WorldWideScience

Sample records for space-time modeling approaches

  1. A Reparametrization Approach for Dynamic Space-Time Models

    OpenAIRE

    Lee, Hyeyoung; Ghosh, Sujit K.

    2008-01-01

    Researchers in diverse areas such as environmental and health sciences are increasingly working with data collected across space and time. The space-time processes that are generally used in practice are often complicated in the sense that the auto-dependence structure across space and time is non-trivial, often non-separable and non-stationary in space and time. Moreover, the dimension of such data sets across both space and time can be very large leading to computational difficulties due to...

  2. On discrete models of space-time

    International Nuclear Information System (INIS)

    Horzela, A.; Kempczynski, J.; Kapuscik, E.; Georgia Univ., Athens, GA; Uzes, Ch.

    1992-02-01

    Analyzing the Einstein radiolocation method we come to the conclusion that results of any measurement of space-time coordinates should be expressed in terms of rational numbers. We show that this property is Lorentz invariant and may be used in the construction of discrete models of space-time different from the models of the lattice type constructed in the process of discretization of continuous models. (author)

  3. Space-time modeling of timber prices

    Science.gov (United States)

    Mo Zhou; Joseph Buongriorno

    2006-01-01

    A space-time econometric model was developed for pine sawtimber timber prices of 21 geographically contiguous regions in the southern United States. The correlations between prices in neighboring regions helped predict future prices. The impulse response analysis showed that although southern pine sawtimber markets were not globally integrated, local supply and demand...

  4. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  5. The manifold model for space-time

    International Nuclear Information System (INIS)

    Heller, M.

    1981-01-01

    Physical processes happen on a space-time arena. It turns out that all contemporary macroscopic physical theories presuppose a common mathematical model for this arena, the so-called manifold model of space-time. The first part of study is an heuristic introduction to the concept of a smooth manifold, starting with the intuitively more clear concepts of a curve and a surface in the Euclidean space. In the second part the definitions of the Csub(infinity) manifold and of certain structures, which arise in a natural way from the manifold concept, are given. The role of the enveloping Euclidean space (i.e. of the Euclidean space appearing in the manifold definition) in these definitions is stressed. The Euclidean character of the enveloping space induces to the manifold local Euclidean (topological and differential) properties. A suggestion is made that replacing the enveloping Euclidean space by a discrete non-Euclidean space would be a correct way towards the quantization of space-time. (author)

  6. The space-time model according to dimensional continuous space-time theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2014-01-01

    This article results from the Dimensional Continuous Space-Time Theory for which the introductory theoretician was presented in [1]. A theoretical model of the Continuous Space-Time is presented. The wave equation of time into absolutely stationary empty space referential will be described in detail. The complex time, that is the time fixed on the infinite phase time speed referential, is deduced from the New View of Relativity Theory that is being submitted simultaneously with this article in this congress. Finally considering the inseparable Space-Time is presented the duality equation wave-particle.

  7. Axiomatics of uniform space-time models

    International Nuclear Information System (INIS)

    Levichev, A.V.

    1983-01-01

    The mathematical statement of space-time axiomatics of the special theory of relativity is given; it postulates that the space-time M is the binding single boundary Hausedorf local-compact four-dimensional topological space with the given order. The theorem is proved: if the invariant order in the four-dimensional group M is given by the semi-group P, which contingency K contains inner points , then M is commutative. The analogous theorem is correct for the group of two and three dimensionalities

  8. Space-time modeling of electricity spot prices

    DEFF Research Database (Denmark)

    Abate, Girum Dagnachew; Haldrup, Niels

    In this paper we derive a space-time model for electricity spot prices. A general spatial Durbin model that incorporates the temporal as well as spatial lags of spot prices is presented. Joint modeling of space-time effects is necessarily important when prices and loads are determined in a network...... in the spot price dynamics. Estimation of the spatial Durbin model show that the spatial lag variable is as important as the temporal lag variable in describing the spot price dynamics. We use the partial derivatives impact approach to decompose the price impacts into direct and indirect effects and we show...... that price effects transmit to neighboring markets and decline with distance. In order to examine the evolution of the spatial correlation over time, a time varying parameters spot price spatial Durbin model is estimated using recursive estimation. It is found that the spatial correlation within the Nord...

  9. A composite model of the space-time and 'colors'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1987-03-01

    A pregeometric and pregauge model of the space-time and ''colors'' in which the space-time metric and ''color'' gauge fields are both composite is presented. By the non-triviality of the model, the number of space-time dimensions is restricted to be not larger than the number of ''colors''. The long conjectured space-color correspondence is realized in the model action of the Nambu-Goto type which is invariant under both general-coordinate and local-gauge transformations. (author)

  10. The algebraic approach to space-time geometry

    International Nuclear Information System (INIS)

    Heller, M.; Multarzynski, P.; Sasin, W.

    1989-01-01

    A differential manifold can be defined in terms of smooth real functions carried by it. By rejecting the postulate, in such a definition, demanding the local diffeomorphism of a manifold to the Euclidean space, one obtains the so-called differential space concept. Every subset of R n turns out to be a differential space. Extensive parts of differential geometry on differential spaces, developed by Sikorski, are reviewed and adapted to relativistic purposes. Differential space as a new model of space-time is proposed. The Lorentz structure and Einstein's field equations on differential spaces are discussed. 20 refs. (author)

  11. Approaching space-time through velocity in doubly special relativity

    International Nuclear Information System (INIS)

    Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.

    2004-01-01

    We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived

  12. Discrete random walk models for space-time fractional diffusion

    International Nuclear Information System (INIS)

    Gorenflo, Rudolf; Mainardi, Francesco; Moretti, Daniele; Pagnini, Gianni; Paradisi, Paolo

    2002-01-01

    A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order α is part of (0,2] and skewness θ (moduleθ≤{α,2-α}), and the first-order time derivative with a Caputo derivative of order β is part of (0,1]. Such evolution equation implies for the flux a fractional Fick's law which accounts for spatial and temporal non-locality. The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process that we view as a generalized diffusion process. By adopting appropriate finite-difference schemes of solution, we generate models of random walk discrete in space and time suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation

  13. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying; Stein, Michael L.

    2016-01-01

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  14. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying

    2016-01-28

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  15. Extended Cellular Automata Models of Particles and Space-Time

    Science.gov (United States)

    Beedle, Michael

    2005-04-01

    Models of particles and space-time are explored through simulations and theoretical models that use Extended Cellular Automata models. The expanded Cellular Automata Models consist go beyond simple scalar binary cell-fields, into discrete multi-level group representations like S0(2), SU(2), SU(3), SPIN(3,1). The propagation and evolution of these expanded cellular automatas are then compared to quantum field theories based on the "harmonic paradigm" i.e. built by an infinite number of harmonic oscillators, and with gravitational models.

  16. Space-time trajectories of wind power generation: Parameterized precision matrices under a Gaussian copula approach

    DEFF Research Database (Denmark)

    Tastu, Julija; Pinson, Pierre; Madsen, Henrik

    2015-01-01

    -correlations. Estimation is performed in a maximum likelihood framework. Based on a test case application in Denmark, with spatial dependencies over 15 areas and temporal ones for 43 hourly lead times (hence, for a dimension of n = 645), it is shown that accounting for space-time effects is crucial for generating skilful......Emphasis is placed on generating space-time trajectories of wind power generation, consisting of paths sampled from high-dimensional joint predictive densities, describing wind power generation at a number of contiguous locations and successive lead times. A modelling approach taking advantage...

  17. Space, time, and the third dimension (model error)

    Science.gov (United States)

    Moss, Marshall E.

    1979-01-01

    The space-time tradeoff of hydrologic data collection (the ability to substitute spatial coverage for temporal extension of records or vice versa) is controlled jointly by the statistical properties of the phenomena that are being measured and by the model that is used to meld the information sources. The control exerted on the space-time tradeoff by the model and its accompanying errors has seldom been studied explicitly. The technique, known as Network Analyses for Regional Information (NARI), permits such a study of the regional regression model that is used to relate streamflow parameters to the physical and climatic characteristics of the drainage basin.The NARI technique shows that model improvement is a viable and sometimes necessary means of improving regional data collection systems. Model improvement provides an immediate increase in the accuracy of regional parameter estimation and also increases the information potential of future data collection. Model improvement, which can only be measured in a statistical sense, cannot be quantitatively estimated prior to its achievement; thus an attempt to upgrade a particular model entails a certain degree of risk on the part of the hydrologist.

  18. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  19. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  20. The standard model on non-commutative space-time

    International Nuclear Information System (INIS)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.

    2002-01-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  1. The standard model on non-commutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  2. Hierarchical Bayesian modeling of the space - time diffusion patterns of cholera epidemic in Kumasi, Ghana

    NARCIS (Netherlands)

    Osei, Frank B.; Osei, F.B.; Duker, Alfred A.; Stein, A.

    2011-01-01

    This study analyses the joint effects of the two transmission routes of cholera on the space-time diffusion dynamics. Statistical models are developed and presented to investigate the transmission network routes of cholera diffusion. A hierarchical Bayesian modelling approach is employed for a joint

  3. Space-time latent component Modeling of Geo-referenced health data

    OpenAIRE

    Lawson, Andrew B.; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-01-01

    Latent structure models have been proposed in many applications. For space time health data it is often important to be able to find underlying trends in time which are supported by subsets of small areas. Latent structure modeling is one approach to this analysis. This paper presents a mixture-based approach that can be appied to component selction. The analysis of a Georgia ambulatory asthma county level data set is presented and a simulation-based evaluation is made.

  4. The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models

    International Nuclear Information System (INIS)

    Lovejoy, S.; Lima, M. I. P. de

    2015-01-01

    Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time

  5. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.

    2017-09-01

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.

  6. Field-theoretic approach to gravity in the flat space-time

    Energy Technology Data Exchange (ETDEWEB)

    Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)

    1980-01-01

    In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.

  7. Space-time latent component modeling of geo-referenced health data.

    Science.gov (United States)

    Lawson, Andrew B; Song, Hae-Ryoung; Cai, Bo; Hossain, Md Monir; Huang, Kun

    2010-08-30

    Latent structure models have been proposed in many applications. For space-time health data it is often important to be able to find the underlying trends in time, which are supported by subsets of small areas. Latent structure modeling is one such approach to this analysis. This paper presents a mixture-based approach that can be applied to component selection. The analysis of a Georgia ambulatory asthma county-level data set is presented and a simulation-based evaluation is made. Copyright (c) 2010 John Wiley & Sons, Ltd.

  8. UCLA space-time area law model: A persuasive foundation for hadronization

    International Nuclear Information System (INIS)

    Abachi, S.; Buchanan, C.; Chien, A.; Chun, S.; Hartfiel, B.

    2007-01-01

    From the studies of rates and distributions of heavy quark (c,b) mesons we have developed additional evidence that hadron formation, at least in the simplest environment of e + e - collisions, is dominantly controlled by a space-time area law (''STAL''), an approach suggested by both non-perturbative QCD and relativistic string models. From the dynamics of heavy quarks whose classical space-time world-lines deviate significantly from the light-cone, we report the exact calculation of the relevant space-time area and the derivation of a Lorentz invariant variable, z eff , which reduces to the light-cone momentum fraction z for low mass quarks. Using z eff in the exponent of our fragmentation function in place of z, we find persuasive agreement with L=0,1 charmed and bottom meson data as well as for u,d,s L=0 states. Presuming STAL to be a valid first-order description for all these meson data, we find the scale of other possible second-order effects to be limited to ∝20% or less of the observed rates. The model favors a b-quark mass of ∝4.5 GeV. (orig.)

  9. Space-time uncertainty and approaches to D-brane field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    2008-01-01

    In connection with the space-time uncertainty principle which gives a simple qualitative characterization of non-local or non-commutative nature of short-distance space-time structure in string theory, the author's recent approaches toward field theories for D-branes are briefly outlined, putting emphasis on some key ideas lying in the background. The final section of the present report is devoted partially to a tribute to Yukawa on the occasion of the centennial of his birth. (author)

  10. Researching on Hawking Effect in a Kerr Space Time via Open Quantum System Approach

    International Nuclear Information System (INIS)

    Liu, Wen-Biao; Liu, Xian-Ming

    2014-01-01

    It has been proposed that Hawking radiation from a Schwarzschild or a de Sitter spacetime can be understood as the manifestation of thermalization phenomena in the framework of an open quantum system. Through examining the time evolution of a detector interacting with vacuum massless scalar fields, it is found that the detector would spontaneously excite with a probability the same as the thermal radiation at Hawking temperature. Following the proposals, the Hawking effect in a Kerr space time is investigated in the framework of an open quantum systems. It is shown that Hawking effect of the Kerr space time can also be understood as the the manifestation of thermalization phenomena via open quantum system approach. Furthermore, it is found that near horizon local conformal symmetry plays the key role in the quantum effect of the Kerr space time

  11. Fitted Hanbury-Brown Twiss radii versus space-time variances in flow-dominated models

    Science.gov (United States)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-04-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data.

  12. Fitted Hanbury-Brown-Twiss radii versus space-time variances in flow-dominated models

    International Nuclear Information System (INIS)

    Frodermann, Evan; Heinz, Ulrich; Lisa, Michael Annan

    2006-01-01

    The inability of otherwise successful dynamical models to reproduce the Hanbury-Brown-Twiss (HBT) radii extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the RHIC HBT Puzzle. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source that can be directly computed from the emission function without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models, some of which exhibit significant deviations from simple Gaussian behavior. By Fourier transforming the emission function, we compute the two-particle correlation function, and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and the measured HBT radii remain, we show that a more apples-to-apples comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data

  13. Fitted HBT radii versus space-time variances in flow-dominated models

    International Nuclear Information System (INIS)

    Lisa, Mike; Frodermann, Evan; Heinz, Ulrich

    2007-01-01

    The inability of otherwise successful dynamical models to reproduce the 'HBT radii' extracted from two-particle correlations measured at the Relativistic Heavy Ion Collider (RHIC) is known as the 'RHIC HBT Puzzle'. Most comparisons between models and experiment exploit the fact that for Gaussian sources the HBT radii agree with certain combinations of the space-time widths of the source which can be directly computed from the emission function, without having to evaluate, at significant expense, the two-particle correlation function. We here study the validity of this approach for realistic emission function models some of which exhibit significant deviations from simple Gaussian behaviour. By Fourier transforming the emission function we compute the 2-particle correlation function and fit it with a Gaussian to partially mimic the procedure used for measured correlation functions. We describe a novel algorithm to perform this Gaussian fit analytically. We find that for realistic hydrodynamic models the HBT radii extracted from this procedure agree better with the data than the values previously extracted from the space-time widths of the emission function. Although serious discrepancies between the calculated and measured HBT radii remain, we show that a more 'apples-to-apples' comparison of models with data can play an important role in any eventually successful theoretical description of RHIC HBT data. (author)

  14. A Space-Time Periodic Task Model for Recommendation of Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Xiuhong Zhang

    2018-01-01

    Full Text Available With the rapid development of remote sensing technology, the quantity and variety of remote sensing images are growing so quickly that proactive and personalized access to data has become an inevitable trend. One of the active approaches is remote sensing image recommendation, which can offer related image products to users according to their preference. Although multiple studies on remote sensing retrieval and recommendation have been performed, most of these studies model the user profiles only from the perspective of spatial area or image features. In this paper, we propose a spatiotemporal recommendation method for remote sensing data based on the probabilistic latent topic model, which is named the Space-Time Periodic Task model (STPT. User retrieval behaviors of remote sensing images are represented as mixtures of latent tasks, which act as links between users and images. Each task is associated with the joint probability distribution of space, time and image characteristics. Meanwhile, the von Mises distribution is introduced to fit the distribution of tasks over time. Then, we adopt Gibbs sampling to learn the random variables and parameters and present the inference algorithm for our model. Experiments show that the proposed STPT model can improve the capability and efficiency of remote sensing image data services.

  15. Monitoring Murder Crime in Namibia Using Bayesian Space-Time Models

    Directory of Open Access Journals (Sweden)

    Isak Neema

    2012-01-01

    Full Text Available This paper focuses on the analysis of murder in Namibia using Bayesian spatial smoothing approach with temporal trends. The analysis was based on the reported cases from 13 regions of Namibia for the period 2002–2006 complemented with regional population sizes. The evaluated random effects include space-time structured heterogeneity measuring the effect of regional clustering, unstructured heterogeneity, time, space and time interaction and population density. The model consists of carefully chosen prior and hyper-prior distributions for parameters and hyper-parameters, with inference conducted using Gibbs sampling algorithm and sensitivity test for model validation. The posterior mean estimate of the parameters from the model using DIC as model selection criteria show that most of the variation in the relative risk of murder is due to regional clustering, while the effect of population density and time was insignificant. The sensitivity analysis indicates that both intrinsic and Laplace CAR prior can be adopted as prior distribution for the space-time heterogeneity. In addition, the relative risk map show risk structure of increasing north-south gradient, pointing to low risk in northern regions of Namibia, while Karas and Khomas region experience long-term increase in murder risk.

  16. Simple model of variation of the signature of a space-time metric

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    2004-01-01

    The problem on the changes in the space-time signature metrics is discussed. The simple model, wherein the space-time metrics signature is determined by the nonlinear scalar field, is proposed. It is shown that both classical and quantum description of changes in the metrics signature is possible within the frames of the considered model; the most characteristic peculiarities and variations of the classical and quantum descriptions are also briefly noted [ru

  17. Zeta-function regularization approach to finite temperature effects in Kaluza-Klein space-times

    International Nuclear Information System (INIS)

    Bytsenko, A.A.; Vanzo, L.; Zerbini, S.

    1992-01-01

    In the framework of heat-kernel approach to zeta-function regularization, in this paper the one-loop effective potential at finite temperature for scalar and spinor fields on Kaluza-Klein space-time of the form M p x M c n , where M p is p-dimensional Minkowski space-time is evaluated. In particular, when the compact manifold is M c n = H n /Γ, the Selberg tracer formula associated with discrete torsion-free group Γ of the n-dimensional Lobachevsky space H n is used. An explicit representation for the thermodynamic potential valid for arbitrary temperature is found. As a result a complete high temperature expansion is presented and the roles of zero modes and topological contributions is discussed

  18. Pre-Big Bang, space-time structure, asymptotic Universe. Spinorial space-time and a new approach to Friedmann-like equations

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2014-04-01

    Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95), while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2) spinor and the Lundmark-Lemaître-Hubble (LLH) expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of the standard

  19. A multi-element cosmological model with a complex space-time topology

    Science.gov (United States)

    Kardashev, N. S.; Lipatova, L. N.; Novikov, I. D.; Shatskiy, A. A.

    2015-02-01

    Wormhole models with a complex topology having one entrance and two exits into the same space-time of another universe are considered, as well as models with two entrances from the same space-time and one exit to another universe. These models are used to build a model of a multi-sheeted universe (a multi-element model of the "Multiverse") with a complex topology. Spherical symmetry is assumed in all the models. A Reissner-Norström black-hole model having no singularity beyond the horizon is constructed. The strength of the central singularity of the black hole is analyzed.

  20. Methods of approaching decoherence in the flavor sector due to space-time foam

    Science.gov (United States)

    Mavromatos, N. E.; Sarkar, Sarben

    2006-08-01

    In the first part of this work we discuss possible effects of stochastic space-time foam configurations of quantum gravity on the propagation of “flavored” (Klein-Gordon and Dirac) neutral particles, such as neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on random averages of quantum fluctuations of space-time metrics over which the propagation of the matter particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law cutoff of the time-profile of the respective probability. In the second part we consider space-time foam configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.

  1. Particle currents in a space-time dependent and CP-violating Higgs background: a field theory approach

    International Nuclear Information System (INIS)

    Comelli, D.; Riotto, A.

    1995-06-01

    Motivated by cosmological applications like electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time dependent and CP-violating Higgs background. We consider the Standard Model model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. (orig.)

  2. The modified turning bands (MTB) model for space-time rainfall. I. Model definition and properties

    Science.gov (United States)

    Mellor, Dale

    1996-02-01

    A new stochastic model of space-time rainfall, the Modified Turning Bands (MTB) model, is proposed which reproduces, in particular, the movements and developments of rainbands, cluster potential regions and raincells, as well as their respective interactions. The ensemble correlation structure is unsuitable for practical estimation of the model parameters because the model is not ergodic in this statistic, and hence it cannot easily be measured from a single real storm. Thus, some general theory on the internal covariance structure of a class of stochastic models is presented, of which the MTB model is an example. It is noted that, for the MTB model, the internal covariance structure may be measured from a single storm, and can thus be used for model identification.

  3. El Naschie's Cantorian space-time and general relativity by means of Barbilian's group. A Cantorian fractal axiomatic model of space-time

    International Nuclear Information System (INIS)

    Gottlieb, I.; Agop, M.; Jarcau, M.

    2004-01-01

    One builds the vacuum metrics of the stationary electromagnetic field through the complex potential model. There are thus emphasized both a variational principle, independent on the Ricci tensor, and some internal symmetries of the vacuum solutions. One shows that similar results may be obtained using the Barbiliant's group. By analytical continuation of a Barbilian transformation the link between the fixed points of the modular groups of the vacuum and the golden mean PHI=(1/(1+PHI))=(√5-1)/2 of ε (∞) space-time is established. Finally, a Cantorian fractal axiomatic model of the space-time is presented. The model is explained using a set of coupled equations which may describe the self organizing processes at the solid-liquid, plasma-plasma, and superconductor-superconductor interfaces

  4. A bootstrap based space-time surveillance model with an application to crime occurrences

    Science.gov (United States)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  5. RD networks and regional knowledge production in Europe : Evidence from a space-time model

    NARCIS (Netherlands)

    Wanzenböck, Iris; Piribauer, Philipp

    2018-01-01

    In this study we estimate space-time impacts of the embeddedness in R&D networks on regional knowledge production using a dynamic spatial panel data model with non-linear effects for 229 European NUTS 2 regions in the period 1998–2010. Embeddedness refers to the positioning in networks where nodes

  6. Schwinger functions for the Yukawa model in two dimensions with space-time cutoff

    International Nuclear Information System (INIS)

    Seiler, E.

    1975-01-01

    It is shown that a Euclidean version of the formulae of Matthews and Salam for the Green's functions of a two-dimensional Yukawa model with interaction in a finite space-time volume makes sense, if renormalized correctly. (orig.) [de

  7. MODELING OF THE CONTROLLED TRACTION POWER SUPPLY SYSTEM IN THE SPACE-TIME COORDINATES

    Directory of Open Access Journals (Sweden)

    Dmitry BOSYI

    2017-09-01

    Full Text Available The problems of the traction power supply system calculation are considered in the article. The authors proposed the space-time model, which is based on the analytical functions of the current- and voltage-drop distributions in the contact network. The usage of the proposed model is shown for the control law calculation both to stabilize the voltage at the pantographs of the electric rolling stocks and to reduce the power losses.

  8. A stochastic fractional dynamics model of space-time variability of rain

    Science.gov (United States)

    Kundu, Prasun K.; Travis, James E.

    2013-09-01

    varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, which allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and time scales. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and on the Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to fit the second moment statistics of radar data at the smaller spatiotemporal scales. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well at these scales without any further adjustment.

  9. Land use and land cover change based on historical space-time model

    Science.gov (United States)

    Sun, Qiong; Zhang, Chi; Liu, Min; Zhang, Yongjing

    2016-09-01

    Land use and cover change is a leading edge topic in the current research field of global environmental changes and case study of typical areas is an important approach understanding global environmental changes. Taking the Qiantang River (Zhejiang, China) as an example, this study explores automatic classification of land use using remote sensing technology and analyzes historical space-time change by remote sensing monitoring. This study combines spectral angle mapping (SAM) with multi-source information and creates a convenient and efficient high-precision land use computer automatic classification method which meets the application requirements and is suitable for complex landform of the studied area. This work analyzes the histological space-time characteristics of land use and cover change in the Qiantang River basin in 2001, 2007 and 2014, in order to (i) verify the feasibility of studying land use change with remote sensing technology, (ii) accurately understand the change of land use and cover as well as historical space-time evolution trend, (iii) provide a realistic basis for the sustainable development of the Qiantang River basin and (iv) provide a strong information support and new research method for optimizing the Qiantang River land use structure and achieving optimal allocation of land resources and scientific management.

  10. Development of Adiabatic Doppler Feedback Model in 3D space time analysis Code ARCH

    International Nuclear Information System (INIS)

    Dwivedi, D.K.; Gupta, Anurag

    2015-01-01

    Integrated 3D space-time neutron kinetics with thermal-hydraulic feedback code system is being developed for transient analysis of Compact High Temperature Reactor (CHTR) and Advanced Heavy Water Reactor (AHWR). ARCH (code for Analysis of Reactor transients in Cartesian and Hexagon geometries) has been developed with IQS module for efficient 3D space time analysis. Recently, an adiabatic Doppler (fuel temperature) feedback module has been incorporated in this ARCH-IQS version of tile code. In the adiabatic model of fuel temperature feedback, the transfer of the excess heat from the fuel to the coolant during transient is neglected. The viability of Doppler feedback in ARCH-IQS with adiabatic heating has been checked with AER benchmark (Dyn002). Analyses of anticipated transient without scram (ATWS) case in CHTR as well as in AHWR have been performed with adiabatic fuel temperature feedback. The methodology and results have been presented in this paper. (author)

  11. New Li-Yau-Hamilton Inequalities for the Ricci Flow via the Space-Time Approach

    OpenAIRE

    Chow, Bennett; Knopf, Dan

    2002-01-01

    We generalize Hamilton's matrix Li-Yau-type Harnack estimate for the Ricci flow by considering the space of all LYH (Li-Yau-Hamilton) quadratics that arise as curvature tensors of space-time connections satisfying the Ricci flow with respect to the natural space-time degenerate metric. As a special case, we employ scaling arguments to derive a linear-type matrix LYH estimate. The new LYH quadratics obtained in this way are associated to the system of the Ricci flow coupled to a 1-form and a 2...

  12. New space--time model for hadron--nucleus collisions at high energies

    International Nuclear Information System (INIS)

    Bialkowski, G.; Chiu, C.B.; Tow, D.M.

    1976-12-01

    A new space-time model for hadron-nucleus collisions is proposed, where particles at the instant of creation are immature and their maturity rate is enhanced in the presence of other hadronic matter, as in a nucleus. With only one free parameter, the model can explain dn/sub A//sup p//d eta, dn/sub A//sup pi//d eta, R/sub A//sup p/(E/sub L/), and the A-dependences of sigma/sub in/sup pA/ and sigma/sub in/sup pi A/

  13. Application of data mining in three-dimensional space time reactor model

    International Nuclear Information System (INIS)

    Jiang Botao; Zhao Fuyu

    2011-01-01

    A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial

  14. Stringy models of modified gravity: space-time defects and structure formation

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2013-01-01

    Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only

  15. Advances and Challenges in Space-time Modelling of Natural Events

    CERN Document Server

    Porcu, Emilio; Schlather, Martin

    2012-01-01

    This book arises as the natural continuation of the International Spring School "Advances and Challenges in Space-Time modelling of Natural Events," which took place in Toledo (Spain) in March 2010. This Spring School above all focused on young researchers (Master students, PhD students and post-doctoral researchers) in academics, extra-university research and the industry who are interested in learning about recent developments, new methods and applications in spatial statistics and related areas, and in exchanging ideas and findings with colleagues.

  16. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    Science.gov (United States)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  17. Action detection by double hierarchical multi-structure space-time statistical matching model

    Science.gov (United States)

    Han, Jing; Zhu, Junwei; Cui, Yiyin; Bai, Lianfa; Yue, Jiang

    2018-03-01

    Aimed at the complex information in videos and low detection efficiency, an actions detection model based on neighboring Gaussian structure and 3D LARK features is put forward. We exploit a double hierarchical multi-structure space-time statistical matching model (DMSM) in temporal action localization. First, a neighboring Gaussian structure is presented to describe the multi-scale structural relationship. Then, a space-time statistical matching method is proposed to achieve two similarity matrices on both large and small scales, which combines double hierarchical structural constraints in model by both the neighboring Gaussian structure and the 3D LARK local structure. Finally, the double hierarchical similarity is fused and analyzed to detect actions. Besides, the multi-scale composite template extends the model application into multi-view. Experimental results of DMSM on the complex visual tracker benchmark data sets and THUMOS 2014 data sets show the promising performance. Compared with other state-of-the-art algorithm, DMSM achieves superior performances.

  18. Modeling Space-Time Dependent Helium Bubble Evolution in Tungsten Armor under IFE Conditions

    International Nuclear Information System (INIS)

    Qiyang Hu; Shahram Sharafat; Nasr Ghoniem

    2006-01-01

    The High Average Power Laser (HAPL) program is a coordinated effort to develop Laser Inertial Fusion Energy. The implosion of the D-T target produces a spectrum of neutrons, X-rays, and charged particles, which arrive at the first wall (FW) at different times within about 2.5 μs at a frequency of 5 to 10 Hz. Helium is one of several high-energy charged particle constituents impinging on the candidate tungsten armored low activation ferritic steel First Wall. The spread of the implanted debris and burn helium energies results in a unique space-time dependent implantation profile that spans about 10 μm in tungsten. Co-implantation of X-rays and other ions results in spatially dependent damage profiles and rapid space-time dependent temperature spikes and gradients. The rate of helium transport and helium bubble formation will vary significantly throughout the implanted region. Furthermore, helium will also be transported via the migration of helium bubbles and non-equilibrium helium-vacancy clusters. The HEROS code was developed at UCLA to model the spatial and time-dependent helium bubble nucleation, growth, coalescence, and migration under transient damage rates and transient temperature gradients. The HEROS code is based on kinetic rate theory, which includes clustering of helium and vacancies, helium mobility, helium-vacancy cluster stability, cavity nucleation and growth and other microstructural features such as interstitial loop evolution, grain boundaries, and precipitates. The HEROS code is based on space-time discretization of reaction-diffusion type equations to account for migration of mobile species between neighboring bins as single atoms, clusters, or bubbles. HAPL chamber FW implantation conditions are used to model helium bubble evolution in the implanted tungsten. Helium recycling rate predictions are compared with experimental results of helium ion implantation experiments. (author)

  19. Traveling with blindness: A qualitative space-time approach to understanding visual impairment and urban mobility.

    Science.gov (United States)

    Wong, Sandy

    2018-01-01

    This paper draws from Hägerstrand's space-time framework to generate new insights on the everyday mobilities of individuals with visual impairments in the San Francisco Bay Area. While existing research on visual impairment and mobility emphasizes individual physical limitations resulting from vision loss or inaccessible public spaces, this article highlights and bridges both the behavioral and social processes that influence individual mobility. A qualitative analysis of sit-down and mobile interview data reveals that the space-time constraints of people with visual impairments are closely linked to their access to transportation, assistive technologies, and mobile devices. The findings deepen our understandings of the relationship between health and mobility, and present intervention opportunities for improving the quality of life for people with visual impairment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The stochastic versus the Euclidean approach to quantum fields on a static space-time

    International Nuclear Information System (INIS)

    De Angelis, G.F.; de Falco, D.

    1986-01-01

    Equations are presented which modify the definition of the Gaussian field in the Rindler chart in order to make contact with the Wightman state, the Hartle-Hawking state, and the Euclidean field. By taking Ornstein-Uhlenbeck processes the authors have chosen, in the sense of stochastic mechanics, to place precisely the Fulling modes in their harmonic oscillator ground state. In this respect, together with the periodicity of Minkowski space-time, the authors observe that the covariance of the Ornstein-Uhlenbeck process can be obtained by analytical continuation of the Wightman function of the harmonic oscillator at zero temperature

  1. "A space-time ensemble Kalman filter for state and parameter estimation of groundwater transport models"

    Science.gov (United States)

    Briseño, Jessica; Herrera, Graciela S.

