WorldWideScience

Sample records for spacecraft attitude control

  1. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  2. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  3. Event-triggered attitude control of spacecraft

    Science.gov (United States)

    Wu, Baolin; Shen, Qiang; Cao, Xibin

    2018-02-01

    The problem of spacecraft attitude stabilization control system with limited communication and external disturbances is investigated based on an event-triggered control scheme. In the proposed scheme, information of attitude and control torque only need to be transmitted at some discrete triggered times when a defined measurement error exceeds a state-dependent threshold. The proposed control scheme not only guarantees that spacecraft attitude control errors converge toward a small invariant set containing the origin, but also ensures that there is no accumulation of triggering instants. The performance of the proposed control scheme is demonstrated through numerical simulation.

  4. Spacecraft Attitude Control in Hamiltonian Framework

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    The objective of this paper is to give a design scheme for attitude control algorithms of a generic spacecraft. Along with the system model formulated in the Hamilton's canonical form the algorithm uses information about a required potential energy and a dissipative term. The control action...

  5. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  6. Spacecraft attitude and velocity control system

    Science.gov (United States)

    Paluszek, Michael A. (Inventor); Piper, Jr., George E. (Inventor)

    1992-01-01

    A spacecraft attitude and/or velocity control system includes a controller which responds to at least attitude errors to produce command signals representing a force vector F and a torque vector T, each having three orthogonal components, which represent the forces and torques which are to be generated by the thrusters. The thrusters may include magnetic torquer or reaction wheels. Six difference equations are generated, three having the form ##EQU1## where a.sub.j is the maximum torque which the j.sup.th thruster can produce, b.sub.j is the maximum force which the j.sup.th thruster can produce, and .alpha..sub.j is a variable representing the throttling factor of the j.sup.th thruster, which may range from zero to unity. The six equations are summed to produce a single scalar equation relating variables .alpha..sub.j to a performance index Z: ##EQU2## Those values of .alpha. which maximize the value of Z are determined by a method for solving linear equations, such as a linear programming method. The Simplex method may be used. The values of .alpha..sub.j are applied to control the corresponding thrusters.

  7. Experiments study on attitude coupling control method for flexible spacecraft

    Science.gov (United States)

    Wang, Jie; Li, Dongxu

    2018-06-01

    High pointing accuracy and stabilization are significant for spacecrafts to carry out Earth observing, laser communication and space exploration missions. However, when a spacecraft undergoes large angle maneuver, the excited elastic oscillation of flexible appendages, for instance, solar wing and onboard antenna, would downgrade the performance of the spacecraft platform. This paper proposes a coupling control method, which synthesizes the adaptive sliding mode controller and the positive position feedback (PPF) controller, to control the attitude and suppress the elastic vibration simultaneously. Because of its prominent performance for attitude tracking and stabilization, the proposed method is capable of slewing the flexible spacecraft with a large angle. Also, the method is robust to parametric uncertainties of the spacecraft model. Numerical simulations are carried out with a hub-plate system which undergoes a single-axis attitude maneuver. An attitude control testbed for the flexible spacecraft is established and experiments are conducted to validate the coupling control method. Both numerical and experimental results demonstrate that the method discussed above can effectively decrease the stabilization time and improve the attitude accuracy of the flexible spacecraft.

  8. Optimal Sliding Mode Controllers for Attitude Stabilization of Flexible Spacecraft

    Directory of Open Access Journals (Sweden)

    Chutiphon Pukdeboon

    2011-01-01

    Full Text Available The robust optimal attitude control problem for a flexible spacecraft is considered. Two optimal sliding mode control laws that ensure the exponential convergence of the attitude control system are developed. Integral sliding mode control (ISMC is applied to combine the first-order sliding mode with optimal control and is used to control quaternion-based spacecraft attitude manoeuvres with external disturbances and an uncertainty inertia matrix. For the optimal control part the state-dependent Riccati equation (SDRE and optimal Lyapunov techniques are employed to solve the infinite-time nonlinear optimal control problem. The second method of Lyapunov is used to guarantee the stability of the attitude control system under the action of the proposed control laws. An example of multiaxial attitude manoeuvres is presented and simulation results are included to verify the usefulness of the developed controllers.

  9. Application of square-root filtering for spacecraft attitude control

    Science.gov (United States)

    Sorensen, J. A.; Schmidt, S. F.; Goka, T.

    1978-01-01

    Suitable digital algorithms are developed and tested for providing on-board precision attitude estimation and pointing control for potential use in the Landsat-D spacecraft. These algorithms provide pointing accuracy of better than 0.01 deg. To obtain necessary precision with efficient software, a six state-variable square-root Kalman filter combines two star tracker measurements to update attitude estimates obtained from processing three gyro outputs. The validity of the estimation and control algorithms are established, and the sensitivity of their performance to various error sources and software parameters are investigated by detailed digital simulation. Spacecraft computer memory, cycle time, and accuracy requirements are estimated.

  10. Attitude tracking control of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-12-01

    This paper is focused on attitude tracking control of a spacecraft that is equipped with flexible appendage and partially filled liquid propellant tank. The large amplitude liquid slosh is included by using a moving pulsating ball model that is further improved to estimate the settling location of liquid in microgravity or a zero-g environment. The flexible appendage is modelled as a three-dimensional Bernoulli-Euler beam, and the assumed modal method is employed. A hybrid controller that combines sliding mode control with an adaptive algorithm is designed for spacecraft to perform attitude tracking. The proposed controller has proved to be asymptotically stable. A nonlinear model for the overall coupled system including spacecraft attitude dynamics, liquid slosh, structural vibration and control action is established. Numerical simulation results are presented to show the dynamic behaviors of the coupled system and to verify the effectiveness of the control approach when the spacecraft undergoes the disturbance produced by large amplitude slosh and appendage vibration. Lastly, the designed adaptive algorithm is found to be effective to improve the precision of attitude tracking.

  11. NASA Workshop on Hybrid (Mixed-Actuator) Spacecraft Attitude Control

    Science.gov (United States)

    Dennehy, Cornelius J.; Kunz, Nans

    2014-01-01

    At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.

  12. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  13. Stabilization of rotational motion with application to spacecraft attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2001-01-01

    for global stabilization of a rotary motion. Along with a model of the system formulated in the Hamilton's canonical from the algorithm uses information about a required potential energy and a dissipation term. The control action is the sum of the gradient of the potential energy and the dissipation force......The objective of this paper is to develop a control scheme for stabilization of a hamiltonian system. The method generalizes the results available in the literature on motion control in the Euclidean space to an arbitrary differrential manifol equipped with a metric. This modification is essencial...... on a Riemannian manifold. The Lyapnov stability theory is adapted and reformulated to fit to the new framework of Riemannian manifolds. Toillustrate the results a spacecraft attitude control problem is considered. Firstly, a global canonical representation for the spacecraft motion is found, then three spacecraft...

  14. Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

    Science.gov (United States)

    Keum, Jung-Hoon; Ra, Sung-Woong

    2009-12-01

    Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

  15. Adaptive Jacobian Fuzzy Attitude Control for Flexible Spacecraft Combined Attitude and Sun Tracking System

    Science.gov (United States)

    Chak, Yew-Chung; Varatharajoo, Renuganth

    2016-07-01

    Many spacecraft attitude control systems today use reaction wheels to deliver precise torques to achieve three-axis attitude stabilization. However, irrecoverable mechanical failure of reaction wheels could potentially lead to mission interruption or total loss. The electrically-powered Solar Array Drive Assemblies (SADA) are usually installed in the pitch axis which rotate the solar arrays to track the Sun, can produce torques to compensate for the pitch-axis wheel failure. In addition, the attitude control of a flexible spacecraft poses a difficult problem. These difficulties include the strong nonlinear coupled dynamics between the rigid hub and flexible solar arrays, and the imprecisely known system parameters, such as inertia matrix, damping ratios, and flexible mode frequencies. In order to overcome these drawbacks, the adaptive Jacobian tracking fuzzy control is proposed for the combined attitude and sun-tracking control problem of a flexible spacecraft during attitude maneuvers in this work. For the adaptation of kinematic and dynamic uncertainties, the proposed scheme uses an adaptive sliding vector based on estimated attitude velocity via approximate Jacobian matrix. The unknown nonlinearities are approximated by deriving the fuzzy models with a set of linguistic If-Then rules using the idea of sector nonlinearity and local approximation in fuzzy partition spaces. The uncertain parameters of the estimated nonlinearities and the Jacobian matrix are being adjusted online by an adaptive law to realize feedback control. The attitude of the spacecraft can be directly controlled with the Jacobian feedback control when the attitude pointing trajectory is designed with respect to the spacecraft coordinate frame itself. A significant feature of this work is that the proposed adaptive Jacobian tracking scheme will result in not only the convergence of angular position and angular velocity tracking errors, but also the convergence of estimated angular velocity to

  16. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    Science.gov (United States)

    Cho, Sung-Ki; Cochran, John E., Jr.

    2002-06-01

    Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  17. Attitude and Configuration Control of Flexible Multi-Body Spacecraft

    Directory of Open Access Journals (Sweden)

    Sungki Cho

    2002-06-01

    Full Text Available Multi-body spacecraft attitude and configuration control formulations based on the use of collaborative control theory are considered. The control formulations are based on two-player, nonzero-sum, differential game theory applied using a Nash strategy. It is desired that the control laws allow different components of the multi-body system to perform different tasks. For example, it may be desired that one body points toward a fixed star while another body in the system slews to track another satellite. Although similar to the linear quadratic regulator formulation, the collaborative control formulation contains a number of additional design parameters because the problem is formulated as two control problems coupled together. The use of the freedom of the partitioning of the total problem into two coupled control problems and the selection of the elements of the cross-coupling matrices are specific problems addressed in this paper. Examples are used to show that significant improvement in performance, as measured by realistic criteria, of collaborative control over conventional linear quadratic regulator control can be achieved by using proposed design guidelines.

  18. Study on the Attitude Control of Spacecraft Using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Ju-Young Du

    1998-06-01

    Full Text Available Attitude determination and control of satellite is important component which determines the accomplish satellite missions. In this study, attitude control using reaction wheels and momentum dumping of wheels are considered. Attitude control law is designed by Sliding control and LQR. Attitude maneuver control law is obtained by Shooting method. Wheels momentum dumping control law is designed by Bang-Bang control. Four reaction wheels are configurated for minimized the electric power consumption. Wheels control torque and magnetic moment of magnetic torquer are limited.

  19. Periodic H-2 Synthesis for Spacecraft Attitude Control with Magnetometers

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Stoustrup, Jakob

    2004-01-01

    between the Earth´s magnetic field and an artificial magnetic field generated by the coils produces a control torque. The magnetic attitude control is intrinsically periodic due to cyclic variation of the geomagnetic field in orbit. The control performance is specified by the generalized H2 operator norm....... A linear matrix inequality-based algorithm is proposed for attitude control synthesis. Simulation results are provided, showing the prospect of the concept for onboard implementation....

  20. Neural network-based distributed attitude coordination control for spacecraft formation flying with input saturation.

    Science.gov (United States)

    Zou, An-Min; Kumar, Krishna Dev

    2012-07-01

    This brief considers the attitude coordination control problem for spacecraft formation flying when only a subset of the group members has access to the common reference attitude. A quaternion-based distributed attitude coordination control scheme is proposed with consideration of the input saturation and with the aid of the sliding-mode observer, separation principle theorem, Chebyshev neural networks, smooth projection algorithm, and robust control technique. Using graph theory and a Lyapunov-based approach, it is shown that the distributed controller can guarantee the attitude of all spacecraft to converge to a common time-varying reference attitude when the reference attitude is available only to a portion of the group of spacecraft. Numerical simulations are presented to demonstrate the performance of the proposed distributed controller.

  1. Chattering-Free Adaptive Sliding Mode Control for Attitude Tracking of Spacecraft with External Disturbance

    Directory of Open Access Journals (Sweden)

    Xuxi Zhang

    2014-01-01

    Full Text Available The attitude tracking problem of spacecraft in the presence of unknown disturbance is investigated. By using the adaptive control technique and the Lyapunov stability theory, a chattering-free adaptive sliding mode control law is proposed for the attitude tracking problem of spacecraft with unknown disturbance. Simulation results are employed to demonstrate the effectiveness of the proposed control design technique in this paper.

  2. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks.

    Science.gov (United States)

    Zou, An-Min; Dev Kumar, Krishna; Hou, Zeng-Guang

    2010-09-01

    This paper investigates the problem of output feedback attitude control of an uncertain spacecraft. Two robust adaptive output feedback controllers based on Chebyshev neural networks (CNN) termed adaptive neural networks (NN) controller-I and adaptive NN controller-II are proposed for the attitude tracking control of spacecraft. The four-parameter representations (quaternion) are employed to describe the spacecraft attitude for global representation without singularities. The nonlinear reduced-order observer is used to estimate the derivative of the spacecraft output, and the CNN is introduced to further improve the control performance through approximating the spacecraft attitude motion. The implementation of the basis functions of the CNN used in the proposed controllers depends only on the desired signals, and the smooth robust compensator using the hyperbolic tangent function is employed to counteract the CNN approximation errors and external disturbances. The adaptive NN controller-II can efficiently avoid the over-estimation problem (i.e., the bound of the CNNs output is much larger than that of the approximated unknown function, and hence, the control input may be very large) existing in the adaptive NN controller-I. Both adaptive output feedback controllers using CNN can guarantee that all signals in the resulting closed-loop system are uniformly ultimately bounded. For performance comparisons, the standard adaptive controller using the linear parameterization of spacecraft attitude motion is also developed. Simulation studies are presented to show the advantages of the proposed CNN-based output feedback approach over the standard adaptive output feedback approach.

  3. Spacecraft Hybrid (Mixed-Actuator) Attitude Control Experiences on NASA Science Missions

    Science.gov (United States)

    Dennehy, Cornelius J.

    2014-01-01

    There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.

  4. Combined spacecraft orbit and attitude control through extended Kalman filtering of magnetometer, gyro, and GPS measurements

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2014-06-01

    Full Text Available The main goal of this research is to establish spacecraft orbit and attitude control algorithms based on extended Kalman filter which provides estimates of spacecraft orbital and attitude states. The control and estimation algorithms must be capable of dealing with the spacecraft conditions during the detumbling and attitude acquisition modes of operation. These conditions are characterized by nonlinearities represented by large initial attitude angles, large initial angular velocities, large initial attitude estimation error, and large initial position estimation error. All of the developed estimation and control algorithms are suitable for application to the next Egyptian scientific satellite, EGYPTSAT-2. The parameters of the case-study spacecraft are similar but not identical to the former Egyptian satellite EGYPTSAT-1. This is done because the parameters of EGYPTSAT-2 satellite have not been consolidated yet. The sensors utilized are gyro, magnetometer, and GPS. Gyro and magnetometer are utilized to provide measurements for the estimates of spacecraft attitude state vector where as magnetometer and GPS are utilized to provide measurements for the estimates of spacecraft orbital state vector.

  5. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels

    Science.gov (United States)

    Liu, Feng; Yue, Baozeng; Zhao, Liangyu

    2018-02-01

    A liquid-filled flexible spacecraft is essentially a time-variant fully-coupled system, whose dynamics characteristics are closely associated with its motion features. This paper focuses on the mathematical modelling and attitude control of the spacecraft coupled with fuel sloshing dynamics and flexible solar panels vibration. The slosh motion is represented by a spherical pendulum, whose motion description method is improved by using split variable operation. Benefiting from this improvement, the nonlinear lateral sloshing and the rotary sloshing as well as the rigid motion of a liquid respect to the spacecraft can be approximately described. The assumed modes discretization method has been adopted to approximate the elastic displacements of the attached panels, and the coupled dynamics is derived by using the Lagrangian formulation. A variable substitution method is proposed to obtain the apparently-uncoupled mathematical model of the rigid-flexible-liquid spacecraft. After linearization, this model can be directly used for designing Lyapunov output-feedback attitude controller (OFAC). With only torque actuators, and attitude and rate sensors installed, this kind of attitude controller, as simulation results show, is capable of not only bringing the spacecraft to the desired orientation, but also suppressing the effect of flex and slosh on the attitude motion of the spacecraft.

  6. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    Science.gov (United States)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  7. Modeling the angular motion dynamics of spacecraft with a magnetic attitude control system based on experimental studies and dynamic similarity

    Science.gov (United States)

    Kulkov, V. M.; Medvedskii, A. L.; Terentyev, V. V.; Firsyuk, S. O.; Shemyakov, A. O.

    2017-12-01

    The problem of spacecraft attitude control using electromagnetic systems interacting with the Earth's magnetic field is considered. A set of dimensionless parameters has been formed to investigate the spacecraft orientation regimes based on dynamically similar models. The results of experimental studies of small spacecraft with a magnetic attitude control system can be extrapolated to the in-orbit spacecraft motion control regimes by using the methods of the dimensional and similarity theory.

  8. Spacecraft attitude control using neuro-fuzzy approximation of the optimal controllers

    Science.gov (United States)

    Kim, Sung-Woo; Park, Sang-Young; Park, Chandeok

    2016-01-01

    In this study, a neuro-fuzzy controller (NFC) was developed for spacecraft attitude control to mitigate large computational load of the state-dependent Riccati equation (SDRE) controller. The NFC was developed by training a neuro-fuzzy network to approximate the SDRE controller. The stability of the NFC was numerically verified using a Lyapunov-based method, and the performance of the controller was analyzed in terms of approximation ability, steady-state error, cost, and execution time. The simulations and test results indicate that the developed NFC efficiently approximates the SDRE controller, with asymptotic stability in a bounded region of angular velocity encompassing the operational range of rapid-attitude maneuvers. In addition, it was shown that an approximated optimal feedback controller can be designed successfully through neuro-fuzzy approximation of the optimal open-loop controller.

  9. Attitude dynamics and control of a spacecraft using shifting mass distribution

    Science.gov (United States)

    Ahn, Young Tae

    Spacecraft need specific attitude control methods that depend on the mission type or special tasks. The dynamics and the attitude control of a spacecraft with a shifting mass distribution within the system are examined. The behavior and use of conventional attitude control actuators are widely developed and performing at the present time. However, the advantage of a shifting mass distribution concept can complement spacecraft attitude control, save mass, and extend a satellite's life. This can be adopted in practice by moving mass from one tank to another, similar to what an airplane does to balance weight. Using this shifting mass distribution concept, in conjunction with other attitude control devices, can augment the three-axis attitude control process. Shifting mass involves changing the center-of-mass of the system, and/or changing the moments of inertia of the system, which then ultimately can change the attitude behavior of the system. This dissertation consists of two parts. First, the equations of motion for the shifting mass concept (also known as morphing) are developed. They are tested for their effects on attitude control by showing how shifting the mass changes the spacecraft's attitude behavior. Second, a method for optimal mass redistribution is shown using a combinatorial optimization theory under constraints. It closes with a simple example demonstrating an optimal reconfiguration. The procedure of optimal reconfiguration from one mass distribution to another to accomplish attitude control has been demonstrated for several simple examples. Mass shifting could work as an attitude controller for fine-tuning attitude behavior in small satellites. Various constraints can be applied for different situations, such as no mass shift between two tanks connected by a failed pipe or total amount of shifted mass per pipe being set for the time optimum solution. Euler angle changes influenced by the mass reconfiguration are accomplished while stability

  10. Thermal elastic shock and its effect on TOPEX spacecraft attitude control

    Science.gov (United States)

    Zimbelman, Darrell F.

    1991-01-01

    Thermal elastic shock (TES) is a twice per orbit impulsive disturbance torque experienced by low-Earth orbiting spacecraft. The fundamental equations used to model the TES disturbance torque for typical spacecraft appendages (e.g., solar arrays and antenna booms) are derived in detail. In particular, the attitude-pointing performance of the TOPEX spacecraft, when subjected to the TES disturbance, is analyzed using a three-axis nonlinear time-domain simulation. Results indicate that the TOPEX spacecraft could exceed its roll-axis attitude-control requirement during penumbral transitions, and remain in violation for approximately 150 sec each orbit until the umbra collapses. A localized active-control system is proposed as a solution to minimize and/or eliminate the degrading effects of the TES disturbance.

  11. Spacecraft Attitude Determination

    DEFF Research Database (Denmark)

    Bak, Thomas

    This thesis describes the development of an attitude determination system for spacecraft based only on magnetic field measurements. The need for such system is motivated by the increased demands for inexpensive, lightweight solutions for small spacecraft. These spacecraft demands full attitude...... determination based on simple, reliable sensors. Meeting these objectives with a single vector magnetometer is difficult and requires temporal fusion of data in order to avoid local observability problems. In order to guaranteed globally nonsingular solutions, quaternions are generally the preferred attitude...... is a detailed study of the influence of approximations in the modeling of the system. The quantitative effects of errors in the process and noise statistics are discussed in detail. The third contribution is the introduction of these methods to the attitude determination on-board the Ørsted satellite...

  12. General Attitude Control Algorithm for Spacecraft Equipped with Star Camera and Reaction Wheels

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    A configuration consisting of a star camera, four reaction wheels and magnetorquers for momentum unloading has become standard for many spacecraft missions. This popularity has motivated numerous agencies and private companies to initiate work on the design of an imbedded attitude control system...... realized on an integrated circuit. This paper considers two issues: slew maneuver with a feature of avoiding direct exposure of the camera's CCD chip to the Sun %, three-axis attitude control and optimal control torque distribution in a reaction wheel assembly. The attitude controller is synthesized...

  13. Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

    Directory of Open Access Journals (Sweden)

    Sung-Woo Kim

    2012-12-01

    Full Text Available The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS. An ANFIS produces a control signal for one of the three axes of a spacecraft’s body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

  14. Fuzzy based attitude controller for flexible spacecraft with on/off thrusters

    Science.gov (United States)

    Knapp, Roger Glenn

    1993-05-01

    A fuzzy-based attitude controller is designed for attitude control of a generic spacecraft with on/off thrusters. The controller is comprised of packages of rules dedicated to addressing different objectives (e.g., disturbance rejection, low fuel consumption, avoiding the excitation of flexible appendages, etc.). These rule packages can be inserted or removed depending on the requirements of the particular spacecraft and are parameterized based on vehicle parameters such as inertia or operational parameters such as the maneuvering rate. Individual rule packages can be 'weighted' relative to each other to emphasize the importance of one objective relative to another. Finally, the fuzzy controller and rule packages are demonstrated using the high-fidelity Space Shuttle Interactive On-Orbit Simulator (IOS) while performing typical on-orbit operations and are subsequently compared with the existing shuttle flight control system performance.

  15. Spacecraft reorientation control in presence of attitude constraint considering input saturation and stochastic disturbance

    Science.gov (United States)

    Cheng, Yu; Ye, Dong; Sun, Zhaowei; Zhang, Shijie

    2018-03-01

    This paper proposes a novel feedback control law for spacecraft to deal with attitude constraint, input saturation, and stochastic disturbance during the attitude reorientation maneuver process. Applying the parameter selection method to improving the existence conditions for the repulsive potential function, the universality of the potential-function-based algorithm is enhanced. Moreover, utilizing the auxiliary system driven by the difference between saturated torque and command torque, a backstepping control law, which satisfies the input saturation constraint and guarantees the spacecraft stability, is presented. Unlike some methods that passively rely on the inherent characteristic of the existing controller to stabilize the adverse effects of external stochastic disturbance, this paper puts forward a nonlinear disturbance observer to compensate the disturbance in real-time, which achieves a better performance of robustness. The simulation results validate the effectiveness, reliability, and universality of the proposed control law.

  16. Feedback attitude sliding mode regulation control of spacecraft using arm motion

    Science.gov (United States)

    Shi, Ye; Liang, Bin; Xu, Dong; Wang, Xueqian; Xu, Wenfu

    2013-09-01

    The problem of spacecraft attitude regulation based on the reaction of arm motion has attracted extensive attentions from both engineering and academic fields. Most of the solutions of the manipulator’s motion tracking problem just achieve asymptotical stabilization performance, so that these controllers cannot realize precise attitude regulation because of the existence of non-holonomic constraints. Thus, sliding mode control algorithms are adopted to stabilize the tracking error with zero transient process. Due to the switching effects of the variable structure controller, once the tracking error reaches the designed hyper-plane, it will be restricted to this plane permanently even with the existence of external disturbances. Thus, precise attitude regulation can be achieved. Furthermore, taking the non-zero initial tracking errors and chattering phenomenon into consideration, saturation functions are used to replace sign functions to smooth the control torques. The relations between the upper bounds of tracking errors and the controller parameters are derived to reveal physical characteristic of the controller. Mathematical models of free-floating space manipulator are established and simulations are conducted in the end. The results show that the spacecraft’s attitude can be regulated to the position as desired by using the proposed algorithm, the steady state error is 0.000 2 rad. In addition, the joint tracking trajectory is smooth, the joint tracking errors converges to zero quickly with a satisfactory continuous joint control input. The proposed research provides a feasible solution for spacecraft attitude regulation by using arm motion, and improves the precision of the spacecraft attitude regulation.

  17. Design of Attitude Control Actuators for a Simulated Spacecraft

    Science.gov (United States)

    2011-03-24

    however, there are many dual-use applications, such as regenerative braking technology and flywheel energy storage. The reaction wheel system on Simsat...as the reaction wheels change angular velocity. 2.3.5 Control Moment Gyroscopes. The second category of momentum ex- change devices is the control

  18. Cassini Spacecraft In-Flight Swap to Backup Attitude Control Thrusters

    Science.gov (United States)

    Bates, David M.

    2010-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 and arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. In order to meet the challenging attitude control and navigation requirements of the orbit profile at Saturn, Cassini is equipped with a monopropellant thruster based Reaction Control System (RCS), a bipropellant Main Engine Assembly (MEA) and a Reaction Wheel Assembly (RWA). In 2008, after 11 years of reliable service, several RCS thrusters began to show signs of end of life degradation, which led the operations team to successfully perform the swap to the backup RCS system, the details and challenges of which are described in this paper. With some modifications, it is hoped that similar techniques and design strategies could be used to benefit other spacecraft.

  19. LQG/LTR optimal attitude control of small flexible spacecraft using free-free boundary conditions

    Science.gov (United States)

    Fulton, Joseph M.

    Due to the volume and power limitations of a small satellite, careful consideration must be taken while designing an attitude control system for 3-axis stabilization. Placing redundancy in the system proves difficult and utilizing power hungry, high accuracy, active actuators is not a viable option. Thus, it is customary to find dependable, passive actuators used in conjunction with small scale active control components. This document describes the application of Elastic Memory Composite materials in the construction of a flexible spacecraft appendage, such as a gravity gradient boom. Assumed modes methods are used with Finite Element Modeling information to obtain the equations of motion for the system while assuming free-free boundary conditions. A discussion is provided to illustrate how cantilever mode shapes are not always the best assumption when modeling small flexible spacecraft. A key point of interest is first resonant modes may be needed in the system design plant in spite of these modes being greater than one order of magnitude in frequency when compared to the crossover frequency of the controller. LQG/LTR optimal control techniques are implemented to compute attitude control gains while controller robustness considerations determine appropriate reduced order controllers and which flexible modes to include in the design model. Key satellite designer concerns in the areas of computer processor sizing, material uncertainty impacts on the system model, and system performance variations resulting from appendage length modifications are addressed.

  20. Development of a Hardware-In-Loop (HIL Simulator for Spacecraft Attitude Control Using Momentum Wheels

    Directory of Open Access Journals (Sweden)

    Dohee Kim

    2008-12-01

    Full Text Available In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of spacecraft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System. The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

  1. 42: An Open-Source Simulation Tool for Study and Design of Spacecraft Attitude Control Systems

    Science.gov (United States)

    Stoneking, Eric

    2018-01-01

    Simulation is an important tool in the analysis and design of spacecraft attitude control systems. The speaker will discuss the simulation tool, called simply 42, that he has developed over the years to support his own work as an engineer in the Attitude Control Systems Engineering Branch at NASA Goddard Space Flight Center. 42 was intended from the outset to be high-fidelity and powerful, but also fast and easy to use. 42 is publicly available as open source since 2014. The speaker will describe some of 42's models and features, and discuss its applicability to studies ranging from early concept studies through the design cycle, integration, and operations. He will outline 42's architecture and share some thoughts on simulation development as a long-term project.

  2. Spacecraft attitude maneuver control using two parallel mounted 3-DOF spherical actuators

    Directory of Open Access Journals (Sweden)

    Guidan Li

    2017-02-01

    Full Text Available A parallel configuration using two 3-degree-of-freedom (3-DOF spherical electromagnetic momentum exchange actuators is investigated for large angle spacecraft attitude maneuvers. First, the full dynamic equations of motion for the spacecraft system are derived by the Newton-Euler method. To facilitate computation, virtual gimbal coordinate frames are established. Second, a nonlinear control law in terms of quaternions is developed via backstepping method. The proposed control law compensates the coupling torques arising from the spacecraft rotation, and is robust against the external disturbances. Then, the singularity problem is analyzed. To avoid singularities, a modified weighed Moore-Pseudo inverse velocity steering law based on null motion is proposed. The weighted matrices are carefully designed to switch the actuators and redistribute the control torques. The null motion is used to reorient the rotor away from the tilt angle saturation state. Finally, numerical simulations of rest-to-rest maneuvers are performed to validate the effectiveness of the proposed method.

  3. Adaptive extended-state observer-based fault tolerant attitude control for spacecraft with reaction wheels

    Science.gov (United States)

    Ran, Dechao; Chen, Xiaoqian; de Ruiter, Anton; Xiao, Bing

    2018-04-01

    This study presents an adaptive second-order sliding control scheme to solve the attitude fault tolerant control problem of spacecraft subject to system uncertainties, external disturbances and reaction wheel faults. A novel fast terminal sliding mode is preliminarily designed to guarantee that finite-time convergence of the attitude errors can be achieved globally. Based on this novel sliding mode, an adaptive second-order observer is then designed to reconstruct the system uncertainties and the actuator faults. One feature of the proposed observer is that the design of the observer does not necessitate any priori information of the upper bounds of the system uncertainties and the actuator faults. In view of the reconstructed information supplied by the designed observer, a second-order sliding mode controller is developed to accomplish attitude maneuvers with great robustness and precise tracking accuracy. Theoretical stability analysis proves that the designed fault tolerant control scheme can achieve finite-time stability of the closed-loop system, even in the presence of reaction wheel faults and system uncertainties. Numerical simulations are also presented to demonstrate the effectiveness and superiority of the proposed control scheme over existing methodologies.

  4. Spacecraft momentum control systems

    CERN Document Server

    Leve, Frederick A; Peck, Mason A

    2015-01-01

    The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented ...

  5. Attitude control for on-orbit servicing spacecraft using hybrid actuator

    Science.gov (United States)

    Wu, Yunhua; Han, Feng; Zheng, Mohong; He, Mengjie; Chen, Zhiming; Hua, Bing; Wang, Feng

    2018-03-01

    On-orbit servicing is one of the research hotspots of space missions. A small satellite equipped with multiple robotic manipulators is expected to carry out device replacement task for target large spacecraft. Attitude hyperstable control of a small satellite platform under rotations of the manipulators is a challenging problem. A hybrid momentum exchanging actuator consists of Control Moment Gyro (CMG) and Reaction Wheel (RW) is proposed to tackle the above issue, due to its huge amount of momentum storage capacity of the CMG and high control accuracy of the RW, in which the CMG produces large command torque while the RW offers additional control degrees. The constructed dynamic model of the servicing satellite advises that it's feasible for attitude hyperstable control of the platform with arbitrary manipulators through compensating the disturbance generated by rapid rotation of the manipulators. Then, null motion between the CMG and RW is exploited to drive the system to the expected target with favorable performance, and to overcome the CMG inherent geometric singularity and RW saturation. Simulations with different initial situations, including CMG hyperbolic and elliptic singularities and RW saturation, are executed. Compared to the scenarios where the CMG or RW fails stabilizing the platform, large control torque, precise control effect and escape of singularity are guaranteed by the introduced hybrid actuator, CMGRW (CMGRW refers to the hybrid momentum exchanging devices in this paper, consisting of 4 CMGs in classical pyramid cluster and 3 RWs in an orthogonal group (specific description can been found in Section 4)). The feasible performance of the satellite, CMG and RW under large disturbance demonstrates that the control architecture proposed is capable of attitude control for on-orbit servicing satellite with multiple robotic manipulators.

  6. Modeling SMAP Spacecraft Attitude Control Estimation Error Using Signal Generation Model

    Science.gov (United States)

    Rizvi, Farheen

    2016-01-01

    Two ground simulation software are used to model the SMAP spacecraft dynamics. The CAST software uses a higher fidelity model than the ADAMS software. The ADAMS software models the spacecraft plant, controller and actuator models, and assumes a perfect sensor and estimator model. In this simulation study, the spacecraft dynamics results from the ADAMS software are used as CAST software is unavailable. The main source of spacecraft dynamics error in the higher fidelity CAST software is due to the estimation error. A signal generation model is developed to capture the effect of this estimation error in the overall spacecraft dynamics. Then, this signal generation model is included in the ADAMS software spacecraft dynamics estimate such that the results are similar to CAST. This signal generation model has similar characteristics mean, variance and power spectral density as the true CAST estimation error. In this way, ADAMS software can still be used while capturing the higher fidelity spacecraft dynamics modeling from CAST software.

  7. Attitude coordination for spacecraft formation with multiple communication delays

    Directory of Open Access Journals (Sweden)

    Guo Yaohua

    2015-04-01

    Full Text Available Communication delays are inherently present in information exchange between spacecraft and have an effect on the control performance of spacecraft formation. In this work, attitude coordination control of spacecraft formation is addressed, which is in the presence of multiple communication delays between spacecraft. Virtual system-based approach is utilized in case that a constant reference attitude is available to only a part of the spacecraft. The feedback from the virtual systems to the spacecraft formation is introduced to maintain the formation. Using backstepping control method, input torque of each spacecraft is designed such that the attitude of each spacecraft converges asymptotically to the states of its corresponding virtual system. Furthermore, the backstepping technique and the Lyapunov–Krasovskii method contribute to the control law design when the reference attitude is time-varying and can be obtained by each spacecraft. Finally, effectiveness of the proposed methodology is illustrated by the numerical simulations of a spacecraft formation.

  8. Attitude Fusion Techniques for Spacecraft

    DEFF Research Database (Denmark)

    Bjarnø, Jonas Bækby

    Spacecraft platform instability constitutes one of the most significant limiting factors in hyperacuity pointing and tracking applications, yet the demand for accurate, timely and reliable attitude information is ever increasing. The PhD research project described within this dissertation has...... served to investigate the solution space for augmenting the DTU μASC stellar reference sensor with a miniature Inertial Reference Unit (IRU), thereby obtaining improved bandwidth, accuracy and overall operational robustness of the fused instrument. Present day attitude determination requirements are met...... of the instrument, and affecting operations during agile and complex spacecraft attitude maneuvers. As such, there exists a theoretical foundation for augmenting the high frequency performance of the μASC instrument, by harnessing the complementary nature of optical stellar reference and inertial sensor technology...

  9. Attitude dynamics and control of a spacecraft like a robotic manipulator when implementing on-orbit servicing

    Science.gov (United States)

    Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo

    2017-08-01

    In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.

  10. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  11. Wave-Based Attitude Control of Spacecraft with Fuel Sloshing Dynamics

    Directory of Open Access Journals (Sweden)

    Thompson Joseph William

    2016-06-01

    Full Text Available Wave-Based Control has been previously applied successfully to simple under-actuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to non-uniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion is required.

  12. On the spacecraft attitude stabilization in the orbital frame

    Directory of Open Access Journals (Sweden)

    Antipov Kirill A.

    2012-01-01

    Full Text Available The paper deals with spacecraft in the circular near-Earth orbit. The spacecraft interacts with geomagnetic field by the moments of Lorentz and magnetic forces. The octupole approximation of the Earth’s magnetic field is accepted. The spacecraft electromagnetic parameters, namely the electrostatic charge moment of the first order and the eigen magnetic moment are the controlled quasiperiodic functions. The control algorithms for the spacecraft electromagnetic parameters, which allows to stabilize the spacecraft attitude position in the orbital frame are obtained. The stability of the spacecraft stabilized orientation is proved both analytically and by PC computations.

  13. Optimal Attitude Control of Agile Spacecraft Using Combined Reaction Wheel and Control Moment Gyroscope Arrays

    Science.gov (United States)

    2015-12-01

    communications between the MicroAuto Box and the ground station computer [58]. SimSat users design experiments in the MATLAB® Simulink environment and use an...Guidance, Control, and Dynamics, vol. 35, no. 4, pp. 1094–1103, 2012. [44] Z. Sun, L. Zhang, G. Jin, and X. Yang, “Analysis of inertia dyadic uncertainty

  14. Guidance and Control of Position and Attitude for Rendezvous and Dock/Berthing with a Noncooperative/Target Spacecraft

    Directory of Open Access Journals (Sweden)

    Gilberto Arantes

    2014-01-01

    Full Text Available Noncooperative target spacecrafts are those assets in orbit that cannot convey any information about their states (position, attitude, and velocities or facilitate rendezvous and docking/berthing (RVD/B process. Designing a guidance, navigation, and control (GNC module for the chaser in a RVD/B mission with noncooperative target should be inevitably solved for on-orbit servicing technologies. The proximity operations and the guidance for achieving rendezvous problems are addressed in this paper. The out-of-plane maneuvers of proximity operations are explored with distinct subphases, including a chaser far approach in the target’s orbit to the first hold point and a closer approach to the final berthing location. Accordingly, guidance solutions are chosen for each subphase from the standard Hill based Closhessy-Willtshire (CW solution, elliptical fly-around, and Glideslope algorithms. The control is based on a linear quadratic regulator approach (LQR. At the final berthing location, attitude tracker based on a proportional derivative (PD form is tested to synchronize the chaser and target attitudes. The paper analyzes the performance of both controllers in terms of the tracking ability and the robustness. Finally, it prescribes any restrictions that may be imposed on the guidance during any subphase which can help to improve the controllers tracking ability.

  15. Attitude Estimation in Fractionated Spacecraft Cluster Systems

    Science.gov (United States)

    Hadaegh, Fred Y.; Blackmore, James C.

    2011-01-01

    An attitude estimation was examined in fractioned free-flying spacecraft. Instead of a single, monolithic spacecraft, a fractionated free-flying spacecraft uses multiple spacecraft modules. These modules are connected only through wireless communication links and, potentially, wireless power links. The key advantage of this concept is the ability to respond to uncertainty. For example, if a single spacecraft module in the cluster fails, a new one can be launched at a lower cost and risk than would be incurred with onorbit servicing or replacement of the monolithic spacecraft. In order to create such a system, however, it is essential to know what the navigation capabilities of the fractionated system are as a function of the capabilities of the individual modules, and to have an algorithm that can perform estimation of the attitudes and relative positions of the modules with fractionated sensing capabilities. Looking specifically at fractionated attitude estimation with startrackers and optical relative attitude sensors, a set of mathematical tools has been developed that specify the set of sensors necessary to ensure that the attitude of the entire cluster ( cluster attitude ) can be observed. Also developed was a navigation filter that can estimate the cluster attitude if these conditions are satisfied. Each module in the cluster may have either a startracker, a relative attitude sensor, or both. An extended Kalman filter can be used to estimate the attitude of all modules. A range of estimation performances can be achieved depending on the sensors used and the topology of the sensing network.

  16. Attitude Dynamics and Tracking Control of Spacecraft in the Presence of Gravity Oblateness Perturbations

    Directory of Open Access Journals (Sweden)

    Achim IONITA

    2016-03-01

    Full Text Available The orbital docking represents a problem of great importance in aerospace engineering. The paper aims to perform an analysis of docking maneuvers between a chaser vehicle and a target vehicle in permanent LEO (low earth orbit. The work begins with a study of the attitude dynamics modeling intended to define the strategy that facilitates the chaser movement toward a docking part of the target. An LQR (linear quadratic regulator approach presents an optimal control design that provides linearized closed-loop error dynamics for tracking a desired quaternion. The control law formulation is combined with the control architecture based on SDRE (State Dependent Riccati equation technique for rotational maneuvers, including the Earth oblateness perturbation. The chaser body-fixed frame must coincide with the target body-fixed frame at the docking moment. Then the implementation of the control architecture based on LQR technique using the computational tool MATLAB is carried out. In simulation of the docking strategy V-R bar operations are analyzed and the minimum accelerations needs the control of chaser vehicle. The simulation analysis of those maneuvers considered for a chaser vehicle and a target vehicle in LEO orbit is validated in a case study.

  17. Fault detection and isolation of the attitude control subsystem of spacecraft formation flying using extended Kalman filters

    Science.gov (United States)

    Ghasemi, S.; Khorasani, K.

    2015-10-01

    In this paper, the problem of fault detection and isolation (FDI) of the attitude control subsystem (ACS) of spacecraft formation flying systems is considered. For developing the FDI schemes, an extended Kalman filter (EKF) is utilised which belongs to a class of nonlinear state estimation methods. Three architectures, namely centralised, decentralised, and semi-decentralised, are considered and the corresponding FDI strategies are designed and constructed. Appropriate residual generation techniques and threshold selection criteria are proposed for these architectures. The capabilities of the proposed architectures for accomplishing the FDI tasks are studied through extensive numerical simulations for a team of four satellites in formation flight. Using a confusion matrix evaluation criterion, it is shown that the centralised architecture can achieve the most reliable results relative to the semi-decentralised and decentralised architectures at the expense of availability of a centralised processing module that requires the entire team information set. On the other hand, the semi-decentralised performance is close to the centralised scheme without relying on the availability of the entire team information set. Furthermore, the results confirm that the FDI results in formations with angular velocity measurement sensors achieve higher level of accuracy, true faulty, and precision, along with lower level of false healthy misclassification as compared to the formations that utilise attitude measurement sensors.

  18. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  19. Robust high-precision attitude control for flexible spacecraft with improved mixed H2/H∞ control strategy under poles assignment constraint

    Science.gov (United States)

    Liu, Chuang; Ye, Dong; Shi, Keke; Sun, Zhaowei

    2017-07-01

    A novel improved mixed H2/H∞ control technique combined with poles assignment theory is presented to achieve attitude stabilization and vibration suppression simultaneously for flexible spacecraft in this paper. The flexible spacecraft dynamics system is described and transformed into corresponding state space form. Based on linear matrix inequalities (LMIs) scheme and poles assignment theory, the improved mixed H2/H∞ controller does not restrict the equivalence of the two Lyapunov variables involved in H2 and H∞ performance, which can reduce conservatives compared with traditional mixed H2/H∞ controller. Moreover, it can eliminate the coupling of Lyapunov matrix variables and system matrices by introducing slack variable that provides additional degree of freedom. Several simulations are performed to demonstrate the effectiveness and feasibility of the proposed method in this paper.

  20. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2010-01-01

    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  1. LQG/LTR Optimal Attitude Control of Small Flexible Spacecraft Using Free-Free Boundary Conditions

    Science.gov (United States)

    2006-08-03

    trampoline . When a person jumps onto a trampoline , the springs are compressed. When the springs return to their normal state, the restoring force sends...0.0164 103.25 in Table 4.4. The heading for the table lists appendage length, peak control effort, stability robustness, frequency of the first bending

  2. Rotational Motion Control of a Spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2001-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control...

  3. Rotational motion control of a spacecraft

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2003-01-01

    The paper adopts the energy shaping method to control of rotational motion. A global representation of the rigid body motion is given in the canonical form by a quaternion and its conjugate momenta. A general method for motion control on a cotangent bundle to the 3-sphere is suggested. The design...... algorithm is validated for three-axis spacecraft attitude control. Udgivelsesdato: APR...

  4. Precision pointing of imaging spacecraft using gyro-based attitude ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    three-axis attitude of the spacecraft is required continuously for the controller. Gyros provide .... Right ascension of ascending node ( ). 78·1290476 ... U = {ω1 + ω0X,ω2 + ω0Y ,ω3 + ω0Z,} are the process inputs and the matrices A, B and G.

  5. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    Science.gov (United States)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  6. Wheel speed management control system for spacecraft

    Science.gov (United States)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  7. Optimal magnetic attitude control

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Markley, F.L.

    1999-01-01

    because control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis stabilization of a low earth orbit satellite. The problem of controlling the spacecraft attitude using only magnetic...

  8. Kalman Filter for Spinning Spacecraft Attitude Estimation

    Science.gov (United States)

    Markley, F. Landis; Sedlak, Joseph E.

    2008-01-01

    This paper presents a Kalman filter using a seven-component attitude state vector comprising the angular momentum components in an inertial reference frame, the angular momentum components in the body frame, and a rotation angle. The relatively slow variation of these parameters makes this parameterization advantageous for spinning spacecraft attitude estimation. The filter accounts for the constraint that the magnitude of the angular momentum vector is the same in the inertial and body frames by employing a reduced six-component error state. Four variants of the filter, defined by different choices for the reduced error state, are tested against a quaternion-based filter using simulated data for the THEMIS mission. Three of these variants choose three of the components of the error state to be the infinitesimal attitude error angles, facilitating the computation of measurement sensitivity matrices and causing the usual 3x3 attitude covariance matrix to be a submatrix of the 6x6 covariance of the error state. These variants differ in their choice for the other three components of the error state. The variant employing the infinitesimal attitude error angles and the angular momentum components in an inertial reference frame as the error state shows the best combination of robustness and efficiency in the simulations. Attitude estimation results using THEMIS flight data are also presented.

  9. DRIRU I/SKIRU - The application of the DTG to spacecraft attitude control. [Dynamically-Tuned Gyro for Inertial Reference Unit systems

    Science.gov (United States)

    Swanson, C. O.

    1982-01-01

    The dynamically tuned gyro (DTG) was developed to replace the floated, rate integrating gyro used for space attitude control, as the DTG fulfills cost, performance, and reliability requirements not satisfied by its predecessor. The use of this gyro in the Dry Gyro Inertial Reference Unit I (DRIRU I) marked the first application of a DTG in a spacecraft attitude reference unit. Design and performance characteristics of DTG application in the Singer-Kearfott Inertial Reference Unit (SKIRU) are outlined, for example its minimal weight (7 lb), and operational reliability. The DTG has accomplished 156,000 failure-free hours, and a chart, logging test performance, indicates that this and other requirements were more than sufficiently satisfied. The unit has an unparalleled life span, with several units still operating after 70,000 to 130,000 hours, and a random drift which always remains under 0.0005 deg/h. Potential for improvements, such as drift performance, are considered.

  10. Adaptive Estimation and Heuristic Optimization of Nonlinear Spacecraft Attitude Dynamics

    Science.gov (United States)

    2016-09-15

    Biology, Control and Artificial Intelligence , MIT Press, Cambridge, MA, USA, 1992. 177 [89] Thompson, R. E., Colombi, J. M., Black, J. T., and Ayres...utilized for parameter and state estimates. MMAE algorithms involve constructing a bank of recursive estimators, each assuming a different hypothesis for...this research, MMAE routines employing parallel banks of unscented attitude filters are applied to analytical models of spacecraft with time- varying

  11. LP MOON SPACECRAFT ATTITUDE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Prospector attitude data set consists of values for the spacecraft spin rate and spin axis orientation (attitude) as a function of time. These values are...

  12. Quaternion Feedback Control for Rigid-body Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2001-01-01

    This paper addresses three-axis attitude control for a Danish spacecraft, Roemer. The algorithm proposed is based on an approximation of the exact feedback linearisation for quaternionic attitude representation. The proposed attitude controller is tested in a simulation study. The environmental...

  13. A Drag Device and Control Algorithm for Spacecraft Attitude Stabilization and De-Orbit Point Targeting using Aerodynamic Drag

    Data.gov (United States)

    National Aeronautics and Space Administration — To reduce the accumulation of human-made "space junk", NASA has implemented a rule requiring the disposal of spacecraft below 2,000 km within 25 years. By deploying...

  14. Spacecraft Dynamics Should be Considered in Kalman Filter Attitude Estimation

    Science.gov (United States)

    Yang, Yaguang; Zhou, Zhiqiang

    2016-01-01

    Kalman filter based spacecraft attitude estimation has been used in some high-profile missions and has been widely discussed in literature. While some models in spacecraft attitude estimation include spacecraft dynamics, most do not. To our best knowledge, there is no comparison on which model is a better choice. In this paper, we discuss the reasons why spacecraft dynamics should be considered in the Kalman filter based spacecraft attitude estimation problem. We also propose a reduced quaternion spacecraft dynamics model which admits additive noise. Geometry of the reduced quaternion model and the additive noise are discussed. This treatment is more elegant in mathematics and easier in computation. We use some simulation example to verify our claims.

