 175 km by the VExADE drag measurements (Müller-Wodarg et al., in preparation). The preliminary results of the VExADE campaigns show that it is possible to obtain with the POD technique reliable estimates of Venus' upper atmosphere densities at an altitude of around 175 km. Future VExADE campaigns will benefit from

  10. Developing Sustainable Spacecraft Water Management Systems

    Science.gov (United States)

    Thomas, Evan A.; Klaus, David M.

    2009-01-01

    It is well recognized that water handling systems used in a spacecraft are prone to failure caused by biofouling and mineral scaling, which can clog mechanical systems and degrade the performance of capillary-based technologies. Long duration spaceflight applications, such as extended stays at a Lunar Outpost or during a Mars transit mission, will increasingly benefit from hardware that is generally more robust and operationally sustainable overtime. This paper presents potential design and testing considerations for improving the reliability of water handling technologies for exploration spacecraft. Our application of interest is to devise a spacecraft wastewater management system wherein fouling can be accommodated by design attributes of the management hardware, rather than implementing some means of preventing its occurrence.

  11. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  12. Atmosphere Assessment for MARS Science Laboratory Entry, Descent and Landing Operations

    Science.gov (United States)

    Cianciolo, Alicia D.; Cantor, Bruce; Barnes, Jeff; Tyler, Daniel, Jr.; Rafkin, Scot; Chen, Allen; Kass, David; Mischna, Michael; Vasavada, Ashwin R.

    2013-01-01

    On August 6, 2012, the Mars Science Laboratory rover, Curiosity, successfully landed on the surface of Mars. The Entry, Descent and Landing (EDL) sequence was designed using atmospheric conditions estimated from mesoscale numerical models. The models, developed by two independent organizations (Oregon State University and the Southwest Research Institute), were validated against observations at Mars from three prior years. In the weeks and days before entry, the MSL "Council of Atmospheres" (CoA), a group of atmospheric scientists and modelers, instrument experts and EDL simulation engineers, evaluated the latest Mars data from orbiting assets including the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) and Mars Climate Sounder (MCS), as well as Mars Odyssey's Thermal Emission Imaging System (THEMIS). The observations were compared to the mesoscale models developed for EDL performance simulation to determine if a spacecraft parameter update was necessary prior to entry. This paper summarizes the daily atmosphere observations and comparison to the performance simulation atmosphere models. Options to modify the atmosphere model in the simulation to compensate for atmosphere effects are also presented. Finally, a summary of the CoA decisions and recommendations to the MSL project in the days leading up to EDL is provided.

  13. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh

    Science.gov (United States)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James

    2010-01-01

    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  14. Atmospheric profiles of Black Carbon at remote locations using light-weight airborne Aethalometers

    Science.gov (United States)

    Hansen, A. D.; Močnik, G.; Drinovec, L.; Lenarcic, M.

    2012-12-01

    While measurements of atmospheric aerosols are routinely performed at ground-level around the world, there is far less knowledge of their concentrations at altitude: yet this data is a crucial requirement for our understanding of the dispersion of pollutants of anthropogenic origin, with their associated effects on radiative forcing, cloud condensation, and other adverse phenomena. Black Carbon (BC) is a unique tracer for combustion emissions, and can be detected rapidly and with great sensitivity by filter-based optical methods. It has no non-combustion sources and is not transformed by atmospheric processes. Recent technical advances have developed light-weight miniaturized instruments which can be operated on light aircraft or carried aboard commercial passenger flights. From January to April 2012, a single-seat ultra-light aircraft flew around the world on a scientific, photographic and environmental-awareness mission. The flight track crossed all seven continents and all major oceans, with altitudes up to 8.9 km ASL. The aircraft carried a custom-developed high-sensitivity dual-wavelength light-weight Aethalometer, operating at 370 and 880 nm with special provision to compensate for the effects of changing pressure, temperature and humidity. The instrument recorded BC concentrations with high temporal resolution and sensitivity better than 5 ng/m3. We present examples of data from flight tracks over remote oceans, uninhabited land masses, and densely populated areas, analyzing the spectral dependence of absorption to infer the contributions to BC from fossil fuel vs. biomass combustion, and aggregating the data into vertical profiles. The regional and long range transport of BC may be investigated using back-trajectories. We have also operated miniature instruments in the passenger cabins of long-distance commercial aircraft. Since there are no combustion sources within the cabin, any BC in the ventilation air must necessarily have originated from the outside

  15. Observations of ionospheric electric fields above atmospheric weather systems

    Science.gov (United States)

    Farrell, W. M.; Aggson, T. L.; Rodgers, E. B.; Hanson, W. B.

    1994-01-01

    We report on the observations of a number of quasi-dc electric field events associated with large-scale atmospheric weather formations. The observations were made by the electric field experiment onboard the San Marco D satellite, operational in an equatorial orbit from May to December 1988. Several theoretical studies suggest that electric fields generated by thunderstorms are present at high altitudes in the ionosphere. In spite of such favorable predictions, weather-related events are not often observed since they are relatively weak. We shall report here on a set of likely E field candidates for atmospheric-ionospheric causality, these being observed over the Indonesian Basin, northern South America, and the west coast of Africa; all known sites of atmospheric activity. As we shall demonstrate, individual events often be traced to specific active weather features. For example, a number of events were associated with spacecraft passages near Hurricane Joan in mid-October 1988. As a statistical set, the events appear to coincide with the most active regions of atmospheric weather.

  16. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  17. REQUIREMENTS FOR IMAGE QUALITY OF EMERGENCY SPACECRAFTS

    Directory of Open Access Journals (Sweden)

    A. I. Altukhov

    2015-05-01

    Full Text Available The paper deals with the method for formation of quality requirements to the images of emergency spacecrafts. The images are obtained by means of remote sensing of near-earth space orbital deployment in the visible range. of electromagnetic radiation. The method is based on a joint taking into account conditions of space survey, characteristics of surveillance equipment, main design features of the observed spacecrafts and orbital inspection tasks. Method. Quality score is the predicted linear resolution image that gives the possibility to create a complete view of pictorial properties of the space image obtained by electro-optical system from the observing satellite. Formulation of requirements to the numerical value of this indicator is proposed to perform based on the properties of remote sensing system, forming images in the conditions of outer space, and the properties of the observed emergency spacecraft: dimensions, platform construction of the satellite, on-board equipment placement. For method implementation the authors have developed a predictive model of requirements to a linear resolution for images of emergency spacecrafts, making it possible to select the intervals of space shooting and get the satellite images required for quality interpretation. Main results. To verify the proposed model functionality we have carried out calculations of the numerical values for the linear resolution of the image, ensuring the successful task of determining the gross structural damage of the spacecrafts and identifying changes in their spatial orientation. As input data were used with dimensions and geometric primitives corresponding to the shape of deemed inspected spacecrafts: Resurs-P", "Canopus-B", "Electro-L". Numerical values of the linear resolution images have been obtained, ensuring the successful task solution for determining the gross structural damage of spacecrafts.

  18. Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease.

    Science.gov (United States)

    Tesón, Marisa; González-García, María J; López-Miguel, Alberto; Enríquez-de-Salamanca, Amalia; Martín-Montañez, Vicente; Benito, María Jesús; Mateo, María Eugenia; Stern, Michael E; Calonge, Margarita

    2013-03-01

    To evaluate symptoms, signs, and the levels of 16 tears inflammatory mediators of dry eye (DE) patients exposed to an environment simulating an in-flight air cabin in an environmental chamber. Twenty DE patients were exposed to controlled environment simulating an in-flight airplane cabin (simulated in-flight condition [SIC]) of 23°C, 5% relative humidity, localized air flow, and 750 millibars (mb) of barometric pressure. As controls, 15 DE patients were subjected to a simulated standard condition (SSC) of 23°C, 45% relative humidity, and 930 mb. A DE symptoms questionnaire, diagnostic tests, and determination of 16 tear molecules by multiplex bead array were performed before and 2 hours after exposure. After SIC exposure, DE patients became more symptomatic, suffered a significant (P ≤ 0.05) decrease in tear stability (tear break up time) (from 2.18 ± 0.28 to 1.53 ± 0.20), and tear volume (phenol red thread test), and a significant (P ≤ 0.05) increase in corneal staining, both globally (0.50 ± 0.14 before and 1.25 ± 0.19 after) and in each area (Baylor scale). After SSC, DE patients only showed a mild, but significant (P ≤ 0.05), increase in central and inferior corneal staining. Consistently, tear levels of IL-6 and matrix metalloproteinase (MMP)-9 significantly increased and tear epidermal growth factor (EGF) significantly decreased (P ≤ 0.05) only after SIC. The controlled adverse environment conditions in this environmental chamber can simulate the conditions in which DE patients might be exposed during flight. As this clearly impaired their lacrimal functional unit, it would be advisable that DE patients use therapeutic strategies capable of ameliorating these adverse episodes.

  19. Robust Spacecraft Component Detection in Point Clouds

    Directory of Open Access Journals (Sweden)

    Quanmao Wei

    2018-03-01

    Full Text Available Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  20. Robust Spacecraft Component Detection in Point Clouds.

    Science.gov (United States)

    Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng

    2018-03-21

    Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.

  1. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  2. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  3. A ground electromagnetic survey used to map sulfides and acid sulfate ground waters at the abandoned Cabin Branch Mine, Prince William Forest Park, northern Virginia gold-pyrite belt

    Science.gov (United States)

    Wynn, Jeffrey C.

    2000-01-01

    INTRODUCTION AND BACKGROUND: Prince William Forest Park is situated at the northeastern end of the Virginia Gold-Pyrite belt northwest of the town of Dumfries, VA. The U. S. Marine Corps Reservation at Quantico borders the park on the west and south, and occupies part of the same watershed. Two abandoned mines are found within the park: the Cabin Branch pyrite mine, a historic source of acid mine drainage, and the Greenwood gold mine, a source of mercury contamination. Both are within the watershed of Quantico Creek (Fig.1). The Cabin Branch mine (also known as the Dumfries mine) lies about 2.4 km northwest of the town of Dumfries. It exploited a 300 meter-long, lens-shaped body of massive sulfide ore hosted by metamorphosed volcanic rocks; during its history over 200,000 tons of ore were extracted and processed locally. The site became part of the National Capitol Region of the National Park Service in 1940 and is currently managed by the National Park Service. In 1995 the National Park Service, in cooperation with the Virginia Department of Mines, Minerals, and Energy reclaimed the Cabin Branch site. The Virginia Gold-Pyrite belt, also known as the central Virginia volcanic-plutonic belt, is host to numerous abandoned metal mines (Pavlides and others, 1982), including the Cabin Branch deposit. The belt itself extends from its northern terminus near Cabin Branch, about 50 km south of Washington, D.C., approximately 175 km to the southwest into central Virginia. It is underlain by metamorphosed volcanic and clastic (non-carbonate) sedimentary rocks, originally deposited approximately 460 million years ago during the Ordovician Period (Horton and others, 1998). Three kinds of deposits are found in the belt: volcanic-associated massive sulfide deposits, low-sulfide quartz-gold vein deposits, and gold placer deposits. The massive sulfide deposits such as Cabin Branch were historically mined for their sulfur, copper, zinc, and lead contents, but also yielded byproduct

  4. Advanced Solar-propelled Cargo Spacecraft for Mars Missions

    Science.gov (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie

    1989-01-01

    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  5. Some aspects of composition of the lower Martian atmosphere: input for MIRA

    Science.gov (United States)

    Moroz, V.; Korablev, O.; Krasnopolsky, V.; Rorin, A.

    Recent spacecraft missions and high-resolution spectroscopic observations from the Earth-based, airborne and spaceborne observatories have justified the chemical contents of the Martian atmosphere at a new level of confidence. Both the lower and middle atmosphere of Mars reveal very limited chemical activity, while the variations of the abundance of minor constituents may be attributed to phase transitions of volatiles. Water vapor, which mixing ratio is controlled by complex hydrological cycle in the lower atmosphere and at the surface of the planet, affects seasonally varying depletion of ozone. Measured ratio of D/H can be explained with general models of the early evolution of the planet, though this estimate in the bulk atmosphere may not be ultimately representative due to altitude dependant fractionation of water isotopes. CO, as a chemically passive nonvolatile component, reveals increase of mixing ratio in the vicinity of winter polar caps during active condensation of the bulk CO2 atmosphere. No reliable evidence o any organicf matter in the atmosphere of Mars has been obtained.

  6. Numerical Study of Ammonia Leak and Dispersion in the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    Release of ammonia into the International Space Station (ISS) cabin atmosphere can occur if the water/ammonia barrier breach of the active thermal control system (ATCS) interface heat exchanger (IFHX) happens. After IFHX breach liquid ammonia is introduced into the water-filled internal thermal control system (ITCS) and then to the cabin environment through a ruptured gas trap. Once the liquid water/ammonia mixture exits ITCS, it instantly vaporizes and mixes with the U.S. Laboratory cabin air that results in rapid deterioration of the cabin conditions. The goal of the study is to assess ammonia propagation in the Station after IFHX breach to plan the operation procedure. A Computational Fluid Dynamics (CFD) model for accurate prediction of airflow and ammonia transport within each of the modules in the ISS cabin was developed. CFD data on ammonia content in the cabin aisle way of the ISS and, in particular, in the Russian On- Orbit Segment during the period of 15 minutes after gas trap rupture are presented for four scenarios of rupture response. Localized effects of ammonia dispersion and risk mitigation are discussed.