    2010-05-01

    Herrera (1998) proposed a method for the optimal design of groundwater quality monitoring networks that involves space and time in a combined form. The method was applied later by Herrera et al (2001) and by Herrera and Pinder (2005). To get the estimates of the contaminant concentration being analyzed, this method uses a space-time ensemble Kalman filter, based on a stochastic flow and transport model. When the method is applied, it is important that the characteristics of the stochastic model be congruent with field data, but, in general, it is laborious to manually achieve a good match between them. For this reason, the main objective of this work is to extend the space-time ensemble Kalman filter proposed by Herrera, to estimate the hydraulic conductivity, together with hydraulic head and contaminant concentration, and its application in a synthetic example. The method has three steps: 1) Given the mean and the semivariogram of the natural logarithm of hydraulic conductivity (ln K), random realizations of this parameter are obtained through two alternatives: Gaussian simulation (SGSim) and Latin Hypercube Sampling method (LHC). 2) The stochastic model is used to produce hydraulic head (h) and contaminant (C) realizations, for each one of the conductivity realizations. With these realization the mean of ln K, h and C are obtained, for h and C, the mean is calculated in space and time, and also the cross covariance matrix h-ln K-C in space and time. The covariance matrix is obtained averaging products of the ln K, h and C realizations on the estimation points and times, and the positions and times with data of the analyzed variables. The estimation points are the positions at which estimates of ln K, h or C are gathered. In an analogous way, the estimation times are those at which estimates of any of the three variables are gathered. 3) Finally the ln K, h and C estimate are obtained using the space-time ensemble Kalman filter. The realization mean for each one

  2. Using stochastic space-time models to map extreme precipitation in southern Portugal

    Directory of Open Access Journals (Sweden)

    A. C. Costa

    2008-07-01

    Full Text Available The topographic characteristics and spatial climatic diversity are significant in the South of continental Portugal where the rainfall regime is typically Mediterranean. Direct sequential cosimulation is proposed for mapping an extreme precipitation index in southern Portugal using elevation as auxiliary information. The analysed index (R5D can be considered a flood indicator because it provides a measure of medium-term precipitation total. The methodology accounts for local data variability and incorporates space-time models that allow capturing long-term trends of extreme precipitation, and local changes in the relationship between elevation and extreme precipitation through time. Annual gridded datasets of the flood indicator are produced from 1940 to 1999 on 800 m×800 m grids by using the space-time relationship between elevation and the index. Uncertainty evaluations of the proposed scenarios are also produced for each year. The results indicate that the relationship between elevation and extreme precipitation varies locally and has decreased through time over the study region. In wetter years the flood indicator exhibits the highest values in mountainous regions of the South, while in drier years the spatial pattern of extreme precipitation has much less variability over the study region. The uncertainty of extreme precipitation estimates also varies in time and space, and in earlier decades is strongly dependent on the density of the monitoring stations network. The produced maps will be useful in regional and local studies related to climate change, desertification, land and water resources management, hydrological modelling, and flood mitigation planning.

  3. Prediction of hourly PM2.5 using a space-time support vector regression model

    Science.gov (United States)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  4. A space-time hybrid hourly rainfall model for derived flood frequency analysis

    Directory of Open Access Journals (Sweden)

    U. Haberlandt

    2008-12-01

    Full Text Available For derived flood frequency analysis based on hydrological modelling long continuous precipitation time series with high temporal resolution are needed. Often, the observation network with recording rainfall gauges is poor, especially regarding the limited length of the available rainfall time series. Stochastic precipitation synthesis is a good alternative either to extend or to regionalise rainfall series to provide adequate input for long-term rainfall-runoff modelling with subsequent estimation of design floods. Here, a new two step procedure for stochastic synthesis of continuous hourly space-time rainfall is proposed and tested for the extension of short observed precipitation time series.

    First, a single-site alternating renewal model is presented to simulate independent hourly precipitation time series for several locations. The alternating renewal model describes wet spell durations, dry spell durations and wet spell intensities using univariate frequency distributions separately for two seasons. The dependence between wet spell intensity and duration is accounted for by 2-copulas. For disaggregation of the wet spells into hourly intensities a predefined profile is used. In the second step a multi-site resampling procedure is applied on the synthetic point rainfall event series to reproduce the spatial dependence structure of rainfall. Resampling is carried out successively on all synthetic event series using simulated annealing with an objective function considering three bivariate spatial rainfall characteristics. In a case study synthetic precipitation is generated for some locations with short observation records in two mesoscale catchments of the Bode river basin located in northern Germany. The synthetic rainfall data are then applied for derived flood frequency analysis using the hydrological model HEC-HMS. The results show good performance in reproducing average and extreme rainfall characteristics as well as in

  5. Universality and the dynamical space-time dimensionality in the Lorentzian type IIB matrix model

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yuta [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Nishimura, Jun [KEK Theory Center, High Energy Accelerator Research Organization,1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies (SOKENDAI),1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Tsuchiya, Asato [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan)

    2017-03-27

    The type IIB matrix model is one of the most promising candidates for a nonperturbative formulation of superstring theory. In particular, its Lorentzian version was shown to exhibit an interesting real-time dynamics such as the spontaneous breaking of the 9-dimensional rotational symmetry to the 3-dimensional one. This result, however, was obtained after regularizing the original matrix integration by introducing “infrared” cutoffs on the quadratic moments of the Hermitian matrices. In this paper, we generalize the form of the cutoffs in such a way that it involves an arbitrary power (2p) of the matrices. By performing Monte Carlo simulation of a simplified model, we find that the results become independent of p and hence universal for p≳1.3. For p as large as 2.0, however, we find that large-N scaling behaviors do not show up, and we cannot take a sensible large-N limit. Thus we find that there is a certain range of p in which a universal large-N limit can be taken. Within this range of p, the dynamical space-time dimensionality turns out to be (3+1), while for p=2.0, where we cannot take a sensible large-N limit, we observe a (5+1)d structure.

  6. Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains

    International Nuclear Information System (INIS)

    Vazquez, Samuel E.

    2007-01-01

    Using the anti-de Sitter/conformal field theories (AdS/CFT) correspondence, we address the question of how to measure complicated space-time metrics using gauge theory probes. In particular, we consider the case of the 1/2 Bogomol'nyi-Prasad-Sommerfield geometries of type IIB supergravity. These geometries are classified by certain droplets in a two-dimensional spacelike hypersurface. We show how to reconstruct the full metric inside these droplets using the one-loop N=4 super Yang-Mills theory dilatation operator. This is done by considering long operators in the SU(2) sector, which are dual to fast rotating strings on the droplets. We develop new powerful techniques for large N complex matrix models that allow us to construct the Hamiltonian for these strings. We find that the Hamiltonian can be mapped to a dynamical spin chain. That is, the length of the chain is not fixed. Moreover, all of these spin chains can be explicitly constructed using an interesting algebra which is derived from the matrix model. Our techniques work for general droplet configurations. As an example, we study a single elliptical droplet and the hypotrochoid

  7. Nonrenormalizable quantum field models in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1978-01-01

    The construction of no-cutoff Euclidean Green's functions for nonrenormalizable interactions L/sub I/(phi) = lambda∫ddelta (epsilon): expepsilonphi: in four-dimensional space-time is carried out. It is shown that all axioms for the generating functional of the Euclidean Green's function are satisfied except perhaps SO(4) invariance

  8. Using decision tree induction systems for modeling space-time behavior

    NARCIS (Netherlands)

    Arentze, T.A.; Hofman, F.; Mourik, van H.; Timmermans, H.J.P.; Wets, G.

    2000-01-01

    Discrete choice models are commonly used to predict individuals' activity and travel choices either separately or simultaneously in activity scheduling models. This paper investigates the possibilities of decision tree induction systems as an alternative approach. The ability of decision frees to

  9. Nonperturbative construction of nonrenormalizable models of quantum field theory in four-dimensional space-time

    International Nuclear Information System (INIS)

    Raczka, R.

    1979-01-01

    Construction of non-cutoff Euclidean Green's functions for nonrenormalizable interactions Lsub(I)(phi)=lambda∫dσ(epsilon):expepsilonphi: in four-dimensional space-time is presented. It is shown that all axioms for the generating functional of E.G.F. are satisfied except perhaps the SO(4) invariance. It is shown that the singularities of E.G.F. for coinciding points are not worse than those of the free theory. (author)

  10. Space-Time Uncertainty and Cosmology: a Proposed Quantum Model of the Universe [ 245Kb

    Directory of Open Access Journals (Sweden)

    Tosto S.

    2013-10-01

    Full Text Available The paper introduces a cosmological model of the quantum universe. The aim of the model is (i to identify the possible mechanism that governs the matter/antimatter ratio existing in the universe and concurrently to propose (ii a reasonable growth mechanism of the universe and (iii a possible explanation of the dark energy. The concept of timespace uncertainty, on which is based the present quantum approach, has been proven able to bridge quantum mechanics and relativity.

  11. Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter

    KAUST Repository

    Dreano, Denis

    2015-04-27

    A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.

  12. Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space-time covariance model and a Kalman filter

    KAUST Repository

    Dreano, Denis; Mallick, Bani; Hoteit, Ibrahim

    2015-01-01

    A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.

  13. Space-time PM2.5 mapping in the severe haze region of Jing-Jin-Ji (China) using a synthetic approach.

    Science.gov (United States)

    He, Junyu; Christakos, George

    2018-05-07

    Long- and short-term exposure to PM 2.5 is of great concern in China due to its adverse population health effects. Characteristic of the severity of the situation in China is that in the Jing-Jin-Ji region considered in this work a total of 2725 excess deaths have been attributed to short-term PM 2.5 exposure during the period January 10-31, 2013. Technically, the processing of large space-time PM 2.5 datasets and the mapping of the space-time distribution of PM 2.5 concentrations often constitute high-cost projects. To address this situation, we propose a synthetic modeling framework based on the integration of (a) the Bayesian maximum entropy method that assimilates auxiliary information from land-use regression and artificial neural network (ANN) model outputs based on PM 2.5 monitoring, satellite remote sensing data, land use and geographical records, with (b) a space-time projection technique that transforms the PM 2.5 concentration values from the original spatiotemporal domain onto a spatial domain that moves along the direction of the PM 2.5 velocity spread. An interesting methodological feature of the synthetic approach is that its components (methods or models) are complementary, i.e., one component can compensate for the occasional limitations of another component. Insight is gained in terms of a PM 2.5 case study covering the severe haze Jing-Jin-Ji region during October 1-31, 2015. The proposed synthetic approach explicitly accounted for physical space-time dependencies of the PM 2.5 distribution. Moreover, the assimilation of auxiliary information and the dimensionality reduction achieved by the synthetic approach produced rather impressive results: It generated PM 2.5 concentration maps with low estimation uncertainty (even at counties and villages far away from the monitoring stations, whereas during the haze periods the uncertainty reduction was over 50% compared to standard PM 2.5 mapping techniques); and it also proved to be computationally very

  14. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method

    Science.gov (United States)

    Osetrin, Evgeny; Osetrin, Konstantin

    2017-11-01

    We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.

  15. Study on coupling of three-dimension space time neutron kinetics model and RELAP5 and improvement of RELAP5

    International Nuclear Information System (INIS)

    Gui Xuewen; Cai Qi; Luo Bangqi

    2007-01-01

    A two-group three-dimension space-time neutron kinetics model is applied to the RELAP5 code, which replaces the point reactor kinetics model. A visual operation interface is designed to convenience interactive operation between operator and computer. The calculation results and practical applications indicate that the functions and precision of improved RELAP5 are enhanced and can be easily used. The improved RELAP5 has a good application perspective in nuclear power plant simulation. (authors)

  16. The "Carbon Data Explorer": Web-Based Space-Time Visualization of Modeled Carbon Fluxes

    Science.gov (United States)

    Billmire, M.; Endsley, K. A.

    2014-12-01

    The visualization of and scientific "sense-making" from large datasets varying in both space and time is a challenge; one that is still being addressed in a number of different fields. The approaches taken thus far are often specific to a given academic field due to the unique questions that arise in different disciplines, however, basic approaches such as geographic maps and time series plots are still widely useful. The proliferation of model estimates of increasing size and resolution further complicates what ought to be a simple workflow: Model some geophysical phenomen(on), obtain results and measure uncertainty, organize and display the data, make comparisons across trials, and share findings. A new tool is in development that is intended to help scientists with the latter parts of that workflow. The tentatively-titled "Carbon Data Explorer" (http://spatial.mtri.org/flux-client/) enables users to access carbon science and related spatio-temporal science datasets over the web. All that is required to access multiple interactive visualizations of carbon science datasets is a compatible web browser and an internet connection. While the application targets atmospheric and climate science datasets, particularly spatio-temporal model estimates of carbon products, the software architecture takes an agnostic approach to the data to be visualized. Any atmospheric, biophysical, or geophysical quanity that varies in space and time, including one or more measures of uncertainty, can be visualized within the application. Within the web application, users have seamless control over a flexible and consistent symbology for map-based visualizations and plots. Where time series data are represented by one or more data "frames" (e.g. a map), users can animate the data. In the "coordinated view," users can make direct comparisons between different frames and different models or model runs, facilitating intermodal comparisons and assessments of spatio-temporal variability. Map

  17. An analytic solution to the alibi query in the space-time prisms model for moving object data

    OpenAIRE

    GRIMSON, Rafael; KUIJPERS, Bart; OTHMAN, Walied

    2010-01-01

    Moving objects produce trajectories, which are stored in databases by means of finite samples of time-stamped locations. When also speed limitations in these sample points are known, space-time prisms (also called beads) (Egenhofer 2003, Miller 2005, Pfoser and Jensen 1999) can be used to model the uncertainty about an object’s location in between sample points. In this setting, a query of particular interest, that has been studied in the literature of geographic information systems (GIS), is...

  18. Modeling of 3d Space-time Surface of Potential Fields and Hydrogeologic Modeling of Nuclear Waste Disposal Sites

    Science.gov (United States)

    Shestopalov, V.; Bondarenko, Y.; Zayonts, I.; Rudenko, Y.

    extracted from the total vertical and hori- zontal gradient respectively, both shaded from the 5 northeast to 355 northwest. The dip of multi-layer surfaces indicates the down -"gradient" direction in the fields. The methodology of 3D STSI is based on the analysis of vertical and horizontal anisotropy of gravity and magnetic fields, as well as of multi-layer 3D space-time surface model (3D STSM) of the stress fields. The 3D STSM is multi-layer topology structure of 1 lineaments or gradients (edges) and surfaces calculated by uniform matrices of the geophysical fields. One of the information components of the stress fields character- istics is the aspects and slopes for compressive and tensile stresses. Overlaying of the 3D STSI and lineaments with maps of multi-layer gradients enables to create highly reliable 3D Space-Time Kinematic Model "3D STKM". The analysis of 3D STKM in- cluded: - the space-time reconstruct of forces direction and strain distribution scheme during formation of geological structures and structural paragenesis (lineaments) of potential fields; - predict the real location of expected tectonic dislocations, zones of rock fracturing and disintegration, and mass-stable blocks. Based on these data, the 3D STSM are drawn which reflect the geodynamics of territory development on the ground of paleotectonic reconstruction of successive activity stages having formed the present-day lithosphere. Thus three-dimensional STSM allows to construct an un- mixing geodynamic processes in any interval of fixed space-time in coordinates x, y, t(z). The integrated of the 3D STSM and 3D seismic models enables also to create structural-kinematic and geodynamic maps of the Earth's crust at different depth. As a result, the classification of CNPP areas is performed into zones of compressive and tensile stresses characterized by enhanced permeability of rocks, and zones of consoli- dation with minimal rocks permeability. In addition, the vertically alternating zones of

  19. Reply to the Discussion of Space-Time Modelling with Long-Memory Dependence: Assessing Ireland’s Wind Resource

    Science.gov (United States)

    1988-10-01

    meteorologists’ rule-of-thumb that climatic drift manifests itself in periods greater than 30 years. For a fractionally-differenced model with our...estimates in a univariate ARIMA (p, d, q) with I d I< 0.5 has been derived by Li and McLrjd (1986). The model used by I-Iaslett an Raftery can be viewed as...Reply to the Discussion of "Space-time Modelling with Long-mnmory cDependence: Assessing Ireland’s Wind Resource" cJohn Haslett Department of

  20. Detecting space-time disease clusters with arbitrary shapes and sizes using a co-clustering approach

    Directory of Open Access Journals (Sweden)

    Sami Ullah

    2017-11-01

    Full Text Available Ability to detect potential space-time clusters in spatio-temporal data on disease occurrences is necessary for conducting surveillance and implementing disease prevention policies. Most existing techniques use geometrically shaped (circular, elliptical or square scanning windows to discover disease clusters. In certain situations, where the disease occurrences tend to cluster in very irregularly shaped areas, these algorithms are not feasible in practise for the detection of space-time clusters. To address this problem, a new algorithm is proposed, which uses a co-clustering strategy to detect prospective and retrospective space-time disease clusters with no restriction on shape and size. The proposed method detects space-time disease clusters by tracking the changes in space–time occurrence structure instead of an in-depth search over space. This method was utilised to detect potential clusters in the annual and monthly malaria data in Khyber Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising the results on a heat map. The results of the annual data analysis showed that the most likely hotspot emerged in three sub-regions in the years 2013-2014. The most likely hotspots in monthly data appeared in the month of July to October in each year and showed a strong periodic trend.

  1. A Space-Time Network-Based Modeling Framework for Dynamic Unmanned Aerial Vehicle Routing in Traffic Incident Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Jisheng Zhang

    2015-06-01

    Full Text Available It is essential for transportation management centers to equip and manage a network of fixed and mobile sensors in order to quickly detect traffic incidents and further monitor the related impact areas, especially for high-impact accidents with dramatic traffic congestion propagation. As emerging small Unmanned Aerial Vehicles (UAVs start to have a more flexible regulation environment, it is critically important to fully explore the potential for of using UAVs for monitoring recurring and non-recurring traffic conditions and special events on transportation networks. This paper presents a space-time network- based modeling framework for integrated fixed and mobile sensor networks, in order to provide a rapid and systematic road traffic monitoring mechanism. By constructing a discretized space-time network to characterize not only the speed for UAVs but also the time-sensitive impact areas of traffic congestion, we formulate the problem as a linear integer programming model to minimize the detection delay cost and operational cost, subject to feasible flying route constraints. A Lagrangian relaxation solution framework is developed to decompose the original complex problem into a series of computationally efficient time-dependent and least cost path finding sub-problems. Several examples are used to demonstrate the results of proposed models in UAVs’ route planning for small and medium-scale networks.

  2. Statistical modelling of space-time processes with application to wind power

    DEFF Research Database (Denmark)

    Lenzi, Amanda

    . This thesis aims at contributing to the wind power literature by building and evaluating new statistical techniques for producing forecasts at multiple locations and lead times using spatio-temporal information. By exploring the features of a rich portfolio of wind farms in western Denmark, we investigate...... propose spatial models for predicting wind power generation at two different time scales: for annual average wind power generation and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial...

  3. A Stochastic Model of Space-Time Variability of Tropical Rainfall: I. Statistics of Spatial Averages

    Science.gov (United States)

    Kundu, Prasun K.; Bell, Thomas L.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Global maps of rainfall are of great importance in connection with modeling of the earth s climate. Comparison between the maps of rainfall predicted by computer-generated climate models with observation provides a sensitive test for these models. To make such a comparison, one typically needs the total precipitation amount over a large area, which could be hundreds of kilometers in size over extended periods of time of order days or months. This presents a difficult problem since rain varies greatly from place to place as well as in time. Remote sensing methods using ground radar or satellites detect rain over a large area by essentially taking a series of snapshots at infrequent intervals and indirectly deriving the average rain intensity within a collection of pixels , usually several kilometers in size. They measure area average of rain at a particular instant. Rain gauges, on the other hand, record rain accumulation continuously in time but only over a very small area tens of centimeters across, say, the size of a dinner plate. They measure only a time average at a single location. In making use of either method one needs to fill in the gaps in the observation - either the gaps in the area covered or the gaps in time of observation. This involves using statistical models to obtain information about the rain that is missed from what is actually detected. This paper investigates such a statistical model and validates it with rain data collected over the tropical Western Pacific from ship borne radars during TOGA COARE (Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment). The model incorporates a number of commonly observed features of rain. While rain varies rapidly with location and time, the variability diminishes when averaged over larger areas or longer periods of time. Moreover, rain is patchy in nature - at any instant on the average only a certain fraction of the observed pixels contain rain. The fraction of area covered by

  4. Statistical model of exotic rotational correlations in emergent space-time

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Craig; Kwon, Ohkyung; Richardson, Jonathan

    2017-06-06

    A statistical model is formulated to compute exotic rotational correlations that arise as inertial frames and causal structure emerge on large scales from entangled Planck scale quantum systems. Noncommutative quantum dynamics are represented by random transverse displacements that respect causal symmetry. Entanglement is represented by covariance of these displacements in Planck scale intervals defined by future null cones of events on an observer's world line. Light that propagates in a nonradial direction inherits a projected component of the exotic rotational correlation that accumulates as a random walk in phase. A calculation of the projection and accumulation leads to exact predictions for statistical properties of exotic Planck scale correlations in an interferometer of any configuration. The cross-covariance for two nearly co-located interferometers is shown to depart only slightly from the autocovariance. Specific examples are computed for configurations that approximate realistic experiments, and show that the model can be rigorously tested.

  5. Efficacy of Radiative Transfer Model Across Space, Time and Hydro-climates

    Science.gov (United States)

    Mohanty, B.; Neelam, M.

    2017-12-01

    The efficiency of radiative transfer model for better soil moisture retrievals is not yet clearly understood over natural systems with great variability and heterogeneity with respect to soil, land cover, topography, precipitation etc. However, this knowledge is important to direct and strategize future research direction and field campaigns. In this work, we present global sensitivity analysis (GSA) technique to study the influence of heterogeneity and uncertainties on radiative transfer model (RTM) and to quantify climate-soil-vegetation interactions. A framework is proposed to understand soil moisture mechanisms underlying these interactions, and influence of these interactions on soil moisture retrieval accuracy. Soil moisture dynamics is observed to play a key role in variability of these interactions, i.e., it enhances both mean and variance of soil-vegetation coupling. The analysis is conducted for different support scales (Point Scale, 800 m, 1.6 km, 3.2 km, 6.4 km, 12.8 km, and 36 km), seasonality (time), hydro-climates, aggregation (scaling) methods and across Level I and Level II ecoregions of contiguous USA (CONUS). For undisturbed natural environments such as SGP'97 (Oklahoma, USA) and SMEX04 (Arizona, USA), the sensitivity of TB to land surface variables remain nearly uniform and are not influenced by extent, support scales or averaging method. On the contrary, for anthropogenically-manipulated environments such as SMEX02 (Iowa, USA) and SMAPVEX12 (Winnipeg, Canada), the sensitivity to variables are highly influenced by the distribution of land surface heterogeneity and upscaling methods. The climate-soil-vegetation interactions analyzed across all ecoregions are presented through a probability distribution function (PDF). The intensity of these interactions are categorized accordingly to yield "hotspots", where the RTM model fails to retrieve soil moisture. A ecoregion specific scaling function is proposed for these hotspots to rectify RTM for

  6. A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

    Directory of Open Access Journals (Sweden)

    Abdon Atangana

    2014-01-01

    Full Text Available The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method.

  7. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Science.gov (United States)

    Rehman, Asad; Ali, Ishtiaq; Qamar, Shamsul

    An upwind space-time conservation element and solution element (CE/SE) scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme.

  8. An upwind space-time conservation element and solution element scheme for solving dusty gas flow model

    Directory of Open Access Journals (Sweden)

    Asad Rehman

    Full Text Available An upwind space-time conservation element and solution element (CE/SE scheme is extended to numerically approximate the dusty gas flow model. Unlike central CE/SE schemes, the current method uses the upwind procedure to derive the numerical fluxes through the inner boundary of conservation elements. These upwind fluxes are utilized to calculate the gradients of flow variables. For comparison and validation, the central upwind scheme is also applied to solve the same dusty gas flow model. The suggested upwind CE/SE scheme resolves the contact discontinuities more effectively and preserves the positivity of flow variables in low density flows. Several case studies are considered and the results of upwind CE/SE are compared with the solutions of central upwind scheme. The numerical results show better performance of the upwind CE/SE method as compared to the central upwind scheme. Keywords: Dusty gas flow, Solid particles, Upwind schemes, Rarefaction wave, Shock wave, Contact discontinuity

  9. Self-calibration for lab-μCT using space-time regularized projection-based DVC and model reduction

    Science.gov (United States)

    Jailin, C.; Buljac, A.; Bouterf, A.; Poncelet, M.; Hild, F.; Roux, S.

    2018-02-01

    An online calibration procedure for x-ray lab-CT is developed using projection-based digital volume correlation. An initial reconstruction of the sample is positioned in the 3D space for every angle so that its projection matches the initial one. This procedure allows a space-time displacement field to be estimated for the scanned sample, which is regularized with (i) rigid body motions in space and (ii) modal time shape functions computed using model reduction techniques (i.e. proper generalized decomposition). The result is an accurate identification of the position of the sample adapted for each angle, which may deviate from the desired perfect rotation required for standard reconstructions. An application of this procedure to a 4D in situ mechanical test is shown. The proposed correction leads to a much improved tomographic reconstruction quality.

  10. Space-Time and Architecture

    Science.gov (United States)

    Field, F.; Goodbun, J.; Watson, V.

    Architects have a role to play in interplanetary space that has barely yet been explored. The architectural community is largely unaware of this new territory, for which there is still no agreed method of practice. There is moreover a general confusion, in scientific and related fields, over what architects might actually do there today. Current extra-planetary designs generally fail to explore the dynamic and relational nature of space-time, and often reduce human habitation to a purely functional problem. This is compounded by a crisis over the representation (drawing) of space-time. The present work returns to first principles of architecture in order to realign them with current socio-economic and technological trends surrounding the space industry. What emerges is simultaneously the basis for an ecological space architecture, and the representational strategies necessary to draw it. We explore this approach through a work of design-based research that describes the construction of Ocean; a huge body of water formed by the collision of two asteroids at the Translunar Lagrange Point (L2), that would serve as a site for colonisation, and as a resource to fuel future missions. Ocean is an experimental model for extra-planetary space design and its representation, within the autonomous discipline of architecture.

  11. Matter fields in curved space-time

    International Nuclear Information System (INIS)

    Viet, Nguyen Ai; Wali, Kameshwar C.

    2000-01-01

    We study the geometry of a two-sheeted space-time within the framework of non-commutative geometry. As a prelude to the Standard Model in curved space-time, we present a model of a left- and a right- chiral field living on the two sheeted-space time and construct the action functionals that describe their interactions

  12. Stability of 4-dimensional space-time from the IIB matrix model via the improved mean field approximation

    International Nuclear Information System (INIS)

    Aoyama, Tatsumi; Kawai, Hikaru; Shibusa, Yuuichiro

    2006-01-01

    We investigate the origin of our four-dimensional space-time by considering dynamical aspects of the IIB matrix model using the improved mean field approximation. Previous works have focused on the specific choices of configurations as ansatz which preserve SO(d) rotational symmetry. In this report, an extended ansatz is proposed and examined up to a third-order approximation which includes both the SO(4) ansatz and the SO(7) ansatz in their respective limits. From the solutions of the self-consistency condition represented by the extrema of the free energy of the system, it is found that some of the solutions found in the SO(4) or SO(7) ansatz disappear in the extended ansatz. This implies that the extension of ansatz can be used to distinguish stable solutions from unstable solutions. It is also found that there is a non-trivial accumulation of extrema including the SO(4)-preserving solution, which may lead to the formation of a plateau. (author)

  13. Space time modelling of air quality for environmental-risk maps: A case study in South Portugal

    Science.gov (United States)

    Soares, Amilcar; Pereira, Maria J.

    2007-10-01

    Since the 1960s, there has been a strong industrial development in the Sines area, on the southern Atlantic coast of Portugal, including the construction of an important industrial harbour and of, mainly, petrochemical and energy-related industries. These industries are, nowadays, responsible for substantial emissions of SO2, NOx, particles, VOCs and part of the ozone polluting the atmosphere. The major industries are spatially concentrated in a restricted area, very close to populated areas and natural resources such as those protected by the European Natura 2000 network. Air quality parameters are measured at the emissions' sources and at a few monitoring stations. Although air quality parameters are measured on an hourly basis, the lack of representativeness in space of these non-homogeneous phenomena makes even their representativeness in time questionable. Hence, in this study, the regional spatial dispersion of contaminants is also evaluated, using diffusive-sampler (Radiello Passive Sampler) campaigns during given periods. Diffusive samplers cover the entire space extensively, but just for a limited period of time. In the first step of this study, a space-time model of pollutants was built, based on a stochastic simulation-direct sequential simulation-with local spatial trend. The spatial dispersion of the contaminants for a given period of time-corresponding to the exposure time of the diffusive samplers-was computed by ordinary kriging. Direct sequential simulation was applied to produce equiprobable spatial maps for each day of that period, using the kriged map as a spatial trend and the daily measurements of pollutants from the monitoring stations as hard data. In the second step, the following environmental risk and costs maps were computed from the set of simulated realizations of pollutants: (i) maps of the contribution of each emission to the pollutant concentration at any spatial location; (ii) costs of badly located monitoring stations.

  14. Space-time structure

    CERN Document Server

    Schrödinger, Erwin

    1985-01-01

    In response to repeated requests this classic book on space-time structure by Professor Erwin Schrödinger is now available in the Cambridge Science Classics series. First published in 1950, and reprinted in 1954 and 1960, this lucid and profound exposition of Einstein's 1915 theory of gravitation still provides valuable reading for students and research workers in the field.

  15. A Space-Time Finite Element Approach to the Numerical Simulation of Vascular Fluid-Solid Interaction

    NARCIS (Netherlands)

    Vlijm, E.J.; Van Brummelen, E.H.

    2008-01-01

    Numerical studies of cardiovascular diseases like arteriosclerosis have gained increasing attention the last decade. The modeling of blood, blood vessel and their coupling, shows to be a challenging problem. In this thesis a two-dimensional model has been constructed and its behaviour has been

  16. Space-time models for a panzootic in bats, with a focus on the endangered Indiana bat

    Science.gov (United States)

    Thogmartin, Wayne E.; King, R. Andrew; Szymanski, Jennifer A.; Pruitt, Lori

    2012-01-01

    Knowledge of current trends of quickly spreading infectious wildlife diseases is vital to efficient and effective management. We developed space-time mixed-effects logistic regressions to characterize a disease, white-nose syndrome (WNS), quickly spreading among endangered Indiana bats (Myotis sodalis) in eastern North America. Our goal was to calculate and map the risk probability faced by uninfected colonies of hibernating Indiana bats. Model covariates included annual distance from and direction to nearest sources of infection, geolocational information, size of the Indiana bat populations within each wintering population, and total annual size of populations known or suspected to be affected by WNS. We considered temporal, spatial, and spatiotemporal formulae through the use of random effects for year, complex (a collection of interacting hibernacula), and yearxcomplex. Since first documented in 2006, WNS has spread across much of the range of the Indiana bat. No sizeable wintering population now occurs outside of the migrational distance of an infected source. Annual rates of newly affected wintering Indiana bat populations between winter 2007 to 2008 and 2010 to 2011 were 4, 6, 8, and 12%; this rate increased each year at a rate of 3%. If this increasing rate of newly affected populations continues, all wintering populations may be affected by 2016. Our models indicated the probability of a wintering population exhibiting infection was a linear function of proximity to affected Indiana bat populations and size of the at-risk population. Geographic location was also important, suggesting broad-scale influences. For every 50-km increase in distance from a WNS-affected population, risk of disease declined by 6% (95% CI=5.2-5.7%); for every increase of 1,000 Indiana bats, there was an 8% (95% CI = 1-21%) increase in disease risk. The increasing rate of infection seems to be associated with the movement of this disease into the core of the Indiana bat range. Our

  17. Space, time and causality

    International Nuclear Information System (INIS)

    Lucas, J.R.

    1984-01-01

    Originating from lectures given to first year undergraduates reading physics and philosophy or mathematics and philosophy, formal logic is applied to issues and the elucidation of problems in space, time and causality. No special knowledge of relativity theory or quantum mechanics is needed. The text is interspersed with exercises and each chapter is preceded by a suggested 'preliminary reading' and followed by 'further reading' references. (U.K.)

  18. Development of a generalized stochastic model for the analysis of monoenergetic space-time nuclear factor Kinetics

    International Nuclear Information System (INIS)

    Pham, Nhu Viet Ha

    2011-02-01

    To predict the space-time dependent behavior of a nuclear reactor, the conventional space-dependent kinetics equations are widely used for treating the spatial variables. However, the solutions of such deterministic space-dependent kinetics equations, which give only the mean values of the neutron population and the delayed neutron precursor concentrations, do not offer sufficient insight into the actual dynamic processes within a reactor, where the interacting populations vary randomly with space and time. It is also noted that at high power levels, the random behavior of a reactor is negligible but at low power levels, such as at start-up, random fluctuations in population dynamics can be significant. To mathematically describe the evolution of the state of a nuclear reactor using a set of stochastic kinetics equations, the forward stochastic model (FSM) in stochastic kinetics theory is devised through the concept of reactor transition probability and its probability generating function as the spatial domain of a reactor is partitioned into a number of space cells. Nevertheless, the FSM equations for the mean value of neutron and precursor distribution are deterministic-like. Furthermore, the numerical treatment of the FSM equations for the means, variances, and covariances is quite complicated and time-consuming. In the present study, a generalized stochastic model (called the stochastic space-dependent kinetics model or SSKM) based on the FSM and the Its stochastic differential equations was newly developed for the analysis of monoenergetic spacetime nuclear reactor kinetics in one dimension. First, the FSM equations for determining the mean values of neutron and delayed-neutron precursor populations were considered as the deterministic ones without taking into account their variances and covariances. Second, the system of interest was randomized again in the light of the Its stochastic differential equations in order to derive the SSKM. The proposed model

  19. Modeling the Space-Time Destiny of Pan-Arctic Permafrost DOC in a Global Land Surface Model: Feedback Implications

    Science.gov (United States)

    Bowring, S.; Lauerwald, R.; Guenet, B.; Zhu, D.; Ciais, P.