  15. ADRC for spacecraft attitude and position synchronization in libration point orbits

    Science.gov (United States)

    Gao, Chen; Yuan, Jianping; Zhao, Yakun

    2018-04-01

    This paper addresses the problem of spacecraft attitude and position synchronization in libration point orbits between a leader and a follower. Using dual quaternion, the dimensionless relative coupled dynamical model is derived considering computation efficiency and accuracy. Then a model-independent dimensionless cascade pose-feedback active disturbance rejection controller is designed to spacecraft attitude and position tracking control problems considering parameter uncertainties and external disturbances. Numerical simulations for the final approach phase in spacecraft rendezvous and docking and formation flying are done, and the results show high-precision tracking errors and satisfactory convergent rates under bounded control torque and force which validate the proposed approach.

  16. Spacecraft attitude determination using the earth's magnetic field

    Science.gov (United States)

    Simpson, David G.

    1989-01-01

    A method is presented by which the attitude of a low-Earth orbiting spacecraft may be determined using a vector magnetometer, a digital Sun sensor, and a mathematical model of the Earth's magnetic field. The method is currently being implemented for the Solar Maximum Mission spacecraft (as a backup for the failing star trackers) as a way to determine roll gyro drift.

  17. Toward Accurate On-Ground Attitude Determination for the Gaia Spacecraft

    Science.gov (United States)

    Samaan, Malak A.

    2010-03-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and of control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real-time attitude, which is of order of several arcsec. This raw attitude is the starting point for the further attitude reconstruction. The OGA will use the inputs from the field coordinates of known stars (attitude stars) and also the field coordinate differences of objects on the Sky Mapper (SM) and Astrometric Field (AF) payload instruments to improve this raw attitude. The on-board attitude determination uses a Kalman Filter (KF) to minimize the attitude errors and produce a more accurate attitude estimation than the pure star tracker measurement. Therefore the first approach for the OGA will be an adapted version of KF. Furthermore, we will design a batch least squares algorithm to investigate how to obtain a more accurate OGA estimation. Finally, a comparison between these different attitude determination techniques in terms of accuracy, robustness, speed and memory required will be evaluated in order to choose the best attitude algorithm for the OGA. The expected resulting accuracy for the OGA determination will be on the order of milli-arcsec.

  18. An Empirical Comparison between Two Recursive Filters for Attitude and Rate Estimation of Spinning Spacecraft

    Science.gov (United States)

    Harman, Richard R.

    2006-01-01

    The advantages of inducing a constant spin rate on a spacecraft are well known. A variety of science missions have used this technique as a relatively low cost method for conducting science. Starting in the late 1970s, NASA focused on building spacecraft using 3-axis control as opposed to the single-axis control mentioned above. Considerable effort was expended toward sensor and control system development, as well as the development of ground systems to independently process the data. As a result, spinning spacecraft development and their resulting ground system development stagnated. In the 1990s, shrinking budgets made spinning spacecraft an attractive option for science. The attitude requirements for recent spinning spacecraft are more stringent and the ground systems must be enhanced in order to provide the necessary attitude estimation accuracy. Since spinning spacecraft (SC) typically have no gyroscopes for measuring attitude rate, any new estimator would need to rely on the spacecraft dynamics equations. One estimation technique that utilized the SC dynamics and has been used successfully in 3-axis gyro-less spacecraft ground systems is the pseudo-linear Kalman filter algorithm. Consequently, a pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion and rate for a spinning SC. Recently, a filter using Markley variables was developed specifically for spinning spacecraft. The pseudo-linear Kalman filter has the advantage of being easier to implement but estimates the quaternion which, due to the relatively high spinning rate, changes rapidly for a spinning spacecraft. The Markley variable filter is more complicated to implement but, being based on the SC angular momentum, estimates parameters which vary slowly. This paper presents a comparison of the performance of these two filters. Monte-Carlo simulation runs will be presented which demonstrate the advantages and disadvantages of both filters.

  19. Spacecraft Design Thermal Control Subsystem

    Science.gov (United States)

    Miyake, Robert N.

    2008-01-01

    The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.

  20. Spin-Stabilized Spacecrafts: Analytical Attitude Propagation Using Magnetic Torques

    Directory of Open Access Journals (Sweden)

    Roberta Veloso Garcia

    2009-01-01

    Full Text Available An analytical approach for spin-stabilized satellites attitude propagation is presented, considering the influence of the residual magnetic torque and eddy currents torque. It is assumed two approaches to examine the influence of external torques acting during the motion of the satellite, with the Earth's magnetic field described by the quadripole model. In the first approach is included only the residual magnetic torque in the motion equations, with the satellites in circular or elliptical orbit. In the second approach only the eddy currents torque is analyzed, with the satellite in circular orbit. The inclusion of these torques on the dynamic equations of spin stabilized satellites yields the conditions to derive an analytical solution. The solutions show that residual torque does not affect the spin velocity magnitude, contributing only for the precession and the drift of the spacecraft's spin axis and the eddy currents torque causes an exponential decay of the angular velocity magnitude. Numerical simulations performed with data of the Brazilian Satellites (SCD1 and SCD2 show the period that analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of Brazil National Research Institute.

  1. Quaternion normalization in additive EKF for spacecraft attitude determination

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines, and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter (EKF) to spacecraft attitude determination, which is based on vector measurements. Two new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstrate the performance of all three schemes. A fourth scheme is suggested for future research. Although the schemes were tested for spacecraft attitude determination, the conclusions are general and hold for attitude determination of any three dimensional body when based on vector measurements, and use an additive EKF for estimation, and the quaternion for specifying the attitude.

  2. Results from active spacecraft potential control on the Geotail spacecraft

    International Nuclear Information System (INIS)

    Schmidt, R.; Arends, H.; Pedersen, A.

    1995-01-01

    A low and actively controlled electrostatic potential on the outer surfaces of a scientific spacecraft is very important for accurate measurements of cold plasma electrons and ions and the DC to low-frequency electric field. The Japanese/NASA Geotail spacecraft carriers as part of its scientific payload a novel ion emitter for active control of the electrostatic potential on the surface of the spacecraft. The aim of the ion emitter is to reduce the positive surface potential which is normally encountered in the outer magnetosphere when the spacecraft is sunlit. Ion emission clamps the surface potential to near the ambient plasma potential. Without emission control, Geotail has encountered plasma conditions in the lobes of the magnetotail which resulted in surface potentials of up to about +70 V. The ion emitter proves to be able to discharge the outer surfaces of the spacecraft and is capable of keeping the surface potential stable at about +2 V. This potential is measured with respect to one of the electric field probes which are current biased and thus kept at a potential slightly above the ambient plasma potential. The instrument uses the liquid metal field ion emission principle to emit indium ions. The ion beam energy is about 6 keV and the typical total emission current amounts to about 15 μA. Neither variations in the ambient plasma conditions nor operation of two electron emitters on Geotail produce significant variations of the controlled surface potential as long as the resulting electron emission currents remain much smaller than the ion emission current. Typical results of the active potential control are shown, demonstrating the surface potential reduction and its stability over time. 25 refs., 5 figs

  3. Spacecraft command and control using expert systems

    Science.gov (United States)

    Norcross, Scott; Grieser, William H.

    1994-01-01

    This paper describes a product called the Intelligent Mission Toolkit (IMT), which was created to meet the changing demands of the spacecraft command and control market. IMT is a command and control system built upon an expert system. Its primary functions are to send commands to the spacecraft and process telemetry data received from the spacecraft. It also controls the ground equipment used to support the system, such as encryption gear, and telemetry front-end equipment. Add-on modules allow IMT to control antennas and antenna interface equipment. The design philosophy for IMT is to utilize available commercial products wherever possible. IMT utilizes Gensym's G2 Real-time Expert System as the core of the system. G2 is responsible for overall system control, spacecraft commanding control, and spacecraft telemetry analysis and display. Other commercial products incorporated into IMT include the SYBASE relational database management system and Loral Test and Integration Systems' System 500 for telemetry front-end processing.

  4. Ulysses spacecraft control and monitoring system

    Science.gov (United States)

    Hamer, P. A.; Snowden, P. J.

    1991-01-01

    The baseline Ulysses spacecraft control and monitoring system (SCMS) concepts and the converted SCMS, residing on a DEC/VAX 8350 hardware, are considered. The main functions of the system include monitoring and displaying spacecraft telemetry, preparing spacecraft commands, producing hard copies of experimental data, and archiving spacecraft telemetry. The SCMS system comprises over 20 subsystems ranging from low-level utility routines to the major monitoring and control software. These in total consist of approximately 55,000 lines of FORTRAN source code and 100 VMS command files. The SCMS major software facilities are described, including database files, telemetry processing, telecommanding, archiving of data, and display of telemetry.

  5. Foot Pedals for Spacecraft Manual Control

    Science.gov (United States)

    Love, Stanley G.; Morin, Lee M.; McCabe, Mary

    2010-01-01

    Fifty years ago, NASA decided that the cockpit controls in spacecraft should be like the ones in airplanes. But controls based on the stick and rudder may not be best way to manually control a vehicle in space. A different method is based on submersible vehicles controlled with foot pedals. A new pilot can learn the sub's control scheme in minutes and drive it hands-free. We are building a pair of foot pedals for spacecraft control, and will test them in a spacecraft flight simulator.

  6. Marginalized particle filter for spacecraft attitude estimation from vector measurements

    Institute of Scientific and Technical Information of China (English)

    Yaqiu LIU; Xueyuan JIANG; Guangfu MA

    2007-01-01

    An algorithm based on the marginalized particle filters(MPF)is given in details in this paper to solve the spacecraft attitude estimation problem:attitude and gyro bias estimation using the biased gyro and vector observations.In this algorithm,by marginalizing out the state appearing linearly in the spacecraft model,the Kalman filter is associated with each particle in order to reduce the size of the state space and computational burden.The distribution of attitude vector is approximated by a set of particles and estimated using particle filter,while the estimation of gyro bias is obtained for each one of the attitude particles by applying the Kalman filter.The efficiency of this modified MPF estimator is verified through numerical simulation of a fully actuated rigid body.For comparison,unscented Kalman filter(UKF)is also used to gauge the performance of MPF.The results presented in this paper clearly demonstrate that the MPF is superior to UKF in coping with the nonlinear model.

  7. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh

    Science.gov (United States)

    Deng, Mingle; Yue, Baozeng

    2017-04-01

    This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.

  8. What's New is What's Old: Use of Bode's Integral Theorem (circa 1945) to Provide Insight for 21st Century Spacecraft Attitude Control System Design Tuning

    Science.gov (United States)

    Ruth, Mike; Lebsock, Ken; Dennehy, Neil

    2010-01-01

    This paper revisits the Bode integral theorem, first described in 1945 for feedback amplifier design, in the context of modern satellite Attitude Control System (ACS) design tasks. Use of Bode's Integral clarifies in an elegant way the connection between open-loop stability margins and closed-loop bandwidth. More importantly it shows that there is a very strong tradeoff between disturbance rejection below the satellite controller design bandwidth, and disturbance amplification in the 'penalty region' just above the design bandwidth. This information has been successfully used to re-tune the control designs for several NASA science-mission satellites. The Appendix of this paper contains a complete summary of the relevant integral conservation theorems for stable, unstable, and non-minimum- phase plants.

  9. Model predictive control for spacecraft rendezvous in elliptical orbit

    Science.gov (United States)

    Li, Peng; Zhu, Zheng H.

    2018-05-01

    This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.

  10. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    National Research Council Canada - National Science Library

    McCamish, Shawn B

    2007-01-01

    This research contributes to multiple spacecraft control by developing an autonomous distributed control algorithm for close proximity operations of multiple spacecraft systems, including rendezvous...

  11. Embedded Thermal Control for Spacecraft Subsystems Miniaturization

    Science.gov (United States)

    Didion, Jeffrey R.

    2014-01-01

    Optimization of spacecraft size, weight and power (SWaP) resources is an explicit technical priority at Goddard Space Flight Center. Embedded Thermal Control Subsystems are a promising technology with many cross cutting NSAA, DoD and commercial applications: 1.) CubeSatSmallSat spacecraft architecture, 2.) high performance computing, 3.) On-board spacecraft electronics, 4.) Power electronics and RF arrays. The Embedded Thermal Control Subsystem technology development efforts focus on component, board and enclosure level devices that will ultimately include intelligent capabilities. The presentation will discuss electric, capillary and hybrid based hardware research and development efforts at Goddard Space Flight Center. The Embedded Thermal Control Subsystem development program consists of interrelated sub-initiatives, e.g., chip component level thermal control devices, self-sensing thermal management, advanced manufactured structures. This presentation includes technical status and progress on each of these investigations. Future sub-initiatives, technical milestones and program goals will be presented.

  12. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  13. Thrusting maneuver control of a small spacecraft via only gimbaled-thruster scheme

    Science.gov (United States)

    Kabganian, Mansour; Kouhi, Hamed; Shahravi, Morteza; Fani Saberi, Farhad

    2018-05-01

    The thrust vector control (TVC) scheme is a powerful method in spacecraft attitude control. Since the control of a small spacecraft is being studied here, a solid rocket motor (SRM) should be used instead of a liquid propellant motor. Among the TVC methods, gimbaled-TVC as an efficient method is employed in this paper. The spacecraft structure is composed of a body and a gimbaled-SRM where common attitude control systems such as reaction control system (RCS) and spin-stabilization are not presented. A nonlinear two-body model is considered for the characterization of the gimbaled-thruster spacecraft where, the only control input is provided by a gimbal actuator. The attitude of the spacecraft is affected by a large exogenous disturbance torque which is generated by a thrust vector misalignment from the center of mass (C.M). A linear control law is designed to stabilize the spacecraft attitude while rejecting the mentioned disturbance torque. A semi-analytical formulation of the region of attraction (RoA) is developed to ensure the local stability and fast convergence of the nonlinear closed-loop system. Simulation results of the 3D maneuvers are included to show the applicability of this method for use in a small spacecraft.

  14. Flexible spacecraft dynamics, control and guidance technologies by giovanni campolo

    CERN Document Server

    Mazzini, Leonardo

    2016-01-01

    This book is an up-to-date compendium on spacecraft attitude and orbit control (AOC) that offers a systematic and complete treatment of the subject with the aim of imparting the theoretical and practical knowledge that is required by designers, engineers, and researchers. After an introduction on the kinematics of the flexible and agile space vehicles, the modern architecture and functions of an AOC system are described and the main AOC modes reviewed with possible design solutions and examples. The dynamics of the flexible body in space are then considered using an original Lagrangian approach suitable for the control applications of large space flexible structures. Subsequent chapters address optimal control theory, attitude control methods, and orbit control applications, including the optimal orbital transfer with finite and infinite thrust. The theory is integrated with a description of current propulsion systems, with the focus especially on the new electric propulsion systems and state of the art senso...

  15. Guidance and control of swarms of spacecraft

    Science.gov (United States)

    Morgan, Daniel James

    There has been considerable interest in formation flying spacecraft due to their potential to perform certain tasks at a cheaper cost than monolithic spacecraft. Formation flying enables the use of smaller, cheaper spacecraft that distribute the risk of the mission. Recently, the ideas of formation flying have been extended to spacecraft swarms made up of hundreds to thousands of 100-gram-class spacecraft known as femtosatellites. The large number of spacecraft and limited capabilities of each individual spacecraft present a significant challenge in guidance, navigation, and control. This dissertation deals with the guidance and control algorithms required to enable the flight of spacecraft swarms. The algorithms developed in this dissertation are focused on achieving two main goals: swarm keeping and swarm reconfiguration. The objectives of swarm keeping are to maintain bounded relative distances between spacecraft, prevent collisions between spacecraft, and minimize the propellant used by each spacecraft. Swarm reconfiguration requires the transfer of the swarm to a specific shape. Like with swarm keeping, minimizing the propellant used and preventing collisions are the main objectives. Additionally, the algorithms required for swarm keeping and swarm reconfiguration should be decentralized with respect to communication and computation so that they can be implemented on femtosats, which have limited hardware capabilities. The algorithms developed in this dissertation are concerned with swarms located in low Earth orbit. In these orbits, Earth oblateness and atmospheric drag have a significant effect on the relative motion of the swarm. The complicated dynamic environment of low Earth orbits further complicates the swarm-keeping and swarm-reconfiguration problems. To better develop and test these algorithms, a nonlinear, relative dynamic model with J2 and drag perturbations is developed. This model is used throughout this dissertation to validate the algorithms

  16. Singular formalism and admissible control of spacecraft with rotating flexible solar array

    Directory of Open Access Journals (Sweden)

    Lu Dongning

    2014-02-01

    Full Text Available This paper is concerned with the attitude control of a three-axis-stabilized spacecraft which consists of a central rigid body and a flexible sun-tracking solar array driven by a solar array drive assembly. Based on the linearization of the dynamics of the spacecraft and the modal identities about the flexible and rigid coupling matrices, the spacecraft attitude dynamics is reduced to a formally singular system with periodically varying parameters, which is quite different from a spacecraft with fixed appendages. In the framework of the singular control theory, the regularity and impulse-freeness of the singular system is analyzed and then admissible attitude controllers are designed by Lyapunov’s method. To improve the robustness against system uncertainties, an H∞ optimal control is designed by optimizing the H∞ norm of the system transfer function matrix. Comparative numerical experiments are performed to verify the theoretical results.

  17. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    Science.gov (United States)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  18. Estimating spacecraft attitude based on in-orbit sensor measurements

    DEFF Research Database (Denmark)

    Jakobsen, Britt; Lyn-Knudsen, Kevin; Mølgaard, Mathias

    2014-01-01

    of 2014/15. To better evaluate the performance of the payload, it is desirable to couple the payload data with the satellite's orientation. With AAUSAT3 already in orbit it is possible to collect data directly from space in order to evaluate the performance of the attitude estimation. An extended kalman...... filter (EKF) is used for quaternion-based attitude estimation. A Simulink simulation environment developed for AAUSAT3, containing a "truth model" of the satellite and the orbit environment, is used to test the performance The performance is tested using different sensor noise parameters obtained both...... from a controlled environment on Earth as well as in-orbit. By using sensor noise parameters obtained on Earth as the expected parameters in the attitude estimation, and simulating the environment using the sensor noise parameters from space, it is possible to assess whether the EKF can be designed...

  19. Comprehensive Fault Tolerance and Science-Optimal Attitude Planning for Spacecraft Applications

    Science.gov (United States)

    Nasir, Ali

    Spacecraft operate in a harsh environment, are costly to launch, and experience unavoidable communication delay and bandwidth constraints. These factors motivate the need for effective onboard mission and fault management. This dissertation presents an integrated framework to optimize science goal achievement while identifying and managing encountered faults. Goal-related tasks are defined by pointing the spacecraft instrumentation toward distant targets of scientific interest. The relative value of science data collection is traded with risk of failures to determine an optimal policy for mission execution. Our major innovation in fault detection and reconfiguration is to incorporate fault information obtained from two types of spacecraft models: one based on the dynamics of the spacecraft and the second based on the internal composition of the spacecraft. For fault reconfiguration, we consider possible changes in both dynamics-based control law configuration and the composition-based switching configuration. We formulate our problem as a stochastic sequential decision problem or Markov Decision Process (MDP). To avoid the computational complexity involved in a fully-integrated MDP, we decompose our problem into multiple MDPs. These MDPs include planning MDPs for different fault scenarios, a fault detection MDP based on a logic-based model of spacecraft component and system functionality, an MDP for resolving conflicts between fault information from the logic-based model and the dynamics-based spacecraft models" and the reconfiguration MDP that generates a policy optimized over the relative importance of the mission objectives versus spacecraft safety. Approximate Dynamic Programming (ADP) methods for the decomposition of the planning and fault detection MDPs are applied. To show the performance of the MDP-based frameworks and ADP methods, a suite of spacecraft attitude planning case studies are described. These case studies are used to analyze the content and

  20. Global finite-time attitude stabilization for rigid spacecraft in the exponential coordinates

    Science.gov (United States)

    Shi, Xiao-Ning; Zhou, Zhi-Gang; Zhou, Di

    2018-06-01

    This paper addresses the global finite-time attitude stabilisation problem on the special orthogonal group (SO(3)) for a rigid spacecraft via homogeneous feedback approach. Considering the topological and geometric properties of SO(3), the logarithm map is utilised to transform the stabilisation problem on SO(3) into the one on its associated Lie algebra (?). A model-independent discontinuous state feedback plus dynamics compensation scheme is constructed to achieve the global finite-time attitude stabilisation in a coordinate-invariant way. In addition, to address the absence of angular velocity measurements, a sliding mode observer is proposed to reconstruct the unknown angular velocity information within finite time. Then, an observer-based finite-time output feedback control strategy is obtained. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controllers.

  1. Adaptive relative pose control of spacecraft with model couplings and uncertainties

    Science.gov (United States)

    Sun, Liang; Zheng, Zewei

    2018-02-01

    The spacecraft pose tracking control problem for an uncertain pursuer approaching to a space target is researched in this paper. After modeling the nonlinearly coupled dynamics for relative translational and rotational motions between two spacecraft, position tracking and attitude synchronization controllers are developed independently by using a robust adaptive control approach. The unknown kinematic couplings, parametric uncertainties, and bounded external disturbances are handled with adaptive updating laws. It is proved via Lyapunov method that the pose tracking errors converge to zero asymptotically. Spacecraft close-range rendezvous and proximity operations are introduced as an example to validate the effectiveness of the proposed control approach.

  2. Flight mission control for multiple spacecraft

    Science.gov (United States)

    Ryan, Robert E.

    1990-10-01

    A plan developed by the Jet Propulsion Laboratory for mission control of unmanned spacecraft is outlined. A technical matrix organization from which, in the past, project teams were formed to uniquely support a mission is replaced in this new plan. A cost effective approach was needed to make best use of limited resources. Mission control is a focal point operations and a good place to start a multimission concept. Co-location and sharing common functions are the keys to obtaining efficiencies at minimum additional risk. For the projects, the major changes are sharing a common operations area and having indirect control of personnel. The plan identifies the still direct link for the mission control functions. Training is a major element in this plan. Personnel are qualified for a position and certified for a mission. This concept is more easily accepted by new missions than the ongoing missions.

  3. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    Science.gov (United States)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  4. An Integrated Vision-Based System for Spacecraft Attitude and Topology Determination for Formation Flight Missions

    Science.gov (United States)

    Rogers, Aaron; Anderson, Kalle; Mracek, Anna; Zenick, Ray

    2004-01-01

    With the space industry's increasing focus upon multi-spacecraft formation flight missions, the ability to precisely determine system topology and the orientation of member spacecraft relative to both inertial space and each other is becoming a critical design requirement. Topology determination in satellite systems has traditionally made use of GPS or ground uplink position data for low Earth orbits, or, alternatively, inter-satellite ranging between all formation pairs. While these techniques work, they are not ideal for extension to interplanetary missions or to large fleets of decentralized, mixed-function spacecraft. The Vision-Based Attitude and Formation Determination System (VBAFDS) represents a novel solution to both the navigation and topology determination problems with an integrated approach that combines a miniature star tracker with a suite of robust processing algorithms. By combining a single range measurement with vision data to resolve complete system topology, the VBAFDS design represents a simple, resource-efficient solution that is not constrained to certain Earth orbits or formation geometries. In this paper, analysis and design of the VBAFDS integrated guidance, navigation and control (GN&C) technology will be discussed, including hardware requirements, algorithm development, and simulation results in the context of potential mission applications.

  5. Optimal Spacecraft Attitude Control Using Aerodynamic Torques

    Science.gov (United States)

    2007-03-01

    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  6. A case study in nonlinear dynamics and control of articulated spacecraft: The Space Station Freedom with a mobile remote manipulator system

    Science.gov (United States)

    Bennett, William H.; Kwatny, Harry G.; Lavigna, Chris; Blankenship, Gilmer

    1994-01-01

    The following topics are discussed: (1) modeling of articulated spacecraft as multi-flex-body systems; (2) nonlinear attitude control by adaptive partial feedback linearizing (PFL) control; (3) attitude dynamics and control for SSF/MRMS; and (4) performance analysis results for attitude control of SSF/MRMS.

  7. Analysis and comparison of extended and unscented Kalman filtering methods for spacecraft attitude determination

    OpenAIRE

    Diaz, Orlando X.

    2010-01-01

    Approved for public release; distribution is unlimited Two methods of estimating the attitude position of a spacecraft are examined in this thesis: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In particular, the UnScented QUaternion Estimator (USQUE) derived from [4] is implemented into a spacecraft model. For generalizations about the each of the filters, a simple problem is initially solved. These solutions display typical characteristics of each filter type. T...

  8. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    Energy Technology Data Exchange (ETDEWEB)

    Inarrea, Manuel [Universidad de La Rioja, Area de Fisica Aplicada, 26006 Logrono (Spain)], E-mail: manuel.inarrea@unirioja.es

    2009-05-30

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  9. Chaos and its control in the pitch motion of an asymmetric magnetic spacecraft in polar elliptic orbit

    International Nuclear Information System (INIS)

    Inarrea, Manuel

    2009-01-01

    We study the pitch attitude dynamics of an asymmetric magnetic spacecraft in a polar almost circular orbit under the influence of a gravity gradient torque. The spacecraft is perturbed by the small eccentricity of the elliptic orbit and by a small magnetic torque generated by the interaction between the Earth's magnetic field and the magnetic moment of the spacecraft. Under both perturbations, we show that the pitch motion exhibits heteroclinic chaotic behavior by means of the Melnikov method. Numerical methods applied to simulations of the pitch motion also confirm the chaotic character of the spacecraft attitude dynamics. Finally, a linear time-delay feedback method for controlling chaos is applied to the governing equations of the spacecraft pitch motion in order to remove the chaotic character of initially irregular attitude motions and transform them into periodic ones.

  10. Spacecraft Attitude Determination with Earth Albedo Corrected Sun Sensor Measurements

    DEFF Research Database (Denmark)

    Bhanderi, Dan

    -Method, Extended Kalman Filter, and Unscented Kalman Filter algorithms are presented and the results are compared. Combining the Unscented Kalman Filter with Earth albedo and enhanced Sun sensor modeling allows for three-axis attitude determination from Sun sensor only, which previously has been perceived...

  11. Relative Attitude Estimation for a Uniform Motion and Slowly Rotating Noncooperative Spacecraft

    Directory of Open Access Journals (Sweden)

    Liu Zhang

    2017-01-01

    Full Text Available This paper presents a novel relative attitude estimation approach for a uniform motion and slowly rotating noncooperative spacecraft. It is assumed that the uniform motion and slowly rotating noncooperative chief spacecraft is in failure or out of control and there is no a priori rotation rate information. We utilize a very fast binary descriptor based on binary robust independent elementary features (BRIEF to obtain the features of the target, which are rotational invariance and resistance to noise. And then, we propose a novel combination of single candidate random sample consensus (RANSAC with extended Kalman filter (EKF that makes use of the available prior probabilistic information from the EKF in the RANSAC model hypothesis stage. The advantage of this combination obviously reduces the sample size to only one, which results in large computational savings without the loss of accuracy. Experimental results from real image sequence of a real model target show that the relative angular error is about 3.5% and the mean angular velocity error is about 0.1 deg/s.

  12. ATS-6 engineering performance report. Volume 2: Orbit and attitude controls

    Science.gov (United States)

    Wales, R. O. (Editor)

    1981-01-01

    Attitude control is reviewed, encompassing the attitude control subsystem, spacecraft attitude precision pointing and slewing adaptive control experiment, and RF interferometer experiment. The spacecraft propulsion system (SPS) is discussed, including subsystem, SPS design description and validation, orbital operations and performance, in-orbit anomalies and contingency operations, and the cesium bombardment ion engine experiment. Thruster failure due to plugging of the propellant feed passages, a major cause for mission termination, are considered among the critical generic failures on the satellite.

  13. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance

    Science.gov (United States)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2018-01-01

    Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.

  14. Trajectory Control of Rendezvous with Maneuver Target Spacecraft

    Science.gov (United States)

    Zhou, Zhinqiang

    2012-01-01

    In this paper, a nonlinear trajectory control algorithm of rendezvous with maneuvering target spacecraft is presented. The disturbance forces on the chaser and target spacecraft and the thrust forces on the chaser spacecraft are considered in the analysis. The control algorithm developed in this paper uses the relative distance and relative velocity between the target and chaser spacecraft as the inputs. A general formula of reference relative trajectory of the chaser spacecraft to the target spacecraft is developed and applied to four different proximity maneuvers, which are in-track circling, cross-track circling, in-track spiral rendezvous and cross-track spiral rendezvous. The closed-loop differential equations of the proximity relative motion with the control algorithm are derived. It is proven in the paper that the tracking errors between the commanded relative trajectory and the actual relative trajectory are bounded within a constant region determined by the control gains. The prediction of the tracking errors is obtained. Design examples are provided to show the implementation of the control algorithm. The simulation results show that the actual relative trajectory tracks the commanded relative trajectory tightly. The predicted tracking errors match those calculated in the simulation results. The control algorithm developed in this paper can also be applied to interception of maneuver target spacecraft and relative trajectory control of spacecraft formation flying.

  15. Dynamics and control of Lorentz-augmented spacecraft relative motion

    CERN Document Server

    Yan, Ye; Yang, Yueneng

    2017-01-01

    This book develops a dynamical model of the orbital motion of Lorentz spacecraft in both unperturbed and J2-perturbed environments. It explicitly discusses three kinds of typical space missions involving relative orbital control: spacecraft hovering, rendezvous, and formation flying. Subsequently, it puts forward designs for both open-loop and closed-loop control schemes propelled or augmented by the geomagnetic Lorentz force. These control schemes are entirely novel and represent a significantly departure from previous approaches.

  16. On-orbit supervisor for controlling spacecraft

    Science.gov (United States)

    Vandervoort, Richard J.

    1992-07-01

    Spacecraft systems of the 1990's and beyond will be substantially more complex than their predecessors. They will have demanding performance requirements and will be expected to operate more autonomously. This underscores the need for innovative approaches to Fault Detection, Isolation and Recovery (FDIR). A hierarchical expert system is presented that provides on-orbit supervision using intelligent FDIR techniques. Each expert system in the hierarchy supervises the operation of a local set of spacecraft functions. Spacecraft operational goals flow top down while responses flow bottom up. The expert system supervisors have a fairly high degree of autonomy. Bureaucratic responsibilities are minimized to conserve bandwidth and maximize response time. Data for FDIR can be acquired local to an expert and from other experts. By using a blackboard architecture for each supervisor, the system provides a great degree of flexibility in implementing the problem solvers for each problem domain. In addition, it provides for a clear separation between facts and knowledge, leading to an efficient system capable of real time response.

  17. Slew Maneuver Control for Spacecraft Equipped with Star Camera and Reaction Wheels

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Kulczycki, P.

    2005-01-01

    A configuration consisting of a star camera, four reaction wheels and magnetorquers for momentum unloading has become standard for many spacecraft missions. This popularity has motivated numerous agencies and private companies to initiate work on the design of an imbedded attitude control system...... realized on an integrated circuit. This paper provides an easily implementable control algorithm for this type of configuration. The paper considers two issues: slew maneuver with a feature of avoiding direct exposure of the camera's CCD chip to the Sun %, three-axis attitude control and optimal control...... torque distribution in a reaction wheel assembly. The attitude controller is synthesized applying the energy shaping technique, where the desired potential function is carefully designed using a physical insight into the nature of the problem. The system stability is thoroughly analyzed and the control...

  18. Distributed Control Architectures for Precision Spacecraft Formations, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LaunchPoint Technologies, Inc. (LaunchPoint) proposes to develop synthesis methods and design architectures for distributed control systems in precision spacecraft...

  19. Development of Star Tracker System for Accurate Estimation of Spacecraft Attitude

    Science.gov (United States)

    2009-12-01

    For a high- cost spacecraft with accurate pointing requirements, the use of a star tracker is the preferred method for attitude determination. The...solutions, however there are certain costs with using this algorithm. There are significantly more features a triangle can provide when compared to an...to the other. The non-rotating geocentric equatorial frame provides an inertial frame for the two-body problem of a satellite in orbit. In this

  20. Quaternion normalization in additive EKF for spacecraft attitude determination. [Extended Kalman Filters

    Science.gov (United States)

    Bar-Itzhack, I. Y.; Deutschmann, J.; Markley, F. L.

    1991-01-01

    This work introduces, examines and compares several quaternion normalization algorithms, which are shown to be an effective stage in the application of the additive extended Kalman filter to spacecraft attitude determination, which is based on vector measurements. Three new normalization schemes are introduced. They are compared with one another and with the known brute force normalization scheme, and their efficiency is examined. Simulated satellite data are used to demonstate the performance of all four schemes.

  1. MicroASC instrument onboard Juno spacecraft utilizing inertially controlled imaging

    DEFF Research Database (Denmark)

    Pedersen, David Arge Klevang; Jørgensen, Andreas Härstedt; Benn, Mathias

    2016-01-01

    This contribution describes the post-processing of the raw image data acquired by the microASC instrument during the Earth-fly-by of the Juno spacecraft. The images show a unique view of the Earth and Moon system as seen from afar. The procedure utilizes attitude measurements and inter......-calibration of the Camera Head Units of the microASC system to trigger the image capturing. The triggering is synchronized with the inertial attitude and rotational phase of the sensor acquiring the images. This is essentially works as inertially controlled imaging facilitating image acquisition from unexplored...

  2. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with input saturation.

    Science.gov (United States)

    Xia, Kewei; Huo, Wei

    2016-05-01

    This paper presents a robust adaptive neural networks control strategy for spacecraft rendezvous and docking with the coupled position and attitude dynamics under input saturation. Backstepping technique is applied to design a relative attitude controller and a relative position controller, respectively. The dynamics uncertainties are approximated by radial basis function neural networks (RBFNNs). A novel switching controller consists of an adaptive neural networks controller dominating in its active region combined with an extra robust controller to avoid invalidation of the RBFNNs destroying stability of the system outside the neural active region. An auxiliary signal is introduced to compensate the input saturation with anti-windup technique, and a command filter is employed to approximate derivative of the virtual control in the backstepping procedure. Globally uniformly ultimately bounded of the relative states is proved via Lyapunov theory. Simulation example demonstrates effectiveness of the proposed control scheme. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Sliding Mode Attitude Control for Magnetic Actuated Satellite

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1998-01-01

    control torques can only be generated perpendicular to the local geomagnetic field vector. This has been a serious obstacle for using magnetorquer based control for three-axis attitude control. This paper deals with three-axis stabilization of a low earth orbit satellite. The problem of controlling...... the spacecraft attitude using only magnetic torquing is realized in the form of the sliding mode control. A three dimensional sliding manifold is proposed, and it is shown that the satellite motion on the sliding manifold is asymptotically stable...

  4. Triana Safehold: A New Gyroless, Sun-Pointing Attitude Controller

    Science.gov (United States)

    Chen, J.; Morgenstern, Wendy; Garrick, Joseph

    2001-01-01

    Triana is a single-string spacecraft to be placed in a halo orbit about the sun-earth Ll Lagrangian point. The Attitude Control Subsystem (ACS) hardware includes four reaction wheels, ten thrusters, six coarse sun sensors, a star tracker, and a three-axis Inertial Measuring Unit (IMU). The ACS Safehold design features a gyroless sun-pointing control scheme using only sun sensors and wheels. With this minimum hardware approach, Safehold increases mission reliability in the event of a gyroscope anomaly. In place of the gyroscope rate measurements, Triana Safehold uses wheel tachometers to help provide a scaled estimation of the spacecraft body rate about the sun vector. Since Triana nominally performs momentum management every three months, its accumulated system momentum can reach a significant fraction of the wheel capacity. It is therefore a requirement for Safehold to maintain a sun-pointing attitude even when the spacecraft system momentum is reasonably large. The tachometer sun-line rate estimation enables the controller to bring the spacecraft close to its desired sun-pointing attitude even with reasonably high system momentum and wheel drags. This paper presents the design rationale behind this gyroless controller, stability analysis, and some time-domain simulation results showing performances with various initial conditions. Finally, suggestions for future improvements are briefly discussed.

  5. Observer Based Sliding Mode Attitude Control: Theoretical and Experimental Results

    Directory of Open Access Journals (Sweden)

    U. Jørgensen

    2011-07-01

    Full Text Available In this paper we present the design of a sliding mode controller for attitude control of spacecraft actuated by three orthogonal reaction wheels. The equilibrium of the closed loop system is proved to be asymptotically stable in the sense of Lyapunov. Due to cases where spacecraft do not have angular velocity measurements, an estimator for the generalized velocity is derived and asymptotic stability is proven for the observer. The approach is tested on an experimental platform with a sphere shaped Autonomous Underwater Vehicle SATellite: AUVSAT, developed at the Norwegian University of Science and Technology.

  6. Cassini at Saturn Proximal Orbits - Attitude Control Challenges

    Science.gov (United States)

    Burk, Thomas A.

    2013-01-01

    The Cassini mission at Saturn will come to an end in the spring and summer of 2017 with a series of 22 orbits that will dip inside the rings of Saturn. These are called proximal orbits and will conclude with spacecraft disposal into the atmosphere of the ringed world on September 15, 2017. These unique orbits that cross the ring plane only a few thousand kilometers above the cloud tops of the planet present new attitude control challenges for the Cassini operations team. Crossing the ring plane so close to the inner edge of the rings means that the Cassini orientation during the crossing will be tailored to protect the sensitive electronics bus of the spacecraft. This orientation will put the sun sensors at some extra risk so this paper discusses how the team prepares for dust hazards. Periapsis is so close to the planet that spacecraft controllability with RCS thrusters needs to be evaluated because of the predicted atmospheric torque near closest approach to Saturn. Radiation during the ring plane crossings will likely trigger single event transients in some attitude control sensors. This paper discusses how the attitude control team deals with radiation hazards. The angular size and unique geometry of the rings and Saturn near periapsis means that star identification will be interrupted and this paper discusses how the safe mode attitude is selected to best deal with these large bright bodies during the proximal orbits.

  7. Spacecraft control center automation using the generic inferential executor (GENIE)

    Science.gov (United States)

    Hartley, Jonathan; Luczak, Ed; Stump, Doug

    1996-01-01

    The increasing requirement to dramatically reduce the cost of mission operations led to increased emphasis on automation technology. The expert system technology used at the Goddard Space Flight Center (MD) is currently being applied to the automation of spacecraft control center activities. The generic inferential executor (GENIE) is a tool which allows pass automation applications to be constructed. The pass script templates constructed encode the tasks necessary to mimic flight operations team interactions with the spacecraft during a pass. These templates can be configured with data specific to a particular pass. Animated graphical displays illustrate the progress during the pass. The first GENIE application automates passes of the solar, anomalous and magnetospheric particle explorer (SAMPEX) spacecraft.

  8. Customizing graphical user interface technology for spacecraft control centers

    Science.gov (United States)

    Beach, Edward; Giancola, Peter; Gibson, Steven; Mahmot, Ronald

    1993-01-01

    The Transportable Payload Operations Control Center (TPOCC) project is applying the latest in graphical user interface technology to the spacecraft control center environment. This project of the Mission Operations Division's (MOD) Control Center Systems Branch (CCSB) at NASA Goddard Space Flight Center (GSFC) has developed an architecture for control centers which makes use of a distributed processing approach and the latest in Unix workstation technology. The TPOCC project is committed to following industry standards and using commercial off-the-shelf (COTS) hardware and software components wherever possible to reduce development costs and to improve operational support. TPOCC's most successful use of commercial software products and standards has been in the development of its graphical user interface. This paper describes TPOCC's successful use and customization of four separate layers of commercial software products to create a flexible and powerful user interface that is uniquely suited to spacecraft monitoring and control.

  9. Itzhack Y. Bar-Itzhack Memorial Symposium on Estimation, Navigation, and Spacecraft Control

    CERN Document Server

    Oshman, Yaakov; Thienel, Julie; Idan, Moshe

    2015-01-01

    This book presents selected papers of the Itzhack Y. Bar-Itzhack Memorial Sympo- sium on Estimation, Navigation, and Spacecraft Control. Itzhack Y. Bar-Itzhack, professor Emeritus of Aerospace Engineering at the Technion – Israel Institute of Technology, was a prominent and world-renowned member of the applied estimation, navigation, and spacecraft attitude determination communities. He touched the lives of many. He had a love for life, an incredible sense of humor, and wisdom that he shared freely with everyone he met. To honor Professor Bar-Itzhack's memory, as well as his numerous seminal professional achievements, an international symposium was held in Haifa, Israel, on October 14–17, 2012, under the auspices of the Faculty of Aerospace Engineering at the Technion and the Israeli Association for Automatic Control. The book contains 27 selected, revised, and edited contributed chapters written by eminent international experts. The book is organized in three parts: (1) Estimation, (2) Navigation and (3)...

  10. Satellite Attitude Control System Simulator

    Directory of Open Access Journals (Sweden)

    G.T. Conti

    2008-01-01

    Full Text Available Future space missions will involve satellites with great autonomy and stringent pointing precision, requiring of the Attitude Control Systems (ACS with better performance than before, which is function of the control algorithms implemented on board computers. The difficulties for developing experimental ACS test is to obtain zero gravity and torque free conditions similar to the SCA operate in space. However, prototypes for control algorithms experimental verification are fundamental for space mission success. This paper presents the parameters estimation such as inertia matrix and position of mass centre of a Satellite Attitude Control System Simulator (SACSS, using algorithms based on least square regression and least square recursive methods. Simulations have shown that both methods have estimated the system parameters with small error. However, the least square recursive methods have performance more adequate for the SACSS objectives. The SACSS platform model will be used to do experimental verification of fundamental aspects of the satellite attitude dynamics and design of different attitude control algorithm.

  11. Dynamics and control of high area-to-mass ratio spacecraft and its application to geomagnetic exploration

    Science.gov (United States)

    Luo, Tong; Xu, Ming; Colombo, Camilla

    2018-04-01

    This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.

  12. International Symposium on Spacecraft Ground Control and Flight Dynamics, SCD1, Sao Jose dos Campos, Brazil, Feb. 7-11, 1994

    Science.gov (United States)

    Rozenfeld, Pawel; Kuga, Helio Koiti; Orlando, Valcir

    An international symposium on spacecraft flight dynamics and ground control systems produced 85 papers in the areas of attitude determination and control, orbit control, satellite constellation strategies, stationkeeping, spacecraft maneuvering, orbit determination, astrodynamics, ground command and control systems, and mission operations. Several papers included discussions on the application of artificial intelligence, neural networks, expert systems, and ion propulsion. For individual titles, see A95-89098 through A95-89182.

  13. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  14. Robust H∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    Directory of Open Access Journals (Sweden)

    Shu-Nan Wu

    2013-01-01

    Full Text Available The robust H∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H∞ performance and finite time performance are proposed, and a robust H∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller.

  15. Adaptive super twisting vibration control of a flexible spacecraft with state rate estimation

    Science.gov (United States)

    Malekzadeh, Maryam; Karimpour, Hossein

    2018-05-01

    The robust attitude and vibration control of a flexible spacecraft trying to perform accurate maneuvers in spite of various sources of uncertainty is addressed here. Difficulties for achieving precise and stable pointing arise from noisy onboard sensors, parameters indeterminacy, outer disturbances as well as un-modeled or hidden dynamics interactions. Based on high-order sliding-mode methods, the non-minimum phase nature of the problem is dealt with through output redefinition. An adaptive super-twisting algorithm (ASTA) is incorporated with its observer counterpart on the system under consideration to get reliable attitude and vibration control in the presence of sensor noise and momentum coupling. The closed-loop efficiency is verified through simulations under various indeterminate situations and got compared to other methods.

  16. Adaptive nonlinear robust relative pose control of spacecraft autonomous rendezvous and proximity operations.

    Science.gov (United States)

    Sun, Liang; Huo, Wei; Jiao, Zongxia

    2017-03-01

    This paper studies relative pose control for a rigid spacecraft with parametric uncertainties approaching to an unknown tumbling target in disturbed space environment. State feedback controllers for relative translation and relative rotation are designed in an adaptive nonlinear robust control framework. The element-wise and norm-wise adaptive laws are utilized to compensate the parametric uncertainties of chaser and target spacecraft, respectively. External disturbances acting on two spacecraft are treated as a lumped and bounded perturbation input for system. To achieve the prescribed disturbance attenuation performance index, feedback gains of controllers are designed by solving linear matrix inequality problems so that lumped disturbance attenuation with respect to the controlled output is ensured in the L 2 -gain sense. Moreover, in the absence of lumped disturbance input, asymptotical convergence of relative pose are proved by using the Lyapunov method. Numerical simulations are performed to show that position tracking and attitude synchronization are accomplished in spite of the presence of couplings and uncertainties. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. The Earth Observing System AM Spacecraft - Thermal Control Subsystem

    Science.gov (United States)

    Chalmers, D.; Fredley, J.; Scott, C.

    1993-01-01

    Mission requirements for the EOS-AM Spacecraft intended to monitor global changes of the entire earth system are considered. The spacecraft is based on an instrument set containing the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multiangle Imaging Spectro-Radiometer (MISR), Moderate-Resolution Imaging Spectrometer (MODIS), and Measurements of Pollution in the Troposphere (MOPITT). Emphasis is placed on the design, analysis, development, and verification plans for the unique EOS-AM Thermal Control Subsystem (TCS) aimed at providing the required environments for all the onboard equipment in a densely packed layout. The TCS design maximizes the use of proven thermal design techniques and materials, in conjunction with a capillary pumped two-phase heat transport system for instrument thermal control.

  18. Distributed Autonomous Control of Multiple Spacecraft During Close Proximity Operations

    Science.gov (United States)

    2007-12-01

    Neubauer [54][55]. 87 VII. LQR/APF CONTROL ALGORITHM APPROACH The LQR approach can be recursively applied to the multiple spacecraft close... Neubauer and Swartwout’s research [55]. It is generally possible to select a closed map over which the algorithm is stable and robust. For these...can be easily edited and transferred into video format for presentations. Modifications of camera key frames ( camera position and angle) and

  19. PARALLEL INTEGRATION ALGORITHM AND ITS USAGE FOR A PRACTICAL SIMULATION OF SPACECRAFT ATTITUDE MOTION

    Directory of Open Access Journals (Sweden)

    Ravil’ Kudermetov

    2018-02-01

    Full Text Available Nowadays multi-core processors are installed almost in each modern workstation, but the question of these computational resources effective utilization is still a topical one. In this paper the four-point block one-step integration method is considered, the parallel algorithm of this method is proposed and the Java programmatic implementation of this algorithm is discussed. The effectiveness of the proposed algorithm is demonstrated by way of spacecraft attitude motion simulation. The results of this work can be used for practical simulation of dynamic systems that are described by ordinary differential equations. The results are also applicable to the development and debugging of computer programs that integrate the dynamic and kinematic equations of the angular motion of a rigid body.

  20. Antimicrobial Materials for Advanced Microbial Control in Spacecraft Water Systems

    Science.gov (United States)

    Birmele, Michele; Caro, Janicce; Newsham, Gerard; Roberts, Michael; Morford, Megan; Wheeler, Ray

    2012-01-01

    Microbial detection, identification, and control are essential for the maintenance and preservation of spacecraft water systems. Requirements set by NASA put limitations on the energy, mass, materials, noise, cost, and crew time that can be devoted to microbial control. Efforts are being made to attain real-time detection and identification of microbial contamination in microgravity environments. Research for evaluating technologies for capability enhancement on-orbit is currently focused on the use of adenosine triphosphate (ATP) analysis for detection purposes and polymerase chain reaction (peR) for microbial identification. Additional research is being conducted on how to control for microbial contamination on a continual basis. Existing microbial control methods in spacecraft utilize iodine or ionic silver biocides, physical disinfection, and point-of-use sterilization filters. Although these methods are effective, they require re-dosing due to loss of efficacy, have low human toxicity thresholds, produce poor taste, and consume valuable mass and crew time. Thus, alternative methods for microbial control are needed. This project also explores ultraviolet light-emitting diodes (UV-LEDs), surface passivation methods for maintaining residual biocide levels, and several antimicrobial materials aimed at improving current microbial control techniques, as well as addressing other materials presently under analysis and future directions to be pursued.

  1. Attitude Determination and Control Systems

    Science.gov (United States)

    Starin, Scott R.; Eterno, John

    2011-01-01

    designing and operating spacecraft pointing (i.e. attitude) systems.

  2. Performance of silvered Teflon (trademark) thermal control blankets on spacecraft

    Science.gov (United States)

    Pippin, Gary; Stuckey, Wayne; Hemminger, Carol

    1993-01-01

    Silverized Teflon (Ag/FEP) is a widely used passive thermal control material for space applications. The material has a very low alpha/e ratio (less than 0.1) for low operating temperatures and is fabricated with various FEP thicknesses (as the Teflon thickness increases, the emittance increases). It is low outgassing and, because of its flexibility, can be applied around complex, curved shapes. Ag/FEP has achieved multiyear lifetimes under a variety of exposure conditions. This has been demonstrated by the Long Duration Exposure Facility (LDEF), Solar Max, Spacecraft Charging at High Altitudes (SCATHA), and other flight experiments. Ag/FEP material has been held in place on spacecraft by a variety of methods: mechanical clamping, direct adhesive bonding of tapes and sheets, and by Velcro(TM) tape adhesively bonded to back surfaces. On LDEF, for example, 5-mil blankets held by Velcro(TM) and clamping were used for thermal control over 3- by 4-ft areas on each of 17 trays. Adhesively bonded 2- and 5-mil sheets were used on other LDEF experiments, both for thermal control and as tape to hold other thermal control blankets in place. Performance data over extended time periods are available from a number of flights. The observed effects on optical properties, mechanical properties, and surface chemistry will be summarized in this paper. This leads to a discussion of performance life estimates and other design lessons for Ag/FEP thermal control material.