  7. Pressure breathing in fighter aircraft for G accelerations and loss of cabin pressurization at altitude--a brief review.

    Science.gov (United States)

    Lauritzsen, Lars P; Pfitzner, John

    2003-04-01

    The purpose of this brief review is to outline the past and present use of pressure breathing, not by patients but by fighter pilots. Of the historical and recent references quoted, most are from aviation-medicine journals that are not often readily available to anesthesiologists. Pressure breathing at moderate levels of airway pressure gave World War II fighter pilots a tactical altitude advantage. With today's fast and highly maneuverable jet fighters, very much higher airway pressures of the order of 8.0 kPa (identical with 60 mmHg) are used. They are used in conjunction with a counterpressure thoracic vest and an anti-G suit for the abdomen and lower body. Pressurization is activated automatically in response to +Gz accelerations, and to a potentially catastrophic loss of cabin pressurization at altitude. During +Gz accelerations, pressure breathing has been shown to maintain cerebral perfusion by raising the systemic arterial pressure, so increasing the level of G-tolerance that is afforded by the use of anti-G suits and seat tilt-back angles alone. This leaves the pilot less reliant on rigorous, and potentially distracting, straining maneuvers. With loss of cabin pressurization at altitude, pressure breathing of 100% oxygen at high airway pressures enables the pilot's alveolar PO(2) to be maintained at a safe level during emergency descent. Introduced in military aviation, pressure breathing for G-tolerance and pressure breathing for altitude presented as concepts that may be of general physiological interest to many anesthesiologists.

  8. Modeling the fundamental characteristics and processes of the spacecraft functioning

    Science.gov (United States)

    Bazhenov, V. I.; Osin, M. I.; Zakharov, Y. V.

    1986-01-01

    The fundamental aspects of modeling of spacecraft characteristics by using computing means are considered. Particular attention is devoted to the design studies, the description of physical appearance of the spacecraft, and simulated modeling of spacecraft systems. The fundamental questions of organizing the on-the-ground spacecraft testing and the methods of mathematical modeling were presented.

  9. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  10. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  11. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  12. Spacecraft Swarm Coordination and Planning Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fractionated spacecraft architectures to distribute mission performance from a single, monolithic satellite across large number of smaller spacecraft, for missions...

  13. Advancements in oxygen generation and humidity control by water vapor electrolysis

    Science.gov (United States)

    Heppner, D. B.; Sudar, M.; Lee, M. C.

    1988-01-01

    Regenerative processes for the revitalization of manned spacecraft atmospheres or other manned habitats are essential for realization of long-term space missions. These processes include oxygen generation through water electrolysis. One promising technique of water electrolysis is the direct conversion of the water vapor contained in the cabin air to oxygen. This technique is the subject of the present program on water vapor electrolysis development. The objectives were to incorporate technology improvements developed under other similar electrochemical programs and add new ones; design and fabricate a mutli-cell electrochemical module and a testing facility; and demonstrate through testing the improvements. Each aspect of the water vapor electrolysis cell was reviewed. The materials of construction and sizing of each element were investigated analytically and sometime experimentally. In addition, operational considerations such as temperature control in response to inlet conditions were investigated. Three specific quantitative goals were established.

  14. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  15. Assessment of the Forward Contamination Risk of Mars by Clean Room Isolates from Space-Craft Assembly Facilities through Aeolian Transport - a Model Study

    Science.gov (United States)

    van Heereveld, Luc; Merrison, Jonathan; Nørnberg, Per; Finster, Kai

    2017-06-01

    The increasing number of missions to Mars also increases the risk of forward contamination. Consequently there is a need for effective protocols to ensure efficient protection of the Martian environment against terrestrial microbiota. Despite the fact of constructing sophisticated clean rooms for spacecraft assembly a 100 % avoidance of contamination appears to be impossible. Recent surveys of these facilities have identified a significant number of microbes belonging to a variety of taxonomic groups that survive the harsh conditions of clean rooms. These microbes may have a strong contamination potential, which needs to be investigate to apply efficient decontamination treatments. In this study we propose a series of tests to evaluate the potential of clean room contaminants to survive the different steps involved in forward contamination. We used Staphylococcus xylosus as model organism to illustrate the different types of stress that potential contaminants will be subjected to on their way from the spacecraft onto the surface of Mars. Staphylococcus xylosus is associated with human skin and commonly found in clean rooms and could therefore contaminate the spacecraft as a result of human activity during the assembling process. The path the cell will take from the surface of the spacecraft onto the surface of Mars was split into steps representing different stresses that include desiccation, freezing, aeolian transport in a Martian-like atmosphere at Martian atmospheric pressure, and UV radiation climate. We assessed the surviving fraction of the cellular population after each step by determining the integrated metabolic activity of the survivor population by measuring their oxygen consumption rate. The largest fraction of the starting culture (around 70 %) was killed during desiccation, while freezing, Martian vacuum and short-term UV radiation only had a minor additional effect on the survivability of Staphylococcus xylosus. The study also included a simulation

  16. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2006-01-01

    In a 3-row, 21-seat section of a simulated aircraft cabin that had been installed in a climate chamber, 4 groups of 17 subjects, acting as passengers and crew, took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.......4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  17. Mesh Network Architecture for Enabling Inter-Spacecraft Communication

    Science.gov (United States)

    Becker, Christopher; Merrill, Garrick

    2017-01-01

    To enable communication between spacecraft operating in a formation or small constellation, a mesh network architecture was developed and tested using a time division multiple access (TDMA) communication scheme. The network is designed to allow for the exchange of telemetry and other data between spacecraft to enable collaboration between small spacecraft. The system uses a peer-to-peer topology with no central router, so that it does not have a single point of failure. The mesh network is dynamically configurable to allow for addition and subtraction of new spacecraft into the communication network. Flight testing was performed using an unmanned aerial system (UAS) formation acting as a spacecraft analogue and providing a stressing environment to prove mesh network performance. The mesh network was primarily devised to provide low latency, high frequency communication but is flexible and can also be configured to provide higher bandwidth for applications desiring high data throughput. The network includes a relay functionality that extends the maximum range between spacecraft in the network by relaying data from node to node. The mesh network control is implemented completely in software making it hardware agnostic, thereby allowing it to function with a wide variety of existing radios and computing platforms..

  18. Fifty-one years of Los Alamos Spacecraft

    Energy Technology Data Exchange (ETDEWEB)

    Fenimore, Edward E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-04

    From 1963 to 2014, the Los Alamos National Laboratory was involved in at least 233 spacecraft. There are probably only one or two institutions in the world that have been involved in so many spacecraft. Los Alamos space exploration started with the Vela satellites for nuclear test detection, but soon expanded to ionospheric research (mostly barium releases), radioisotope thermoelectric generators, solar physics, solar wind, magnetospheres, astrophysics, national security, planetary physics, earth resources, radio propagation in the ionosphere, and cubesats. Here, we present a list of the spacecraft, their purpose, and their launch dates for use during RocketFest

  19. New Horizons Upper Limits on O{sub 2} in Pluto’s Present Day Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kammer, J. A.; Gladstone, G. R. [Southwest Research Institute San Antonio, TX 78238 (United States); Stern, S. A.; Young, L. A.; Steffl, A. J.; Olkin, C. B. [Southwest Research Institute Boulder, CO 80302 (United States); Weaver, H. A. [Johns Hopkins Applied Physics Laboratory Laurel, MD 20723 (United States); Ennico, K., E-mail: jkammer@swri.edu [NASA Ames Research Center Moffett Field, CA 94035 (United States); Collaboration: New Horizons Atmospheres and Alice UV Spectrograph Teams

    2017-08-01

    The surprising discovery by the Rosetta spacecraft of molecular oxygen (O{sub 2}) in the coma of comet 67P/Churyumov–Gerasimenko challenged our understanding of the inventory of this volatile species on and inside bodies from the Kuiper Belt. That discovery motivated our search for oxygen in the atmosphere of Kuiper Belt planet Pluto, because O{sub 2} is volatile even at Pluto’s surface temperatures. During the New Horizons flyby of Pluto in 2015 July, the spacecraft probed the composition of Pluto’s atmosphere using a variety of observations, including an ultraviolet solar occultation observed by the Alice UV spectrograph. As described in these reports, absorption by molecular species in Pluto’s atmosphere yielded detections of N{sub 2}, as well as hydrocarbon species such as CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, and C{sub 2}H{sub 6}. Our work here further examines this data to search for UV absorption from molecular oxygen (O{sub 2}), which has a significant cross-section in the Alice spectrograph bandpass. We find no evidence for O{sub 2} absorption and place an upper limit on the total amount of O{sub 2} in Pluto’s atmosphere as a function of tangent height up to 700 km. In most of the atmosphere, this upper limit in line-of-sight abundance units is ∼3 × 10{sup 15} cm{sup −2}, which, depending on tangent height, corresponds to a mixing ratio of 10{sup −6} to 10{sup −4}, far lower than in comet 67P/CG.

  20. Training for spacecraft technical analysts

    Science.gov (United States)

    Ayres, Thomas J.; Bryant, Larry

    1989-01-01

    Deep space missions such as Voyager rely upon a large team of expert analysts who monitor activity in the various engineering subsystems of the spacecraft and plan operations. Senior teammembers generally come from the spacecraft designers, and new analysts receive on-the-job training. Neither of these methods will suffice for the creation of a new team in the middle of a mission, which may be the situation during the Magellan mission. New approaches are recommended, including electronic documentation, explicit cognitive modeling, and coached practice with archived data.

  1. Low power arcjet system spacecraft impacts

    Science.gov (United States)

    Pencil, Eric J.; Sarmiento, Charles J.; Lichtin, D. A.; Palchefsky, J. W.; Bogorad, A. L.

    1993-01-01

    Potential plume contamination of spacecraft surfaces was investigated by positioning spacecraft material samples relative to an arcjet thruster. Samples in the simulated solar array region were exposed to the cold gas arcjet plume for 40 hrs to address concerns about contamination by backstreaming diffusion pump oil. Except for one sample, no significant changes were measured in absorptance and emittance within experimental error. Concerns about surface property degradation due to electrostatic discharges led to the investigation of the discharge phenomenon of charged samples during arcjet ignition. Short duration exposure of charged samples demonstrated that potential differences are consistently and completely eliminated within the first second of exposure to a weakly ionized plume. The spark discharge mechanism was not the discharge phenomenon. The results suggest that the arcjet could act as a charge control device on spacecraft.

  2. Multi-spacecraft observations of solar hard X-ray bursts

    International Nuclear Information System (INIS)

    Kane, S.R.

    1981-01-01

    The role of multi-spacecraft observations in solar flare research is examined from the point of view of solar hard X-ray bursts and their implications with respect to models of the impulsive phase. Multi-spacecraft measurements provide a stereoscopic view of the flare region, and hence represent the only direct method of measuring directivity of X-rays. In absence of hard X-ray imaging instruments with high spatial and temporal resolution, multi-spacecraft measurements provide the only means of determining the radial (vertical) structure of the hard X-ray source. This potential of the multi-spacecraft observations is illustrated with an analysis of the presently available observations of solar hard X-ray bursts made simultaneously by two or more of the following spacecraft: International Sun Earth Explorer-3 (ISEE-3), Pioneer Venus Orbiter (PVO), Helios-B and High Energy Astrophysical Observatory-A (HEAO-A). In particular, some conclusions have been drawn about the spatial structure and directivity of 50-100 keV X-rays from impulsive flares. Desirable features of future multi-spacecraft missions are briefly discussed followed by a short description of the hard X-ray experiment on the International Solar Polar Mission which has been planned specifically for multi-spacecraft observations of the Sun. (orig.)

  3. Multiple spacecraft observations of interplanetary shocks Four spacecraft determination of shock normals

    Science.gov (United States)

    Russell, C. T.; Mellott, M. M.; Smith, E. J.; King, J. H.

    1983-01-01

    ISEE 1, 2, 3, IMP 8, and Prognoz 7 observations of interplanetary shocks in 1978 and 1979 provide five instances where a single shock is observed by four spacecraft. These observations are used to determine best-fit normals for these five shocks. In addition to providing well-documented shocks for future investigations these data allow the evaluation of the accuracy of several shock normal determination techniques. When the angle between upstream and downstream magnetic field is greater than 20 deg, magnetic coplanarity can be an accurate single spacecraft method. However, no technique based solely on the magnetic measurements at one or multiple sites was universally accurate. Thus, the use of overdetermined shock normal solutions, utilizing plasma measurements, separation vectors, and time delays together with magnetic constraints, is recommended whenever possible.

  4. Standardized spacecraft: a methodology for decision making. AMS report No. 1199

    International Nuclear Information System (INIS)

    Greenberg, J.S.; Nichols, R.A.

    1974-01-01

    As the space program matures, more and more attention is being focused on ways to reduce the costs of performing space missions. Standardization has been suggested as a way of providing cost reductions. The question of standardization at the system level, in particular, the question of the desirability of spacecraft standardization for geocentric space missions is addressed. The spacecraft is considered to be a bus upon which mission oriented equipment, the payload, is mounted. Three basic questions are considered: (1) is spacecraft standardization economically desirable; (2) if spacecraft standardization is economically desirable, what standardized spacecraft configuration or mix of configurations and technologies should be developed; and (3) if standardized spacecraft are to be developed, what power levels should they be designed for. A methodology which has been developed and which is necessary to follow if the above questions are to be answered and informed decisions made relative to spacecraft standardization is described. To illustrate the decision making problems and the need for the developed methodology and the data requirements, typical standardized spacecraft have been considered. Both standardized solar and nuclear-powered spacecraft and mission specialized spacecraft have been conceptualized and performance and cost estimates have been made. These estimates are not considered to be of sufficient accuracy to allow decisions regarding spacecraft mix and power levels to be made at this time. The estimates are deemed of sufficient accuracy so as to demonstrate the desirability of spacecraft standardization and the methodology (as well as the need for the methodology) which is necessary to decide upon the best mix of standardized spacecraft and their design power levels. (U.S.)