    2017-12-01

    Most global climate models do not represent the unique permafrost soil environment and its respective processes. This significantly contributes to uncertainty in estimating their responses, and that of the planet at large, to warming. Here, the production, transport and atmospheric release of dissolved organic carbon (DOC) from high-latitude permafrost soils into inland waters and the ocean is explicitly represented for the first time in the land surface component (ORCHIDEE-MICT) of a CMIP6 global climate model (IPSL). This work merges two models that are able to mechanistically simulate complex processes for 1) snow, ice and soil phenomena in high latitude environments, and 2) DOC production and lateral transport through soils and the river network, respectively, at 0.5° to 2° resolution. The resulting model is subjected to a wide range of input forcing data, parameter testing and contentious feedback phenomena, including microbial heat generation as the active layer deepens. We present results for the present and future Pan-Arctic and Eurasia, with a focus on the Lena and Mackenzie River basins, and show that soil DOC concentrations, their riverine transport and atmospheric evasion are reasonably well represented as compared to observed stocks, fluxes and seasonality. We show that most basins exhibit large increases in DOC transport and riverine CO2 evasion across the suite of RCP scenarios to 2100. We also show that model output is strongly influenced by choice of input forcing data. The riverine component of what is known as the `boundless carbon cycle' is little-recognized in global climate modeling. Hydrological mobilization to the river network results either in sedimentary settling or atmospheric `evasion', presently amounting to 0.5-1.8 PgC yr-1. Our work aims at filling in these knowledge gaps, and the response of these DOC-related processes to thermal forcing. Potential feedbacks owing to such a response are of particular relevance, given the magnitude

  20. Quantum field theory in curved space-times: with an application to the reduced model of deSitter universe

    International Nuclear Information System (INIS)

    Peter, I. J.

    1995-06-01

    The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)

  1. Fermion systems in discrete space-time

    International Nuclear Information System (INIS)

    Finster, Felix

    2007-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure

  2. Fermion systems in discrete space-time

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [NWF I - Mathematik, Universitaet Regensburg, 93040 Regensburg (Germany)

    2007-05-15

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  3. Fermion Systems in Discrete Space-Time

    OpenAIRE

    Finster, Felix

    2006-01-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  4. Fermion systems in discrete space-time

    Science.gov (United States)

    Finster, Felix

    2007-05-01

    Fermion systems in discrete space-time are introduced as a model for physics on the Planck scale. We set up a variational principle which describes a non-local interaction of all fermions. This variational principle is symmetric under permutations of the discrete space-time points. We explain how for minimizers of the variational principle, the fermions spontaneously break this permutation symmetry and induce on space-time a discrete causal structure.

  5. Space-Time Quantum Imaging

    Directory of Open Access Journals (Sweden)

    Ronald E. Meyers

    2015-03-01

    Full Text Available We report on an experimental and theoretical investigation of quantum imaging where the images are stored in both space and time. Ghost images of remote objects are produced with either one or two beams of chaotic laser light generated by a rotating ground glass and two sensors measuring the reference field and bucket field at different space-time points. We further observe that the ghost images translate depending on the time delay between the sensor measurements. The ghost imaging experiments are performed both with and without turbulence. A discussion of the physics of the space-time imaging is presented in terms of quantum nonlocal two-photon analysis to support the experimental results. The theoretical model includes certain phase factors of the rotating ground glass. These experiments demonstrated a means to investigate the time and space aspects of ghost imaging and showed that ghost imaging contains more information per measured photon than was previously recognized where multiple ghost images are stored within the same ghost imaging data sets. This suggests new pathways to explore quantum information stored not only in multi-photon coincidence information but also in time delayed multi-photon interference. The research is applicable to making enhanced space-time quantum images and videos of moving objects where the images are stored in both space and time.

  6. Space-Time Discrete KPZ Equation

    Science.gov (United States)

    Cannizzaro, G.; Matetski, K.

    2018-03-01

    We study a general family of space-time discretizations of the KPZ equation and show that they converge to its solution. The approach we follow makes use of basic elements of the theory of regularity structures (Hairer in Invent Math 198(2):269-504, 2014) as well as its discrete counterpart (Hairer and Matetski in Discretizations of rough stochastic PDEs, 2015. arXiv:1511.06937). Since the discretization is in both space and time and we allow non-standard discretization for the product, the methods mentioned above have to be suitably modified in order to accommodate the structure of the models under study.

  7. Bayesian estimation of the dynamics of pandemic (H1N1) 2009 influenza transmission in Queensland: A space-time SIR-based model.

    Science.gov (United States)

    Huang, Xiaodong; Clements, Archie C A; Williams, Gail; Mengersen, Kerrie; Tong, Shilu; Hu, Wenbiao

    2016-04-01

    A pandemic strain of influenza A spread rapidly around the world in 2009, now referred to as pandemic (H1N1) 2009. This study aimed to examine the spatiotemporal variation in the transmission rate of pandemic (H1N1) 2009 associated with changes in local socio-environmental conditions from May 7-December 31, 2009, at a postal area level in Queensland, Australia. We used the data on laboratory-confirmed H1N1 cases to examine the spatiotemporal dynamics of transmission using a flexible Bayesian, space-time, Susceptible-Infected-Recovered (SIR) modelling approach. The model incorporated parameters describing spatiotemporal variation in H1N1 infection and local socio-environmental factors. The weekly transmission rate of pandemic (H1N1) 2009 was negatively associated with the weekly area-mean maximum temperature at a lag of 1 week (LMXT) (posterior mean: -0.341; 95% credible interval (CI): -0.370--0.311) and the socio-economic index for area (SEIFA) (posterior mean: -0.003; 95% CI: -0.004--0.001), and was positively associated with the product of LMXT and the weekly area-mean vapour pressure at a lag of 1 week (LVAP) (posterior mean: 0.008; 95% CI: 0.007-0.009). There was substantial spatiotemporal variation in transmission rate of pandemic (H1N1) 2009 across Queensland over the epidemic period. High random effects of estimated transmission rates were apparent in remote areas and some postal areas with higher proportion of indigenous populations and smaller overall populations. Local SEIFA and local atmospheric conditions were associated with the transmission rate of pandemic (H1N1) 2009. The more populated regions displayed consistent and synchronized epidemics with low average transmission rates. The less populated regions had high average transmission rates with more variations during the H1N1 epidemic period. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Space-Time Data Fusion

    Science.gov (United States)

    Braverman, Amy; Nguyen, Hai; Olsen, Edward; Cressie, Noel

    2011-01-01

    Space-time Data Fusion (STDF) is a methodology for combing heterogeneous remote sensing data to optimally estimate the true values of a geophysical field of interest, and obtain uncertainties for those estimates. The input data sets may have different observing characteristics including different footprints, spatial resolutions and fields of view, orbit cycles, biases, and noise characteristics. Despite these differences all observed data can be linked to the underlying field, and therefore the each other, by a statistical model. Differences in footprints and other geometric characteristics are accounted for by parameterizing pixel-level remote sensing observations as spatial integrals of true field values lying within pixel boundaries, plus measurement error. Both spatial and temporal correlations in the true field and in the observations are estimated and incorporated through the use of a space-time random effects (STRE) model. Once the models parameters are estimated, we use it to derive expressions for optimal (minimum mean squared error and unbiased) estimates of the true field at any arbitrary location of interest, computed from the observations. Standard errors of these estimates are also produced, allowing confidence intervals to be constructed. The procedure is carried out on a fine spatial grid to approximate a continuous field. We demonstrate STDF by applying it to the problem of estimating CO2 concentration in the lower-atmosphere using data from the Atmospheric Infrared Sounder (AIRS) and the Japanese Greenhouse Gasses Observing Satellite (GOSAT) over one year for the continental US.

  9. Projected space-time and varying speed of light

    International Nuclear Information System (INIS)

    Iovane, G.; Bellucci, S.; Benedetto, E.

    2008-01-01

    In this paper starting from El Naschie's Cantorian space-time and our model of projected Universe, we consider its properties in connection with varying speed of light. A possible way-out of the related problem is provided by the Fantappie group approach

  10. Beyond peaceful coexistence the emergence of space, time and quantum

    CERN Document Server

    2016-01-01

    Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum brings together leading academics in mathematics and physics to address going beyond the 'peaceful coexistence' of space-time descriptions (local and continuous ones) and quantum events (discrete and non-commutative ones). Formidable challenges waiting beyond the Standard Model require a new semantic consistency within the theories in order to build new ways of understanding, working and relating to them. The original A. Shimony meaning of the peaceful coexistence (the collapse postulate and non-locality) appear to be just the tip of the iceberg in relation to more serious fundamental issues across physics as a whole.Chapters in this book present perspectives on emergent, discrete, geometrodynamic and topological approaches, as well as a new interpretative spectrum of quantum theories after Copenhagen, discrete time theories, time-less approaches and 'super-fluid' pictures of space-time.As well as stimulating further research among establis...

  11. Warped product space-times

    Science.gov (United States)

    An, Xinliang; Wong, Willie Wai Yeung

    2018-01-01

    Many classical results in relativity theory concerning spherically symmetric space-times have easy generalizations to warped product space-times, with a two-dimensional Lorentzian base and arbitrary dimensional Riemannian fibers. We first give a systematic presentation of the main geometric constructions, with emphasis on the Kodama vector field and the Hawking energy; the construction is signature independent. This leads to proofs of general Birkhoff-type theorems for warped product manifolds; our theorems in particular apply to situations where the warped product manifold is not necessarily Einstein, and thus can be applied to solutions with matter content in general relativity. Next we specialize to the Lorentzian case and study the propagation of null expansions under the assumption of the dominant energy condition. We prove several non-existence results relating to the Yamabe class of the fibers, in the spirit of the black-hole topology theorem of Hawking–Galloway–Schoen. Finally we discuss the effect of the warped product ansatz on matter models. In particular we construct several cosmological solutions to the Einstein–Euler equations whose spatial geometry is generally not isotropic.

  12. Semiclassical expanding discrete space-times

    International Nuclear Information System (INIS)

    Cobb, W.K.; Smalley, L.L.

    1981-01-01

    Given the close ties between general relativity and geometry one might reasonably expect that quantum effects associated with gravitation might also be tied to the geometry of space-time, namely, to some sort of discreteness in space-time itself. In particular it is supposed that space-time consists of a discrete lattice of points rather than the usual continuum. Since astronomical evidence seems to suggest that the universe is expanding, the lattice must also expand. Some of the implications of such a model are that the proton should presently be stable, and the universe should be closed although the mechanism for closure is quantum mechanical. (author)

  13. CFD modeling of space-time evolution of fast pyrolysis products in a bench-scale fluidized-bed reactor

    International Nuclear Information System (INIS)

    Boateng, A.A.; Mtui, P.L.

    2012-01-01

    A model for the evolution of pyrolysis products in a fluidized bed has been developed. In this study the unsteady constitutive transport equations for inert gas flow and decomposition kinetics were modeled using the commercial computational fluid dynamics (CFD) software FLUENT-12. The Eulerarian-Eulerian multiphase model system described herein is a fluidized bed of sand externally heated to a predetermined temperature prior to introduction of agricultural biomass. We predict the spontaneous emergence of pyrolysis vapors, char and non-condensable (permanent) gases and confirm the observation that the kinetics are fast and that bio-oil vapor evolution is accomplished in a few seconds, and occupying two-thirds of the spatial volume of the reactor as widely reported in the open literature. The model could be advantageous in the virtual design of fast pyrolysis reactors and their optimization to meet economic scales required for distributed or satellite units. - Highlights: ► We model the evolution of pyrolysis products in a fluidized bed via CFD. ► We predict the spontaneous emergence of pyrolysis products. ► We confirm the experimental observation that the kinetics are fast. ► And that bio-oil vapor evolution is accomplished in a few seconds. ► The model is advantageous in the virtual design of fast pyrolysis reactors.

  14. Space-time caustics

    Directory of Open Access Journals (Sweden)

    Arthur D. Gorman

    1986-01-01

    Full Text Available The Lagrange manifold (WKB formalism enables the determination of the asymptotic series solution of linear differential equations modelling wave propagation in spatially inhomogeneous media at caustic (turning points. Here the formalism is adapted to determine a class of asymptotic solutions at caustic points for those equations modelling wave propagation in media with both spatial and temporal inhomogeneities. The analogous Schrodinger equation is also considered.

  15. Space-Time Crystal and Space-Time Group.

    Science.gov (United States)

    Xu, Shenglong; Wu, Congjun

    2018-03-02

    Crystal structures and the Bloch theorem play a fundamental role in condensed matter physics. We extend the static crystal to the dynamic "space-time" crystal characterized by the general intertwined space-time periodicities in D+1 dimensions, which include both the static crystal and the Floquet crystal as special cases. A new group structure dubbed a "space-time" group is constructed to describe the discrete symmetries of a space-time crystal. Compared to space and magnetic groups, the space-time group is augmented by "time-screw" rotations and "time-glide" reflections involving fractional translations along the time direction. A complete classification of the 13 space-time groups in one-plus-one dimensions (1+1D) is performed. The Kramers-type degeneracy can arise from the glide time-reversal symmetry without the half-integer spinor structure, which constrains the winding number patterns of spectral dispersions. In 2+1D, nonsymmorphic space-time symmetries enforce spectral degeneracies, leading to protected Floquet semimetal states. We provide a general framework for further studying topological properties of the (D+1)-dimensional space-time crystal.

  16. Model-based testing for space-time interaction using point processes: An application to psychiatric hospital admissions in an urban area.

    Science.gov (United States)

    Meyer, Sebastian; Warnke, Ingeborg; Rössler, Wulf; Held, Leonhard

    2016-05-01

    Spatio-temporal interaction is inherent to cases of infectious diseases and occurrences of earthquakes, whereas the spread of other events, such as cancer or crime, is less evident. Statistical significance tests of space-time clustering usually assess the correlation between the spatial and temporal (transformed) distances of the events. Although appealing through simplicity, these classical tests do not adjust for the underlying population nor can they account for a distance decay of interaction. We propose to use the framework of an endemic-epidemic point process model to jointly estimate a background event rate explained by seasonal and areal characteristics, as well as a superposed epidemic component representing the hypothesis of interest. We illustrate this new model-based test for space-time interaction by analysing psychiatric inpatient admissions in Zurich, Switzerland (2007-2012). Several socio-economic factors were found to be associated with the admission rate, but there was no evidence of general clustering of the cases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Space-time evolution of a growth fold (Betic Cordillera, Spain). Evidences from 3D geometrical modelling

    Science.gov (United States)

    Martin-Rojas, Ivan; Alfaro, Pedro; Estévez, Antonio

    2014-05-01

    We present a study that encompasses several software tools (iGIS©, ArcGIS©, Autocad©, etc.) and data (geological mapping, high resolution digital topographic data, high resolution aerial photographs, etc.) to create a detailed 3D geometric model of an active fault propagation growth fold. This 3D model clearly shows structural features of the analysed fold, as well as growth relationships and sedimentary patterns. The results obtained permit us to discuss the kinematics and structural evolution of the fold and the fault in time and space. The study fault propagation fold is the Crevillente syncline. This fold represents the northern limit of the Bajo Segura Basin, an intermontane basin in the Eastern Betic Cordillera (SE Spain) developed from upper Miocene on. 3D features of the Crevillente syncline, including growth pattern, indicate that limb rotation and, consequently, fault activity was higher during Messinian than during Tortonian; consequently, fault activity was also higher. From Pliocene on our data point that limb rotation and fault activity steadies or probably decreases. This in time evolution of the Crevillente syncline is not the same all along the structure; actually the 3D geometric model indicates that observed lateral heterogeneity is related to along strike variation of fault displacement.

  18. Space-time algebra

    CERN Document Server

    Hestenes, David

    2015-01-01

    This small book started a profound revolution in the development of mathematical physics, one which has reached many working physicists already, and which stands poised to bring about far-reaching change in the future. At its heart is the use of Clifford algebra to unify otherwise disparate mathematical languages, particularly those of spinors, quaternions, tensors and differential forms. It provides a unified approach covering all these areas and thus leads to a very efficient ‘toolkit’ for use in physical problems including quantum mechanics, classical mechanics, electromagnetism and relativity (both special and general) – only one mathematical system needs to be learned and understood, and one can use it at levels which extend right through to current research topics in each of these areas. These same techniques, in the form of the ‘Geometric Algebra’, can be applied in many areas of engineering, robotics and computer science, with no changes necessary – it is the same underlying mathematics, a...

  19. Twistor Cosmology and Quantum Space-Time

    International Nuclear Information System (INIS)

    Brody, D.C.; Hughston, L.P.

    2005-01-01

    The purpose of this paper is to present a model of a 'quantum space-time' in which the global symmetries of space-time are unified in a coherent manner with the internal symmetries associated with the state space of quantum-mechanics. If we take into account the fact that these distinct families of symmetries should in some sense merge and become essentially indistinguishable in the unified regime, our framework may provide an approximate description of or elementary model for the structure of the universe at early times. The quantum elements employed in our characterisation of the geometry of space-time imply that the pseudo-Riemannian structure commonly regarded as an essential feature in relativistic theories must be dispensed with. Nevertheless, the causal structure and the physical kinematics of quantum space-time are shown to persist in a manner that remains highly analogous to the corresponding features of the classical theory. In the case of the simplest conformally flat cosmological models arising in this framework, the twistorial description of quantum space-time is shown to be effective in characterising the various physical and geometrical properties of the theory. As an example, a sixteen-dimensional analogue of the Friedmann-Robertson-Walker cosmologies is constructed, and its chronological development is analysed in some detail. More generally, whenever the dimension of a quantum space-time is an even perfect square, there exists a canonical way of breaking the global quantum space-time symmetry so that a generic point of quantum space-time can be consistently interpreted as a quantum operator taking values in Minkowski space. In this scenario, the breakdown of the fundamental symmetry of the theory is due to a loss of quantum entanglement between space-time and internal quantum degrees of freedom. It is thus possible to show in a certain specific sense that the classical space-time description is an emergent feature arising as a consequence of a

  20. Quantum fields in curved space-times

    International Nuclear Information System (INIS)

    Ashtekar, A.; Magnon, A.

    1975-01-01

    The problem of obtaining a quantum description of the (real) Klein-Gordon system in a given curved space-time is discussed. An algebraic approach is used. The *-algebra of quantum operators is constructed explicitly and the problem of finding its *-representation is reduced to that of selecting a suitable complex structure on the real vector space of the solutions of the (classical) Klein-Gordon equation. Since, in a static space-time, there already exists, a satisfactory quantum field theory, in this case one already knows what the 'correct' complex structure is. A physical characterization of this 'correct' complex structure is obtained. This characterization is used to extend quantum field theory to non-static space-times. Stationary space-times are considered first. In this case, the issue of extension is completely straightforward and the resulting theory is the natural generalization of the one in static space-times. General, non-stationary space-times are then considered. In this case the issue of extension is quite complicated and only a plausible extension is presented. Although the resulting framework is well-defined mathematically, the physical interpretation associated with it is rather unconventional. Merits and weaknesses of this framework are discussed. (author)

  1. Addendum to: Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kirchbach, M. [Instituto de Fisica, UASLP, San Luis Potosi (Mexico); Compean, C.B. [Instituto Tecnologico de San Luis Potosi, Soledad de Graciano Sanchez (Mexico)

    2017-04-15

    In the article under discussion the analysis of the spectra of the unflavored mesons lead us to some intriguing insights into the possible geometry of space-time outside the causal Minkowski light cone and into the nature of strong interactions. In applying the potential theory concept of geometrization of interactions, we showed that the meson masses are best described by a confining potential composed by the centrifugal barrier on the three-dimensional spherical space, S{sup 3}, and of a charge-dipole potential constructed from the Green function to the S{sup 3} Laplacian. The dipole potential emerged in view of the fact that S{sup 3} does not support single-charges without violation of the Gauss theorem and the superposition principle, thus providing a natural stage for the description of the general phenomenon of confined charge-neutral systems. However, in the original article we did not relate the charge-dipoles on S{sup 3} to the color neutral mesons, and did not express the magnitude of the confining dipole potential in terms of the strong coupling α{sub S} and the number of colors, N{sub c}, the subject of the addendum. To the amount S{sup 3} can be thought of as the unique closed space-like geodesic of a four-dimensional de Sitter space-time, dS{sub 4}, we hypothesized the space-like region outside the causal Einsteinian light cone (it describes virtual processes, among them interactions) as the (1+4)-dimensional subspace of the conformal (2+4) space-time, foliated with dS{sub 4} special relativity for strong interaction processes. The potential designed in this way predicted meson spectra of conformal degeneracy patterns, and in accord with the experimental observations. We now extract the α{sub s} values in the infrared from data on meson masses. The results obtained are compatible with the α{sub s} estimates provided by other approaches. (orig.)

  2. Relativistic positioning in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Puchades, Neus; Sáez, Diego

    2015-01-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)

  3. Strings in arbitrary space-time dimensions

    International Nuclear Information System (INIS)

    Fabbrichesi, M.E.; Leviant, V.M.

    1988-01-01

    A modified approach to the theory of a quantum string is proposed. A discussion of the gauge fixing of conformal symmetry by means of Kac-Moody algebrae is presented. Virasoro-like operators are introduced to cancel the conformal anomaly in any number of space-time dimensions. The possibility of massless states in the spectrum is pointed out. 18 refs

  4. Special relativity and space-time geometry.

    Science.gov (United States)

    Molski, M.

    An attempt has been made to formulate the special theory of relativity in a space-time that is explicitly absolute and strictly determines the kinematical characteristics of a particle in uniform translational motion. The approach developed is consistent with Einstein's relativity and permits explanation of the inertia phenomenon.

  5. Modeling the Association of Space, Time, and Host Species with Variation of the HA, NA, and NS Genes of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Birds in Romania in 2005–2007

    Science.gov (United States)

    Alkhamis, Mohammad; Perez, Andres; Batey, Nicole; Howard, Wendy; Baillie, Greg; Watson, Simon; Franz, Stephanie; Focosi-Snyman, Raffaella; Onita, Iuliana; Cioranu, Raluca; Turcitu, Mihai; Kellam, Paul; Brown, Ian H.; Breed, Andrew C.

    2014-01-01

    SUMMARY Molecular characterization studies of a diverse collection of avian influenza viruses (AIVs) have demonstrated that AIVs’ greatest genetic variability lies in the HA, NA, and NS genes. The objective here was to quantify the association between geographical locations, periods of time, and host species and pairwise nucleotide variation in the HA, NA, and NS genes of 70 isolates of H5N1 highly pathogenic avian influenza virus (HPAIV) collected from October 2005 to December 2007 from birds in Romania. A mixed-binomial Bayesian regression model was used to quantify the probability of nucleotide variation between isolates and its association with space, time, and host species. As expected for the three target genes, a higher probability of nucleotide differences (odds ratios [ORs] > 1) was found between viruses sampled from places at greater geographical distances from each other, viruses sampled over greater periods of time, and viruses derived from different species. The modeling approach in the present study maybe useful in further understanding the molecular epidemiology of H5N1 HPAI virus in bird populations. The methodology presented here will be useful in predicting the most likely genetic distance for any of the three gene segments of viruses that have not yet been isolated or sequenced based on space, time, and host species during the course of an epidemic. PMID:24283126

  6. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  7. A new space-time characterization of Northern Hemisphere drought in model simulations of the past and future as compared to the paleoclimate record

    Science.gov (United States)

    Coats, S.; Smerdon, J. E.; Stevenson, S.; Fasullo, J.; Otto-Bliesner, B. L.

    2017-12-01

    The observational record, which provides only limited sampling of past climate variability, has made it difficult to quantitatively analyze the complex spatio-temporal character of drought. To provide a more complete characterization of drought, machine learning based methods that identify drought in three-dimensional space-time are applied to climate model simulations of the last millennium and future, as well as tree-ring based reconstructions of hydroclimate over the Northern Hemisphere extratropics. A focus is given to the most persistent and severe droughts of the past 1000 years. Analyzing reconstructions and simulations in this context allows for a validation of the spatio-temporal character of persistent and severe drought in climate model simulations. Furthermore, the long records provided by the reconstructions and simulations, allows for sufficient sampling to constrain projected changes to the spatio-temporal character of these features using the reconstructions. Along these lines, climate models suggest that there will be large increases in the persistence and severity of droughts over the coming century, but little change in their spatial extent. These models, however, exhibit biases in the spatio-temporal character of persistent and severe drought over parts of the Northern Hemisphere, which may undermine their usefulness for future projections. Despite these limitations, and in contrast to previous claims, there are no systematic changes in the character of persistent and severe droughts in simulations of the historical interval. This suggests that climate models are not systematically overestimating the hydroclimate response to anthropogenic forcing over this period, with critical implications for confidence in hydroclimate projections.

  8. Distributed space-time coding

    CERN Document Server

    Jing, Yindi

    2014-01-01

    Distributed Space-Time Coding (DSTC) is a cooperative relaying scheme that enables high reliability in wireless networks. This brief presents the basic concept of DSTC, its achievable performance, generalizations, code design, and differential use. Recent results on training design and channel estimation for DSTC and the performance of training-based DSTC are also discussed.

  9. A multi-analysis approach for space-time and economic evaluation of risks related with livestock diseases: the example of FMD in Peru.

    Science.gov (United States)

    Martínez-López, B; Ivorra, B; Fernández-Carrión, E; Perez, A M; Medel-Herrero, A; Sánchez-Vizcaíno, F; Gortázar, C; Ramos, A M; Sánchez-Vizcaíno, J M

    2014-04-01

    This study presents a multi-disciplinary decision-support tool, which integrates geo-statistics, social network analysis (SNA), spatial-stochastic spread model, economic analysis and mapping/visualization capabilities for the evaluation of the sanitary and socio-economic impact of livestock diseases under diverse epidemiologic scenarios. We illustrate the applicability of this tool using foot-and-mouth disease (FMD) in Peru as an example. The approach consisted on a flexible, multistep process that may be easily adapted based on data availability. The first module (mI) uses a geo-statistical approach for the estimation (if needed) of the distribution and abundance of susceptible population (in the example here, cattle, swine, sheep, goats, and camelids) at farm-level in the region or country of interest (Peru). The second module (mII) applies SNA for evaluating the farm-to-farm contact patterns and for exploring the structure and frequency of between-farm animal movements as a proxy for potential disease introduction or spread. The third module (mIII) integrates mI-II outputs into a spatial-stochastic model that simulates within- and between-farm FMD-transmission. The economic module (mIV) connects outputs from mI-III to provide an estimate of associated direct and indirect costs. A visualization module (mV) is also implemented to graph and map the outputs of module I-IV. After 1000 simulated epidemics, the mean (95% probability interval) number of outbreaks, infected animals, epidemic duration, and direct costs were 37 (1, 1164), 2152 (1, 13, 250), 63 days (0, 442), and US$ 1.2 million (1072, 9.5 million), respectively. Spread of disease was primarily local (Peru, in particular to inform and support the implementation of risk-based surveillance and livestock insurance systems that may help to prevent and control potential FMD virus incursions into Peru. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Challenges with space-time rainfall in urban hydrology highlighted with a semi-distributed model using C-band and X-band radar data

    Science.gov (United States)

    da Silva Rocha Paz, Igor; Ichiba, Abdellah; Skouri-Plakali, Ilektra; Lee, Jisun; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2017-04-01

    Climate change and global warming are expected to make precipitation events more frequent, more severe and more local. This may have serious consequences for human health, the environment, cultural heritage, economic activities, utilities and public service providers. Then precipitation risk and water management is a key challenge for densely populated urban areas. Applications derived from high (time and space) resolution observation of precipitations are to make our cities more weather-ready. Finer resolution data available from X-band dual radar measurements enhance engineering tools as used for urban planning policies as well as protection (mitigation/adaptation) strategies to tackle climate-change related weather events. For decades engineering tools have been developed to work conveniently either with very local rain gauge networks, or with mainly C-band weather radars that have gradually been set up for space-time remote sensing of precipitation. Most of the time, the C-band weather radars continue to be calibrated by the existing rain gauge networks. Inhomogeneous distributions of rain gauging networks lead to only a partial information on the rainfall fields. In fact, the statistics of measured rainfall is strongly biased by the fractality of the measuring networks. This fractality needs to be properly taken in to account to retrieve the original properties of the rainfall fields, in spite of the radar data calibration. In this presentation, with the help of multifractal analysis, we first demonstrate that the semi-distributed hydrological models statistically reduce the rainfall fields into rainfall measured by a much scarcer network of virtual rain gauges. For this purpose, we use C-band and X-band radar data. The first has a resolution of 1 km in space and 5 min in time and is in fact a product provided by RHEA SAS after treating the Météo-France C-band radar data. The latter is measured by the radar operated at Ecole des Ponts and has a resolution of

  11. A Note on the Problem of Proper Time in Weyl Space-Time

    Science.gov (United States)

    Avalos, R.; Dahia, F.; Romero, C.

    2018-02-01

    We discuss the question of whether or not a general Weyl structure is a suitable mathematical model of space-time. This is an issue that has been in debate since Weyl formulated his unified field theory for the first time. We do not present the discussion from the point of view of a particular unification theory, but instead from a more general standpoint, in which the viability of such a structure as a model of space-time is investigated. Our starting point is the well known axiomatic approach to space-time given by Elhers, Pirani and Schild (EPS). In this framework, we carry out an exhaustive analysis of what is required for a consistent definition for proper time and show that such a definition leads to the prediction of the so-called "second clock effect". We take the view that if, based on experience, we were to reject space-time models predicting this effect, this could be incorporated as the last axiom in the EPS approach. Finally, we provide a proof that, in this case, we are led to a Weyl integrable space-time as the most general structure that would be suitable to model space-time.

  12. The edge of space time

    International Nuclear Information System (INIS)

    Hawking, S.

    1993-01-01

    What happened at the beginning of the expansion of the universe. Did space time have an edge at the Big Bang. The answer is that, if the boundary conditions of the universe are that it has no boundary, time ceases to be well-defined in the very early universe as the direction ''north'' ceases to be well defined at the North Pole of the Earth. The quantity that we measure as time has a beginning but that does not mean spacetime has an edge, just as the surface of the Earth does not have an edge at the North Pole. 8 figs

  13. Incorporating space-time constraints and activity-travel time profiles in a multi-state supernetwork approach to individual activity-travel scheduling

    NARCIS (Netherlands)

    Liao, F.; Arentze, T.A.; Timmermans, H.J.P.

    2013-01-01

    Activity-travel scheduling is at the core of many activity-based models that predict short-term effects of travel information systems and travel demand management. Multi-state supernetworks have been advanced to represent in an integral fashion the multi-dimensional nature of activity-travel

  14. Founding Gravitation in 4D Euclidean Space-Time Geometry

    International Nuclear Information System (INIS)

    Winkler, Franz-Guenter

    2010-01-01

    The Euclidean interpretation of special relativity which has been suggested by the author is a formulation of special relativity in ordinary 4D Euclidean space-time geometry. The natural and geometrically intuitive generalization of this view involves variations of the speed of light (depending on location and direction) and a Euclidean principle of general covariance. In this article, a gravitation model by Jan Broekaert, which implements a view of relativity theory in the spirit of Lorentz and Poincare, is reconstructed and shown to fulfill the principles of the Euclidean approach after an appropriate reinterpretation.

  15. Quantum space-times in the year 2002

    Indian Academy of Sciences (India)

    These ideas of space-time are suggested from developments in fuzzy physics, string theory, and deformation quantization. The review focuses on the ideas coming from fuzzy physics. We find models of quantum space-time like fuzzy 4 on which states cannot be localized, but which fluctuate into other manifolds like CP3.

  16. Space, time and conservation laws

    International Nuclear Information System (INIS)

    Aronov, R.A.; Ugarov, V.A.