  3. On spacecraft maneuvers control subject to propellant engine modes.

    Science.gov (United States)

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. A user's guide to the Flexible Spacecraft Dynamics and Control Program

    Science.gov (United States)

    Fedor, J. V.

    1984-01-01

    A guide to the use of the Flexible Spacecraft Dynamics Program (FSD) is presented covering input requirements, control words, orbit generation, spacecraft description and simulation options, and output definition. The program can be used in dynamics and control analysis as well as in orbit support of deployment and control of spacecraft. The program is applicable to inertially oriented spinning, Earth oriented or gravity gradient stabilized spacecraft. Internal and external environmental effects can be simulated.

  5. Definition of the topological structure of the automatic control system of spacecrafts

    International Nuclear Information System (INIS)

    KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Zelenkov, P V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Karaseva, M V; KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" data-affiliation=" (Siberian State Aerospace University named after Academician M.F.Reshetnev 31 KrasnoyarskiyRabochiy prospect, Krasnoyarsk, 660014 (Russian Federation))" >Tsareva, E A; Tsarev, R Y

    2015-01-01

    The paper considers the problem of selection the topological structure of the automated control system of spacecrafts. The integer linear model of mathematical programming designed to define the optimal topological structure for spacecraft control is proposed. To solve the determination problem of topological structure of the control system of spacecrafts developed the procedure of the directed search of some structure variants according to the scheme 'Branch and bound'. The example of the automated control system of spacecraft development included the combination of ground control stations, managing the spacecraft of three classes with a geosynchronous orbit with constant orbital periods is presented

  6. Spacecraft formation control using analytical finite-duration approaches

    Science.gov (United States)

    Ben Larbi, Mohamed Khalil; Stoll, Enrico

    2018-03-01

    This paper derives a control concept for formation flight (FF) applications assuming circular reference orbits. The paper focuses on a general impulsive control concept for FF which is then extended to the more realistic case of non-impulsive thrust maneuvers. The control concept uses a description of the FF in relative orbital elements (ROE) instead of the classical Cartesian description since the ROE provide a direct insight into key aspects of the relative motion and are particularly suitable for relative orbit control purposes and collision avoidance analysis. Although Gauss' variational equations have been first derived to offer a mathematical tool for processing orbit perturbations, they are suitable for several different applications. If the perturbation acceleration is due to a control thrust, Gauss' variational equations show the effect of such a control thrust on the Keplerian orbital elements. Integrating the Gauss' variational equations offers a direct relation between velocity increments in the local vertical local horizontal frame and the subsequent change of Keplerian orbital elements. For proximity operations, these equations can be generalized from describing the motion of single spacecraft to the description of the relative motion of two spacecraft. This will be shown for impulsive and finite-duration maneuvers. Based on that, an analytical tool to estimate the error induced through impulsive maneuver planning is presented. The resulting control schemes are simple and effective and thus also suitable for on-board implementation. Simulations show that the proposed concept improves the timing of the thrust maneuver executions and thus reduces the residual error of the formation control.

  7. Gravity Probe B spacecraft description

    International Nuclear Information System (INIS)

    Bennett, Norman R; Burns, Kevin; Katz, Russell; Kirschenbaum, Jon; Mason, Gary; Shehata, Shawky

    2015-01-01

    The Gravity Probe B spacecraft, developed, integrated, and tested by Lockheed Missiles and Space Company and later Lockheed Martin Corporation, consisted of structures, mechanisms, command and data handling, attitude and translation control, electrical power, thermal control, flight software, and communications. When integrated with the payload elements, the integrated system became the space vehicle. Key requirements shaping the design of the spacecraft were: (1) the tight mission timeline (17 months, 9 days of on-orbit operation), (2) precise attitude and translational control, (3) thermal protection of science hardware, (4) minimizing aerodynamic, magnetic, and eddy current effects, and (5) the need to provide a robust, low risk spacecraft. The spacecraft met all mission requirements, as demonstrated by dewar lifetime meeting specification, positive power and thermal margins, precision attitude control and drag-free performance, reliable communications, and the collection of more than 97% of the available science data. (paper)

  8. Novel Methodology for Control and Stabilization of Spacecraft with Captured Asteroid

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of novel spacecraft guidance control architectures and algorithms that work in conjunction with robot manipulator control for application to ARM mission...

  9. Spacecraft Charging: Hazard Causes, Hazard Effects, Hazard Controls

    Science.gov (United States)

    Koontz, Steve.

    2018-01-01

    Spacecraft flight environments are characterized both by a wide range of space plasma conditions and by ionizing radiation (IR), solar ultraviolet and X-rays, magnetic fields, micrometeoroids, orbital debris, and other environmental factors, all of which can affect spacecraft performance. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of spacecraft charging and charging effects that can be applied to solving practical spacecraft and spacesuit engineering design, verification, and operations problems, with an emphasis on spacecraft operations in low-Earth orbit, Earth's magnetosphere, and cis-Lunar space.

  10. Performance analysis of a GPS Interferometric attitude determination system for a gravity gradient stabilized spacecraft. M.S. Thesis

    Science.gov (United States)

    Stoll, John C.

    1995-01-01

    The performance of an unaided attitude determination system based on GPS interferometry is examined using linear covariance analysis. The modelled system includes four GPS antennae onboard a gravity gradient stabilized spacecraft, specifically the Air Force's RADCAL satellite. The principal error sources are identified and modelled. The optimal system's sensitivities to these error sources are examined through an error budget and by varying system parameters. The effects of two satellite selection algorithms, Geometric and Attitude Dilution of Precision (GDOP and ADOP, respectively) are examined. The attitude performance of two optimal-suboptimal filters is also presented. Based on this analysis, the limiting factors in attitude accuracy are the knowledge of the relative antenna locations, the electrical path lengths from the antennae to the receiver, and the multipath environment. The performance of the system is found to be fairly insensitive to torque errors, orbital inclination, and the two satellite geometry figures-of-merit tested.

  11. Linearizing feedforward/feedback attitude control

    Science.gov (United States)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  12. Thermal control system. [removing waste heat from industrial process spacecraft

    Science.gov (United States)

    Hewitt, D. R. (Inventor)

    1983-01-01

    The temperature of an exothermic process plant carried aboard an Earth orbiting spacecraft is regulated using a number of curved radiator panels accurately positioned in a circular arrangement to form an open receptacle. A module containing the process is insertable into the receptacle. Heat exchangers having broad exterior surfaces extending axially above the circumference of the module fit within arcuate spacings between adjacent radiator panels. Banks of variable conductance heat pipes partially embedded within and thermally coupled to the radiator panels extend across the spacings and are thermally coupled to broad exterior surfaces of the heat exchangers by flanges. Temperature sensors monitor the temperature of process fluid flowing from the module through the heat exchanges. Thermal conduction between the heat exchangers and the radiator panels is regulated by heating a control fluid within the heat pipes to vary the effective thermal length of the heat pipes in inverse proportion to changes in the temperature of the process fluid.

  13. Integrated Power and Attitude Control System (IPACS) technology developments

    Science.gov (United States)

    Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch

    1990-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.

  14. Design and Integration of an All-Magnetic Attitude Control System for FASTSAT-HSV01's Multiple Pointing Objectives

    Science.gov (United States)

    DeKock, Brandon; Sanders, Devon; Vanzwieten, Tannen; Capo-Lugo, Pedro

    2011-01-01

    The FASTSAT-HSV01 spacecraft is a microsatellite with magnetic torque rods as it sole attitude control actuator. FASTSAT s multiple payloads and mission functions require the Attitude Control System (ACS) to maintain Local Vertical Local Horizontal (LVLH)-referenced attitudes without spin-stabilization, while the pointing errors for some attitudes be significantly smaller than the previous best-demonstrated for this type of control system. The mission requires the ACS to hold multiple stable, unstable, and non-equilibrium attitudes, as well as eject a 3U CubeSat from an onboard P-POD and recover from the ensuing tumble. This paper describes the Attitude Control System, the reasons for design choices, how the ACS integrates with the rest of the spacecraft, and gives recommendations for potential future applications of the work.

  15. Passive Set-Point Thermal Control Skin for Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current manned and unmanned spacecraft require sophisticated thermal control technologies to keep systems at temperatures within their proper operating ranges....

  16. Study of the Spacecraft Potential Under Active Control and Plasma Density Estimates During the MMS Commissioning Phase

    Science.gov (United States)

    Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.

    2016-01-01

    Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.

  17. Multiple Model Adaptive Attitude Control of LEO Satellite with Angular Velocity Constraints

    Science.gov (United States)

    Shahrooei, Abolfazl; Kazemi, Mohammad Hosein

    2018-04-01

    In this paper, the multiple model adaptive control is utilized to improve the transient response of attitude control system for a rigid spacecraft. An adaptive output feedback control law is proposed for attitude control under angular velocity constraints and its almost global asymptotic stability is proved. The multiple model adaptive control approach is employed to counteract large uncertainty in parameter space of the inertia matrix. The nonlinear dynamics of a low earth orbit satellite is simulated and the proposed control algorithm is implemented. The reported results show the effectiveness of the suggested scheme.

  18. Odor Control in Spacecraft Waste Management, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and lunar bases generate a variety of wastes containing water, including food wastes, feces, and brines. Disposal of these wastes, as well as recovery of...

  19. Internal Mass Motion for Spacecraft Dynamics and Control

    National Research Council Canada - National Science Library

    Hall, Christopher D

    2008-01-01

    We present a detailed description of the application of a noncanonical Hamiltonian formulation to the modeling, analysis, and simulation of the dynamics of gyrostat spacecraft with internal mass motion...

  20. Studies on black anodic coatings for spacecraft thermal control applications

    Energy Technology Data Exchange (ETDEWEB)

    Uma Rani, R.; Subba Rao, Y.; Sharma, A.K. [ISRO Satellite Centre, Bangalore (India). Thermal Systems Group

    2011-10-15

    An inorganic black colouring process using nickel sulphate and sodium sulphide was investigated on anodized aluminium alloy 6061 to provide a flat absorber black coating for spacecraft thermal control applications. Influence of colouring process parameters (concentration, pH) on the physico-optical properties of black anodic film was investigated. The nature of black anodic film was evaluated by the measurement of film thickness, micro hardness and scanning electron microscopy (SEM). Energy dispersive X-ray spectroscopy studies confirmed the presence of nickel and sulphur in the black anodic coating. Electrochemical impedance spectroscopy (EIS) was used to evaluate the corrosion resistance of the coating. The environmental tests, namely, humidity, corrosion resistance, thermal cycling and thermo vacuum performance tests were used to evaluate the space worthiness of the coating. Optical properties of the film were measured before and after each environmental test to ascertain its stability in harsh space environment. The black anodic films provide higher thermal emittance ({proportional_to} 0.90) and solar absorptance ({proportional_to} 0.96) and their high stability during the environmental tests indicated their suitability for space and allied applications. (orig.)

  1. The effects of 1 kW class arcjet thruster plumes on spacecraft charging and spacecraft thermal control materials

    Science.gov (United States)

    Bogorad, A.; Lichtin, D. A.; Bowman, C.; Armenti, J.; Pencil, E.; Sarmiento, C.

    1992-01-01

    Arcjet thrusters are soon to be used for north/south stationkeeping on commercial communications satellites. A series of tests was performed to evaluate the possible effects of these thrusters on spacecraft charging and the degradation of thermal control material. During the tests the interaction between arcjet plumes and both charged and uncharged surfaces did not cause any significant material degradation. In addition, firing an arcjet thruster benignly reduced the potential of charged surfaces to near zero.

  2. Aircraft Landing and Attitude Control Using Dynamic Matrix Control

    Directory of Open Access Journals (Sweden)

    George Cristian Calugaru

    2017-06-01

    Full Text Available This paper proposes a method for an efficient control of the aircraft landing and attitude through Dynamic Matrix Control. The idea of MPC structures used in aircraft control has been well established during the last few years, but some aspects require further investigation. With this in mind, the paper proposes structures for aircraft landing and aircraft attitude control by using single DMC controllers for landing and respectively one DMC controller for each of the attitude axis (pitch attitude hold, bank angle hold and heading hold. The model used for analysis of the aircraft landing structure is based on the last phase of landing. Also, the model used to illustrate the attitude control is that of a pitch attitude hold system of a N250-100 aircraft. Simulations are performed for a variety of control and prediction horizons, taking into account the possibility of adding a weighting factor for the control actions. Apart from separate studies on step reference variations, for some use cases, a generic reference trajectory is provided as a control purpose of the system. Results show a better performance of the proposed method in terms of control surface transition and protection of the actuators involved and a better time response in stabilizing the aircraft attitude. Overall, the aspects shown ensure an improved aircraft attitude control and landing stabilization.

  3. Attitude control of an orbiting space vehicle.

    Science.gov (United States)

    Sutherlin, D. W.; Boland, J. S. , III; Borelli, M. T.

    1971-01-01

    Study of the normal and clamped modes of operation and dynamic response characteristics of the gimbaled control moment gyro (CMG) designed to fulfill the stringent pointing requirements of the Skylab telescope mount when the spacecraft is under the influence of both external and internal torques. The results indicate that the clamped mode of operation provides a feasible approach for significantly improving the system characteristics.

  4. Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices

    Science.gov (United States)

    Munday, Jeremy

    2016-01-01

    Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.

  5. Description of the attitude control, guidance and navigation space replaceable units for automated space servicing of selected NASA missions

    Science.gov (United States)

    Chobotov, V. A.

    1974-01-01

    Control elements such as sensors, momentum exchange devices, and thrusters are described which can be used to define space replaceable units (SRU), in accordance with attitude control, guidance, and navigation performance requirements selected for NASA space serviceable mission spacecraft. A number of SRU's are developed, and their reliability block diagrams are presented. An SRU assignment is given in order to define a set of feasible space serviceable spacecraft for the missions of interest.

  6. Investigation of tenuous plasma environment using Active Spacecraft Potential Control (ASPOC) on Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Nakamura, Rumi; Jeszenszky, Harald; Torkar, Klaus; Andriopoulou, Maria; Fremuth, Gerhard; Taijmar, Martin; Scharlemann, Carsten; Svenes, Knut; Escoubet, Philippe; Prattes, Gustav; Laky, Gunter; Giner, Franz; Hoelzl, Bernhard

    2015-04-01

    The NASA's Magnetospheric Multiscale (MMS) Mission is planned to be launched on March 12, 2015. The scientific objectives of the MMS mission are to explore and understand the fundamental plasma physics processes of magnetic reconnection, particle acceleration and turbulence in the Earth's magnetosphere. The region of scientific interest of MMS is in a tenuous plasma environment where the positive spacecraft potential reaches an equilibrium at several tens of Volts. An Active Spacecraft Potential Control (ASPOC) instrument neutralizes the spacecraft potential by releasing positive charge produced by indium ion emitters. ASPOC thereby reduces the potential in order to improve the electric field and low-energy particle measurement. The method has been successfully applied on other spacecraft such as Cluster and Double Star. Two ASPOC units are present on each of the MMS spacecraft. Each unit contains four ion emitters, whereby one emitter per instrument is operated at a time. ASPOC for MMS includes new developments in the design of the emitters and the electronics enabling lower spacecraft potentials, higher reliability, and a more uniform potential structure in the spacecraft's sheath compared to previous missions. Model calculations confirm the findings from previous applications that the plasma measurements will not be affected by the beam's space charge. A perfectly stable spacecraft potential precludes the utilization of the spacecraft as a plasma probe, which is a conventional technique used to estimate ambient plasma density from the spacecraft potential. The small residual variations of the potential controlled by ASPOC, however, still allow to determine ambient plasma density by comparing two closely separated spacecraft and thereby reconstructing the uncontrolled potential variation from the controlled potential. Regular intercalibration of controlled and uncontrolled potentials is expected to increase the reliability of this new method.

  7. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Haley 2

    Science.gov (United States)

    Luna, Michael E.; Collins, Stephen M.

    2011-01-01

    On November 4, 2010 the already "in-flight" Deep Impact spacecraft flew within 700km of comet 103P/Hartley 2 as part of its extended mission EPOXI, the 5th time to date any spacecraft visited a comet. In 2005, the spacecraft had previously imaged a probe impact comet Tempel 1. The EPOXI flyby marked the first time in history that two comets were explored with the same instruments on a re-used spacecraft-with hardware and software originally designed and optimized for a different mission. This made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby. As part of the spacecraft team preparations, the ADCS team had to perform thorough sequence reviews, key spacecraft activities and onboard calibrations. These activities included: review of background sequences for the initial conditions vector, sun sensor coefficients, and reaction wheel assembly (RWA) de-saturations; design and execution of 10 trajectory correction maneuvers; science calibration of the two telescope instruments; a flight demonstration of the fastest turns conducted by the spacecraft between Earth and comet point; and assessment of RWA health (given RWA problems on other spacecraft).

  8. Experimental study on line-of-sight (LOS) attitude control using control moment gyros under micro-gravity environment

    Science.gov (United States)

    Kojima, Hirohisa; Hiraiwa, Kana; Yoshimura, Yasuhiro

    2018-02-01

    This paper presents the results of line-of-sight (LOS) attitude control using control moment gyros under a micro-gravity environment generated by parabolic flight. The W-Z parameters are used to describe the spacecraft attitude. In order to stabilize the current LOS to the target LOS, backstepping-based feedback control is considered using the W-Z parameters. Numerical simulations and experiments under a micro-gravity environment are carried out, and their results are compared in order to validate the proposed control methods.

  9. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  10. Optimal control of a programmed motion of a rigid spacecraft using redundant kinematics parameterizations

    International Nuclear Information System (INIS)

    El-Gohary, Awad

    2005-01-01

    This paper considers the problem of optimal controlling of a programmed motion of a rigid spacecraft. Given a cost of the spacecraft as a quadratic function of state and control variables we seek for optimal control laws as functions of the state variables and the angle of programmed rotation that minimize this cost and asymptotically stabilize the required programmed motion. The stabilizing properties of the proposed controllers are proved using the optimal Liapunov techniques. Numerical simulation study is presented

  11. Satellite Attitude Control Using Only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    when a satellite is on a throughout this thesis. Confined computer capacity and a limit on electrical power supply were separate obstacles.They demanded computational simplicity and power optimality from the attitude control system. The design of quasi optimal controllers for a real-time implementation...... to provide four stable equilibria, one of which was the desired orientation. It was explained how the equilibria depended on the ratio of the satellite's moments of inertia. It was further investigated how to control the attitude, such that the satellite was globally asymptotically stable in the desired...

  12. High speed reaction wheels for satellite attitude control and energy storage

    Science.gov (United States)

    Studer, P.; Rodriguez, E.

    1985-01-01

    The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.

  13. Rigid Body Attitude Control Based on a Manifold Representation of Direction Cosine Matrices

    International Nuclear Information System (INIS)

    Nakath, David; Clemens, Joachim; Rachuy, Carsten

    2017-01-01

    Autonomous systems typically actively observe certain aspects of their surroundings, which makes them dependent on a suitable controller. However, building an attitude controller for three degrees of freedom is a challenging task, mainly due to singularities in the different parametrizations of the three dimensional rotation group SO (3). Thus, we propose an attitude controller based on a manifold representation of direction cosine matrices: In state space, the attitude is globally and uniquely represented as a direction cosine matrix R ∈ SO (3). However, differences in the state space, i.e., the attitude errors, are exposed to the controller in the vector space ℝ 3 . This is achieved by an operator, which integrates the matrix logarithm mapping from SO (3) to so(3) and the map from so(3) to ℝ 3 . Based on this representation, we derive a proportional and derivative feedback controller, whose output has an upper bound to prevent actuator saturation. Additionally, the feedback is preprocessed by a particle filter to account for measurement and state transition noise. We evaluate our approach in a simulator in three different spacecraft maneuver scenarios: (i) stabilizing, (ii) rest-to-rest, and (iii) nadir-pointing. The controller exhibits stable behavior from initial attitudes near and far from the setpoint. Furthermore, it is able to stabilize a spacecraft and can be used for nadir-pointing maneuvers. (paper)

  14. Filtering Methods for Error Reduction in Spacecraft Attitude Estimation Using Quaternion Star Trackers

    Science.gov (United States)

    Calhoun, Philip C.; Sedlak, Joseph E.; Superfin, Emil

    2011-01-01

    Precision attitude determination for recent and planned space missions typically includes quaternion star trackers (ST) and a three-axis inertial reference unit (IRU). Sensor selection is based on estimates of knowledge accuracy attainable from a Kalman filter (KF), which provides the optimal solution for the case of linear dynamics with measurement and process errors characterized by random Gaussian noise with white spectrum. Non-Gaussian systematic errors in quaternion STs are often quite large and have an unpredictable time-varying nature, particularly when used in non-inertial pointing applications. Two filtering methods are proposed to reduce the attitude estimation error resulting from ST systematic errors, 1) extended Kalman filter (EKF) augmented with Markov states, 2) Unscented Kalman filter (UKF) with a periodic measurement model. Realistic assessments of the attitude estimation performance gains are demonstrated with both simulation and flight telemetry data from the Lunar Reconnaissance Orbiter.

  15. ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1

    Directory of Open Access Journals (Sweden)

    Hyunwoo Lee

    1996-06-01

    Full Text Available The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  16. Attitude control analysis of tethered de-orbiting

    Science.gov (United States)

    Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.

    2018-05-01

    The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.

  17. Advanced Attitude Control af Pico Sized Satellites

    DEFF Research Database (Denmark)

    Larsen, Jesper A.; Amini, Rouzbeh; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    accuracy of better than 5 degrees. Cost, size, weight and power requirements, on the other hand, impose selecting relative simple sensors and actuators which leads to an attitude control requirement of less than 1 degree. This precision is obtained by a combination of magnetorquers and momentum wheels...

  18. Temperature control of the Mariner class spacecraft - A seven mission summary.

    Science.gov (United States)

    Dumas, L. N.

    1973-01-01

    Mariner spacecraft have completed five missions of scientific investigation of the planets. Two additional missions are planned. A description of the thermal design of these seven spacecraft is given herein. The factors which have influenced the thermal design include the mission requirements and constraints, the flight environment, certain programmatic considerations and the experience gained as each mission is completed. These factors are reviewed and the impact of each on thermal design and developmental techniques is assessed. It is concluded that the flight success of these spacecraft indicates that adequate temperature control has been obtained, but that improvements in design data, hardware performance and analytical techniques are needed.

  19. Small Spacecraft for Planetary Science

    Science.gov (United States)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  20. A Memory/Immunology-Based Control Approach with Applications to Multiple Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Liguo Weng

    2013-01-01

    Full Text Available This paper addresses the problem of formation control for multiple spacecrafts in Planetary Orbital Environment (POE. Due to the presence of diverse interferences and uncertainties in the outer space, such as the changing spacecraft mass, unavailable space parameters, and varying gravity forces, traditional control methods encounter great difficulties in this area. A new control approach inspired by human memory and immune system is proposed, and this approach is shown to be capable of learning from past control experience and current behavior to improve its performance. It demands much less system dynamic information as compared with traditional controls. Both theoretic analysis and computer simulation verify its effectiveness.

  1. SmartScan: a robust pushbroom imaging concept for moderate spacecraft attitude stability

    Science.gov (United States)

    Janschek, K.; Tchernykh, V.; Dyblenko, S.; Harnisch, B.

    2017-11-01

    Pushbroom scan cameras with linear image sensors, commonly used for Earth observation from satellites, require high attitude stability during the image acquisition. Especially noticeable are the effects of high frequency attitude variations originating from micro shocks and vibrations, produced by momentum and reaction wheels, mechanically activated coolers, steering and deployment mechanics and other reasons. The SMARTSCAN imaging concept offers high quality imaging even with moderate satellite attitude stability on a sole opto-electronic basis without any moving parts. It uses real-time recording of the actual image motion in the focal plane of the remote sensing camera during the frame acquisition and a posteriori correction of the obtained image distortions on base of the image motion record. Exceptional real-time performances with subpixel accuracy image motion measurement are provided by an innovative high-speed onboard optoelectronic correlation processor. SMARTSCAN allows therefore using smart pushbroom cameras for hyper-spectral imagers on satellites and platforms which are not specially intended for imaging missions, e.g. micro satellites. The paper gives an overview on the system concept and main technologies used (advanced optical correlator for ultra high-speed image motion tracking), it discusses the conceptual design for a smart compact space camera and it reports on airborne test results of a functional breadboard model.

  2. Attitude stabilization of a spacecraft equipped with large electrostatic protection screens

    Science.gov (United States)

    Nikitin, D. Yu.; Tikhonov, A. A.

    2018-05-01

    A satellite with a system of three electrostatic radiation protection (ERP) screens is under consideration. The screens are constructed as electrostatically charged toroidal shields with characteristic size of order equal to 100 m. The interaction of electric charge with the Earth's magnetic field (EMF) give rise to the Lorentz torque acting upon a satellite attitude motion. As the sizes of ERP system are large, we derive the Lorentz torque taking into account the complex form of ERP screens and gradient of the EMF in the screen volume. It is assumed that the satellite center of charge coincides with the satellite mass center. The EMF is modeled by the straight magnetic dipole. In the paper we investigate the usage of Lorentz torque for passive attitude stabilization for satellite in a circular equatorial orbit. Mathematical model for attitude dynamics of a satellite equipped with ERP interacting with the EMF is derived and first integral of corresponding differential equations is constructed. The straight equilibrium position of the satellite in the orbital frame is found. Sufficient conditions for stability of satellite equilibrium position are constructed with the use of the first integral. The gravity gradient torque is taken into account. The satellite equilibrium stability domain is constructed.

  3. Analysis of state-of-the-art single-thruster attitude control techniques for spinning penetrator

    Science.gov (United States)

    Raus, Robin; Gao, Yang; Wu, Yunhua; Watt, Mark

    2012-07-01

    The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft: an axisymmetric prolate spacecraft spinning around its minor axis of inertia performing a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control thruster is available, providing a control torque perpendicular to the spin axis. Having only one attitude thruster on a spinning spacecraft could be preferred for spacecraft simplicity (lower mass, lower power consumption etc.), or it could be imposed in the context of redundancy/contingency operations. This constraint does yield restrictions on the thruster timings, depending on the ratio of minor to major moments of inertia among other parameters. The Japanese Lunar-A penetrator spacecraft proposal is a good example of such a single-thruster spin-stabilised prolate spacecraft. The attitude dynamics of a spinning rigid body are first investigated analytically, then expanded for the specific case of a prolate and axisymmetric rigid body and finally a cursory exploration of non-rigid body dynamics is made. Next two well-known techniques for manoeuvring a spin-stabilised spacecraft, the Half-cone/Multiple Half-cone and the Rhumb line slew, are compared with two new techniques, the Sector-Arc Slew developed by Astrium Satellites and the Dual-cone developed at Surrey Space Centre. Each technique is introduced and characterised by means of simulation results and illustrations based on the penetrator mission scenario and a brief robustness analysis is performed against errors in moments of inertia and spin rate. Also, the relative benefits of each slew algorithm are discussed in terms of slew accuracy, energy (propellant) efficiency and time efficiency. For example, a sequence of half-cone manoeuvres (a Multi-half-cone manoeuvre) tends to be more energy-efficient than one half-cone for the same final slew angle, but more time-consuming. As another

  4. The use of twin-screen-based WIMPS in spacecraft control

    Science.gov (United States)

    Klim, R. D.

    1990-10-01

    The ergonomic problems of designing a sophisticated Windows Icons Mouse Pop-up (WIMP) based twin screen workstation are outlined. These same problems will be encountered by future spacecraft controllers. The design of a modern, advanced workstation for use on a distributed multicontrol center in a multisatellite control system is outlined. The system uses access control mechanisms to ensure that only authorized personnel can undertake certain operations on the workstation. Rules governing the use of windowing features, screen attributes, icons, keyboard and mouse in spacecraft control are discussed.

  5. Design and Stability of an On-Orbit Attitude Control System Using Reaction Control Thrusters

    Science.gov (United States)

    Hall, Robert A.; Hough, Steven; Orphee, Carolina; Clements, Keith

    2016-01-01

    Basic principles for the design and stability of a spacecraft on-orbit attitude control system employing on-off Reaction Control System (RCS) thrusters are presented. Both vehicle dynamics and the control system actuators are inherently nonlinear, hence traditional linear control system design approaches are not directly applicable. This paper has two main aspects: It summarizes key RCS design principles from earlier NASA vehicles, notably the Space Shuttle and Space Station programs, and introduces advances in the linear modelling and analyses of a phase plane control system derived in the initial development of the NASA's next upper stage vehicle, the Exploration Upper Stage (EUS). Topics include thruster hardware specifications, phase plane design and stability, jet selection approaches, filter design metrics, and RCS rotational maneuver logic.

  6. Controller Design for Accurate Antenna Pointing Onboard a Spacecraft

    National Research Council Canada - National Science Library

    Barba, Victor M

    2007-01-01

    .... Simulations are conducted to show that the integration of feedforward control action and feedback compensation produces better responses than the implementation of either individual control system...

  7. Analysis of the Command and Control Segment (CCS) attitude estimation algorithm

    Science.gov (United States)

    Stockwell, Catherine

    1993-01-01

    This paper categorizes the qualitative behavior of the Command and Control Segment (CCS) differential correction algorithm as applied to attitude estimation using simultaneous spin axis sun angle and Earth cord length measurements. The categories of interest are the domains of convergence, divergence, and their boundaries. Three series of plots are discussed that show the dependence of the estimation algorithm on the vehicle radius, the sun/Earth angle, and the spacecraft attitude. Common qualitative dynamics to all three series are tabulated and discussed. Out-of-limits conditions for the estimation algorithm are identified and discussed.

  8. The Coupled Orbit-Attitude Dynamics and Control of Electric Sail in Displaced Solar Orbits

    Directory of Open Access Journals (Sweden)

    Mingying Huo

    2017-01-01

    Full Text Available Displaced solar orbits for spacecraft propelled by electric sails are investigated. Since the propulsive thrust is induced by the sail attitude, the orbital and attitude dynamics of electric-sail-based spacecraft are coupled and required to be investigated together. However, the coupled dynamics and control of electric sails have not been discussed in most published literatures. In this paper, the equilibrium point of the coupled dynamical system in displaced orbit is obtained, and its stability is analyzed through a linearization. The results of stability analysis show that only some of the orbits are marginally stable. For unstable displaced orbits, linear quadratic regulator is employed to control the coupled attitude-orbit system. Numerical simulations show that the proposed strategy can control the coupled system and a small torque can stabilize both the attitude and orbit. In order to generate the control force and torque, the voltage distribution problem is studied in an optimal framework. The numerical results show that the control force and torque of electric sail can be realized by adjusting the voltage distribution of charged tethers.

  9. Assessment of the Use of Nanofluids in Spacecraft Active Thermal Control Systems

    Science.gov (United States)

    Ungar, Eugene K.; Erickson, Lisa R.

    2011-01-01

    The addition of metallic nanoparticles to a base heat transfer fluid can dramatically increase its thermal conductivity. These nanofluids have been shown to have advantages in some heat transport systems. Their enhanced properties can allow lower system volumetric flow rates and can reduce the required pumping power. Nanofluids have been suggested for use as working fluids for spacecraft Active Thermal Control Systems (ATCSs). However, there are no studies showing the end-to-end effect of nanofluids on the design and performance of spacecraft ATCSs. In the present work, a parametric study is performed to assess the use of nanofluids in a spacecraft ATCSs. The design parameters of the current Orion capsule and the tabulated thermophysical properties of nanofluids are used to assess the possible benefits of nanofluids and how their incorporation affects the overall design of a spacecraft ATCS. The study shows that the unique system and component-level design parameters of spacecraft ATCSs render them best suited for pure working fluids. The addition of nanoparticles to typical spacecraft thermal control working fluids actually results in an increase in the system mass and required pumping power.

  10. Fast Kalman Filtering for Relative Spacecraft Position and Attitude Estimation for the Raven ISS Hosted Payload

    Science.gov (United States)

    Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan

    2016-01-01

    The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors

  11. Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.

    Science.gov (United States)

    Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming

    2015-01-01

    The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.

  12. Small Satellite Passive Magnetic Attitude Control

    Science.gov (United States)

    Gerhardt, David T.

    Passive Magnetic Attitude Control (PMAC) is capable of aligning a satellite within 5 degrees of the local magnetic field at low resource cost, making it ideal for a small satellite. However, simulation attempts to date have not been able to predict the attitude dynamics at a level sufficient for mission design. Also, some satellites have suffered from degraded performance due to an incomplete understanding of PMAC system design. This dissertation alleviates these issues by discussing the design, inputs, and validation of PMAC systems for small satellites. Design rules for a PMAC system are defined using the Colorado Student Space Weather Experiment (CSSWE) CubeSat as an example. A Multiplicative Extended Kalman Filter (MEKF) is defined for the attitude determination of a PMAC satellite without a rate gyro. After on-orbit calibration of the off-the-shelf magnetometer and photodiodes and an on-orbit fit to the satellite magnetic moment, the MEKF regularly achieves a three sigma attitude uncertainty of 4 degrees or less. CSSWE is found to settle to the magnetic field in seven days, verifying its attitude design requirement. A Helmholtz cage is constructed and used to characterize the CSSWE bar magnet and hysteresis rods both individually and in the flight configuration. Fitted parameters which govern the magnetic material behavior are used as input to a PMAC dynamics simulation. All components of this simulation are described and defined. Simulation-based dynamics analysis shows that certain initial conditions result in abnormally decreased settling times; these cases may be identified by their dynamic response. The simulation output is compared to the MEKF output; the true dynamics are well modeled and the predicted settling time is found to possess a 20 percent error, a significant improvement over prior simulation.

  13. Ultraviolet and visible BRDF data on spacecraft thermal control and optical baffle materials

    Science.gov (United States)

    Viehmann, W.; Predmore, R. E.

    1987-01-01

    Bidirectional scattering functions of numerous optical baffle materials and of spacecraft thermal control coatings and surfaces are presented. Measurements were made at 254 nm and at 633 nm. The coatings and surfaces include high-reflectance white paints, low-reflectance optical blacks, thermal control blankets, and various conversion coatings on aluminum.

  14. Design and Simulation of a MEMS Control Moment Gyroscope for the Sub-Kilogram Spacecraft

    Directory of Open Access Journals (Sweden)

    Weizheng Yuan

    2010-04-01

    Full Text Available A novel design of a microelectromechanical systems (MEMS control moment gyroscope (MCMG was proposed in this paper in order to generate a torque output with a magnitude of 10-6 N∙m. The MCMG consists of two orthogonal angular vibration systems, i.e., the rotor and gimbal; the coupling between which is based on the Coriolis effect and will cause a torque output in the direction perpendicular to the two vibrations. The angular rotor vibration was excited by the in-plane electrostatic rotary comb actuators, while the angular gimbal vibration was driven by an out-of-plane electrostatic parallel plate actuator. A possible process flow to fabricate the structure was proposed and discussed step by step. Furthermore, an array configuration using four MCMGs as an effective element, in which the torque was generated with a phase difference of 90 degrees between every two MCMGs, was proposed to smooth the inherent fluctuation of the torque output for a vibrational MCMG. The parasitic torque was cancelled by two opposite MCMGs with a phase difference of 180 degrees. The designed MCMG was about 1.1 cm × 1.1 cm × 0.04 cm in size and 0.1 g in weight. The simulation results showed that the maximum torque output of a MCMG, the resonant frequency of which was approximately 1,000 Hz, was about 2.5 × 10-8 N∙m. The element with four MCMGs could generate a torque of 5 × 10-8 N∙m. The torque output could reach a magnitude of 10-6 N∙m when the frequency was improved from 1,000 Hz to 10,000 Hz. Using arrays of 4 × 4 effective elements on a 1 kg spacecraft with a standard form factor of 10 cm × 10 cm × 10 cm, a 10 degrees attitude change could be achieved in 26.96s.

  15. SSS-A attitude control prelaunch analysis and operations plan

    Science.gov (United States)

    Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.

    1971-01-01

    A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  16. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    Science.gov (United States)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  17. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    Science.gov (United States)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  18. Application of Autonomous Spacecraft Power Control Technology to Terrestrial Microgrids

    Science.gov (United States)

    Dever, Timothy P.; Trase, Larry M.; Soeder, James F.

    2014-01-01

    This paper describes the potential of the power campus located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio for microgrid development. First, the benefits provided by microgrids to the terrestrial power grid are described, and an overview of Technology Needs for microgrid development is presented. Next, GRC's work on development of autonomous control for manned deep space vehicles, which are essentially islanded microgrids, is covered, and contribution of each of these developments to the microgrid Technology Needs is detailed. Finally, a description is provided of GRC's existing physical assets which can be applied to microgrid technology development, and a phased plan for development of a microgrid test facility is presented.

  19. Logistics and operations implications of manual control of spacecraft docking maneuvers

    Science.gov (United States)

    Brody, Adam R.; Ellis, Stephen R.

    1991-01-01

    The implications of logistics and operations on the manual control of spacecraft docking are discussed. The results of simulation studies to investigate fuel and time cost tradeoffs are reviewed and discussed. Comparisons of acceleration control and pulse control are presented to evaluate the effects of astronauts being instructed to use pulse mode for fuel conservation. The applications of the findings to moon and Mars missions are addressed.

  20. Design, dynamics and control of an Adaptive Singularity-Free Control Moment Gyroscope actuator for microspacecraft Attitude Determination and Control System

    Science.gov (United States)

    Viswanathan, Sasi Prabhakaran

    Design, dynamics, control and implementation of a novel spacecraft attitude control actuator called the "Adaptive Singularity-free Control Moment Gyroscope" (ASCMG) is presented in this dissertation. In order to construct a comprehensive attitude dynamics model of a spacecraft with internal actuators, the dynamics of a spacecraft with an ASCMG, is obtained in the framework of geometric mechanics using the principles of variational mechanics. The resulting dynamics is general and complete model, as it relaxes the simplifying assumptions made in prior literature on Control Moment Gyroscopes (CMGs) and it also addresses the adaptive parameters in the dynamics formulation. The simplifying assumptions include perfect axisymmetry of the rotor and gimbal structures, perfect alignment of the centers of mass of the gimbal and the rotor etc. These set of simplifying assumptions imposed on the design and dynamics of CMGs leads to adverse effects on their performance and results in high manufacturing cost. The dynamics so obtained shows the complex nonlinear coupling between the internal degrees of freedom associated with an ASCMG and the spacecraft bus's attitude motion. By default, the general ASCMG cluster can function as a Variable Speed Control Moment Gyroscope, and reduced to function in CMG mode by spinning the rotor at constant speed, and it is shown that even when operated in CMG mode, the cluster can be free from kinematic singularities. This dynamics model is then extended to include the effects of multiple ASCMGs placed in the spacecraft bus, and sufficient conditions for non-singular ASCMG cluster configurations are obtained to operate the cluster both in VSCMG and CMG modes. The general dynamics model of the ASCMG is then reduced to that of conventional VSCMGs and CMGs by imposing the standard set of simplifying assumptions used in prior literature. The adverse effects of the simplifying assumptions that lead to the complexities in conventional CMG design, and

  1. Attitude Determination and Control Subsystem (ADCS) Preparations for the EPOXI Flyby of Comet Hartley 2

    Science.gov (United States)

    Luna, Michael E.; Collins, Steven M.

    2011-01-01

    On November 4, 2010 the former "Deep Impact" spacecraft, renamed "EPOXI" for its extended mission, flew within 700km of comet 103P/Hartley 2. In July 2005, the spacecraft had previously imaged a probe impact of comet Tempel 1. The EPOXI flyby was the fifth close encounter of a spacecraft with a comet nucleus and marked the first time in history that two comet nuclei were imaged at close range with the same suite of onboard science instruments. This challenging objective made the function of the attitude determination and control subsystem (ADCS) critical to the successful execution of the EPOXI flyby.As part of the spacecraft flyby preparations, the ADCS operations team had to perform meticulous sequence reviews, implement complex spacecraft engineering and science activities and perform numerous onboard calibrations. ADCS contributions included design and execution of 10 trajectory correction maneuvers, the science calibration of the two telescopic instruments, an in-flight demonstration of high-rate turns between Earth and comet point, and an ongoing assessment of reaction wheel health. The ADCS team was also responsible for command sequences that included updates to the onboard ephemeris and sun sensor coefficients and implementation of reaction wheel assembly (RWA) de-saturations.

  2. On-Ground Attitude and Torque Reconstruction tor the Gaia Mission

    OpenAIRE

    Samaan, Malak; Theil, Stephan

    2008-01-01

    The work presented in this paper concerns the accurate On-Ground Attitude (OGA) reconstruction for the astrometry spacecraft Gaia in the presence of disturbance and control torques acting on the spacecraft. The reconstruction of the expected environmental torques which influence the spacecraft dynamics will be also investigated. The telemetry data from the spacecraft will include the on-board real time attitude which is of order of several arcsec. This raw attitude is the starting point...

  3. Initial Performance of the Attitude Control and Aspect Determination Subsystems on the Chandra Observatory

    Science.gov (United States)

    Cameron, R.; Aldcroft, T.; Podgorski, W. A.; Freeman, M. D.

    2000-01-01

    The aspect determination system of the Chandra X-ray Observatory plays a key role in realizing the full potential of Chandra's X-ray optics and detectors. We review the performance of the spacecraft hardware components and sub-systems, which provide information for both real time control of the attitude and attitude stability of the Chandra Observatory and also for more accurate post-facto attitude reconstruction. These flight components are comprised of the aspect camera (star tracker) and inertial reference units (gyros), plus the fiducial lights and fiducial transfer optics which provide an alignment null reference system for the science instruments and X-ray optics, together with associated thermal and structural components. Key performance measures will be presented for aspect camera focal plane data, gyro performance both during stable pointing and during maneuvers, alignment stability and mechanism repeatability.

  4. A feedback linearization approach to spacecraft control using momentum exchange devices. Ph.D. Thesis

    Science.gov (United States)

    Dzielski, John Edward

    1988-01-01

    Recent developments in the area of nonlinear control theory have shown how coordiante changes in the state and input spaces can be used with nonlinear feedback to transform certain nonlinear ordinary differential equations into equivalent linear equations. These feedback linearization techniques are applied to resolve two problems arising in the control of spacecraft equipped with control moment gyroscopes (CMGs). The first application involves the computation of rate commands for the gimbals that rotate the individual gyroscopes to produce commanded torques on the spacecraft. The second application is to the long-term management of stored momentum in the system of control moment gyroscopes using environmental torques acting on the vehicle. An approach to distributing control effort among a group of redundant actuators is described that uses feedback linearization techniques to parameterize sets of controls which influence a specified subsystem in a desired way. The approach is adapted for use in spacecraft control with double-gimballed gyroscopes to produce an algorithm that avoids problematic gimbal configurations by approximating sets of gimbal rates that drive CMG rotors into desirable configurations. The momentum management problem is stated as a trajectory optimization problem with a nonlinear dynamical constraint. Feedback linearization and collocation are used to transform this problem into an unconstrainted nonlinear program. The approach to trajectory optimization is fast and robust. A number of examples are presented showing applications to the proposed NASA space station.

  5. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  6. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    Science.gov (United States)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  7. Dynamics and control of robotic spacecrafts for the transportation of flexible elements

    International Nuclear Information System (INIS)

    Wen, Hao; Chen, Ti; Yu, Bensong; Jin, Dongping

    2016-01-01

    The technology of robotic spacecrafts has been identified as one of the most appealing solutions to the on-orbit construction of large space structures in future space missions. As a prerequisite of a successful on-orbit construction, it is needed to use small autonomous spacecrafts for the transportation of flexible elements. To this end, the paper presents an energy-based scheme to control a couple of robotic spacecrafts carrying a flexible slender structure to its desired position. The flexible structure is modelled as a long beam based on the formulation of absolute nodal coordinates to account for the geometrical nonlinearity due to large displacement. Meanwhile, the robotic spacecrafts are actuated on their rigid-body degrees of freedom and modelled as two rigid bodies attached to the flexible beam. The energy-based controller is designed using the technique of energy shaping and damping injection such that translational and rotational maneuvers can be achieved with the suppression of the flexible vibrations of the beam. Finally, numerical case studies are performed to demonstrate the proposed schemes. (paper)

  8. The Implementation of Satellite Attitude Control System Software Using Object Oriented Design

    Science.gov (United States)

    Reid, W. Mark; Hansell, William; Phillips, Tom; Anderson, Mark O.; Drury, Derek

    1998-01-01

    NASA established the Small Explorer (SNMX) program in 1988 to provide frequent opportunities for highly focused and relatively inexpensive space science missions. The SMEX program has produced five satellites, three of which have been successfully launched. The remaining two spacecraft are scheduled for launch within the coming year. NASA has recently developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS) software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS software architecture. Next, the context in which the software resides is explained. The paper describes the principles of encapsulation, inheritance, and polymorphism with respect to the implementation of an ACS software system. This paper will also discuss the design of several ACS software components. Specifically, object-oriented designs are presented for sensor data processing, attitude determination, attitude control, and failure detection. Finally, this paper will address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large software repository, requiring a minimal amount of code modifications to produce ACS software for future projects.

  9. Robust H ∞ Control for Spacecraft Rendezvous with a Noncooperative Target

    Science.gov (United States)

    Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

    2013-01-01

    The robust H ∞ control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H ∞ performance and finite time performance are proposed, and a robust H ∞ controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller. PMID:24027446

  10. Speed-constrained three-axes attitude control using kinematic steering

    Science.gov (United States)

    Schaub, Hanspeter; Piggott, Scott

    2018-06-01

    Spacecraft attitude control solutions typically are torque-level algorithms that simultaneously control both the attitude and angular velocity tracking errors. In contrast, robotic control solutions are kinematic steering commands where rates are treated as the control variable, and a servo-tracking control subsystem is present to achieve the desired control rates. In this paper kinematic attitude steering controls are developed where an outer control loop establishes a desired angular response history to a tracking error, and an inner control loop tracks the commanded body angular rates. The overall stability relies on the separation principle of the inner and outer control loops which must have sufficiently different response time scales. The benefit is that the outer steering law response can be readily shaped to a desired behavior, such as limiting the approach angular velocity when a large tracking error is corrected. A Modified Rodrigues Parameters implementation is presented that smoothly saturates the speed response. A robust nonlinear body rate servo loop is developed which includes integral feedback. This approach provides a convenient modular framework that makes it simple to interchange outer and inner control loops to readily setup new control implementations. Numerical simulations illustrate the expected performance for an aggressive reorientation maneuver subject to an unknown external torque.

  11. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    Science.gov (United States)

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  12. Three-Axis Attitude Control of Solar Sails Utilising Reflectivity Control Devices

    Science.gov (United States)

    Theodorou, Theodoros

    Solar sails are spacecraft that utilise the Solar Radiation Pressure, the force generated by impinging photons, to propel themselves. Conventional actuators are not suitable for controlling the attitude of solar sails therefore specific attitude control methods have been devised to tackle this. One of these methods is to change the centre of pressure with respect to the center of mass thus creating a torque. Reflectivity Control Devices (RCDs) have been proposed and successfully used to change the centre of pressure. Current methods that utilise RCDs have control authority over two axis only with no ability to control the torque about the normal of the sail surface. This thesis extends the state of the art and demonstrates 3-axis control by generating arbitrary torque vectors within a convex polyhedron. Two different RCD materials are considered, transmission and diffusion technologies both compatible with the proposed concept. A number of metrics have been developed which facilitate the comparison of different sail configurations. One of these metics is the sun map which is a graphic representation of the sun angles for which control authority is maintained. An iterative design process is presented which makes use of the metrics developed and aids in the design of a sail which meets the mission requirements and constraints. Moreover, the effects of different parameters on the performance of the proposed control concept are discussed. For example it is shown that by alternating the angle between the edge and middle RCDs the control authority increases. The concept's scalability has been investigated and a hybrid control scheme has been devised which makes use of both RCDs and reaction wheels. The RCDs are complemented by the reaction wheels to achieve higher slew rates while in turn the RCDs desaturate the reaction wheels. Finally, a number of simulations are conducted to verify the validity of the proposed concept.

  13. Attitude Control Performance of IRVE-3

    Science.gov (United States)

    Dillman, Robert A.; Gsell, Valerie T.; Bowden, Ernest L.