  5. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  6. High-Performance Fire Detector for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The danger from fire aboard spacecraft is immediate with only moments for detection and suppression. Spacecraft are unique high-value systems where the cost of...

  7. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  8. Electromagnetic Forces on a Relativistic Spacecraft in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Loeb, Abraham, E-mail: thiemhoang@kasi.re.kr, E-mail: aloeb@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA (United States)

    2017-10-10

    A relativistic spacecraft of the type envisioned by the Breakthrough Starshot initiative will inevitably become charged through collisions with interstellar particles and UV photons. Interstellar magnetic fields would therefore deflect the trajectory of the spacecraft. We calculate the expected deflection for typical interstellar conditions. We also find that the charge distribution of the spacecraft is asymmetric, producing an electric dipole moment. The interaction between the moving electric dipole and the interstellar magnetic field is found to produce a large torque, which can result in fast oscillation of the spacecraft around the axis perpendicular to the direction of motion, with a period of ∼0.5 hr. We then study the spacecraft rotation arising from impulsive torques by dust bombardment. Finally, we discuss the effect of the spacecraft rotation and suggest several methods to mitigate it.

  9. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  10. Low-Cost, Class D Testing of Spacecraft Photovoltaic Systems Can Reduce Risk

    Science.gov (United States)

    Forgione, Joshua B.; Kojima, Gilbert K.; Hanel, Robert; Mallinson, Mark V.

    2014-01-01

    The end-to-end verification of a spacecraft photovoltaic power generation system requires light! Specifically, the standard practice for doing so is the Large Area Pulsed Solar Simulation (LAPSS). A LAPSS test can characterize a photovoltaic system's efficiency via its response to rapidly applied impulses of simulated sunlight. However, a Class D program on a constrained budget and schedule may not have the resources to ship an entire satellite for a LAPSS test alone. Such was the case with the Lunar Atmospheric and Dust Environment Explorer (LADEE) program, which was also averse to the risk of hardware damage during shipment. When the Electrical Power System (EPS) team was denied a spacecraft-level LAPSS test, the lack of an end-to-end power generation test elevated to a project-level technical risk. The team pulled together very limited resources to not only eliminate the risk, but build a process to monitor the health of the system through mission operations. We discuss a process for performing a low-cost, end-to-end test of the LADEE photovoltaic system. The approach combines system-level functional test, panel-level performance results, and periodic inspection (and repair) up until launch. Following launch, mission operations tools are utilized to assess system performance based on a scant amount of data. The process starts in manufacturing at the subcontractor. The panel manufacturer provides functional test and LAPSS data on each individual panel. We apply an initial assumption that the per-panel performance is sufficient to meet the power generation requirements. The manufacturer's data is also carried as the performance allocation for each panel during EPS system modeling and initial mission operations. During integration and test, a high-power, professional theater lamp system provides simulated sunlight to each panel on the spacecraft, thereby permitting a true end-to-end system test. A passing test results in a step response to nearly full-rated current

  11. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  12. SNAP: Small Next-generation Atmospheric Probe Concept

    Science.gov (United States)

    Sayanagi, K. M.; Dillman, R. A.; Atkinson, D. H.; Li, J.; Saikia, S.; Simon, A. A.; Spilker, T. R.; Wong, M. H.; Hope, D.

    2017-12-01

    We present a concept for a small, atmospheric probe that could be flexibly added to future missions that orbit or fly-by a giant planet as a secondary payload, which we call the Small Next-generation Atmospheric Probe (SNAP). SNAP's main scientific objectives are to determine the vertical distribution of clouds and cloud-forming chemical species, thermal stratification, and wind speed as a function of depth. As a case study, we present the advantages, cost and risk of adding SNAP to the future Uranus Orbiter and Probe flagship mission; in combination with the mission's main probe, SNAP would perform atmospheric in-situ measurements at a second location, and thus enable and enhance the scientific objectives recommended by the 2013 Planetary Science Decadal Survey and the 2014 NASA Science Plan to determine atmospheric spatial variabilities. We envision that the science objectives can be achieved with a 30-kg entry probe 0.5m in diameter (less than half the size of the Galileo probe) that reaches 5-bar pressure-altitude and returns data to Earth via the carrier spacecraft. As the baseline instruments, the probe will carry an Atmospheric Structure Instrument (ASI) that measures the temperature, pressure and acceleration, a carbon nanotube-based NanoChem atmospheric composition sensor, and an Ultra-Stable Oscillator (USO) to conduct a Doppler Wind Experiment (DWE). We also catalog promising technologies currently under development that will strengthen small atmospheric entry probe missions in the future. While SNAP is applicable to multiple planets, we examine the feasibility, benefits and impacts of adding SNAP to the Uranus Orbiter and Probe flagship mission. Our project is supported by NASA PSDS3 grant NNX17AK31G.

  13. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    Science.gov (United States)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  14. The remote atmospheric and ionospheric detection system

    International Nuclear Information System (INIS)

    McCoy, R.P.; Wolfram, K.D.; Meier, R.R.

    1986-01-01

    The Remote Atmospheric and Ionospheric Detection System (RAIDS) experiment, to fly on a TIROS spacecraft in the late 1980's, consists of a comprehensive set of one limb imaging and seven limb scanning optical sensors. These eight instruments span the spectral range from the extreme ultraviolet to the near infrared, allowing simultaneous observations of the neutral and ion composition on the day and night side as well as in the auroral region. The primary objective of RAIDS is to demonstrate a system for remote sensing of the ionosphere to produce global maps of the electron density, peak altitude and critical frequency

  15. Former Hawaii Restoration Ecologist Now Favors 'Tinkering' Over Rigor. Review of Cabin, Robert J. 2011. Intelligent tinkering: bridging the gap between science and practice.

    Science.gov (United States)

    Susan Cordell

    2012-01-01

    In his new book, Bob Cabin uses his personal involvement in the restoration of Hawai'i dry forests to illustrate the tensions that he feels exists between the science and practice of ecological restoration. It is a journey that starts out among the multidisciplinary, multi-interest perspectives associated with a grass-roots communitybased working group (Part 1,...

  16. Iodine Plasma (Electric Propulsion) Interaction with Spacecraft Materials

    Science.gov (United States)

    2016-12-28

    Teflon (AGT5, Ag-FEP) Thermal control surface (radiator) Spacecraft Exposure Soda-lime glass (74% SiO2 , 13% Na2O, 8% CaO, 4% MgO, 1% other oxide... Glass Solar panel cover Spacecraft Exposure Buna-N (acrylonitrile butadiene rubber) Seals Iodine Feed System Carbon fiber composite (epoxy resin...Fe Propellant isolator Spacecraft Exposure Lanthanum Hexaboride, LaB6 Cathode emitter Inside Cathode Yes MACOR (46% SiO2 , 17% MgO, 16% Al2O3, 10

  17. Results of induced atmosphere measurements from the Apollo program. [possible effects of the induced environment in the vicinity of manned spacecraft on future manned laboratory experiments

    Science.gov (United States)

    Naumann, R. J.

    1974-01-01

    Experiments on Apollo missions 15, 16, and 17 were utilized in an attempt to learn about the induced environment in the vicinity of manned spacecraft. Photographic sequences were examined to obtain scattered light data from the spacecraft-generated particulates during quiescence periods and after liquid dumps. The results allowed estimates of the obscuration factor and the clearing times after dumps. It was found that the clearing times were substantially longer than anticipated. The mass spectrometer detected a high molecular flux in lunar orbit which was induced by the spacecraft. It is shown that this is most likely caused by small ice crystals being continually produced in lunar orbit. Other data from the ultraviolet spectrometer and the stellar camera are also analyzed, and estimated values or upper limits are placed on the total scattering background, the size and number of particles generated, the velocity range, and the column density.

  18. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  19. Onboard cross-calibration of the Pille-ISS Detector System and measurement of radiation shielding effect of the water filled protective curtain in the ISS crew cabin

    International Nuclear Information System (INIS)

    Szántó, P.; Apáthy, I.; Deme, S.; Hirn, A.; Nikolaev, I.V.; Pázmándi, T.; Shurshakov, V.A.; Tolochek, R.V.; Yarmanova, E.N.

    2015-01-01

    As a preparation for long duration space missions it is important to determine and minimize the impact of space radiation on human health. One of the methods to diminish the radiation burden is using an additional local shielding in the places where the crewmembers can stay for longer time. To increase the crew cabin shielding a special protective curtain was designed and delivered to ISS in 2010 containing four layers of hygienic wipes and towels providing an additional shielding thickness of about 8 g/cm"2 water-equivalent matter. The radiation shielding effect of the protective curtain, in terms of absorbed dose, was measured with the thermoluminescent Pille-ISS Detector System. In order to verify the reliability of the Pille system an onboard cross-calibration was also performed. The measurement proved that potentially 25% reduction of the absorbed dose rate in the crew cabin can be achieved, that results in 8% (∼16 μGy/day) decrease of the total absorbed dose to the crew, assuming that they spend 8 h in the crew cabin a day. - Highlights: • The dose level in the ISS Zvezda crew quarters is higher than the average dose level in the module. • A shielding made of hygienic wipes and towels was set up onboard as additional protection. • Onboard cross calibration of the Pille-ISS space dosimeter (TL) system was performed. • The shielding effect of the protective curtain in terms of absorbed dose was measured with the onboard Pille system. • The shielding effect of the protective water curtain is approximately 24 ± 9% in absorbed dose.

  20. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  1. MAVEN Observations of Atmospheric Loss at Mars

    Science.gov (United States)

    Curry, Shannon; Luhmann, Janet; Jakosky, Bruce M.; Brain, David; LeBlanc, Francis; Modolo, Ronan; Halekas, Jasper S.; Schneider, Nicholas M.; Deighan, Justin; McFadden, James; Espley, Jared R.; Mitchell, David L.; Connerney, J. E. P.; Dong, Yaxue; Dong, Chuanfei; Ma, Yingjuan; Cohen, Ofer; Fränz, Markus; Holmström, Mats; Ramstad, Robin; Hara, Takuya; Lillis, Robert J.

    2016-06-01

    The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been making observations of the Martian upper atmosphere and its escape to space since November 2014. The subject of atmospheric loss at terrestrial planets is a subject of intense interest not only because of the implications for past and present water reservoirs, but also for its impacts on the habitability of a planet. Atmospheric escape may have been especially effective at Mars, relative to Earth or Venus, due to its smaller size as well as the lack of a global dynamo magnetic field. Not only is the atmosphere less gravitationally bound, but also the lack of global magnetic field allows the impinging solar wind to interact directly with the Martian atmosphere. When the upper atmosphere is exposed to the solar wind, planetary neutrals can be ionized and 'picked up' by the solar wind and swept away.Both neutral and ion escape have played significant roles the long term climate change of Mars, and the MAVEN mission was designed to directly measure both escaping planetary neutrals and ions with high energy, mass, and time resolution. We will present 1.5 years of observations of atmospheric loss at Mars over a variety of solar and solar wind conditions, including extreme space weather events. We will report the average ion escape rate and the spatial distribution of escaping ions as measured by MAVEN and place them in context both with previous measurements of ion loss by other spacecraft (e.g. Phobos 2 and Mars Express) and with estimates of neutral escape rates by MAVEN. We will then report on the measured variability in ion escape rates with different drivers (e.g. solar EUV, solar wind pressure, etc.) and the implications for the total ion escape from Mars over time. Additionally, we will also discuss the implications for atmospheric escape at exoplanets, particularly weakly magnetized planetary bodies orbiting M-dwarfs, and the dominant escape mechanisms that may drive atmospheric erosion in other

  2. Time maintenance system for the BMDO MSX spacecraft

    Science.gov (United States)

    Hermes, Martin J.

    1994-01-01

    The Johns Hopkins University Applied Physics Laboratory (APL) is responsible for designing and implementing a clock maintenance system for the Ballistic Missile Defense Organizations (BMDO) Midcourse Space Experiment (MSX) spacecraft. The MSX spacecraft has an on-board clock that will be used to control execution of time-dependent commands and to time tag all science and housekeeping data received from the spacecraft. MSX mission objectives have dictated that this spacecraft time, UTC(MSX), maintain a required accuracy with respect to UTC(USNO) of +/- 10 ms with a +/- 1 ms desired accuracy. APL's atomic time standards and the downlinked spacecraft time were used to develop a time maintenance system that will estimate the current MSX clock time offset during an APL pass and make estimates of the clock's drift and aging using the offset estimates from many passes. Using this information, the clock's accuracy will be maintained by uplinking periodic clock correction commands. The resulting time maintenance system is a combination of offset measurement, command/telemetry, and mission planning hardware and computing assets. All assets provide necessary inputs for deciding when corrections to the MSX spacecraft clock must be made to maintain its required accuracy without inhibiting other mission objectives. The MSX time maintenance system is described as a whole and the clock offset measurement subsystem, a unique combination of precision time maintenance and measurement hardware controlled by a Macintosh computer, is detailed. Simulations show that the system estimates the MSX clock offset to less than+/- 33 microseconds.