    1978-01-01

    The Neter theorem establishing correspondence between conservation laws and symmetry properties (space and time in particular) is considered. The theorem is based on one of the possible ways of finding equations of motion for a physical system. From a certain expression (action functional) equations of motion for a system can be obtained which do not contain new physical assertions in principal in comparison with the Newtonian laws. Neter suggested a way of deriving conservation laws by transforming space and time coordinates. Neter theorem consequences raise a number of problems: 1). Are conservation laws (energy, momentum) consequences of space and time symmetry properties. 2). Is it possible to obtain conservation laws in theory neglecting equations of motion. 3). What is of the primary importance: equations of motion, conservation laws or properties of space and time symmetry. It is shown that direct Neter theorem does not testify to stipulation of conservation laws by properties of space and time symmetry and symmetry properties of other non-space -time properties of material systems in objective reality. It says nothing of whether there is any subordination between symmetry properties and conservation laws

  17. Space-time of class one

    International Nuclear Information System (INIS)

    Villasenor, R.F.; Bonilla, J.L.L.; Zuniga, G.O.; Matos, T.

    1989-01-01

    The authors study space-times embedded in E 5 (that means, pseudo-euclidean five-dimensional spaces) in the intrinsic rigidity case, i.e., when the second fundamental form b if can be determined by the internal geometry of the four-dimensional Riemannian space R 4 . They write down the Gauss and Codazzi equations determining the local isometric embedding of R 4 in E 5 and give some consequences of it. They prove that when there exists intrinsic rigidity, then b if is a linear combination of the metric and Ricci tensor; it is given some applications for the de Sitter and Einstein models

  18. On the differentiability of space-time

    International Nuclear Information System (INIS)

    Clarke, C.J.S.

    1977-01-01

    It is shown that the differentiability of a space-time is implied by that of its Riemann tensor, assuming a priori only boundedness of the first derivations of the metric. Consequently all the results on space-time singularities proved in earlier papers by the author hold true in C 2- space-times. (author)

  19. D-particle Recoil Space Times and "Glueball" Masses

    CERN Document Server

    Mavromatos, Nikolaos E; Mavromatos, Nick E.; Winstanley, Elizabeth

    2001-01-01

    We discuss the properties of matter in a D-dimensional anti-de-Sitter-type space time induced dynamically by the recoil of a very heavy D(irichlet)-particle defect embedded in it. The particular form of the recoil geometry, which from a world-sheet view point follows from logarithmic conformal field theory deformations of the pertinent sigma-models, results in the presence of both infrared and ultraviolet (spatial) cut-offs. These are crucial in ensuring the presence of mass gaps in scalar matter propagating in the D-particle recoil space time. The analogy of this problem with the Liouville-string approach to QCD, suggested earlier by John Ellis and one of the present authors, prompts us to identify the resulting scalar masses with those obtained in the supergravity approach based on the Maldacena's conjecture, but without the imposition of any supersymmetry in our case. Within reasonable numerical uncertainties, we observe that agreement is obtained between the two approaches for a particular value of the ra...

  20. How to use the cosmological Schwinger principle for energy flux, entropy, and 'atoms of space-time' to create a thermodynamic space-time and multiverse

    International Nuclear Information System (INIS)

    Beckwith, Andrew

    2011-01-01

    We make explicit an idea by Padmanabhan in DICE 2010, as to finding 'atoms of space-time' permitting a thermodynamic treatment of emergent structure similar to Gibbs treatment of statistical physics. That is, an ensemble of gravitons is used to give an 'atom' of space-time congruent with relic GW. The idea is to reduce the number of independent variables to get a simple emergent space-time structure of entropy. An electric field, based upon the cosmological Schwinger principle, is linked to relic heat flux, with entropy production tied in with candidates as to inflaton potentials. The effective electric field links with the Schwinger 1951s result of an E field leading to pairs of e + e - charges nucleated in space-time volume V · t. Note that in most inflationary models, the assumption is for a magnetic field, not an electric field. An electric field permits a kink-anti-kink construction of an emergent structure, which includes Glinka's recent pioneering approach to a Multiverse. Also an E field allows for an emergent relic particle frequency range between one and 100 GHz. The novel contribution is a relic E field, instead of a B field, in relic space-time 'atom' formation and vacuum nucleation of the same.

  1. Re-examination of globally flat space-time.

    Directory of Open Access Journals (Sweden)

    Michael R Feldman

    Full Text Available In the following, we offer a novel approach to modeling the observed effects currently attributed to the theoretical concepts of "dark energy," "dark matter," and "dark flow." Instead of assuming the existence of these theoretical concepts, we take an alternative route and choose to redefine what we consider to be inertial motion as well as what constitutes an inertial frame of reference in flat space-time. We adopt none of the features of our current cosmological models except for the requirement that special and general relativity be local approximations within our revised definition of inertial systems. Implicit in our ideas is the assumption that at "large enough" scales one can treat objects within these inertial systems as point-particles having an insignificant effect on the curvature of space-time. We then proceed under the assumption that time and space are fundamentally intertwined such that time- and spatial-translational invariance are not inherent symmetries of flat space-time (i.e., observable clock rates depend upon both relative velocity and spatial position within these inertial systems and take the geodesics of this theory in the radial Rindler chart as the proper characterization of inertial motion. With this commitment, we are able to model solely with inertial motion the observed effects expected to be the result of "dark energy," "dark matter," and "dark flow." In addition, we examine the potential observable implications of our theory in a gravitational system located within a confined region of an inertial reference frame, subsequently interpreting the Pioneer anomaly as support for our redefinition of inertial motion. As well, we extend our analysis into quantum mechanics by quantizing for a real scalar field and find a possible explanation for the asymmetry between matter and antimatter within the framework of these redefined inertial systems.

  2. The science of space-time

    International Nuclear Information System (INIS)

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity

  3. Space time problems and applications

    DEFF Research Database (Denmark)

    Dethlefsen, Claus

    models, cubic spline models and structural time series models. The development of state space theory has interacted with the development of other statistical disciplines.   In the first part of the Thesis, we present the theory of state space models, including Gaussian state space models, approximative...... analysis of non-Gaussian models, simulation based techniques and model diagnostics.   The second part of the Thesis considers Markov random field models. These are spatial models applicable in e.g. disease mapping and in agricultural experiments. Recently, the Gaussian Markov random field models were...... techniques with importance sampling.   The third part of the Thesis contains applications of the theory. First, a univariate time series of count data is analysed. Then, a spatial model is used to compare wheat yields. Weed count data in connection with a project in precision farming is analysed using...

  4. Maximum Likelihood Blind Channel Estimation for Space-Time Coding Systems

    Directory of Open Access Journals (Sweden)

    Hakan A. Çırpan

    2002-05-01

    Full Text Available Sophisticated signal processing techniques have to be developed for capacity enhancement of future wireless communication systems. In recent years, space-time coding is proposed to provide significant capacity gains over the traditional communication systems in fading wireless channels. Space-time codes are obtained by combining channel coding, modulation, transmit diversity, and optional receive diversity in order to provide diversity at the receiver and coding gain without sacrificing the bandwidth. In this paper, we consider the problem of blind estimation of space-time coded signals along with the channel parameters. Both conditional and unconditional maximum likelihood approaches are developed and iterative solutions are proposed. The conditional maximum likelihood algorithm is based on iterative least squares with projection whereas the unconditional maximum likelihood approach is developed by means of finite state Markov process modelling. The performance analysis issues of the proposed methods are studied. Finally, some simulation results are presented.

  5. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W. [King' s Coll., London (UK)

    1976-09-30

    It is stated that recent theoretical developments indicate that the presence of gravity (curved space-time) can give rise to important new quantum effects, such as cosmological particle production and black-hole evaporation. These processes suggest intriguing new relations between quantum theory, thermodynamics and space-time structure and encourage the hope that a better understanding of a full quantum theory of gravity may emerge from this approach.

  6. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  7. Modelling individual space?time exposure opportunities: A novel approach to unravelling the genetic or environment disease causation debate

    DEFF Research Database (Denmark)

    Sabel, Clive E; Boyle, Paul; Raab, Gillian

    2009-01-01

    The aetiology of Amyotrophic Lateral Sclerosis (ALS) is uncertain. While around 10% is assumed to be inherited, the relative influence of genetic versus physical or social environmental factors (or some combination of the two) has yet to be determined. A previous study identified significant...... clustering of ALS at the time of birth in south-east Finland and this could support either a genetic or an environmental hypothesis. We know that south-east Finland is an environmentally degraded area, but the population in this region may also be genetically susceptible to this condition. We therefore...... remaining in south-east Finland is more common among cases than controls and, hence, whether there may be an environmental or genetic influence on ALS associated with that region. Our results indeed suggest that the cases were more likely to remain in south-east Finland after birth, compared...

  8. Possibility of extending space-time coordinates

    International Nuclear Information System (INIS)

    Wang Yongcheng.

    1993-11-01

    It has been shown that one coordinate system can describe a whole space-time region except some supersurfaces on which there are coordinate singularities. The conditions of extending a coordinate from real field to complex field are studied. It has been shown that many-valued coordinate transformations may help us to extend space-time regions and many-valued metric functions may make one coordinate region to describe more than one space-time regions. (author). 11 refs

  9. Unitals and ovals of symmetric block designs in LDPC and space-time coding

    Science.gov (United States)

    Andriamanalimanana, Bruno R.

    2004-08-01

    An approach to the design of LDPC (low density parity check) error-correction and space-time modulation codes involves starting with known mathematical and combinatorial structures, and deriving code properties from structure properties. This paper reports on an investigation of unital and oval configurations within generic symmetric combinatorial designs, not just classical projective planes, as the underlying structure for classes of space-time LDPC outer codes. Of particular interest are the encoding and iterative (sum-product) decoding gains that these codes may provide. Various small-length cases have been numerically implemented in Java and Matlab for a number of channel models.

  10. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  11. Physics in space-time with scale-dependent metrics

    Science.gov (United States)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  12. Space-time and matter in 'prephysics'

    International Nuclear Information System (INIS)

    Terazawa, Hidezumi.

    1985-05-01

    Many fundamental questions concerning the space-time and matter are asked and answered in ''prephysics'', a new line of physics (or philosophy but not metaphysics). They include the following: 1) ''Why is our space-time of 4 dimensions.'', 2) ''What is the ultimate form of matter.'' and 3) ''How was our universe created.''. (author)

  13. Space-Time Reference Systems

    CERN Document Server

    Soffel, Michael

    2013-01-01

    The high accuracy of modern astronomical spatial-temporal reference systems has made them considerably complex. This book offers a comprehensive overview of such systems. It begins with a discussion of ‘The Problem of Time’, including recent developments in the art of clock making (e.g., optical clocks) and various time scales. The authors address  the definitions and realization of spatial coordinates by reference to remote celestial objects such as quasars. After an extensive treatment of classical equinox-based coordinates, new paradigms for setting up a celestial reference system are introduced that no longer refer to the translational and rotational motion of the Earth. The role of relativity in the definition and realization of such systems is clarified. The topics presented in this book are complemented by exercises (with solutions). The authors offer a series of files, written in Maple, a standard computer algebra system, to help readers get a feel for the various models and orders of magnitude. ...

  14. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data

    DEFF Research Database (Denmark)

    Nielsen, J. Rasmus; Kristensen, Kasper; Lewy, Peter

    2014-01-01

    Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes...

  15. Quantum universe on extremely small space-time scales

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2010-01-01

    The semiclassical approach to the quantum geometrodynamical model is used for the description of the properties of the Universe on extremely small space-time scales. Under this approach, the matter in the Universe has two components of the quantum nature which behave as antigravitating fluids. The first component does not vanish in the limit h → 0 and can be associated with dark energy. The second component is described by an extremely rigid equation of state and goes to zero after the transition to large spacetime scales. On small space-time scales, this quantum correction turns out to be significant. It determines the geometry of the Universe near the initial cosmological singularity point. This geometry is conformal to a unit four-sphere embedded in a five-dimensional Euclidean flat space. During the consequent expansion of the Universe, when reaching the post-Planck era, the geometry of the Universe changes into that conformal to a unit four-hyperboloid in a five-dimensional Lorentzsignatured flat space. This agrees with the hypothesis about the possible change of geometry after the origin of the expanding Universe from the region near the initial singularity point. The origin of the Universe can be interpreted as a quantum transition of the system from a region in the phase space forbidden for the classical motion, but where a trajectory in imaginary time exists, into a region, where the equations of motion have the solution which describes the evolution of the Universe in real time. Near the boundary between two regions, from the side of real time, the Universe undergoes almost an exponential expansion which passes smoothly into the expansion under the action of radiation dominating over matter which is described by the standard cosmological model.

  16. A statistical model for estimation of fish density including correlation in size, space, time and between species from research survey data.

    Directory of Open Access Journals (Sweden)

    J Rasmus Nielsen

    Full Text Available Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes zero observations and over-dispersion. The model utilises the fact the correlation between numbers of fish caught increases when the distance in space and time between the fish decreases, and the correlation between size groups in a haul increases when the difference in size decreases. Here the model is extended in two ways. Instead of assuming a natural scale size correlation, the model is further developed to allow for a transformed length scale. Furthermore, in the present application, the spatial- and size-dependent correlation between species was included. For cod (Gadus morhua and whiting (Merlangius merlangus, a common structured size correlation was fitted, and a separable structure between the time and space-size correlation was found for each species, whereas more complex structures were required to describe the correlation between species (and space-size. The within-species time correlation is strong, whereas the correlations between the species are weaker over time but strong within the year.

  17. A splitting scheme based on the space-time CE/SE method for solving multi-dimensional hydrodynamical models of semiconductor devices

    Science.gov (United States)

    Nisar, Ubaid Ahmed; Ashraf, Waqas; Qamar, Shamsul

    2016-08-01

    Numerical solutions of the hydrodynamical model of semiconductor devices are presented in one and two-space dimension. The model describes the charge transport in semiconductor devices. Mathematically, the models can be written as a convection-diffusion type system with a right hand side describing the relaxation effects and interaction with a self consistent electric field. The proposed numerical scheme is a splitting scheme based on the conservation element and solution element (CE/SE) method for hyperbolic step, and a semi-implicit scheme for the relaxation step. The numerical results of the suggested scheme are compared with the splitting scheme based on Nessyahu-Tadmor (NT) central scheme for convection step and the same semi-implicit scheme for the relaxation step. The effects of various parameters such as low field mobility, device length, lattice temperature and voltages for one-space dimensional hydrodynamic model are explored to further validate the generic applicability of the CE/SE method for the current model equations. A two dimensional simulation is also performed by CE/SE method for a MESFET device, producing results in good agreement with those obtained by NT-central scheme.

  18. Hyperbolic statics in space-time

    OpenAIRE

    Pavlov, Dmitry; Kokarev, Sergey

    2014-01-01

    Based on the concept of material event as an elementary material source that is concentrated on metric sphere of zero radius --- light-cone of Minkowski space-time, we deduce the analog of Coulomb's law for hyperbolic space-time field universally acting between the events of space-time. Collective field that enables interaction of world lines of a pair of particles at rest contains a standard 3-dimensional Coulomb's part and logarithmic addendum. We've found that the Coulomb's part depends on...

  19. IInvestigations of space-time variability of the sea level in the Barents Sea and the White Sea by satellite altimetry data and results of hydrodynamic modelling

    Science.gov (United States)

    Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.

    2003-04-01

    The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).

  20. Incorporating activity-travel time uncertainty and stochastic space-time prisms in multistate supernetworks for activity-travel scheduling

    NARCIS (Netherlands)

    Liao, F.; Rasouli, S.; Timmermans, H.J.P.

    2014-01-01

    Multistate supernetwork approach has been advanced recently to study multimodal, multi-activity travel behavior. The approach allows simultaneously modeling multiple choice facets pertaining to activity-travel scheduling behavior, subject to space-time constraints, in the context of full daily

  1. Minkowski space-time is locally extendible

    International Nuclear Information System (INIS)

    Beem, J.K.

    1980-01-01

    An example of a real analytic local extension of Minkowski space-time is given in this note. This local extension is not across points of the b-boundary since Minkowski space-time has an empty b-boundary. Furthermore, this local extension is not across points of the causal boundary. The example indicates that the concept of local inextendibility may be less useful than originally envisioned. (orig.)

  2. Space-Time Disarray and Visual Awareness

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-04-01

    Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.

  3. Unsupervised action classification using space-time link analysis

    DEFF Research Database (Denmark)

    Liu, Haowei; Feris, Rogerio; Krüger, Volker

    2010-01-01

    In this paper we address the problem of unsupervised discovery of action classes in video data. Different from all existing methods thus far proposed for this task, we present a space-time link analysis approach which matches the performance of traditional unsupervised action categorization metho...

  4. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    Science.gov (United States)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel

  5. Spontaneous symmetry breaking in curved space-time

    International Nuclear Information System (INIS)

    Toms, D.J.

    1982-01-01

    An approach dealing with some of the complications which arise when studying spontaneous symmetry breaking beyond the tree-graph level in situations where the effective potential may not be used is discussed. These situations include quantum field theory on general curved backgrounds or in flat space-times with non-trivial topologies. Examples discussed are a twisted scalar field in S 1 xR 3 and instabilities in an expanding universe. From these it is seen that the topology and curvature of a space-time may affect the stability of the vacuum state. There can be critical length scales or times beyond which symmetries may be broken or restored in certain cases. These features are not present in Minkowski space-time and so would not show up in the usual types of early universe calculations. (U.K.)

  6. Individuation in Quantum Mechanics and Space-Time

    Science.gov (United States)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  7. FLRW cosmology in Weyl-integrable space-time

    Energy Technology Data Exchange (ETDEWEB)

    Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nandan, Hemwati [Department of Physics, Gurukula Kangri Vishwavidayalaya, Haridwar 249404 (India); Dadhich, Naresh, E-mail: gannouji@rs.kagu.tus.ac.jp, E-mail: hntheory@yahoo.co.in, E-mail: nkd@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2011-11-01

    We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.

  8. A geometric renormalization group in discrete quantum space-time

    International Nuclear Information System (INIS)

    Requardt, Manfred

    2003-01-01

    We model quantum space-time on the Planck scale as dynamical networks of elementary relations or time dependent random graphs, the time dependence being an effect of the underlying dynamical network laws. We formulate a kind of geometric renormalization group on these (random) networks leading to a hierarchy of increasingly coarse-grained networks of overlapping lumps. We provide arguments that this process may generate a fixed limit phase, representing our continuous space-time on a mesoscopic or macroscopic scale, provided that the underlying discrete geometry is critical in a specific sense (geometric long range order). Our point of view is corroborated by a series of analytic and numerical results, which allow us to keep track of the geometric changes, taking place on the various scales of the resolution of space-time. Of particular conceptual importance are the notions of dimension of such random systems on the various scales and the notion of geometric criticality

  9. Statistical geometry and space-time

    International Nuclear Information System (INIS)

    Grauert, H.

    1976-01-01

    In this paper I try to construct a mathematical tool by which the full structure of Lorentz geometry to space time can be given, but beyond that the background - to speak pictorially - the subsoil for electromagnetic and matter waves, too. The tool could be useful to describe the connections between various particles, electromagnetism and gravity and to compute observables which were not theoretically related, up to now. Moreover, the tool is simpler than the Riemann tensor: it consists just of a set S of line segments in space time, briefly speaking. (orig.) [de

  10. Space-Time Diffeomorphisms in Noncommutative Gauge Theories

    Directory of Open Access Journals (Sweden)

    L. Román Juarez

    2008-07-01

    Full Text Available In previous work [Rosenbaum M. et al., J. Phys. A: Math. Theor. 40 (2007, 10367–10382] we have shown how for canonical parametrized field theories, where space-time is placed on the same footing as the other fields in the theory, the representation of space-time diffeomorphisms provides a very convenient scheme for analyzing the induced twisted deformation of these diffeomorphisms, as a result of the space-time noncommutativity. However, for gauge field theories (and of course also for canonical geometrodynamics where the Poisson brackets of the constraints explicitely depend on the embedding variables, this Poisson algebra cannot be connected directly with a representation of the complete Lie algebra of space-time diffeomorphisms, because not all the field variables turn out to have a dynamical character [Isham C.J., Kuchar K.V., Ann. Physics 164 (1985, 288–315, 316–333]. Nonetheless, such an homomorphic mapping can be recuperated by first modifying the original action and then adding additional constraints in the formalism in order to retrieve the original theory, as shown by Kuchar and Stone for the case of the parametrized Maxwell field in [Kuchar K.V., Stone S.L., Classical Quantum Gravity 4 (1987, 319–328]. Making use of a combination of all of these ideas, we are therefore able to apply our canonical reparametrization approach in order to derive the deformed Lie algebra of the noncommutative space-time diffeomorphisms as well as to consider how gauge transformations act on the twisted algebras of gauge and particle fields. Thus, hopefully, adding clarification on some outstanding issues in the literature concerning the symmetries for gauge theories in noncommutative space-times.

  11. MEST- avoid next extinction by a space-time effect

    Science.gov (United States)

    Cao, Dayong

    2013-03-01

    Sun's companion-dark hole seasonal took its dark comets belt and much dark matter to impact near our earth. And some of them probability hit on our earth. So this model kept and triggered periodic mass extinctions on our earth every 25 to 27 million years. After every impaction, many dark comets with very special tilted orbits were arrested and lurked in solar system. When the dark hole-Tyche goes near the solar system again, they will impact near planets. The Tyche, dark comet and Oort Cloud have their space-time center. Because the space-time are frequency and amplitude square of wave. Because the wave (space-time) can make a field, and gas has more wave and fluctuate. So they like dense gas ball and a dark dense field. They can absorb the space-time and wave. So they are ``dark'' like the dark matter which can break genetic codes of our lives by a dark space-time effect. So the upcoming next impaction will cause current ``biodiversity loss.'' The dark matter can change dead plants and animals to coal, oil and natural gas which are used as energy, but break our living environment. According to our experiments, which consciousness can use thought waves remotely to change their systemic model between Electron Clouds and electron holes of P-N Junction and can change output voltages of solar cells by a life information technology and a space-time effect, we hope to find a new method to the orbit of the Tyche to avoid next extinction. (see Dayong Cao, BAPS.2011.APR.K1.17 and BAPS.2012.MAR.P33.14) Support by AEEA

  12. Space-time design of the public city

    CERN Document Server

    Thomaier, Susanne; Könecke, Benjamin; Zedda, Roberto; Stabilini, Stefano

    2013-01-01

    Time has become an increasingly important topic in urban studies and urban planning. The spatial-temporal interplay is not only of relevance for the theory of urban development and urban politics, but also for urban planning and governance. The space-time approach focuses on the human being with its various habits and routines in the city. Understanding and taking those habits into account in urban planning and public policies offers a new way to improve the quality of life in our cities. Adapting the supply and accessibility of public spaces and services to the inhabitants’ space-time needs calls for an integrated approach to the physical design of urban space and to the organization of cities. In the last two decades the body of practical and theoretical work on urban space-time topics has grown substantially. The book offers a state of the art overview of the theoretical reasoning, the development of new analytical tools, and practical experience of the space-time design of public cities in major Europea...

  13. Spinor Field Nonlinearity and Space-Time Geometry

    Science.gov (United States)

    Saha, Bijan

    2018-03-01

    Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time

  14. Strings reinterpreted as topological elements of space time

    International Nuclear Information System (INIS)

    Ne'eman, Y.

    1986-01-01

    In 1974, Scherk and Schwarz suggested a reinterpretation of string dynamics as a theory of quantum gravity with unification. We suggest completing the transition through the reinterpretation of the strings themselves as Feynman-paths, spanning the topology of space time in the Hawking-King-McCarthy model. This explains the emergency of gravity

  15. Scalar metric fluctuations in space-time matter inflation

    International Nuclear Information System (INIS)

    Anabitarte, Mariano; Bellini, Mauricio

    2006-01-01

    Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: G-bar AB =0, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space-time matter inflation

  16. Space-time supersymmetry of extended fermionic strings in 2 + 2 dimensions

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1993-04-01

    The N = 2 fermionic string theory is revisited in light of its recently proposed equivalence to the non-compact N = 4 fermionic string model. The issues of space-time Lorentz covariance and supersymmetry for the BRST quantized N = 2 strings living in uncompactified 2 + 2 dimensions are discussed. The equivalent local quantum supersymmetric field theory appears to be the most transparent way to represent the space-time symmetries of the extended fermionic strings and their interactions. Our considerations support the Siegel's ideas about the presence of SO(2,2) Lorentz symmetry as well as at least two self-dual space-time supersymmetries in the theory of the N = 2(4) fermionic strings, though we do not have a compelling reason to argue about the necessity of the maximal space-time supersymmetry. The world-sheet arguments about the absence of all string massive modes in the physical spectrum, and the vanishing of all string-loop amplitudes in the Polyakov approach, are given on the basis of general consistency of the theory. (orig.)

  17. On the study of quantum properties of space-time with interferometers and resonant bars

    International Nuclear Information System (INIS)

    Amelino-Camelia, G.

    2001-01-01

    The expectation that it should not be possible to gain experimental insight on the structure of space-time at Planckian distance scales has been recently challenged by several studies which have shown that there are a few classes of experiments with sensitivity sufficient for setting significant limits on certain candidate Planckian pictures of space-time. With respect to quantum space-time fluctuations, one of the most popular predictions of various Quantum-Gravity approaches, the experiments that have the best sensitivity are the same experiments which are used in searches of the classical-physics phenomenon of gravity waves. In experiments searching for classical gravity waves the presence of quantum space-time fluctuations would introduce a source of noise just like the ordinary (non-gravitational) quantum properties of the photons composing the laser beam used in interferometry introduce a source of noise. The sensitivity to distance fluctuations achieved (or being achieved) by modern interferometers and resonant-bar detectors is here described in terms of the Planck length, hoping that this characterization may prove useful for theorists attempting to gain some intuition for these sensitivity levels. While theory work on Quantum Gravity is not yet ready to provide definite noise models, there are some general characteristics of Quantum-Gravity-induced noise that could be used in experimental studies. (author)

  18. Charge conjugation and internal space time symmetries

    International Nuclear Information System (INIS)

    Pavsic, M.; Recami, E.

    1982-01-01

    The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges

  19. Space-time and Local Gauge Symmetries

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Symmetries of Particle Physics: Space-time and Local Gauge Symmetries. Sourendu Gupta. General Article Volume 6 Issue 2 February 2001 pp 29-38. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Local and nonlocal space-time singularities

    International Nuclear Information System (INIS)

    Konstantinov, M.Yu.

    1985-01-01

    The necessity to subdivide the singularities into two classes: local and nonlocal, each of them to be defined independently, is proved. Both classes of the singularities are defined, and the relation between the definitions introduced and the standard definition of singularities, based on space-time, incompleteness, is established. The relation between definitions introduced and theorems on the singularity existence is also established

  1. Quantum space-time and gravitational consequences

    International Nuclear Information System (INIS)

    Namsrai, K.

    1986-01-01

    Relativistic particle dynamics and basic physical quantities for the general theory of gravity are reconstructed from a quantum space-time point of view. An additional force caused by quantum space-time appears in the equation of particle motion, giving rise to a reformulation of the equivalence principle up to values of O(L 2 ), where L is the fundamental length. It turns out that quantum space-time leads to quantization of gravity, i.e. the metric tensor g/sub uv/ (/ZETA/) becomes operator-valued and is not commutative at different points x/sup micro/ and y/sup micro/ in usual space-time on a large scale, and its commutator depending on the ''vielbein'' field (gaugelike graviton field) is proportional to L 2 multiplied by a translationinvariant wave function propagated between points x/sup micro/ and y/sup micro/. In the given scheme, there appears to be an antigravitational effect in the motion of a particle in the gravitational force. This effect depends on the value of particle mass; when a particle is heavy its free-fall time is long compared to that for a light-weight particle. The problem of the change of time scale and the anisotropy of inertia are discussed. From experimental data from testing of the latter effect it follows that L ≤ 10 -22 cm

  2. Space-time structure and the origin of physical law

    International Nuclear Information System (INIS)

    Green, M.A.

    1980-01-01

    In the first part of this theses the author adopts a traditional world view, with space-time a topologically simple geometrical manifold, matter being represented by smooth classical fields, and space a Riemannian submanifold of space-time. It is shown how to characterize the space-time geometry in terms of fields defined on three-dimensional space. Accepting a finite number of the fields induced on space as independent initial data, a procedure is given for constructing dynamical and constraint equations which will propagate these fields forward in time. When the initial data are restricted to include only the hypersurface metric and the extrinsic curvature, the resulting equations combine to form the Einstein gravitational field equations with the cosmological term. The synthesis of gravitational and quantum physics is approached by proposing that the objective world underlying the perceived world is a four-dimensional topological manifold w, with no physically significant field structure and an unconstrianed and complex global topology. Conventional space-time is then a topologically simple replacement manifold for w. A preliminary outline of the correspondence is presented, based on a similarity between a natural graphical representation of 2 and the Feynman graphs of quantum field theory

  3. Convexity and the Euclidean Metric of Space-Time

    Directory of Open Access Journals (Sweden)

    Nikolaos Kalogeropoulos

    2017-02-01

    Full Text Available We address the reasons why the “Wick-rotated”, positive-definite, space-time metric obeys the Pythagorean theorem. An answer is proposed based on the convexity and smoothness properties of the functional spaces purporting to provide the kinematic framework of approaches to quantum gravity. We employ moduli of convexity and smoothness which are eventually extremized by Hilbert spaces. We point out the potential physical significance that functional analytical dualities play in this framework. Following the spirit of the variational principles employed in classical and quantum Physics, such Hilbert spaces dominate in a generalized functional integral approach. The metric of space-time is induced by the inner product of such Hilbert spaces.

  4. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  5. Mach's principle and space-time structure

    International Nuclear Information System (INIS)

    Raine, D.J.

    1981-01-01

    Mach's principle, that inertial forces should be generated by the motion of a body relative to the bulk of matter in the universe, is shown to be related to the structure imposed on space-time by dynamical theories. General relativity theory and Mach's principle are both shown to be well supported by observations. Since Mach's principle is not contained in general relativity this leads to a discussion of attempts to derive Machian theories. The most promising of these appears to be a selection rule for solutions of the general relativistic field equations, in which the space-time metric structure is generated by the matter content of the universe only in a well-defined way. (author)

  6. Topology of classical vacuum space-time

    International Nuclear Information System (INIS)

    Cho, Y.M.

    2007-04-01

    We present a topological classification of classical vacuum space-time. Assuming the 3-dimensional space allows a global chart, we show that the static vacuum space-time of Einstein's theory can be classified by the knot topology π 3 (S 3 ) = π 3 (S 2 ). Viewing Einstein's theory as a gauge theory of Lorentz group and identifying the gravitational connection as the gauge potential of Lorentz group, we construct all possible vacuum gravitational connections which give a vanishing curvature tensor. With this we show that the vacuum connection has the knot topology, the same topology which describes the multiple vacua of SU(2) gauge theory. We discuss the physical implications of our result in quantum gravity. (author)

  7. Scalable space-time adaptive simulation tools for computational electrocardiology

    OpenAIRE

    Krause, Dorian; Krause, Rolf

    2013-01-01

    This work is concerned with the development of computational tools for the solution of reaction-diffusion equations from the field of computational electrocardiology. We designed lightweight spatially and space-time adaptive schemes for large-scale parallel simulations. We propose two different adaptive schemes based on locally structured meshes, managed either via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our approach is a non-conforming morta...

  8. Vector mass in curved space-times

    International Nuclear Information System (INIS)

    Maia, M.D.

    The use of the Poincare-symmetry appears to be incompatible with the presence of the gravitational field. The consequent problem of the definition of the mass operator is analysed and an alternative definition based on constant curvature tangent spaces is proposed. In the case where the space-time has no killing vector fields, four independent mass operators can be defined at each point. (Author) [pt

  9. Quantum space-time: a review

    International Nuclear Information System (INIS)

    Namsrai, K.

    1988-01-01

    The review presents systematically the results of studies which develop an idea of quantum properties of space-time in the microworld or near exotic objects (black holes, magnetic monopoles and others). On the basis of this idea motion equations of nonrelativistic and relativistic particles are studied. It is shown that introducing concept of quantum space-time at small distances (or near superdense matter) leads to an additional force giving rise to appearance of spiral-like behaviour of a particle along its classical trajectory. Given method is generalized to nonrelativistic quantum mechanics and to motion of a particle in gravitational force. In the latter case, there appears to be an antigravitational effect in the motion of a particle leading to different value of free-fall time (at least for gravitational force of exotic objects) for particles with different masses. Gravitational consequences of quantum space-time and tensor structures of physical quantities are investigated in detail. From experimental data on testing relativity and anisotropy of inertia estimation L ≤ 10 -22 cm on the value of the fundamental length is obtained. (author)

  10. Vacuum polarization on black hole space times

    International Nuclear Information System (INIS)

    Jensen, B.P.