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility and successfully performed its mission, demonstrating both the survivability of a hypersonic inflatable aerodynamic decelerator in the reentry heating environment and the effect of an offset center of gravity on the aeroshell's flight L/D. The reentry vehicle separated from the launch vehicle, released and inflated its aeroshell, reoriented for atmospheric entry, and mechanically shifted its center of gravity before reaching atmospheric interface. Performance data from the entire mission was telemetered to the ground for analysis. This paper discusses the IRVE-3 mission scenario, reentry vehicle design, and as-flown performance of the attitude control system in the different phases of the mission.

  14. Simultaneous spacecraft orbit estimation and control based on GPS measurements via extended Kalman filter

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2013-06-01

    Full Text Available The primary aim of this work is to provide simultaneous spacecraft orbit estimation and control based on the global positioning system (GPS measurements suitable for application to the next coming Egyptian remote sensing satellites. Disturbance resulting from earth’s oblateness till the fourth order (i.e., J4 is considered. In addition, aerodynamic drag and random disturbance effects are taken into consideration.

  15. Influence of the Ambient Electric Field on Measurements of the Actively Controlled Spacecraft Potential by MMS

    Science.gov (United States)

    Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.

    2017-12-01

    Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.

  16. Robust control for spacecraft rendezvous system with actuator unsymmetrical saturation: a gain scheduling approach

    Science.gov (United States)

    Wang, Qian; Xue, Anke

    2018-06-01

    This paper has proposed a robust control for the spacecraft rendezvous system by considering the parameter uncertainties and actuator unsymmetrical saturation based on the discrete gain scheduling approach. By changing of variables, we transform the actuator unsymmetrical saturation control problem into a symmetrical one. The main advantage of the proposed method is improving the dynamic performance of the closed-loop system with a region of attraction as large as possible. By the Lyapunov approach and the scheduling technology, the existence conditions for the admissible controller are formulated in the form of linear matrix inequalities. The numerical simulation illustrates the effectiveness of the proposed method.

  17. IMP-J attitude control prelaunch analysis and operations plan

    Science.gov (United States)

    Hooper, H. L.; Mckendrew, J. B.; Repass, G. D.

    1973-01-01

    A description of the attitude control support being supplied for the Explorer 50 mission is given. Included in the document are descriptions of the computer programs being used to support attitude determination, prediction, and control for the mission and descriptions of the operating procedures that will be used to accomplish mission objectives.

  18. Study on the effect of shape-stabilized phase change materials on spacecraft thermal control in extreme thermal environment

    International Nuclear Information System (INIS)

    Wu, Wan-fan; Liu, Na; Cheng, Wen-long; Liu, Yi

    2013-01-01

    Highlights: ► A shape-stabilized PCM is used to protect the spacecraft attacked by high energy. ► Taking a satellite as example, it proves the solution given in the work is feasible. ► Low thermal conductivity makes the material above its thermal stability limit. ► It provides guidance on how to choose the shape-stabilized PCM for similar problems. - Abstract: In space, the emergencies such as short-term high heat flux is prone to cause spacecraft thermal control system faults, resulting in temperature anomalies of electronic equipment of the spacecraft and even failures in them. In order to protect the spacecraft attacked by the high energy, a new guard method is proposed. A shape-stabilized phase change material (PCM), which has high thermal conductivity and does not require being tightly packaged, is proposed to be used on the spacecraft. To prove the feasibility of using the material on spacecraft attacked by high energy, the thermal responses for spacecraft with shape-stabilized PCM are investigated in situations of normal and short-term high heat flux, in contrast to that with conventional thermal control system. The results indicate that the shape-stabilized PCM can effectively absorb the heat to prevent the thermal control system faults when the spacecraft’s outer heat flux changes dramatically and has no negative effect on spacecraft in normal heat flux. Additionally the effect of thermal conductivity of PCM on its application effectiveness is discussed

  19. Designing a Robust Nonlinear Dynamic Inversion Controller for Spacecraft Formation Flying

    Directory of Open Access Journals (Sweden)

    Inseok Yang

    2014-01-01

    Full Text Available The robust nonlinear dynamic inversion (RNDI control technique is proposed to keep the relative position of spacecrafts while formation flying. The proposed RNDI control method is based on nonlinear dynamic inversion (NDI. NDI is nonlinear control method that replaces the original dynamics into the user-selected desired dynamics. Because NDI removes nonlinearities in the model by inverting the original dynamics directly, it also eliminates the need of designing suitable controllers for each equilibrium point; that is, NDI works as self-scheduled controller. Removing the original model also provides advantages of ease to satisfy the specific requirements by simply handling desired dynamics. Therefore, NDI is simple and has many similarities to classical control. In real applications, however, it is difficult to achieve perfect cancellation of the original dynamics due to uncertainties that lead to performance degradation and even make the system unstable. This paper proposes robustness assurance method for NDI. The proposed RNDI is designed by combining NDI and sliding mode control (SMC. SMC is inherently robust using high-speed switching inputs. This paper verifies similarities of NDI and SMC, firstly. And then RNDI control method is proposed. The performance of the proposed method is evaluated by simulations applied to spacecraft formation flying problem.

  20. Research on Design of MUH Attitude Stability Augmentation Control System

    Science.gov (United States)

    Fan, Shigang

    2017-09-01

    Attitude stability augmentation control system with a lower cost need to be designed so that MUH (Mini Unmanned Helicopter) can adapt to different types of geographic environment and fly steadily although the weather may be bad. Attitude feedback was calculated mainly by filtering estimation within attitude acquisition module in this system. Stability augmentation can be improved mainly by PI. This paper will depict running principle and designing process of MUH attitude stability augmentation control system and algorithm that is considered as an important part in this system.

  1. Sensor fault detection and recovery in satellite attitude control

    Science.gov (United States)

    Nasrolahi, Seiied Saeed; Abdollahi, Farzaneh

    2018-04-01

    This paper proposes an integrated sensor fault detection and recovery for the satellite attitude control system. By introducing a nonlinear observer, the healthy sensor measurements are provided. Considering attitude dynamics and kinematic, a novel observer is developed to detect the fault in angular rate as well as attitude sensors individually or simultaneously. There is no limit on type and configuration of attitude sensors. By designing a state feedback based control signal and Lyapunov stability criterion, the uniformly ultimately boundedness of tracking errors in the presence of sensor faults is guaranteed. Finally, simulation results are presented to illustrate the performance of the integrated scheme.

  2. Air dehumidification by membrane with cold water for manned spacecraft environmental control

    Directory of Open Access Journals (Sweden)

    Shang Yonghong

    2017-01-01

    Full Text Available The traditional condensation dehumidification method requires additional gas-liquid separation and water recovery process in the manned spacecraft humidity control system, which would increase weight and complexity of systems. A new membrane dehumidification with cold water is proposed, which uses water vapor partial pressure difference to promote water vapor transmembrane mass transfer for dehumidification. The permeability of the membrane was measured and the experimental results agree well with the theoretical calculations. Based on the simulation of dehumidification process of cold water-membrane, the influence of module structure and working condition on dehumidification performance was analyzed, which provided reference for the design of membrane module construct. It can be seen from the simulation and experiments that the cold water-membrane dehumidification can effectively reduce the thermal load of the manned spacecraft.

  3. Fault Detection and Correction for the Solar Dynamics Observatory Attitude Control System

    Science.gov (United States)

    Starin, Scott R.; Vess, Melissa F.; Kenney, Thomas M.; Maldonado, Manuel D.; Morgenstern, Wendy M.

    2007-01-01

    The Solar Dynamics Observatory is an Explorer-class mission that will launch in early 2009. The spacecraft will operate in a geosynchronous orbit, sending data 24 hours a day to a devoted ground station in White Sands, New Mexico. It will carry a suite of instruments designed to observe the Sun in multiple wavelengths at unprecedented resolution. The Atmospheric Imaging Assembly includes four telescopes with focal plane CCDs that can image the full solar disk in four different visible wavelengths. The Extreme-ultraviolet Variability Experiment will collect time-correlated data on the activity of the Sun's corona. The Helioseismic and Magnetic Imager will enable study of pressure waves moving through the body of the Sun. The attitude control system on Solar Dynamics Observatory is responsible for four main phases of activity. The physical safety of the spacecraft after separation must be guaranteed. Fine attitude determination and control must be sufficient for instrument calibration maneuvers. The mission science mode requires 2-arcsecond control according to error signals provided by guide telescopes on the Atmospheric Imaging Assembly, one of the three instruments to be carried. Lastly, accurate execution of linear and angular momentum changes to the spacecraft must be provided for momentum management and orbit maintenance. In thsp aper, single-fault tolerant fault detection and correction of the Solar Dynamics Observatory attitude control system is described. The attitude control hardware suite for the mission is catalogued, with special attention to redundancy at the hardware level. Four reaction wheels are used where any three are satisfactory. Four pairs of redundant thrusters are employed for orbit change maneuvers and momentum management. Three two-axis gyroscopes provide full redundancy for rate sensing. A digital Sun sensor and two autonomous star trackers provide two-out-of-three redundancy for fine attitude determination. The use of software to maximize

  4. Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay

    Science.gov (United States)

    Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu

    2017-08-01

    Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.

  5. Imaging X-Ray Polarimetry Explorer Mission Attitude Determination and Control Concept

    Science.gov (United States)

    Bladt, Jeff; Deininger, William D.; Kalinowski, William C.; Boysen, Mary; Bygott, Kyle; Guy, Larry; Pentz, Christina; Seckar, Chris; Valdez, John; Wedmore, Jeffrey; hide

    2018-01-01

    The goal of the Imaging X-Ray Polarimetry Explorer (IXPE) Mission is to expand understanding of high-energy astrophysical processes and sources, in support of NASA's first science objective in Astrophysics: "Discover how the universe works." X-ray polarimetry is the focus of the IXPE science mission. Polarimetry uniquely probes physical anisotropies-ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin-that are not otherwise measurable. The IXPE Observatory consists of Spacecraft and Payload modules. The Payload includes three polarization sensitive, X-ray detector units (DU), each paired with its corresponding grazing incidence mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the DUs and MMAs. These Payload elements are supported by the IXPE Spacecraft. A star tracker is mounted directly with the deployed Payload to minimize alignment errors between the star tracker line of sight (LoS) and Payload LoS. Stringent pointing requirements coupled with a flexible structure and a non-collocated attitude sensor-actuator configuration requires a thorough analysis of control-structure interactions. A non-minimum phase notch filter supports robust control loop stability margins. This paper summarizes the IXPE mission science objectives and Observatory concepts, and then it describes IXPE attitude determination and control implementation. IXPE LoS pointing accuracy, control loop stability, and angular momentum management are discussed.

  6. Integrated analysis tools for trade studies of spacecraft controller and sensor locations

    Science.gov (United States)

    Rowell, L. F.

    1986-01-01

    The present investigation was conducted with the aim to evaluate the practicality and difficulties of modern control design methods for large space structure controls. The evaluation is used as a basis for the identification of useful computer-based analysis tools which would provide insight into control characteristics of a spacecraft concept. A description is presented of the wrap-rib antenna and its packaging concept. Attention is given to active control requirements, a mathematical model of structural dynamics, aspects of sensor and actuator location, the analysis approach, controllability, observability, the concept of balanced realization, transmission zeros, singular value plots, analysis results, model reduction, and an interactive computer program. It is pointed out that the application of selected control analysis tools to the wrap-rib antenna demonstrates several capabilities which can be useful during conceptual design.

  7. Topology Control Algorithms for Spacecraft Formation Flying Networks Under Connectivity and Time-Delay Constraints, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI is proposing to develop, test and deliver a set of topology control algorithms and software for a formation flying spacecraft that can be used to design and...

  8. Topology Control Algorithms for Spacecraft Formation Flying Networks Under Connectivity and Time-Delay Constraints, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI is proposing to develop a set of topology control algorithms for a formation flying spacecraft that can be used to design and evaluate candidate formation...

  9. Enabling Spacecraft Formation Flying through Position Determination, Control and Enhanced Automation Technologies

    Science.gov (United States)

    Bristow, John; Bauer, Frank; Hartman, Kate; How, Jonathan

    2000-01-01

    Formation Flying is revolutionizing the way the space community conducts science missions around the Earth and in deep space. This technological revolution will provide new, innovative ways for the community to gather scientific information, share that information between space vehicles and the ground, and expedite the human exploration of space. Once fully matured, formation flying will result in numerous sciencecraft acting as virtual platforms and sensor webs, gathering significantly more and better science data than call be collected today. To achieve this goal, key technologies must be developed including those that address the following basic questions posed by the spacecraft: Where am I? Where is the rest of the fleet? Where do I need to be? What do I have to do (and what am I able to do) to get there? The answers to these questions and the means to implement those answers will depend oil the specific mission needs and formation configuration. However, certain critical technologies are common to most formations. These technologies include high-precision position and relative-position knowledge including Global Positioning System (GPS) mid celestial navigation; high degrees of spacecraft autonomy inter-spacecraft communication capabilities; targeting and control including distributed control algorithms, and high precision control thrusters and actuators. This paper provides an overview of a selection of the current activities NASA/DoD/Industry/Academia are working to develop Formation Flying technologies as quickly as possible, the hurdles that need to be overcome to achieve our formation flying vision, and the team's approach to transfer this technology to space. It will also describe several of the formation flying testbeds, such as Orion and University Nanosatellites, that are being developed to demonstrate and validate many of these innovative sensing and formation control technologies.

  10. Robust H(∞) control for spacecraft rendezvous with a noncooperative target.

    Science.gov (United States)

    Wu, Shu-Nan; Zhou, Wen-Ya; Tan, Shu-Jun; Wu, Guo-Qiang

    2013-01-01

    The robust H(∞) control for spacecraft rendezvous with a noncooperative target is addressed in this paper. The relative motion of chaser and noncooperative target is firstly modeled as the uncertain system, which contains uncertain orbit parameter and mass. Then the H(∞) performance and finite time performance are proposed, and a robust H(∞) controller is developed to drive the chaser to rendezvous with the non-cooperative target in the presence of control input saturation, measurement error, and thrust error. The linear matrix inequality technology is used to derive the sufficient condition of the proposed controller. An illustrative example is finally provided to demonstrate the effectiveness of the controller.

  11. The Software Design for the Wide-Field Infrared Explorer Attitude Control System

    Science.gov (United States)

    Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom

    1998-01-01

    The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel

  12. Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Science.gov (United States)

    Bevilacqua, R.; Lehmann, T.; Romano, M.

    2011-04-01

    This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decisional logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the Naval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption.

  13. Electrically conductive, black thermal control coatings for spacecraft applications. III - Plasma-deposited ceramic matrix

    Science.gov (United States)

    Hribar, V. F.; Bauer, J. L.; O'Donnell, T. P.

    1987-01-01

    Five black, electrically-conductive thermal control coatings have been formulated and tested for application on the Galileo spacecraft. The coatings consist of both organic and inorganic systems applied on titanium, aluminum, and glass/epoxy composite surfaces. The coatings were tested under simulated space environment conditions. Coated specimens were subjected to thermal radiation, convective and combustive heating, and cryogenic conditions over a temperature range between -196 C and 538 C. Mechanical, physical, thermal, electrical, and thermooptical properties are presented for one of these coatings. This paper describes the preparation, characteristics, and spraying of iron titanate on titanium and aluminum, and presents performance results.

  14. Sampled-Data Control of Spacecraft Rendezvous with Discontinuous Lyapunov Approach

    Directory of Open Access Journals (Sweden)

    Zhuoshi Li

    2013-01-01

    Full Text Available This paper investigates the sampled-data stabilization problem of spacecraft relative positional holding with improved Lyapunov function approach. The classical Clohessy-Wiltshire equation is adopted to describe the relative dynamic model. The relative position holding problem is converted into an output tracking control problem using sampling signals. A time-dependent discontinuous Lyapunov functionals approach is developed, which will lead to essentially less conservative results for the stability analysis and controller design of the corresponding closed-loop system. Sufficient conditions for the exponential stability analysis and the existence of the proposed controller are provided, respectively. Finally, a simulation result is established to illustrate the effectiveness of the proposed control scheme.

  15. Nonlinear Slewing Spacecraft Control Based on Exergy, Power Flow, and Static and Dynamic Stability

    Science.gov (United States)

    Robinett, Rush D.; Wilson, David G.

    2009-10-01

    This paper presents a new nonlinear control methodology for slewing spacecraft, which provides both necessary and sufficient conditions for stability by identifying the stability boundaries, rigid body modes, and limit cycles. Conservative Hamiltonian system concepts, which are equivalent to static stability of airplanes, are used to find and deal with the static stability boundaries: rigid body modes. The application of exergy and entropy thermodynamic concepts to the work-rate principle provides a natural partitioning through the second law of thermodynamics of power flows into exergy generator, dissipator, and storage for Hamiltonian systems that is employed to find the dynamic stability boundaries: limit cycles. This partitioning process enables the control system designer to directly evaluate and enhance the stability and performance of the system by balancing the power flowing into versus the power dissipated within the system subject to the Hamiltonian surface (power storage). Relationships are developed between exergy, power flow, static and dynamic stability, and Lyapunov analysis. The methodology is demonstrated with two illustrative examples: (1) a nonlinear oscillator with sinusoidal damping and (2) a multi-input-multi-output three-axis slewing spacecraft that employs proportional-integral-derivative tracking control with numerical simulation results.

  16. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    Science.gov (United States)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  17. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    Science.gov (United States)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  18. Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures

    International Nuclear Information System (INIS)

    Jiang, Jian-ping; Li, Dong-xu

    2010-01-01

    The decentralized robust vibration control with collocated piezoelectric actuator and strain sensor pairs is considered in this paper for spacecraft solar panel structures. Each actuator is driven individually by the output of the corresponding sensor so that only local feedback control is implemented, with each actuator, sensor and controller operating independently. Firstly, an optimal placement method for the location of the collocated piezoelectric actuator and strain gauge sensor pairs is developed based on the degree of observability and controllability indices for solar panel structures. Secondly, a decentralized robust H ∞ controller is designed to suppress the vibration induced by external disturbance. Finally, a numerical comparison between centralized and decentralized control systems is performed in order to investigate their effectiveness to suppress vibration of the smart solar panel. The simulation results show that the vibration can be significantly suppressed with permitted actuator voltages by the controllers. The decentralized control system almost has the same disturbance attenuation level as the centralized control system with a bit higher control voltages. More importantly, the decentralized controller composed of four three-order systems is a better practical implementation than a high-order centralized controller is

  19. Solar Sail Attitude Control System for the NASA Near Earth Asteroid Scout Mission

    Science.gov (United States)

    Orphee, Juan; Diedrich, Ben; Stiltner, Brandon; Becker, Chris; Heaton, Andrew

    2017-01-01

    An Attitude Control System (ACS) has been developed for the NASA Near Earth Asteroid (NEA) Scout mission. The NEA Scout spacecraft is a 6U cubesat with an eighty-six square meter solar sail for primary propulsion that will launch as a secondary payload on the Space Launch System (SLS) Exploration Mission 1 (EM-1) and rendezvous with a target asteroid after a two year journey, and will conduct science imagery. The spacecraft ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The Momentum Management System (MMS) keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS. The AMT is used to adjust the sign and magnitude of the solar torque to manage pitch and yaw momentum. The RCS is used for initial de-tumble, performing a Trajectory Correction Maneuver (TCM), and performing momentum management about the roll axis. The NEA Scout ACS is able to meet all mission requirements including attitude hold, slews, pointing for optical navigation and pointing for science with margin and including flexible body effects. Here we discuss the challenges and solutions of meeting NEA Scout mission requirements for the ACS design, and present a novel implementation of managing the spacecraft Center of Mass (CM) to trim the solar sail disturbance torque. The ACS we have developed has an applicability to a range of potential missions and does so in a much smaller volume than is traditional for deep space missions beyond Earth.

  20. Knowledge, attitude and control practices of sickle cell disease ...

    African Journals Online (AJOL)

    Knowledge, attitude and control practices of sickle cell disease among youth corps members ... PROMOTING ACCESS TO AFRICAN RESEARCH ... access to haemopoeitic stem cell transplantation (HSCT) in our environment, stronger efforts ...

  1. Three-Axis Gasless Sounding Rocket Payload Attitude Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Gas released by current sounding rocket payload attitude control systems (ACS) has the potential to interfere with some types of science instruments. A single-axis...

  2. Attitude Control Optimization for ROCSAT-2 Operation

    Science.gov (United States)

    Chern, Jeng-Shing; Wu, A.-M.

    one revolution. The purpose of this paper is to present the attitude control design optimization such that the maximum solar energy is ingested while minimum maneuvering energy is dissipated. The strategy includes the maneuvering sequence design, the minimization of angular path, the sizing of three magnetic torquers, and the trade-off of the size, number and orientations arrangement of momentum wheels.

  3. Investigation of phase-change coatings for variable thermal control of spacecraft

    Science.gov (United States)

    Kelliher, W. C.; Young, P. R.

    1972-01-01

    An investigation was conducted to determine the feasibility of producing a spacecraft coating system that could vary the ratio of its solar absorptance to thermal emittance to adjust automatically for changes in the thermal balance of a spacecraft. This study resulted in a new concept called the phase-change effect which uses the change that occurs in the optical properties of many materials during the phase transition from a crystalline solid to an amorphous material. A series of two-component model coatings was developed which, when placed on a highly reflecting substrate, exhibited a sharp decrease in solar absorptance within a narrow temperature range. A variable thermal control coating can have a significant amount of temperature regulation with the phase-change effect. Data are presented on several crystallite-polymer formulations, their physical and optical properties, and associated phase-change temperatures. Aspects pertaining to their use in a space environment and an example of the degree of thermal regulation attainable with these coatings is also given.

  4. Attitude Control System Design for the Solar Dynamics Observatory

    Science.gov (United States)

    Starin, Scott R.; Bourkland, Kristin L.; Kuo-Chia, Liu; Mason, Paul A. C.; Vess, Melissa F.; Andrews, Stephen F.; Morgenstern, Wendy M.

    2005-01-01

    The Solar Dynamics Observatory mission, part of the Living With a Star program, will place a geosynchronous satellite in orbit to observe the Sun and relay data to a dedicated ground station at all times. SDO remains Sun- pointing throughout most of its mission for the instruments to take measurements of the Sun. The SDO attitude control system is a single-fault tolerant design. Its fully redundant attitude sensor complement includes 16 coarse Sun sensors, a digital Sun sensor, 3 two-axis inertial reference units, 2 star trackers, and 4 guide telescopes. Attitude actuation is performed using 4 reaction wheels and 8 thrusters, and a single main engine nominally provides velocity-change thrust. The attitude control software has five nominal control modes-3 wheel-based modes and 2 thruster-based modes. A wheel-based Safehold running in the attitude control electronics box improves the robustness of the system as a whole. All six modes are designed on the same basic proportional-integral-derivative attitude error structure, with more robust modes setting their integral gains to zero. The paper details the mode designs and their uses.

  5. Contamination control requirements implementation for the James Webb Space Telescope (JWST), part 2: spacecraft, sunshield, observatory, and launch

    Science.gov (United States)

    Wooldridge, Eve M.; Schweiss, Andrea; Henderson-Nelson, Kelly; Woronowicz, Michael; Patel, Jignasha; Macias, Matthew; McGregor, R. Daniel; Farmer, Greg; Schmeitzky, Olivier; Jensen, Peter; Rumler, Peter; Romero, Beatriz; Breton, Jacques

    2014-09-01

    This paper will continue from Part 1 of JWST contamination control implementation. In addition to optics, instruments, and thermal vacuum testing, JWST also requires contamination control for a spacecraft that must be vented carefully in order to maintain solar array and thermal radiator thermal properties; a tennis court-sized sunshield made with 1-2 mil Kapton™ layers that must be manufactured and maintained clean; an observatory that must be integrated, stowed and transported to South America; and a rocket that typically launches commercial payloads without contamination sensitivity. An overview of plans developed to implement contamination control for the JWST spacecraft, sunshield, observatory and launch vehicle will be presented.

  6. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  7. Spacecraft guidance, navigation, and control requirements for an intelligent plug-n-play avionics (PAPA) architecture

    Science.gov (United States)

    Kulkarni, Nilesh; Krishnakumar, Kalmaje

    2005-01-01

    The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.

  8. Biofilm formation and control in a simulated spacecraft water system - Interim results

    Science.gov (United States)

    Schultz, John R.; Taylor, Robert D.; Flanagan, David T.; Gibbons, Randall E.; Brown, Harlan D.; Sauer, Richard L.

    1989-01-01

    The ability of iodine to control microbial contamination and biofilm formation in spacecraft water distribution systems is studied using two stainless steel water subsystems. One subsystem has an iodine level of 2.5 mg/L maintained by an iodinated ion-exchange resin. The other subsystem has no iodine added. Stainless steel coupons are removed from each system to monitor biofilm formation. Results from the first six months of operation indicate that 2.5 mg/L of iodine has limited the number of viable bacteria that can be recovered from the iodinated subsystem. Epifluorescence microscopy of the coupons taken from this subsystem, however, indicates some evidence of microbial colonization after 15 weeks of operation. Numerous bacteria have been continually removed from both the water samples and the coupons taken from the noniodinated subsystem after only 3 weeks of operation.

  9. Standard Test Method for Gravimetric Determination of Nonvolatile Residue (NVR) in Environmentally Controlled Areas for Spacecraft

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the determination of nonvolatile residue (NVR) fallout in environmentally controlled areas used for the assembly, testing, and processing of spacecraft. 1.2 The NVR of interest is that which is deposited on sampling plate surfaces at room temperature: it is left to the user to infer the relationship between the NVR found on the sampling plate surface and that found on any other surfaces. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  10. Nuclear-powered Hysat spacecraft: comparative design study

    International Nuclear Information System (INIS)

    Raab, B.

    1975-08-01

    The study shows that the all-nuclear spacecraft can have a substantial weight advantage over a hybrid (nuclear/solar) or all-solar spacecraft, owing to a further reduction in power requirement, and to the elimination of such equipment as the sensor gimbal and rotating joint assemblies. Because the need for a sun-oriented section is eliminated, the all-nuclear spacecraft can be designed as a monolithic structure, with the sensor and other payload firmly secured in a fixed position on the structure. This enhances attitude stability while minimizing structural weight and eliminating the need for flexible fluid lines. Sensor motion can be produced, varied, and controlled within the limits specified by the study contractors by moving the entire spacecraft in the prescribed pattern. A simple attitude control system using available hardware suffices to meet all requirements

  11. Attitude Optimal Backstepping Controller Based Quaternion for a UAV

    OpenAIRE

    Djamel, Kaddouri; Abdellah, Mokhtari; Benallegue, Abdelaziz

    2016-01-01

    A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-o...

  12. Reduced Attitude Control of a Robotic Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Bláha Lukáš

    2017-01-01

    Full Text Available This paper deals with stabilization and reduced attitude control of a robotic underwater vehicle. The vehicle is assumed to be able to perform a full stable rotations around all axes in underwater space, that is why the standard bottom-heavy structure is not used. The system preferably uses a vectored-thrust arrangement and is built as an overactuated system, which enables to gain a better robustness and guarantees a stable controlled motion even if some thruster suddenly stop working. Because the heading angle cannot be measured, the reduced attitude control strategy is designed and the stability of reduced state of the system is proved using perturbation method.

  13. Software for Automated Generation of Reduced Thermal Models for Spacecraft Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal analysis is increasingly used in thermal engineering of spacecrafts in every stage, including design, test, and ground-operation simulation. Current...

  14. Weight Control: Attitudes of Dieters and Change Agents.

    Science.gov (United States)

    Parham, Ellen S.; And Others

    1991-01-01

    Survey explores attitudes toward weight loss/weight control among 2 groups of change agents--40 dietitians and 42 fitness instructors--and among 96 people trying to lose weight. Significant differences were found in terms of importance in weight control of diet, drugs, exercise, religion, and will power; in importance of being of normal weight;…

  15. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  16. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    Science.gov (United States)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  17. Optimal Electrical Energy Slewing for Reaction Wheel Spacecraft

    Science.gov (United States)

    Marsh, Harleigh Christian

    The results contained in this dissertation contribute to a deeper level of understanding to the energy required to slew a spacecraft using reaction wheels. This work addresses the fundamental manner in which spacecrafts are slewed (eigenaxis maneuvering), and demonstrates that this conventional maneuver can be dramatically improved upon in regards to reduction of energy, dissipative losses, as well as peak power. Energy is a fundamental resource that effects every asset, system, and subsystem upon a spacecraft, from the attitude control system which orients the spacecraft, to the communication subsystem to link with ground stations, to the payloads which collect scientific data. For a reaction wheel spacecraft, the attitude control system is a particularly heavy load on the power and energy resources on a spacecraft. The central focus of this dissertation is reducing the burden which the attitude control system places upon the spacecraft in regards to electrical energy, which is shown in this dissertation to be a challenging problem to computationally solve and analyze. Reducing power and energy demands can have a multitude of benefits, spanning from the initial design phase, to in-flight operations, to potentially extending the mission life of the spacecraft. This goal is approached from a practical standpoint apropos to an industry-flight setting. Metrics to measure electrical energy and power are developed which are in-line with the cost associated to operating reaction wheel based attitude control systems. These metrics are incorporated into multiple families of practical high-dimensional constrained nonlinear optimal control problems to reduce the electrical energy, as well as the instantaneous power burdens imposed by the attitude control system upon the spacecraft. Minimizing electrical energy is shown to be a problem in L1 optimal control which is nonsmooth in regards to state variables as well as the control. To overcome the challenge of nonsmoothness, a

  18. Preliminary thermal design of the COLD-SAT spacecraft

    Science.gov (United States)

    Arif, Hugh

    1991-01-01

    The COLD-SAT free-flying spacecraft was to perform experiments with LH2 in the cryogenic fluid management technologies of storage, supply and transfer in reduced gravity. The Phase A preliminary design of the Thermal Control Subsystem (TCS) for the spacecraft exterior and interior surfaces and components of the bus subsystems is described. The TCS was composed of passive elements which were augmented with heaters. Trade studies to minimize the parasitic heat leakage into the cryogen storage tanks are described. Selection procedure for the thermally optimum on-orbit spacecraft attitude was defined. TRASYS-2 and SINDA'85 verification analysis was performed on the design and the results are presented.

  19. Spherical gyroscopic moment stabilizer for attitude control of microsatellites

    Science.gov (United States)

    Keshtkar, Sajjad; Moreno, Jaime A.; Kojima, Hirohisa; Uchiyama, Kenji; Nohmi, Masahiro; Takaya, Keisuke

    2018-02-01

    This paper presents a new and improved concept of recently proposed two-degrees of freedom spherical stabilizer for triaxial orientation of microsatellites. The analytical analysis of the advantages of the proposed mechanism over the existing inertial attitude control devices are introduced. The extended equations of motion of the stabilizing satellite including the spherical gyroscope, for control law design and numerical simulations, are studied in detail. A new control algorithm based on continuous high-order sliding mode algorithms, for managing the torque produced by the stabilizer and therefore the attitude control of the satellite in the presence of perturbations/uncertainties, is presented. Some numerical simulations are carried out to prove the performance of the proposed mechanism and control laws.

  20. Position and Attitude Alternate of Path Tracking Heading Control

    Directory of Open Access Journals (Sweden)

    Baocheng Tan

    2014-03-01

    Full Text Available The path tracking control algorithm is one of the key problems in the control system design of autonomous vehicle. In this paper, we have conducted dynamic modeling for autonomous vehicle, the relationship between course deviation and yaw rate and centroid deflection angle. From the angle of the dynamics and geometrical, this paper have described the path tracking problem, analyzed the emergence of the eight autonomous vehicles pose binding - position and attitude alternate control methods to identify the relationship between posture and the controlling variables, and design a controller, the experimental results verify the feasibility and effectiveness of this control method.

  1. Smoking Prevalence and Attitudes Regarding its Control Among ...

    African Journals Online (AJOL)

    Aim: The aims of this study were to document the smoking prevalence and attitudes regarding its control among these set of students who will be tomorrow's health care providers. Subjects and Methods: A cross‑sectional survey was conducted in two medical schools in South‑Western Nigeria with their accompanied ...

  2. Balancing Autonomous Spacecraft Activity Control with an Integrated Scheduler-Planner and Reactive Executive, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft and remote vehicle operations demand a high level of responsiveness in dynamic environments. During operations it is possible for unexpected events and...

  3. Balancing Autonomous Spacecraft Activity Control With An Integrated Scheduler-Planner And Reactive Executive, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spacecraft operations demand a high level of responsiveness in dynamic environments. During operations, it is possible for unexpected events and anomalies to disrupt...

  4. Performance verification and system parameter identification of spacecraft tape recorder control servo

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1979-01-01

    Design adequacy of the lead-lag compensator of the frequency loop, accuracy checking of the analytical expression for the electrical motor transfer function, and performance evaluation of the speed control servo of the digital tape recorder used on-board the 1976 Viking Mars Orbiters and Voyager 1977 Jupiter-Saturn flyby spacecraft are analyzed. The transfer functions of the most important parts of a simplified frequency loop used for test simulation are described and ten simulation cases are reported. The first four of these cases illustrate the method of selecting the most suitable transfer function for the hysteresis synchronous motor, while the rest verify and determine the servo performance parameters and alternative servo compensation schemes. It is concluded that the linear methods provide a starting point for the final verification/refinement of servo design by nonlinear time response simulation and that the variation of the parameters of the static/dynamic Coulomb friction is as expected in a long-life space mission environment.

  5. Attitude Optimal Backstepping Controller Based Quaternion for a UAV

    Directory of Open Access Journals (Sweden)

    Kaddouri Djamel

    2016-01-01

    Full Text Available A hierarchical controller design based on nonlinear H∞ theory and backstepping technique is developed for a nonlinear and coupled dynamic attitude system using conventional quaternion based method. The derived controller combines the attractive features of H∞ optimal controller and the advantages of the backstepping technique leading to a control law which avoids winding phenomena. Performance issues of the controller are illustrated in a simulation study made for a four-rotor vertical take-off and landing (VTOL aerial robot prototype known as the quadrotor aircraft.

  6. Testing of an End-Point Control Unit Designed to Enable Precision Control of Manipulator-Coupled Spacecraft

    Science.gov (United States)

    Montgomery, Raymond C.; Ghosh, Dave; Tobbe, Patrick A.; Weathers, John M.; Manouchehri, Davoud; Lindsay, Thomas S.

    1994-01-01

    This paper presents an end-point control concept designed to enable precision telerobotic control of manipulator-coupled spacecraft. The concept employs a hardware unit (end-point control unit EPCU) that is positioned between the end-effector of the Space Shuttle Remote Manipulator System and the payload. Features of the unit are active compliance (control of the displacement between the end-effector and the payload), to allow precision control of payload motions, and inertial load relief, to prevent the transmission of loads between the end-effector and the payload. This paper presents the concept and studies the active compliance feature using a simulation and hardware. Results of the simulation show the effectiveness of the EPCU in smoothing the motion of the payload. Results are presented from initial, limited tests of a laboratory hardware unit on a robotic arm testbed at the l Space Flight Center. Tracking performance of the arm in a constant speed automated retraction and extension maneuver of a heavy payload with and without the unit active is compared for the design speed and higher speeds. Simultaneous load reduction and tracking performance are demonstrated using the EPCU.

  7. Attitude Control of a Satellite by using Digital Signal Processing

    Directory of Open Access Journals (Sweden)

    Adirelle C. Santana

    2012-03-01

    Full Text Available This article has discussed the development of a three-axis attitude digital controller for an artificial satellite using a digital signal processor. The main motivation of this study is the attitude control system of the satellite Multi-Mission Platform, developed by the Brazilian National Institute for Space Research for application in different sort of missions. The controller design was based on the theory of the Linear Quadratic Gaussian Regulator, synthesized from the linearized model of the motion of the satellite, i.e., the kinematics and dynamics of attitude. The attitude actuators considered in this study are pairs of cold gas jets powered by a pulse width/pulse frequency modulator. In the first stage of the project development, a system controller for continuous time was studied with the aim of testing the adequacy of the adopted control. The next steps had included an analysis of discretization techniques, the setting time of sampling rate, and the testing of the digital version of the Linear Quadratic Gaussian Regulator controller in the MATLAB/SIMULINK. To fulfill the study, the controller was implemented in a digital signal processor, specifically the Blackfin BF537 from Analog Devices, along with the pulse width/pulse frequency modulator. The validation tests used a scheme of co-simulation, where the model of the satellite was simulated in MATLAB/SIMULINK, while the controller and modulator were processed in the digital signal processor with a tool called Processor-In-the-Loop, which acted as a data communication link between both environments.function and required time to achieve a given mission accuracy are determined, and results are provided as illustration.

  8. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    Science.gov (United States)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  9. Addressing EO-1 Spacecraft Pulsed Plasma Thruster EMI Concerns

    Science.gov (United States)

    Zakrzwski, C. M.; Davis, Mitch; Sarmiento, Charles; Bauer, Frank H. (Technical Monitor)

    2001-01-01

    The Pulsed Plasma Thruster (PPT) Experiment on the Earth Observing One (EO-1) spacecraft has been designed to demonstrate the capability of a new generation PPT to perform spacecraft attitude control. Results from PPT unit level radiated electromagnetic interference (EMI) tests led to concerns about potential interference problems with other spacecraft subsystems. Initial plans to address these concerns included firing the PPT at the spacecraft level both in atmosphere, with special ground support equipment. and in vacuum. During the spacecraft level tests, additional concerns where raised about potential harm to the Advanced Land Imager (ALI). The inadequacy of standard radiated emission test protocol to address pulsed electromagnetic discharges and the lack of resources required to perform compatibility tests between the PPT and an ALI test unit led to changes in the spacecraft level validation plan. An EMI shield box for the PPT was constructed and validated for spacecraft level ambient testing. Spacecraft level vacuum tests of the PPT were deleted. Implementation of the shield box allowed for successful spacecraft level testing of the PPT while eliminating any risk to the ALI. The ALI demonstration will precede the PPT demonstration to eliminate any possible risk of damage of ALI from PPT operation.

  10. A geometric model of a V-slit Sun sensor correcting for spacecraft wobble

    Science.gov (United States)

    Mcmartin, W. P.; Gambhir, S. S.

    1994-01-01

    A V-Slit sun sensor is body-mounted on a spin-stabilized spacecraft. During injection from a parking or transfer orbit to some final orbit, the spacecraft may not be dynamically balanced. This may result in wobble about the spacecraft spin axis as the spin axis may not be aligned with the spacecraft's axis of symmetry. While the widely used models in Spacecraft Attitude Determination and Control, edited by Wertz, correct for separation, elevation, and azimuthal mounting biases, spacecraft wobble is not taken into consideration. A geometric approach is used to develop a method for measurement of the sun angle which corrects for the magnitude and phase of spacecraft wobble. The algorithm was implemented using a set of standard mathematical routines for spherical geometry on a unit sphere.

  11. Magneto-Hydro-Dynamics Liquid Wheel Actuator for Spacecraft Attitude Control

    Science.gov (United States)

    2017-01-26

    configuration: this configuration switches the first configuration considering an electric current along the axial direction z and a magnetic field along the...u = 0, and considering the boundaries electrically insulating , the induced magnetic field vanishes at the boundaries, b = 0. If the boundaries is...has been developed on the basis of the MHD set of equations under the hypothesis of low Magnetic Reynolds. The model solves numerically the time

  12. Fault Diagnosis Scheme for Nonlinear Stochastic Systems with Time-Varying Fault: Application to the Rigid Spacecraft Control

    Czech Academy of Sciences Publication Activity Database

    Nguyen, H.Q.; Čelikovský, Sergej

    2012-01-01

    Roč. 1, č. 3 (2012), s. 179-187 ISSN 2223-7038 R&D Projects: GA ČR(CZ) GAP103/12/1794 Institutional support: RVO:67985556 Keywords : Attitude control * adaptive fault estimation * LMI * PDF Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=02c925f7e4ab

  13. Optimizing the Attitude Control of Small Satellite Constellations for Rapid Response Imaging

    Science.gov (United States)

    Nag, S.; Li, A.

    2016-12-01

    Distributed Space Missions (DSMs) such as formation flight and constellations, are being recognized as important solutions to increase measurement samples over space and time. Given the increasingly accurate attitude control systems emerging in the commercial market, small spacecraft now have the ability to slew and point within few minutes of notice. In spite of hardware development in CubeSats at the payload (e.g. NASA InVEST) and subsystems (e.g. Blue Canyon Technologies), software development for tradespace analysis in constellation design (e.g. Goddard's TAT-C), planning and scheduling development in single spacecraft (e.g. GEO-CAPE) and aerial flight path optimizations for UAVs (e.g. NASA Sensor Web), there is a gap in open-source, open-access software tools for planning and scheduling distributed satellite operations in terms of pointing and observing targets. This paper will demonstrate results from a tool being developed for scheduling pointing operations of narrow field-of-view (FOV) sensors over mission lifetime to maximize metrics such as global coverage and revisit statistics. Past research has shown the need for at least fourteen satellites to cover the Earth globally everyday using a LandSat-like sensor. Increasing the FOV three times reduces the need to four satellites, however adds image distortion and BRDF complexities to the observed reflectance. If narrow FOV sensors on a small satellite constellation were commanded using robust algorithms to slew their sensor dynamically, they would be able to coordinately cover the global landmass much faster without compensating for spatial resolution or BRDF effects. Our algorithm to optimize constellation satellite pointing is based on a dynamic programming approach under the constraints of orbital mechanics and existing attitude control systems for small satellites. As a case study for our algorithm, we minimize the time required to cover the 17000 Landsat images with maximum signal to noise ratio fall

  14. Gravity-gradient dynamics experiments performed in orbit utilizing the Radio Astronomy Explorer (RAE-1) spacecraft

    Science.gov (United States)

    Walden, H.

    1973-01-01

    Six dynamic experiments were performed in earth orbit utilizing the RAE spacecraft in order to test the accuracy of the mathematical model of RAE dynamics. The spacecraft consisted of four flexible antenna booms, mounted on a rigid cylindrical spacecraft hub at center, for measuring radio emissions from extraterrestrial sources. Attitude control of the gravity stabilized spacecraft was tested by using damper clamping, single lower leading boom operations, and double lower boom operations. Results and conclusions of the in-orbit dynamic experiments proved the accuracy of the analytic techniques used to model RAE dynamical behavior.

  15. Position and attitude tracking control for a quadrotor UAV.

    Science.gov (United States)

    Xiong, Jing-Jing; Zheng, En-Hui

    2014-05-01

    A synthesis control method is proposed to perform the position and attitude tracking control of the dynamical model of a small quadrotor unmanned aerial vehicle (UAV), where the dynamical model is underactuated, highly-coupled and nonlinear. Firstly, the dynamical model is divided into a fully actuated subsystem and an underactuated subsystem. Secondly, a controller of the fully actuated subsystem is designed through a novel robust terminal sliding mode control (TSMC) algorithm, which is utilized to guarantee all state variables converge to their desired values in short time, the convergence time is so small that the state variables are acted as time invariants in the underactuated subsystem, and, a controller of the underactuated subsystem is designed via sliding mode control (SMC), in addition, the stabilities of the subsystems are demonstrated by Lyapunov theory, respectively. Lastly, in order to demonstrate the robustness of the proposed control method, the aerodynamic forces and moments and air drag taken as external disturbances are taken into account, the obtained simulation results show that the synthesis control method has good performance in terms of position and attitude tracking when faced with external disturbances. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Attitude control system for a lightweight flapping wing MAV.

    Science.gov (United States)

    Tijmons, Sjoerd; Karásek, Matěj; de Croon, G C H E

    2018-03-14

    Robust attitude control is an essential aspect of research on autonomous flight of flapping wing Micro Air Vehicles. The mechanical solutions by which the necessary control moments are realised come at the price of extra weight and possible loss of aerodynamic efficiency. Stable flight of these vehicles has been shown by several designs using a conventional tail, but also by tailless designs that use active control of the wings. In this study a control mechanism is proposed that provides active control over the wings. The mechanism improves vehicle stability and agility by generation of control moments for roll, pitch and yaw. Its effectiveness is demonstrated by static measurements around all the three axes. Flight test results confirm that the attitude of the test vehicle, including a tail, can be successfully controlled in slow forward flight conditions. Furthermore, the flight envelope is extended with robust hovering and the ability to reverse the flight direction using a small turn space. This capability is very important for autonomous flight capabilities such as obstacle avoidance. Finally, it is demonstrated that the proposed control mechanism allows for tailless hovering flight. © 2018 IOP Publishing Ltd.

  17. Integrated 6-DOF Orbit-Attitude Dynamical Modeling and Control Using Geometric Mechanics

    Directory of Open Access Journals (Sweden)

    Ling Jiang

    2017-01-01

    Full Text Available The integrated 6-DOF orbit-attitude dynamical modeling and control have shown great importance in various missions, for example, formation flying and proximity operations. The integrated approach yields better performances than the separate one in terms of accuracy, efficiency, and agility. One challenge in the integrated approach is to find a unified representation for the 6-DOF motion with configuration space SE(3. Recently, exponential coordinates of SE(3 have been used in dynamics and control of the 6-DOF motion, however, only on the kinematical level. In this paper, we will improve the current method by adopting exponential coordinates on the dynamical level, by giving the relation between the second-order derivative of exponential coordinates and spacecraft’s accelerations. In this way, the 6-DOF motion in terms of exponential coordinates can be written as a second-order system with a quite compact form, to which a broader range of control theories, such as higher-order sliding modes, can be applied. For a demonstration purpose, a simple asymptotic tracking control law with almost global convergence is designed. Finally, the integrated modeling and control are applied to the body-fixed hovering over an asteroid and verified by a simulation, in which absolute motions of the spacecraft and asteroid are simulated separately.

  18. Nonlinearity-induced spacecraft tumbling

    International Nuclear Information System (INIS)

    Amos, A.K.

    1994-01-01

    An existing tumbling criterion for the dumbbell satellite in planar librations is reexamined and modified to reflect a recently identified tumbling mode associated with the horizontal attitude orientation. It is shown that for any initial attitude there exists a critical angular rate below which the motion is oscillatory and harmonic and beyond which a continuous tumbling will ensue. If the angular rate is at the critical value the spacecraft drifts towards the horizontal attitude from which a spontaneous periodic tumbling occurs

  19. Fuzzy attitude control for a nanosatellite in leo orbit

    Science.gov (United States)

    Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir

    Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small

  20. Case Studies in Crewed Spacecraft Environmental Control and Life Support System Process Compatibility and Cabin Environmental Impact

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Contamination of a crewed spacecraft's cabin environment leading to environmental control and life support system (ECLSS) functional capability and operational margin degradation or loss can have an adverse effect on NASA's space exploration mission figures of merit-safety, mission success, effectiveness, and affordability. The role of evaluating the ECLSS's compatibility and cabin environmental impact as a key component of pass trace contaminant control is presented and the technical approach is described in the context of implementing NASA's safety and mission success objectives. Assessment examples are presented for a variety of chemicals used in vehicle systems and experiment hardware for the International Space Station program. The ECLSS compatibility and cabin environmental impact assessment approach, which can be applied to any crewed spacecraft development and operational effort, can provide guidance to crewed spacecraft system and payload developers relative to design criteria assigned ECLSS compatibility and cabin environmental impact ratings can be used by payload and system developers as criteria for ensuring adequate physical and operational containment. In additional to serving as an aid for guiding containment design, the assessments can guide flight rule and procedure development toward protecting the ECLSS as well as approaches for contamination event remediation.

  1. Optimal control of stretching process of flexible solar arrays on spacecraft based on a hybrid optimization strategy

    Directory of Open Access Journals (Sweden)

    Qijia Yao

    2017-07-01

    Full Text Available The optimal control of multibody spacecraft during the stretching process of solar arrays is investigated, and a hybrid optimization strategy based on Gauss pseudospectral method (GPM and direct shooting method (DSM is presented. First, the elastic deformation of flexible solar arrays was described approximately by the assumed mode method, and a dynamic model was established by the second Lagrangian equation. Then, the nonholonomic motion planning problem is transformed into a nonlinear programming problem by using GPM. By giving fewer LG points, initial values of the state variables and control variables were obtained. A serial optimization framework was adopted to obtain the approximate optimal solution from a feasible solution. Finally, the control variables were discretized at LG points, and the precise optimal control inputs were obtained by DSM. The optimal trajectory of the system can be obtained through numerical integration. Through numerical simulation, the stretching process of solar arrays is stable with no detours, and the control inputs match the various constraints of actual conditions. The results indicate that the method is effective with good robustness. Keywords: Motion planning, Multibody spacecraft, Optimal control, Gauss pseudospectral method, Direct shooting method

  2. Attitudes towards self-control with urinalysis in juvenile diabetes.

    Science.gov (United States)

    Ludvigsson, J; Svensson, P G

    1980-01-01

    Urinary glucose excretion reflects the blood glucose levels and is therefore recommended and used as a relevant and practical method for self-control in juvenile diabetes. The purpose of this study was to estimate the attitudes of of diabetic children and their parents towards such daily urinalysis. In 1975 69 juvenile diabetics 6-18 years old and their parents were studied and three years later another 69 patients were added. Still a year later 31 of the children were studied again. Standardized interviews, questionnaires and a special attitude test were used. The results indicate that a great majority of the patients and the parents accept the self-testing method and regard it as a valuable tool in the management of the disease. Almost nobody experienced the urine tests as a psychological problem. As urinalysis has become established as a self-evident part of the treatment, the attitudes have become even more positive among a growing number of patients. Parallel to this feeling of usefulness the patients are honest and the urine tests thus give reliable information.