  3. METODOLOGIA PARA CONCEPÇÃO DE CABINES DE MÁQUINAS AGRÍCOLAS COM ENFOQUE NA SEGURANÇA E ERGONOMIA

    OpenAIRE

    Ulisses Benedetti Baumhardt

    2012-01-01

    Diante do atual processo de evolução tecnológica das cabines de máquinas agrícolas, impulsionada em grande parte pela agricultura de precisão, verifica-se a existência de falhas no provimento da segurança e ergonomia. Logo, o modo como as novas tecnologias estão sendo disponibilizadas ao usuário no posto de operação, bem como o ambiente envolvido, tornam-se fatores importantes a serem trabalhados. Neste sentido, esta tese objetivou o desenvolvimento de uma metodologia e ferr...

  4. LDEF materials results for spacecraft applications: Executive summary

    Science.gov (United States)

    Whitaker, A. F.; Dooling, D.

    1995-03-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  5. 3D Display of Spacecraft Dynamics Using Real Telemetry

    Directory of Open Access Journals (Sweden)

    Sanguk Lee

    2002-12-01

    Full Text Available 3D display of spacecraft motion by using telemetry data received from satellite in real-time is described. Telemetry data are converted to the appropriate form for 3-D display by the real-time preprocessor. Stored playback telemetry data also can be processed for the display. 3D display of spacecraft motion by using real telemetry data provides intuitive comprehension of spacecraft dynamics.

  6. Numerical Analysis of Magnetic Sail Spacecraft

    International Nuclear Information System (INIS)

    Sasaki, Daisuke; Yamakawa, Hiroshi; Usui, Hideyuki; Funaki, Ikkoh; Kojima, Hirotsugu

    2008-01-01

    To capture the kinetic energy of the solar wind by creating a large magnetosphere around the spacecraft, magneto-plasma sail injects a plasma jet into a strong magnetic field produced by an electromagnet onboard the spacecraft. The aim of this paper is to investigate the effect of the IMF (interplanetary magnetic field) on the magnetosphere of magneto-plasma sail. First, using an axi-symmetric two-dimensional MHD code, we numerically confirm the magnetic field inflation, and the formation of a magnetosphere by the interaction between the solar wind and the magnetic field. The expansion of an artificial magnetosphere by the plasma injection is then simulated, and we show that the magnetosphere is formed by the interaction between the solar wind and the magnetic field expanded by the plasma jet from the spacecraft. This simulation indicates the size of the artificial magnetosphere becomes smaller when applying the IMF.

  7. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  8. Research on intelligent power distribution system for spacecraft

    Science.gov (United States)

    Xia, Xiaodong; Wu, Jianju

    2017-10-01

    The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.

  9. Acoustic performance design and optimal allocation of sound package in ship cabin noise reduction

    Directory of Open Access Journals (Sweden)

    YANG Deqing

    2017-08-01

    Full Text Available The sound package in noise reduction design of ship cabins has become the main approach for the future. The sound package is a specially designed acoustic component consisting of damping materials, absorption materials, sound isolation materials and base structural materials which can achieve the prescribed performance of noise reduction. Based on the Statistical Energy Analysis(SEAmethod, quick evaluation and design methods, and the optimal allocation theory of sound packages are investigated. The standard numerical acoustic performance evaluation model, sound package optimization design model and sound package optimal allocation model are presented. A genetic algorithm is applied to solve the presented optimization problems. Design examples demonstrate the validity and efficiency of the proposed models and solutions. The presented theory and methods benefit the standardization and programming of sound package design, and decrease noise reduction costs.

  10. Power requirements for commercial communications spacecraft

    Science.gov (United States)

    Billerbeck, W. J.

    1985-01-01

    Historical data on commercial spacecraft power systems are presented and their power requirements to the growth of satellite communications channel usage are related. Some approaches for estimating future power requirements of this class of spacecraft through the year 2000 are proposed. The key technology drivers in satellite power systems are addressed. Several technological trends in such systems are described, focusing on the most useful areas for research and development of major subsystems, including solar arrays, energy storage, and power electronics equipment.

  11. Analyses of integrated aircraft cabin contaminant monitoring network based on Kalman consensus filter.

    Science.gov (United States)

    Wang, Rui; Li, Yanxiao; Sun, Hui; Chen, Zengqiang

    2017-11-01

    The modern civil aircrafts use air ventilation pressurized cabins subject to the limited space. In order to monitor multiple contaminants and overcome the hypersensitivity of the single sensor, the paper constructs an output correction integrated sensor configuration using sensors with different measurement theories after comparing to other two different configurations. This proposed configuration works as a node in the contaminant distributed wireless sensor monitoring network. The corresponding measurement error models of integrated sensors are also proposed by using the Kalman consensus filter to estimate states and conduct data fusion in order to regulate the single sensor measurement results. The paper develops the sufficient proof of the Kalman consensus filter stability when considering the system and the observation noises and compares the mean estimation and the mean consensus errors between Kalman consensus filter and local Kalman filter. The numerical example analyses show the effectiveness of the algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  13. A Sampling Based Approach to Spacecraft Autonomous Maneuvering with Safety Specifications

    Science.gov (United States)

    Starek, Joseph A.; Barbee, Brent W.; Pavone, Marco

    2015-01-01

    This paper presents a methods for safe spacecraft autonomous maneuvering that leverages robotic motion-planning techniques to spacecraft control. Specifically the scenario we consider is an in-plan rendezvous of a chaser spacecraft in proximity to a target spacecraft at the origin of the Clohessy Wiltshire Hill frame. The trajectory for the chaser spacecraft is generated in a receding horizon fashion by executing a sampling based robotic motion planning algorithm name Fast Marching Trees (FMT) which efficiently grows a tree of trajectories over a set of probabillistically drawn samples in the state space. To enforce safety the tree is only grown over actively safe samples for which there exists a one-burn collision avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc and that can be executed under potential thrusters failures. The overall approach establishes a provably correct framework for the systematic encoding of safety specifications into the spacecraft trajectory generations process and appears amenable to real time implementation on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous approach to a single client in Low Earth Orbit.

  14. Predicting Atmospheric Ionization and Excitation by Precipitating SEP and Solar Wind Protons Measured By MAVEN

    Science.gov (United States)

    Jolitz, Rebecca; Dong, Chuanfei; Lee, Christina; Lillis, Rob; Brain, David; Curry, Shannon; Halekas, Jasper; Bougher, Stephen W.; Jakosky, Bruce

    2017-10-01

    Precipitating energetic particles ionize and excite planetary atmospheres, increasing electron content and producing aurora. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutral and pass the magnetosheath, and SEPs are sufficiently energetic to cross the magnetosheath unchanged. We will compare ionization and Lyman alpha emission rates for solar wind and SEP protons during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare excitation and ionization rates by SEPs and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help quantify how SEP and solar wind protons influence atmospheric energy deposition during solar minimum.

  15. INTELIGENCIA EMOCIONAL PERCIBIDA EN LOS GRUMETES DE LA ESCUELA NAVAL DE SUBOFICIALES A.R.C. “BARRANQUILLA -- EMOTIONAL INTELLIGENCE PERCEIVED IN THE CABIN BOYS FROM THE NAVAL SCHOOL OF PETTY OFFICERS IN BARRANQUILLA, COLOMBIA

    Directory of Open Access Journals (Sweden)

    LILIA CAMPO TERNERA

    2008-06-01

    Full Text Available This study describes the emotional intelligence perceived in the cabin boys from the Naval School of Petty Officers in Barranquilla, Colombia. We worked with a sample of cabin boys to whom the TMMS-24 was applied in order to determine the levels of perception, understanding and emotional regulation, with the aim of identifying those with adequate and inadequate levels in a future time. According to the results, it will be begun a work about potentializing the emotional skills and in this way, to optimize the desired leadership in the future non-commissioned officers of the National Navy who should have it and be able to carry out the institutional mission.

  16. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  17. Special Semaphore Scheme for UHF Spacecraft Communications

    Science.gov (United States)

    Butman, Stanley; Satorius, Edgar; Ilott, Peter

    2006-01-01

    A semaphore scheme has been devised to satisfy a requirement to enable ultrahigh- frequency (UHF) radio communication between a spacecraft descending from orbit to a landing on Mars and a spacecraft, in orbit about Mars, that relays communications between Earth and the lander spacecraft. There are also two subsidiary requirements: (1) to use UHF transceivers, built and qualified for operation aboard the spacecraft that operate with residual-carrier binary phase-shift-keying (BPSK) modulation at a selectable data rate of 8, 32, 128, or 256 kb/s; and (2) to enable low-rate signaling even when received signals become so weak as to prevent communication at the minimum BPSK rate of 8 kHz. The scheme involves exploitation of Manchester encoding, which is used in conjunction with residual-carrier modulation to aid the carrier-tracking loop. By choosing various sequences of 1s, 0s, or 1s alternating with 0s to be fed to the residual-carrier modulator, one would cause the modulator to generate sidebands at a fundamental frequency of 4 or 8 kHz and harmonics thereof. These sidebands would constitute the desired semaphores. In reception, the semaphores would be detected by a software demodulator.

  18. Environmentally-induced discharge transient coupling to spacecraft

    Science.gov (United States)

    Viswanathan, R.; Barbay, G.; Stevens, N. J.

    1985-01-01

    The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.

  19. Influence of Dust Loading on Atmospheric Ionizing Radiation on Mars

    Science.gov (United States)

    Norman, Ryan B.; Gronoff, Guillaume; Mertens, Christopher J.

    2014-01-01

    Measuring the radiation environment at the surface of Mars is the primary goal of the Radiation Assessment Detector on the NASA Mars Science Laboratory's Curiosity rover. One of the conditions that Curiosity will likely encounter is a dust storm. The objective of this paper is to compute the cosmic ray ionization in different conditions, including dust storms, as these various conditions are likely to be encountered by Curiosity at some point. In the present work, the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety model, recently modified for Mars, was used along with the Badhwar & O'Neill 2010 galactic cosmic ray model. In addition to galactic cosmic rays, five different solar energetic particle event spectra were considered. For all input radiation environments, radiation dose throughout the atmosphere and at the surface was investigated as a function of atmospheric dust loading. It is demonstrated that for galactic cosmic rays, the ionization depends strongly on the atmosphere profile. Moreover, it is shown that solar energetic particle events strongly increase the ionization throughout the atmosphere, including ground level, and can account for the radio blackout conditions observed by the Mars Advanced Radar for Subsurface and Ionospheric Sounding instrument on the Mars Express spacecraft. These results demonstrate that the cosmic rays' influence on the Martian surface chemistry is strongly dependent on solar and atmospheric conditions that should be taken into account for future studies.

  20. Exposure to the atmospheric ionizing radiation environment: a study on Italian civilian aviation flight personnel

    International Nuclear Information System (INIS)

    De Angelis, G.; Caldora, M.; Santaquilani, M.; Scipione, R.; Verdecchia, A.

    2003-01-01

    A study of the effects of high-LET, low-dose and low-dose-rate ionizing radiation and associated risk analysis is underway. This study involves analyzing the atmospheric ionizing radiation exposure (including high-energy neutrons) and associated effects for members of civilian aviation flight personnel, in an attempt to better understand low-dose long-term radiation effects on human subjects. The study population includes all Italian civilian airline flight personnel, both cockpit and cabin crew members, whose work history records and actual flights (route, aircraft type, and date for each individual flight for each person where possible) are available. The dose calculations are performed along specific flight legs, taking into account the actual flight profiles for all different routes and the variations with time of solar and geomagnetic parameters. Dose values for each flight are applied to the flight history of study participants in order to estimate the individual annual and lifetime occupational radiation dose. An update of the study of the physical atmospheric ionizing radiation exposure is given here, in terms of environmental modeling, flight routes, radiation dose evaluation along different flight paths, and exposure matrix construction. The exposure analysis is still in progress, and the first results are expected soon

  1. Telemetry Timing Analysis for Image Reconstruction of Kompsat Spacecraft

    Directory of Open Access Journals (Sweden)

    Jin-Ho Lee

    2000-06-01

    Full Text Available The KOMPSAT (KOrea Multi-Purpose SATellite has two optical imaging instruments called EOC (Electro-Optical Camera and OSMI (Ocean Scanning Multispectral Imager. The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transferred from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  2. RFP to work on formation flying capabilities for spacecrafts for the GRACE project

    DEFF Research Database (Denmark)

    Riis, Troels; Thuesen, Gøsta; Kilsgaard, Søren

    1999-01-01

    The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts.......The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts....