    1985-01-01

    The effects of vacuum polarization in black hole space times are examined. Particular attention is given to the vacuum physics inside the event horizon. The analytic properties of the solutions to the radial wave equation in Schwarzs child space time as functions of argument, frequency, and angular momentum are given. These functions are employed to define the Feynmann Green function (G/sub F/(x,x') for a scalar field subject to the Hartle-Hawking boundary conditions. An examination of the Schwarzschild mode functions near r = 0 is provided. This work is necessary background for a future calculation of 2 > and the quantum stress-energy tensor for small r. Some opinions are given on how this calculation might be performed. A solution of the one-loop Einstein equations for Schwarzs child Anti-deSitter (SAdS) space time is presented, using Page's approximation to the quantum stress tensor. The resulting perturbed metric is shown to be unphysical, as it leads to a system of fields with infinite total energy. This problem is believed to be due to a failure of Page's method in SAdS. Suggestions are given on how one might correct the method

  11. On fractal space-time and fractional calculus

    Directory of Open Access Journals (Sweden)

    Hu Yue

    2016-01-01

    Full Text Available This paper gives an explanation of fractional calculus in fractal space-time. On observable scales, continuum models can be used, however, when the scale tends to a smaller threshold, a fractional model has to be adopted to describe phenomena in micro/nano structure. A time-fractional Fornberg-Whitham equation is used as an example to elucidate the physical meaning of the fractional order, and its solution process is given by the fractional complex transform.

  12. Nucleon structure functions in noncommutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Rafiei, A.; Rezaei, Z.; Mirjalili, A. [Yazd University, Physics Department, Yazd (Iran, Islamic Republic of)

    2017-05-15

    In the context of noncommutative space-time we investigate the nucleon structure functions which play an important role in identifying the internal structure of nucleons. We use the corrected vertices and employ new vertices that appear in two approaches of noncommutativity and calculate the proton structure functions in terms of the noncommutative tensor θ{sub μν}. To check our results we plot the nucleon structure function (NSF), F{sub 2}(x), and compare it with experimental data and the results from the GRV, GJR and CT10 parametrization models. We show that with the new vertex that arises the noncommutativity correction will lead to a better consistency between theoretical results and experimental data for the NSF. This consistency will be better for small values of the Bjorken variable x. To indicate and confirm the validity of our calculations we also act conversely. We obtain a lower bound for the numerical values of Λ{sub NC} scale which correspond to recent reports. (orig.)

  13. A space-time rainfall generator for highly convective Mediterranean rainstorms

    Directory of Open Access Journals (Sweden)

    S. Salsón

    2003-01-01

    Full Text Available Distributed hydrological models require fine resolution rainfall inputs, enhancing the practical interest of space-time rainfall models, capable of generating through numerical simulation realistic space-time rainfall intensity fields. Among different mathematical approaches, those based on point processes and built upon a convenient analytical description of the raincell as the fundamental unit, have shown to be particularly suitable and well adapted when extreme rainfall events of convective nature are considered. Starting from previous formulations, some analytical refinements have been considered, allowing practical generation of space-time rainfall intensity fields for that type of rainstorm events. Special attention is placed on the analytical description of the spatial and temporal evolution of the rainfall intensities produced by the raincells. After deriving the necessary analytical results, the seven parameters of the model have been estimated by the method of moments, for each of the 30 selected rainfall events in the Jucar River Basin (ValenciaSpain – period 1991 to 2000, using 5-min aggregated rainfall data series from an automatic raingauge network.

  14. Trajectory data analyses for pedestrian space-time activity study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-25

    It is well recognized that human movement in the spatial and temporal dimensions has direct influence on disease transmission(1-3). An infectious disease typically spreads via contact between infected and susceptible individuals in their overlapped activity spaces. Therefore, daily mobility-activity information can be used as an indicator to measure exposures to risk factors of infection. However, a major difficulty and thus the reason for paucity of studies of infectious disease transmission at the micro scale arise from the lack of detailed individual mobility data. Previously in transportation and tourism research detailed space-time activity data often relied on the time-space diary technique, which requires subjects to actively record their activities in time and space. This is highly demanding for the participants and collaboration from the participants greatly affects the quality of data(4). Modern technologies such as GPS and mobile communications have made possible the automatic collection of trajectory data. The data collected, however, is not ideal for modeling human space-time activities, limited by the accuracies of existing devices. There is also no readily available tool for efficient processing of the data for human behavior study. We present here a suite of methods and an integrated ArcGIS desktop-based visual interface for the pre-processing and spatiotemporal analyses of trajectory data. We provide examples of how such processing may be used to model human space-time activities, especially with error-rich pedestrian trajectory data, that could be useful in public health studies such as infectious disease transmission modeling. The procedure presented includes pre-processing, trajectory segmentation, activity space characterization, density estimation and visualization, and a few other exploratory analysis methods. Pre-processing is the cleaning of noisy raw trajectory data. We introduce an interactive visual pre-processing interface as well as an

  15. Hamiltonian Dynamics of Doubly-Foliable Space-Times

    Directory of Open Access Journals (Sweden)

    Cecília Gergely

    2018-01-01

    Full Text Available The 2 + 1 + 1 decomposition of space-time is useful in monitoring the temporal evolution of gravitational perturbations/waves in space-times with a spatial direction singled-out by symmetries. Such an approach based on a perpendicular double foliation has been employed in the framework of dark matter and dark energy-motivated scalar-tensor gravitational theories for the discussion of the odd sector perturbations of spherically-symmetric gravity. For the even sector, however, the perpendicularity has to be suppressed in order to allow for suitable gauge freedom, recovering the 10th metric variable. The 2 + 1 + 1 decomposition of the Einstein–Hilbert action leads to the identification of the canonical pairs, the Hamiltonian and momentum constraints. Hamiltonian dynamics is then derived via Poisson brackets.

  16. Space-time scenarios of wind power generation produced using a Gaussian copula with parametrized precision matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tastu, J.; Pinson, P.; Madsen, Henrik

    2013-09-01

    The emphasis in this work is placed on generating space-time trajectories (also referred to as scenarios) of wind power generation. This calls for prediction of multivariate densities describing wind power generation at a number of distributed locations and for a number of successive lead times. A modelling approach taking advantage of sparsity of precision matrices is introduced for the description of the underlying space-time dependence structure. The proposed parametrization of the dependence structure accounts for such important process characteristics as non-constant conditional precisions and direction-dependent cross-correlations. Accounting for the space-time effects is shown to be crucial for generating high quality scenarios. (Author)

  17. How to use the cosmological Schwinger principle for energy flux, entropy, and 'atoms of space-time' to create a thermodynamic space-time and multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Beckwith, Andrew, E-mail: beckwith@iibep.org [71 Lakewood court, apt 7, Moriches, New York, 11955 (United States)

    2011-07-08

    We make explicit an idea by Padmanabhan in DICE 2010, as to finding 'atoms of space-time' permitting a thermodynamic treatment of emergent structure similar to Gibbs treatment of statistical physics. That is, an ensemble of gravitons is used to give an 'atom' of space-time congruent with relic GW. The idea is to reduce the number of independent variables to get a simple emergent space-time structure of entropy. An electric field, based upon the cosmological Schwinger principle, is linked to relic heat flux, with entropy production tied in with candidates as to inflaton potentials. The effective electric field links with the Schwinger 1951s result of an E field leading to pairs of e{sup +}e{sup -} charges nucleated in space-time volume V {center_dot} t. Note that in most inflationary models, the assumption is for a magnetic field, not an electric field. An electric field permits a kink-anti-kink construction of an emergent structure, which includes Glinka's recent pioneering approach to a Multiverse. Also an E field allows for an emergent relic particle frequency range between one and 100 GHz. The novel contribution is a relic E field, instead of a B field, in relic space-time 'atom' formation and vacuum nucleation of the same.

  18. Aspects of space-time dualities

    CERN Document Server

    Giveon, Amit

    1996-01-01

    Duality groups of Abelian gauge theories on four manifolds and their reduction to two dimensions are considered. The duality groups include elements that relate different space-times in addition to relating different gauge-coupling matrices. We interpret (some of) such dualities as the geometrical symmetries of compactified theories in higher dimensions. In particular, we consider compactifications of a (self-dual) 2-form in 6-D, and compactifications of a self-dual 4-form in 10-D. Relations with a self-dual superstring in 6-D and with the type IIB superstring are discussed.

  19. Quantum mechanics, stochasticity and space-time

    International Nuclear Information System (INIS)

    Ramanathan, R.

    1986-04-01

    An extended and more rigorous version of a recent proposal for an objective stochastic formulation of quantum mechanics along with its extension to the relativistic case without spin is presented. The relativistic Klein-Gordon equation is shown to be a particular form of the relativistic Kolmogorov-Fokker-Planck equation which is derived from a covariant formulation of the Chapman-Kolmogorov condition. Complexification of probability amplitudes is again achieved only through a conformal rotation of Minkowski space-time M 4 . (author)

  20. The theory of space, time and gravitation

    CERN Document Server

    Fock, V

    2015-01-01

    The Theory of Space, Time, and Gravitation, 2nd Revised Edition focuses on Relativity Theory and Einstein's Theory of Gravitation and correction of the misinterpretation of the Einsteinian Gravitation Theory. The book first offers information on the theory of relativity and the theory of relativity in tensor form. Discussions focus on comparison of distances and lengths in moving reference frames; comparison of time differences in moving reference frames; position of a body in space at a given instant in a fixed reference frame; and proof of the linearity of the transformation linking two iner

  1. Space-time as a causal set

    International Nuclear Information System (INIS)

    Bombelli, L.; Lee, J.; Meyer, D.; Sorkin, R.D.

    1987-01-01

    We propose that space-time at the smallest scales is in reality a causal set: a locally finite set of elements endowed with a partial order corresponding to the macroscopic relation that defines past and future. We explore how a Lorentzian manifold can approximate a causal set, noting in particular that the thereby defined effective dimensionality of a given causal set can vary with length scale. Finally, we speculate briefly on the quantum dynamics of causal sets, indicating why an appropriate choice of action can reproduce general relativity in the classical limit

  2. Canonical quantization of general relativity in discrete space-times.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  3. A flat space-time relativistic explanation for the perihelion advance of Mercury

    OpenAIRE

    Behera, Harihar; Naik, P. C.

    2003-01-01

    Starting with the flat space-time relativistic versions of Maxwell-Heaviside's toy model vector theory of gravity and introducing the gravitational analogues for the electromagnetic Lienard-Wiechert potentials together with the notion of a gravitational Thomas Precession; the observed anomalous perihelion advance of Mercury's orbit is here explained as a relativistic effect in flat (Minkowski) space-time, unlike Einstein's curved space-time relativistic explanation. In this new explanation fo...

  4. Fermion Systems in Discrete Space-Time Exemplifying the Spontaneous Generation of a Causal Structure

    Science.gov (United States)

    Diethert, A.; Finster, F.; Schiefeneder, D.

    As toy models for space-time at the Planck scale, we consider examples of fermion systems in discrete space-time which are composed of one or two particles defined on two up to nine space-time points. We study the self-organization of the particles as described by a variational principle both analytically and numerically. We find an effect of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure.

  5. Energy in the Kantowski–Sachs space-time using teleparallel ...

    Indian Academy of Sciences (India)

    Energy in the Kantowski–Sachs space-time using teleparallel geometry ... Kantowski–Sachs metric; teleparallelism; gravitational energy. Abstract. The purpose of this paper is to examine the energy content of the inflationary Universe described by Kantowski–Sachs space-time in quasilocal approach of teleparallel gravity ...

  6. Optical Properties of Quantum Vacuum. Space-Time Engineering

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.

  7. Quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Najmi, A.-H.

    1982-09-01

    The problem of constructing states for quantum field theories in nonstationary background space-times is set out. A formalism in which the problem of constructing states can be attacked more easily than at present is presented. The ansatz of energy-minimization as a means of constructing states is formulated in this formalism and its general solution for the free scalar field is found. It has been known, in specific cases, that such states suffer from the problem of unitary inequivalence (the pathology). An example in Minowski space-time is presented in which global operators, such as the particle-number operator, do not exist but all physical observables, such as the renormalized energy density are finite. This model has two Fock-sectors as its space of physical states. A simple extension of this model, i.e. enlarging the Fock-space of states is found not to remedy the pathology: in a Robertson-Walker space-time the quantum field acquires an infinite amount of renormalized energy density to the future of the hypersurface on which the energy density is minimized. Finally, the solution of the ansatz of energy minimization for the free, massive Hermitian fermion field is presented. (author)

  8. Detecting space-time cancer clusters using residential histories

    Science.gov (United States)

    Jacquez, Geoffrey M.; Meliker, Jaymie R.

    2007-04-01

    Methods for analyzing geographic clusters of disease typically ignore the space-time variability inherent in epidemiologic datasets, do not adequately account for known risk factors (e.g., smoking and education) or covariates (e.g., age, gender, and race), and do not permit investigation of the latency window between exposure and disease. Our research group recently developed Q-statistics for evaluating space-time clustering in cancer case-control studies with residential histories. This technique relies on time-dependent nearest neighbor relationships to examine clustering at any moment in the life-course of the residential histories of cases relative to that of controls. In addition, in place of the widely used null hypothesis of spatial randomness, each individual's probability of being a case is instead based on his/her risk factors and covariates. Case-control clusters will be presented using residential histories of 220 bladder cancer cases and 440 controls in Michigan. In preliminary analyses of this dataset, smoking, age, gender, race and education were sufficient to explain the majority of the clustering of residential histories of the cases. Clusters of unexplained risk, however, were identified surrounding the business address histories of 10 industries that emit known or suspected bladder cancer carcinogens. The clustering of 5 of these industries began in the 1970's and persisted through the 1990's. This systematic approach for evaluating space-time clustering has the potential to generate novel hypotheses about environmental risk factors. These methods may be extended to detect differences in space-time patterns of any two groups of people, making them valuable for security intelligence and surveillance operations.

  9. Finiteness principle and the concept of space-time

    International Nuclear Information System (INIS)

    Tati, T.

    1984-01-01

    It is shown that the non-space-time description can be given by a system of axioms under the postulate of a certain number of pre-supposed physical concepts in which space-time is not included. It is found that space-time is a compound concept of presupposed concepts of non-space-time description connected by an additional condition called 'space-time condition'. (L.C.) [pt

  10. Evolution in Many-Sheeted Space-time

    OpenAIRE

    Pitkänen, Matti

    2010-01-01

    The topics of the article has been restricted to those, which seem to represent the most well-established ideas about evolution in many-sheeted space-time. a) Basic facts about and TGD based model for pre-biotic evolution are discussed. b) A model for the ATP-ADP process based on DNA as topological quantum computer vision, the identification of universal metabolic energy quanta in terms of zero point kinetic energies, and the notion of remote metabolism is discussed. c) A model f...

  11. Space-time neutronic analysis of postulated LOCA's in CANDU reactors

    International Nuclear Information System (INIS)

    Luxat, J.C.; Frescura, G.M.

    1978-01-01

    Space-time neutronic behaviour of CANDU reactors is of importance in the analysis and design of reactor safety systems. A methodology has been developed for simulating CANDU space-time neutronics with application to the analysis of postulated LOCA'S. The approach involves the efficient use of a set of computer codes which provide a capability to perform simulations ranging from detailed, accurate 3-dimensional space-time to low-cost survey calculations using point kinetics with some ''effective'' spatial content. A new, space-time kinetics code based upon a modal expansion approach is described. This code provides an inexpensive and relatively accurate scoping tool for detailed 3-dimensional space-time simulations. (author)

  12. On static and radiative space-times

    International Nuclear Information System (INIS)

    Friedrich, H.

    1988-01-01

    The conformal constraint equations on space-like hypersurfaces are discussed near points which represent either time-like or spatial infinity for an asymptotically flat solution of Einstein's vacuum field equations. In the case of time-like infinity a certain 'radiativity condition' is derived which must be satisfied by the data at that point. The case of space-like infinity is analysed in detail for static space-times with non-vanishing mass. It is shown that the conformal structure implied here on a slice of constant Killing time, which extends analytically through infinity, satisfies at spatial infinity the radiativity condition. Thus to any static solution exists a certain 'radiative solution' which has a smooth structure at past null infinity and is regular at past time-like infinity. A characterization of these solutions by their 'free data' is given and non-symmetry properties are discussed. (orig.)

  13. Dirac equation in Kerr space-time

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, B R; Kumar, Arvind [Bombay Univ. (India). Dept. of Physics

    1976-06-01

    The weak-field low-velocity approximation of Dirac equation in Kerr space-time is investigated. The interaction terms admit of an interpretation in terms of a 'dipole-dipole' interaction in addition to coupling of spin with the angular momentum of the rotating source. The gravitational gyro-factor for spin is identified. The charged case (Kerr-Newman) is studied using minimal prescription for electromagnetic coupling in the locally intertial frame and to the leading order the standard electromagnetic gyro-factor is retrieved. A first order perturbation calculation of the shift of the Schwarzchild energy level yields the main interesting result of this work: the anomalous Zeeman splitting of the energy level of a Dirac particle in Kerr metric.

  14. Stochastic space-time and quantum theory

    International Nuclear Information System (INIS)

    Frederick, C.

    1976-01-01

    Much of quantum mechanics may be derived if one adopts a very strong form of Mach's principle such that in the absence of mass, space-time becomes not flat, but stochastic. This is manifested in the metric tensor which is considered to be a collection of stochastic variables. The stochastic-metric assumption is sufficient to generate the spread of the wave packet in empty space. If one further notes that all observations of dynamical variables in the laboratory frame are contravariant components of tensors, and if one assumes that a Lagrangian can be constructed, then one can obtain an explanation of conjugate variables and also a derivation of the uncertainty principle. Finally the superposition of stochastic metrics and the identification of root -g in the four-dimensional invariant volume element root -g dV as the indicator of relative probability yields the phenomenon of interference as will be described for the two-slit experiment

  15. Quantum electrodynamics in curved space-time

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Gitman, D.M.; Fradkin, E.S.

    1981-01-01

    The lagrangian of quantum electrodynamics in curved space-time is constructed and the interaction picture taking into account the external gravitational field exactly is introduced. The transform from the Heisenberg picture to the interaction picture is carried out in a manifestly covariant way. The properties of free spinor and electromagnetic quantum fields are discussed and conditions under which initial and final creation and annihilation operators are connected by unitarity transformation are indicated. The derivation of Feynman's rules for quantum processes are calculated on the base of generalized normal product of operators. The way of reduction formula derivations is indicated and the suitable Green's functions are introduced. A generating functional for this Green's function is defined and the system of functional equations for them is obtained. The representation of different generating funcationals by means of functional integrals is introduced. Some consequences of S-matrix unitary condition are considered which leads to the generalization of the optic theorem

  16. Pre-Big Bang, space-time structure, asymptotic Universe

    Directory of Open Access Journals (Sweden)

    Gonzalez-Mestres Luis

    2014-04-01

    Full Text Available Planck and other recent data in Cosmology and Particle Physics can open the way to controversial analyses concerning the early Universe and its possible ultimate origin. Alternatives to standard cosmology include pre-Big Bang approaches, new space-time geometries and new ultimate constituents of matter. Basic issues related to a possible new cosmology along these lines clearly deserve further exploration. The Planck collaboration reports an age of the Universe t close to 13.8 Gyr and a present ratio H between relative speeds and distances at cosmic scale around 67.3 km/s/Mpc. The product of these two measured quantities is then slightly below 1 (about 0.95, while it can be exactly 1 in the absence of matter and cosmological constant in patterns based on the spinorial space-time we have considered in previous papers. In this description of space-time we first suggested in 1996-97, the cosmic time t is given by the modulus of a SU(2 spinor and the Lundmark-Lemaître-Hubble (LLH expansion law turns out to be of purely geometric origin previous to any introduction of standard matter and relativity. Such a fundamental geometry, inspired by the role of half-integer spin in Particle Physics, may reflect an equilibrium between the dynamics of the ultimate constituents of matter and the deep structure of space and time. Taking into account the observed cosmic acceleration, the present situation suggests that the value of 1 can be a natural asymptotic limit for the product H t in the long-term evolution of our Universe up to possible small corrections. In the presence of a spinorial space-time geometry, no ad hoc combination of dark matter and dark energy would in any case be needed to get an acceptable value of H and an evolution of the Universe compatible with observation. The use of a spinorial space-time naturally leads to unconventional properties for the space curvature term in Friedmann-like equations. It therefore suggests a major modification of

  17. Singular lensing from the scattering on special space-time defects

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatos, Nick E. [University of Valencia - CSIC, Department of Theoretical Physics and IFIC, Valencia (Spain); King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Papavassiliou, Joannis [University of Valencia - CSIC, Department of Theoretical Physics and IFIC, Valencia (Spain)

    2018-01-15

    It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent (''singular lensing''). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals. (orig.)

  18. Singular lensing from the scattering on special space-time defects

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Papavassiliou, Joannis

    2018-01-01

    It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent (''singular lensing''). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals. (orig.)

  19. Singular lensing from the scattering on special space-time defects

    Science.gov (United States)

    Mavromatos, Nick E.; Papavassiliou, Joannis

    2018-01-01

    It is well known that certain special classes of self-gravitating point-like defects, such as global (non gauged) monopoles, give rise to non-asymptotically flat space-times characterized by solid angle deficits, whose size depends on the details of the underlying microscopic models. The scattering of electrically neutral particles on such space-times is described by amplitudes that exhibit resonant behaviour when thescattering and deficit angles coincide. This, in turn, leads to ring-like structures where the cross sections are formally divergent ("singular lensing"). In this work, we revisit this particular phenomenon, with the twofold purpose of placing it in a contemporary and more general context, in view of renewed interest in the theory and general phenomenology of such defects, and, more importantly, of addressing certain subtleties that appear in the particular computation that leads to the aforementioned effect. In particular, by adopting a specific regularization procedure for the formally infinite Legendre series encountered, we manage to ensure the recovery of the Minkowski space-time, and thus the disappearance of the lensing phenomenon, in the no-defect limit, and the validity of the optical theorem for the elastic total cross section. In addition, the singular nature of the phenomenon is confirmed by means of an alternative calculation, which, unlike the original approach, makes no use of the generating function of the Legendre polynomials, but rather exploits the asymptotic properties of the Fresnel integrals.

  20. Using adaptive antenna array in LTE with MIMO for space-time processing

    Directory of Open Access Journals (Sweden)

    Abdourahamane Ahmed Ali

    2015-04-01

    Full Text Available The actual methods of improvement the existent wireless transmission systems are proposed. Mathematical apparatus is considered and proved by models, graph of which are shown, using the adaptive array antenna in LTE with MIMO for space-time processing. The results show that improvements, which are joined with space-time processing, positively reflects on LTE cell size or on throughput

  1. Applications of Space-Time Duality

    Science.gov (United States)

    Plansinis, Brent W.

    The concept of space-time duality is based on a mathematical analogy between paraxial diffraction and narrowband dispersion, and has led to the development of temporal imaging systems. The first part of this thesis focuses on the development of a temporal imaging system for the Laboratory for Laser Energetics. Using an electro-optic phase modulator as a time lens, a time-to-frequency converter is constructed capable of imaging pulses between 3 and 12 ps. Numerical simulations show how this system can be improved to image the 1-30 ps range used in OMEGA-EP. By adjusting the timing between the pulse and the sinusoidal clock of the phase modulator, the pulse spectrum can be selectively narrowed, broadened, or shifted. An experimental demonstration of this effect achieved spectral narrowing and broadening by a factor of 2. Numerical simulations show narrowing by a factor of 8 is possible with modern phase modulators. The second part of this thesis explores the space-time analog of reflection and refraction from a moving refractive index boundary. From a physics perspective, a temporal boundary breaks translational symmetry in time, requiring the momentum of the photon to remain unchanged while its energy may change. This leads to a shifting and splitting of the pulse spectrum as the boundary is crossed. Equations for the reflected and transmitted frequencies and a condition for total internal reflection are found. Two of these boundaries form a temporal waveguide, which confines the pulse to a narrow temporal window. These waveguides have a finite number of modes, which do not change during propagation. A single-mode waveguide can be created, allowing only a single pulse shape to form within the waveguide. Temporal reflection and refraction produce a frequency dependent phase shift on the incident pulse, leading to interference fringes between the incident light and the reflected light. In a waveguide, this leads to self-imaging, where the pulse shape reforms

  2. HEDR modeling approach

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.

    1992-07-01

    This report details the conceptual approaches to be used in calculating radiation doses to individuals throughout the various periods of operations at the Hanford Site. The report considers the major environmental transport pathways--atmospheric, surface water, and ground water--and projects and appropriate modeling technique for each. The modeling sequence chosen for each pathway depends on the available data on doses, the degree of confidence justified by such existing data, and the level of sophistication deemed appropriate for the particular pathway and time period being considered

  3. Path integration on space times with symmetry

    International Nuclear Information System (INIS)

    Low, S.G.

    1985-01-01

    Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform

  4. Is the shell-focusing singularity of Szekeres space-time visible?

    International Nuclear Information System (INIS)

    Nolan, Brien C; Debnath, Ujjal

    2007-01-01

    The visibility of the shell-focusing singularity in Szekeres space-time--which represents quasispherical dust collapse--has been studied on numerous occasions in the context of the cosmic censorship conjecture. The various results derived have assumed that there exist radial null geodesics in the space-time. We show that such geodesics do not exist in general, and so previous results on the visibility of the singularity are not generally valid. More precisely, we show that the existence of a radial geodesic in Szekeres space-time implies that the space-time is axially symmetric, with the geodesic along the polar direction (i.e. along the axis of symmetry). If there is a second nonparallel radial geodesic, then the space-time is spherically symmetric, and so is a Lemaitre-Tolman-Bondi space-time. For the case of the polar geodesic in an axially symmetric Szekeres space-time, we give conditions on the free functions (i.e. initial data) of the space-time which lead to visibility of the singularity along this direction. Likewise, we give a sufficient condition for censorship of the singularity. We point out the complications involved in addressing the question of visibility of the singularity both for nonradial null geodesics in the axially symmetric case and in the general (nonaxially symmetric) case, and suggest a possible approach

  5. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  6. Constant scalar curvature hypersurfaces in extended Schwarzschild space-time

    International Nuclear Information System (INIS)

    Pareja, M. J.; Frauendiener, J.

    2006-01-01

    We present a class of spherically symmetric hypersurfaces in the Kruskal extension of the Schwarzschild space-time. The hypersurfaces have constant negative scalar curvature, so they are hyperboloidal in the regions of space-time which are asymptotically flat

  7. Massless fields in curved space-time: The conformal formalism

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Sztrajman, J.B.

    1986-01-01

    A conformally invariant theory for massless quantum fields in curved space-time is formulated. We analyze the cases of spin-0, - 1/2 , and -1. The theory is developed in the important case of an ''expanding universe,'' generalizing the particle model of ''conformal transplantation'' known for spin-0 to spins- 1/2 and -1. For the spin-1 case two methods introducing new conformally invariant gauge conditions are stated, and a problem of inconsistency that was stated for spin-1 is overcome

  8. Mathematical aspects of the discrete space-time hypothesis

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.

    1979-01-01

    A hypothesis of a microcosm space discreteness is considered from the theoretical-mathematical point of view. The type of topological spaces, which formalizes representations on the discrete space-time, is determined. It is explained, how these spaces arise in physical models. The physical task, in which the discrete space could arise as a version of its solution, is considered. It is shown that the discrete structure of space can arise with a certain interaction type in the system, for example, with its considerable self-shielding, which can take place, in particular, in the particles or in the cosmological and astrophysical singularities

  9. Entropic force, holography and thermodynamics for static space-times

    International Nuclear Information System (INIS)

    Konoplya, R.A.

    2010-01-01

    Recently Verlinde has suggested a new approach to gravity which interprets gravitational interaction as a kind of entropic force. The new approach uses the holographic principle by stating that the information is kept on the holographic screens which coincide with equipotential surfaces. Motivated by this new interpretation of gravity (but not being limited by it) we study equipotential surfaces, the Unruh-Verlinde temperature, energy and acceleration for various static space-times: generic spherically symmetric solutions, axially symmetric black holes immersed in a magnetic field, traversable spherically symmetric wormholes of an arbitrary shape function, system of two and more extremely charged black holes in equilibrium. In particular, we have shown that the Unruh-Verlinde temperature of the holographic screen reaches absolute zero on the wormhole throat independently of the particular form of the wormhole solution. (orig.)

  10. The topology of geodesically complete space-times

    International Nuclear Information System (INIS)

    Lee, C.W.

    1983-01-01

    Two theorems are given on the topology of geodesically complete space-times which satisfy the energy condition. Firstly, the condition that a compact embedded 3-manifold in space-time be dentless is defined in terms of causal structure. Then it is shown that a dentless 3-manifold must separate space-time, and that it must enclose a compact portion of space-time. Further, it is shown that if the dentless 3-manifold is homeomorphic to S 3 then the part of space-time that it encloses must be simply connected. (author)

  11. Space-time reference with an optical link

    International Nuclear Information System (INIS)

    Berceau, P; Hollberg, L; Taylor, M; Kahn, J

    2016-01-01

    We describe a concept for realizing a high performance space-time reference using a stable atomic clock in a precisely defined orbit and synchronizing the orbiting clock to high-accuracy atomic clocks on the ground. The synchronization would be accomplished using a two-way lasercom link between ground and space. The basic approach is to take advantage of the highest-performance cold-atom atomic clocks at national standards laboratories on the ground and to transfer that performance to an orbiting clock that has good stability and that serves as a ‘frequency-flywheel’ over time-scales of a few hours. The two-way lasercom link would also provide precise range information and thus precise orbit determination. With a well-defined orbit and a synchronized clock, the satellite could serve as a high-accuracy space-time reference, providing precise time worldwide, a valuable reference frame for geodesy, and independent high-accuracy measurements of GNSS clocks. Under reasonable assumptions, a practical system would be able to deliver picosecond timing worldwide and millimeter orbit determination, and could serve as an enabling subsystem for other proposed space-gravity missions, which are briefly reviewed. (paper)

  12. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2015-01-01

    This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...

  13. Relativistic space-time positioning: principles and strategies

    Science.gov (United States)

    Tartaglia, Angelo

    2013-11-01

    Starting from the description of space- time as a curved four-dimensional manifold, null Gaussian coordinates systems as appropriate for relativistic positioning will be discussed. Different approaches and strategies will be reviewed, implementing the null coordinates with both continuous and pulsating electromagnetic signals. In particular, methods based on purely local measurements of proper time intervals between pulses will be expounded and the various possible sources of uncertainty will be analyzed. As sources of pulses both artificial and natural emitters will be considered. The latter will concentrate on either radio- or X ray-emitting pulsars, discussing advantages and drawbacks. As for artificial emitters, various solutions will be presented, from satellites orbiting the Earth to broadcasting devices carried both by spacecrafts and celestial bodies of the solar system. In general the accuracy of the positioning is expected to be limited, besides the instabilities and drift of the sources, by the precision of the local clock, but in any case in long journeys systematic cumulated errors will tend to become dominant. The problem can be kept under control properly using a high level of redundancy in the procedure for the calculation of the coordinates of the receiver and by mixing a number of different and complementary strategies. Finally various possibilities for doing fundamental physics experiments by means of space-time topography techniques will shortly be presented and discussed.

  14. Efficient conservative ADER schemes based on WENO reconstruction and space-time predictor in primitive variables

    Science.gov (United States)

    Zanotti, Olindo; Dumbser, Michael

    2016-01-01

    We present a new version of conservative ADER-WENO finite volume schemes, in which both the high order spatial reconstruction as well as the time evolution of the reconstruction polynomials in the local space-time predictor stage are performed in primitive variables, rather than in conserved ones. To obtain a conservative method, the underlying finite volume scheme is still written in terms of the cell averages of the conserved quantities. Therefore, our new approach performs the spatial WENO reconstruction twice: the first WENO reconstruction is carried out on the known cell averages of the conservative variables. The WENO polynomials are then used at the cell centers to compute point values of the conserved variables, which are subsequently converted into point values of the primitive variables. This is the only place where the conversion from conservative to primitive variables is needed in the new scheme. Then, a second WENO reconstruction is performed on the point values of the primitive variables to obtain piecewise high order reconstruction polynomials of the primitive variables. The reconstruction polynomials are subsequently evolved in time with a novel space-time finite element predictor that is directly applied to the governing PDE written in primitive form. The resulting space-time polynomials of the primitive variables can then be directly used as input for the numerical fluxes at the cell boundaries in the underlying conservative finite volume scheme. Hence, the number of necessary conversions from the conserved to the primitive variables is reduced to just one single conversion at each cell center. We have verified the validity of the new approach over a wide range of hyperbolic systems, including the classical Euler equations of gas dynamics, the special relativistic hydrodynamics (RHD) and ideal magnetohydrodynamics (RMHD) equations, as well as the Baer-Nunziato model for compressible two-phase flows. In all cases we have noticed that the new ADER

  15. Statistical sampling approaches for soil monitoring

    NARCIS (Netherlands)

    Brus, D.J.