  3. Fuzzy attitude control of solar sail via linear matrix inequalities

    Science.gov (United States)

    Baculi, Joshua; Ayoubi, Mohammad A.

    2017-09-01

    This study presents a fuzzy tracking controller based on the Takagi-Sugeno (T-S) fuzzy model of the solar sail. First, the T-S fuzzy model is constructed by linearizing the existing nonlinear equations of motion of the solar sail. Then, the T-S fuzzy model is used to derive the state feedback controller gains for the Twin Parallel Distributed Compensation (TPDC) technique. The TPDC tracks and stabilizes the attitude of the solar sail to any desired state in the presence of parameter uncertainties and external disturbances while satisfying actuator constraints. The performance of the TPDC is compared to a PID controller that is tuned using the Ziegler-Nichols method. Numerical simulation shows the TPDC outperforms the PID controller when stabilizing the solar sail to a desired state.

  4. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft

    International Nuclear Information System (INIS)

    Lee, S.H.; Mudawar, I.; Hasan, Mohammad M.

    2016-01-01

    Highlights: • Hybrid Thermal Control System (H-TCS) is proposed for future spacecraft. • Thermodynamic performance of H-TCS is examined for different space missions. • Operational modes including single-phase, two-phase and heat pump are explored. • R134a is deemed most appropriate working fluid. - Abstract: An urgent need presently exists to develop a new class of versatile spacecraft capable of conducting different types of missions and enduring varying gravitational and temperature environments, including Lunar, Martian and Near Earth Object (NEOs). This study concerns the spacecraft's Thermal Control System (TCS), which tackles heat acquisition, especially from crew and avionics, heat transport, and ultimate heat rejection by radiation. The primary goal of the study is to explore the design and thermal performance of a Hybrid Thermal Control System (H-TCS) that would satisfy the diverse thermal requirements of the different space missions. The H-TCS must endure both ‘cold’ and ‘hot’ environments, reduce weight and size, and enhance thermodynamic performance. Four different operational modes are considered: single-phase, two-phase, basic heat pump and heat pump with liquid-side, suction-side heat exchanger. A thermodynamic trade study is conducted for six different working fluids to assess important performance parameters including mass flow rate of the working fluid, maximum pressure, radiator area, compressor/pump work, and coefficient of performance (COP). R134a is determined to be most suitable based on its ability to provide a balanced compromise between reducing flow rate and maintaining low system pressure, and a moderate coefficient of performance (COP); this fluid is also both nontoxic and nonflammable, and features zero ozone depletion potential (ODP) and low global warming potential (GWP). It is shown how specific mission stages dictate which mode of operation is most suitable, and this information is used to size the radiator for the

  5. Pushing the Limits of Cubesat Attitude Control: A Ground Demonstration

    Science.gov (United States)

    Sanders, Devon S.; Heater, Daniel L.; Peeples, Steven R.; Sules. James K.; Huang, Po-Hao Adam

    2013-01-01

    A cubesat attitude control system (ACS) was designed at the NASA Marshall Space Flight Center (MSFC) to provide sub-degree pointing capabilities using low cost, COTS attitude sensors, COTS miniature reaction wheels, and a developmental micro-propulsion system. The ACS sensors and actuators were integrated onto a 3D-printed plastic 3U cubesat breadboard (10 cm x 10 cm x 30 cm) with a custom designed instrument board and typical cubesat COTS hardware for the electrical, power, and data handling and processing systems. In addition to the cubesat development, a low-cost air bearing was designed and 3D printed in order to float the cubesat in the test environment. Systems integration and verification were performed at the MSFC Small Projects Rapid Integration & Test Environment laboratory. Using a combination of both the miniature reaction wheels and the micro-propulsion system, the open and closed loop control capabilities of the ACS were tested in the Flight Robotics Laboratory. The testing demonstrated the desired sub-degree pointing capability of the ACS and also revealed the challenges of creating a relevant environment for development testin

  6. Health literacy and parent attitudes about weight control for children.

    Science.gov (United States)

    Liechty, Janet M; Saltzman, Jaclyn A; Musaad, Salma M

    2015-08-01

    The purpose of this study was to examine associations between parental health literacy and parent attitudes about weight control strategies for young children. Parental low health literacy has been associated with poor child health outcomes, yet little is known about its relationship to child weight control and weight-related health information-seeking preferences. Data were drawn from the STRONG Kids Study, a Midwest panel survey among parents of preschool aged children (n = 497). Parents endorsed an average of 4.3 (SD =2.8) weight loss strategies, 53% endorsed all three recommended weight loss strategies for children, and fewer than 1% of parents endorsed any unsafe strategies. Parents were most likely to seek child weight loss information from healthcare professionals but those with low (vs. adequate) health literacy were significantly less likely to use the Internet or books and more likely to use minister/clergy as sources. Poisson and logistic regressions showed that higher health literacy was associated with endorsement of more strategies overall, more recommended strategies, and greater odds of endorsing each specific recommended strategy for child weight control, after adjusting for parent age, education, race/ethnicity, income, marital status, weight concern, and child BMI percentile. Findings suggest that health literacy impacts parental views about child weight loss strategies and health information-seeking preferences. Pediatric weight loss advice to parents should include assessment of parent attitudes and prior knowledge about child weight control and facilitate parent access to reliable sources of evidence-informed child weight control information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. In-orbit evaluation of the control system/structural mode interactions of the OSO-8 spacecraft

    Science.gov (United States)

    Slafer, L. I.

    1979-01-01

    The Orbiting Solar Observatory-8 experienced severe structural mode/control loop interaction problems during the spacecraft development. Extensive analytical studies, using the hybrid coordinate modeling approach, and comprehensive ground testing were carried out in order to achieve the system's precision pointing performance requirements. A recent series of flight tests were conducted with the spacecraft in which a wide bandwidth, high resolution telemetry system was utilized to evaluate the on-orbit flexible dynamics characteristics of the vehicle along with the control system performance. The paper describes the results of these tests, reviewing the basic design problem, analytical approach taken, ground test philosophy, and on-orbit testing. Data from the tests was used to determine the primary mode frequency, damping, and servo coupling dynamics for the on-orbit condition. Additionally, the test results have verified analytically predicted differences between the on-orbit and ground test environments, and have led to a validation of both the analytical modeling and servo design techniques used during the development of the control system.

  8. A passively controlled appendage deployment system for the San Marco D/L spacecraft

    Science.gov (United States)

    Lang, W. E.; Frisch, H. P.; Schwartz, D. A.

    1984-01-01

    The analytical simulation of deployment dynamics of these two axis concepts as well as the evolution of practical designs for the add on deployable inertia boom units is described. With the boom free to swing back in response to Coriolis forces as well as outwards in response to centrifugal forces, the kinematics of motion are complex but admit the possibility of absorbing deployment energy in frictional or other damping devices about the radial axis, where large amplitude motions can occur and where the design envelope allows more available volume. An acceptable range is defined for frictional damping for any given spin rate. Inadequate damping allows boom motions which strike the spacecraft; excessive damping causes the boom to swing out and latch with damaging violence. The acceptable range is a design parameter and must accommodate spin rate tolerance and also the tolerance and repeatability of the damping mechanisms.

  9. Teacher Attitude to Inspectors and Inspection: Quality Control ...

    African Journals Online (AJOL)

    International Journal of Educational Research. Journal Home · ABOUT ... These will help to change the negative attitude of teachers to inspectors and inspection to positive. Keywords: Teacher Attitude; School Inspection; Education Inspectors.

  10. A Shaftless Magnetically Levitated Multifunctional Spacecraft Flywheel Storage System

    Science.gov (United States)

    Stevens, Ken; Thornton, Richard; Clark, Tracy; Beaman, Bob G.; Dennehy, Neil; Day, John H. (Technical Monitor)

    2002-01-01

    Presently many types of spacecraft use a Spacecraft Attitude Control System (ACS) with momentum wheels for steering and electrochemical batteries to provide electrical power for the eclipse period of the spacecraft orbit. Future spacecraft will use Flywheels for combined use in ACS and Energy Storage. This can be done by using multiple wheels and varying the differential speed for ACS and varying the average speed for energy storage and recovery. Technology in these areas has improved since the 1990s so it is now feasible for flywheel systems to emerge from the laboratory for spacecraft use. This paper describes a new flywheel system that can be used for both ACS and energy storage. Some of the possible advantages of a flywheel system are: lower total mass and volume, higher efficiency, less thermal impact, improved satellite integration schedule and complexity, simplified satellite orbital operations, longer life with lower risk, less pointing jitter, and greater capability for high-rate slews. In short, they have the potential to enable new types of missions and provide lower cost. Two basic types of flywheel configurations are the Flywheel Energy Storage System (FESS) and the Integrated Power and Attitude Control System (IPACS).

  11. Global optimum spacecraft orbit control subject to bounded thrust in presence of nonlinear and random disturbances in a low earth orbit

    Directory of Open Access Journals (Sweden)

    Tamer Mekky Ahmed Habib

    2012-06-01

    Full Text Available The primary objective of this work is to develop an effective spacecraft orbit control algorithm suitable for spacecraft orbital maneuver and/or rendezvous. The actual governing equation of a spacecraft orbiting the earth is merely nonlinear. Disturbance forces resulting from aerodynamic drag, oblateness of the earth till the fourth order (i.e. J4, and random disturbances are modeled for the initial and target orbits. These disturbances increase the complexity of nonlinear governing equations. Global optimum solutions of the control algorithm parameters are determined throughout real coded genetic algorithms such that the steady state difference between the actual and desired trajectories is minimized. The resulting solutions are constrained to avoid spacecraft collision with the surface of the earth taking into account limited thrust budget.

  12. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    Science.gov (United States)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  13. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground Based Computation and Control Systems and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as on human health and safety, as well as the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in earth surface, atmospheric flight, and space flight environments. Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools (e.g. ground based test methods as well as high energy particle transport and reaction codes) needed to design, test, and verify the safety and reliability of modern complex electronic systems as well as effects on human health and safety. The effects of primary cosmic ray particles, and secondary particle showers produced by nuclear reactions with spacecraft materials, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth's surface, especially if the net target area of the sensitive electronic system components is large. Accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO).

  14. Design issues of the piezo motor for the spacecraft reflector control system

    Directory of Open Access Journals (Sweden)

    Azin Anton

    2018-01-01

    Full Text Available Creation of large-size reflectors for spacecrafts is a topical issue for the space industry. The accuracy of the reflecting surface form and the structure weight are the main criteria for the reflector design. The accuracy of the reflecting surface form during a long-term operation is provided by adjustment when using piezoelectric motors in the reflector design. These motors have small weight-size parameters and can reach great torque values. The piezo motor is a distributed mechanical-acoustic oscillation system. Mechanical-acoustic oscillations are generated in the piezo motor by a PZT-stack and transmitted to an oscillator element, and then from the oscillator element to a load action element. At high frequencies, when dimensions of the oscillator are proportionate to the wavelength, the energy is transmitted by means of acoustic waves. In this case, mechanical waves practically are not involved in the energy transmission process. This thesis shows a method for selecting the material of a mechanical-acoustic oscillation system according to the efficiency of the acoustic energy transmission via a piezoelectric layered structure.

  15. The association between implicit and explicit attitudes toward smoking and support for tobacco control measures.

    Science.gov (United States)

    Macy, Jonathan T; Chassin, Laurie; Presson, Clark C

    2013-01-01

    This study examined the association between implicit and explicit attitudes toward smoking and support for tobacco control policies. Participants were from an ongoing longitudinal study of the natural history of smoking who also completed a web-based assessment of implicit attitudes toward smoking (N = 1,337). Multiple regression was used to test the association between covariates (sex, age, educational attainment, parent status, and smoking status), implicit attitude toward smoking, and explicit attitude toward smoking and support for tobacco control policies. The moderating effect of the covariates on the relation between attitudes and support for policies was also tested. Females, those with higher educational attainment, parents, and nonsmokers expressed more support for tobacco control policy measures. For nonsmokers, only explicit attitude was significantly associated with support for policies. For smokers, both explicit and implicit attitudes were significantly associated with support. The effect of explicit attitude was stronger for those with lower educational attainment. Both explicit and implicit smoking attitudes are important for building support for tobacco control policies, particularly among smokers. More research is needed on how to influence explicit and implicit attitudes to inform policy advocacy campaigns.

  16. RFP to work on formation flying capabilities for spacecrafts for the GRACE project

    DEFF Research Database (Denmark)

    Riis, Troels; Thuesen, Gøsta; Kilsgaard, Søren

    1999-01-01

    The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts.......The National Aeronautics and Space Agency of USA, NASA, are working on formation flying capabilities for spacecrafts, GRACE Project. IAU and JPL are developing the inter spacecraft attitude link to be used on the two spacecrafts....

  17. Observer-Based Robust Control for Spacecraft Rendezvous with Thrust Saturation

    Directory of Open Access Journals (Sweden)

    Neng Wan

    2014-01-01

    Full Text Available This paper proposes an observer-based robust guaranteed cost control method for thrust-limited rendezvous in near-circular orbits. Treating the noncircularity of the target orbit as a parametric uncertainty, a linearized motion model derived from the two-body problem is adopted as the controlled plant. Based on this model, a robust guaranteed cost observer-controller is synthesized with a less conservative saturation control law, and sufficient condition for the existence of this observer-based rendezvous controller is derived. Finally, an illustrative example with immeasurable velocity states is presented to demonstrate the advantages and effectiveness of the control scheme.

  18. Attitude Operation Results of Solar Sail Demonstrator IKAROS

    Science.gov (United States)

    Saiki, Takanao; Tsuda, Yuichi; Funase, Ryu; Mimasu, Yuya; Shirasawa, Yoji; Ikaros Demonstration Team,

    This paper shows the attitude operation results of Japanese interplanetary solar sail demonstration spacecraft IKAROS. IKAROS was launched on 21 May 2010(JST) aboard an H-IIA rocket, together with the AKATSUKI Venus climate orbiter. As IKAROS is the secondary payload, the development cost and period were restricted and the onboard attitude system is very simple. This paper introduces the attitude determination and control system. And as IKAROS is spin type spacecraft and it has the large membrane, the attitude control is not easy and it is very important to determine the long-term attitude plan in advance. This paper also shows the outline of the IKAROS attitude operation plan and its operation results.

  19. Attitude Control Tradeoff Study Between the Use of a Flexible Beam and a Tether Configuration for the Connection of Two Bodies in Orbit

    Science.gov (United States)

    Graff, S. H.

    1985-01-01

    Sometimes it is necessary to mount a payload remotely from the main body of a spacecraft or space station. The reasons for this vary from vibration isolation to avoidance of measurement contamination. For example the SP-100 project, which grew out of the increased interest in nuclear power in space for space stations and for deep space explorations, requires separation of the nuclear reactor from the user because of vibration, heat and radiation. The different attitude control problems for beam and tether configurations are discussed. The beam configuration uses a conservative design approach. The vibration, beam flexibility and deployment concerns are analyzed. The tether configuration offers some very attractive design features, but not without several thorny problems. These problems are analyzed. One configuration will be recommended for the main thrust of the SP-100 design effort based on attitude control considerations.

  20. A tool to assess knowledge, attitude and behavior of indonesian health care workers regarding infection control

    NARCIS (Netherlands)

    Duerink, D.O.; Hadi, U.; Lestari, E.S.; Roeshadi, D.; Wahyono, H.; Nagelkerke, N.J.; Meulen, R.G.; Broek, P.J.A. van den

    2013-01-01

    Aim: to investigate knowledge, attitude and behaviour toward infection control in two teaching hospitals on the island of Java by means of a questionnaire and to evaluate the use of the questionnaire as a tool. Methods: we investigated knowledge, attitude and behaviour toward infection control in

  1. AE-C attitude determination and control prelaunch analysis and operations plan

    Science.gov (United States)

    Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.

    1973-01-01

    A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.

  2. Standardization and Economics of Nuclear Spacecraft, Final Report, Phase I, Sense Study

    Energy Technology Data Exchange (ETDEWEB)

    1973-03-01

    Feasibility and cost benefits of nuclear-powered standardized spacecraft are investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 21000 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification. Three-axis stabilization is included. Several spacecraft can be stacked in the shuttle payload compartment for multi-mission launches. A reactor-powered thermoelectric generator system, operating at an electric power level of 5000 watts, is briefly studied for applicability to two test missions of divers requirements. A cost analysis indicates that use of the two standardized spacecraft offers sizable savings in comparison with specially designed solar-powered spacecraft. There is a duplicate copy.

  3. Semiconductor-metal phase transition of vanadium dioxide nanostructures on silicon substrate: Applications for thermal control of spacecraft

    International Nuclear Information System (INIS)

    Leahu, G. L.; Li Voti, R.; Larciprete, M. C.; Belardini, A.; Mura, F.; Sibilia, C.; Bertolotti, M.; Fratoddi, I.

    2013-01-01

    We present a detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide (VO2) film deposited on silicon wafer. The VO2 phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behaviour of the emissivity during the SMT put into evidence the phenomenon of the anomalous absorption in VO2 which has been explained by applying the Maxwell Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices to be applied for the thermal control of spacecraft. We have also applied the photothermal radiometry in order to study the changes in the modulated emissivity induced by laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide based structures

  4. Semi-active Attitude Control and Off-line Attitude Determination for the SEETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  5. Semi-active Attitude Control and Off-line Attitude Determination for the SSETI-Express Student Micro-satellite

    DEFF Research Database (Denmark)

    Alminde, Lars

    2005-01-01

    This paper concerns the development of the Attitude Determination and Control System (ADCS) for the SSETI-Express micro-satellite mission. The mission is an educational project involving 14 universities and the European Space Agency (ESA). The satellite has been designed and built, by students...

  6. Design of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels

    Directory of Open Access Journals (Sweden)

    Abbas Ajorkar

    2015-04-01

    Full Text Available In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control has been designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, a multilayer neural network with back-propagation law is designed. In this structure, the parameters of the moment of inertia matrix and external disturbances are estimated and used in feedback linearization control law. Finally, the performance of the designed attitude controller is investigated by several simulations.

  7. Estimating the Backup Reaction Wheel Orientation Using Reaction Wheel Spin Rates Flight Telemetry from a Spacecraft

    Science.gov (United States)

    Rizvi, Farheen

    2013-01-01

    A report describes a model that estimates the orientation of the backup reaction wheel using the reaction wheel spin rates telemetry from a spacecraft. Attitude control via the reaction wheel assembly (RWA) onboard a spacecraft uses three reaction wheels (one wheel per axis) and a backup to accommodate any wheel degradation throughout the course of the mission. The spacecraft dynamics prediction depends upon the correct knowledge of the reaction wheel orientations. Thus, it is vital to determine the actual orientation of the reaction wheels such that the correct spacecraft dynamics can be predicted. The conservation of angular momentum is used to estimate the orientation of the backup reaction wheel from the prime and backup reaction wheel spin rates data. The method is applied in estimating the orientation of the backup wheel onboard the Cassini spacecraft. The flight telemetry from the March 2011 prime and backup RWA swap activity on Cassini is used to obtain the best estimate for the backup reaction wheel orientation.

  8. Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft

    Science.gov (United States)

    Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei

    2018-05-01

    Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).

  9. Hybrid Heat Pipes for High Heat Flux Spacecraft Thermal Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Grooved aluminum/ammonia Constant Conductance Heat Pipes (CCHPs) are the standard for thermal control in zero-gravity. Unfortunately, they are limited in terms of...

  10. Nonlinear Attitude Control of Planar Structures in Space Using Only Internal Controls

    Science.gov (United States)

    Reyhanoglu, Mahmut; Mcclamroch, N. Harris

    1993-01-01

    An attitude control strategy for maneuvers of an interconnection of planar bodies in space is developed. It is assumed that there are no exogeneous torques and that torques generated by joint motors are used as means of control so that the total angular momentum of the multibody system is a constant, assumed to be zero. The control strategy utilizes the nonintegrability of the expression for the angular momentum. Large angle maneuvers can be designed to achieve an arbitrary reorientation of the multibody system with respect to an inertial frame. The theoretical background for carrying out the required maneuvers is summarized.

  11. Attitude Stabilization Control of a Quadrotor UAV by Using Backstepping Approach

    Directory of Open Access Journals (Sweden)

    Xing Huo

    2014-01-01

    Full Text Available The modeling and attitude stabilization control problems of a four-rotor vertical takeoff and landing unmanned air vehicle (UAV known as the quadrotor are investigated. The quadrotor’s attitude is represented by the unit quaternion rather than Euler angles to avoid singularity problem. Taking dynamical behavior of motors into consideration and ignoring aerodynamic effect, a nonlinear controller is developed to stabilize the attitude. The control design is accomplished by using backstepping control technique. The proposed control law is based on the compensation for the Coriolis and gyroscope torques. Applying Lyapunov stability analysis proves that the closed-loop attitude system is asymptotic stable. Moreover, the controller can guarantee that all the states of the system are uniformly ultimately bounded in the presence of external disturbance torque. The effectiveness of the proposed control approach is analytically authenticated and also validated via simulation study.

  12. The performance of thermal control coatings on LDEF and implications to future spacecraft

    Science.gov (United States)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  13. In-orbit attitude actuation using solar panels

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2008-06-01

    Full Text Available A specific technique is developed to wield the internal disturbance torque caused by the solar panel actuation for spacecraft attitude control tasks. This work is the maiden work towards integrating the attitude control and the solar tracking tasks, forming a combined attitude and solar tracking system. The feasibility of this concept for spacecraft is proven and eventually the combined concept is validated. A technical proof is presented corresponding to the end-to-end system demonstration. The investigation starts with the determination of the solar tracking constraints. Then, the mathematical models describing the attitude and solar tracking are established, and eventually the onboard architecture is implemented. The numerical treatments using MatlabTM were performed to evaluate the developed onboard architecture. The simulation results are discussed especially from the attitude control standpoint. The integrated system complies very well with the reference mission requirements.

  14. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    Science.gov (United States)

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin

    2017-01-01

    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  15. Cognitive issues in autonomous spacecraft-control operations: An investigation of software-mediated decision making in a scaled environment

    Science.gov (United States)

    Murphy, Elizabeth Drummond

    As advances in technology are applied in complex, semi-automated domains, human controllers are distanced from the controlled process. This physical and psychological distance may both facilitate and degrade human performance. To investigate cognitive issues in spacecraft ground-control operations, the present experimental research was undertaken. The primary issue concerned the ability of operations analysts who do not monitor operations to make timely, accurate decisions when autonomous software calls for human help. Another key issue involved the potential effects of spatial-visualization ability (SVA) in environments that present data in graphical formats. Hypotheses were derived largely from previous findings and predictions in the literature. Undergraduate psychology students were assigned at random to a monitoring condition or an on-call condition in a scaled environment. The experimental task required subjects to decide on the veracity of a problem diagnosis delivered by a software process on-board a simulated spacecraft. To support decision-making, tabular and graphical data displays presented information on system status. A level of software confidence in the problem diagnosis was displayed, and subjects reported their own level of confidence in their decisions. Contrary to expectations, the performance of on-call subjects did not differ significantly from that of continuous monitors. Analysis yielded a significant interaction of sex and condition: Females in the on-call condition had the lowest mean accuracy. Results included a preference for bar charts over line graphs and faster performance with tables than with line graphs. A significant correlation was found between subjective confidence and decision accuracy. SVA was found to be predictive of accuracy but not speed; and SVA was found to be a stronger predictor of performance for males than for females. Low-SVA subjects reported that they relied more on software confidence than did medium- or high

  16. Spacecraft operations

    CERN Document Server

    Sellmaier, Florian; Schmidhuber, Michael

    2015-01-01

    The book describes the basic concepts of spaceflight operations, for both, human and unmanned missions. The basic subsystems of a space vehicle are explained in dedicated chapters, the relationship of spacecraft design and the very unique space environment are laid out. Flight dynamics are taught as well as ground segment requirements. Mission operations are divided into preparation including management aspects, execution and planning. Deep space missions and space robotic operations are included as special cases. The book is based on a course held at the German Space Operation Center (GSOC).

  17. High Accuracy Attitude Control System Design for Satellite with Flexible Appendages

    Directory of Open Access Journals (Sweden)

    Wenya Zhou

    2014-01-01

    Full Text Available In order to realize the high accuracy attitude control of satellite with flexible appendages, attitude control system consisting of the controller and structural filter was designed. When the low order vibration frequency of flexible appendages is approximating the bandwidth of attitude control system, the vibration signal will enter the control system through measurement device to bring impact on the accuracy or even the stability. In order to reduce the impact of vibration of appendages on the attitude control system, the structural filter is designed in terms of rejecting the vibration of flexible appendages. Considering the potential problem of in-orbit frequency variation of the flexible appendages, the design method for the adaptive notch filter is proposed based on the in-orbit identification technology. Finally, the simulation results are given to demonstrate the feasibility and effectiveness of the proposed design techniques.

  18. Emergency strategy optimization for the environmental control system in manned spacecraft

    Science.gov (United States)

    Li, Guoxiang; Pang, Liping; Liu, Meng; Fang, Yufeng; Zhang, Helin

    2018-02-01

    It is very important for a manned environmental control system (ECS) to be able to reconfigure its operation strategy in emergency conditions. In this article, a multi-objective optimization is established to design the optimal emergency strategy for an ECS in an insufficient power supply condition. The maximum ECS lifetime and the minimum power consumption are chosen as the optimization objectives. Some adjustable key variables are chosen as the optimization variables, which finally represent the reconfigured emergency strategy. The non-dominated sorting genetic algorithm-II is adopted to solve this multi-objective optimization problem. Optimization processes are conducted at four different carbon dioxide partial pressure control levels. The study results show that the Pareto-optimal frontiers obtained from this multi-objective optimization can represent the relationship between the lifetime and the power consumption of the ECS. Hence, the preferred emergency operation strategy can be recommended for situations when there is suddenly insufficient power.

  19. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents' Risky Sexual Behavior

    Science.gov (United States)

    Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann

    2014-01-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual…

  20. In-orbit performance of the LISA Pathfinder drag-free and attitude control system

    Science.gov (United States)

    Schleicher, A.; Ziegler, T.; Schubert, R.; Brandt, N.; Bergner, P.; Johann, U.; Fichter, W.; Grzymisch, J.

    2018-04-01

    LISA Pathfinder is a technology demonstrator mission that was funded by the European Space Agency and that was launched on December 3, 2015. LISA Pathfinder has been conducting experiments to demonstrate key technologies for the gravitational wave observatory LISA in its operational orbit at the L1 Lagrange point of the Earth-Sun system until final switch off on July 18, 2017. These key technologies include the inertial sensors, the optical metrology system, a set of µ-propulsion cold gas thrusters and in particular the high performance drag-free and attitude control system (DFACS) that controls the spacecraft in 15 degrees of freedom during its science phase. The main goal of the DFACS is to shield the two test masses inside the inertial sensors from all external disturbances to achieve a residual differential acceleration between the two test masses of less than 3 × 10-14 m/s2/√Hz over the frequency bandwidth of 1-30 mHz. This paper focuses on two important aspects of the DFACS that has been in use on LISA Pathfinder: the DFACS Accelerometer mode and the main DFACS Science mode. The Accelerometer mode is used to capture the test masses after release into free flight from the mechanical grabbing mechanism. The main DFACS Science Mode is used for the actual drag-free science operation. The DFACS control system has very strong interfaces with the LISA Technology Package payload which is a key aspect to master the design, development, and analysis of the DFACS. Linear as well as non-linear control methods are applied. The paper provides pre-flight predictions for the performance of both control modes and compares these predictions to the performance that is currently achieved in-orbit. Some results are also discussed for the mode transitions up to science mode, but the focus of the paper is on the Accelerometer mode performance and on the performance of the Science mode in steady state. Based on the achieved results, some lessons learnt are formulated to extend

  1. Reusable Launch Vehicle Attitude Control Using a Time-Varying Sliding Mode Control Technique

    Science.gov (United States)

    Shtessel, Yuri B.; Zhu, J. Jim; Daniels, Dan; Jackson, Scott (Technical Monitor)

    2002-01-01

    In this paper we present a time-varying sliding mode control (TVSMC) technique for reusable launch vehicle (RLV) attitude control in ascent and entry flight phases. In ascent flight the guidance commands Euler roll, pitch and yaw angles, and in entry flight it commands the aerodynamic angles of bank, attack and sideslip. The controller employs a body rate inner loop and the attitude outer loop, which are separated in time-scale by the singular perturbation principle. The novelty of the TVSMC is that both the sliding surface and the boundary layer dynamics can be varied in real time using the PD-eigenvalue assignment technique. This salient feature is used to cope with control command saturation and integrator windup in the presence of severe disturbance or control effector failure, which enhances the robustness and fault tolerance of the controller. The TV-SMC ascent and descent designs are currently being tested with high fidelity, 6-DOF dispersion simulations. The test results will be presented in the final version of this paper.

  2. High temperature glass thermal control structure and coating. [for application to spacecraft reusable heat shielding

    Science.gov (United States)

    Stewart, D. A.; Goldstein, H. E.; Leiser, D. B. (Inventor)

    1983-01-01

    A high temperature stable and solar radiation stable thermal control coating is described which is useful either as such, applied directly to a member to be protected, or applied as a coating on a re-usable surface insulation (RSI). It has a base coat layer and an overlay glass layer. The base coat layer has a high emittance, and the overlay layer is formed from discrete, but sintered together glass particles to give the overlay layer a high scattering coefficient. The resulting two-layer space and thermal control coating has an absorptivity-to-emissivity ratio of less than or equal to 0.4 at room temperature, with an emittance of 0.8 at 1200 F. It is capable of exposure to either solar radiation or temperatures as high as 2000 F without significant degradation. When used as a coating on a silica substrate to give an RSI structure, the coatings of this invention show significantly less reduction in emittance after long term convective heating and less residual strain than prior art coatings for RSI structures.

  3. Internet Technology on Spacecraft

    Science.gov (United States)

    Rash, James; Parise, Ron; Hogie, Keith; Criscuolo, Ed; Langston, Jim; Powers, Edward I. (Technical Monitor)

    2000-01-01

    approaches. The cost to implement is much less than current approaches due to the availability of highly reliable and standard Internet tools. Use of standard Internet applications onboard reduces the risk of obsolescence inherent in custom protocols due to extremely wide use across all domains. These basic building blocks provide the framework for building onboard software to support direct user communication with payloads including payload control. Other benefits are payload to payload communication from dissimilar spacecraft, constellations of spacecraft, and reconfigurability on orbit. This work is funded through contract with the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).

  4. Practical Applications of Cosmic Ray Science: Spacecraft, Aircraft, Ground-Based Computation and Control Systems, and Human Health and Safety

    Science.gov (United States)

    Atwell, William; Koontz, Steve; Normand, Eugene

    2012-01-01

    Three twentieth century technological developments, 1) high altitude commercial and military aircraft; 2) manned and unmanned spacecraft; and 3) increasingly complex and sensitive solid state micro-electronics systems, have driven an ongoing evolution of basic cosmic ray science into a set of practical engineering tools needed to design, test, and verify the safety and reliability of modern complex technological systems. The effects of primary cosmic ray particles and secondary particle showers produced by nuclear reactions with the atmosphere, can determine the design and verification processes (as well as the total dollar cost) for manned and unmanned spacecraft avionics systems. Similar considerations apply to commercial and military aircraft operating at high latitudes and altitudes near the atmospheric Pfotzer maximum. Even ground based computational and controls systems can be negatively affected by secondary particle showers at the Earth s surface, especially if the net target area of the sensitive electronic system components is large. Finally, accumulation of both primary cosmic ray and secondary cosmic ray induced particle shower radiation dose is an important health and safety consideration for commercial or military air crews operating at high altitude/latitude and is also one of the most important factors presently limiting manned space flight operations beyond low-Earth orbit (LEO). In this paper we review the discovery of cosmic ray effects on the performance and reliability of microelectronic systems as well as human health and the development of the engineering and health science tools used to evaluate and mitigate cosmic ray effects in ground-based atmospheric flight, and space flight environments. Ground test methods applied to microelectronic components and systems are used in combinations with radiation transport and reaction codes to predict the performance of microelectronic systems in their operating environments. Similar radiation transport

  5. Hyper-XACT, A Long-Life, High-Performance Attitude Determination & Control System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hyper-XACT is intended to extend the capabilities of CubeSat attitude control systems for longer duration missions with tighter performance requirements by...

  6. Pulsed Electrogasdynamic Thruster for Attitude Control and Orbit Maneuver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new pulsed electric thruster, named "pulsed electrogasdynamic thruster," for attitude control and orbit maneuver is proposed. In this thruster, propellant gas is...

  7. Colloid Thruster for Attitude Control Systems (ACS) and Tip-off Control Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek proposes to develop and deliver a complete engineering model colloid thruster system, capable of thrust levels and lifetimes required for spacecraft...

  8. Implicit and Explicit Attitudes Predict Smoking Cessation: Moderating Effects of Experienced Failure to Control Smoking and Plans to Quit

    OpenAIRE

    Chassin, Laurie; Presson, Clark C.; Sherman, Steven J.; Seo, Dong-Chul; Macy, Jon

    2010-01-01

    The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly...

  9. Implicit attitudes towards homosexuality: reliability, validity, and controllability of the IAT.

    Science.gov (United States)

    Banse, R; Seise, J; Zerbes, N

    2001-01-01

    Two experiments were conducted to investigate the psychometric properties of an Implicit Association Test (IAT; Greenwald, McGhee, & Schwartz, 1998) that was adapted to measure implicit attitudes towards homosexuality. In a first experiment, the validity of the Homosexuality-IAT was tested using a known group approach. Implicit and explicit attitudes were assessed in heterosexual and homosexual men and women (N = 101). The results provided compelling evidence for the convergent and discriminant validity of the Homosexuality-IAT as a measure of implicit attitudes. No evidence was found for two alternative explanations of IAT effects (familiarity with stimulus material and stereotype knowledge). The internal consistency of IAT scores was satisfactory (alpha s > .80), but retest correlations were lower. In a second experiment (N = 79) it was shown that uninformed participants were able to fake positive explicit but not implicit attitudes. Discrepancies between implicit and explicit attitudes towards homosexuality could be partially accounted for by individual differences in the motivation to control prejudiced behavior, thus providing independent evidence for the validity of the implicit attitude measure. Neither explicit nor implicit attitudes could be changed by persuasive messages. The results of both experiments are interpreted as evidence for a single construct account of implicit and explicit attitudes towards homosexuality.

  10. Attitudes towards Potential New Tobacco Control Regulations among U.S. Adults

    Directory of Open Access Journals (Sweden)

    Allison M. Schmidt

    2018-01-01

    Full Text Available Favorable attitudes towards tobacco control policies can facilitate their implementation and success. We examined attitudes toward four potential U.S. Federal tobacco regulations (banning menthol from cigarettes, reducing nicotine levels in cigarettes, banning candy and fruit flavored electronic cigarettes, and banning candy and fruit flavored little cigars and cigarillos and associations with individual and state variables. A nationally representative phone survey of 4337 adults assessed attitudes toward potential policies. Weighted logistic regression was used to assess relationships between attitudes and demographic factors, smoking behavior, beliefs about the government (knowledge, trust, and credibility, exposure to tobacco control campaigns, and state variables from the US Centers for Disease Control and Prevention (CDC State Tobacco Activities Tracking and Evaluation (STATE System. Most respondents supported three out of four policies. Respondents that were female, non-white, Latino, living below the poverty line, had less than high school education, were of older age, did not smoke, had higher trust in government, and were exposed to national tobacco control campaigns had higher odds of expressing favorable attitudes toward potential new tobacco regulations than did their counterparts. No state-level effects were found. While differences in attitudes were observed by individual demographic characteristics, behaviors, and beliefs, a majority of participants supported most of the potential new tobacco regulations surveyed.

  11. Real time hardware-in-loop simulation of ESMO satellite attitude control system

    Directory of Open Access Journals (Sweden)

    Rune Finnset

    2006-04-01

    Full Text Available This paper studies attitude control of the ESMO satellite using six reaction thrusters. Bang-bang control with dead-zone and Pulse-Width Modulation (PWM for the modulation of the on-time of the thrusters are treated. Closed loop hardware-in-loop simulations, using themicrocontroller unit (MCU Microchip PIC18F452 for implementation of attitude control and MatLab in a standard PC for simulating satellite dynamics, are carried out. Results for real time simulation are compared with autonomous simulations. The controller gives a satisfactory performance in the real time environment.

  12. A computed torque method based attitude control with optimal force distribution for articulated body mobile robots

    International Nuclear Information System (INIS)

    Fukushima, Edwardo F.; Hirose, Shigeo

    2000-01-01

    This paper introduces an attitude control scheme based in optimal force distribution using quadratic programming which minimizes joint energy consumption. This method shares similarities with force distribution for multifingered hands, multiple coordinated manipulators and legged walking robots. In particular, an attitude control scheme was introduced inside the force distribution problem, and successfully implemented for control of the articulated body mobile robot KR-II. This is an actual mobile robot composed of cylindrical segments linked in series by prismatic joints and has a long snake-like appearance. These prismatic joints are force controlled so that each segment's vertical motion can automatically follow the terrain irregularities. An attitude control is necessary because this system acts like a system of wheeled inverted pendulum carts connected in series, being unstable by nature. The validity and effectiveness of the proposed method is verified by computer simulation and experiments with the robot KR-II. (author)

  13. Crew exploration vehicle (CEV) attitude control using a neural-immunology/memory network

    Science.gov (United States)

    Weng, Liguo; Xia, Min; Wang, Wei; Liu, Qingshan

    2015-01-01

    This paper addresses the problem of the crew exploration vehicle (CEV) attitude control. CEVs are NASA's next-generation human spaceflight vehicles, and they use reaction control system (RCS) jet engines for attitude adjustment, which calls for control algorithms for firing the small propulsion engines mounted on vehicles. In this work, the resultant CEV dynamics combines both actuation and attitude dynamics. Therefore, it is highly nonlinear and even coupled with significant uncertainties. To cope with this situation, a neural-immunology/memory network is proposed. It is inspired by the human memory and immune systems. The control network does not rely on precise system dynamics information. Furthermore, the overall control scheme has a simple structure and demands much less computation as compared with most existing methods, making it attractive for real-time implementation. The effectiveness of this approach is also verified via simulation.

  14. Predictive Sliding Mode Control for Attitude Tracking of Hypersonic Vehicles Using Fuzzy Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xianlei Cheng

    2015-01-01

    Full Text Available We propose a predictive sliding mode control (PSMC scheme for attitude control of hypersonic vehicle (HV with system uncertainties and external disturbances based on an improved fuzzy disturbance observer (IFDO. First, for a class of uncertain affine nonlinear systems with system uncertainties and external disturbances, we propose a predictive sliding mode control based on fuzzy disturbance observer (FDO-PSMC, which is used to estimate the composite disturbances containing system uncertainties and external disturbances. Afterward, to enhance the composite disturbances rejection performance, an improved FDO-PSMC (IFDO-PSMC is proposed by incorporating a hyperbolic tangent function with FDO to compensate for the approximate error of FDO. Finally, considering the actuator dynamics, the proposed IFDO-PSMC is applied to attitude control system design for HV to track the guidance commands with high precision and strong robustness. Simulation results demonstrate the effectiveness and robustness of the proposed attitude control scheme.

  15. Attitudes towards Potential New Tobacco Control Regulations among U.S. Adults

    OpenAIRE

    Schmidt, Allison M.; Kowitt, Sarah D.; Myers, Allison E.; Goldstein, Adam O.

    2018-01-01

    Favorable attitudes towards tobacco control policies can facilitate their implementation and success. We examined attitudes toward four potential U.S. Federal tobacco regulations (banning menthol from cigarettes, reducing nicotine levels in cigarettes, banning candy and fruit flavored electronic cigarettes, and banning candy and fruit flavored little cigars and cigarillos) and associations with individual and state variables. A nationally representative phone survey of 4337 adults assessed at...

  16. A semi-physical simulation platform of attitude determination and control system for satellite

    Directory of Open Access Journals (Sweden)

    Yuanjin Yu

    2016-05-01

    Full Text Available A semi-physical simulation platform for attitude determination and control system is proposed to verify the attitude estimator and controller on ground. A simulation target, a host PC, many attitude sensors, and actuators compose the simulation platform. The simulation target is composed of a central processing unit board with VxWorks operating system and many input/output boards connected via Compact Peripheral Component Interconnect bus. The executable programs in target are automatically generated from the simulation models in Simulink based on Real-Time Workshop of MATLAB. A three-axes gyroscope, a three-axes magnetometer, a sun sensor, a star tracer, three flywheels, and a Global Positioning System receiver are connected to the simulation target, which formulates the attitude control cycle of a satellite. The simulation models of the attitude determination and control system are described in detail. Finally, the semi-physical simulation platform is used to demonstrate the availability and rationality of the control scheme of a micro-satellite. Comparing the results between the numerical simulation in Simulink and the semi-physical simulation, the semi-physical simulation platform is available and the control scheme successfully achieves three-axes stabilization.

  17. Orbit-attitude coupled motion around small bodies: Sun-synchronous orbits with Sun-tracking attitude motion

    Science.gov (United States)

    Kikuchi, Shota; Howell, Kathleen C.; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2017-11-01

    The motion of a spacecraft in proximity to a small body is significantly perturbed due to its irregular gravity field and solar radiation pressure. In such a strongly perturbed environment, the coupling effect of the orbital and attitude motions exerts a large influence that cannot be neglected. However, natural orbit-attitude coupled dynamics around small bodies that are stationary in both orbital and attitude motions have yet to be observed. The present study therefore investigates natural coupled motion that involves both a Sun-synchronous orbit and Sun-tracking attitude motion. This orbit-attitude coupled motion enables a spacecraft to maintain its orbital geometry and attitude state with respect to the Sun without requiring active control. Therefore, the proposed method can reduce the use of an orbit and attitude control system. This paper first presents analytical conditions to achieve Sun-synchronous orbits and Sun-tracking attitude motion. These analytical solutions are then numerically propagated based on non-linear coupled orbit-attitude equations of motion. Consequently, the possibility of implementing Sun-synchronous orbits with Sun-tracking attitude motion is demonstrated.

  18. Toward autonomous spacecraft

    Science.gov (United States)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  19. Smoking behaviours and attitudes toward tobacco control among assistant environmental health officer trainees.

    Science.gov (United States)

    Tee, G H; Gurpreet, K; Hairi, N N; Zarihah, Z; Fadzilah, K

    2013-12-01

    Assistant environmental health officers (AEHO) are health care providers (HCPs) who act as enforcers, educators and trusted role models for the public. This is the first study to explore smoking behaviour and attitudes toward tobacco control among future HCPs. Almost 30% of AEHO trainees did not know the role of AEHOs in counselling smokers to stop smoking, but 91% agreed they should not smoke before advising others not to do so. The majority agreed that tobacco control regulations may be used as a means of reducing the prevalence of smoking. Future AEHOs had positive attitudes toward tobacco regulations but lacked understanding of their responsibility in tobacco control measures.

  20. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2000-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusser linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field......, nevertheless, a solution of the riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when satellite is on a near polar orbit is used throughout this paper. Three types of attitude controllers are proposed......: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the environment...

  1. Smoking behaviors and attitudes during adolescence prospectively predict support for tobacco control policies in adulthood.

    Science.gov (United States)

    Macy, Jonathan T; Chassin, Laurie; Presson, Clark C

    2012-07-01

    Several cross-sectional studies have examined factors associated with support for tobacco control policies. The current study utilized a longitudinal design to test smoking status and attitude toward smoking measured in adolescence as prospective predictors of support for tobacco control policies measured in adulthood. Participants (N = 4,834) were from a longitudinal study of a Midwestern community-based sample. Hierarchical multiple regression analyses tested adolescent smoking status and attitude toward smoking as prospective predictors (after controlling for sociodemographic factors, adult smoking status, and adult attitude toward smoking) of support for regulation of smoking in public places, discussion of the dangers of smoking in public schools, prohibiting smoking in bars, eliminating smoking on television and in movies, prohibiting smoking in restaurants, and increasing taxes on cigarettes. Participants who smoked during adolescence demonstrated more support for discussion of the dangers of smoking in public schools and less support for increasing taxes on cigarettes but only among those who smoked as adults. Those with more positive attitudes toward smoking during adolescence demonstrated less support as adults for prohibiting smoking in bars and eliminating smoking on television and in movies. Moreover, a significant interaction indicated that those with more positive attitudes toward smoking as adolescents demonstrated less support as adults for prohibiting smoking in restaurants, but only if they became parents as adults. This study's findings suggest that interventions designed to deter adolescent smoking may have future benefits in increasing support for tobacco control policies.

  2. Attitude Control of Nanosatellites by Paddle Motion Using Elastic Hinges Actuated by Shape Memory Alloy

    Science.gov (United States)

    Iai, Masafumi; Durali, Mohammad; Hatsuzawa, Takeshi

    Recent research has been extending the applications of small satellites called microsatellites, nanosatellites, or picosatellites. To further improve capability of those satellites, a lightweight, active attitude-control mechanism is needed. This paper proposes a concept of inertial orientation control, an attitude control method using movable solar arrays. This method is made suitable for nanosatellites by the use of shape memory alloy (SMA)-actuated elastic hinges and a simple maneuver generation algorithm. The combination of SMA and an elastic hinge allows the hinge to remain lightweight and free of frictional or rolling contacts. Changes in the shrinking and stretching speeds of the SMA were measured in a vacuum chamber. The proposed algorithm constructs a maneuver to achieve arbitrary attitude change by repeating simple maneuvers called unit maneuvers. Provided with three types of unit maneuvers, each degree of freedom of the satellite can be controlled independently. Such construction requires only simple calculations, making it a practical algorithm for a nanosatellite with limited computational capability. In addition, power generation variation caused by maneuvers was analyzed to confirm that a maneuver from any initial attitude to an attitude facing the sun was justifiable in terms of the power budget.

  3. Aircraft Attitude Distributed Fault-tolerant Control Based on Dynamic Actuator

    Directory of Open Access Journals (Sweden)

    Zhou Hong-Cheng

    2014-09-01

    Full Text Available For attitude control system, based on decentralized fault-tolerant control framework, actuators damage and stuck fault detection and identification unit are designed for the flight control system. And observer-based auxiliary system unit is also designed. The auxiliary system implies control surface damage faults and disturbances information. Firstly, we give the attitude control system under actuator stuck, lose of effectiveness, and control surface damages faults. Secondly, a multi-observer is designed for actuator fault detection and identification using a decision-making mechanism to determine current actuator failure modes. Then, an adaptive sliding mode observer is designed for implicit control surface damages and interference information. The reconfigurable controller can achieve fault tolerant using the information of adaptive sliding mode observer. Finally, the simulation results show the effectiveness of the proposed method.

  4. Neural networks based three-axis satellite attitude control using only magnetic torquers

    International Nuclear Information System (INIS)

    Sivaprakash, N.; Shanmugam, J.; Natarajan, P.

    2005-01-01

    Full text: Magnetic control is a favorable way to stabilize small satellites. Often, the hardware is simple and lightweight, and does not degrade or change mass over time. However, a magnetic control system does have some disadvantages and limitations. The control, which is in the form of magnetic moment, can only be applied perpendicular to the local magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. To overcome these limitations some intelligence is incorporated in the controller. In this paper, control laws are developed to stabilize spacecraft on Three axes. The motivation for this project is ANUSAT, which is a micro-satellite under development at Anna University in collaboration with ISRO. This control could be carried out solely with satellite's magnetometer measurements and its position in orbit. The magnetic dipole moment for control is: M = K p (B o - B r ) + K d (dB o /dt - dB r /dt) Where B o is the measured magnetic field, B r is the reference magnetic field, and K p and K d are the control position and rate gains respectively. The value of the controller gains are selected by the Intelligent Neural Network System in the feedback path. Control laws are numerically tested to show that the magnetic control system works within resolution limits

  5. Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dong Hyeon; Chong, Kil To [Chon-bok National University, Jeonju (Korea, Republic of); Park, Jong Ho [Seonam University, Namwon (Korea, Republic of); Ryu, Ji Hyoung [ETRI, Daejeon (Korea, Republic of)

    2015-05-15

    This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications . We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

  6. Model predictive and reallocation problem for CubeSat fault recovery and attitude control

    Science.gov (United States)

    Franchi, Loris; Feruglio, Lorenzo; Mozzillo, Raffaele; Corpino, Sabrina

    2018-01-01

    In recent years, thanks to the increase of the know-how on machine-learning techniques and the advance of the computational capabilities of on-board processing, expensive computing algorithms, such as Model Predictive Control, have begun to spread in space applications even on small on-board processor. The paper presents an algorithm for an optimal fault recovery of a 3U CubeSat, developed in MathWorks Matlab & Simulink environment. This algorithm involves optimization techniques aiming at obtaining the optimal recovery solution, and involves a Model Predictive Control approach for the attitude control. The simulated system is a CubeSat in Low Earth Orbit: the attitude control is performed with three magnetic torquers and a single reaction wheel. The simulation neglects the errors in the attitude determination of the satellite, and focuses on the recovery approach and control method. The optimal recovery approach takes advantage of the properties of magnetic actuation, which gives the possibility of the redistribution of the control action when a fault occurs on a single magnetic torquer, even in absence of redundant actuators. In addition, the paper presents the results of the implementation of Model Predictive approach to control the attitude of the satellite.