  3. Characterization of dust aggregates in the vicinity of the Rosetta spacecraft

    Science.gov (United States)

    Güttler, C.; Hasselmann, P. H.; Li, Y.; Fulle, M.; Tubiana, C.; Kovacs, G.; Agarwal, J.; Sierks, H.; Fornasier, S.; Hofmann, M.; Gutiérrez Marqués, P.; Ott, T.; Drolshagen, E.; Bertini, I.; Osiris Team

    2017-09-01

    In a Rosetta/OSIRIS imaging activity in June 2015, we have observed the dynamic motion of particles close to the spacecraft. Due to the focal setting of the OSIRIS Wide Angle Camera (WAC), these particles were blurred, which can be used to measure their distances to the spacecraft. We detected 108 dust aggregates over a 130 minutes long sequence, and find that their sizes are around a millimetre and their distances cluster between 2 m and 40 m from the spacecraft. Their number densities are about a factor 10 higher than expected for the overall coma and highly fluctuating. Their velocities are small compared to the spacecraft orbital motion and directed away from the spacecraft, towards the comet. From this we conclude that they have interacted with the spacecraft and assess three possible scenarios. We prefer a scenario where centimeter-sized aggregates collide with the spacecraft and we would observe the fragments. Ablation of a dust layer on the spacecraft's z panel when rotated towards the sun is a reasonable alternative. We could also measure an acceleration for a subset of 18 aggregates, which is directed away from the sun and can be explain by a rocket effect, which requires a minimum ice fraction in the order of 0.1%

  4. The Zodiacal Cloud Model applied to the Martian atmosphere. Diurnal variations in meteoric ion layers

    Science.gov (United States)

    Carrillo-Sánchez, J. D.; Plane, J. M. C.; Withers, P.; Fallows, K.; Nesvorny, D.; Pokorný, P.

    2016-12-01

    Sporadic metal layers have been detected in the Martian atmosphere by radio occultation measurements using the Mars Express Orbiter and Mars Global Surveyor spacecraft. More recently, metallic ion layers produced by the meteor storm event following the close encounter between Comet Siding Spring (C/2013 A1) and Mars were identified by the Imaging UltraViolet Spectrograph (IUVS) and the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft. Work is now in progress to detect the background metal layers produced by the influx of sporadic meteors. In this study we predict the likely appearance of these layers. The Zodiacal Dust Cloud (ZDC) model for particle populations released by asteroids (AST), and dust grains from Jupiter Family Comets (JFCs) and Halley-Type Comets (HTCs) has been combined with a Monte Carlo sampling method and the Chemical ABlation MODel (CABMOD) to predict the ablation rates of Na, K, Fe, Si, Mg, Ca and Al above 40 km altitude in the Martian atmosphere. CABMOD considers the standard treatment of meteor physics, including the balance of frictional heating by radiative losses and the absorption of heat energy through temperature increases, melting phase transitions and vaporization, as well as sputtering by inelastic collisions with the air molecules. The vertical injection profiles are input into the Leeds 1-D Mars atmospheric model which includes photo-ionization, and gas-phase ion-molecule and neutral chemistry, in order to explore the evolution of the resulting metallic ions and atoms. We conclude that the dominant contributor in the Martian's atmosphere is the JFCs over other sources. Finally, we explore the changes of the neutral and ionized Na, Mg and Fe layers over a diurnal cycle.

  5. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  6. Spacecraft charging: incoming and outgoing electrons

    CERN Document Server

    Lai, Shu T.

    2013-04-22

    This paper presents an overview of the roles played by incoming and outgoing electrons in spacecraft surface and stresses the importance of surface conditions for spacecraft charging. The balance between the incoming electron current from the ambient plasma and the outgoing currents of secondary electrons, backscattered electrons, and photoelectrons from the surfaces determines the surface potential. Since surface conditions significantly affect the outgoing currents, the critical temperature and the surface potential are also significantly affected. As a corollary, high level differential charging of adjacent surfaces with very different surface conditions is a space hazard.

  7. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  8. Worldwide Spacecraft Crew Hatch History

    Science.gov (United States)

    Johnson, Gary

    2009-01-01

    The JSC Flight Safety Office has developed this compilation of historical information on spacecraft crew hatches to assist the Safety Tech Authority in the evaluation and analysis of worldwide spacecraft crew hatch design and performance. The document is prepared by SAIC s Gary Johnson, former NASA JSC S&MA Associate Director for Technical. Mr. Johnson s previous experience brings expert knowledge to assess the relevancy of data presented. He has experience with six (6) of the NASA spacecraft programs that are covered in this document: Apollo; Skylab; Apollo Soyuz Test Project (ASTP), Space Shuttle, ISS and the Shuttle/Mir Program. Mr. Johnson is also intimately familiar with the JSC Design and Procedures Standard, JPR 8080.5, having been one of its original developers. The observations and findings are presented first by country and organized within each country section by program in chronological order of emergence. A host of reference sources used to augment the personal observations and comments of the author are named within the text and/or listed in the reference section of this document. Careful attention to the selection and inclusion of photos, drawings and diagrams is used to give visual association and clarity to the topic areas examined.

  9. A user's guide to the Flexible Spacecraft Dynamics and Control Program

    Science.gov (United States)

    Fedor, J. V.

    1984-01-01

    A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.

  10. Formation of disintegration particles in spacecraft recorders

    International Nuclear Information System (INIS)

    Kurnosova, L.V.; Fradkin, M.I.; Razorenov, L.A.

    1986-01-01

    Experiments performed on the spacecraft Salyut 1, Kosmos 410, and Kosmos 443 enable us to record the disintegration products of particles which are formed in the material of the detectors on board the spacecraft. The observations were made by means of a delayed coincidence method. We have detected a meson component and also a component which is apparently associated with the generation of radioactive isotopes in the detectors

  11. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  12. Spacecraft charging and related effects during Halley encounter

    International Nuclear Information System (INIS)

    Young, D.T.

    1983-01-01

    Hypervelocity (69 km/s) impact of cometary material with surfaces of the GIOTTO spacecraft will induce a number of spurious and possibly harmful phenomena. The most serious of these is likely to be spacecraft charging that results from impact-produced plasma distributions surrounding GIOTTO. The ESA Plasma Environment Working Group, whose studies are the basis for this report, finds that charging may become significant within approx. 10 5 km of the nucleus where potentials of approx. = +20 V are to be expected. In addition to spacecraft charging, impact produced plasma may interfere with in situ plasma measurements, particularly those of ion plasma analyzers and mass spectrometers

  13. The Reliability Estimation for the Open Function of Cabin Door Affected by the Imprecise Judgment Corresponding to Distribution Hypothesis

    Science.gov (United States)

    Yu, Z. P.; Yue, Z. F.; Liu, W.

    2018-05-01

    With the development of artificial intelligence, more and more reliability experts have noticed the roles of subjective information in the reliability design of complex system. Therefore, based on the certain numbers of experiment data and expert judgments, we have divided the reliability estimation based on distribution hypothesis into cognition process and reliability calculation. Consequently, for an illustration of this modification, we have taken the information fusion based on intuitional fuzzy belief functions as the diagnosis model of cognition process, and finished the reliability estimation for the open function of cabin door affected by the imprecise judgment corresponding to distribution hypothesis.

  14. The first collection of spacecraft-associated microorganisms: a public source for extremotolerant microorganisms from spacecraft assembly clean rooms.

    Science.gov (United States)

    Moissl-Eichinger, Christine; Rettberg, Petra; Pukall, Rüdiger

    2012-11-01

    For several reasons, spacecraft are constructed in so-called clean rooms. Particles could affect the function of spacecraft instruments, and for missions under planetary protection limitations, the biological contamination has to be restricted as much as possible. The proper maintenance of clean rooms includes, for instance, constant control of humidity and temperature, air filtering, and cleaning (disinfection) of the surfaces. The combination of these conditions creates an artificial, extreme biotope for microbial survival specialists: spore formers, autotrophs, multi-resistant, facultative, or even strictly anaerobic microorganisms have been detected in clean room habitats. Based on a diversity study of European and South-American spacecraft assembly clean rooms, the European Space Agency (ESA) has initialized and funded the creation of a public library of microbial isolates. Isolates from three different European clean rooms, as well as from the final assembly and launch facility in Kourou (French Guiana), have been phylogenetically analyzed and were lyophilized for long-term storage at the German Culture Collection facilities in Brunswick, Germany (Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen). The isolates were obtained by either following the standard protocol for the determination of bioburden on, and around, spacecraft or the use of alternative cultivation strategies. Currently, the database contains 298 bacterial strains. Fifty-nine strains are Gram-negative microorganisms, belonging to the α-, β- and γ-Proteobacteria. Representatives of the Gram-positive phyla Actinobacteria, Bacteroidetes/Chlorobi, and Firmicutes were subjected to the collection. Ninety-four isolates (21 different species) of the genus Bacillus were included in the ESA collection. This public collection of extremotolerant microbes, which are adapted to a complicated artificial biotope, provides a wonderful source for industry and research focused on

  15. Investigation of atmospheric waves on Neptune

    Science.gov (United States)

    Eshleman, Von R.; Hinson, David P.

    1994-01-01

    This document constitutes the final report for grant NAGW-2442 of the Neptune Data Analysis Program, which supported research concerning atmospheric dynamics on Neptune. Professor Von R. Eshleman was the principal investigator. David P. Hinson was a Co-Investigator. The grant covered the period 1 March 1991 through 31 August 1994, including a six month no-cost extension. Funding from this grant resulted in publication of one journal article and one book chapter as well as presentation of results at two conferences and in numerous seminars. A complete bibliography is given below. A copy of the journal article is attached along with abstracts from the book chapter and the conference presentations. With support from this grant we extended our analysis and interpretation of the Voyager Project. This research contributed to an improvement in our basic understanding of atmospheric dynamics on Neptune. The highlight was the discovery and characterization of inertio-gravity waves in the troposphere and stratosphere. Results include measures of basic wave properties, such as amplitudes and vertical wavelengths, as well as estimates of the effect of the waves on the photochemistry and momentum balance of the stratosphere. This investigation also yielded a better understanding of the potential of radio occultation experiments for studies of atmospheric waves. At the same time we developed new methods of data analysis for exploiting these capabilities. These are currently being applied to radio occultation data obtained with the Magellan spacecraft to study waves in the atmosphere of Venus. Future planetary missions, such as Mars Global Surveyor and Cassini, will benefit from these accomplishments.

  16. Trace Contaminant Control for the International Space Station's Node 1- Analysis, Design, and Verification

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Trace chemical contaminant generation inside crewed spacecraft cabins is a technical and medical problem that must be continuously evaluated. Although passive control through materials selection and active control by adsorption and catalytic oxidation devices is employed during normal operations of a spacecraft, contaminant buildup can still become a problem. Buildup is particularly troublesome during the stages between the final closure of a spacecraft during ground processing and the time that a crewmember enters for the first time during the mission. Typically, the elapsed time between preflight closure and first entry on orbit for spacecraft such as Spacelab modules was 30 days. During that time, the active contamination control systems are not activated and contaminants can potentially build up to levels which exceed the spacecraft maximum allowable concentrations (SMACs) specified by NASA toxicology experts. To prevent excessively high contamination levels at crew entry, the Spacelab active contamination control system was operated for 53 hours just before launch.

  17. Injection of an electron beam into a plasma and spacecraft charging

    International Nuclear Information System (INIS)

    Okuda, H.; Kan, J.R.

    1987-01-01

    Injection of a nonrelativistic electron beam into a fully ionized plasma from a spacecraft including the effect of charging has been studied using a one-dimensional particle simulation model. It is found that the spacecraft charging remains negligible and the beam can propagate into a plasma, if the beam density is much smaller than the ambient density. When the injection current is increased by increasing the beam density, significant spacecraft charging takes place and the reflection of beam electrons back to the spacecraft reduces the beam current significantly. On the other hand, if the injection current is increased by increasing the beam energy, spacecraft charging remains negligible and a beam current much larger than the thermal return current can be injected. It is shown that the electric field caused by the beam--plasma instability accelerates the ambient electrons toward the spacecraft thereby enhancing the return current

  18. Enabling Advanced Automation in Spacecraft Operations with the Spacecraft Emergency Response System

    Science.gov (United States)

    Breed, Julie; Fox, Jeffrey A.; Powers, Edward I. (Technical Monitor)

    2001-01-01

    True autonomy is the Holy Grail of spacecraft mission operations. The goal of launching a satellite and letting it manage itself throughout its useful life is a worthy one. With true autonomy, the cost of mission operations would be reduced to a negligible amount. Under full autonomy, any problems (no matter the severity or type) that may arise with the spacecraft would be handled without any human intervention via some combination of smart sensors, on-board intelligence, and/or smart automated ground system. Until the day that complete autonomy is practical and affordable to deploy, incremental steps of deploying ever-increasing levels of automation (computerization of once manual tasks) on the ground and on the spacecraft are gradually decreasing the cost of mission operations. For example, NASA's Goddard Space Flight Center (NASA-GSFC) has been flying spacecraft with low cost operations for several years. NASA-GSFC's SMEX (Small Explorer) and MIDEX (Middle Explorer) missions have effectively deployed significant amounts of automation to enable the missions to fly predominately in 'light-out' mode. Under light-out operations the ground system is run without human intervention. Various tools perform many of the tasks previously performed by the human operators. One of the major issues in reducing human staff in favor of automation is the perceived increased in risk of losing data, or even losing a spacecraft, because of anomalous conditions that may occur when there is no one in the control center. When things go wrong, missions deploying advanced automation need to be sure that anomalous conditions are detected and that key personal are notified in a timely manner so that on-call team members can react to those conditions. To ensure the health and safety of its lights-out missions, NASA-GSFC's Advanced Automation and Autonomy branch (Code 588) developed the Spacecraft Emergency Response System (SERS). The SERS is a Web-based collaborative environment that enables

  19. Probing interferometric parallax with interplanetary spacecraft

    Science.gov (United States)

    Rodeghiero, G.; Gini, F.; Marchili, N.; Jain, P.; Ralston, J. P.; Dallacasa, D.; Naletto, G.; Possenti, A.; Barbieri, C.; Franceschini, A.; Zampieri, L.