    2014-01-01

    This paper describes three statistical sampling approaches for regional soil monitoring, a design-based, a model-based and a hybrid approach. In the model-based approach a space-time model is exploited to predict global statistical parameters of interest such as the space-time mean. In the hybrid

  16. Quantum vacuum energy in two dimensional space-times

    International Nuclear Information System (INIS)

    Davies, P.C.W.; Fulling, S.A.

    1977-01-01

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed. (author)

  17. Quantum vacuum energy in two dimensional space-times

    Energy Technology Data Exchange (ETDEWEB)

    Davies, P C.W.; Fulling, S A [King' s Coll., London (UK). Dept. of Mathematics

    1977-04-21

    The paper presents in detail the renormalization theory of the energy-momentum tensor of a two dimensional massless scalar field which has been used elsewhere to study the local physics in a model of black hole evaporation. The treatment is generalized to include the Casimir effect occurring in spatially finite models. The essence of the method is evaluation of the field products in the tensor as functions of two points, followed by covariant subtraction of the discontinuous terms arising as the points coalesce. In two dimensional massless theories, conformal transformations permit exact calculations to be performed. The results are applied here to some special cases, primarily space-times of constant curvature, with emphasis on the existence of distinct 'vacuum' states associated naturally with different conformal coordinate systems. The relevance of the work to the general problems of defining observables and of classifying and interpreting states in curved-space quantum field theory is discussed.

  18. Space Time Quantization and the Big Bang

    OpenAIRE

    Sidharth, B. G.

    1998-01-01

    A recent cosmological model is recapitulated which deduces the correct mass, radius and age of the universe as also the Hubble constant and other well known apparently coincidental relations. It also predicts an ever expanding accelerating universe as is confirmed by latest supernovae observations. Finally the Big Bang model is recovered as a suitable limiting case.

  19. Empty space-times with separable Hamilton-Jacobi equation

    International Nuclear Information System (INIS)

    Collinson, C.D.; Fugere, J.

    1977-01-01

    All empty space-times admitting a one-parameter group of motions and in which the Hamilton-Jacobi equation is (partially) separable are obtained. Several different cases of such empty space-times exist and the Riemann tensor is found to be either type D or N. The results presented here complete the search for empty space-times with separable Hamilton-Jacobi equation. (author)

  20. A short history of fractal-Cantorian space-time

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2009-01-01

    The article attempts to give a short historical overview of the discovery of fractal-Cantorian space-time starting from the 17th century up to the present. In the last 25 years a great number of scientists worked on fractal space-time notably Garnet Ord in Canada, Laurent Nottale in France and Mohamed El Naschie in England who gave an exact mathematical procedure for the derivation of the dimensionality and curvature of fractal space-time fuzzy manifold.

  1. Constructing space-time pdfs in Geosciences

    Energy Technology Data Exchange (ETDEWEB)

    Christakos, G.; Angulo, J. M.; Yu, H.L.

    2011-07-01

    The focus of this work is the comparative analysis of techniques for constructing multivariate probability density function (Mv-pdf) models that can be used in a variety of geo mathematics applications. The paper is concerned with formal and substantive model building methods. The former includes models that are speculative and analytically tractable, whereas the latter is based on substantive knowledge synthesis. More specifically, the present work focuses on the factoras and copulas techniques of Mv-pdf building, and their comparative analysis. It also discusses a substantive Mv-pdf building method that generates models on the basis of natural knowledge bases and takes into account the contextual and contextual domain of the in situ situation. The methods are compared in terms of a simulation study. (Author) 39 refs.

  2. Some Peculiarities of Newton-Hooke Space-Times

    OpenAIRE

    Tian, Yu

    2011-01-01

    Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...

  3. Black Hole Space-time In Dark Matter Halo

    OpenAIRE

    Xu, Zhaoyi; Hou, Xian; Gong, Xiaobo; Wang, Jiancheng

    2018-01-01

    For the first time, we obtain the analytical form of black hole space-time metric in dark matter halo for the stationary situation. Using the relation between the rotation velocity (in the equatorial plane) and the spherical symmetric space-time metric coefficient, we obtain the space-time metric for pure dark matter. By considering the dark matter halo in spherical symmetric space-time as part of the energy-momentum tensors in the Einstein field equation, we then obtain the spherical symmetr...

  4. New optical solitons of space-time conformable fractional perturbed Gerdjikov-Ivanov equation by sine-Gordon equation method

    Science.gov (United States)

    Yaşar, Elif; Yıldırım, Yakup; Yaşar, Emrullah

    2018-06-01

    This paper devotes to conformable fractional space-time perturbed Gerdjikov-Ivanov (GI) equation which appears in nonlinear fiber optics and photonic crystal fibers (PCF). We consider the model with full nonlinearity in order to give a generalized flavor. The sine-Gordon equation approach is carried out to model equation for retrieving the dark, bright, dark-bright, singular and combined singular optical solitons. The constraint conditions are also reported for guaranteeing the existence of these solitons. We also present some graphical simulations of the solutions for better understanding the physical phenomena of the behind the considered model.

  5. Supersymmetry on a space-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, Tobias

    2008-10-28

    In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)

  6. Supersymmetry on a space-time lattice

    International Nuclear Information System (INIS)

    Kaestner, Tobias

    2008-01-01

    In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)

  7. Space time manifolds and contact structures

    Directory of Open Access Journals (Sweden)

    K. L. Duggal

    1990-01-01

    Full Text Available A new class of contact manifolds (carring a global non-vanishing timelike vector field is introduced to establish a relation between spacetime manifolds and contact structures. We show that odd dimensional strongly causal (in particular, globally hyperbolic spacetimes can carry a regular contact structure. As examples, we present a causal spacetime with a non regular contact structure and a physical model [Gödel Universe] of Homogeneous contact manifold. Finally, we construct a model of 4-dimensional spacetime of general relativity as a contact CR-submanifold.

  8. The Space-Time Asymmetry Research (STAR) program

    Science.gov (United States)

    Buchman, Sasha

    Stanford University, NASA Ames, and international partners propose the Space-Time Asymme-try Research (STAR) program, a series of three Science and Technology Development Missions, which will probe the fundamental relationships between space, time and gravity. What is the nature of space-time? Is space truly isotropic? Is the speed of light truly isotropic? If not, what is its direction and location dependency? What are the answers beyond Einstein? How will gravity and the standard model ultimately be combined? The first mission, STAR-1, will measure the absolute anisotropy of the velocity of light to one part in 1017 , derive the Kennedy-Thorndike (KT) coefficient to 7x10-10 (150-fold improvement over modern ground measurements), derive the Michelson-Morley (MM) coefficient to 10-11 (confirming the ground measurements), and derive the coefficients of Lorentz violation in the Standard Model Exten-sion (SME), in the range 7x10-17 to 10-13 (an order of magnitude improvement over ground measurements). The follow-on missions will achieve a factor of 100 higher sensitivities. The core instruments are high stability optical cavities and high accuracy gas spectroscopy frequency standards using the "NICE-OHMS technique. STAR-1 is accomplished with a fully redundant instrument flown on a standard bus, spin-stabilized spacecraft with a mission lifetime of two years. Spacecraft and instrument have a total mass of less than 180 kg and consume less than 200 W of power. STAR-1 would launch in 2015 as a secondary payload in a 650 km, sun-synchronous orbit. We describe the STAR-1 mission in detail and the STAR series in general, with a focus on how each mission will build on the development and success of the previous missions, methodically enhancing both the capabilities of the STAR instrument suite and our understanding of this important field. By coupling state-of-the-art scientific instrumentation with proven and cost-effective small satellite technology in an environment

  9. Momentum-subtraction renormalization techniques in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-10-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should.

  10. Momentum-subtraction renormalization techniques in curved space-time

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Momentum-subtraction techniques, specifically BPHZ and Zimmermann's Normal Product algorithm, are introduced as useful tools in the study of quantum field theories in the presence of background fields. In a model of a self-interacting massive scalar field, conformally coupled to a general asymptotically-flat curved space-time with a trivial topology, momentum-subtractions are shown to respect invariance under general coordinate transformations. As an illustration, general expressions for the trace anomalies are derived, and checked by explicit evaluation of the purely gravitational contributions in the free field theory limit. Furthermore, the trace of the renormalized energy-momentum tensor is shown to vanish at the Gell-Mann Low eigenvalue as it should

  11. Topological properties and global structure of space-time

    International Nuclear Information System (INIS)

    Bergmann, P.G.; De Sabbata, V.

    1986-01-01

    This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole

  12. Regularization and renormalization of quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Bernard, C.; Duncan, A.

    1977-01-01

    It is proposed that field theories quantized in a curved space-time manifold can be conveniently regularized and renormalized with the aid of Pauli-Villars regulator fields. The method avoids the conceptual difficulties of covariant point-separation approaches, by starting always from a manifestly generally covariant action, and the technical limitations of the dimensional reqularization approach, which requires solution of the theory in arbitrary dimension in order to go beyond a weak-field expansion. An action is constructed which renormalizes the weak-field perturbation theory of a massive scalar field in two space-time dimensions--it is shown that the trace anomaly previously found in dimensional regularization and some point-separation calculations also arises in perturbation theory when the theory is Pauli-Villars regulated. One then studies a specific solvable two-dimensional model of a massive scalar field in a Robertson-Walker asymptotically flat universe. It is shown that the action previously considered leads, in this model, to a well defined finite expectation value for the stress-energy tensor. The particle production (less than 0 in/vertical bar/theta/sup mu nu/(x,t)/vertical bar/0 in greater than for t → + infinity) is computed explicitly. Finally, the validity of weak-field perturbation theory (in the appropriate range of parameters) is checked directly in the solvable model, and the trace anomaly computed in the asymptotic regions t→ +- infinity independently of any weak field approximation. The extension of the model to higher dimensions and the renormalization of interacting (scalar) field theories are briefly discussed

  13. Forecasting Water Waves and Currents: A Space-time Approach

    NARCIS (Netherlands)

    Ambati, V.R.

    2008-01-01

    Forecasting water waves and currents in near shore and off shore regions of the seas and oceans is essential to maintain and protect our environment and man made structures. In wave hydrodynamics, waves can be classified as shallow and deep water waves based on its water depth. The mathematical

  14. Conserved quantities for stationary Einstein-Maxwell space-times

    International Nuclear Information System (INIS)

    Esposito, F.P.; Witten, L.

    1978-01-01

    It is shown that every stationary Einstein-Maxwell space-time has eight divergence-free vector fields and these are isolated in general form. The vector fields and associated conserved quantities are calculated for several families of space-times. (Auth.)

  15. Feynman propagator and space-time transformation technique

    International Nuclear Information System (INIS)

    Nassar, A.B.

    1987-01-01

    We evaluate the exact propagator for the time-dependent two-dimensional charged harmonic oscillator in a time-varying magnetic field, by taking direct recourse to the corresponding Schroedinger equation. Through the usage of an appropriate space-time transformation, we show that such a propagator can be obtained from the free propagator in the new space-time coordinate system. (orig.)

  16. Space-time algebra for the generalization of gravitational field

    Indian Academy of Sciences (India)

    The Maxwell–Proca-like field equations of gravitolectromagnetism are formulated using space-time algebra (STA). The gravitational wave equation with massive gravitons and gravitomagnetic monopoles has been derived in terms of this algebra. Using space-time algebra, the most generalized form of ...

  17. Causal boundary for stably causal space-times

    International Nuclear Information System (INIS)

    Racz, I.

    1987-12-01

    The usual boundary constructions for space-times often yield an unsatisfactory boundary set. This problem is reviewed and a new solution is proposed. An explicit identification rule is given on the set of the ideal points of the space-time. This construction leads to a satisfactory boundary point set structure for stably causal space-times. The topological properties of the resulting causal boundary construction are examined. For the stably causal space-times each causal curve has a unique endpoint on the boundary set according to the extended Alexandrov topology. The extension of the space-time through the boundary is discussed. To describe the singularities the defined boundary sets have to be separated into two disjoint sets. (D.Gy.) 8 refs

  18. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  19. Stochastic quantization of geometrodynamic curved space-time

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    It is proposed that quantum rather than classical test particles be used in recent operational definitions of space-time. In the resulting quantum space-time the role of test particle trajectories is taken over by propagators. The introduced co-ordinate values are stochastic rather than deterministic, the afore-mentioned propagators providing probability amplitudes describing fluctuations of measured co-ordinates around their mean values. It is shown that, if a geometrodynamic point of view based on 3 + 1 foliations of space-time is adopted, self-consistent families of propagators for quantum test particles in free fall can be constructed. The resulting formalism for quantum space-time is outlined and the quantization of spatially flat Robertson-Walker space-times is provided as an illustration. (author)

  20. Some aspects of quantum field theory in non-Minkowskian space-times

    International Nuclear Information System (INIS)

    Toms, D.J.

    1980-01-01

    Several aspects of quantum field theory in space-times which are different from Minkowski space-time, either because of the presence of a non-zero curvature or as a consequence of the topology of the manifold, are discussed. The Casimir effect is a quantum field theory in a space-time which has a different topology. A short review of some of its popular derivations is presented with comments. Renormalization of interacting scalar field theories in a flat space-time with a non-Minkowskian topology is considered. The presence of a non-trivial topology can lead to additional non-local divergent terms in the Schwinger-Dyson equations for a general scalar field theory; however, the theory may be renormalized with the same choice of counterterms as in Minkowski space-time. Propagators can develop poles corresponding to the generation of a topological mass. Zeta-function regularization is shown to fit naturally into the functional approach to the effective potential. This formalism is used to calculate the effective potential for some scalar field theories in non-Minkowskian space-times. Topological mass generation is discussed, and it is shown how radiative corrections can lead to spontaneous symmetry breaking. One- and two-loop contributions to the vacuum energy density are obtained for both massless and massive fields. In the massive case the role of renormalization in removing non-local divergences is discussed

  1. Spinorial space-time and the origin of Quantum Mechanics. The dynamical role of the physical vacuum

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, Luis

    2016-01-01

    Is Quantum Mechanics really and ultimate principle of Physics described by a set of intrinsic exact laws? Are standard particles the ultimate constituents of matter? The two questions appear to be closely related, as a preonic structure of the physical vacuum would have an influence on the properties of quantum particles. Although the first preon models were just « quark-like » and assumed preons to be direct constituents of the conventional « elementary » particles, we suggested in 1995 that preons could instead be constituents of the physical vacuum (the superbradyon hypothesis). Standard particles would then be excitations of the preonic vacuum and have substantially different properties from those of preons themselves (critical speed…). The standard laws of Particle Physics would be approximate expressions generated from basic preon dynamics. In parallel, the mathematical properties of space-time structures such as the spinoral space-time (SST) we introduced in 1996-97 can have strong implications for Quantum Mechanics and even be its real origin. We complete here our recent discussion of the subject by pointing out that: i) Quantum Mechanics corresponds to a natural set of properties of vacuum excitations in the presence of a SST geometry ; ii) the recently observed entanglement at long distances would be a logical property if preons are superluminal (superbradyons), so that superluminal signals and correlations can propagate in vacuum ; iii) in a specific description, the function of space-time associated to the extended internal structure of a spin-1/2 particle at very small distances may be incompatible with a continuous motion at space and time scales where the internal structure of vacuum can be felt. In the dynamics associated to iii), and using the SST approach to space-time, a contradiction can appear between macroscopic and microscopic space-times due to an overlap in the time variable directly related to the fact that a spinorial function takes

  2. Conical singularities in AdS space time

    International Nuclear Information System (INIS)

    Ferreira, Cristine Nunes

    2011-01-01

    Full text: In recent years, the study of conformal gauge theories from 10-D has been motivated by the AdS d+1 /CFT d correspondence, first conjectured by J. Maldacena. The aim of this work is to consider the d = 4 case by analysing the configuration of the N coincident D3 branes. In this context, the work shows that there is a duality between type IIB string theory in AdS 5 x S 5 and N = 4 SU(N) Super Yang-Mills Theory in the IR. The AdS 5 /CFT 4 correspondence brought also new approaches to the strong coupling problem in QCD. Nowadays, there is a whole line of works that focus on the low dimensional correspondence AdS 4 /CFT 3 , like the application to graphene and topological insulators, and the AdS 3 /CFT 2 correspondence, related with the entanglement entropy. In this work, we consider the vortex configuration solution to the AdS 4 and AdS 3 space-time. The most important motivation is to discuss the boundary theory resulting from these solutions. We have examined a straightforward approach to a holographic computation of the graphene and entanglement entropy in the presence of the conical singularity. After this analysis, we consider the scalar field in the bulk in the presence of this metrics and work out the compactification modes. Taking the holographic point of view, we study and discuss the resulting Green function. (author)

  3. Energy Savings in Cellular Networks Based on Space-Time Structure of Traffic Loads

    Science.gov (United States)

    Sun, Jingbo; Wang, Yue; Yuan, Jian; Shan, Xiuming

    Since most of energy consumed by the telecommunication infrastructure is due to the Base Transceiver Station (BTS), switching off BTSs when traffic load is low has been recognized as an effective way of saving energy. In this letter, an energy saving scheme is proposed to minimize the number of active BTSs based on the space-time structure of traffic loads as determined by principal component analysis. Compared to existing methods, our approach models traffic loads more accurately, and has a much smaller input size. As it is implemented in an off-line manner, our scheme also avoids excessive communications and computing overheads. Simulation results show that the proposed method has a comparable performance in energy savings.

  4. Space-Time Transformation in Flux-form Semi-Lagrangian Schemes

    Directory of Open Access Journals (Sweden)

    Peter C. Chu Chenwu Fan

    2010-01-01

    Full Text Available With a finite volume approach, a flux-form semi-Lagrangian (TFSL scheme with space-time transformation was developed to provide stable and accurate algorithm in solving the advection-diffusion equation. Different from the existing flux-form semi-Lagrangian schemes, the temporal integration of the flux from the present to the next time step is transformed into a spatial integration of the flux at the side of a grid cell (space for the present time step using the characteristic-line concept. The TFSL scheme not only keeps the good features of the semi-Lagrangian schemes (no Courant number limitation, but also has higher accuracy (of a second order in both time and space. The capability of the TFSL scheme is demonstrated by the simulation of the equatorial Rossby-soliton propagation. Computational stability and high accuracy makes this scheme useful in ocean modeling, computational fluid dynamics, and numerical weather prediction.

  5. Collision-free gases in spatially homogeneous space-times

    International Nuclear Information System (INIS)

    Maartens, R.; Maharaj, S.D.

    1985-01-01

    The kinematical and dynamical properties of one-component collision-free gases in spatially homogeneous, locally rotationally symmetric (LRS) space-times are analyzed. Following Ray and Zimmerman [Nuovo Cimento B 42, 183 (1977)], it is assumed that the distribution function f of the gas inherits the symmetry of space-time, in order to construct solutions of Liouville's equation. The redundancy of their further assumption that f be based on Killing vector constants of the motion is shown. The Ray and Zimmerman results for Kantowski--Sachs space-time are extended to all spatially homogeneous LRS space-times. It is shown that in all these space-times the kinematic average four-velocity u/sup i/ can be tilted relative to the homogeneous hypersurfaces. This differs from the perfect fluid case, in which only one space-time admits tilted u/sup i/, as shown by King and Ellis [Commun. Math. Phys. 31, 209 (1973)]. As a consequence, it is shown that all space-times admit nonzero acceleration and heat flow, while a subclass admits nonzero vorticity. The stress π/sub i/j is proportional to the shear sigma/sub i/j by virtue of the invariance of the distribution function. The evolution of tilt and the existence of perfect fluid solutions is also discussed

  6. Metric space construction for the boundary of space-time

    International Nuclear Information System (INIS)

    Meyer, D.A.

    1986-01-01

    A distance function between points in space-time is defined and used to consider the manifold as a topological metric space. The properties of the distance function are investigated: conditions under which the metric and manifold topologies agree, the relationship with the causal structure of the space-time and with the maximum lifetime function of Wald and Yip, and in terms of the space of causal curves. The space-time is then completed as a topological metric space; the resultant boundary is compared with the causal boundary and is also calculated for some pertinent examples

  7. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  8. Ghost neutrinos as test fields in curved space-time

    International Nuclear Information System (INIS)

    Audretsch, J.

    1976-01-01

    Without restricting to empty space-times, it is shown that ghost neutrinos (their energy-momentum tensor vanishes) can only be found in algebraically special space-times with a neutrino flux vector parallel to one of the principal null vectors of the conformal tensor. The optical properties are studied. There are no ghost neutrinos in the Kerr-Newman and in spherically symmetric space-times. The example of a non-vacuum gravitational pp-wave accompanied by a ghost neutrino pp-wave is discussed. (Auth.)

  9. Quaternion wave equations in curved space-time

    Science.gov (United States)

    Edmonds, J. D., Jr.

    1974-01-01

    The quaternion formulation of relativistic quantum theory is extended to include curvilinear coordinates and curved space-time in order to provide a framework for a unified quantum/gravity theory. Six basic quaternion fields are identified in curved space-time, the four-vector basis quaternions are identified, and the necessary covariant derivatives are obtained. Invariant field equations are derived, and a general invertable coordinate transformation is developed. The results yield a way of writing quaternion wave equations in curvilinear coordinates and curved space-time as well as a natural framework for solving the problem of second quantization for gravity.

  10. Contextualising renal patient routines: Everyday space-time contexts, health service access, and wellbeing.

    Science.gov (United States)

    McQuoid, Julia; Jowsey, Tanisha; Talaulikar, Girish

    2017-06-01

    Stable routines are key to successful illness self-management for the growing number of people living with chronic illness around the world. Yet, the influence of chronically ill individuals' everyday contexts in supporting routines is poorly understood. This paper takes a space-time geographical approach to explore the everyday space-time contexts and routines of individuals with chronic kidney disease (CKD). We ask: what is the relationship between renal patients' space-time contexts and their ability to establish and maintain stable routines, and, what role does health service access play in this regard? We draw from a qualitative case study of 26 individuals with CKD in Australia. Data comprised self-reported two day participant diaries and semi-structured interviews. Thematic analysis of interview transcripts was guided by an inductive-deductive approach. We examined the embeddedness of routines within the space-time contexts of participants' everyday lives. We found that participants' everyday space-time contexts were highly complex, especially for those receiving dialysis and/or employed, making routines difficult to establish and vulnerable to disruption. Health service access helped shape participants' everyday space-time contexts, meaning that incidences of unpredictability in accessing health services set-off 'ripple effects' within participants' space-time contexts, disrupting routines and making everyday life negotiation more difficult. The ability to absorb ripple effects from unpredictable health services without disrupting routines varied by space-time context. Implications of these findings for the deployment of the concept of routine in health research, the framing of patient success in self-managing illness, and health services design are discussed. In conclusion, efforts to understand and support individuals in establishing and maintaining routines that support health and wellbeing can benefit from approaches that contextualise and de

  11. Space-Time Chip Equalization for Maximum Diversity Space-Time Block Coded DS-CDMA Downlink Transmission

    Directory of Open Access Journals (Sweden)

    Petré Frederik

    2004-01-01

    Full Text Available In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI. Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input multiple-output (MIMO communication techniques can result in a significant increase in capacity. This paper focuses on space-time block coding (STBC techniques, and aims at combining STBC techniques with the original single-antenna DS-CDMA downlink scheme. This results into the so-called space-time block coded DS-CDMA downlink schemes, many of which have been presented in the past. We focus on a new scheme that enables both the maximum multiantenna diversity and the maximum multipath diversity. Although this maximum diversity can only be collected by maximum likelihood (ML detection, we pursue suboptimal detection by means of space-time chip equalization, which lowers the computational complexity significantly. To design the space-time chip equalizers, we also propose efficient pilot-based methods. Simulation results show improved performance over the space-time RAKE receiver for the space-time block coded DS-CDMA downlink schemes that have been proposed for the UMTS and IS-2000 W-CDMA standards.

  12. Material Modelling - Composite Approach

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...

  13. Differential Space-Time Modulation for Wideband Wireless Networks

    National Research Council Canada - National Science Library

    Li, Hongbin

    2006-01-01

    .... The objective was to provide full spatio-spectral diversity and coding gain at affordable decoding complexity without the burden of estimating the underlying space-time frequency-selective channel...

  14. Problems of space-time behaviour of nuclear reactors

    International Nuclear Information System (INIS)

    Obradovic, D.

    1966-01-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr

  15. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  16. Space-time clusters for early detection of grizzly bear predation.

    Science.gov (United States)

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based

  17. Point-like Particles in Fuzzy Space-time

    OpenAIRE

    Francis, Charles

    1999-01-01

    This paper is withdrawn as I am no longer using the term "fuzzy space- time" to describe the uncertainty in co-ordinate systems implicit in quantum logic. Nor am I using the interpretation that quantum logic can be regarded as a special case of fuzzy logic. This is because there are sufficient differences between quantum logic and fuzzy logic that the explanation is confusing. I give an interpretation of quantum logic in "A Theory of Quantum Space-time"

  18. Renormalization of the δ expansion in curved space-time

    International Nuclear Information System (INIS)

    Cho, H.T.

    1991-01-01

    Renormalization of a recently proposed δ expansion for a self-interacting scalar field theory in curved space-time is examined. The explicit calculation is carried out up to order δ 2 , which indicates that the expansion is renormalizable, but reduces to essentially the λφ 4 theory when the cutoff is removed. A similar conclusion has been reached in a previous paper where the case of flat space-time is considered

  19. On the minimum uncertainty of space-time geodesics

    International Nuclear Information System (INIS)

    Diosi, L.; Lukacs, B.

    1989-10-01

    Although various attempts for systematic quantization of the space-time geometry ('gravitation') have appeared, none of them is considered fully consistent or final. Inspired by a construction of Wigner, the quantum relativistic limitations of measuring the metric tensor of a certain space-time were calculated. The result is suggested to be estimate for fluctuations of g ab whose rigorous determination will be a subject of a future relativistic quantum gravity. (author) 11 refs

  20. Conformal quantum mechanics and holography in noncommutative space-time

    Science.gov (United States)

    Gupta, Kumar S.; Harikumar, E.; Zuhair, N. S.

    2017-09-01

    We analyze the effects of noncommutativity in conformal quantum mechanics (CQM) using the κ-deformed space-time as a prototype. Up to the first order in the deformation parameter, the symmetry structure of the CQM algebra is preserved but the coupling in a canonical model of the CQM gets deformed. We show that the boundary conditions that ensure a unitary time evolution in the noncommutative CQM can break the scale invariance, leading to a quantum mechanical scaling anomaly. We calculate the scaling dimensions of the two and three point functions in the noncommutative CQM which are shown to be deformed. The AdS2 / CFT1 duality for the CQM suggests that the corresponding correlation functions in the holographic duals are modified. In addition, the Breitenlohner-Freedman bound also picks up a noncommutative correction. The strongly attractive regime of a canonical model of the CQM exhibit quantum instability. We show that the noncommutativity softens this singular behaviour and its implications for the corresponding holographic duals are discussed.

  1. Aging in a Relativistic Biological Space-Time

    Directory of Open Access Journals (Sweden)

    Davide Maestrini

    2018-05-01

    Full Text Available Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of “biological space-time” in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.

  2. An evaluation of space time cube representation of spatiotemporal patterns.

    Science.gov (United States)

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  3. Quantum theory of string in the four-dimensional space-time

    International Nuclear Information System (INIS)

    Pron'ko, G.P.

    1986-01-01

    The Lorentz invariant quantum theory of string is constructed in four-dimensional space-time. Unlike the traditional approach whose result was breaking of Lorentz invariance, our method is based on the usage of other variables for description of string configurations. The method of an auxiliary spectral problem for periodic potentials is the main tool in construction of these new variables

  4. Causal fermion systems: A quantum space-time emerging from an action principle

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix [Mathematics Department, University of Regensburg (Germany)

    2013-07-01

    Causal fermion systems provide a general framework for the formulation of relativistic quantum theory. A particular feature is that space-time is a secondary object which emerges by minimizing an action. The aim of the talk is to give a simple introduction, with an emphasis on conceptual issues. We begin with Dirac spinors in Minkowski space and explain how to formulate the system as a causal fermion system. As an example in curved space-time, we then consider spinors on a globally hyperbolic space-time. An example on a space-time lattice illustrates that causal fermion systems also allow for the description of discrete space-times. These examples lead us to the general definition of causal fermion systems. The causal action principle is introduced. We outline how for a given minimizer, one has notions of causality, connection and curvature, which generalize the classical notions and give rise to a proposal for a ''quantum geometry''. In the last part of the talk, we outline how quantum field theory can be described in this framework and discuss the relation to other approaches.

  5. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1983-01-01

    The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)

  6. Structure of the Einstein tensor for class-1 embedded space time

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-04-11

    Continuing previous work, some features of the flat embedding theory of class-1 curved space-time are further discussed. In the two-metric formalism provided by the embedding approach the Gauss tensor obtains as the flat-covariant gradient of a fundamental vector potential. The Einstein tensor is then examined in terms of the Gauss tensor. It is proved that the Einstein tensor is divergence free in flat space-time, i.e. a true Lorentz-covariant conservation law for the Einstein tensor is shown to hold. The form of the Einstein tensor in flat space-time also appears as a canonical energy-momentum tensor of the vector potential. The corresponding Lagrangian density, however, does not provide us with a set of field equations for the fundamental vector potential; indeed, the Euler-Lagrange ''equations'' collapse to a useless identity, while the Lagrangian density has the form of a flat divergence.

  7. Efficient coding schemes with power allocation using space-time-frequency spreading

    Institute of Scientific and Technical Information of China (English)

    Jiang Haining; Luo Hanwen; Tian Jifeng; Song Wentao; Liu Xingzhao

    2006-01-01

    An efficient space-time-frequency (STF) coding strategy for multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) systems is presented for high bit rate data transmission over frequency selective fading channels. The proposed scheme is a new approach to space-time-frequency coded OFDM (COFDM) that combines OFDM with space-time coding, linear precoding and adaptive power allocation to provide higher quality of transmission in terms of the bit error rate performance and power efficiency. In addition to exploiting the maximum diversity gain in frequency, time and space, the proposed scheme enjoys high coding advantages and low-complexity decoding. The significant performance improvement of our design is confirmed by corroborating numerical simulations.

  8. Space-time aspects of hadronic cascading in lepton nucleus scattering

    International Nuclear Information System (INIS)

    Gyulassy, M.; Pluemer, M.

    1989-05-01

    A Monte Carlo model of hadronic cascading in inelastic lepton nucleus scattering is constructed to investigate space-time scenarios consistent with the momentum space description of string models of multiparticle production. The prospects for resolving the ambiguity inherent in the definition of a formation length for composite hadrons are emphasized. 15 refs., 13 figs

  9. A generalized cellular automata approach to modeling first order ...

    Indian Academy of Sciences (India)

    system, consisting of space, time and state, structured with simple local rules without ... Sensitivity analysis of a stochastic cellular automata model. 413 ..... Baetens J M and De Baets B 2011 Design and parameterization of a stochastic cellular.

  10. Space-Time Foam in 2D and the Sum Over Topologies

    International Nuclear Information System (INIS)

    Loll, R.; Westra, W.

    2003-01-01

    It is well-known that the sum over topologies in quantum gravity is ill-defined, due to a super-exponential growth of the number of geometries as a function of the space-time volume, leading to a badly divergent gravitational path integral. Not even in dimension 2, where a non-perturbative quantum gravity theory can be constructed explicitly from a (regularized) path integral, has this problem found a satisfactory solution. In the present work, we extend a previous 2d Lorentzian path integral, regulated in terms of Lorentzian random triangulations, to include space-times with an arbitrary number of handles. We show that after the imposition of physically motivated causality constraints, the combined sum over geometries and topologies is well-defined and possesses a continuum limit which yields a concrete model of space-time foam in two dimensions. (author)

  11. From Discrete Space-Time to Minkowski Space: Basic Mechanisms, Methods and Perspectives

    Science.gov (United States)

    Finster, Felix

    This survey article reviews recent results on fermion systems in discrete space-time and corresponding systems in Minkowski space. After a basic introduction to the discrete setting, we explain a mechanism of spontaneous symmetry breaking which leads to the emergence of a discrete causal structure. As methods to study the transition between discrete space-time and Minkowski space, we describe a lattice model for a static and isotropic space-time, outline the analysis of regularization tails of vacuum Dirac sea configurations, and introduce a Lorentz invariant action for the masses of the Dirac seas. We mention the method of the continuum limit, which allows to analyze interacting systems. Open problems are discussed.