  7. Spacecraft radiator systems

    Science.gov (United States)

    Anderson, Grant A. (Inventor)

    2012-01-01

    A spacecraft radiator system designed to provide structural support to the spacecraft. Structural support is provided by the geometric "crescent" form of the panels of the spacecraft radiator. This integration of radiator and structural support provides spacecraft with a semi-monocoque design.

  8. A tool to assess knowledge, attitude and behavior of Indonesian health care workers regarding infection control.

    Science.gov (United States)

    Duerink, D O; Hadi, U; Lestari, E S; Roeshadi, Djoko; Wahyono, Hendro; Nagelkerke, N J D; Van der Meulen, R G; Van den Broek, P J

    2013-07-01

    to investigate knowledge, attitude and behaviour toward infection control in two teaching hospitals on the island of Java by means of a questionnaire and to evaluate the use of the questionnaire as a tool. we investigated knowledge, attitude and behaviour toward infection control in two teaching hospitals on the island of Java by means of a questionnaire to identify problem areas, barriers and facilitators. The target was to include at least 50% of all health care workers (physicians, nurses, assistant nurses and infection control nurses) in each hospital, department and profession. Differences between demographic variables and scores for individual questions and groups of questions were compared using the chi-square statistic and analysis of variance and Spearman's rho was used to test for correlations between knowledge, attitude, self-reported behaviour and perceived obstacles. more than half of the health care workers of the participating departments completed the questionnaire. Of the 1036 respondents (44% nurses, 37% physicians and 19% assistant nurses), 34% were vaccinated against hepatitis B, 77% had experienced needle stick accidents and 93% had been instructed about infection control. The mean of the correct answers to the knowledge questions was 44%; of the answers to the attitude questions 67% were in agreement with the correct attitude; obstacles to compliance with infection control guidelines were perceived in 30% of the questions and the mean self-reported compliance was 63%. Safe handling of sharps, hand hygiene and the use of personal protective equipment were identified as the most important aspects for interventions. Significant positive correlations were found between knowledge, attitude, self-reported behaviour and perceived obstacles. the questionnaire in conjunction with site visits and interviews was a valuable strategy to identify trouble spots in the hospitals and to determine barriers to facilitators of change that should be taken into

  9. Attractive manifold-based adaptive solar attitude control of satellites in elliptic orbits

    Science.gov (United States)

    Lee, Keum W.; Singh, Sahjendra N.

    2011-01-01

    The paper presents a novel noncertainty-equivalent adaptive (NCEA) control system for the pitch attitude control of satellites in elliptic orbits using solar radiation pressure (SRP). The satellite is equipped with two identical solar flaps to produce control moments. The adaptive law is based on the attractive manifold design using filtered signals for synthesis, which is a modification of the immersion and invariance (I&I) method. The control system has a modular controller-estimator structure and has separate tunable gains. A special feature of this NCEA law is that the trajectories of the satellite converge to a manifold in an extended state space, and the adaptive law recovers the performance of a deterministic controller. This recovery of performance cannot be obtained with certainty-equivalent adaptive (CEA) laws. Simulation results are presented which show that the NCEA law accomplishes precise attitude control of the satellite in an elliptic orbit, despite large parameter uncertainties.

  10. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR- BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND...Sensor-Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 62601F 6. AUTHOR(S) Norman Fitz-Coy 5d. PROJECT NUMBER 4846 5e. TASK NUMBER PPM00015968 5f. WORK UNIT NUMBER EF125135 7. PERFORMING

  11. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    Science.gov (United States)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  12. Development of a hardware-in-loop attitude control simulator for a CubeSat satellite

    Science.gov (United States)

    Tapsawat, Wittawat; Sangpet, Teerawat; Kuntanapreeda, Suwat

    2018-01-01

    Attitude control is an important part in satellite on-orbit operation. It greatly affects the performance of satellites. Testing of an attitude determination and control subsystem (ADCS) is very challenging since it might require attitude dynamics and space environment in the orbit. This paper develops a low-cost hardware-in-loop (HIL) simulator for testing an ADCS of a CubeSat satellite. The simulator consists of a numerical simulation part, a hardware part, and a HIL interface hardware unit. The numerical simulation part includes orbital dynamics, attitude dynamics and Earth’s magnetic field. The hardware part is the real ADCS board of the satellite. The simulation part outputs satellite’s angular velocity and geomagnetic field information to the HIL interface hardware. Then, based on this information, the HIL interface hardware generates I2C signals mimicking the signals of the on-board rate-gyros and magnetometers and consequently outputs the signals to the ADCS board. The ADCS board reads the rate-gyro and magnetometer signals, calculates control signals, and drives the attitude actuators which are three magnetic torquers (MTQs). The responses of the MTQs sensed by a separated magnetometer are feedback to the numerical simulation part completing the HIL simulation loop. Experimental studies are conducted to demonstrate the feasibility and effectiveness of the simulator.

  13. Microsatellite Attitude Determination and Control Subsystem Design and Implementation: Software-in-the-Loop Approach

    Directory of Open Access Journals (Sweden)

    Ho-Nien Shou

    2014-01-01

    Full Text Available The paper describes the development of a microsatellite attitude determination and control subsystem (ADCS and verification of its functionality by software-in-the-loop (SIL method. The role of ADCS is to provide attitude control functions, including the de-tumbling and stabilizing the satellite angular velocity, and as well as estimating the orbit and attitude information during the satellite operation. In Taiwan, Air Force Institute of Technology (AFIT, dedicating for students to design experimental low earth orbit micro-satellite, called AFITsat. For AFITsat, the operation of the ADCS consists of three modes which are initialization mode, detumbling mode, and normal mode, respectively. During the initialization mode, ADCS collects the early orbit measurement data from various sensors so that the data can be downlinked to the ground station for further analysis. As particularly emphasized in this paper, during the detumbling mode, ADCS implements the thrusters in plus-wide modulation control method to decrease the satellite angular velocity. ADCS provides the attitude determination function for the estimation of the satellite state, during normal mode. The three modes of microsatellite adopted Kalman filter algorithm estimate microsatellite attitude. This paper will discuss using the SIL validation ADCS function and verify its feasibility.

  14. Operationally Responsive Spacecraft Subsystem, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Saber Astronautics proposes spacecraft subsystem control software which can autonomously reconfigure avionics for best performance during various mission conditions....

  15. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft...... of the laboratory is to conduct dynamic tests of the control and attitude determination algorithms during nominal operation and in abnormal conditions. Further it is intended to use SatLab for validation of various algorithms for fault detection, accommodation and supervisory control. Different mission objectives...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements...

  16. Spacecraft Thermal Management

    Science.gov (United States)

    Hurlbert, Kathryn Miller

    2009-01-01

    In the 21st century, the National Aeronautics and Space Administration (NASA), the Russian Federal Space Agency, the National Space Agency of Ukraine, the China National Space Administration, and many other organizations representing spacefaring nations shall continue or newly implement robust space programs. Additionally, business corporations are pursuing commercialization of space for enabling space tourism and capital business ventures. Future space missions are likely to include orbiting satellites, orbiting platforms, space stations, interplanetary vehicles, planetary surface missions, and planetary research probes. Many of these missions will include humans to conduct research for scientific and terrestrial benefits and for space tourism, and this century will therefore establish a permanent human presence beyond Earth s confines. Other missions will not include humans, but will be autonomous (e.g., satellites, robotic exploration), and will also serve to support the goals of exploring space and providing benefits to Earth s populace. This section focuses on thermal management systems for human space exploration, although the guiding principles can be applied to unmanned space vehicles as well. All spacecraft require a thermal management system to maintain a tolerable thermal environment for the spacecraft crew and/or equipment. The requirements for human rating and the specified controlled temperature range (approximately 275 K - 310 K) for crewed spacecraft are unique, and key design criteria stem from overall vehicle and operational/programatic considerations. These criteria include high reliability, low mass, minimal power requirements, low development and operational costs, and high confidence for mission success and safety. This section describes the four major subsystems for crewed spacecraft thermal management systems, and design considerations for each. Additionally, some examples of specialized or advanced thermal system technologies are presented

  17. Affectionless control by the same-sex parents increases dysfunctional attitudes about achievement.

    Science.gov (United States)

    Otani, Koichi; Suzuki, Akihito; Matsumoto, Yoshihiko; Sadahiro, Ryoichi; Enokido, Masanori

    2014-08-01

    The affectionless control parenting has been associated with depression in recipients. The aim of this study was to examine the effect of this parenting style on dysfunctional attitudes predisposing to depression. The subjects were 666 Japanese volunteers. Perceived parental rearing was evaluated by the Parental Bonding Instrument, which has the care and protection subscales. Parental rearing was classified into four types, i.e., optimal parenting (high care/low protection), affectionate constraint (high care/high protection), neglectful parenting (low care/low protection), and affectionless control (low care/high protection). Dysfunctional attitudes were evaluated by the 24-item Dysfunctional Attitude Scale, which has the achievement, dependency and self-control subscales. Males with paternal affectionless control had higher achievement scores than those with paternal optimal parenting (P=.016). Similarly, females with maternal affectionless control had higher achievement scores than those with maternal optimal parenting (P=.016). The present study suggests that affectionless control by the same-sex parents increases dysfunctional attitudes about achievement. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Finite-Time Reentry Attitude Control Using Time-Varying Sliding Mode and Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Xuzhong Wu

    2015-01-01

    Full Text Available This paper presents the finite-time attitude control problem for reentry vehicle with redundant actuators in consideration of planet uncertainties and external disturbances. Firstly, feedback linearization technique is used to cancel the nonlinearities of equations of motion to construct a basic mode for attitude controller. Secondly, two kinds of time-varying sliding mode control methods with disturbance observer are integrated with the basic mode in order to enhance the control performance and system robustness. One method is designed based on boundary layer technique and the other is a novel second-order sliding model control method. The finite-time stability analyses of both resultant closed-loop systems are carried out. Furthermore, after attitude controller produces the torque commands, an optimization control allocation approach is introduced to allocate them into aerodynamic surface deflections and on-off reaction control system thrusts. Finally, the numerical simulation results demonstrate that both of the time-varying sliding mode control methods are robust to uncertainties and disturbances without chattering phenomenon. Moreover, the proposed second-order sliding mode control method possesses better control accuracy.

  19. Implicit and explicit attitudes predict smoking cessation: moderating effects of experienced failure to control smoking and plans to quit.

    Science.gov (United States)

    Chassin, Laurie; Presson, Clark C; Sherman, Steven J; Seo, Dong-Chul; Macy, Jonathan T

    2010-12-01

    The current study tested implicit and explicit attitudes as prospective predictors of smoking cessation in a Midwestern community sample of smokers. Results showed that the effects of attitudes significantly varied with levels of experienced failure to control smoking and plans to quit. Explicit attitudes significantly predicted later cessation among those with low (but not high or average) levels of experienced failure to control smoking. Conversely, however, implicit attitudes significantly predicted later cessation among those with high levels of experienced failure to control smoking, but only if they had a plan to quit. Because smoking cessation involves both controlled and automatic processes, interventions may need to consider attitude change interventions that focus on both implicit and explicit attitudes. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  20. Novel approach to improve the attitude update rate of a star tracker.

    Science.gov (United States)

    Zhang, Shuo; Xing, Fei; Sun, Ting; You, Zheng; Wei, Minsong

    2018-03-05

    The star tracker is widely used in attitude control systems of spacecraft for attitude measurement. The attitude update rate of a star tracker is important to guarantee the attitude control performance. In this paper, we propose a novel approach to improve the attitude update rate of a star tracker. The electronic Rolling Shutter (RS) imaging mode of the complementary metal-oxide semiconductor (CMOS) image sensor in the star tracker is applied to acquire star images in which the star spots are exposed with row-to-row time offsets, thereby reflecting the rotation of star tracker at different times. The attitude estimation method with a single star spot is developed to realize the multiple attitude updates by a star image, so as to reach a high update rate. The simulation and experiment are performed to verify the proposed approaches. The test results demonstrate that the proposed approach is effective and the attitude update rate of a star tracker is increased significantly.

  1. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents' Risky Sexual Behavior.

    Science.gov (United States)

    Oudekerk, Barbara A; Allen, Joseph P; Hafen, Christopher A; Hessel, Elenda T; Szwedo, David E; Spilker, Ann

    2014-05-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual behavior. Peer acceptance of early sex predicted greater risky sexual behaviors, but only for teens whose mothers engaged in high levels of psychological control. Paternal psychological control demonstrated the same moderating effect for girls; for boys, however, high levels of paternal control predicted risky sex regardless of peer attitudes. Results are consistent with the theory that peer influences do not replace parental influences with regard to adolescent sexual behavior; rather, parental practices continue to serve an important role either directly forecasting sexual behavior or moderating the link between peer attitudes and sexual behavior.

  2. Maternal and Paternal Psychological Control as Moderators of the Link between Peer Attitudes and Adolescents’ Risky Sexual Behavior

    Science.gov (United States)

    Oudekerk, Barbara A.; Allen, Joseph P.; Hafen, Christopher A.; Hessel, Elenda T.; Szwedo, David E.; Spilker, Ann

    2013-01-01

    Maternal and paternal psychological control, peer attitudes, and the interaction of psychological control and peer attitudes at age 13 were examined as predictors of risky sexual behavior before age 16 in a community sample of 181 youth followed from age 13 to 16. Maternal psychological control moderated the link between peer attitudes and sexual behavior. Peer acceptance of early sex predicted greater risky sexual behaviors, but only for teens whose mothers engaged in high levels of psychological control. Paternal psychological control demonstrated the same moderating effect for girls; for boys, however, high levels of paternal control predicted risky sex regardless of peer attitudes. Results are consistent with the theory that peer influences do not replace parental influences with regard to adolescent sexual behavior; rather, parental practices continue to serve an important role either directly forecasting sexual behavior or moderating the link between peer attitudes and sexual behavior. PMID:25328265

  3. Study of the mode of angular velocity damping for a spacecraft at non-standard situation

    Science.gov (United States)

    Davydov, A. A.; Sazonov, V. V.

    2012-07-01

    Non-standard situation on a spacecraft (Earth's satellite) is considered, when there are no measurements of the spacecraft's angular velocity component relative to one of its body axes. Angular velocity measurements are used in controlling spacecraft's attitude motion by means of flywheels. The arising problem is to study the operation of standard control algorithms in the absence of some necessary measurements. In this work this problem is solved for the algorithm ensuring the damping of spacecraft's angular velocity. Such a damping is shown to be possible not for all initial conditions of motion. In the general case one of two possible final modes is realized, each described by stable steady-state solutions of the equations of motion. In one of them, the spacecraft's angular velocity component relative to the axis, for which the measurements are absent, is nonzero. The estimates of the regions of attraction are obtained for these steady-state solutions by numerical calculations. A simple technique is suggested that allows one to eliminate the initial conditions of the angular velocity damping mode from the attraction region of an undesirable solution. Several realizations of this mode that have taken place are reconstructed. This reconstruction was carried out using approximations of telemetry values of the angular velocity components and the total angular momentum of flywheels, obtained at the non-standard situation, by solutions of the equations of spacecraft's rotational motion.

  4. Spacecraft rendezvous and docking

    DEFF Research Database (Denmark)

    Jørgensen, John Leif

    1999-01-01

    The phenomenons and problems encountered when a rendezvous manoeuvre, and possible docking, of two spacecrafts has to be performed, have been the topic for numerous studies, and, details of a variety of scenarios has been analysed. So far, all solutions that has been brought into realization has...... been based entirely on direct human supervision and control. This paper describes a vision-based system and methodology, that autonomously generates accurate guidance information that may assist a human operator in performing the tasks associated with both the rendezvous and docking navigation...

  5. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    Science.gov (United States)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  6. A comparison of dysfunctional attitudes in substance abusers and control group and its psychological outcome

    Directory of Open Access Journals (Sweden)

    2008-11-01

    This research was carried out to assess the role of dysfunctional attitudes, outcomes of psychology in substance abuse behaviors of subject were referred to addiction treatment center in the city of Bandar Abbas, and to compare the with the control group. Methods: This is a retrospective study in which 100 subject substance abusers were compared with 100 subject s of control group who were selected using convenience sampling and were also demographically matched. Data were gathered using a demographic questionnaire, clinical interview, dysfunctional attitudes scale (DAS, Depression Anxiety Stress Scale (DASS. The data were analyzed via descriptive statistic method, T- Test and chi-square and variance analysis. Findings: Findings indicated that in comparison with control group, subject of substance abusers had experienced more stress, anxiety, depression, had shown a cognitively more percent of them dysfunctional attitudes in comparison with control group. Results: The results suggested that the dysfunctional attitudes could be as a Vulnerability Factor that increase abuse of substance consequently use of cognitive therapy could be helpful and effective in prevention and treatment of the addicts.

  7. The Attitudes & Beliefs on Classroom Control Inventory-Revised and Revisited: A Continuation of Construct Validation

    Science.gov (United States)

    Martin, Nancy K.; Yin, Zenong; Mayall, Hayley

    2008-01-01

    The purpose of this study was to report the psychometric properties of the revised Attitudes and Beliefs of Classroom Control Inventory (ABCC-R). Data were collected from 489 participants via the ABCC-R, Teacher Efficacy Scale, Problems in School Questionnaire, and a demographic questionnaire. Results were in keeping with the construct. The…

  8. Solar Anomalous and Magnetospheric Particle Explorer attitude control electronics box design and performance

    Science.gov (United States)

    Chamberlin, K.; Clagett, C.; Correll, T.; Gruner, T.; Quinn, T.; Shiflett, L.; Schnurr, R.; Wennersten, M.; Frederick, M.; Fox, S. M.

    1993-01-01

    The attitude Control Electronics (ACE) Box is the center of the Attitude Control Subsystem (ACS) for the Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) satellite. This unit is the single point interface for all of the Attitude Control Subsystem (ACS) related sensors and actuators. Commands and telemetry between the SAMPEX flight computer and the ACE Box are routed via a MIL-STD-1773 bus interface, through the use of an 80C85 processor. The ACE Box consists of the flowing electronic elements: power supply, momentum wheel driver, electromagnet driver, coarse sun sensor interface, digital sun sensor interface, magnetometer interface, and satellite computer interface. In addition, the ACE Box also contains an independent Safehold electronics package capable of keeping the satellite pitch axis pointing towards the sun. The ACE Box has dimensions of 24 x 31 x 8 cm, a mass of 4.3 kg, and an average power consumption of 10.5 W. This set of electronics was completely designed, developed, integrated, and tested by personnel at NASA GSFC. SAMPEX was launched on July 3, 1992, and the initial attitude acquisition was successfully accomplished via the analog Safehold electronics in the ACE Box. This acquisition scenario removed the excess body rates via magnetic control and precessed the satellite pitch axis to within 10 deg of the sun line. The performance of the SAMPEX ACS in general and the ACE Box in particular has been quite satisfactory.

  9. Passivity Based Nonlinear Attitude Control of the Rømer Satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    2001-01-01

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...

  10. Knowledge and attitudes of infection prevention and control among ...

    African Journals Online (AJOL)

    EB

    infection prevention and control is imparted early before they are introduced to the wards. ... professional nurses in Namibia instead of depending .... Table 3: ANOVA results for overall IPC Knowledge Score for gender, student area, high ...

  11. Adaptive compensation control for attitude adjustment of quad-rotor unmanned aerial vehicle.

    Science.gov (United States)

    Song, Zhankui; Sun, Kaibiao

    2017-07-01

    A compensation control strategy based on adaptive back-stepping technique is presented to address the problem of attitude adjustment for a quad-rotor unmanned aerial vehicle (QR- UAV) with inertia parameter uncertainties, the limited airflow disturbance and the partial loss of rotation speed effectiveness. In the design process of control system, adaptive estimation technique is introduced into the closed loop system in order to compensate the lumped disturbance term. More specifically, the designed controller utilizes "prescribed performance bounds" method, and therefore guarantees the transient performance of tracking errors, even in the presence of the lumped disturbance. Adaptive compensation algorithms under the proposed closed loop system structure are derived in the sense of Lyapunov stability analysis such that the attitude tracking error converge to a small neighborhood of equilibrium point. Finally, the simulation results demonstrate the effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Knowledge, attitude and practices about hepatitis B and Infection Control Measures among dental students in Patiala

    Directory of Open Access Journals (Sweden)

    Vishal Malhotra

    2017-01-01

    Full Text Available Background: Hepatitis B is highly infectious, but preventable diseases and dentists are at increased risk of exposure to saliva and blood of patients during their clinical practice, and so it is of utmost importance that they follow standard guidelines for infection control. Aims: To assess knowledge, attitude, and practices regarding infection control measures among dental students of Government Dental College in Punjab. Materials and Methods: A cross-sectional survey using a self-administered pretested questionnaire to dental students and responses were statistically analyzed. The analysis of variance was used to compare means of knowledge, attitude, and practice scores between four groups of study subjects and P < 0.05 is considered statistically significant. Results: Although the students have sufficient knowledge regarding hepatitis B, still there are gaps in putting their knowledge into practice. Third and final year students have significantly less mean knowledge and practice scores compared to interns and postgraduate students. The majority of students have a positive attitude and were willing to perform any procedure on hepatitis B-infected patients. Conclusions: Dental students have adequate knowledge and good attitude but still there are some misconceptions. There is poor implementation of standard infection control measures in their practice. Rigorous training programs on preventive practices and regular workshops must be organized on an annual basis in dental colleges. Moreover, hepatitis B vaccination must be made mandatory for students before they start their clinical practice.

  13. A Comparative Study of Actuator Configurations for Satellite Attitude Control

    Directory of Open Access Journals (Sweden)

    Raymond Kristiansen

    2005-10-01

    Full Text Available In this paper a controllability study of different actuator configurations consisting of magnetic torquers, reaction wheels and a gravity boom is presented. The theoretical analysis is performed with use of controllability gramians, and simulation results with the different configurations are presented and compared regarding settling time and power consumption to substantiate the theoretical analysis. A reference model is also introduced to show how the power consumption can he lowered to the same magnitude as when magnetic torquers are used, without degrading the satellite response significantly.

  14. knowledge, attitude and control practices of sickle cell disease

    African Journals Online (AJOL)

    2009-04-01

    Apr 1, 2009 ... psychological, financial and social burden on patients, their care-givers and society at large. Furthermore, there are very few centres with facilities for prenatal diagnosis in Nigeria.24 Suffice to say that current control measures of sickle cell disease in Nigeria are palpably meager in the face of the enormous ...

  15. Knowledge, attitude, and infection control practices of two tertiary ...

    African Journals Online (AJOL)

    2014-04-02

    Apr 2, 2014 ... This study assessed the effects of the implementation of the policy in a tertiary hospital in Port Harcourt, ... malpractice suit in developing countries, not only for the ... Infection control policy has however been shown to reduce the burden of ..... SSIs‑activities that mirror the plan‑do‑check‑act that is applied in ...

  16. Smoking Prevalence and Attitudes Regarding its Control Among ...

    African Journals Online (AJOL)

    of health professionals to provide patient counseling, some of which are; time .... is usually obtained from friends and family members and smoking can be viewed as rite .... The health consequences of smoking: Nicotine addiction: A report of the ... Centers for Disease Control and Prevention (CDC). Cigarette smoking ...

  17. Knowledge, Attitude and Performance of Shiraz General Dentists about Infection Control Principles during Preparing Intraoral Radiographies

    Directory of Open Access Journals (Sweden)

    Abdolaziz Hagh Negahdar

    2017-02-01

    Full Text Available Background & Objective: Infection control in dental centers is affected by the persons’ attitude and knowledge about mechanisms of infection transmission. This study was designed to evaluate the knowledge and the attitude of Shiraz dentists about infection control during intraoral radiographies preparation. Materials & Methods: In this cross-sectional, and analytical research, the attitude and the knowledge of 45 male and 25 female, randomly selected dentists, were obtained through completion of a researcher- planed questioner which its validity and reliability had been confirmed. Data were analyzed using Cronbach`s alpha, one-way ANOVA, student’s t-test, and Pearson’s correlation coefficient in SPSS (V.21. Results: The average of the dentists’ age was 40.59±10.72 and their average occupational experience was 13.49±9.75 years. The mean score obtained for knowledge about infection control during intraoral radiographic procedures was less than fifty percent of total obtainable score, and was assessed as weak knowledge. There was no significant difference in the level of knowledge between studied male and female dentists (P>0.05. In addition, no significant relationship was detected between level, age/experience, and the university of education (P>0.05. The attitude of the dentists about infection control during intraoral radiography preparation assessed as moderate to good level. Conclusions: The results showed that the main reason for the present problems is insufficient knowledge of the dentists in related subjects. Therefore, the solution, which is recommended among dentists, is to raise their awareness and to change their attitudes and culture in order to improve their performance.

  18. Satellite Control Laboratory

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Bak, Thomas

    2001-01-01

    The Satellite Laboratory at the Department of Control Engineering of Aalborg University (SatLab) is a dynamic motion facility designed for analysis and test of micro spacecraft. A unique feature of the laboratory is that it provides a completely gravity-free environment. A test spacecraft......-axis magnetometer, three piezoelectric gyros, and four reaction wheels in a tetrahedron configuration. The operation of the spacecraft is fully autonomous. The data flow between the transducers and the onboard computer placed physically outside the satellite is provided by a radio link. The purpose...... can be implemented in the laboratory, e.g. three-axis attitude control, slew manoeuvres, spins stabilization using magnetic actuation and/or reaction wheels. The spacecraft attitude can be determined applying magnetometer measurements....

  19. Solar particle induced upsets in the TDRS-1 attitude control system RAM during the October 1989 solar particle events

    International Nuclear Information System (INIS)

    Croley, D.R.; Garrett, H.B.; Murphy, G.B.; Garrard, T.L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU's. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU's, very close to the 243 observed SEU's

  20. Solar Particle Induced Upsets in the TDRS-1 Attitude Control System RAM During the October 1989 Solar Particle Events

    Science.gov (United States)

    Croley, D. R.; Garrett, H. B.; Murphy, G. B.; Garrard,T. L.

    1995-01-01

    The three large solar particle events, beginning on October 19, 1989 and lasting approximately six days, were characterized by high fluences of solar protons and heavy ions at 1 AU. During these events, an abnormally large number of upsets (243) were observed in the random access memory of the attitude control system (ACS) control processing electronics (CPE) on-board the geosynchronous TDRS-1 (Telemetry and Data Relay Satellite). The RAM unit affected was composed of eight Fairchild 93L422 memory chips. The Galileo spacecraft, launched on October 18, 1989 (one day prior to the solar particle events) observed the fluxes of heavy ions experienced by TDRS-1. Two solid-state detector telescopes on-board Galileo, designed to measure heavy ion species and energy, were turned on during time periods within each of the three separate events. The heavy ion data have been modeled and the time history of the events reconstructed to estimate heavy ion fluences. These fluences were converted to effective LET spectra after transport through the estimated shielding distribution around the TDRS-1 ACS system. The number of single event upsets (SEU) expected was calculated by integrating the measured cross section for the Fairchild 93L422 memory chip with average effective LET spectrum. The expected number of heavy ion induced SEU's calculated was 176. GOES-7 proton data, observed during the solar particle events, were used to estimate the number of proton-induced SEU's by integrating the proton fluence spectrum incident on the memory chips, with the two-parameter Bendel cross section for proton SEU'S. The proton fluence spectrum at the device level was gotten by transporting the protons through the estimated shielding distribution. The number of calculated proton-induced SEU's was 72, yielding a total of 248 predicted SEU'S, very dose to the 243 observed SEU'S. These calculations uniquely demonstrate the roles that solar heavy ions and protons played in the production of SEU

  1. Direct Self-Repairing Control for Quadrotor Helicopter Attitude Systems

    Directory of Open Access Journals (Sweden)

    Huiliao Yang

    2014-01-01

    Full Text Available A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally, the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of LQR through simulation.

  2. Industry perspectives on Plug-& -Play Spacecraft Avionics

    Science.gov (United States)

    Franck, R.; Graven, P.; Liptak, L.

    This paper describes the methodologies and findings from an industry survey of awareness and utility of Spacecraft Plug-& -Play Avionics (SPA). The survey was conducted via interviews, in-person and teleconference, with spacecraft prime contractors and suppliers. It focuses primarily on AFRL's SPA technology development activities but also explores the broader applicability and utility of Plug-& -Play (PnP) architectures for spacecraft. Interviews include large and small suppliers as well as large and small spacecraft prime contractors. Through these “ product marketing” interviews, awareness and attitudes can be assessed, key technical and market barriers can be identified, and opportunities for improvement can be uncovered. Although this effort focuses on a high-level assessment, similar processes can be used to develop business cases and economic models which may be necessary to support investment decisions.

  3. Information Fusion-Based Optimal Attitude Control for an Alterable Thrust Direction Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Ziyang Zhen

    2013-01-01

    Full Text Available Attitude control is the inner-loop and the most important part of the automatic flight control system of an unmanned aerial vehicle (UAV. The information fusion-based optimal control method is applied in a UAV flight control system in this work. Firstly, a nonlinear model of alterable thrust direction UAV (ATD-UAV is established and linearized for controller design. The longitudinal controller and lateral controller are respectively designed based on information fusion-based optimal control, and then the information fusion flight control system is built up. Finally, the simulation of a nonlinear model described as ATD-UAV is carried out, the results of which show the superiority of the information fusion-based control strategy when compared to the single-loop design method. We also show that the ATD technique improves the anti-disturbance capacity of the UAV.

  4. Magnetic dipole moment estimation and compensation for an accurate attitude control in nano-satellite missions

    Science.gov (United States)

    Inamori, Takaya; Sako, Nobutada; Nakasuka, Shinichi

    2011-06-01

    Nano-satellites provide space access to broader range of satellite developers and attract interests as an application of the space developments. These days several new nano-satellite missions are proposed with sophisticated objectives such as remote-sensing and observation of astronomical objects. In these advanced missions, some nano-satellites must meet strict attitude requirements for obtaining scientific data or images. For LEO nano-satellite, a magnetic attitude disturbance dominates over other environmental disturbances as a result of small moment of inertia, and this effect should be cancelled for a precise attitude control. This research focuses on how to cancel the magnetic disturbance in orbit. This paper presents a unique method to estimate and compensate the residual magnetic moment, which interacts with the geomagnetic field and causes the magnetic disturbance. An extended Kalman filter is used to estimate the magnetic disturbance. For more practical considerations of the magnetic disturbance compensation, this method has been examined in the PRISM (Pico-satellite for Remote-sensing and Innovative Space Missions). This method will be also used for a nano-astrometry satellite mission. This paper concludes that use of the magnetic disturbance estimation and compensation are useful for nano-satellites missions which require a high accurate attitude control.

  5. Linear Time Varying Approach to Satellite Attitude Control Using only Electromagnetic Actuation

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    1997-01-01

    , lightweight, and power efficient actuators is therefore crucial and viable. This paper discusses linear attitude control strategies for a low earth orbit satellite actuated by a set of mutually perpendicular electromagnetic coils. The principle is to use the interaction between the Earth's magnetic field...... systems is limited, nevertheless, a solution of the Riccati equation gives an excellent frame for investigations provided in this paper. An observation that geomagnetic field changes approximately periodically when a satellite is on a near polar orbit is used throughout this paper. Three types of attitude...... controllers are proposed: an infinite horizon, a finite horizon, and a constant gain controller. Their performance is evaluated and compared in the simulation study of the realistic environment....

  6. Design development of the Apollo command and service module thrust vector attitude control systems

    Science.gov (United States)

    Peters, W. H.

    1978-01-01

    Development of the Apollo thrust vector control digital autopilot (TVC DAP) was summarized. This is the control system that provided pitch and yaw attitude control during velocity change maneuvers using the main rocket engine on the Apollo service module. A list of ten primary functional requirements for this control system are presented, each being subordinate to a more general requirement appearing earlier on the list. Development process functions were then identified and the essential information flow paths were explored. This provided some visibility into the particular NASA/contractor interface, as well as relationships between the many individual activities.

  7. Public attitudes towards smoking and tobacco control policy in Russia.

    Science.gov (United States)

    Danishevski, K; Gilmore, A; McKee, M

    2008-08-01

    Since the political transition in 1991, Russia has been targeted intensively by the transnational tobacco industry. Already high smoking rates among men have increased further; traditionally low rates among women have more than doubled. The tobacco companies have so far faced little opposition as they shape the discourse on smoking in Russia. This paper asks what ordinary Russians really think about possible actions to reduce smoking. A representative sample of the Russian population (1600 respondents) was interviewed face to face in November 2007. Only 14% of respondents considered tobacco control in Russia adequate, while 37% thought that nothing was being done at all. There was support for prices keeping pace with or even exceeding inflation. Over 70% of all respondents favoured a ban on sales from street kiosks, while 56% believed that existing health warnings (currently 4% of front and back of packs) were inadequate. The current policy of designating a few tables in bars and restaurants as non-smoking was supported by less than 10% of respondents, while almost a third supported a total ban, with 44% supporting provision of equal space for smokers and non-smokers. Older age, non-smoking status and living in a smaller town all emerged as significantly associated with the propensity to support antismoking measures. The tobacco companies were generally viewed as behaving like most other companies in Russia, with three-quarters of respondents believing that these companies definitely or maybe bribe politicians. Knowledge of impact of smoking on health was limited with significant underestimation of dangers and addictive qualities of tobacco. A third believed that light cigarettes are safer than normal cigarettes. The majority of the Russian population would support considerable strengthening of tobacco control policies but there is also a need for effective public education campaigns.

  8. Public attitudes towards smoking and tobacco control policy in Russia

    Science.gov (United States)

    Danishevski, Kirill; Gilmore, Anna; McKee, Martin

    2014-01-01

    Background Since the political transition in 1991, Russia has been targeted intensively by the transnational tobacco industry. Already high smoking rates among men have increased further; traditionally low rates among women have more than doubled. The tobacco companies have so far faced little opposition as they shape the discourse on smoking in Russia. This paper asks what ordinary Russians really think about possible actions to reduce smoking. Methods A representative sample of the Russian population (1600 respondents) was interviewed face-to-face in November 2007. Results Only 14% of respondents considered tobacco control in Russia adequate, while 37% felt that nothing was being done at all. There was support for prices keeping pace with or even exceeding inflation. Over 70% of all respondents favoured a ban on sales from street kiosks, while 56% believed that existing health warnings (currently 4% of front and back of packs) were inadequate. The current policy of designating a few tables in bars and restaurants as non-smoking was supported by less than 10% of respondents, while almost a third supported a total ban, with 44% supporting provision of equal space for smokers and non-smokers. Older age, non-smoking status and living a smaller town all emerged as significantly associated with the propensity to support of antismoking measures. The tobacco companies were generally viewed as behaving like most other companies in Russia, with three-quarters believing that they definitely or maybe bribe politicians. Knowledge of impact of smoking on health was limited with significant underestimation of dangers and addictive qualities of tobacco. A third believed that light cigarettes are safer than normal. Conclusion The majority of the Russian population would support considerable strengthening of tobacco control policies but there is also a need for effective public education campaigns. PMID:18653793

  9. Health care workers' knowledge, attitudes and practices on tuberculosis infection control, Nepal.

    Science.gov (United States)

    Shrestha, Anita; Bhattarai, Dipesh; Thapa, Barsha; Basel, Prem; Wagle, Rajendra Raj

    2017-11-17

    Infection control remains a key challenge for Tuberculosis (TB) control program with an increased risk of TB transmission among health care workers (HCWs), especially in settings with inadequate TB infection control measures. Poor knowledge among HCWs and inadequate infection control practices may lead to the increased risk of nosocomial TB transmission. An institution-based cross-sectional survey was conducted in 28 health facilities providing TB services in the Kathmandu Valley, Nepal. A total of 190 HCWs were assessed for the knowledge, attitudes and practices on TB infection control using a structured questionnaire. The level of knowledge on TB infection control among almost half (45.8%) of the HCWs was poor, and was much poorer among administration and lower level staff. The knowledge level was significantly associated with educational status, and TB training and/or orientation received. The majority (73.2%) of HCWs had positive attitude towards TB infection control. Sixty-five percent of HCWs were found to be concerned about being infected with TB. Use of respirators among the HCWs was limited and triage of TB suspects was also lacking. Overall knowledge and practices of HCWs on TB infection control were not satisfactory. Effective infection control measures including regular skill-based training and/or orientation for all categories of HCWs can improve infection control practices in health facilities.

  10. Pressure-Fed LOX/LCH4 Reaction Control System for Spacecraft: Transient Modeling and Thermal Vacuum Hotfire Test Results

    Science.gov (United States)

    Atwell, Matthew J.; Hurlbert, Eric A.; Melcher, J. C.; Morehead, Robert L.

    2017-01-01

    An integrated cryogenic liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA), a pressure-fed LOX/LCH4 propulsion system composed of a single 2,800 lbf main engine, two 28 lbf RCS engines, and two 7 lbf RCS engines. Propellants are stored in four 48 inch diameter 5083 aluminum tanks that feed both the main engine and RCS engines in parallel. Helium stored cryogenically in a composite overwrapped pressure vessel (COPV) flows through a heat exchanger on the main engine before being used to pressurize the propellant tanks to a design operating pressure of 325 psi. The ICPTA is capable of simultaneous main engine and RCS operation. The RCS engines utilize a coil-on-plug (COP) ignition system designed for operation in a vacuum environment, eliminating corona discharge issues associated with a high voltage lead. There are two RCS pods on the ICPTA, with two engines on each pod. One of these two engines is a heritage flight engine from Project Morpheus. Its sea level nozzle was removed and replaced by an 85:1 nozzle machined using Inconel 718, resulting in a maximum thrust of 28 lbf under altitude conditions. The other engine is a scaled down version of the 28 lbf engine, designed to match the core and overall mixture ratios as well as other injector characteristics. This engine can produce a maximum thrust of 7 lbf with an 85:1 nozzle that was additively manufactured using Inconel 718. Both engines are film-cooled and capable of limited duration gas-gas and gas-liquid operation, as well as steady-state liquid-liquid operation. Each pod contains one of each version, such that two engines of the same thrust level can be fired as a couple on opposite pods. The RCS feed system is composed of symmetrical 3/8 inch lines

  11. Some optimal considerations in attitude control systems. [evaluation of value of relative weighting between time and fuel for relay control law

    Science.gov (United States)

    Boland, J. S., III

    1973-01-01

    The conventional six-engine reaction control jet relay attitude control law with deadband is shown to be a good linear approximation to a weighted time-fuel optimal control law. Techniques for evaluating the value of the relative weighting between time and fuel for a particular relay control law is studied along with techniques to interrelate other parameters for the two control laws. Vehicle attitude control laws employing control moment gyros are then investigated. Steering laws obtained from the expression for the reaction torque of the gyro configuration are compared to a total optimal attitude control law that is derived from optimal linear regulator theory. This total optimal attitude control law has computational disadvantages in the solving of the matrix Riccati equation. Several computational algorithms for solving the matrix Riccati equation are investigated with respect to accuracy, computational storage requirements, and computational speed.

  12. Inertial attitude control of a bat-like morphing-wing air vehicle

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-01-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (φ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F net ) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms −1 . (paper)

  13. Inertial attitude control of a bat-like morphing-wing air vehicle.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Parra, C

    2013-03-01

    This paper presents a novel bat-like unmanned aerial vehicle inspired by the morphing-wing mechanism of bats. The goal of this paper is twofold. Firstly, a modelling framework is introduced for analysing how the robot should manoeuvre by means of changing wing morphology. This allows the definition of requirements for achieving forward and turning flight according to the kinematics of the wing modulation. Secondly, an attitude controller named backstepping+DAF is proposed. Motivated by biological evidence about the influence of wing inertia on the production of body accelerations, the attitude control law incorporates wing inertia information to produce desired roll (ϕ) and pitch (θ) acceleration commands (desired angular acceleration function (DAF)). This novel control approach is aimed at incrementing net body forces (F(net)) that generate propulsion. Simulations and wind-tunnel experimental results have shown an increase of about 23% in net body force production during the wingbeat cycle when the wings are modulated using the DAF as a part of the backstepping control law. Results also confirm accurate attitude tracking in spite of high external disturbances generated by aerodynamic loads at airspeeds up to 5 ms⁻¹.

  14. Real-Time Attitude Control Algorithm for Fast Tumbling Objects under Torque Constraint

    Science.gov (United States)

    Tsuda, Yuichi; Nakasuka, Shinichi

    This paper describes a new control algorithm for achieving any arbitrary attitude and angular velocity states of a rigid body, even fast and complicated tumbling rotations, under some practical constraints. This technique is expected to be applied for the attitude motion synchronization to capture a non-cooperative, tumbling object in such missions as removal of debris from orbit, servicing broken-down satellites for repairing or inspection, rescue of manned vehicles, etc. For this objective, we have introduced a novel control algorithm called Free Motion Path Method (FMPM) in the previous paper, which was formulated as an open-loop controller. The next step of this consecutive work is to derive a closed-loop FMPM controller, and as the preliminary step toward the objective, this paper attempts to derive a conservative state variables representation of a rigid body dynamics. 6-Dimensional conservative state variables are introduced in place of general angular velocity-attitude angle representation, and how to convert between both representations are shown in this paper.

  15. The Connection between Environmental Attitude-Behavior Gap and Other Individual Inconsistencies: A Call for Strengthening Self-Control

    Science.gov (United States)

    Redondo, Ignacio; Puelles, María

    2017-01-01

    What is going on with environmental education, which is currently unable to promote pro-environmental behaviors as effectively as it promotes pro-environmental attitudes? A tentative answer is that the environmental attitude-behavior gap observed in some individuals is just one manifestation of their lack of self-control for maintaining…

  16. On-orbit assembly of a team of flexible spacecraft using potential field based method

    Science.gov (United States)

    Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping

    2017-04-01

    In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.

  17. Impact and change of attitudes toward Internet interventions within a randomized controlled trial on individuals with depression symptoms.

    Science.gov (United States)

    Schröder, Johanna; Berger, Thomas; Meyer, Björn; Lutz, Wolfgang; Späth, Christina; Michel, Pia; Rose, Matthias; Hautzinger, Martin; Hohagen, Fritz; Klein, Jan Philipp; Moritz, Steffen

    2018-05-01

    Most individuals with depression do not receive adequate treatment. Internet interventions may help to bridge this gap. Research on attitudes toward Internet interventions might facilitate the dissemination of such interventions by identifying factors that help or hinder uptake and implementation, and by clarifying who is likely to benefit. This study examined whether attitudes toward Internet interventions moderate the effects of a depression-focused Internet intervention, and how attitudes change over the course of treatment among those who do or do not benefit. We recruited 1,004 adults with mild-to-moderate depression symptoms and investigated how attitudes toward Internet interventions are associated with the efficacy of the program deprexis, and how attitudes in the intervention group change from pre to post over a 3 months intervention period, compared to a control group (care as usual). This study consists of a subgroup analysis of the randomized controlled EVIDENT trial. Positive initial attitudes toward Internet interventions were associated with greater efficacy (η 2 p  = .014) independent of usage time, whereas a negative attitude (perceived lack of personal contact) was associated with reduced efficacy (η 2 p  = .012). Users' attitudes changed during the trial, and both the magnitude and direction of attitude change were associated with the efficacy of the program over time (η 2 p  = .030). Internet interventions may be the most beneficial for individuals with positive attitudes toward them. Informing potential users about evidence-based Internet interventions might instill positive attitudes and thereby optimize the benefits such interventions can provide. Assessing attitudes prior to treatment might help identify suitable users. © 2018 Wiley Periodicals, Inc.

  18. Attitudes towards smoking and tobacco control among pre-clinical medical students in Malaysia.

    Science.gov (United States)

    Tee, G H; Hairi, N N; Hairi, F

    2012-08-01

    Physicians should play a leading role in combatting smoking; information on attitudes of future physicians towards tobacco control measures in a middle-income developing country is limited. Of 310 future physicians surveyed in a medical school in Malaysia, 50% disagreed that it was a doctor's duty to advise smokers to stop smoking; 76.8% agreed that physicians should not smoke before advising others not to smoke; and 75% agreed to the ideas of restricting the sale of cigarettes to minors, making all public places smoke-free and banning advertising of tobacco-related merchandise. Future physicians had positive attitudes towards tobacco regulations but had not grasped their responsibilities in tobacco control measures.

  19. Attitudes to Gun Control in an American Twin Sample: Sex Differences in the Causes of Variation.

    Science.gov (United States)

    Eaves, Lindon J; Silberg, Judy L

    2017-10-01

    The genetic and social causes of individual differences in attitudes to gun control are estimated in a sample of senior male and female twin pairs in the United States. Genetic and environmental parameters were estimated by weighted least squares applied to polychoric correlations for monozygotic (MZ) and dizygotic (DZ) twins of both sexes. The analysis suggests twin similarity for attitudes to gun control in men is entirely genetic while that in women is purely social. Although the volunteer sample is small, the analysis illustrates how the well-tested concepts and methods of genetic epidemiology may be a fertile resource for deepening our scientific understanding of biological and social pathways that affect individual risk to gun violence.

  20. Analysis of Pan-European attitudes to the eradication and control of bovine viral diarrhoea.

    Science.gov (United States)

    Heffernan, C; Misturelli, F; Nielsen, L; Gunn, G J; Yu, J

    2009-02-07

    At present, national-level policies concerning the eradication and control of bovine viral diarrhoea (BVD) differ widely across Europe. Some Scandinavian countries have enacted strong regulatory frameworks to eradicate the disease, whereas other countries have few formal policies. To examine these differences, the attitudes of stakeholders and policy makers in 17 European countries were investigated. A web-based questionnaire was sent to policy makers, government and private sector veterinarians, and representatives of farmers' organisations. In total, 131 individuals responded to the questionnaire and their responses were analysed by applying a method used in sociolinguistics: frame analysis. The results showed that the different attitudes of countries that applied compulsory or voluntary frameworks were associated with different views about the attribution or blame for BVD and the roles ascribed to farmers and other stakeholders in its eradication and control.

  1. Modifying attitude and intention toward regular physical activity using protection motivation theory: a randomized controlled trial.

    Science.gov (United States)

    Mirkarimi, Kamal; Eri, Maryam; Ghanbari, Mohammad R; Kabir, Mohammad J; Raeisi, Mojtaba; Ozouni-Davaji, Rahman B; Aryaie, Mohammad; Charkazi, Abdurrahman

    2017-10-30

    We were guided by the Protection Motivation Theory to test the motivational interviewing effects on attitude and intention of obese and overweight women to do regular physical activity. In a randomized controlled trial, we selected using convenience sampling 60 overweight and obese women attending health centres. The women were allocated to 2 groups of 30 receiving a standard weight-control programme or motivational interviewing. All constructs of the theory (perceived susceptibility, severity, self-efficacy and response efficacy) and all anthropometric characteristics (except body mass index) were significantly different between the groups at 3 study times. The strongest predictors of intention to do regular physical exercise were perceived response efficacy and attitude at 2- and 6-months follow-up. We showed that targeting motivational interviewing with an emphasis on Protection Motivation Theory constructs appeared to be beneficial for designing and developing appropriate intervention to improve physical activity status among women with overweight and obesity.

  2. Knowledge, attitude, and practice about malaria: Socio-demographic implications for malaria control in rural Ghana.

    Science.gov (United States)

    Assan, Abraham; Takian, Amirhossein; Hanafi-Bojd, Ahmad Ali; Rahimiforoushani, Abbas; Nematolahi, Shahrzad

    2017-11-01

    Despite continuing international attention to malaria prevention, the disease remains a global public health problem. We investigated socio-demographic factors influencing knowledge, attitudes, and practices about malaria in rural Ghana. Our survey looked at 354 households. Mean knowledge score was higher among individuals with a history of volunteers having visited their households to educate them about malaria; families with 4-6 members; and males. Households with at least one under-five-aged child also had significantly higher knowledge scores. Households with at least one pregnant woman evinced a positive attitude towards malaria prevention. National malaria control strategies have achieved positive results in the fight against malaria. Nonetheless, multipronged community-based health strategies that integrate malaria programs and population growth control initiatives may be able to reach by 2030 the sustainable development goal of eliminating malaria.