    2017-07-01

    We describe an experimental scenario for testing a novel method to measure distance and proper motion of astronomical sources. The method is based on multi-epoch observations of amplitude or intensity correlations between separate receiving systems. This technique is called Interferometric Parallax, and efficiently exploits phase information that has traditionally been overlooked. The test case we discuss combines amplitude correlations of signals from deep space interplanetary spacecraft with those from distant galactic and extragalactic radio sources with the goal of estimating the interplanetary spacecraft distance. Interferometric parallax relies on the detection of wavefront curvature effects in signals collected by pairs of separate receiving systems. The method shows promising potentialities over current techniques when the target is unresolved from the background reference sources. Developments in this field might lead to the construction of an independent, geometrical cosmic distance ladder using a dedicated project and future generation instruments. We present a conceptual overview supported by numerical estimates of its performances applied to a spacecraft orbiting the Solar System. Simulations support the feasibility of measurements with a simple and time-saving observational scheme using current facilities.

  20. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  1. Microbiological sampling of spacecraft cabling, antennas, solar panels and thermal blankets

    Science.gov (United States)

    Koukol, R. C.

    1973-01-01

    Sampling procedures and techniques described resulted from various flight project microbiological monitoring programs of unmanned planetary spacecraft. Concurrent with development of these procedures, compatibility evaluations were effected with the cognizant spacecraft subsystem engineers to assure that degradation factors would not be induced during the monitoring program. Of significance were those areas of the spacecraft configuration for which special handling precautions and/or nonstandard sample gathering techniques were evolved. These spacecraft component areas were: cabling, high gain antenna, solar panels, and thermal blankets. The compilation of these techniques provides a historical reference for both the qualification and quantification of sampling parameters as applied to the Mariner Spacecraft of the late 1960's and early 1970's.

  2. Cooper-Harper Experience Report for Spacecraft Handling Qualities Applications

    Science.gov (United States)

    Bailey, Randall E.; Jackson, E. Bruce; Bilimoria, Karl D.; Mueller, Eric R.; Frost, Chad R.; Alderete, Thomas S.

    2009-01-01

    A synopsis of experience from the fixed-wing and rotary-wing aircraft communities in handling qualities development and the use of the Cooper-Harper pilot rating scale is presented as background for spacecraft handling qualities research, development, test, and evaluation (RDT&E). In addition, handling qualities experiences and lessons-learned from previous United States (US) spacecraft developments are reviewed. This report is intended to provide a central location for references, best practices, and lessons-learned to guide current and future spacecraft handling qualities RDT&E.

  3. Overview of SDCM - The Spacecraft Design and Cost Model

    Science.gov (United States)

    Ferebee, Melvin J.; Farmer, Jeffery T.; Andersen, Gregory C.; Flamm, Jeffery D.; Badi, Deborah M.

    1988-01-01

    The Spacecraft Design and Cost Model (SDCM) is a computer-aided design and analysis tool for synthesizing spacecraft configurations, integrating their subsystems, and generating information concerning on-orbit servicing and costs. SDCM uses a bottom-up method in which the cost and performance parameters for subsystem components are first calculated; the model then sums the contributions from individual components in order to obtain an estimate of sizes and costs for each candidate configuration within a selected spacecraft system. An optimum spacraft configuration can then be selected.

  4. Historical Mass, Power, Schedule, and Cost Growth for NASA Spacecraft

    Science.gov (United States)

    Hayhurst, Marc R.; Bitten, Robert E.; Shinn, Stephen A.; Judnick, Daniel C.; Hallgrimson, Ingrid E.; Youngs, Megan A.

    2016-01-01

    Although spacecraft developers have been moving towards standardized product lines as the aerospace industry has matured, NASA's continual need to push the cutting edge of science to accomplish unique, challenging missions can still lead to spacecraft resource growth over time. This paper assesses historical mass, power, cost, and schedule growth for multiple NASA spacecraft from the last twenty years and compares to industry reserve guidelines to understand where the guidelines may fall short. Growth is assessed from project start to launch, from the time of the preliminary design review (PDR) to launch and from the time of the critical design review (CDR) to launch. Data is also assessed not just at the spacecraft bus level, but also at the subsystem level wherever possible, to help obtain further insight into possible drivers of growth. Potential recommendations to minimize spacecraft mass, power, cost, and schedule growth for future missions are also discussed.

  5. Iterative Repair Planning for Spacecraft Operations Using the Aspen System

    Science.gov (United States)

    Rabideau, G.; Knight, R.; Chien, S.; Fukunaga, A.; Govindjee, A.

    2000-01-01

    This paper describes the Automated Scheduling and Planning Environment (ASPEN). ASPEN encodes complex spacecraft knowledge of operability constraints, flight rules, spacecraft hardware, science experiments and operations procedures to allow for automated generation of low level spacecraft sequences. Using a technique called iterative repair, ASPEN classifies constraint violations (i.e., conflicts) and attempts to repair each by performing a planning or scheduling operation. It must reason about which conflict to resolve first and what repair method to try for the given conflict. ASPEN is currently being utilized in the development of automated planner/scheduler systems for several spacecraft, including the UFO-1 naval communications satellite and the Citizen Explorer (CX1) satellite, as well as for planetary rover operations and antenna ground systems automation. This paper focuses on the algorithm and search strategies employed by ASPEN to resolve spacecraft operations constraints, as well as the data structures for representing these constraints.

  6. A Quantized State Approach to On-line Simulation for Spacecraft Autonomy

    DEFF Research Database (Denmark)

    Alminde, Lars; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2006-01-01

    Future space applications will require an increased level of operational autonomy. This calls for declarative methods for spacecraft state estimation and control, so that the spacecraft engineer can focus on modeling the spacecraft rather than implementing all details of the on-line system. Celeb...

  7. Standardization and Economics of Nuclear Spacecraft, Final Report, Phase I, Sense Study

    Energy Technology Data Exchange (ETDEWEB)

    1973-03-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft are investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 21000 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification. Three-axis stabilization is included. Several spacecraft can be stacked in the shuttle payload compartment for multi-mission launches. A reactor-powered thermoelectric generator system, operating at an electric power level of 5000 watts, is briefly studied for applicability to two test missions of divers requirements. A cost analysis indicates that use of the two standardized spacecraft offers sizable savings in comparison with specially designed solar-powered spacecraft. There is a duplicate copy.

  8. A Reconfigurable Testbed Environment for Spacecraft Autonomy

    Science.gov (United States)

    Biesiadecki, Jeffrey; Jain, Abhinandan

    1996-01-01

    A key goal of NASA's New Millennium Program is the development of technology for increased spacecraft on-board autonomy. Achievement of this objective requires the development of a new class of ground-based automony testbeds that can enable the low-cost and rapid design, test, and integration of the spacecraft autonomy software. This paper describes the development of an Autonomy Testbed Environment (ATBE) for the NMP Deep Space I comet/asteroid rendezvous mission.

  9. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  10. Deep Space Networking Experiments on the EPOXI Spacecraft

    Science.gov (United States)

    Jones, Ross M.

    2011-01-01

    NASA's Space Communications & Navigation Program within the Space Operations Directorate is operating a program to develop and deploy Disruption Tolerant Networking [DTN] technology for a wide variety of mission types by the end of 2011. DTN is an enabling element of the Interplanetary Internet where terrestrial networking protocols are generally unsuitable because they rely on timely and continuous end-to-end delivery of data and acknowledgments. In fall of 2008 and 2009 and 2011 the Jet Propulsion Laboratory installed and tested essential elements of DTN technology on the Deep Impact spacecraft. These experiments, called Deep Impact Network Experiment (DINET 1) were performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. The DINET 1 software was installed on the backup software partition on the backup flight computer for DINET 1. For DINET 1, the spacecraft was at a distance of about 15 million miles (24 million kilometers) from Earth. During DINET 1 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. The first DINET 1 experiment successfully validated many of the essential elements of the DTN protocols. DINET 2 demonstrated: 1) additional DTN functionality, 2) automated certain tasks which were manually implemented in DINET 1 and 3) installed the ION SW on nodes outside of JPL. DINET 3 plans to: 1) upgrade the LTP convergence-layer adapter to conform to the international LTP CL specification, 2) add convergence-layer "stewardship" procedures and 3) add the BSP security elements [PIB & PCB]. This paper describes the planning and execution of the flight experiment and the

  11. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  12. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  13. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  14. Spacecraft Environmental Interactions Technology, 1983

    Science.gov (United States)

    1985-01-01

    State of the art of environment interactions dealing with low-Earth-orbit plasmas; high-voltage systems; spacecraft charging; materials effects; and direction of future programs are contained in over 50 papers.

  15. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  16. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  17. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection

  18. Atmospheric Risk Assessment for the Mars Science Laboratory Entry, Descent, and Landing System

    Science.gov (United States)

    Chen, Allen; Vasavada, Ashwin; Cianciolo, Alicia; Barnes, Jeff; Tyler, Dan; Hinson, David; Lewis, Stephen

    2010-01-01

    In 2012, the Mars Science Laboratory (MSL) mission will pioneer the next generation of robotic Entry, Descent, and Landing (EDL) systems, by delivering the largest and most capable rover to date to the surface of Mars. As with previous Mars landers, atmospheric conditions during entry, descent, and landing directly impact the performance of MSL's EDL system. While the vehicle's novel guided entry system allows it to "fly out" a range of atmospheric uncertainties, its trajectory through the atmosphere creates a variety of atmospheric sensitivities not present on previous Mars entry systems and landers. Given the mission's stringent landing capability requirements, understanding the atmosphere state and spacecraft sensitivities takes on heightened importance. MSL's guided entry trajectory differs significantly from recent Mars landers and includes events that generate different atmospheric sensitivities than past missions. The existence of these sensitivities and general advancement in the state of Mars atmospheric knowledge has led the MSL team to employ new atmosphere modeling techniques in addition to past practices. A joint EDL engineering and Mars atmosphere science and modeling team has been created to identify the key system sensitivities, gather available atmospheric data sets, develop relevant atmosphere models, and formulate methods to integrate atmosphere information into EDL performance assessments. The team consists of EDL engineers, project science staff, and Mars atmospheric scientists from a variety of institutions. This paper provides an overview of the system performance sensitivities that have driven the atmosphere modeling approach, discusses the atmosphere data sets and models employed by the team as a result of the identified sensitivities, and introduces the tools used to translate atmospheric knowledge into quantitative EDL performance assessments.

  19. Precise Relative Positioning of Formation Flying Spacecraft using GPS

    NARCIS (Netherlands)

    Kroes, R.

    2006-01-01

    Spacecraft formation flying is considered as a key technology for advanced space missions. Compared to large individual spacecraft, the distribution of sensor systems amongst multiple platforms offers improved flexibility, shorter times to mission, and the prospect of being more cost effective.

  20. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  1. Predicting Ionization Rates from SEP and Solar Wind Proton Precipitation into the Martian Atmosphere

    Science.gov (United States)

    Jolitz, R.; Dong, C.; Lee, C. O.; Curry, S.; Lillis, R. J.; Brain, D.; Halekas, J. S.; Larson, D. E.; Bougher, S. W.; Jakosky, B. M.

    2017-12-01

    Precipitating energetic particles ionize planetary atmospheres and increase total electron content. At Mars, the solar wind and solar energetic particles (SEPs) can precipitate directly into the atmosphere because solar wind protons can charge exchange to become neutrals and pass through the magnetosheath, while SEPs are sufficiently energetic to cross the magnetosheath unchanged. In this study we will present predicted ionization rates and resulting electron densities produced by solar wind and SEP proton ionization during nominal solar activity and a CME shock front impact event on May 16 2016. We will use the Atmospheric Scattering of Protons and Energetic Neutrals (ASPEN) model to compare ionization by SEP and solar wind protons currently measured by the SWIA (Solar Wind Ion Analyzer) and SEP instruments aboard the MAVEN spacecraft. Results will help to quantify how the ionosphere responds to extreme solar events during solar minimum.

  2. Definition of the topological structure of the automatic control system of spacecrafts

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Zelenkov, P V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Karaseva, M V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Tsareva, E A; Tsarev, R Y

    2015-01-01

    The paper considers the problem of selection the topological structure of the automated control system of spacecrafts. The integer linear model of mathematical programming designed to define the optimal topological structure for spacecraft control is proposed. To solve the determination problem of topological structure of the control system of spacecrafts developed the procedure of the directed search of some structure variants according to the scheme 'Branch and bound'. The example of the automated control system of spacecraft development included the combination of ground control stations, managing the spacecraft of three classes with a geosynchronous orbit with constant orbital periods is presented

  3. A small spacecraft for multipoint measurement of ionospheric plasma

    Science.gov (United States)

    Roberts, T. M.; Lynch, K. A.; Clayton, R. E.; Weiss, J.; Hampton, D. L.

    2017-07-01

    Measurement of ionospheric plasma is often performed by a single in situ device or remotely using cameras and radar. This article describes a small, low-resource, deployed spacecraft used as part of a local, multipoint measurement network. A B-field aligned sounding rocket ejects four of these spin-stabilized spacecraft in a cross pattern. In this application, each spacecraft carries two retarding potential analyzers which are used to determine plasma density, flow, and ion temperature. An inertial measurement unit and a light-emitting diode array are used to determine the position and orientation of the devices after deployment. The design of this spacecraft is first described, and then results from a recent test flight are discussed. This flight demonstrated the successful operation of the deployment mechanism and telemetry systems, provided some preliminary plasma measurements in a simple mid-latitude environment, and revealed several design issues.