  12. Fermion Fields in BTZ Black Hole Space-Time and Entanglement Entropy

    Directory of Open Access Journals (Sweden)

    Dharm Veer Singh

    2015-01-01

    Full Text Available We study the entanglement entropy of fermion fields in BTZ black hole space-time and calculate prefactor of the leading and subleading terms and logarithmic divergence term of the entropy using the discretized model. The leading term is the standard Bekenstein-Hawking area law and subleading term corresponds to first quantum corrections in black hole entropy. We also investigate the corrections to entanglement entropy for massive fermion fields in BTZ space-time. The mass term does not affect the area law.

  13. A bivariate space-time downscaler under space and time misalignment.

    Science.gov (United States)

    Berrocal, Veronica J; Gelfand, Alan E; Holland, David M

    2010-12-01

    Ozone and particulate matter PM(2.5) are co-pollutants that have long been associated with increased public health risks. Information on concentration levels for both pollutants come from two sources: monitoring sites and output from complex numerical models that produce concentration surfaces over large spatial regions. In this paper, we offer a fully-model based approach for fusing these two sources of information for the pair of co-pollutants which is computationally feasible over large spatial regions and long periods of time. Due to the association between concentration levels of the two environmental contaminants, it is expected that information regarding one will help to improve prediction of the other. Misalignment is an obvious issue since the monitoring networks for the two contaminants only partly intersect and because the collection rate for PM(2.5) is typically less frequent than that for ozone.Extending previous work in Berrocal et al. (2009), we introduce a bivariate downscaler that provides a flexible class of bivariate space-time assimilation models. We discuss computational issues for model fitting and analyze a dataset for ozone and PM(2.5) for the ozone season during year 2002. We show a modest improvement in predictive performance, not surprising in a setting where we can anticipate only a small gain.

  14. Joint Estimation and Decoding of Space-Time Trellis Codes

    Directory of Open Access Journals (Sweden)

    Zhang Jianqiu

    2002-01-01

    Full Text Available We explore the possibility of using an emerging tool in statistical signal processing, sequential importance sampling (SIS, for joint estimation and decoding of space-time trellis codes (STTC. First, we provide background on SIS, and then we discuss its application to space-time trellis code (STTC systems. It is shown through simulations that SIS is suitable for joint estimation and decoding of STTC with time-varying flat-fading channels when phase ambiguity is avoided. We used a design criterion for STTCs and temporally correlated channels that combats phase ambiguity without pilot signaling. We have shown by simulations that the design is valid.

  15. Topology and isometries of the de Sitter space-time

    International Nuclear Information System (INIS)

    Mitskevich, N.V.; Senin, Yu.E.

    1982-01-01

    Spaces with a constant four-dimensional curvature, which are locally isometric to the de Sitter space-time but differing from it in topology are considered. The de Sitter spaces are considered in coordinates fitted at best for introduction of topology for three cross sections: S 3 , S 1 x S 2 , S 1 x S 2 x S 3 . It is shown that the de Sitter space-time covered by the family of layers, each of them is topologically identical, may be covered by another family of topologically identical layers. But layers in these families will have different topology

  16. Holographic analysis of dispersive pupils in space--time optics

    International Nuclear Information System (INIS)

    Calatroni, J.; Vienot, J.C.

    1981-01-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented

  17. The scalar wave equation in a Schwarzschild space-time

    International Nuclear Information System (INIS)

    Schmidt, B.G.; Stewart, J.M.

    1979-01-01

    This paper studies the asymptotic behaviour of solutions of the zero rest mass scalar wave equation in the Schwarzschild space-time in a neighbourhood of spatial infinity which includes parts of future and pass null infinity. The behaviour of such fields is essentially different from that which occurs in a flat space-time. In particular fields which have a Bondi-type expansion in powers of 'r(-1)' near past null infinity do not have such an expansion near future null infinity. Further solutions which have physically reasonable Cauchy data probably fail to have Bondi-type expansions near null infinity. (author)

  18. On signature change in p-adic space-times

    International Nuclear Information System (INIS)

    Dragovic, B.G.

    1991-01-01

    Change of signature by linear coordinate transformations in p-adic space-times is considered. In this paper it is shown that there exists arbitrary change of trivial signature in Q p n for all n ≥ 1 if p ≡ 1 (mod 4). In other cases it is possible to change only even number of the signs of the signature. The authors suggest new concept of signature with respect to distinct quadratic extensions, of Q p . If space-time dimension is restricted to four there is no signature change

  19. On quantization of free fields in stationary space-times

    International Nuclear Information System (INIS)

    Moreno, C.

    1977-01-01

    In Section 1 the structure of the infinite-dimensional Hamiltonian system described by the Klein-Gordon equation (free real scalar field) in stationary space-times with closed space sections, is analysed, an existence and uniqueness theorem is given for the Lichnerowicz distribution kernel G 1 together with its proper Fourier expansion, and the Hilbert spaces of frequency-part solutions defined by means of G 1 are constructed. In Section 2 an analysis, a theorem and a construction similar to the above are formulated for the free real field spin 1, mass m>0, in one kind of static space-times. (Auth.)

  20. On maximal surfaces in asymptotically flat space-times

    International Nuclear Information System (INIS)

    Bartnik, R.; Chrusciel, P.T.; O Murchadha, N.

    1990-01-01

    Existence of maximal and 'almost maximal' hypersurfaces in asymptotically flat space-times is established under boundary conditions weaker than those considered previously. We show in particular that every vacuum evolution of asymptotically flat data for Einstein equations can be foliated by slices maximal outside a spatially compact set and that every (strictly) stationary asymptotically flat space-time can be foliated by maximal hypersurfaces. Amongst other uniqueness results, we show that maximal hypersurface can be used to 'partially fix' an asymptotic Poincare group. (orig.)

  1. Holographic analysis of dispersive pupils in space--time optics

    Energy Technology Data Exchange (ETDEWEB)

    Calatroni, J.; Vienot, J.C.

    1981-06-01

    Extension of space--time optics to objects whose transparency is a function of the temporal frequency v = c/lambda is examined. Considering the effects of such stationary pupils on white light waves, they are called temporal pupils. It is shown that simultaneous encoding both in the space and time frequency domains is required to record pupil parameters. The space-time impulse response and transfer functions are calculated for a dispersive nonabsorbent material. An experimental method providing holographic recording of the dispersion curve of any transparent material is presented.

  2. Gauge fields in algebraically special space-times

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1985-01-01

    It is shown that in an algebraically special space-time which admits a congruence of null strings, a source-free gauge field aligned with the congruence is determined by a matrix potential which has to satisfy a second-order differential equation with quadratic nonlinearities. The Einstein--Yang--Mills equations are then reduced to a scalar and two matrix equations. In the case of self-dual gauge fields in a self-dual space-time, the existence of an infinite set of conservation laws, of an associated linear system, and of infinitesimal Baecklund transformations is demonstrated. All the results apply for an arbitrary gauge group

  3. Two theorems on flat space-time gravitational theories

    International Nuclear Information System (INIS)

    Castagnino, M.; Chimento, L.

    1980-01-01

    The first theorem states that all flat space-time gravitational theories must have a Lagrangian with a first term that is an homogeneous (degree-1) function of the 4-velocity usup(i), plus a functional of nsub(ij)usup(i)usup(j). The second theorem states that all gravitational theories that satisfy the strong equivalence principle have a Lagrangian with a first term gsub(ij)(x)usup(i)usup(j) plus an irrelevant term. In both cases the theories must issue from a unique variational principle. Therefore, under this condition it is impossible to find a flat space-time theory that satisfies the strong equivalence principle. (author)

  4. Null geodesic deviation II. Conformally flat space--times

    International Nuclear Information System (INIS)

    Peters, P.C.

    1975-01-01

    The equation of geodesic deviation is solved in conformally flat space--time in a covariant manner. The solution is given as an integral equation for general geodesics. The solution is then used to evaluate second derivatives of the world function and derivatives of the parallel propagator, which need to be known in order to find the Green's function for wave equations in curved space--time. A method of null geodesic limits of two-point functions is discussed, and used to find the scalar Green's function as an iterative series

  5. Flat synchronizations in spherically symmetric space-times

    International Nuclear Information System (INIS)

    Herrero, Alicia; Morales-Lladosa, Juan Antonio

    2010-01-01

    It is well known that the Schwarzschild space-time admits a spacelike slicing by flat instants and that the metric is regular at the horizon in the associated adapted coordinates (Painleve-Gullstrand metric form). We consider this type of flat slicings in an arbitrary spherically symmetric space-time. The condition ensuring its existence is analyzed, and then, we prove that, for any spherically symmetric flat slicing, the densities of the Weinberg momenta vanish. Finally, we deduce the Schwarzschild solution in the extended Painleve-Gullstrand-LemaItre metric form by considering the coordinate decomposition of the vacuum Einstein equations with respect to a flat spacelike slicing.

  6. Conformally invariant amplitudes and field theory in a space-time of constant curvature

    International Nuclear Information System (INIS)

    Drummond, I.T.

    1977-02-01

    The problem of calculating the ultra violet divergences of a field theory in a spherical space-time is reduced to analysing the pole structure of conformally invariant integrals which are analogous to amplitudes which occur in the theory of dual models. The calculations are illustrated with phi 3 -theory in six-dimensions. (author)

  7. A new theory of space-time and gravitation

    International Nuclear Information System (INIS)

    Denisov, V.I.; Logunov, A.A.

    1982-01-01

    Field theory of gravitation is constructed. It uses a symmetrical second rank tensor field in pseudoeuclidean space-time for describing the gravitational field. The theory is based on the condition of the presence of conservation laws for gravitational field and matter taken together and on the geometrization principle. The field theory of gravitation has the same post-newtonian parame-- ters as the general relativity theory (GRT) which implies that both theories are indistinguishable from the viewpoint of any post- newtonian experiment. The description of the effects in strong gravitational fields as well as properties of gravitational waves in the field theory of gravitation and GRT differ significantly from each other. The distinctions between two theories include also the itational red shifti curving of light trajectories and timabsence in the field theory of gravitation of the effects of grav.. delay/ in processes of propagation of gravitational waves in external fields. These distinctions made it possible to suggest a number of experiments with gravitational waves in which the predictions of the field theory of gravitation can be compared with those of the GRT. Model of the Universe in the field theory of gravitation makes it possible to describe the cosmological red shift of the frequency. Character of the evolution in this mode is determined by the delay parameter q 0 : at q 0 0 >4-3/2xα the ''expansion'' at some moment will ''change'' to contraction'' and the Universe will return to the singular state, where α=8πepsilon 0 /3M 2 (H is the Hubble constant) [ru

  8. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim

    2013-01-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding

  9. Poisson's equation in de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-11-01

    Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.

  10. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  11. The order axiom and the biological space time

    International Nuclear Information System (INIS)

    Vu Huu Nhu

    2014-01-01

    This work focuses on the field of Biological Space - Time. In fact the conception of Biological Space - Time is connected with order character of sets. Because the illustration of order axioms is very important for searching order systems. In this work, the new form of order axioms has been illustrated in the form of (a,b) ≠ (b.a). It is a common form of Descartes product. Based on this we suggest the following formation of order lemma (a.b) ≠(b.a)↔ a Φ b. In this case Φ is an order relation. From the new form of order axiom, we determine the order system as follows: If S = (a,b) the set of two elements and the order axiom (a.b) ≠ (b.a) is satisfied. So that, in this case, S is called an order system. The life system are the most important order systems. We could illustrate the biological system as: S = (A, T, G, C). In this set, A, T, G, C are the elements of the genetic code and the order axiom is satisfied. As we know, for example, in genetic code: (AUG) ≠ (UGA) ≠ (UAG). The order biological system induces an order relation and it is the origin of the conception of Biological Space Time. The students of Physics and Biology could use this book as basic course for studies of Biological Space Time. (author)

  12. Zen and the Art of Space-Time Manufacturing

    Directory of Open Access Journals (Sweden)

    Bertolami Orfeu

    2013-09-01

    Full Text Available We present a general discussion about the so-called emergent properties and discuss whether space-time and gravity can be regarded as emergent features of underlying more fundamental structures. Finally, we discuss some ideas about the multiverse, and speculate on how our universe might arise from the multiverse.

  13. The wave equation on a curved space-time

    International Nuclear Information System (INIS)

    Friedlander, F.G.

    1975-01-01

    It is stated that chapters on differential geometry, distribution theory, and characteristics and the propagation of discontinuities are preparatory. The main matter is in three chapters, entitled: fundamental solutions, representation theorems, and wave equations on n-dimensional space-times. These deal with general construction of fundamental solutions and their application to the Cauchy problem. (U.K.)

  14. Notes on a class of homogeneous space-times

    International Nuclear Information System (INIS)

    Calvao, M.O.; Reboucas, M.J.; Teixeira, A.F.F.; Silva Junior, W.M.

    1987-01-01

    The breakdown of causality in homogeneous Goedel-type space-time manifolds is examined. An extension of Reboucas-Tiomno (RT) study is made. The existence of noncausal curves is also investigated under two different conditions on the energy-momentum tensor. An integral representation of the infinitesimal generators of isometries is obtained extending previous works on the RT geometry. (Author) [pt

  15. The space-time of dark-matter

    International Nuclear Information System (INIS)

    Dey, Dipanjan

    2015-01-01

    Dark-matter is a hypothetical matter which can't be seen but around 27% of our universe is made of it. Its distribution, evolution from early stage of our universe to present stage, its particle constituents all these are great unsolved mysteries of modern Cosmology and Astrophysics. In this talk I will introduce a special kind of space-time which is known as Bertrand Space-time (BST). I will show this space-time interestingly shows some dark-matter properties like- flat velocity curve, density profile of Dark-matter, total mass of Dark matter-halo, gravitational lensing etc, for that reason we consider BST is seeded by Dark-matter or it is a space-time of Dark-matter. At last I will show using modified gravity formalism the behaviour of the equation of state parameter of Dark-matter and the behaviour of the Newton's gravitational constant in the vicinity of the singularity. (author)

  16. Space-times carrying a quasirecurrent pairing of vector fields

    International Nuclear Information System (INIS)

    Rosca, R.; Ianus, S.

    1977-01-01

    A quasirecurrent pairing of vector fields(X 1 ,X 2 ,) defined previously by Rosca (C.R. Acad. Sci. 282 (1976)) is investigated on a space-time in two cases: (1) X 1 is spacelike and X 2 is timelike; (2) X 1 is null and X 2 is spacelike. The physical interpretation of these vector fields is given. (author)

  17. Performance of Turbo Interference Cancellation Receivers in Space-Time Block Coded DS-CDMA Systems

    Directory of Open Access Journals (Sweden)

    Emmanuel Oluremi Bejide

    2008-07-01

    Full Text Available We investigate the performance of turbo interference cancellation receivers in the space time block coded (STBC direct-sequence code division multiple access (DS-CDMA system. Depending on the concatenation scheme used, we divide these receivers into the partitioned approach (PA and the iterative approach (IA receivers. The performance of both the PA and IA receivers is evaluated in Rayleigh fading channels for the uplink scenario. Numerical results show that the MMSE front-end turbo space-time iterative approach receiver (IA effectively combats the mixture of MAI and intersymbol interference (ISI. To further investigate the possible achievable data rates in the turbo interference cancellation receivers, we introduce the puncturing of the turbo code through the use of rate compatible punctured turbo codes (RCPTCs. Simulation results suggest that combining interference cancellation, turbo decoding, STBC, and RCPTC can significantly improve the achievable data rates for a synchronous DS-CDMA system for the uplink in Rayleigh flat fading channels.

  18. Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities

    Science.gov (United States)

    Sadeghi, Alireza; Sheikholeslami, Fatemeh; Giannakis, Georgios B.

    2018-02-01

    Small basestations (SBs) equipped with caching units have potential to handle the unprecedented demand growth in heterogeneous networks. Through low-rate, backhaul connections with the backbone, SBs can prefetch popular files during off-peak traffic hours, and service them to the edge at peak periods. To intelligently prefetch, each SB must learn what and when to cache, while taking into account SB memory limitations, the massive number of available contents, the unknown popularity profiles, as well as the space-time popularity dynamics of user file requests. In this work, local and global Markov processes model user requests, and a reinforcement learning (RL) framework is put forth for finding the optimal caching policy when the transition probabilities involved are unknown. Joint consideration of global and local popularity demands along with cache-refreshing costs allow for a simple, yet practical asynchronous caching approach. The novel RL-based caching relies on a Q-learning algorithm to implement the optimal policy in an online fashion, thus enabling the cache control unit at the SB to learn, track, and possibly adapt to the underlying dynamics. To endow the algorithm with scalability, a linear function approximation of the proposed Q-learning scheme is introduced, offering faster convergence as well as reduced complexity and memory requirements. Numerical tests corroborate the merits of the proposed approach in various realistic settings.

  19. Coproduct and star product in field theories on Lie-algebra noncommutative space-times

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele

    2002-01-01

    We propose a new approach to field theory on κ-Minkowski noncommutative space-time, a popular example of Lie-algebra space-time. Our proposal is essentially based on the introduction of a star product, a technique which is proving to be very fruitful in analogous studies of canonical noncommutative space-times, such as the ones recently found to play a role in the description of certain string-theory backgrounds. We find to be incorrect the expectation, previously reported in the literature, that the lack of symmetry of the κ-Poincare coproduct should lead to interaction vertices that are not symmetric under exchanges of the momenta of identical particles entering the relevant processes. We show that in κ-Minkowski the coproduct and the star product must indeed treat momenta in a nonsymmetric way, but the overall structure of interaction vertices is symmetric under exchange of identical particles. We also show that in κ-Minkowski field theories it is convenient to introduce the concepts of 'planar' and 'nonplanar' Feynman loop diagrams, again in close analogy with the corresponding concepts previously introduced in the study of field theories in canonical noncommutative space-times

  20. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    Science.gov (United States)

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  1. Evaporator modeling - A hybrid approach

    International Nuclear Information System (INIS)

    Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun

    2009-01-01

    In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis

  2. Quantum Statistical Entropy of Non-extreme and Nearly Extreme Black Holes in Higher-Dimensional Space-Time

    Institute of Scientific and Technical Information of China (English)

    XU Dian-Yan

    2003-01-01

    The free energy and entropy of Reissner-Nordstrom black holes in higher-dimensional space-time are calculated by the quantum statistic method with a brick wall model. The space-time of the black holes is divided into three regions: region 1, (r > r0); region 2, (r0 > r > n); and region 3, (T-J > r > 0), where r0 is the radius of the outer event horizon, and r, is the radius of the inner event horizon. Detailed calculation shows that the entropy contributed by region 2 is zero, the entropy contributed by region 1 is positive and proportional to the outer event horizon area, the entropy contributed by region 3 is negative and proportional to the inner event horizon area. The total entropy contributed by all the three regions is positive and proportional to the area difference between the outer and inner event horizons. As rt approaches r0 in the nearly extreme case, the total quantum statistical entropy approaches zero.

  3. Models of Quantum Space Time: Quantum Field Planes

    OpenAIRE

    Mack, G.; Schomerus, V.

    1994-01-01

    Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.

  4. Space-time complexity in solid state models

    International Nuclear Information System (INIS)

    Bishop, A.R.

    1985-01-01

    In this Workshop on symmetry-breaking it is appropriate to include the evolving fields of nonlinear-nonequilibrium systems in which transitions to and between various degrees of ''complexity'' (including ''chaos'') occur in time or space or both. These notions naturally bring together phenomena of pattern formation and chaos and therefore have ramifications for a huge array of natural sciences - astrophysics, plasmas and lasers, hydrodynamics, field theory, materials and solid state theory, optics and electronics, biology, pattern recognition and evolution, etc. Our particular concerns here are with examples from solid state and condensed matter

  5. Space-Time Chip Equalization for Maximum Diversity Space-Time Block Coded DS-CDMA Downlink Transmission

    NARCIS (Netherlands)

    Leus, G.; Petré, F.; Moonen, M.

    2004-01-01

    In the downlink of DS-CDMA, frequency-selectivity destroys the orthogonality of the user signals and introduces multiuser interference (MUI). Space-time chip equalization is an efficient tool to restore the orthogonality of the user signals and suppress the MUI. Furthermore, multiple-input

  6. Metric and topology on a non-standard real line and non-standard space-time

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1981-04-01

    We study metric and topological properties of extended real line R* and compare it with the non-standard model of real line *R. We show that some properties, like triangular inequality, cannot be carried over R* from R. This confirms F. Wattenberg's result for measure theory on Dedekind completion of *R. Based on conclusions from these results we propose a non-standard model of space-time. This space-time is without undefined objects like singularities. (author)

  7. Space/time analysis of fecal pollution and rainfall in an eastern North Carolina estuary.

    Science.gov (United States)

    Coulliette, Angela D; Money, Eric S; Serre, Marc L; Noble, Rachel T

    2009-05-15

    The Newport River Estuary (NPRE) is a high-priority shellfish harvesting area in eastern North Carolina that is impaired due to fecal contamination, specifically exceeding recommended levels for fecal coliforms. A hydrologic-driven mean trend model was developed, as a function of antecedent rainfall, in the NPRE to predict levels of Escherichia coli (EC, measured as a proxyforfecal coliforms). This mean trend model was integrated in a Bayesian Maximum Entropy (BME) framework to produce informative space/time (S/T) maps depicting fecal contamination across the NPRE during winter and summer months. These maps showed that during dry winter months, corretponding to the oyster harvesting season in North Carolina (October 1-March 30), predicted EC concentrations were below the shellfish harvesting standard (14 MPN/100 mL). However, after substantial rainfall of 3.81 cm (1.5 in.), the NPRE did not appear to mee this requirement. Warmer months resulted in the predicted EC concentrations exceeding the threshold for the NPRE. Predicted ENT concentrations were generally below the recreational water quality threshold (104 MPN/100 mL), except for warmer months after substantial rainfall. Once established, this combined approach produces near real-time visual information on which to base water quality management decisions.

  8. The Verriest Lecture: Color lessons from space, time, and motion

    Science.gov (United States)

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  9. Spinors, superalgebras and the signature of space-time

    CERN Document Server

    Ferrara, S.

    2001-01-01

    Superconformal algebras embedding space-time in any dimension and signature are considered. Different real forms of the $R$-symmetries arise both for usual space-time signature (one time) and for Euclidean or exotic signatures (more than one times). Application of these superalgebras are found in the context of supergravities with 32 supersymmetries, in any dimension $D \\leq 11$. These theories are related to $D = 11, M, M^*$ and $M^\\prime$ theories or $D = 10$, IIB, IIB$^*$ theories when compactified on Lorentzian tori. All dimensionally reduced theories fall in three distinct phases specified by the number of (128 bosonic) positive and negative norm states: $(n^+,n^-) = (128,0), (64,64), (72,56)$.

  10. A comparison between space-time video descriptors

    Science.gov (United States)

    Costantini, Luca; Capodiferro, Licia; Neri, Alessandro

    2013-02-01

    The description of space-time patches is a fundamental task in many applications such as video retrieval or classification. Each space-time patch can be described by using a set of orthogonal functions that represent a subspace, for example a sphere or a cylinder, within the patch. In this work, our aim is to investigate the differences between the spherical descriptors and the cylindrical descriptors. In order to compute the descriptors, the 3D spherical and cylindrical Zernike polynomials are employed. This is important because both the functions are based on the same family of polynomials, and only the symmetry is different. Our experimental results show that the cylindrical descriptor outperforms the spherical descriptor. However, the performances of the two descriptors are similar.

  11. Quantum gravity effects in Myers-Perry space-times

    International Nuclear Information System (INIS)

    Litim, Daniel F.; Nikolakopoulos, Konstantinos

    2014-01-01

    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton’s coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions

  12. Interference Cancellation Using Space-Time Processing and Precoding Design

    CERN Document Server

    Li, Feng

    2013-01-01

    Interference Cancellation Using Space-Time Processing and Precoding Design introduces original design methods to achieve interference cancellation, low-complexity decoding and full diversity for a series of multi-user systems. In multi-user environments, co-channel interference will diminish the performance of wireless communications systems. In this book, we investigate how to design robust space-time codes and pre-coders to suppress the co-channel interference when multiple antennas are available.   This book offers a valuable reference work for graduate students, academic researchers and engineers who are interested in interference cancellation in wireless communications. Rigorous performance analysis and various simulation illustrations are included for each design method.   Dr. Feng Li is a scientific researcher at Cornell University.

  13. Casimir force in the Goedel space-time and its possible induced cosmological inhomogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Khodabakhshi, Sh. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Shojai, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of)

    2017-07-15

    The Casimir force between two parallel plates in the Goedel universe is computed for a scalar field at finite temperature. It is observed that when the plates' separation is comparable with the scale given by the rotation of the space-time, the force becomes repulsive and then approaches zero. Since it has been shown previously that the universe may experience a Goedel phase for a small period of time, the induced inhomogeneities from the Casimir force are also studied. (orig.)

  14. Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations

    Energy Technology Data Exchange (ETDEWEB)

    Bank, Randolph E. [Univ. of California, San Diego, CA (United States); Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2016-01-20

    This note proposes embedding a time dependent PDE into a convection-diffusion type PDE (in one space dimension higher) with singularity, for which two discretization schemes, the classical streamline-diffusion and the EAFE (edge average finite element) one, are investigated in terms of stability and error analysis. The EAFE scheme, in particular, is extended to be arbitrary order which is of interest on its own. Numerical results, in combined space-time domain demonstrate the feasibility of the proposed approach.

  15. Nuclear disassembly time scales using space time correlations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire; Bilwes, B.; Cosmo, F. [Strasbourg-1 Univ., 67 (France); Galin, J. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); and others

    1996-09-01

    The lifetime, {tau}, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by `proximity` effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author). 2 refs.

  16. String dynamics in curved space-time revisited

    International Nuclear Information System (INIS)

    Marrakchi, A.L.; Singh, L.P.

    1989-09-01

    The equations of motion of the general background of curved space-time, Einstein's equations, are derived simply by demanding the renormalized energy-momentum tensor of a bosonic string propagating in this background to be traceless. The energy-momentum tensor of such a string is then separable into a holomorphic and an antiholomorphic parts as a consequence of the conformal invariance of the theory regained at the quantum level. (author). 8 refs

  17. Semianalytic Solution of Space-Time Fractional Diffusion Equation

    Directory of Open Access Journals (Sweden)

    A. Elsaid

    2016-01-01

    Full Text Available We study the space-time fractional diffusion equation with spatial Riesz-Feller fractional derivative and Caputo fractional time derivative. The continuation of the solution of this fractional equation to the solution of the corresponding integer order equation is proved. The series solution of this problem is obtained via the optimal homotopy analysis method (OHAM. Numerical simulations are presented to validate the method and to show the effect of changing the fractional derivative parameters on the solution behavior.

  18. The Dirac equation in the Lobachevsky space-time

    International Nuclear Information System (INIS)

    Paramonov, D.V.; Paramonova, N.N.; Shavokhina, N.S.

    2000-01-01

    The product of the Lobachevsky space and the time axis is termed the Lobachevsky space-time. The Lobachevsky space is considered as a hyperboloid's sheet in the four-dimensional pseudo-Euclidean space. The Dirac-Fock-Ivanenko equation is reduced to the Dirac equation in two special forms by passing from Lame basis in the Lobachevsky space to the Cartesian basis in the enveloping pseudo-Euclidean space

  19. Space-time reactor kinetics for heterogeneous reactor structure

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1969-11-15

    An attempt is made to formulate time dependent diffusion equation based on Feinberg-Galanin theory in the from analogue to the classical reactor kinetic equation. Parameters of these equations could be calculated using the existing codes for static reactor calculation based on the heterogeneous reactor theory. The obtained kinetic equation could be analogues in form to the nodal kinetic equation. Space-time distribution of neutron flux in the reactor can be obtained by solving these equations using standard methods.

  20. Nuclear disassembly time scales using space time correlations

    International Nuclear Information System (INIS)

    Durand, D.; Colin, J.; Lecolley, J.F.; Meslin, C.; Aboufirassi, M.; Bougault, R.; Brou, R.; Galin, J.; and others.

    1996-01-01

    The lifetime, τ, with respect to multifragmentation of highly excited nuclei is deduced from the analysis of strongly damped Pb+Au collisions at 29 MeV/u. The method is based on the study of space-time correlations induced by 'proximity' effects between fragments emitted by the two primary products of the reaction and gives the time between the re-separation of the two primary products and the subsequent multifragment decay of one partner. (author)

  1. Mass Formulae for Broken Supersymmetry in Curved Space-Time

    CERN Document Server

    Ferrara, Sergio

    2016-01-01

    We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.

  2. The energy-momentum operator in curved space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Ottewill, A.C.

    1983-01-01

    It is argued that the only meaningful geometrical measure of the energy-momentum of states of matter described by a free quantum field theory in a general curved space-time is that provided by a normal ordered energy-momentum operator. The finite expectation values of this operator are contrasted with the conventional renormalized expectation values and it is further argued that the use of renormalization theory is inappropriate in this context. (author)

  3. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  4. Nonlocality and Multipartite Entanglement in Asymptotically Flat Space-Times

    International Nuclear Information System (INIS)

    Moradi, Shahpoor; Amiri, Firouz

    2016-01-01

    We study the Bell's inequality and multipartite entanglement generation for initially maximally entangled states of free Dirac field in a non inertial frame and asymptotically flat Robertson–Walker space-time. For two qubit case, we show that the Bell's inequality always is violated as measured by the accelerated observers which are in the causally connected regions. On the other hand, for those observers in the causally disconnected regions inequality is not violated for any values of acceleration. The generated three qubit state from two qubit state due to acceleration of one parties has a zero 3-tangle. For a three qubit state, the inequality violated for measurements done by both causally connected and disconnected observers. Initially GHZ state with non zero 3-tangle, in accelerated frame, transformed to a four qubit state with vanishing 4-tangle value. On the other hand, for a W-state with zero 3-tangle, in non inertial frame, transformed to a four qubit state with a non-zero 4-tangle acceleration dependent. In an expanding space-time with asymptotically flat regions, for an initially maximally entangled state, the maximum value of violation of Bell's inequality in the far past decreased in the far future due to cosmological particle creation. For some initially maximally entangled states, the generated four qubit state due to expansion of space-time, has non vanishing 4-tangle. (paper)

  5. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  6. Geodesics in Goedel-type space-times

    International Nuclear Information System (INIS)

    Calvao, M.O.; Soares, I.D.; Tiomno, J.

    1988-01-01

    The geodesic curves of the homogeneous Goedel-type space-times, which constitute a two-parameter ({ l and Ω}) class of solutions presented to several theories of gravitation (general relativity, Einstein-Cartan and higher derivative) are investigated. The qualitative properties of those curves by means of the introduction of an effective potential and then accomplish the analytical integration of the equations of motion are examined. It is shown that some of the qualitative features of the free motion in Godel's universe (l 2 =2Ω 2 ) are preserved in all space-times, namely the projections of the geodesics onto the 2-surface (r,ψ) are simple closed curves, and the geodesics for which the ratio of azymuthal angular momentum to total energy, υ is equal to zero always cross the origin r = o. However, two new cases appear: (i) radially unbounded geodesics with υ assuming any (real) value, which may occur only for the causal space-times (l 2 ≥ 4 Ω 2 ), and (ii) geodesics with υ bounded both below and above, which always occur for the circular family (l 2 [pt

  7. Experimental Constraints of the Exotic Shearing of Space-Time

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Jonathan William [Univ. of Chicago, IL (United States)

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exotic coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.