  3. Indirect Adaptive Attitude Control for a Ducted Fan Vertical Takeoff and Landing Microaerial Vehicle

    Directory of Open Access Journals (Sweden)

    Shouzhao Sheng

    2015-01-01

    Full Text Available The present paper addresses an attitude tracking control problem of a ducted fan microaerial vehicle. The proposed indirect adaptive controller can greatly reduce tracking error in the initial stage of the adaptive learning process by using an error compensation strategy and can achieve good capability to eliminate the adverse effect of measurement noises on the convergence of adjustable parameters. Moreover, the learning rate adaptation strategy is proposed to further minimize the adverse effect of large learning rates on the convergence of adjustable parameters. The experimental tests have illustrated the effectiveness of the proposed adaptive controller.

  4. The Attitudes of Indian Palliative-Care Nurses and Physicians toward Pain Control and Palliative Sedation

    OpenAIRE

    Gielen, Joris; Gupta, Harmala; Rajvanshi, Ambika; Bhatnagar, Sushma; Mishra, Seema; Chaturvedi, Arvind K.; Van den Branden, Stef; Broeckaert, Bert

    2011-01-01

    Aim: We wanted to assess Indian palliative-care nurses and physicians’ attitudes toward pain control and palliative sedation. Materials and Methods: From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). Results: The interviewees did not consider administration of painkillers in large doses an ethical problem, ...

  5. The attitudes of Indian palliative-care nurses and physicians to pain control and palliative sedation

    OpenAIRE

    Joris Gielen; Harmala Gupta; Ambika Rajvanshi; Sushma Bhatnagar; Seema Mishra; Arvind K Chaturvedi; Stef Van den Branden; Bert Broeckaert

    2011-01-01

    Aim: We wanted to assess Indian palliative-care nurses and physicians′ attitudes toward pain control and palliative sedation. Materials and Methods: From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). Results: The interviewees did not consider administration of painkillers in large doses an ethical problem...

  6. Assessing landowners' attitudes toward wild hogs and support for control options.

    Science.gov (United States)

    Caplenor, Carlotta A; Poudyal, Neelam C; Muller, Lisa I; Yoest, Chuck

    2017-10-01

    Wild hogs (Sus scrofa) are an invasive species with destructive habits, particularly rooting and wallowing, which can directly impact agricultural crops, pasture land, and water quality. Considering wild hogs are widely dispersed across the landscape, they are extremely difficult to control. Disagreements can arise among different stakeholders over whether and how their populations should be managed. The purpose of this article was to examine Tennessee, United States landowners' attitudes toward wild hogs, to compare acceptability of control methods, and to evaluate factors significantly influencing public support for regulations to control wild hogs. Logistic regression was employed to analyze data collected from a statewide survey of rural landowners in the fall of 2015. Landowners had overwhelmingly negative attitudes towards wild hogs, and were concerned about their impact on the natural environment and rural economy. Although landowners showed support for controlling wild hogs, levels of acceptability for management options varied. Respondents favored active management and supported education and incentive-based control programs to control wild hogs. Cognitive concepts such as social and personal norms and awareness of consequences, as well as demographic characteristics, significantly predicted landowners' support for state regulations to control wild hogs in Tennessee. Findings increase our understanding of the human dimensions of wild hog management and that of other similarly invasive animals, and may guide resource managers in designing effective and socially acceptable management strategies to control wild hog populations in Tennessee and elsewhere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nonlinear control of marine vehicles using only position and attitude measurements

    Energy Technology Data Exchange (ETDEWEB)

    Paulsen, Marit Johanne

    1996-12-31

    This thesis presents new results on the design and analysis of nonlinear output feedback controllers for auto pilots and dynamic positioning systems for ships and underwater vehicles. Only position and attitude measurements of the vehicle are used in the control design. The underlying idea of the work is to use certain structural properties of the equations of motion in the controller design and analysis. New controllers for regulation and tracking have been developed and the stability of the resulting closed-loop systems has been rigorously established. The results are supported by simulations. The following problems have been investigated covering design of passive controller for regulation, comparison of two auto pilots, nonlinear damping compensation for tracking, tracking control for nonlinear ships, and output tracking control with wave filtering for multivariable models of possibly unstable vehicles. 97 refs., 32 figs.

  8. Attitude determination with three-axis accelerometer for emergency atmospheric entry

    Science.gov (United States)

    Garcia-Llama, Eduardo (Inventor)

    2012-01-01

    Two algorithms are disclosed that, with the use of a 3-axis accelerometer, will be able to determine the angles of attack, sideslip and roll of a capsule-type spacecraft prior to entry (at very high altitudes, where the atmospheric density is still very low) and during entry. The invention relates to emergency situations in which no reliable attitude and attitude rate are available. Provided that the spacecraft would not attempt a guided entry without reliable attitude information, the objective of the entry system in such case would be to attempt a safe ballistic entry. A ballistic entry requires three controlled phases to be executed in sequence: First, cancel initial rates in case the spacecraft is tumbling; second, maneuver the capsule to a heat-shield-forward attitude, preferably to the trim attitude, to counteract the heat rate and heat load build up; and third, impart a ballistic bank or roll rate to null the average lift vector in order to prevent prolonged lift down situations. Being able to know the attitude, hence the attitude rate, will allow the control system (nominal or backup, automatic or manual) to cancel any initial angular rates. Also, since a heat-shield forward attitude and the trim attitude can be specified in terms of the angles of attack and sideslip, being able to determine the current attitude in terms of these angles will allow the control system to maneuver the vehicle to the desired attitude. Finally, being able to determine the roll angle will allow for the control of the roll ballistic rate during entry.

  9. T-S Fuzzy Modelling and H∞ Attitude Control for Hypersonic Gliding Vehicles

    Directory of Open Access Journals (Sweden)

    Weidong Zhang

    2017-01-01

    Full Text Available This paper addresses the T-S fuzzy modelling and H∞ attitude control in three channels for hypersonic gliding vehicles (HGVs. First, the control-oriented affine nonlinear model has been established which is transformed from the reentry dynamics. Then, based on Taylor’s expansion approach and the fuzzy linearization approach, the homogeneous T-S local modelling technique for HGVs is proposed. Given the approximation accuracy and controller design complexity, appropriate fuzzy premise variables and operating points of interest are selected to construct the T-S homogeneous submodels. With so-called fuzzy blending, the original plant is transformed into the overall T-S fuzzy model with disturbance. By utilizing Lyapunov functional approach, a state feedback fuzzy controller has been designed based on relaxed linear matrix inequality (LMI conditions to stable the original plants with a prescribed H∞ performance of disturbance. Finally, numerical simulations are performed to demonstrate the effectiveness of the proposed H∞ T-S fuzzy controller for the original attitude dynamics; the superiority of the designed T-S fuzzy controller compared with other local controllers based on the constructed fuzzy model is shown as well.

  10. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    Science.gov (United States)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  11. One-impulse targeting strategy for longitudinal drift control of geosynchronous spacecraft subject to tesseral harmonics and luni-solar gravity perturbations

    Science.gov (United States)

    Kechichian, J. A.

    1984-01-01

    Kamel's (1973) East-West Stationkeeping Analysis is extended and an algorithm is presented that targets the geosynchronous spacecraft to the ideal initial conditions starting from any given relative longitude deviation within a given tolerance deadband in order to repeat the ideal longitudinal drift cycle that results in the longest possible period of time between maneuvers. The motion description takes into account the perturbations introduced by earth's tesseral harmonics and by the luni-solar gravity, assuming a near-circular orbit that requires only the control of orbital energy to repeat the ideal drift cycle via a single impulsive velocity change. The location of the maneuver along the orbit is such that the post-Delta-V eccentricity is always minimized.

  12. Attitudes toward Placebo-Controlled Clinical Trials of Patients with Schizophrenia in Japan.

    Directory of Open Access Journals (Sweden)

    Norio Sugawara

    Full Text Available Although the use of placebo in clinical trials of schizophrenia patients is controversial because of medical and ethical concerns, placebo-controlled clinical trials are commonly used in the licensing of new drugs.The objective of this study was to assess the attitudes toward placebo-controlled clinical trials among patients with schizophrenia in Japan.Using a cross-sectional design, we recruited patients (n = 251 aged 47.7±13.2 (mean±SD with a DSM-IV diagnosis of schizophrenia or schizoaffective disorder who were admitted to six psychiatric hospitals from December 2013 to March 2014. We employed a 14-item questionnaire specifically developed to survey patients' attitudes toward placebo-controlled clinical trials.The results indicated that 33% of the patients would be willing to participate in a placebo-controlled clinical trial. Expectations for improvement of disease, a guarantee of hospital treatment continuation, and encouragement by family or friends were associated with the willingness to participate in such trials, whereas a belief of additional time required for medical examinations was associated with non-participation.Fewer than half of the respondents stated that they would be willing to participate in placebo-controlled clinical trials. Therefore, interpreting the results from placebo-controlled clinical trials could be negatively affected by selection bias.

  13. Spacecraft Spin Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides the capability to correct unbalances of spacecraft by using dynamic measurement techniques and static/coupled measurements to provide products of...

  14. Thrust distribution for attitude control in a variable thrust propulsion system with four ACS nozzles

    Science.gov (United States)

    Lim, Yeerang; Lee, Wonsuk; Bang, Hyochoong; Lee, Hosung

    2017-04-01

    A thrust distribution approach is proposed in this paper for a variable thrust solid propulsion system with an attitude control system (ACS) that uses a reduced number of nozzles for a three-axis attitude maneuver. Although a conventional variable thrust solid propulsion system needs six ACS nozzles, this paper proposes a thrust system with four ACS nozzles to reduce the complexity and mass of the system. The performance of the new system was analyzed with numerical simulations, and the results show that the performance of the system with four ACS nozzles was similar to the original system while the mass of the whole system was simultaneously reduced. Moreover, a feasibility analysis was performed to determine whether a thrust system with three ACS nozzles is possible.

  15. Mission management, planning, and cost: PULSE Attitude And Control Systems (AACS)

    Science.gov (United States)

    1990-01-01

    The Pluto unmanned long-range scientific explorer (PULSE) is a probe that will do a flyby of Pluto. It is a low weight, relatively low costing vehicle which utilizes mostly off-the-shelf hardware, but not materials or techniques that will be available after 1999. A design, fabrication, and cost analysis is presented. PULSE will be launched within the first decade of the twenty-first century. The topics include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion systems; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.

  16. Motion coordination for VTOL unmanned aerial vehicles attitude synchronisation and formation control

    CERN Document Server

    Abdessameud, Abdelkader

    2013-01-01

    Motion Coordination for VTOL Unmanned Aerial Vehicles develops new control design techniques for the distributed coordination of a team of autonomous unmanned aerial vehicles. In particular, it provides new control design approaches for the attitude synchronization of a formation of rigid body systems. In addition, by integrating new control design techniques with some concepts from nonlinear control theory and multi-agent systems, it presents  a new theoretical framework for the formation control of a class of under-actuated aerial vehicles capable of vertical take-off and landing. Several practical problems related to the systems’ inputs, states measurements, and  restrictions on the interconnection  topology  between the aerial vehicles in the team  are addressed. Worked examples with sufficient details and simulation results are provided to illustrate the applicability and effectiveness of the theoretical results discussed in the book. The material presented is primarily intended for researchers an...

  17. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  18. Characterizing Biological Closed-Loop Life Support Systems for Thermal Control and Revitalization of Spacecraft Cabin Environments

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental Control and Support Systems (ECLSS) are required for all manned spaceflight missions to provide the most fundamental physiological needs. One of these...

  19. Vapor Chamber with Phase Change Material-based Wick Structure for Thermal Control of Manned Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to NASA SBIR solicitation H3.01 "Thermal Control for Future Human Exploration", Advanced Cooling Technologies, Inc. (ACT) is proposing a novel Phase...

  20. Improving psychology students' attitudes toward people with schizophrenia: A quasi-randomized controlled study.

    Science.gov (United States)

    Magliano, Lorenza; Rinaldi, Angela; Costanzo, Regina; De Leo, Renata; Schioppa, Giustina; Petrillo, Miriam; Read, John

    2016-01-01

    Despite scientific evidence that the majority of people with schizophrenia (PWS) have personal histories of traumatic life events and adversities, their needs for psychological support often remain unmet. Poor availability of nonpharmacological therapies in schizophrenia may be partly because of professionals' attitudes toward people diagnosed with this disorder. As future health professionals, psychology students represent a target population for efforts to increase the probability that PWS will be offered effective psychological therapies. This quasi-randomized controlled study investigated the effect of an educational intervention, addressing common prejudices via scientific evidence and prerecorded audio-testimony from PWS, on the attitudes of psychology students toward PWS. Students in their fifth year of a master's degree in Psychology at the Second University of Naples, Italy were randomly assigned to an experimental group-which attended two 3-hr sessions a week apart-or to a control group. Compared with their baseline assessment, at 1-month reassessment the 76 educated students endorsed more psychosocial causes and more of them recommended psychologists in the treatment of schizophrenia. They were also more optimistic about recovery, less convinced that PWS are recognizable and unpredictable, and more convinced that treatments, pharmacological and psychological, are useful. No significant changes were found, from baseline to 1-month reassessment, in the 112 controls. At 1-month reassessment, educated students were more optimistic about recovery and less convinced that PWS are unpredictable than controls. These findings suggest that psychology students' attitudes toward PWS can be improved by training initiatives including education and indirect contact with users. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  1. A survey of United States dental hygienists' knowledge, attitudes, and practices with infection control guidelines.

    Science.gov (United States)

    Garland, Kandis V

    2013-06-01

    To assess knowledge, attitudes and practices of U.S. dental hygienists with infection control guidelines (ICG). Research has shown improved compliance with specific aspects of dental ICG is needed. This study supports the American Dental Hygienists' Association National Research Agenda's Occupational Health and Safety objective to investigate methods to decrease errors, risks and or hazards in health care. Data are needed to assess compliance, prevention and behavioral issues with current ICG practices. A proportional stratified random sample (n=2,500) was recruited for an online survey. Descriptive statistics summarized demographic characteristics and knowledge, attitudes and practices responses. Spearman's rho correlations determined relationships between knowledge, attitudes and practices responses (pexpectations for using ICG (rs=0.529) and no time to use (rs=-0.537). Themes from comments indicated time is a barrier, and respondents' perceived a need for involvement of all co-workers. Dental hygienists are adhering with most aspects of the ICG. High compliance with ICG among respondents in this study was associated with positive safety beliefs and practices, whereas lower compliance with ICG was associated with less positive safety beliefs and practices. A safety culture appears to be a factor in compliance with ICG.

  2. Controlling healthcare professionals: how human resource management influences job attitudes and operational efficiency.

    Science.gov (United States)

    Cogin, Julie Ann; Ng, Ju Li; Lee, Ilro

    2016-09-20

    We assess how human resource management (HRM) is implemented in Australian hospitals. Drawing on role theory, we consider the influence HRM has on job attitudes of healthcare staff and hospital operational efficiency. We adopt a qualitative research design across professional groups (physicians, nurses, and allied health staff) at multiple levels (executive, healthcare managers, and employee). A total of 34 interviews were carried out and analyzed using NVivo. Findings revealed a predominance of a control-based approach to people management. Using Snell's control framework (AMJ 35:292-327, 1992), we found that behavioral control was the principal form of control used to manage nurses, allied health workers, and junior doctors. We found a mix between behavior, output, and input controls as well as elements of commitment-based HRM to manage senior physicians. We observed low levels of investment in people and a concentration on transactional human resource (HR) activities which led to negative job attitudes such as low morale and frustration among healthcare professionals. While hospitals used rules to promote conformity with established procedures, the overuse and at times inappropriate use of behavior controls restricted healthcare managers' ability to motivate and engage their staff. Excessive use of behavior control helped to realize short-term cost-cutting goals; however, this often led to operational inefficiencies. We suggest that hospitals reduce the profusion of behavior control and increase levels of input and output controls in the management of people. Poor perceptions of HR specialists and HR activities have resulted in HR being overlooked as a vehicle to address the strategic challenges required of health reform and to build an engaged workforce.

  3. Spacecraft Charge Monitor

    Science.gov (United States)

    Goembel, L.

    2003-12-01

    We are currently developing a flight prototype Spacecraft Charge Monitor (SCM) with support from NASA's Small Business Innovation Research (SBIR) program. The device will use a recently proposed high energy-resolution electron spectroscopic technique to determine spacecraft floating potential. The inspiration for the technique came from data collected by the Atmosphere Explorer (AE) satellites in the 1970s. The data available from the AE satellites indicate that the SCM may be able to determine spacecraft floating potential to within 0.1 V under certain conditions. Such accurate measurement of spacecraft charge could be used to correct biases in space plasma measurements. The device may also be able to measure spacecraft floating potential in the solar wind and in orbit around other planets.

  4. Knowledge and attitudes of infection prevention and control among health sciences students at University of Namibia.

    Science.gov (United States)

    Ojulong, J; Mitonga, K H; Iipinge, S N

    2013-12-01

    Health Sciences students are exposed early to hospitals and to activities which increase their risk of acquiring infections. Infection control practices are geared towards reduction of occurrence and transmission of infectious diseases. To evaluate knowledge and attitudes of infection prevention and control among Health Science students at University of Namibia. To assess students' knowledge and attitudes regarding infection prevention and control and their sources of information, a self-administered questionnaire was used to look at standard precautions especially hands hygiene. One hundred sixty two students participated in this study of which 31 were medical, 17 were radiography and 114 were nursing students. Medical students had better overall scores (73%) compared to nursing students (66%) and radiology students (61%). There was no significant difference in scores between sexes or location of the high school being either in rural or urban setting. Serious efforts are needed to improve or review curriculum so that health sciences students' knowledge on infection prevention and control is imparted early before they are introduced to the wards.

  5. The effects of educating mothers and girls on the girls' attitudes toward puberty health: a randomized controlled trial.

    Science.gov (United States)

    Afsari, Atousa; Mirghafourvand, Mojgan; Valizadeh, Sousan; Abbasnezhadeh, Massomeh; Galshi, Mina; Fatahi, Samira

    2017-04-01

    The attitude of a girl toward her menstruation and puberty has a considerable impact on her role during motherhood, social adjustment, and future marital life. This study was conducted in 2014 with the aim of comparing the effects of educating mothers and girls on the attitudes of adolescent girls of Tabriz City, Iran, towards puberty health. This randomized control clinical trial was conducted on 364 adolescent girls who experienced menstruation. Twelve schools were selected randomly among 107 secondary schools for girls. One-third of the students of each school were selected randomly using a table of random numbers and socio-demographic and each participant was asked to answer the attitude questionnaires. The schools were randomly allocated to the groups of mother's education, girl's education, and no-intervention. The attitude questionnaire was filled out by the participants again 2 months after intervention. The general linear model, in which the baseline values were controlled, was employed to compare the scores of the three groups after the intervention. No significant differences were observed among the three groups in terms of the attitude score before intervention (p>0.05). Attitude score improvement after intervention in the girl's education group was significantly higher than the one of both mother's education (adjusted mean difference [AMD]: 1.8; [95% confidence interval (CI): 0.4-1.3]) and no-intervention groups (AMD: 1.3; [95% CI: 0.0-2.6]) by controlling the attitude score before intervention. Based on the findings, it is more effective to educate girls directly about puberty health to improve adolescent girls' attitudes than educating mothers and asking them to transfer information to the girls. Nevertheless, studies with longer training period and follow-up are proposed to determine the effects of educating girls (through their mothers) on their attitudes about puberty health.

  6. Touchless attitude correction for satellite with constant magnetic moment

    Science.gov (United States)

    Ao, Hou-jun; Yang, Le-ping; Zhu, Yan-wei; Zhang, Yuan-wen; Huang, Huan

    2017-09-01

    Rescue of satellite with attitude fault is of great value. Satellite with improper injection attitude may lose contact with ground as the antenna points to the wrong direction, or encounter energy problems as solar arrays are not facing the sun. Improper uploaded command may set the attitude out of control, exemplified by Japanese Hitomi spacecraft. In engineering practice, traditional physical contact approaches have been applied, yet with a potential risk of collision and a lack of versatility since the mechanical systems are mission-specific. This paper puts forward a touchless attitude correction approach, in which three satellites are considered, one having constant dipole and two having magnetic coils to control attitude of the first. Particular correction configurations are designed and analyzed to maintain the target's orbit during the attitude correction process. A reference coordinate system is introduced to simplify the control process and avoid the singular value problem of Euler angles. Based on the spherical triangle basic relations, the accurate varying geomagnetic field is considered in the attitude dynamic mode. Sliding mode control method is utilized to design the correction law. Finally, numerical simulation is conducted to verify the theoretical derivation. It can be safely concluded that the no-contact attitude correction approach for the satellite with uniaxial constant magnetic moment is feasible and potentially applicable to on-orbit operations.

  7. Tobacco use, cessation advice to patients and attitudes to tobacco control among physicians in Ukraine.

    Science.gov (United States)

    Squier, Christopher; Hesli, Vicki; Lowe, John; Ponamorenko, Victor; Medvedovskaya, Natalia

    2006-10-01

    To examine the relationship between physicians' smoking behaviors and their attitudes toward tobacco use by their patients and tobacco control in the Ukraine, a 70-item questionnaire was administered to 799 general practitioners (287 men and 512 women) working in both rural (278 physicians) and urban (521 physicians) areas of three regions of Ukraine. In all, 13.9% of physicians were current smokers and 21.6% reported being past smokers, with significantly (Pnon-smoking as a norm and (2) the likelihood that a patient will be provided smoking cessation counseling increases.

  8. Development of a green bipropellant hydrogen peroxide thruster for attitude control on satellites

    Science.gov (United States)

    Woschnak, A.; Krejci, D.; Schiebl, M.; Scharlemann, C.

    2013-03-01

    This document describes the selection assessment of propellants for a 1-newton green bipropellant thruster for attitude control on satellites. The development of this thruster was conducted as a part of the project GRASP (Green Advanced Space Propellants) within the European FP7 research program. The green propellant combinations hydrogen peroxide (highly concentrated with 87.5 %(wt.)) with kerosene or hydrogen peroxide (87.5 %(wt.)) with ethanol were identified as interesting candidates and were investigated in detail with the help of an experimental combustion chamber in the chemical propulsion laboratory at the Forschungsund Technologietransfer GmbH ― Fotec. Based on the test results, a final selection of propellants was performed.

  9. Farmer attitudes to vaccination and culling of badgers in controlling bovine tuberculosis.

    Science.gov (United States)

    Warren, M; Lobley, M; Winter, M

    2013-07-13

    Controversy persists in England, Wales and Northern Ireland concerning methods of controlling the transmission of bovine tuberculosis (bTB) between badgers and cattle. The National Trust, a major land-owning heritage organisation, in 2011, began a programme of vaccinating badgers against bTB on its Killerton Estate in Devon. Most of the estate is farmed by 18 tenant farmers, who thus have a strong interest in the Trust's approach, particularly as all have felt the effects of the disease. This article reports on a study of the attitudes to vaccination of badgers and to the alternative of a culling programme, using face-to-face interviews with 14 of the tenants. The results indicated first that the views of the respondents were more nuanced than the contemporary public debate about badger control would suggest. Secondly, the attitude of the interviewees to vaccination of badgers against bTB was generally one of resigned acceptance. Thirdly, most respondents would prefer a combination of an effective vaccination programme with an effective culling programme, the latter reducing population of density sufficiently (and preferably targeting the badgers most likely to be diseased) for vaccination to have a reasonable chance of success. While based on a small sample, these results will contribute to the vigorous debate concerning contrasting policy approaches to bTB control in England, Wales and Northern Ireland.

  10. GOES-R active vibration damping controller design, implementation, and on-orbit performance

    Science.gov (United States)

    Clapp, Brian R.; Weigl, Harald J.; Goodzeit, Neil E.; Carter, Delano R.; Rood, Timothy J.

    2018-01-01

    GOES-R series spacecraft feature a number of flexible appendages with modal frequencies below 3.0 Hz which, if excited by spacecraft disturbances, can be sources of undesirable jitter perturbing spacecraft pointing. To meet GOES-R pointing stability requirements, the spacecraft flight software implements an Active Vibration Damping (AVD) rate control law which acts in parallel with the nadir point attitude control law. The AVD controller commands spacecraft reaction wheel actuators based upon Inertial Measurement Unit (IMU) inputs to provide additional damping for spacecraft structural modes below 3.0 Hz which vary with solar wing angle. A GOES-R spacecraft dynamics and attitude control system identified model is constructed from pseudo-random reaction wheel torque commands and IMU angular rate response measurements occurring over a single orbit during spacecraft post-deployment activities. The identified Fourier model is computed on the ground, uplinked to the spacecraft flight computer, and the AVD controller filter coefficients are periodically computed on-board from the Fourier model. Consequently, the AVD controller formulation is based not upon pre-launch simulation model estimates but upon on-orbit nadir point attitude control and time-varying spacecraft dynamics. GOES-R high-fidelity time domain simulation results herein demonstrate the accuracy of the AVD identified Fourier model relative to the pre-launch spacecraft dynamics and control truth model. The AVD controller on-board the GOES-16 spacecraft achieves more than a ten-fold increase in structural mode damping for the fundamental solar wing mode while maintaining controller stability margins and ensuring that the nadir point attitude control bandwidth does not fall below 0.02 Hz. On-orbit GOES-16 spacecraft appendage modal frequencies and damping ratios are quantified based upon the AVD system identification, and the increase in modal damping provided by the AVD controller for each structural mode is

  11. The Effects of Cueing and Framing on Youth Attitudes towards Gun Control and Gun Rights

    Directory of Open Access Journals (Sweden)

    Stephen Wu

    2018-02-01

    Full Text Available I analyze attitudes towards gun control from a recent survey of American high school students. For students who most closely identify as Republicans, cueing them to think about prior school shootings increases their agreement that armed staff in schools will improve safety and arming citizens will reduce risk of mass shootings. For those identifying as Democrats and Independents, providing them with selective information that certain states have loose gun control laws and low rates of gun violence makes them more supportive of gun rights. For Republicans, providing selective information that certain states have loose gun control laws and high rates of gun violence makes them less supportive of gun rights. These results suggest that emotional cues may exacerbate a priori biases, while informational cues may be more likely to change people’s minds about firearm policies.

  12. Passivity based nonlinear attitude control of the Rømer satellite

    DEFF Research Database (Denmark)

    Quottrup, Michael Melholt; Krogh-Sørensen, J.; Wisniewski, Rafal

    This paper suggests nonlinear attitude control of the Danish satellite Rømer. This satellite will be designed to fulfil two scientific objectives: The observation of stellar oscillations and the detection and localisation of gamma-ray bursts. The satellite will be equipped with a tetrahedron...... configuration of Wide Angle Telescopes for Cosmic Hard x-rays (WATCH), that server the dual purpose of X-ray detectors and momentum wheels. By employing passivity theory it is shown, that the satellite is a passive system. This paper shows, that global asymptotic can be obtained with a passive and an imput...... and output strictly passive system in a feedback interconnection. It is demonstrated in a simulation study that the resultant control has a potential for on-board implementation in the acquistion phase, where global stabillity of the control law is vital...

  13. Comprehensive Evaluation of Attitude and Orbit Estimation Using Actual Earth Magnetic Field Data

    Science.gov (United States)

    Deutschmann, Julie K.; Bar-Itzhack, Itzhack Y.

    2000-01-01

    A single, augmented Extended Kalman Filter (EKF), which simultaneously and autonomously estimates spacecraft attitude and orbit has been developed and successfully tested with real magnetometer and gyro data only. Because the earth magnetic field is a function of time and position, and because time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both orbit and attitude errors. Thus, conceivably these differences could be used to estimate both orbit and attitude; an observability study validated this assumption. The results of testing the EKF with actual magnetometer and gyro data, from four satellites supported by the NASA Goddard Space Flight Center (GSFC) Guidance, Navigation, and Control Center, are presented and evaluated. They confirm the assumption that a single EKF can estimate both attitude and orbit when using gyros and magnetometers only.

  14. Racism, gun ownership and gun control: biased attitudes in US whites may influence policy decisions.

    Science.gov (United States)

    O'Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites' paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions.

  15. Methods of fertility control in cats: Owner, breeder and veterinarian behavior and attitudes.

    Science.gov (United States)

    Murray, Jane K; Mosteller, Jill R; Loberg, Jenny M; Andersson, Maria; Benka, Valerie A W

    2015-09-01

    Fertility control is important for population management of owned and unowned cats, provides health benefits at the individual level and can reduce unwanted sexually dimorphic behaviors such as roaming, aggression, spraying and calling. This article reviews the available evidence regarding European and American veterinarian, owner and pedigree cat breeder attitudes toward both surgical sterilization and non-surgical fertility control. It additionally presents new data on veterinarians' and pedigree cat breeders' use of, and attitudes toward, alternative modalities of fertility control. Within the United States and Europe, the proportion of cats reported to be sterilized varies widely. Published estimates range from 27-93% for owned cats and 2-5% for cats trapped as part of a trap-neuter-return (TNR) program. In some regions and populations of cats, non-surgical fertility control is also used. Social context, cultural norms, individual preferences, economic considerations, legislation and professional organizations may all influence fertility control decisions for cats. Particularly in Europe, a limited number of non-surgical temporary contraceptives are available for cats; these include products with regulatory approval for cats as well as some used 'off label'. Non-surgical methods remove the risk of complications related to surgery and offer potential to treat more animals in less time and at lower cost; they may also appeal to pedigree cat breeders seeking temporary contraception. However, concerns over efficacy, delivery methods, target species safety, duration and side effects exist with current non-surgical options. Research is under way to develop new methods to control fertility in cats without surgery. US and European veterinarians place high value on three perceived benefits of surgical sterilization: permanence, behavioral benefits and health benefits. Non-surgical options will likely need to share these benefits to be widely accepted by the veterinary

  16. Racism, gun ownership and gun control: biased attitudes in US whites may influence policy decisions.

    Directory of Open Access Journals (Sweden)

    Kerry O'Brien

    Full Text Available OBJECTIVE: Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty. This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. METHOD: The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. RESULTS: After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58 was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46, which likely represents self-interest in retaining property (guns. CONCLUSIONS: Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites' paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions.

  17. Racism, Gun Ownership and Gun Control: Biased Attitudes in US Whites May Influence Policy Decisions

    Science.gov (United States)

    O’Brien, Kerry; Forrest, Walter; Lynott, Dermot; Daly, Michael

    2013-01-01

    Objective Racism is related to policies preferences and behaviors that adversely affect blacks and appear related to a fear of blacks (e.g., increased policing, death penalty). This study examined whether racism is also related to gun ownership and opposition to gun controls in US whites. Method The most recent data from the American National Election Study, a large representative US sample, was used to test relationships between racism, gun ownership, and opposition to gun control in US whites. Explanatory variables known to be related to gun ownership and gun control opposition (i.e., age, gender, education, income, conservatism, anti-government sentiment, southern vs. other states, political identification) were entered in logistic regression models, along with measures of racism, and the stereotype of blacks as violent. Outcome variables included; having a gun in the home, opposition to bans on handguns in the home, support for permits to carry concealed handguns. Results After accounting for all explanatory variables, logistic regressions found that for each 1 point increase in symbolic racism there was a 50% increase in the odds of having a gun at home. After also accounting for having a gun in the home, there was still a 28% increase in support for permits to carry concealed handguns, for each one point increase in symbolic racism. The relationship between symbolic racism and opposition to banning handguns in the home (OR1.27 CI 1.03,1.58) was reduced to non-significant after accounting for having a gun in the home (OR1.17 CI.94,1.46), which likely represents self-interest in retaining property (guns). Conclusions Symbolic racism was related to having a gun in the home and opposition to gun control policies in US whites. The findings help explain US whites’ paradoxical attitudes towards gun ownership and gun control. Such attitudes may adversely influence US gun control policy debates and decisions. PMID:24204867

  18. Autonomous spacecraft rendezvous and docking

    Science.gov (United States)

    Tietz, J. C.; Almand, B. J.

    A storyboard display is presented which summarizes work done recently in design and simulation of autonomous video rendezvous and docking systems for spacecraft. This display includes: photographs of the simulation hardware, plots of chase vehicle trajectories from simulations, pictures of the docking aid including image processing interpretations, and drawings of the control system strategy. Viewgraph-style sheets on the display bulletin board summarize the simulation objectives, benefits, special considerations, approach, and results.

  19. Eating on impulse: Implicit attitudes, self-regulatory resources, and trait self-control as determinants of food consumption.

    Science.gov (United States)

    Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao

    2015-12-01

    Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Statistical Attitude Determination

    Science.gov (United States)

    Markley, F. Landis

    2010-01-01

    All spacecraft require attitude determination at some level of accuracy. This can be a very coarse requirement of tens of degrees, in order to point solar arrays at the sun, or a very fine requirement in the milliarcsecond range, as required by Hubble Space Telescope. A toolbox of attitude determination methods, applicable across this wide range, has been developed over the years. There have been many advances in the thirty years since the publication of Reference, but the fundamentals remain the same. One significant change is that onboard attitude determination has largely superseded ground-based attitude determination, due to the greatly increased power of onboard computers. The availability of relatively inexpensive radiation-hardened microprocessors has led to the development of "smart" sensors, with autonomous star trackers being the first spacecraft application. Another new development is attitude determination using interferometry of radio signals from the Global Positioning System (GPS) constellation. This article reviews both the classic material and these newer developments at approximately the level of, with emphasis on. methods suitable for use onboard a spacecraft. We discuss both "single frame" methods that are based on measurements taken at a single point in time, and sequential methods that use information about spacecraft dynamics to combine the information from a time series of measurements.

  1. Spacecraft with gradual acceleration of solar panels

    Science.gov (United States)

    Merhav, Tamir R. (Inventor); Festa, Michael T. (Inventor); Stetson, Jr., John B. (Inventor)

    1996-01-01

    A spacecraft (8) includes a movable appendage such as solar panels (12) operated by a stepping motor (28) driven by pulses (311). In order to reduce vibration andor attitude error, the drive pulses are generated by a clock down-counter (312) with variable count ratio. Predetermined desired clock ratios are stored in selectable memories (314a-d), and the selected ratio (R) is coupled to a comparator (330) together with the current ratio (C). An up-down counter (340) establishes the current count-down ratio by counting toward the desired ratio under the control of the comparator; thus, a step change of solar panel speed never occurs. When a direction change is commanded, a flag signal generator (350) disables the selectable memories, and enables a further store (360), which generates a count ratio representing a very slow solar panel rotational rate, so that the rotational rate always slows to a low value before direction is changed. The principles of the invention are applicable to any movable appendage.

  2. Visual attitude propagation for small satellites

    Science.gov (United States)

    Rawashdeh, Samir A.

    As electronics become smaller and more capable, it has become possible to conduct meaningful and sophisticated satellite missions in a small form factor. However, the capability of small satellites and the range of possible applications are limited by the capabilities of several technologies, including attitude determination and control systems. This dissertation evaluates the use of image-based visual attitude propagation as a compliment or alternative to other attitude determination technologies that are suitable for miniature satellites. The concept lies in using miniature cameras to track image features across frames and extracting the underlying rotation. The problem of visual attitude propagation as a small satellite attitude determination system is addressed from several aspects: related work, algorithm design, hardware and performance evaluation, possible applications, and on-orbit experimentation. These areas of consideration reflect the organization of this dissertation. A "stellar gyroscope" is developed, which is a visual star-based attitude propagator that uses relative motion of stars in an imager's field of view to infer the attitude changes. The device generates spacecraft relative attitude estimates in three degrees of freedom. Algorithms to perform the star detection, correspondence, and attitude propagation are presented. The Random Sample Consensus (RANSAC) approach is applied to the correspondence problem to successfully pair stars across frames while mitigating falsepositive and false-negative star detections. This approach provides tolerance to the noise levels expected in using miniature optics and no baffling, and the noise caused by radiation dose on orbit. The hardware design and algorithms are validated using test images of the night sky. The application of the stellar gyroscope as part of a CubeSat attitude determination and control system is described. The stellar gyroscope is used to augment a MEMS gyroscope attitude propagation

  3. Fault tolerant attitude control for small unmanned aircraft systems equipped with an airflow sensor array.

    Science.gov (United States)

    Shen, H; Xu, Y; Dickinson, B T

    2014-11-18

    Inspired by sensing strategies observed in birds and bats, a new attitude control concept of directly using real-time pressure and shear stresses has recently been studied. It was shown that with an array of onboard airflow sensors, small unmanned aircraft systems can promptly respond to airflow changes and improve flight performances. In this paper, a mapping function is proposed to compute aerodynamic moments from the real-time pressure and shear data in a practical and computationally tractable formulation. Since many microscale airflow sensors are embedded on the small unmanned aircraft system surface, it is highly possible that certain sensors may fail. Here, an adaptive control system is developed that is robust to sensor failure as well as other numerical mismatches in calculating real-time aerodynamic moments. The advantages of the proposed method are shown in the following simulation cases: (i) feedback pressure and wall shear data from a distributed array of 45 airflow sensors; (ii) 50% failure of the symmetrically distributed airflow sensor array; and (iii) failure of all the airflow sensors on one wing. It is shown that even if 50% of the airflow sensors have failures, the aircraft is still stable and able to track the attitude commands.

  4. Fractionated Spacecraft Architectures Seeding Study

    National Research Council Canada - National Science Library

    Mathieu, Charlotte; Weigel, Annalisa

    2006-01-01

    .... Models were developed from a customer-centric perspective to assess different fractionated spacecraft architectures relative to traditional spacecraft architectures using multi-attribute analysis...

  5. Spacecraft Material Outgassing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This compilation of outgassing data of materials intended for spacecraft use were obtained at the Goddard Space Flight Center (GSFC), utilizing equipment developed...

  6. Spacecraft Fire Safety Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Spacecraft Fire Safety Demonstration project is to develop and conduct large-scale fire safety experiments on an International Space Station...

  7. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  8. A survey of cross-infection control procedures: knowledge and attitudes of Turkish dentists

    Directory of Open Access Journals (Sweden)

    Emir Yüzbasioglu

    2009-12-01

    Full Text Available OBJECTIVES: The objective of this study was to investigate the knowledge, attitudes and behavior of Turkish dentists in Samsun City regarding cross-infection control. MATERIAL AND METHODS: A questionnaire was designed to obtain information about procedures used for the prevention of cross-infection in dental practices and determine the attitudes and perceptions of respondent dental practitioners to their procedures. The study population included all dentists in the city of Samsun, Turkey, in April 2005 (n=184. The questionnaire collected data on sociodemographic characteristics, knowledge and practice of infection control procedures, sterilization, wearing of gloves, mask, use of rubber dam, method of storing instruments and disposal methods of contaminated material, etc. Questionnaire data was entered into a computer and analyzed by SPSS statistical software. RESULTS: From the 184 dentists to whom the questionnaires were submitted, 135 participated in the study (overall response rate of 73.36%. As much as 74.10% dentists expressed concern about the risk of cross-infection from patients to themselves and their dental assistants. Forty-three percent of the participants were able to define "cross-infection" correctly. The greatest majority of the respondents (95.60% stated that all patients have to be considered as infectious and universal precautions must apply to all of them. The overall responses to the questionnaire showed that the dentists had moderate knowledge of infection control procedures. CONCLUSIONS: Improved compliance with recommended infection control procedures is required for all dentists evaluated in the present survey. Continuing education programs and short-time courses about cross-infection and infection control procedures are suitable to improve the knowledge of dentists.

  9. Effort to recover SOHO spacecraft continue as investigation board focuses on most likely causes

    Science.gov (United States)

    1998-07-01

    Meanwhile, the ESA/NASA investigation board concentrates its inquiry on three errors that appear to have led to the interruption of communications with SOHO on June 25. Officials remain hopeful that, based on ESA's successful recovery of the Olympus spacecraft after four weeks under similar conditions in 1991, recovery of SOHO may be possible. The SOHO Mission Interruption Joint ESA/NASA Investigation Board has determined that the first two errors were contained in preprogrammed command sequences executed on ground system computers, while the last error was a decision to send a command to the spacecraft in response to unexpected telemetry readings. The spacecraft is controlled by the Flight Operations Team, based at NASA's Goddard Space Flight Center, Greenbelt, MD. The first error was in a preprogrammed command sequence that lacked a command to enable an on-board software function designed to activate a gyro needed for control in Emergency Sun Reacquisition (ESR) mode. ESR mode is entered by the spacecraft in the event of anomalies. The second error, which was in a different preprogrammed command sequence, resulted in incorrect readings from one of the spacecraft's three gyroscopes, which in turn triggered an ESR. At the current stage of the investigation, the board believes that the two anomalous command sequences, in combination with a decision to send a command to SOHO to turn off a gyro in response to unexpected telemetry values, caused the spacecraft to enter a series of ESRs, and ultimately led to the loss of control. The efforts of the investigation board are now directed at identifying the circumstances that led to the errors, and at developing a recovery plan should efforts to regain contact with the spacecraft succeed. ESA and NASA engineers believe the spacecraft is currently spinning with its solar panels nearly edge-on towards the Sun, and thus not generating any power. Since the spacecraft is spinning around a fixed axis, as the spacecraft progresses

  10. Multi-Evaporator Miniature Loop Heat Pipe for Small Spacecraft Thermal Control. Part 1; New Technologies and Validation Approach

    Science.gov (United States)

    Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem

    2010-01-01

    Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.

  11. Deployable Brake for Spacecraft

    Science.gov (United States)

    Rausch, J. R.; Maloney, J. W.

    1987-01-01

    Aerodynamic shield that could be opened and closed proposed. Report presents concepts for deployable aerodynamic brake. Brake used by spacecraft returning from high orbit to low orbit around Earth. Spacecraft makes grazing passes through atmosphere to slow down by drag of brake. Brake flexible shield made of woven metal or ceramic withstanding high temperatures created by air friction. Stored until needed, then deployed by set of struts.

  12. Standardizing the information architecture for spacecraft operations

    Science.gov (United States)

    Easton, C. R.

    1994-01-01

    This paper presents an information architecture developed for the Space Station Freedom as a model from which to derive an information architecture standard for advanced spacecraft. The information architecture provides a way of making information available across a program, and among programs, assuming that the information will be in a variety of local formats, structures and representations. It provides a format that can be expanded to define all of the physical and logical elements that make up a program, add definitions as required, and import definitions from prior programs to a new program. It allows a spacecraft and its control center to work in different representations and formats, with the potential for supporting existing spacecraft from new control centers. It supports a common view of data and control of all spacecraft, regardless of their own internal view of their data and control characteristics, and of their communications standards, protocols and formats. This information architecture is central to standardizing spacecraft operations, in that it provides a basis for information transfer and translation, such that diverse spacecraft can be monitored and controlled in a common way.

  13. Solar Array Disturbances to Spacecraft Pointing During the Lunar Reconnaissance Orbiter (LRO) Mission

    Science.gov (United States)

    Calhoun, Philip

    2010-01-01

    The Lunar Reconnaissance Orbiter (LRO), the first spacecraft to support NASA s return to the Moon, launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle. It was initially inserted into a direct trans-lunar trajectory to the Moon. After a five day transit to the Moon, LRO was inserted into the Lunar orbit and successfully lowered to a low altitude elliptical polar orbit for spacecraft commissioning. Successful commissioning was completed in October 2009 when LRO was placed in its near circular mission orbit with an approximate altitude of 50km. LRO will spend at least one year orbiting the Moon, collecting lunar environment science and mapping data, utilizing a suite of seven instruments to enable future human exploration. The objective is to provide key science data necessary to facilitate human return to the Moon as well as identification of opportunities for future science missions. LRO's instrument suite will provide the high resolution imaging data with sub-meter accuracy, highly accurate lunar cartographic maps, mineralogy mapping, amongst other science data of interest. LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing Mode", provides Lunar nadir, off-nadir, and inertial fine pointing for the science data collection and instrument calibration. This controller combines the capability of fine pointing with on-demand large angle full-sky attitude reorientation. It provides simplicity of spacecraft operation as well as additional flexibility for science data collection. A conventional suite of ACS components is employed in the Observing Mode to meet the pointing and control objectives. Actuation is provided by a set of four reaction wheels developed in-house at NASA Goddard Space Flight Center (GSFC). Attitude feedback is provided by a six state Kalman filter which utilizes two SELEX Galileo Star Trackers for attitude updates, and a single Honeywell Miniature

  14. Application of the concept of dynamic trim control and nonlinear system inverses to automatic control of a vertical attitude takeoff and landing aircraft

    Science.gov (United States)

    Smith, G. A.; Meyer, G.

    1981-01-01

    A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.

  15. Attitudes and behavioral response toward key tobacco control measures from the FCTC among Chinese urban residents

    Directory of Open Access Journals (Sweden)

    Li Fuzhong

    2007-09-01

    Full Text Available Abstract Background The Chinese National People's Congress ratified the WHO Framework Convention on Tobacco Control (FCTC on 27 August 2005, signaling China's commitment to implement tobacco control policies and legislation consistent with the treaty. This study was designed to examine attitudes towards four WHO FCTC measures among Chinese urban residents. Methods In a cross-sectional design study, survey data were collected from two Chinese urban cities involving a sample of 3,003 residents aged 15 years or older. Through a face-to-face interview, respondents were asked about attitudes toward four tobacco control measures developed by the WHO FCTC. Data on the four dependent measures were analyzed using multivariate logistic regression analyses. Using descriptive statistics, potential change in smoking behavior that smokers might make in response to increasing cigarette prices is also reported. Results 81.8% of the respondents in the study sample supported banning smoking in public places, 68.8% favored increasing the cigarette tax, 85.1% supported health warnings on cigarette packages, and 85.7% favored banning tobacco advertising. The likelihood to support these measures was associated with gender, educational level, and personal income. Smokers were less likely to support these measures than non-smokers, with decreased support expressed by daily smokers compared to occasional smokers, and heavy smokers compared to light smokers. The proportion of switching to cheaper cigarette brands, decreasing smoking, and quitting smoking altogether with increased cigarette prices were 29.1%, 30.90% and 40.0% for occasional smokers, respectively; and 30.8%, 32.7% and 36.5% for daily smokers, respectively. Conclusion Results from this study indicate strong public support in key WHO FCTC measures and that increases in cigarette price may reduce tobacco consumption among Chinese urban residents. Findings from this study have implications with respect to

  16. Electrospray Thrusters for Attitude Control of a 1-U CubeSat

    Science.gov (United States)

    Timilsina, Navin

    With a rapid increase in the interest in use of nanosatellites in the past decade, finding a precise and low-power-consuming attitude control system for these satellites has been a real challenge. In this thesis, it is intended to design and test an electrospray thruster system that could perform the attitude control of a 1-unit CubeSat. Firstly, an experimental setup is built to calculate the conductivity of different liquids that could be used as propellants for the CubeSat. Secondly, a Time-Of-Flight experiment is performed to find out the thrust and specific impulse given by these liquids and hence selecting the optimum propellant. On the other hand, a colloidal thruster system for a 1-U CubeSat is designed in Solidworks and fabricated using Lathe and CNC Milling Machine. Afterwards, passive propellant feeding is tested in this thruster system. Finally, the electronic circuit and wireless control system necessary to remotely control the CubeSat is designed and the final testing is performed. Among the propellants studied, Ethyl ammonium nitrate (EAN) was selected as the best propellant for the CubeSat. Theoretical design and fabrication of the thruster system was performed successfully and so was the passive propellant feeding test. The satellite was assembled for the final experiment but unfortunately the microcontroller broke down during the first test and no promising results were found out. However, after proving that one thruster works with passive feeding, it could be said that the ACS testing would have worked if we had performed vacuum compatibility tests for other components beforehand.