  4. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  5. Multiple spacecraft Michelson stellar interferometer

    Science.gov (United States)

    Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.

    1984-01-01

    Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.

  6. Spacecraft Tests of General Relativity

    Science.gov (United States)

    Anderson, John D.

    1997-01-01

    Current spacecraft tests of general relativity depend on coherent radio tracking referred to atomic frequency standards at the ground stations. This paper addresses the possibility of improved tests using essentially the current system, but with the added possibility of a space-borne atomic clock. Outside of the obvious measurement of the gravitational frequency shift of the spacecraft clock, a successor to the suborbital flight of a Scout D rocket in 1976 (GP-A Project), other metric tests would benefit most directly by a possible improved sensitivity for the reduced coherent data. For purposes of illustration, two possible missions are discussed. The first is a highly eccentric Earth orbiter, and the second a solar-conjunction experiment to measure the Shapiro time delay using coherent Doppler data instead of the conventional ranging modulation.

  7. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  8. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    Science.gov (United States)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  9. 26th Conference of Spacecraft TT&C Technology in China

    CERN Document Server

    Qian, Weiping

    2013-01-01

    Proceedings of the 26th Conference of Spacecraft TT&C Technology in China collects selected papers from the 26th Conference of Spacecraft TT&C Technology in China held in Nanjing on October 16-19, 2012. The book features state-of-the-art studies on spacecraft TT&C in China with the theme of “Shared and Flexible TT&C Systems”. The selected works can help  promote development of spacecraft TT&C technology towards interconnectivity, resource sharing, flexibility and high efficiency. Researchers and engineers in the field of aerospace engineering and communication engineering can benefit from the book. Rongjun Shen is the Academician of Chinese Academy of Engineering; Weiping Qian is the Director General of Beijing Institute of Tracking and Telecommunications Technology.

  10. SpaceX's Dragon America's next generation spacecraft

    CERN Document Server

    Seedhouse, Erik

    2016-01-01

    This book describes Dragon V2, a futuristic vehicle that not only provides a means for NASA to transport its astronauts to the orbiting outpost but also advances SpaceX’s core objective of reusability. A direct descendant of Dragon, Dragon V2 can be retrieved, refurbished and re-launched. It is a spacecraft with the potential to completely revolutionize the economics of an industry where equipment costing hundreds of millions of dollars is routinely discarded after a single use. It was presented by SpaceX CEO Elon Musk in May 2014 as the spaceship that will carry NASA astronauts to the International Space Station as soon as 2016 SpaceX’s Dragon – America’s Next Generation Spacecraft describes the extraordinary feats of engineering and human achievement that have placed this revolutionary spacecraft at the forefront of the launch industry and positioned it as the precursor for ultimately transporting humans to Mars. It describes the design and development of Dragon, provides mission highlights of the f...

  11. Autonomous spacecraft landing through human pre-attentive vision

    International Nuclear Information System (INIS)

    Schiavone, Giuseppina; Izzo, Dario; Simões, Luís F; De Croon, Guido C H E

    2012-01-01

    In this work, we exploit a computational model of human pre-attentive vision to guide the descent of a spacecraft on extraterrestrial bodies. Providing the spacecraft with high degrees of autonomy is a challenge for future space missions. Up to present, major effort in this research field has been concentrated in hazard avoidance algorithms and landmark detection, often by reference to a priori maps, ranked by scientists according to specific scientific criteria. Here, we present a bio-inspired approach based on the human ability to quickly select intrinsically salient targets in the visual scene; this ability is fundamental for fast decision-making processes in unpredictable and unknown circumstances. The proposed system integrates a simple model of the spacecraft and optimality principles which guarantee minimum fuel consumption during the landing procedure; detected salient sites are used for retargeting the spacecraft trajectory, under safety and reachability conditions. We compare the decisions taken by the proposed algorithm with that of a number of human subjects tested under the same conditions. Our results show how the developed algorithm is indistinguishable from the human subjects with respect to areas, occurrence and timing of the retargeting. (paper)

  12. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres

    Science.gov (United States)

    Valentin, J. R.

    1989-01-01

    Gas chromatography (GC) is a powerful technique for analyzing gaseous mixtures. Applied to the earth's atmosphere, GC can be used to determine the permanent gases--such as carbon dioxide, nitrogen, and oxygen--and to analyze organic pollutants in air. The U.S. National Aeronautics and Space Administration (NASA) has used GC in spacecraft missions to Mars (the Viking Biology Gas Exchange Experiment [GEX] and the Viking Gas Chromatograph-Mass Spectrometer [GC-MS]) and to Venus (the Pioneer Venus Gas Chromatograph [PVGC] on board the Pioneer Venus sounder probe) for determining the atmospheric constituents of these two planets. Even though conventional GC was very useful in the Viking and Pioneer missions, spacecraft constraints and limitations intrinsic to the technique prevented the collection of more samples. With the Venus probe, for instance, each measurement took a relatively long time to complete (10 min), and successive samples could not be introduced until the previous samples had left the column. Therefore, while the probe descended through the Venusian atmosphere, only three samples were acquired at widely separated altitudes. With the Viking mission, the sampling rate was not a serious problem because samples were acquired over a period of one year. However, the detection limit was a major disadvantage. The GC-MS could not detect simple hydrocarbons and simple alcohols below 0.1 ppm, and the GEX could not detect them below 1 ppm. For more complex molecules, the detection limits were at the parts-per-billion level for both instruments. Finally, in both the Viking and Pioneer missions, the relatively slow rate of data acquisition limited the number of analyses, and consequently, the amount of information returned. Similar constraints are expected in future NASA missions. For instance, gas chromatographic instrumentation is being developed to collect and analyze organic gases and aerosols in the atmosphere of Titan (one of Saturn's satellites). The Titan

  13. Spacecraft on-orbit deployment anomalies - What can be done?

    Science.gov (United States)

    Freeman, Michael T.

    1993-04-01

    Modern communications satellites rely heavily upon deployable appendage (i.e. solar arrays, communications antennas, etc.) to perform vital functions that enable the spacecraft to effectively conduct mission objectives. Communications and telemetry antennas provide the radiofrequency link between the spacecraft and the earth ground station, permitting data to be transmitted and received from the satellite. Solar arrays serve as the principle source of electrical energy to the satellite, and recharge internal batteries during operation. However, since satellites cannot carry backup systems, if a solar array fails to deploy, the mission is lost. This article examines the subject of on-orbit anomalies related to the deployment of spacecraft appendage, and possible causes of such failures. Topics discussed shall include mechanical launch loading, on-orbit thermal and solar concerns, reliability of spacecraft pyrotechnics, and practical limitations of ground-based deployment testing. Of particular significance, the article will feature an in-depth look at the lessons learned from the successful recovery of the Telesat Canada Anik-E2 satellite in 1991.

  14. Infrared observations of planetary atmospheres

    International Nuclear Information System (INIS)

    Orton, G.S.; Baines, K.H.; Bergstralh, J.T.

    1988-01-01

    The goal of this research in to obtain infrared data on planetary atmospheres which provide information on several aspects of structure and composition. Observations include direct mission real-time support as well as baseline monitoring preceding mission encounters. Besides providing a broader information context for spacecraft experiment data analysis, observations will provide the quantitative data base required for designing optimum remote sensing sequences and evaluating competing science priorities. In the past year, thermal images of Jupiter and Saturn were made near their oppositions in order to monitor long-term changes in their atmospheres. Infrared images of the Jovian polar stratospheric hot spots were made with IUE observations of auroral emissions. An exploratory 5-micrometer spectrum of Uranus was reduced and accepted for publication. An analysis of time-variability of temperature and cloud properties of the Jovian atomsphere was made. Development of geometric reduction programs for imaging data was initiated for the sun workstation. Near-infrared imaging observations of Jupiter were reduced and a preliminary analysis of cloud properties made. The first images of the full disk of Jupiter with a near-infrared array camera were acquired. Narrow-band (10/cm) images of Jupiter and Saturn were obtained with acousto-optical filters

  15. Correlation of ICME Magnetic Fields at Radially Aligned Spacecraft

    Science.gov (United States)

    Good, S. W.; Forsyth, R. J.; Eastwood, J. P.; Möstl, C.

    2018-03-01

    The magnetic field structures of two interplanetary coronal mass ejections (ICMEs), each observed by a pair of spacecraft close to radial alignment, have been analysed. The ICMEs were observed in situ by MESSENGER and STEREO-B in November 2010 and November 2011, while the spacecraft were separated by more than 0.6 AU in heliocentric distance, less than 4° in heliographic longitude, and less than 7° in heliographic latitude. Both ICMEs took approximately two days to travel between the spacecraft. The ICME magnetic field profiles observed at MESSENGER have been mapped to the heliocentric distance of STEREO-B and compared directly to the profiles observed by STEREO-B. Figures that result from this mapping allow for easy qualitative assessment of similarity in the profiles. Macroscale features in the profiles that varied on timescales of one hour, and which corresponded to the underlying flux rope structure of the ICMEs, were well correlated in the solar east-west and north-south directed components, with Pearson's correlation coefficients of approximately 0.85 and 0.95, respectively; microscale features with timescales of one minute were uncorrelated. Overall correlation values in the profiles of one ICME were increased when an apparent change in the flux rope axis direction between the observing spacecraft was taken into account. The high degree of similarity seen in the magnetic field profiles may be interpreted in two ways. If the spacecraft sampled the same region of each ICME ( i.e. if the spacecraft angular separations are neglected), the similarity indicates that there was little evolution in the underlying structure of the sampled region during propagation. Alternatively, if the spacecraft observed different, nearby regions within the ICMEs, it indicates that there was spatial homogeneity across those different regions. The field structure similarity observed in these ICMEs points to the value of placing in situ space weather monitors well upstream of the

  16. Rockets and spacecraft: Sine qua non of space science

    Science.gov (United States)

    1980-01-01

    The evolution of the national launch vehicle stable is presented along with lists of launch vehicles used in NASA programs. A partial list of spacecraft used throughout the world is also given. Scientific spacecraft costs are presented along with an historial overview of project development and funding in NASA.

  17. Multiple spacecraft configuration designs for coordinated flight missions

    Science.gov (United States)

    Fumenti, Federico; Theil, Stephan

    2018-06-01

    Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.

  18. The lunar atmosphere and dust environment explorer mission (LADEE)

    CERN Document Server

    Russell, Christopher

    2015-01-01

    This volume contains five articles describing the mission and its instruments.  The first paper, by the project scientist Richard C. Elphic and his colleagues, describes the mission objectives, the launch vehicle, spacecraft and the mission itself.  This is followed by a description of LADEE’s Neutral Mass Spectrometer by Paul Mahaffy and company.  This paper describes the investigation that directly targets the lunar exosphere, which can also be explored optically in the ultraviolet.  In the following article Anthony Colaprete describes LADEE’s Ultraviolet and Visible Spectrometer that operated from 230 nm to 810 nm scanning the atmosphere just above the surface.  Not only is there atmosphere but there is also dust that putatively can be levitated above the surface, possibly by electric fields on the Moon’s surface.  Mihaly Horanyi leads this investigation, called the Lunar Dust Experiment, aimed at understanding the purported observations of levitated dust.  This experiment was also very succes...

  19. The Neutral Mass Spectrometer on the Lunar Atmosphere and Dust Environment Explorer Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Hodges, R. Richard; Benna, Mehdi; King, Todd; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carigan, Daniel; Errigo, Therese; Harpold, Daniel N.; hide

    2014-01-01

    The Neutral Mass Spectrometer (NMS) of the Lunar Atmosphere and Dust Environment Explorer (LADEE) Mission is designed to measure the composition and variability of the tenuous lunar atmosphere. The NMS complements two other instruments on the LADEE spacecraft designed to secure spectroscopic measurements of lunar composition and in situ measurement of lunar dust over the course of a 100-day mission in order to sample multiple lunation periods. The NMS utilizes a dual ion source designed to measure both surface reactive and inert species and a quadrupole analyzer. The NMS is expected to secure time resolved measurements of helium and argon and determine abundance or upper limits for many other species either sputtered or thermally evolved from the lunar surface.

  20. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  1. Novel Composite Membrane for Space Life Supporting System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space life-supporting systems require effective removal of metabolic CO2 from the cabin atmosphere with minimal loss of O2. Conventional techniques, using either...

  2. Conceptual definition of Automated Power Systems Management. [for planetary spacecraft

    Science.gov (United States)

    Imamura, M. S.; Skelly, L.; Weiner, H.

    1977-01-01

    Automated Power Systems Management (APSM) is defined as the capability of a spacecraft power system to automatically perform monitoring, computational, command, and control functions without ground intervention. Power systems for future planetary spacecraft must have this capability because they must perform up to 10 years, and accommodate real-time changes in mission execution autonomously. Specific APSM functions include fault detection, isolation, and correction; system performance and load profile prediction; power system optimization; system checkout; and data storage and transmission control. This paper describes the basic method of implementing these specific functions. The APSM hardware includes a central power system computer and a processor dedicated to each major power system subassembly along with digital interface circuitry. The major payoffs anticipated are in enhancement of spacecraft reliability and life and reduction of overall spacecraft program cost.

  3. Ad hoc laser networks component technology for modular spacecraft

    Science.gov (United States)

    Huang, Xiujun; Shi, Dele; Shen, Jingshi

    2017-10-01

    Distributed reconfigurable satellite is a new kind of spacecraft system, which is based on a flexible platform of modularization and standardization. Based on the module data flow analysis of the spacecraft, this paper proposes a network component of ad hoc Laser networks architecture. Low speed control network with high speed load network of Microwave-Laser communication mode, no mesh network mode, to improve the flexibility of the network. Ad hoc Laser networks component technology was developed, and carried out the related performance testing and experiment. The results showed that ad hoc Laser networks components can meet the demand of future networking between the module of spacecraft.

  4. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    Science.gov (United States)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  5. DOD Recovery personnel and NASA technicians inspect Friendship 7 spacecraft

    Science.gov (United States)

    1964-01-01

    Department of Defense Recovery personnel and spacecraft technicians from NASA adn McDonnell Aircraft Corp., inspect Astronaut John Glenn's Mercury spacecraft, Friendship 7, following its return to Cape Canaveral after recovery in the Atlantic Ocean.

  6. A Study of Learning Curve Impact on Three Identical Small Spacecraft

    Science.gov (United States)

    Chen, Guangming; McLennan, Douglas D.

    2003-01-01

    With an eye to the future strategic needs of NASA, the New Millennium Program is funding the Space Technology 5 (ST-5) project to address the future needs in the area of small satellites in constellation missions. The ST-5 project, being developed at Goddard Space Flight Center, involves the development and simultaneous launch of three small, 20-kilogram-class spacecraft. ST-5 is only a test drive and future NASA science missions may call for fleets of spacecraft containing tens of smart and capable satellites in an intelligent constellation. The objective of ST-5 project is to develop three such pioneering small spacecraft for flight validation of several critical new technologies. The ST-5 project team at Goddard Space Flight Center has completed the spacecraft design, is now building and testing the three flight units. The launch readiness date (LRD) is in December 2005. A critical part of ST-5 mission is to prove that it is possible to build these small but capable spacecraft with recurring cost low enough to make future NASA s multi- spacecraft constellation missions viable from a cost standpoint.

  7. Spacecraft navigation at Mars using earth-based and in situ radio tracking techniques

    Science.gov (United States)

    Thurman, S. W.; Edwards, C. D.; Kahn, R. D.; Vijayaraghavan, A.; Hastrup, R. C.; Cesarone, R. J.

    1992-08-01

    A survey of earth-based and in situ radiometric data types and results from a number of studies investigating potential radio navigation performance for spacecraft approaching/orbiting Mars and for landed spacecraft and rovers on the surface of Mars are presented. The performance of Doppler, ranging and interferometry earth-based data types involving single or multiple spacecraft is addressed. This evaluation is conducted with that of in situ data types, such as Doppler and ranging measurements between two spacecraft near Mars, or between a spacecraft and one or more surface radio beacons.

  8. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    Directory of Open Access Journals (Sweden)

    Yan-Yang Lu

    2016-06-01

    Full Text Available An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs and carbonyl compounds (CCs in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches.

  9. Comprehension of Spacecraft Telemetry Using Hierarchical Specifications of Behavior

    Science.gov (United States)

    Havelund, Klaus; Joshi, Rajeev

    2014-01-01

    A key challenge in operating remote spacecraft is that ground operators must rely on the limited visibility available through spacecraft telemetry in order to assess spacecraft health and operational status. We describe a tool for processing spacecraft telemetry that allows ground operators to impose structure on received telemetry in order to achieve a better comprehension of system state. A key element of our approach is the design of a domain-specific language that allows operators to express models of expected system behavior using partial specifications. The language allows behavior specifications with data fields, similar to other recent runtime verification systems. What is notable about our approach is the ability to develop hierarchical specifications of behavior. The language is implemented as an internal DSL in the Scala programming language that synthesizes rules from patterns of specification behavior. The rules are automatically applied to received telemetry and the inferred behaviors are available to ground operators using a visualization interface that makes it easier to understand and track spacecraft state. We describe initial results from applying our tool to telemetry received from the Curiosity rover currently roving the surface of Mars, where the visualizations are being used to trend subsystem behaviors, in order to identify potential problems before they happen. However, the technology is completely general and can be applied to any system that generates telemetry such as event logs.

  10. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  11. The Stardust spacecraft arrives at KSC

    Science.gov (United States)

    1998-01-01

    After arrival at the Shuttle Landing Facility in the early morning hours, the crated Stardust spacecraft waits to be unloaded from the aircraft. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re- entry capsule to be jettisoned from Stardust as it swings by in January 2006.

  12. Improved techniques for predicting spacecraft power

    International Nuclear Information System (INIS)

    Chmielewski, A.B.

    1987-01-01

    Radioisotope Thermoelectric Generators (RTGs) are going to supply power for the NASA Galileo and Ulysses spacecraft now scheduled to be launched in 1989 and 1990. The duration of the Galileo mission is expected to be over 8 years. This brings the total RTG lifetime to 13 years. In 13 years, the RTG power drops more than 20 percent leaving a very small power margin over what is consumed by the spacecraft. Thus it is very important to accurately predict the RTG performance and be able to assess the magnitude of errors involved. The paper lists all the error sources involved in the RTG power predictions and describes a statistical method for calculating the tolerance

  13. Humidity Testing for Human Rated Spacecraft

    Science.gov (United States)

    Johnson, Gary B.

    2009-01-01

    Determination that equipment can operate in and survive exposure to the humidity environments unique to human rated spacecraft presents widely varying challenges. Equipment may need to operate in habitable volumes where the atmosphere contains perspiration, exhalation, and residual moisture. Equipment located outside the pressurized volumes may be exposed to repetitive diurnal cycles that may result in moisture absorption and/or condensation. Equipment may be thermally affected by conduction to coldplate or structure, by forced or ambient air convection (hot/cold or wet/dry), or by radiation to space through windows or hatches. The equipment s on/off state also contributes to the equipment s susceptibility to humidity. Like-equipment is sometimes used in more than one location and under varying operational modes. Due to these challenges, developing a test scenario that bounds all physical, environmental and operational modes for both pressurized and unpressurized volumes requires an integrated assessment to determine the "worst-case combined conditions." Such an assessment was performed for the Constellation program, considering all of the aforementioned variables; and a test profile was developed based on approximately 300 variable combinations. The test profile has been vetted by several subject matter experts and partially validated by testing. Final testing to determine the efficacy of the test profile on actual space hardware is in the planning stages. When validation is completed, the test profile will be formally incorporated into NASA document CxP 30036, "Constellation Environmental Qualification and Acceptance Testing Requirements (CEQATR)."

  14. Propulsion Trade Studies for Spacecraft Swarm Mission Design

    Science.gov (United States)

    Dono, Andres; Plice, Laura; Mueting, Joel; Conn, Tracie; Ho, Michael

    2018-01-01

    Spacecraft swarms constitute a challenge from an orbital mechanics standpoint. Traditional mission design involves the application of methodical processes where predefined maneuvers for an individual spacecraft are planned in advance. This approach does not scale to spacecraft swarms consisting of many satellites orbiting in close proximity; non-deterministic maneuvers cannot be preplanned due to the large number of units and the uncertainties associated with their differential deployment and orbital motion. For autonomous small sat swarms in LEO, we investigate two approaches for controlling the relative motion of a swarm. The first method involves modified miniature phasing maneuvers, where maneuvers are prescribed that cancel the differential delta V of each CubeSat's deployment vector. The second method relies on artificial potential functions (APFs) to contain the spacecraft within a volumetric boundary and avoid collisions. Performance results and required delta V budgets are summarized, indicating that each method has advantages and drawbacks for particular applications. The mini phasing maneuvers are more predictable and sustainable. The APF approach provides a more responsive and distributed performance, but at considerable propellant cost. After considering current state of the art CubeSat propulsion systems, we conclude that the first approach is feasible, but the modified APF method of requires too much control authority to be enabled by current propulsion systems.

  15. Video-Game-Like Engine for Depicting Spacecraft Trajectories

    Science.gov (United States)

    Upchurch, Paul R.

    2009-01-01

    GoView is a video-game-like software engine, written in the C and C++ computing languages, that enables real-time, three-dimensional (3D)-appearing visual representation of spacecraft and trajectories (1) from any perspective; (2) at any spatial scale from spacecraft to Solar-system dimensions; (3) in user-selectable time scales; (4) in the past, present, and/or future; (5) with varying speeds; and (6) forward or backward in time. GoView constructs an interactive 3D world by use of spacecraft-mission data from pre-existing engineering software tools. GoView can also be used to produce distributable application programs for depicting NASA orbital missions on personal computers running the Windows XP, Mac OsX, and Linux operating systems. GoView enables seamless rendering of Cartesian coordinate spaces with programmable graphics hardware, whereas prior programs for depicting spacecraft trajectories variously require non-Cartesian coordinates and/or are not compatible with programmable hardware. GoView incorporates an algorithm for nonlinear interpolation between arbitrary reference frames, whereas the prior programs are restricted to special classes of inertial and non-inertial reference frames. Finally, whereas the prior programs present complex user interfaces requiring hours of training, the GoView interface provides guidance, enabling use without any training.

  16. Application of the NASCAP Spacecraft Simulation Tool to Investigate Electrodynamic Tether Current Collection in LEO

    Science.gov (United States)

    Adams, Mitzi; HabashKrause, Linda

    2012-01-01

    Recent interest in using electrodynamic tethers (EDTs) for orbital maneuvering in Low Earth Orbit (LEO) has prompted the development of the Marshall ElectroDynamic Tether Orbit Propagator (MEDTOP) model. The model is comprised of several modules which address various aspects of EDT propulsion, including calculation of state vectors using a standard orbit propagator (e.g., J2), an atmospheric drag model, realistic ionospheric and magnetic field models, space weather effects, and tether librations. The natural electromotive force (EMF) attained during a radially-aligned conductive tether results in electrons flowing down the tether and accumulating on the lower-altitude spacecraft. The energy that drives this EMF is sourced from the orbital energy of the system; thus, EDTs are often proposed as de-orbiting systems. However, when the current is reversed using satellite charged particle sources, then propulsion is possible. One of the most difficult challenges of the modeling effort is to ascertain the equivalent circuit between the spacecraft and the ionospheric plasma. The present study investigates the use of the NASA Charging Analyzer Program (NASCAP) to calculate currents to and from the tethered satellites and the ionospheric plasma. NASCAP is a sophisticated set of computational tools to model the surface charging of three-dimensional (3D) spacecraft surfaces in a time-varying space environment. The model's surface is tessellated into a collection of facets, and NASCAP calculates currents and potentials for each one. Additionally, NASCAP provides for the construction of one or more nested grids to calculate space potential and time-varying electric fields. This provides for the capability to track individual particles orbits, to model charged particle wakes, and to incorporate external charged particle sources. With this study, we have developed a model of calculating currents incident onto an electrodynamic tethered satellite system, and first results are shown

  17. Equations of Motion of Free-Floating Spacecraft-Manipulator Systems: An Engineer's Tutorial

    Directory of Open Access Journals (Sweden)

    Markus Wilde

    2018-04-01

    Full Text Available The paper provides a step-by-step tutorial on the Generalized Jacobian Matrix (GJM approach for modeling and simulation of spacecraft-manipulator systems. The General Jacobian Matrix approach describes the motion of the end-effector of an underactuated manipulator system solely by the manipulator joint rotations, with the attitude and position of the base-spacecraft resulting from the manipulator motion. The coupling of the manipulator motion with the base-spacecraft are thus expressed in a generalized inertia matrix and a GJM. The focus of the paper lies on the complete analytic derivation of the generalized equations of motion of a free-floating spacecraft-manipulator system. This includes symbolic analytic expressions for all inertia property matrices of the system, including their time derivatives and joint-angle derivatives, as well as an expression for the generalized Jacobian of a generic point on any link of the spacecraft-manipulator system. The kinematics structure of the spacecraft-manipulator system is described both in terms of direction-cosine matrices and unit quaternions. An additional important contribution of this paper is to propose a new and more detailed definition for the modes of maneuvering of a spacecraft-manipulator. In particular, the two commonly used categories free-flying and free-floating are expanded by the introduction of five categories, namely floating, rotation-floating, rotation-flying, translation-flying, and flying. A fully-symbolic and a partially-symbolic option for the implementation of a numerical simulation model based on the proposed analytic approach are introduced and exemplary simulation results for a planar four-link spacecraft-manipulator system and a spatial six-link spacecraft manipulator system are presented.

  18. Effect of Environmental Variables on the Flammability of Fire Resistant Materials

    OpenAIRE

    Osorio, Andres Felipe

    2014-01-01

    This work investigates the effects of external radiation, ambient pressure and microgravity on the flammability limits of fire-resistant (FR) materials. Future space missions may require spacecraft cabin environments different than those used in the International Space Station, 21%O2, 101.3kPa. Environmental variables include flow velocity, oxygen concentration, ambient pressure, micro or partial-gravity, orientation, presence of an external radiant flux, etc. Fire-resistant materials are use...

  19. Spacecraft Charging Modeling -- Nascap-2k 2014 Annual Report

    Science.gov (United States)

    2014-09-19

    appears to work similarly in Internet Explorer, FireFox , and Opera, but fails in Safari and Chrome. Note that the SEE Spacecraft Charging Handbook is... Characteristics of Spacecraft Charging in Low Earth Orbit, J Geophys Res. 11 7, doi: 10.1029/20 11JA016875, 2012. 2 M. Cho, K. Saito, T. Hamanaga, Data

  20. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.