  17. Attitudes and behavioral response toward key tobacco control measures from the FCTC among Chinese urban residents.

    Science.gov (United States)

    Yang, Tingzhong; Wu, Yanwei; Abdullah, Abu Saleh M; Dai, Di; Li, Fuzhong; Wu, Junqing; Xiang, Haiqing

    2007-09-18

    The Chinese National People's Congress ratified the WHO Framework Convention on Tobacco Control (FCTC) on 27 August 2005, signaling China's commitment to implement tobacco control policies and legislation consistent with the treaty. This study was designed to examine attitudes towards four WHO FCTC measures among Chinese urban residents. In a cross-sectional design study, survey data were collected from two Chinese urban cities involving a sample of 3,003 residents aged 15 years or older. Through a face-to-face interview, respondents were asked about attitudes toward four tobacco control measures developed by the WHO FCTC. Data on the four dependent measures were analyzed using multivariate logistic regression analyses. Using descriptive statistics, potential change in smoking behavior that smokers might make in response to increasing cigarette prices is also reported. 81.8% of the respondents in the study sample supported banning smoking in public places, 68.8% favored increasing the cigarette tax, 85.1% supported health warnings on cigarette packages, and 85.7% favored banning tobacco advertising. The likelihood to support these measures was associated with gender, educational level, and personal income. Smokers were less likely to support these measures than non-smokers, with decreased support expressed by daily smokers compared to occasional smokers, and heavy smokers compared to light smokers. The proportion of switching to cheaper cigarette brands, decreasing smoking, and quitting smoking altogether with increased cigarette prices were 29.1%, 30.90% and 40.0% for occasional smokers, respectively; and 30.8%, 32.7% and 36.5% for daily smokers, respectively. Results from this study indicate strong public support in key WHO FCTC measures and that increases in cigarette price may reduce tobacco consumption among Chinese urban residents. Findings from this study have implications with respect to policymaking and legislation for tobacco control in China.

  18. Observer-based attitude controller for lifting re-entry vehicle with non-minimum phase property

    Directory of Open Access Journals (Sweden)

    Wenming Nie

    2017-05-01

    Full Text Available This article concentrates on the attitude control problem for the lifting re-entry vehicle with non-minimum phase property. A novel attitude control method is proposed for this kind of lifting re-entry vehicle without assuming the internal dynamics to be measurable. First, an internal dynamics extended state observer is developed to deal with the unmeasurable problem of the internal dynamics. And then, the control scheme which adopts output feedback method is proposed by modifying the traditional output redefinition technique with internal dynamics extended state observer. This control scheme only requires the system output to be measurable, and it can still stabilize the unstable internal dynamics and track attitude commands. Besides, because of the inherent property of extended state observer in rejecting uncertainties and disturbances, the control precision of the proposed controller is higher than the controller designed with traditional output redefinition technique. Finally, the effectiveness and robustness of the proposed attitude controller are demonstrated by the simulation results.

  19. Vision-Based Attitude and Formation Determination System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To determine pointing and position vectors in both local and inertial coordinate frames, multi-spacecraft missions typically utilize separate attitude determination...

  20. Spacecraft Angular Rates Estimation with Gyrowheel Based on Extended High Gain Observer

    Directory of Open Access Journals (Sweden)

    Xiaokun Liu

    2016-04-01

    Full Text Available A gyrowheel (GW is a kind of electronic electric-mechanical servo system, which can be applied to a spacecraft attitude control system (ACS as both an actuator and a sensor simultaneously. In order to solve the problem of two-dimensional spacecraft angular rate sensing as a GW outputting three-dimensional control torque, this paper proposed a method of an extended high gain observer (EHGO with the derived GW mathematical model to implement the spacecraft angular rate estimation when the GW rotor is working at large angles. For this purpose, the GW dynamic equation is firstly derived with the second kind Lagrange method, and the relationship between the measurable and unmeasurable variables is built. Then, the EHGO is designed to estimate and calculate spacecraft angular rates with the GW, and the stability of the designed EHGO is proven by the Lyapunov function. Moreover, considering the engineering application, the effect of measurement noise in the tilt angle sensors on the estimation accuracy of the EHGO is analyzed. Finally, the numerical simulation is performed to illustrate the validity of the method proposed in this paper.

  1. God and Guns: Examining Religious Influences on Gun Control Attitudes in the United States

    Directory of Open Access Journals (Sweden)

    Stephen M. Merino

    2018-06-01

    Full Text Available Mass shootings in the United States have generated significant media coverage and public concern, invigorating debates over gun control. Media coverage and academic research on gun control attitudes and reactions to mass shootings have paid little attention to the role of religion. Recent research sheds light on the complex relationship between religion and guns, including higher rates of gun ownership and stronger opposition to gun control among white evangelical Protestants. Using nationally representative survey data, this study examines the relationship between religious identity, gun ownership, and support for a range of gun control policies, including proposed remedies for preventing mass shootings. Compared with individuals from other religious traditions, evangelical Protestants are most opposed to stricter gun control laws and enforcement, even with statistical controls for gun ownership and demographic characteristics. Rather, they favor individualistic solutions and putting more emphasis on religious values in their social surroundings. I discuss how these findings reflect the cultural tools evangelical Protestants use to construct their understandings of social problems, including gun violence, and the broader implications for gun policy in the United States.

  2. MICROSCOPE mission: drag-free and attitude control system expertise activities toward the scientific team

    Science.gov (United States)

    Delavault, Stéphanie; Prieur, Pascal; Liénart, Thomas; Robert, Alain; Guidotti, Pierre-Yves

    2018-04-01

    Microscope is a CNES-ESA-ONERA-CNRS-OCA-DLR-ZARM mission dedicated to the test of the Equivalence Principle with an improved accuracy of 10-15. The 300 kg drag-free microsatellite was launched on April 25th 2016 into a 710 km dawndusk sun-synchronous orbit for a 2-year mission. To comply with stringent requirements, the drag-free and attitude control system (DFACS) involves the scientific accelerometer as main sensor and a set of 8 cold gas proportional thrusters. Once in mission mode, within the CNES drag-free expertise center (CECT) the DFACS team provides several services to the system and to the scientific mission center: cold gas monitoring and management, `Attitude' ancillary data, DFACS expertise ancillary data. For this purpose, expertise tools have been implemented in the CECT, using the flexibility and efficiency of Matlab™ utilities. This paper presents the role of the CECT within the mission and details the expertise activities of the DFACS team illustrated with some typical in flight results.

  3. Numerical analysis of orbital transfers to Mars using solar sails and attitude control

    Science.gov (United States)

    Pereira, M. C.; de Melo, C. F.; Meireles, L. G.

    2017-10-01

    Solar sails present a promising alternative method of propulsion for the coming phases of the space exploration. With the recent advances in materials engineering, the construction of lighter and more resistant materials capable of impelling spaceships with the use of solar radiation pressure has become increasingly viable technologically and economically. The studies, simulations and analysis of orbital transfers from Earth to Mars proposed in this work were implemented considering the use of a flat solar sail. Maneuvers considering the delivery of a sailcraft from a Low Earth Orbit to the border of the Earth’s sphere of influence and interplanetary trajectories to Mars were investigated. A set of simulations were implemented varying the attitude of the sail relative to the Sun. Results show that a sailcraft can carry out transfers with final velocity with respect to Mars smaller than the interplanetary Patched-conic approximation, although this requires a longer time of transfers, provided the attitude of the sailcraft relative to the Sun can be controlled in some points of the trajectories.

  4. The role of tobacco-specific media exposure, knowledge, and smoking status on selected attitudes toward tobacco control.

    Science.gov (United States)

    Blake, Kelly D; Viswanath, K; Blendon, Robert J; Vallone, Donna

    2010-02-01

    In August 2007, the President's Cancer Panel urged the leadership of the nation to "summon the political will to address the public health crisis caused by tobacco use" (President's Cancer Panel, N, 2007, Promoting healthy lifestyles: Policy, program, and personal recommendations for reducing cancer risk. http://deainfo.nci.nih.gov/advisory/pcp/pcp07rpt/pcp07rpt.pdf). While some research has examined predictors of public support for tobacco control measures, little research has examined modifiable factors that may influence public attitudes toward tobacco control. We used the American Legacy Foundation's 2003 American Smoking and Health Survey 2 to examine the contribution of smoking status, knowledge of the negative effects of tobacco, and tobacco-specific media exposure (antitobacco messages, news coverage of tobacco issues, and protobacco advertising) on U.S. adults' attitudes toward tobacco control. In addition, we assessed whether smoking status moderates the relationship between tobacco-specific media exposure and policy attitudes. Weighted multivariable logistic regression models were employed. Results suggest that knowledge of the negative effects of tobacco and smoking status are associated with attitudes toward tobacco control and that exposure to tobacco-specific information in the media plays a role only in some instances. We found no evidence of effect modification by smoking status on the impact of exposure to tobacco-specific media on attitudes toward tobacco control. Understanding the impact of readily modifiable factors that shape policy attitudes is essential if we are to target outreach and education in a way that is likely to sway public support for tobacco control.

  5. Roles of superconducting magnetic bearings and active magnetic bearings in attitude control and energy storage flywheel

    International Nuclear Information System (INIS)

    Tang Jiqiang; Fang Jiancheng; Ge, Shuzhi Sam

    2012-01-01

    Compared with conventional energy storage flywheel, the rotor of attitude control and energy storage flywheel (ACESF) used in space not only has high speed, but also is required to have precise and stable direction. For the presented superconducting magnetic bearing (SMB) and active magnetic bearing (AMB) suspended ACESF, the rotor model including gyroscopic couples is established originally by taking the properties of SMB and AMB into account, the forces of SMB and AMB are simplified by linearization within their own neighbors of equilibrium points. For the high-speed rigid discal rotor with large inertia, the negative effect of gyroscopic effect of rotor is prominent, the radial translation and tilting movement of rotor suspended by only SMB, SMB with equivalent PMB, or SMB together with PD controlled AMB are researched individually. These analysis results proved originally that SMB together with AMB can make the rotor be stable and make the radial amplitude of the vibration of rotor be small while the translation of rotor suspended by only SMB or SMB and PM is not stable and the amplitude of this vibration is large. For the stability of the high-speed rotor in superconducting ACESF, the AMB can suppress the nutation and precession of rotor effectively by cross-feedback control based on the separated PD type control or by other modern control methods.

  6. Case-based e-learning to improve the attitude of medical students towards occupational health, a randomised controlled trial.

    Science.gov (United States)

    Smits, P B A; de Graaf, L; Radon, K; de Boer, A G; Bos, N R; van Dijk, F J H; Verbeek, J H A M

    2012-04-01

    Undergraduate medical teaching in occupational health (OH) is a challenge in universities around the world. Case-based e-learning with an attractive clinical context could improve the attitude of medical students towards OH. The study question is whether case-based e-learning for medical students is more effective in improving knowledge, satisfaction and a positive attitude towards OH than non-case-based textbook learning. Participants, 141 second year medical students, were randomised to either case-based e-learning or text-based learning. Outcome measures were knowledge, satisfaction and attitude towards OH, measured at baseline, directly after the intervention, after 1 week and at 3-month follow-up. Of the 141 participants, 130 (92%) completed the questionnaires at short-term follow-up and 41 (29%) at 3-month follow-up. At short-term follow-up, intervention and control groups did not show a significant difference in knowledge nor satisfaction but attitude towards OH was significantly more negative in the intervention group (F=4.041, p=0.047). At 3-month follow-up, there were no significant differences between intervention and control groups for knowledge, satisfaction and attitude. We found a significant decrease in favourable attitude during the internship in the experimental group compared with the control group. There were no significant differences in knowledge or satisfaction between case-based e-learning and text-based learning. The attitude towards OH should be further investigated as an outcome of educational programmes.

  7. Spacecraft Pointing and Position Control,

    Science.gov (United States)

    1981-11-01

    manpower resources, it will be more difficult in the future to find skilled and experienced staff for operational systems and staffing costs will rise...In Eq. (6) n is the Earths’ angular velocity of rotation and L the station right ascen- sion, whereag U is the geocentric gravitational constant. The

  8. Mechanical Design of Spacecraft

    Science.gov (United States)

    1962-01-01

    In the spring of 1962, engineers from the Engineering Mechanics Division of the Jet Propulsion Laboratory gave a series of lectures on spacecraft design at the Engineering Design seminars conducted at the California Institute of Technology. Several of these lectures were subsequently given at Stanford University as part of the Space Technology seminar series sponsored by the Department of Aeronautics and Astronautics. Presented here are notes taken from these lectures. The lectures were conceived with the intent of providing the audience with a glimpse of the activities of a few mechanical engineers who are involved in designing, building, and testing spacecraft. Engineering courses generally consist of heavily idealized problems in order to allow the more efficient teaching of mathematical technique. Students, therefore, receive a somewhat limited exposure to actual engineering problems, which are typified by more unknowns than equations. For this reason it was considered valuable to demonstrate some of the problems faced by spacecraft designers, the processes used to arrive at solutions, and the interactions between the engineer and the remainder of the organization in which he is constrained to operate. These lecture notes are not so much a compilation of sophisticated techniques of analysis as they are a collection of examples of spacecraft hardware and associated problems. They will be of interest not so much to the experienced spacecraft designer as to those who wonder what part the mechanical engineer plays in an effort such as the exploration of space.

  9. Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight

    Science.gov (United States)

    Bloomberg, Jacob J.; Reschke, Millard F.; Clement, Gilles R.; Mulavara, Ajitkumar P.; Taylor, Laura C..

    2015-01-01

    Control of vehicles and other complex systems is a high-level integrative function of the central nervous system (CNS). It requires well-functioning subsystem performance, including good visual acuity, eye-hand coordination, spatial and geographic orientation perception, and cognitive function. Evidence from space flight research demonstrates that the function of each of these subsystems is altered by removing gravity, a fundamental orientation reference, which is sensed by vestibular, proprioceptive, and haptic receptors and used by the CNS for spatial orientation, posture, navigation, and coordination of movements. The available evidence also shows that the degree of alteration of each subsystem depends on a number of crew- and mission-related factors. There is only limited operational evidence that these alterations cause functional impacts on mission-critical vehicle (or complex system) control capabilities. Furthermore, while much of the operational performance data collected during space flight has not been available for independent analysis, those that have been reviewed are somewhat equivocal owing to uncontrolled (and/or unmeasured) environmental and/or engineering factors. Whether this can be improved by further analysis of previously inaccessible operational data or by development of new operational research protocols remains to be seen. The true operational risks will be estimable only after we have filled the knowledge gaps and when we can accurately assess integrated performance in off-nominal operational settings (Paloski et al. 2008). Thus, our current understanding of the Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space flight is limited primarily to extrapolation of scientific research findings, and, since there are limited ground-based analogs of the sensorimotor and vestibular changes associated with space flight, observation of their functional

  10. The Attitudes of Indian Palliative-care Nurses and Physicians to Pain Control and Palliative Sedation.

    Science.gov (United States)

    Gielen, Joris; Gupta, Harmala; Rajvanshi, Ambika; Bhatnagar, Sushma; Mishra, Seema; Chaturvedi, Arvind K; den Branden, Stef Van; Broeckaert, Bert

    2011-01-01

    We wanted to assess Indian palliative-care nurses and physicians' attitudes toward pain control and palliative sedation. From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). The interviewees did not consider administration of painkillers in large doses an ethical problem, provided the pain killers are properly titrated. Mild palliative sedation was considered acceptable. The interviewees disagreed whether palliative sedation can also be deep and continuous. Arguments mentioned against deep continuous palliative sedation were the conviction that it may cause unacceptable side effects, and impedes basic daily activities and social contacts. A few interviewees said that palliative sedation may hasten death. Due to fears and doubts regarding deep continuous palliative sedation, it may sometimes be too easily discarded as a treatment option for refractory symptoms.

  11. The Attitudes of Indian Palliative-care Nurses and Physicians to Pain Control and Palliative Sedation

    Science.gov (United States)

    Gielen, Joris; Gupta, Harmala; Rajvanshi, Ambika; Bhatnagar, Sushma; Mishra, Seema; Chaturvedi, Arvind K; den Branden, Stef Van; Broeckaert, Bert

    2011-01-01

    Aim: We wanted to assess Indian palliative-care nurses and physicians’ attitudes toward pain control and palliative sedation. Materials and Methods: From May to September 2008, we interviewed 14 physicians and 13 nurses working in different palliative-care programs in New Delhi, using a semi-structured questionnaire, and following grounded-theory methodology (Glaser and Strauss). Results: The interviewees did not consider administration of painkillers in large doses an ethical problem, provided the pain killers are properly titrated. Mild palliative sedation was considered acceptable. The interviewees disagreed whether palliative sedation can also be deep and continuous. Arguments mentioned against deep continuous palliative sedation were the conviction that it may cause unacceptable side effects, and impedes basic daily activities and social contacts. A few interviewees said that palliative sedation may hasten death. Conclusion: Due to fears and doubts regarding deep continuous palliative sedation, it may sometimes be too easily discarded as a treatment option for refractory symptoms. PMID:21633619

  12. Cassini Attitude and Articulation Control Subsystem Fault Protection Challenges During Saturn Proximal Orbits

    Science.gov (United States)

    Bates, David M.

    2015-01-01

    NASA's Cassini Spacecraft, launched on October 15th, 1997 arrived at Saturn on June 30th, 2004, is the largest and most ambitious interplanetary spacecraft in history. As the first spacecraft to achieve orbit at Saturn, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended mission through 2017. As part of the final extended mission, Cassini will begin an aggressive and exciting campaign of high inclination low altitude flybys within the inner most rings of Saturn, skimming Saturn's outer atmosphere, until the spacecraft is finally disposed of via planned impact with the planet. This final campaign, known as the proximal orbits, presents unique fault protection related challenges, the details of which are discussed in this paper.

  13. Experimental study on cascaded attitude angle control of a multi-rotor unmanned aerial vehicle with the simple internal model control method

    International Nuclear Information System (INIS)

    Song, Jun Beom; Byun, Young Seop; Jeong, Jin Seok; Kim, Jeong; Kang, Beom Soo

    2016-01-01

    This paper proposes a cascaded control structure and a method of practical application for attitude control of a multi-rotor Unmanned aerial vehicle (UAV). The cascade control, which has tighter control capability than a single-loop control, is rarely used in attitude control of a multi-rotor UAV due to the input-output relation, which is no longer simply a set-point to Euler angle response transfer function of a single-loop PID control, but there are multiply measured signals and interactive control loops that increase the complexity of evaluation in conventional way of design. However, it is proposed in this research a method that can optimize a cascade control with a primary and secondary loops and a PID controller for each loop. An investigation of currently available PID-tuning methods lead to selection of the Simple internal model control (SIMC) method, which is based on the Internal model control (IMC) and direct-synthesis method. Through the analysis and experiments, this research proposes a systematic procedure to implement a cascaded attitude controller, which includes the flight test, system identification and SIMC-based PID-tuning. The proposed method was validated successfully from multiple applications where the application to roll axis lead to a PID-PID cascade control, but the application to yaw axis lead to that of PID-PI

  14. Experimental study on cascaded attitude angle control of a multi-rotor unmanned aerial vehicle with the simple internal model control method

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jun Beom [Dept. of Aviation Maintenance, Dongwon Institute of Science and Technology, Yangsan (Korea, Republic of); Byun, Young Seop; Jeong, Jin Seok; Kim, Jeong; Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-15

    This paper proposes a cascaded control structure and a method of practical application for attitude control of a multi-rotor Unmanned aerial vehicle (UAV). The cascade control, which has tighter control capability than a single-loop control, is rarely used in attitude control of a multi-rotor UAV due to the input-output relation, which is no longer simply a set-point to Euler angle response transfer function of a single-loop PID control, but there are multiply measured signals and interactive control loops that increase the complexity of evaluation in conventional way of design. However, it is proposed in this research a method that can optimize a cascade control with a primary and secondary loops and a PID controller for each loop. An investigation of currently available PID-tuning methods lead to selection of the Simple internal model control (SIMC) method, which is based on the Internal model control (IMC) and direct-synthesis method. Through the analysis and experiments, this research proposes a systematic procedure to implement a cascaded attitude controller, which includes the flight test, system identification and SIMC-based PID-tuning. The proposed method was validated successfully from multiple applications where the application to roll axis lead to a PID-PID cascade control, but the application to yaw axis lead to that of PID-PI.

  15. Revamping Spacecraft Operational Intelligence

    Science.gov (United States)

    Hwang, Victor

    2012-01-01

    The EPOXI flight mission has been testing a new commercial system, Splunk, which employs data mining techniques to organize and present spacecraft telemetry data in a high-level manner. By abstracting away data-source specific details, Splunk unifies arbitrary data formats into one uniform system. This not only reduces the time and effort for retrieving relevant data, but it also increases operational visibility by allowing a spacecraft team to correlate data across many different sources. Splunk's scalable architecture coupled with its graphing modules also provide a solid toolset for generating data visualizations and building real-time applications such as browser-based telemetry displays.

  16. Dips spacecraft integration issues

    International Nuclear Information System (INIS)

    Determan, W.R.; Harty, R.B.

    1988-01-01

    The Department of Energy, in cooperation with the Department of Defense, has recently initiated the dynamic isotope power system (DIPS) demonstration program. DIPS is designed to provide 1 to 10 kW of electrical power for future military spacecraft. One of the near-term missions considered as a potential application for DIPS was the boost surveillance and tracking system (BSTS). A brief review and summary of the reasons behind a selection of DIPS for BSTS-type missions is presented. Many of these are directly related to spacecraft integration issues; these issues will be reviewed in the areas of system safety, operations, survivability, reliability, and autonomy

  17. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  18. Knowledge, attitude and practice of exercise for plasma blood glucose control among patients with type-2 diabetes.

    Science.gov (United States)

    Awotidebe, Taofeek O; Adedoyin, Rufus A; Afolabi, Mubaraq A; Opiyo, Rose

    2016-01-01

    Exercise plays significant role in the health outcomes of patients with diabetes, however, little is known about patients' knowledge of exercise for plasma blood glucose control among patients with type-2 diabetes (T2D). This study investigated knowledge, attitude and practice (KAP) of exercise for plasma blood glucose control among patients with T2D. This cross-sectional study recruited 299 patients with T2D (male=105; female=194) from selected government hospitals in Osun State, Nigeria using purposive sampling technique. Validated questionnaires were used to assess of exercise for plasma blood glucose control and socioeconomic status (SES) of the patients. Data were analysed using descriptive and inferential statistics. Alpha level was set at exercise whilst 269(90.0%) had negative attitude to exercise practice. Less than a third, 82(27.4%) engaged in exercise practice for plasma blood glucose control. There was significant association between knowledge and practice of exercise ((2)=12.535; p=0.002). Furthermore, significant associations were found between knowledge and gender ((2)=11.453; p=0.003), and socioeconomic status ((2)=29.127, p=0.001) but not associated with attitude towards exercise (p>0.05). Patients with demonstrated good knowledge of exercise for plasma blood glucose control but reported negative attitude and poor practice of exercise. Copyright © 2016. Published by Elsevier Ltd.

  19. Computer program for post-flight evaluation of the control surface response for an attitude controlled missile

    Science.gov (United States)

    Knauber, R. N.

    1982-01-01

    A FORTRAN IV coded computer program is presented for post-flight analysis of a missile's control surface response. It includes preprocessing of digitized telemetry data for time lags, biases, non-linear calibration changes and filtering. Measurements include autopilot attitude rate and displacement gyro output and four control surface deflections. Simple first order lags are assumed for the pitch, yaw and roll axes of control. Each actuator is also assumed to be represented by a first order lag. Mixing of pitch, yaw and roll commands to four control surfaces is assumed. A pseudo-inverse technique is used to obtain the pitch, yaw and roll components from the four measured deflections. This program has been used for over 10 years on the NASA/SCOUT launch vehicle for post-flight analysis and was helpful in detecting incipient actuator stall due to excessive hinge moments. The program is currently set up for a CDC CYBER 175 computer system. It requires 34K words of memory and contains 675 cards. A sample problem presented herein including the optional plotting requires eleven (11) seconds of central processor time.

  20. Aerospace Vehicle Design, Spacecraft Section. Final Project Reports. Volume 2; Project Groups 6-8

    Science.gov (United States)

    1989-01-01

    Three groups of student engineers in an aerospace vehicle design course present their designs for a vehicle that can be used to resupply the Space Station Freedam and provide emergency crew return to earth capability. The vehicle's requirements include a lifetime that exceeds six years, low cost, the capability for withstanding pressurization, launch, orbit, and reentry hazards, and reliability. The vehicle's subsystems are structures, communication and command data systems, attitude and articulation control, life support and crew systems, power and propulsion, reentry and recovery systems, and mission management, planning, and costing. Special attention is given to spacecraft communications.

  1. The Role of Episodic Memory in Controlled Evaluative Judgments about Attitudes: An Event-Related Potential Study

    Science.gov (United States)

    Johnson, Ray, Jr.; Simon, Elizabeth J.; Henkell, Heather; Zhu, John

    2011-01-01

    Event-related potentials (ERPs) are unique in their ability to provide information about the timing of activity in the neural networks that perform complex cognitive processes. Given the dearth of extant data from normal controls on the question of whether attitude representations are stored in episodic or semantic memory, the goal here was to…

  2. The effect of a national mastitis control program on the attitudes, knowledge, and behavior of farmers in the Netherlands

    NARCIS (Netherlands)

    Jansen, J.; Schaik, van G.; Renes, R.J.; Lam, T.J.G.M.

    2010-01-01

    Over the years, much effort has been put into implementing mastitis control programs in herds. To further improve utilization of such programs, there needs to be an understanding of the attitudes, knowledge, and behavior of farmers regarding udder health, and the way this can be influenced by

  3. A Confirmatory Factor Analysis of Preservice Teachers' Responses to the Attitudes and Beliefs on Classroom Control Inventory.

    Science.gov (United States)

    Henson, Robin K.; Roberts, J. Kyle

    This study examined the factorial invariance of scores from the Attitudes and Beliefs on Classroom Control Inventory (ABCC) (Martin and others, 1998) for 243 undergraduate preservice teachers. Although the original ABCC was developed with inservice teachers, use of the instrument to study the classroom beliefs of preservice teachers had not been…

  4. Intelligent spacecraft module

    Science.gov (United States)

    Oungrinis, Konstantinos-Alketas; Liapi, Marianthi; Kelesidi, Anna; Gargalis, Leonidas; Telo, Marinela; Ntzoufras, Sotiris; Paschidi, Mariana

    2014-12-01

    The paper presents the development of an on-going research project that focuses on a human-centered design approach to habitable spacecraft modules. It focuses on the technical requirements and proposes approaches on how to achieve a spatial arrangement of the interior that addresses sufficiently the functional, physiological and psychosocial needs of the people living and working in such confined spaces that entail long-term environmental threats to human health and performance. Since the research perspective examines the issue from a qualitative point of view, it is based on establishing specific relationships between the built environment and its users, targeting people's bodily and psychological comfort as a measure toward a successful mission. This research has two basic branches, one examining the context of the system's operation and behavior and the other in the direction of identifying, experimenting and formulating the environment that successfully performs according to the desired context. The latter aspect is researched upon the construction of a scaled-model on which we run series of tests to identify the materiality, the geometry and the electronic infrastructure required. Guided by the principles of sensponsive architecture, the ISM research project explores the application of the necessary spatial arrangement and behavior for a user-centered, functional interior where the appropriate intelligent systems are based upon the existing mechanical and chemical support ones featured on space today, and especially on the ISS. The problem is set according to the characteristics presented at the Mars500 project, regarding the living quarters of six crew-members, along with their hygiene, leisure and eating areas. Transformable design techniques introduce spatial economy, adjustable zoning and increased efficiency within the interior, securing at the same time precise spatial orientation and character at any given time. The sensponsive configuration is

  5. Docking Offset Between the Space Shuttle and the International Space Station and Resulting Impacts to the Transfer of Attitude Reference and Control

    Science.gov (United States)

    Helms, W. Jason; Pohlkamp, Kara M.

    2011-01-01

    The Space Shuttle does not dock at an exact 90 degrees to the International Space Station (ISS) x-body axis. This offset from 90 degrees, along with error sources within their respective attitude knowledge, causes the two vehicles to never completely agree on their attitude, even though they operate as a single, mated stack while docked. The docking offset can be measured in flight when both vehicles have good attitude reference and is a critical component in calculations to transfer attitude reference from one vehicle to another. This paper will describe how the docking offset and attitude reference errors between both vehicles are measured and how this information would be used to recover Shuttle attitude reference from ISS in the event of multiple failures. During STS-117, ISS on-board Guidance, Navigation and Control (GNC) computers began having problems and after several continuous restarts, the systems failed. The failure took the ability for ISS to maintain attitude knowledge. This paper will also demonstrate how with knowledge of the docking offset, the contingency procedure to recover Shuttle attitude reference from ISS was reversed in order to provide ISS an attitude reference from Shuttle. Finally, this paper will show how knowledge of the docking offset can be used to speed up attitude control handovers from Shuttle to ISS momentum management. By taking into account the docking offset, Shuttle can be commanded to hold a more precise attitude which better agrees with the ISS commanded attitude such that start up transients with the ISS momentum management controllers are reduced. By reducing start-up transients, attitude control can be transferred from Shuttle to ISS without the use of ISS thrusters saving precious on-board propellant, crew time and minimizing loads placed upon the mated stack.

  6. About the Big Graphs Arising when Forming the Diagnostic Models in a Reconfigurable Computing Field of Functional Monitoring and Diagnostics System of the Spacecraft Onboard Control Complex

    Directory of Open Access Journals (Sweden)

    L. V. Savkin

    2015-01-01

    Full Text Available One of the problems in implementation of the multipurpose complete systems based on the reconfigurable computing fields (RCF is the problem of optimum redistribution of logicalarithmetic resources in growing scope of functional tasks. Irrespective of complexity, all of them are transformed into an orgraph, which functional and topological structure is appropriately imposed on the RCF based, as a rule, on the field programmable gate array (FPGA.Due to limitation of the hardware configurations and functions realized by means of the switched logical blocks (SLB, the abovementioned problem becomes even more critical when there is a need, within the strictly allocated RCF fragment, to realize even more complex challenge in comparison with the problem which was solved during the previous computing step. In such cases it is possible to speak about graphs of big dimensions with respect to allocated RCF fragment.The article considers this problem through development of diagnostic algorithms to implement diagnostics and control of an onboard control complex of the spacecraft using RCF. It gives examples of big graphs arising with respect to allocated RCF fragment when forming the hardware levels of a diagnostic model, which, in this case, is any hardware-based algorithm of diagnostics in RCF.The article reviews examples of arising big graphs when forming the complicated diagnostic models due to drastic difference in formation of hardware levels on closely located RCF fragments. It also pays attention to big graphs emerging when the multichannel diagnostic models are formed.Three main ways to solve the problem of big graphs with respect to allocated RCF fragment are given. These are: splitting the graph into fragments, use of pop-up windows with relocating and memorizing intermediate values of functions of high hardware levels of diagnostic models, and deep adaptive update of diagnostic model.It is shown that the last of three ways is the most efficient

  7. Venus radar mapper attitude reference quaternion

    Science.gov (United States)

    Lyons, D. T.

    1986-01-01

    Polynomial functions of time are used to specify the components of the quaternion which represents the nominal attitude of the Venus Radar mapper spacecraft during mapping. The following constraints must be satisfied in order to obtain acceptable synthetic array radar data: the nominal attitude function must have a large dynamic range, the sensor orientation must be known very accurately, the attitude reference function must use as little memory as possible, and the spacecraft must operate autonomously. Fitting polynomials to the components of the desired quaternion function is a straightforward method for providing a very dynamic nominal attitude using a minimum amount of on-board computer resources. Although the attitude from the polynomials may not be exactly the one requested by the radar designers, the polynomial coefficients are known, so they do not contribute to the attitude uncertainty. Frequent coefficient updates are not required, so the spacecraft can operate autonomously.

  8. (abstract) ARGOS: a System to Monitor Ulysses Nutation and Thruster Firings from Variations of the Spacecraft Radio Signal

    Science.gov (United States)

    McElrath, T. P.; Cangahuala, L. A.; Miller, K. J.; Stravert, L. R.; Garcia-Perez, Raul

    1995-01-01

    Ulysses is a spin-stabilized spacecraft that experienced significant nutation after its launch in October 1990. This was due to the Sun-spacecraft-Earth geometry, and a study of the phenomenon predicted that the nutation would again be a problem during 1994-95. The difficulty of obtaining nutation estimates in real time from the spacecraft telemetry forced the ESA/NASA Ulysses Team to explore alternative information sources. The work performed by the ESA Operations Team provided a model for a system that uses the radio signal strength measurements to monitor the spacecraft dynamics. These measurements (referred to as AGC) are provided once per second by the tracking stations of the DSN. The system was named ARGOS (Attitude Reckoning from Ground Observable Signals) after the ever-vigilant, hundred-eyed giant of Greek Mythology. The ARGOS design also included Doppler processing, because Doppler shifts indicate thruster firings commanded by the active nutation control carried out onboard the spacecraft. While there is some visibility into thruster activity from telemetry, careful processing of the high-sample-rate Doppler data provides an accurate means of detecting the presence and time of thruster firings. DSN Doppler measurements are available at a ten-per-second rate in the same tracking data block as the AGC data.

  9. The prevalence of weight – controlling attitude and eating disorders and their association with anthropometric indices in female adolescent students

    Directory of Open Access Journals (Sweden)

    mohamad hasan Eftekhari

    2015-01-01

    Full Text Available Background : Adolescence is one of the most critical growth periods in the human's life. Eating disorder is one of the most common nutritional-psychological disorders in this period, which can lead to acute and chronic physical and mental problems. Therefore, regarding the importance of the topic, the present study was designed to determine the prevalence of weight – controlling attitude and eating disorders, and their association with anthropometric indices in female adolescent school students. Materials and Methods: The present study was a cross-sectional descriptive analytical study. 594 high school adolescent girls were selected using multi-stage random sampling method. Nutritional attitude was assessed by use of a nutritional attitude questionnaire. Another specific questionnaire was used to gather demographic and anthropometric information. Data analysis was done using SPSS software, independent t- test and Chi-square (P˂0.05. Results: The information shows that 80% of the studied population are at risk of eating disorders. The number of the obese , over weight and underweight students were significantly more in the group with nutritional attitude disorders. Conclusion: Due to the high prevalence of eating disorders in adolescent girls, and the concomitant obesity and underweight with these disorders, the correction of these attitude could be mentioned as a health priority in this city

  10. The determination of the attitude and attitude dynamics of TeamSat

    DEFF Research Database (Denmark)

    Betto, Maurizio; Jørgensen, John Leif; Riis, Troels

    1999-01-01

    , in space, multiple autonomous processes intended for spacecraft applications such as autonomous star identification, attitude determination and identification and tracking of non-stellar objects, imaging and real-time compression of image and science data for further ground analysis. AVS successfully...... determined the attitude and attitude dynamics of TeamSat....

  11. Autonomous Spacecraft Communication Interface for Load Planning

    Science.gov (United States)

    Dever, Timothy P.; May, Ryan D.; Morris, Paul H.

    2014-01-01

    Ground-based controllers can remain in continuous communication with spacecraft in low Earth orbit (LEO) with near-instantaneous communication speeds. This permits near real-time control of all of the core spacecraft systems by ground personnel. However, as NASA missions move beyond LEO, light-time communication delay issues, such as time lag and low bandwidth, will prohibit this type of operation. As missions become more distant, autonomous control of manned spacecraft will be required. The focus of this paper is the power subsystem. For present missions, controllers on the ground develop a complete schedule of power usage for all spacecraft components. This paper presents work currently underway at NASA to develop an architecture for an autonomous spacecraft, and focuses on the development of communication between the Mission Manager and the Autonomous Power Controller. These two systems must work together in order to plan future load use and respond to unanticipated plan deviations. Using a nominal spacecraft architecture and prototype versions of these two key components, a number of simulations are run under a variety of operational conditions, enabling development of content and format of the messages necessary to achieve the desired goals. The goals include negotiation of a load schedule that meets the global requirements (contained in the Mission Manager) and local power system requirements (contained in the Autonomous Power Controller), and communication of off-plan disturbances that arise while executing a negotiated plan. The message content is developed in two steps: first, a set of rapid-prototyping "paper" simulations are preformed; then the resultant optimized messages are codified for computer communication for use in automated testing.

  12. Attitudes Toward Obese Persons and Weight Locus of Control in Chinese Nurses: A Cross-sectional Survey.

    Science.gov (United States)

    Wang, Yan; Ding, Ye; Song, Daoping; Zhu, Daqiao; Wang, Jianrong

    2016-01-01

    Obese individuals frequently experience weight-related bias or discrimination-even in healthcare settings. Although obesity bias has been associated with several demographic factors, little is known about the association of weight locus of control with bias against overweight persons or about weight bias among Chinese health professionals. The aim of the study was to examine attitudes toward obese patients in a sample of Chinese registered nurses (RNs) and the relationship between weight bias and nurses' weight locus of control. RNs working in nine community health service centers across Shanghai, China, answered three self-report questionnaires: The Attitudes Toward Obese Persons Scale (ATOP), the External Weight Locus of Control Subscale (eWLOC) from the Dieting Belief Scale, and a sociodemographic profile. Hierarchical, stepwise, multiple regression was used to predict ATOP scores. From among 385 invited, a total of 297 RNs took part in the study (77.1% response rate). Participants scored an average of 71.04 on the ATOP, indicating slightly positive attitudes toward obese persons, and 30.08 on the eWLOC, indicating a belief in the uncontrollability of body weight. Using hierarchical, stepwise, multiple regression, two predictors of ATOP scores were statistically significant (eWLOC scores and status as a specialist rather than generalist nurse), but explained variance was low. Chinese RNs seemed to have relatively neutral or even slightly positive attitudes toward obese persons. Those nurses who believed that obesity was beyond the individual's control or worked in specialties were more likely to have positive attitudes toward obese people. Improved understanding of the comprehensive etiology of obesity is needed.

  13. Educating early childhood care and education providers to improve knowledge and attitudes about reporting child maltreatment: A randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Ben Mathews

    Full Text Available Early childhood care and education providers (CCPs work with over 7 million young children. These children are vulnerable to physical, sexual and emotional abuse, and neglect. However, CCPs make less than 1% of all reports of suspected child abuse and neglect that are made to child protective services. CCPs are therefore an untapped resource in the public health response to child maltreatment. However, their knowledge and attitudes about duties to report child maltreatment are poorly understood. Moreover, no rigorous research has tested whether their knowledge and attitudes about reporting child maltreatment can be improved. These gaps in knowledge are important because knowledge of the duty and positive attitudes towards it produce more effective reporting, and little evidence exists about how to enhance cognitive and affective attributes. Using the CONSORT approach, we report a single-blind test-retest randomized controlled trial evaluating iLook Out for Child Abuse, a customized online educational intervention for CCPs to increase knowledge and attitudes towards the reporting duty. 762 participants were randomized with results analyzed for 741 participants (372 in the intervention group; 369 in the control. Knowledge of the reporting duty increased in the intervention group from 13.54 to 16.19 out of 21 (2.65 increase, 95% CI: (2.37, 2.93; large effect size 0.95, p < 0.001; the control group remained stable, moving from 13.54 to 13.59 (0.05 increase, 95% CI: (-0.12, 0.22; negligible effect size 0.03, p = 0.684. Attitudes were enhanced on all 13 items for the intervention group, remaining stable in the control, with significant differences between groups on all items (p < 0.05. Gains were largely sustained at four month follow-up. Findings support education for CCPs and other professions. Future research should also explore effects of education on reporting behavior.US National Institutes of Health NCT02225301.

  14. The effect of family climate on risky driving of young novices: the moderating role of attitude and locus of control.

    Science.gov (United States)

    Carpentier, Aline; Brijs, Kris; Declercq, Katrien; Brijs, Tom; Daniels, Stijn; Wets, Geert

    2014-12-01

    The aim of the study was to examine the relative importance of young novice drivers' family climate on their driving behavior. A sample of young novice drivers (N=171) between the age of 17 and 24, who held their permanent (or temporary) driver's license for no longer than one year, participated. The questionnaire included items related to the participants' family climate, 3 socio-cognitive determinants (i.e., attitude, locus of control and social norm), and risky driving behaviors. We expected both family climate and the socio-cognitive determinants to exert a direct effect on risky driving. Furthermore we hypothesized that the socio-cognitive determinants would moderate the impact of family climate on risky driving. The results showed that the effect of family climate on risky driving only originated from one single factor (i.e., noncommitment). Besides that, the results confirmed the importance of the three socio-cognitive determinants to the degree that attitude, locus of control, and social norm significantly predicted the self-reported risky driving. In line of what we hypothesized, attitude moderated the relationship between noncommitment and risky driving. Lastly, we found an unexpected three-way interaction which indicated that locus of control moderated the relation between noncommitment and risky driving only when young drivers' attitude was risk-supportive. We recommend scholars and practitioners to take into account the interaction between external sources of influence (such as an individual's family climate) and more personally oriented dispositions (such as an individual's attitude, social norm and locus of control) when trying to explain and change young novices' risky driving. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Educating early childhood care and education providers to improve knowledge and attitudes about reporting child maltreatment: A randomized controlled trial.

    Science.gov (United States)

    Mathews, Ben; Yang, Chengwu; Lehman, Erik B; Mincemoyer, Claudia; Verdiglione, Nicole; Levi, Benjamin H

    2017-01-01

    Early childhood care and education providers (CCPs) work with over 7 million young children. These children are vulnerable to physical, sexual and emotional abuse, and neglect. However, CCPs make less than 1% of all reports of suspected child abuse and neglect that are made to child protective services. CCPs are therefore an untapped resource in the public health response to child maltreatment. However, their knowledge and attitudes about duties to report child maltreatment are poorly understood. Moreover, no rigorous research has tested whether their knowledge and attitudes about reporting child maltreatment can be improved. These gaps in knowledge are important because knowledge of the duty and positive attitudes towards it produce more effective reporting, and little evidence exists about how to enhance cognitive and affective attributes. Using the CONSORT approach, we report a single-blind test-retest randomized controlled trial evaluating iLook Out for Child Abuse, a customized online educational intervention for CCPs to increase knowledge and attitudes towards the reporting duty. 762 participants were randomized with results analyzed for 741 participants (372 in the intervention group; 369 in the control). Knowledge of the reporting duty increased in the intervention group from 13.54 to 16.19 out of 21 (2.65 increase, 95% CI: (2.37, 2.93); large effect size 0.95, p < 0.001); the control group remained stable, moving from 13.54 to 13.59 (0.05 increase, 95% CI: (-0.12, 0.22); negligible effect size 0.03, p = 0.684). Attitudes were enhanced on all 13 items for the intervention group, remaining stable in the control, with significant differences between groups on all items (p < 0.05). Gains were largely sustained at four month follow-up. Findings support education for CCPs and other professions. Future research should also explore effects of education on reporting behavior. US National Institutes of Health NCT02225301.

  16. Position, Attitude, and Fault-Tolerant Control of Tilting-Rotor Quadcopter

    Science.gov (United States)

    Kumar, Rumit

    The aim of this thesis is to present algorithms for autonomous control of tilt-rotor quadcopter UAV. In particular, this research work describes position, attitude and fault tolerant control in tilt-rotor quadcopter. Quadcopters are one of the most popular and reliable unmanned aerial systems because of the design simplicity, hovering capabilities and minimal operational cost. Numerous applications for quadcopters have been explored all over the world but very little work has been done to explore design enhancements and address the fault-tolerant capabilities of the quadcopters. The tilting rotor quadcopter is a structural advancement of traditional quadcopter and it provides additional actuated controls as the propeller motors are actuated for tilt which can be utilized to improve efficiency of the aerial vehicle during flight. The tilting rotor quadcopter design is accomplished by using an additional servo motor for each rotor that enables the rotor to tilt about the axis of the quadcopter arm. Tilting rotor quadcopter is a more agile version of conventional quadcopter and it is a fully actuated system. The tilt-rotor quadcopter is capable of following complex trajectories with ease. The control strategy in this work is to use the propeller tilts for position and orientation control during autonomous flight of the quadcopter. In conventional quadcopters, two propellers rotate in clockwise direction and other two propellers rotate in counter clockwise direction to cancel out the effective yawing moment of the system. The variation in rotational speeds of these four propellers is utilized for maneuvering. On the other hand, this work incorporates use of varying propeller rotational speeds along with tilting of the propellers for maneuvering during flight. The rotational motion of propellers work in sync with propeller tilts to control the position and orientation of the UAV during the flight. A PD flight controller is developed to achieve various modes of the

  17. Cluster PEACE observations of electrons of spacecraft origin

    Directory of Open Access Journals (Sweden)

    S. Szita

    2001-09-01

    Full Text Available The two PEACE (Plasma Electron And Current Experiment sensors on board each Cluster spacecraft sample the electron velocity distribution across the full 4 solid angle and the energy range 0.7 eV to 26 keV with a time resolution of 4 s. We present high energy and angular resolution 3D observations of electrons of spacecraft origin in the various environments encountered by the Cluster constellation, including a lunar eclipse interval where the spacecraft potential was reduced but remained positive, and periods of ASPOC (Active Spacecraft POtential Control operation which reduced the spacecraft potential. We demonstrate how the spacecraft potential may be found from a gradient change in the PEACE low energy spectrum, and show how the observed spacecraft electrons are confined by the spacecraft potential. We identify an intense component of the spacecraft electrons with energies equivalent to the spacecraft potential, the arrival direction of which is seen to change when ASPOC is switched on. Another spacecraft electron component, observed in the sunward direction, is reduced in the eclipse but unaffected by ASPOC, and we believe this component is produced in the analyser by solar UV. We find that PEACE anodes with a look direction along the spacecraft surfaces are more susceptible to spacecraft electron contamination than those which look perpendicular to the surface, which justifies the decision to mount PEACE with its field-of-view radially outward rather than tangentially.Key words. Magnetosheric physics (general or miscellaneous Space plasma physics (spacecraft sheaths, wakes, charging

  18. Integrated Power and Attitude Control Design of Satellites Based on a Fuzzy Adaptive Disturbance Observer Using Variable-Speed Control Moment Gyros

    Directory of Open Access Journals (Sweden)

    Zhongyi Chu

    2016-01-01

    Full Text Available To satisfy the requirements for small satellites that seek agile slewing with peak power, this paper investigates integrated power and attitude control using variable-speed control moment gyros (VSCMGs that consider the mass and inertia of gimbals and wheels. The paper also details the process for developing the controller by considering various environments in which the controller may be implemented. A fuzzy adaptive disturbance observer (FADO is proposed to estimate and compensate for the effects of equivalent disturbances. The algorithms can simultaneously track attitude and power. The simulation results illustrate the effectiveness of the control approach, which exhibits an improvement of 80 percent compared with alternate approaches that do not employ a FADO.

  19. Improving the Blood Pressure Control With the ProActive Attitude of Hypertensive Patients Seeking Follow-up Services

    Science.gov (United States)

    Tang, Shangfeng; Bishwajit, Ghose; Ji, Lu; Feng, Da; Fang, Haiqing; Fu, Hang; Shao, Tian; Shao, Piaopiao; Liu, Chunyan; Feng, Zhanchun; Luba, Tegene R.

    2016-01-01

    Abstract Proactive attitude of hypertensive patients seeking follow-up services (FUS) lies at the core of self-efficacy. However, few evidence have shown the activeness of seeking FUS in the context of blood pressure control among hypertensive patients. Improvements in follow-up visits may not just by services itself cause better control of blood pressure among hypertensive patients, rather due to the patient's pro-active attitude of the patient in seeking FUS. A cross-sectional study was carried out in selected rural regions of China to explore the association between blood pressure control and sociodemographic and economic variables and activeness of hypertensive patients in seeking FUS. The primary clinical outcome for this study was blood pressure control (systolic blood pressure seekers were 3.17 times greater than those of passive seekers (odds ratio [OR] = 3.17, 95% confidence interval [CI] = 2.56–3.93, P passively. Proactive attitude of seeking follow-up services can improve blood pressure control among hypertensive patients. PMID:27057859

  20. Streamlined Modeling for Characterizing Spacecraft Anomalous Behavior

    Science.gov (United States)

    Klem, B.; Swann, D.

    2011-09-01

    Anomalous behavior of on-orbit spacecraft can often be detected using passive, remote sensors which measure electro-optical signatures that vary in time and spectral content. Analysts responsible for assessing spacecraft operational status and detecting detrimental anomalies using non-resolved imaging sensors are often presented with various sensing and identification issues. Modeling and measuring spacecraft self emission and reflected radiant intensity when the radiation patterns exhibit a time varying reflective glint superimposed on an underlying diffuse signal contribute to assessment of spacecraft behavior in two ways: (1) providing information on body component orientation and attitude; and, (2) detecting changes in surface material properties due to the space environment. Simple convex and cube-shaped spacecraft, designed to operate without protruding solar panel appendages, may require an enhanced level of preflight characterization to support interpretation of the various physical effects observed during on-orbit monitoring. This paper describes selected portions of the signature database generated using streamlined signature modeling and simulations of basic geometry shapes apparent to non-imaging sensors. With this database, summarization of key observable features for such shapes as spheres, cylinders, flat plates, cones, and cubes in specific spectral bands that include the visible, mid wave, and long wave infrared provide the analyst with input to the decision process algorithms contained in the overall sensing and identification architectures. The models typically utilize baseline materials such as Kapton, paints, aluminum surface end plates, and radiators, along with solar cell representations covering the cylindrical and side portions of the spacecraft. Multiple space and ground-based sensors are assumed to be located at key locations to describe the comprehensive multi-viewing aspect scenarios that can result in significant specular reflection