  8. On the performance of diagonal lattice space-time codes

    KAUST Repository

    Abediseid, Walid

    2013-11-01

    There has been tremendous work done on designing space-time codes for the quasi-static multiple-input multiple output (MIMO) channel. All the coding design up-to-date focuses on either high-performance, high rates, low complexity encoding and decoding, or targeting a combination of these criteria [1]-[9]. In this paper, we analyze in details the performance limits of diagonal lattice space-time codes under lattice decoding. We present both lower and upper bounds on the average decoding error probability. We first derive a new closed-form expression for the lower bound using the so-called sphere lower bound. This bound presents the ultimate performance limit a diagonal lattice space-time code can achieve at any signal-to-noise ratio (SNR). The upper bound is then derived using the union-bound which demonstrates how the average error probability can be minimized by maximizing the minimum product distance of the code. Combining both the lower and the upper bounds on the average error probability yields a simple upper bound on the the minimum product distance that any (complex) lattice code can achieve. At high-SNR regime, we discuss the outage performance of such codes and provide the achievable diversity-multiplexing tradeoff under lattice decoding. © 2013 IEEE.

  9. Space-Time Water-Filling for Composite MIMO Fading Channels

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available We analyze the ergodic capacity and channel outage probability for a composite MIMO channel model, which includes both fast fading and shadowing effects. The ergodic capacity and exact channel outage probability with space-time water-filling can be evaluated through numerical integrations, which can be further simplified by using approximated empirical eigenvalue and maximal eigenvalue distribution of MIMO fading channels. We also compare the performance of space-time water-filling with spatial water-filling. For MIMO channels with small shadowing effects, spatial water-filling performs very close to space-time water-filling in terms of ergodic capacity. For MIMO channels with large shadowing effects, however, space-time water-filling achieves significantly higher capacity per antenna than spatial water-filling at low to moderate SNR regimes, but with a much higher channel outage probability. We show that the analytical capacity and outage probability results agree very well with those obtained from Monte Carlo simulations.

  10. An analytic algorithm for the space-time fractional reaction-diffusion equation

    Directory of Open Access Journals (Sweden)

    M. G. Brikaa

    2015-11-01

    Full Text Available In this paper, we solve the space-time fractional reaction-diffusion equation by the fractional homotopy analysis method. Solutions of different examples of the reaction term will be computed and investigated. The approximation solutions of the studied models will be put in the form of convergent series to be easily computed and simulated. Comparison with the approximation solution of the classical case of the studied modeled with their approximation errors will also be studied.

  11. Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

    KAUST Repository

    Shen, Hua

    2016-10-19

    A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.

  12. Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids

    KAUST Repository

    Shen, Hua; Wen, Chih-Yung; Parsani, Matteo; Shu, Chi-Wang

    2016-01-01

    A maximum-principle-satisfying space-time conservation element and solution element (CE/SE) scheme is constructed to solve a reduced five-equation model coupled with the stiffened equation of state for compressible multifluids. We first derive a sufficient condition for CE/SE schemes to satisfy maximum-principle when solving a general conservation law. And then we introduce a slope limiter to ensure the sufficient condition which is applicative for both central and upwind CE/SE schemes. Finally, we implement the upwind maximum-principle-satisfying CE/SE scheme to solve the volume-fraction-based five-equation model for compressible multifluids. Several numerical examples are carried out to carefully examine the accuracy, efficiency, conservativeness and maximum-principle-satisfying property of the proposed approach.

  13. Deep-inelastic final states in a space-time description of shower development and hadronization

    International Nuclear Information System (INIS)

    Ellis, J.

    1996-06-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic ep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA collisions. (orig.)

  14. Deep-inelastic final states in a space-time description of shower development and hadronization

    International Nuclear Information System (INIS)

    Ellis, J.; Geiger, K.; Kowalski, H.

    1996-01-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time, and momentum space to deep-inelastic ep collisions, with particular reference to experiments at DESY HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of color-singlet prehadronic clusters and their decays into hadrons. The time evolution of the spacelike initial-state shower and the timelike secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a nonperturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse, and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, finding encouraging results, and discuss the background to large-rapidity-gap events. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA, and AA collisions. copyright 1996 The American Physical Society

  15. A MAPLE Package for Energy-Momentum Tensor Assessment in Curved Space-Time

    International Nuclear Information System (INIS)

    Murariu, Gabriel; Praisler, Mirela

    2010-01-01

    One of the most interesting problem which remain unsolved, since the birth of the General Theory of Relativity (GR), is the energy-momentum localization. All our reflections are within the Lagrange formalism of the field theory. The concept of the energy-momentum tensor for gravitational interactions has a long history. To find a generally accepted expression, there have been different attempts. This paper is dedicated to the investigation of the energy-momentum problem in the theory of General Relativity. We use Einstein [1], Landau-Lifshitz [2], Bergmann-Thomson [3] and Moller's [4] prescriptions to evaluate energy-momentum distribution. In order to cover the huge volume of computation and, bearing in mind to make a general approaching for different space-time configurations, a MAPLE application to succeed in studying the energy momentum tensor was built. In the second part of the paper for two space-time configuration, the comparative results were presented.

  16. HEDR modeling approach: Revision 1

    International Nuclear Information System (INIS)

    Shipler, D.B.; Napier, B.A.

    1994-05-01

    This report is a revision of the previous Hanford Environmental Dose Reconstruction (HEDR) Project modeling approach report. This revised report describes the methods used in performing scoping studies and estimating final radiation doses to real and representative individuals who lived in the vicinity of the Hanford Site. The scoping studies and dose estimates pertain to various environmental pathways during various periods of time. The original report discussed the concepts under consideration in 1991. The methods for estimating dose have been refined as understanding of existing data, the scope of pathways, and the magnitudes of dose estimates were evaluated through scoping studies

  17. Short-term wind power forecasting: probabilistic and space-time aspects

    DEFF Research Database (Denmark)

    Tastu, Julija

    work deals with the proposal and evaluation of new mathematical models and forecasting methods for short-term wind power forecasting, accounting for space-time dynamics based on geographically distributed information. Different forms of power predictions are considered, starting from traditional point...... into the corresponding models are analysed. As a final step, emphasis is placed on generating space-time trajectories: this calls for the prediction of joint multivariate predictive densities describing wind power generation at a number of distributed locations and for a number of successive lead times. In addition......Optimal integration of wind energy into power systems calls for high quality wind power predictions. State-of-the-art forecasting systems typically provide forecasts for every location individually, without taking into account information coming from the neighbouring territories. It is however...

  18. Multidimensional space-time kinetics of a heavy water moderated nuclear reactor

    International Nuclear Information System (INIS)

    Winn, W.G.; Baumann, N.P.; Jewell, C.E.

    1980-01-01

    Diffusion theory analysis of a series of multidimensional space-time experiments is appraised in terms of the final experiment of the series. In particular, TRIMHX diffusion calculations were examined for an experiment involving free-fall insertion of a 235 U-bearing rod into a heavy water moderated reactor with a large reflector. The experimental transient flux-tilts were accurately reproduced after cross section adjustments forced agreement between static diffusion calculations and static reactor measurements. The time-dependent features were particularly well modeled, and the bulk of the small discrepancies in space-dependent features should be removable by more refined cross-section adjustments. This experiment concludes a series of space-time experiments that span a wide range of delayed neutron holdback effects. TRIMHX calculations of these experiments demonstrate the accuracy of the modeling employed in the code

  19. QCD-instantons and conformal space-time inversion symmetry

    International Nuclear Information System (INIS)

    Klammer, D.

    2008-04-01

    In this paper, we explore the appealing possibility that the strong suppression of large-size QCD instantons - as evident from lattice data - is due to a surviving conformal space-time inversion symmetry. This symmetry is both suggested from the striking invariance of highquality lattice data for the instanton size distribution under inversion of the instanton size ρ→(left angle ρ right angle 2 )/(ρ) and from the known validity of space-time inversion symmetry in the classical instanton sector. We project the instanton calculus onto the four-dimensional surface of a five-dimensional sphere via conformal stereographic mapping, before investigating conformal inversion. This projection to a compact, curved geometry is both to avoid the occurence of divergences and to introduce the average instanton size left angle ρ right angle from the lattice data as a new length scale. The average instanton size is identified with the radius b of this 5d-sphere and acts as the conformal inversion radius. For b= left angle ρ right angle, our corresponding results are almost perfectly symmetric under space-time inversion and in good qualitative agreement with the lattice data. For (ρ)/(b)→0 we recover the familiar results of instanton perturbation theory in flat 4d-space. Moreover, we illustrate that a (weakly broken) conformal inversion symmetry would have significant consequences for QCD beyond instantons. As a further successful test for inversion symmetry, we present striking implications for another instanton dominated lattice observable, the chirality-flip ratio in the QCD vacuum. (orig.)

  20. ADM Mass for Asymptotically de Sitter Space-Time

    International Nuclear Information System (INIS)

    Huang Shiming; Yue Ruihong; Jia Dongyan

    2010-01-01

    In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)

  1. P-adic space-time and string theory

    International Nuclear Information System (INIS)

    Volovich, I.V.

    1987-01-01

    Arguments for the possibility of a p-adic structure of space-time are advanced. The p-adic analog of the Veneziano amplitude is proposed, and this permits a start to be made on the construction of the theory of p-adic strings. The same questions are considered over Galois fields, for which the analog of the Veneziano amplitude is a Jacobi sum that can be expressed in terms of p-adic cohomologies of Fermat curves. An explicit expression for the vertex operator of the corresponding string theory is given

  2. Blackbody radiation from light cone in flat space time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    Blackbody radiation in flat space-time is not necessarily associated with the flat event horizon of a single accelerated observer. The author considers a spherical bubble which expands in a uniformly accelerating fashion. Its history traces out a time-like hyperboloid. Suppose the bubble membrane has a spatially isotropic and homogeneous (surface) stress energy tensor i.e. the membrane is made out of the stiffest possible material permitted by causality considerations. It follows that this bubble membrane is in equilibrium even though it is expanding. Such an expanding bubble membrane may serve as a detector of electromagnetic radiation if the membrane can interact with the electromagnetic field. (Auth.)

  3. Annotated trajectories and the Space-Time-Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan

    2012-01-01

    too, because these have not been adopted to the purpose. A suitable solution to display and study movements is the Space-Time-Cube (STC), the graphic representation of Hägerstrand’s Time Geography. This paper answers the question of how suitable the STC is to display the above describe combination...... of trajectories and annotations to avoid the visual clutter. Although the STC will be described here as a stand-alone solution it is part of a wider geovisual analytics environment and is used next to maps and other graphics to be able to answer user questions. As a case study data set the travel log data...

  4. Mass formulae for broken supersymmetry in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2016-11-15

    We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Space, Time, Matter, and Form Essays on Aristotle's Physics

    CERN Document Server

    Bostock, David

    2006-01-01

    Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time

  6. A heterotic N=2 string with space-time supersymmetry

    International Nuclear Information System (INIS)

    Bellucci, S.; Galajinsky, A.; Lechtenfeld, O.

    2001-02-01

    It is reconsidered the issue of embedding space-time fermions into the four dimensional N=2 world-sheet supersymmetric string. A new heterotic theory is constructed, taking the right-movers from the N =4 topological extension of the conventional N=2 string but a c=0 conformal field theory supporting target-space supersymmetry for the left-moving sector. The global bosonic symmetry of the full formalism proves to be U(1,1), just as in the usual N=2 string. Quantization reveals a spectrum of only two physical states, one boson and one fermion, which fall in a multiplet of (1,0) supersymmetry

  7. Quantum stress tensor in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Howard, K.W.; Candelas, P.

    1984-01-01

    The vacuum expectation value of the stress-energy tensor for the Hartle-Hawking state in Schwartzschild space-time has been calculated for the conformal scalar field. separates naturally into the sum of two terms. The first coincides with an approximate expression suggested by Page. The second term is a ''remainder'' that may be evaluated numerically. The total expression is in good qualitative agreement with Page's approximation. These results are at variance with earlier results given by Fawcett whose error is explained

  8. Space-Time, Phenomenology, and the Picture Theory of Language

    Science.gov (United States)

    Grelland, Hans Herlof

    To estimate Minkowski's introduction of space-time in relativity, the case is made for the view that abstract language and mathematics carries meaning not only by its connections with observation but as pictures of facts. This view is contrasted to the more traditional intuitionism of Hume, Mach, and Husserl. Einstein's attempt at a conceptual reconstruction of space and time as well as Husserl's analysis of the loss of meaning in science through increasing abstraction is analysed. Wittgenstein's picture theory of language is used to explain how meaning is conveyed by abstract expressions, with the Minkowski space as a case.

  9. On quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Hajicek, P.

    1976-01-01

    It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. It is considered a class of such experiments performable at any regular point of any space-time, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas

  10. Naked singularities in higher dimensional Vaidya space-times

    International Nuclear Information System (INIS)

    Ghosh, S. G.; Dadhich, Naresh

    2001-01-01

    We investigate the end state of the gravitational collapse of a null fluid in higher-dimensional space-times. Both naked singularities and black holes are shown to be developing as the final outcome of the collapse. The naked singularity spectrum in a collapsing Vaidya region (4D) gets covered with the increase in dimensions and hence higher dimensions favor a black hole in comparison to a naked singularity. The cosmic censorship conjecture will be fully respected for a space of infinite dimension

  11. Quantum field theory in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Hajicek, P [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik

    1976-06-11

    It is well known that the existence of quanta or particles of a given field is directly revealed by only a subset of all possible experiments with the field. A class of such experiments performable at any regular point of any space-time is considered, which includes all terrestrial particle experiments as well as asymptotic observations of an evaporating black hole. A definition based on this class keeps the quanta observable and renders the notion of particle relative and local. Any complicated mathematics is avoided with the intention to emphasize the physical ideas.

  12. Berry phase for spin-1/2 particles moving in a space-time with torsion

    International Nuclear Information System (INIS)

    Alimohammadi, M.; Shariati, A.

    2001-01-01

    Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks. (orig.)

  13. Berry phase for spin-1/2 particles moving in a space-time with torsion

    Energy Technology Data Exchange (ETDEWEB)

    Alimohammadi, M. [Dept. of Physics, Tehran Univ. (Iran); Shariati, A. [Inst. for Advanced Studies in Basic Sciences, Zanjan (Iran); Inst. for Studies in Theoretical Physics and Mathematics, Tehran (Iran)

    2001-06-01

    Berry phase for a spin-1/2 particle moving in a flat space-time with torsion is investigated in the context of the Einstein-Cartan-Dirac model. It is shown that if the torsion is due to a dense polarized background, then there is a Berry phase only if the fermion is massless and its momentum is perpendicular to the direction of the background polarization. The order of magnitude of this Berry phase is discussed in other theoretical frameworks. (orig.)

  14. Relativistic nucleus-nucleus collisions: Zone of reactions and space-time structure of fireball

    International Nuclear Information System (INIS)

    Anchishkin, D.; Muskeyev, A.; Yezhov, S.

    2010-01-01

    A zone of reactions is determined and then exploited as a tool in studying the space-time structure of an interacting system formed in a collision of relativistic nuclei. The time dependence of the reaction rates integrated over spatial coordinates is also considered. Evaluations are made with the help of the microscopic transport model UrQMD. The relation of the boundaries of different zones of reactions and the hypersurfaces of sharp chemical and kinetic freeze-outs is discussed.

  15. Space-time structure of particle production in high-energy heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan); Nara, Yasushi; Maruyama, Tomoyuki

    1998-07-01

    Space-Time structure of freeze-out of produced particles in relativistic nucleus-nucleus collisions are studied in the framework of two different cascade models, either with or without higher baryonic resonances. While higher excited baryonic resonances do not influence the spatial source size of freeze-out point, the freeze-out time distribution is shifted to be later by these resonances. (author)

  16. Gauge fields in nonlinear group realizations involving two-dimensional space-time symmetry

    International Nuclear Information System (INIS)

    Machacek, M.E.; McCliment, E.R.

    1975-01-01

    It is shown that gauge fields may be consistently introduced into a model Lagrangian previously considered by the authors. The model is suggested by the spontaneous breaking of a Lorentz-type group into a quasiphysical two-dimensional space-time and one internal degree of freedom, loosely associated with charge. The introduction of zero-mass gauge fields makes possible the absorption via the Higgs mechanism of the Goldstone fields that appear in the model despite the fact that the Goldstone fields do not transform as scalars. Specifically, gauge invariance of the Yang-Mills type requires the introduction of two sets of massless gauge fields. The transformation properties in two-dimensional space-time suggest that one set is analogous to a charge doublet that behaves like a second-rank tensor in real four-dimensional space time. The other set suggests a spin-one-like charge triplet. Via the Higgs mechanism, the first set absorbs the Goldstone fields and acquires mass. The second set remains massless. If massive gauge fields are introduced, the associated currents are not conserved and the Higgs mechanism is no longer fully operative. The Goldstone fields are not eliminated, but coupling between the Goldstone fields and the gauge fields does shift the mass of the antisymmetric second-rank-tensor gauge field components

  17. Powering Up With Space-Time Wind Forecasting

    KAUST Repository

    Hering, Amanda S.

    2010-03-01

    The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality, short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the true value of each models predictions. © 2010 American Statistical Association.

  18. Powering Up With Space-Time Wind Forecasting

    KAUST Repository

    Hering, Amanda S.; Genton, Marc G.

    2010-01-01

    The technology to harvest electricity from wind energy is now advanced enough to make entire cities powered by it a reality. High-quality, short-term forecasts of wind speed are vital to making this a more reliable energy source. Gneiting et al. (2006) have introduced a model for the average wind speed two hours ahead based on both spatial and temporal information. The forecasts produced by this model are accurate, and subject to accuracy, the predictive distribution is sharp, that is, highly concentrated around its center. However, this model is split into nonunique regimes based on the wind direction at an offsite location. This paper both generalizes and improves upon this model by treating wind direction as a circular variable and including it in the model. It is robust in many experiments, such as predicting wind at other locations. We compare this with the more common approach of modeling wind speeds and directions in the Cartesian space and use a skew-t distribution for the errors. The quality of the predictions from all of these models can be more realistically assessed with a loss measure that depends upon the power curve relating wind speed to power output. This proposed loss measure yields more insight into the true value of each models predictions. © 2010 American Statistical Association.

  19. Brain system for mental orientation in space, time, and person.

    Science.gov (United States)

    Peer, Michael; Salomon, Roy; Goldberg, Ilan; Blanke, Olaf; Arzy, Shahar

    2015-09-01

    Orientation is a fundamental mental function that processes the relations between the behaving self to space (places), time (events), and person (people). Behavioral and neuroimaging studies have hinted at interrelations between processing of these three domains. To unravel the neurocognitive basis of orientation, we used high-resolution 7T functional MRI as 16 subjects compared their subjective distance to different places, events, or people. Analysis at the individual-subject level revealed cortical activation related to orientation in space, time, and person in a precisely localized set of structures in the precuneus, inferior parietal, and medial frontal cortex. Comparison of orientation domains revealed a consistent order of cortical activity inside the precuneus and inferior parietal lobes, with space orientation activating posterior regions, followed anteriorly by person and then time. Core regions at the precuneus and inferior parietal lobe were activated for multiple orientation domains, suggesting also common processing for orientation across domains. The medial prefrontal cortex showed a posterior activation for time and anterior for person. Finally, the default-mode network, identified in a separate resting-state scan, was active for all orientation domains and overlapped mostly with person-orientation regions. These findings suggest that mental orientation in space, time, and person is managed by a specific brain system with a highly ordered internal organization, closely related to the default-mode network.

  20. Representations of G+++ and the role of space-time

    International Nuclear Information System (INIS)

    Kleinschmidt, A.; West, P.

    2004-01-01

    We consider the decomposition of the adjoint and fundamental representations of very extended Kac-Moody algebras G+++ with respect to their regular A type subalgebra which, in the corresponding non-linear realisation, is associated with gravity. We find that for many very extended algebras almost all the A type representations that occur in the decomposition of the fundamental representations also occur in the adjoint representation of G+++ . In particular, for E 8 +++ , this applies to all its fundamental representations. However, there are some important examples, such as A N-3 +++ , where this is not true and indeed the adjoint representation contains no generator that can be identified with a space-time translation. We comment on the significance of these results for how space-time can occur in the non-linear realisation based on G+++ . Finally we show that there is a correspondence between the A representations that occur in the fundamental representation associated with the very extended node and the adjoint representation of G+++ which is consistent with the interpretation of the former as charges associated with brane solutions. (author)

  1. Introducing the Dimensional Continuous Space-Time Theory

    International Nuclear Information System (INIS)

    Martini, Luiz Cesar

    2013-01-01

    This article is an introduction to a new theory. The name of the theory is justified by the dimensional description of the continuous space-time of the matter, energy and empty space, that gathers all the real things that exists in the universe. The theory presents itself as the consolidation of the classical, quantum and relativity theories. A basic equation that describes the formation of the Universe, relating time, space, matter, energy and movement, is deduced. The four fundamentals physics constants, light speed in empty space, gravitational constant, Boltzmann's constant and Planck's constant and also the fundamentals particles mass, the electrical charges, the energies, the empty space and time are also obtained from this basic equation. This theory provides a new vision of the Big-Bang and how the galaxies, stars, black holes and planets were formed. Based on it, is possible to have a perfect comprehension of the duality between wave-particle, which is an intrinsic characteristic of the matter and energy. It will be possible to comprehend the formation of orbitals and get the equationing of atomics orbits. It presents a singular comprehension of the mass relativity, length and time. It is demonstrated that the continuous space-time is tridimensional, inelastic and temporally instantaneous, eliminating the possibility of spatial fold, slot space, worm hole, time travels and parallel universes. It is shown that many concepts, like dark matter and strong forces, that hypothetically keep the cohesion of the atomics nucleons, are without sense.

  2. On the structure of space-time caustics

    International Nuclear Information System (INIS)

    Rosquist, K.

    1983-01-01

    Caustics formed by timelike and null geodesics in a space-time M are investigated. Care is taken to distinguish the conjugate points in the tangent space (T-conjugate points) from conjugate points in the manifold (M-conjugate points). It is shown that most nonspacelike conjugate points are regular, i.e. with all neighbouring conjugate points having the same degree of degeneracy. The regular timelike T-conjugate locus is shown to be a smooth 3-dimensional submanifold of the tangent space. Analogously, the regular null T-conjugate locus is shown to be a smooth 2-dimensional submanifold of the light cone in the tangent space. The smoothness properties of the null caustic are used to show that if an observer sees focusing in all directions, then there will necessarily be a cusp in the caustic. If, in addition, all the null conjugate points have maximal degree of degeneracy (as in the closed Friedmann-Robertson-Walker universes), then the space-time is closed. (orig.)

  3. Current densities in a space-time-dependent and CP-violating Higgs background in the adiabatic limit

    International Nuclear Information System (INIS)

    Comelli, D.; Pietroni, M.; Riotto, A.

    1996-01-01

    Motivated by cosmological applications such as electroweak baryogenesis, we develop a field theoretic approach to the computation of particle currents on a space-time-dependent and CP-violating Higgs background in the adiabatic limit. We consider the standard model with two Higgs doublets and CP violation in the scalar sector, and compute both fermionic and Higgs currents by means of an expansion in the background fields describing the profile of the bubble wall. We discuss the gauge dependence of the results and the renormalization of the current operators, showing that in the limit of local equilibrium, no extra renormalization conditions are needed in order to specify the system completely. copyright 1996 The American Physical Society

  4. Dynamic simulation of a pilot scale vacuum gas oil hydrocracking unit by the space-time CE/SE method

    Energy Technology Data Exchange (ETDEWEB)

    Sadighi, S.; Ahmad, A. [Institute of Hydrogen Economy, Universiti Teknologi Malaysia, Johor Bahru (Malaysia); Shirvani, M. [Faculty of Chemical Engineering, University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2012-05-15

    This work introduces a modified space-time conservation element/solution element (CE/SE) method for the simulation of the dynamic behavior of a pilot-scale hydrocracking reactor. With this approach, a four-lump dynamic model including vacuum gas oil (VGO), middle distillate, naphtha and gas is solved. The proposed method is capable of handling the stiffness of the partial differential equations resulting from the hydrocracking reactions. To have a better judgment, the model is also solved by the finite difference method (FDM), and the results from both approaches are compared. Initially, the absolute average deviation of the cold dynamic simulation using the CE/SE approach is 8.98 %, which is better than that obtained using the FDM. Then, the stability analysis proves that for achieving an appropriate response from the dynamic model, the Courant number, which is a function of the time step size, mesh size and volume flow rate through the catalytic bed, should be less than 1. Finally, it is found that, following a careful selection of these parameters, the CE/SE solutions to the hydrocracking model can produce higher accuracy than the FDM results. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Measuring space-time fuzziness with high energy γ-ray detectors

    Directory of Open Access Journals (Sweden)

    Cattaneo Paolo Walter

    2017-01-01

    Full Text Available There are several suggestions to probe space-time fuzziness (also known as space-time foam due to the quantum mechanics nature of space-time. These effects are predicted to be very small, being related to the Planck length, so that the only hope to experimentally detect them is to look at particles propagating along cosmological distances. Some phenomenological approaches suggest that photons originating from pointlike sources at cosmological distance experience path length fluctuation that could be detected. Also the direction of flight of such photons may be subject to a dispersion such that the image of a point-like source is blurred and detected as a disk. An experimentally accessible signature may be images of point-like sources larger that the size due to the Point Spread Function of the instrument. This additional broadening should increase with distance and photon energy. Some concrete examples that can be studied with the AGILE and FERMI-LAT γ -ray satellite experiments are discussed.

  6. A Cantorian potential theory for describing dynamical systems on El Naschie's space-time

    International Nuclear Information System (INIS)

    Iovane, G.; Gargiulo, G.; Zappale, E.

    2006-01-01

    In this paper we analyze classical systems, in which motion is not on a classical continuous path, but rather on a Cantorian one. Starting from El Naschie's space-time we introduce a mathematical approach based on a potential to describe the interaction system-support. We study some relevant force fields on Cantorian space and analyze the differences with respect to the analogous case on a continuum in the context of Lagrangian formulation. Here we confirm the idea proposed by the first author in dynamical systems on El Naschie's o (∞) Cantorian space-time that a Cantorian space could explain some relevant stochastic and quantum processes, if the space acts as an harmonic oscillating support, such as that found in Nature. This means that a quantum process could sometimes be explained as a classical one, but on a nondifferential and discontinuous support. We consider the validity of this point of view, that in principle could be more realistic, because it describes the real nature of matter and space. These do not exist in Euclidean space or curved Riemanian space-time, but in a Cantorian one. The consequence of this point of view could be extended in many fields such as biomathematics, structural engineering, physics, astronomy, biology and so on

  7. Operational definition of (brane-induced) space-time and constraints on the fundamental parameters

    International Nuclear Information System (INIS)

    Maziashvili, Michael

    2008-01-01

    First we contemplate the operational definition of space-time in four dimensions in light of basic principles of quantum mechanics and general relativity and consider some of its phenomenological consequences. The quantum gravitational fluctuations of the background metric that comes through the operational definition of space-time are controlled by the Planck scale and are therefore strongly suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity scale but rather to the higher-dimensional modification of Newton's inverse square law at relatively large distances. For models with compact extra dimensions the shape modulus of extra space can be used as a most natural and safe stabilization mechanism against these fluctuations

  8. Stability of geodesic imcompleteness for Robertson-Walker space-times

    International Nuclear Information System (INIS)

    Beem, J.K.

    1981-01-01

    Let (M,g) be a Lorentzian warped product space-time M = (a, b) X H,g = -dt 2 x fh, where -infinity -infinity and (H,h) is homogeneous, then the past incompleteness of every timelike geodesic of (M,g) is stable under small C 0 perturbations in the space Lor(M) of Lorentzian metrics for M. Also it is shown that if (H,h) is isotropic and (M,g) contains a past-inextendible, past-incomplete null geodesic, then the past incompleteness of all null geodesics is stable under small C 1 perturbations in Lor(M). Given either the isotropy or homogeneity of the Riemannian factor, the background space-time (M,g) is globally hyperbolic. The results of this paper, in particular, answer a question raised by D. Lerner for big bang Robertson-Walker cosmological models affirmatively. (author)

  9. A discrete classical space-time could require 6 extra-dimensions

    Science.gov (United States)

    Guillemant, Philippe; Medale, Marc; Abid, Cherifa

    2018-01-01

    We consider a discrete space-time in which conservation laws are computed in such a way that the density of information is kept bounded. We use a 2D billiard as a toy model to compute the uncertainty propagation in ball positions after every shock and the corresponding loss of phase information. Our main result is the computation of a critical time step above which billiard calculations are no longer deterministic, meaning that a multiverse of distinct billiard histories begins to appear, caused by the lack of information. Then, we highlight unexpected properties of this critical time step and the subsequent exponential evolution of the number of histories with time, to observe that after certain duration all billiard states could become possible final states, independent of initial conditions. We conclude that if our space-time is really a discrete one, one would need to introduce extra-dimensions in order to provide supplementary constraints that specify which history should be played.

  10. Space-time dependent couplings In N = 1 SUSY gauge theories: Anomalies and central functions

    International Nuclear Information System (INIS)

    Babington, J.; Erdmenger, J.

    2005-01-01

    We consider N = 1 supersymmetric gauge theories in which the couplings are allowed to be space-time dependent functions. Both the gauge and the superpotential couplings become chiral superfields. As has recently been shown, a new topological anomaly appears in models with space-time dependent gauge coupling. Here we show how this anomaly may be used to derive the NSVZ β-function in a particular, well-determined renormalisation scheme, both without and with chiral matter. Moreover we extend the topological anomaly analysis to theories coupled to a classical curved superspace background, and use it to derive an all-order expression for the central charge c, the coefficient of the Weyl tensor squared contribution to the conformal anomaly. We also comment on the implications of our results for the central charge a expected to be of relevance for a four-dimensional C-theorem. (author)

  11. Recursive evaluation of space-time lattice Green's functions

    International Nuclear Information System (INIS)

    De Hon, Bastiaan P; Arnold, John M

    2012-01-01

    Up to a multiplicative constant, the lattice Green's function (LGF) as defined in condensed matter physics and lattice statistical mechanics is equivalent to the Z-domain counterpart of the finite-difference time-domain Green's function (GF) on a lattice. Expansion of a well-known integral representation for the LGF on a ν-dimensional hyper-cubic lattice in powers of Z −1 and application of the Chu–Vandermonde identity results in ν − 1 nested finite-sum representations for discrete space-time GFs. Due to severe numerical cancellations, these nested finite sums are of little practical use. For ν = 2, the finite sum may be evaluated in closed form in terms of a generalized hypergeometric function. For special lattice points, that representation simplifies considerably, while on the other hand the finite-difference stencil may be used to derive single-lattice-point second-order recurrence schemes for generating 2D discrete space-time GF time sequences on the fly. For arbitrary symbolic lattice points, Zeilberger's algorithm produces a third-order recurrence operator with polynomial coefficients of the sixth degree. The corresponding recurrence scheme constitutes the most efficient numerical method for the majority of lattice points, in spite of the fact that for explicit numeric lattice points the associated third-order recurrence operator is not the minimum recurrence operator. As regards the asymptotic bounds for the possible solutions to the recurrence scheme, Perron's theorem precludes factorial or exponential growth. Along horizontal lattices directions, rapid initial growth does occur, but poses no problems in augmented dynamic-range fixed precision arithmetic. By analysing long-distance wave propagation along a horizontal lattice direction, we have concluded that the chirp-up oscillations of the discrete space-time GF are the root cause of grid dispersion anisotropy. With each factor of ten increase in the lattice distance, one would have to roughly

  12. Entanglement, space-time and the Mayer-Vietoris theorem

    Science.gov (United States)

    Patrascu, Andrei T.

    2017-06-01

    Entanglement appears to be a fundamental building block of quantum gravity leading to new principles underlying the nature of quantum space-time. One such principle is the ER-EPR duality. While supported by our present intuition, a proof is far from obvious. In this article I present a first step towards such a proof, originating in what is known to algebraic topologists as the Mayer-Vietoris theorem. The main result of this work is the re-interpretation of the various morphisms arising when the Mayer-Vietoris theorem is used to assemble a torus-like topology from more basic subspaces on the torus in terms of quantum information theory resulting in a quantum entangler gate (Hadamard and c-NOT).

  13. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2013-01-01

    This book explains the theory of special and general relativity in detail, without digressions such as information on Einstein's life or the historical background. However, complicated calculations are replaced with figures and thought experiments, the text being formulated in such a way that the reader will be able to understand the gist intuitively. The first part of the book focuses on the essentials of special relativity. Explanations are provided of the famous equivalence between mass and energy and of why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies", simply because besides the speed of light, the electric charge itself is also absolute, leading to the relativity of other physical quantities. General relativity is then introduced, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending und...

  14. Space, time and the limits of human understanding

    CERN Document Server

    Ghirardi, Giancarlo

    2017-01-01

    In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of spac...

  15. Einstein's dream : the space-time unification of fundamental forces

    Energy Technology Data Exchange (ETDEWEB)

    Salam, A [International Centre for Theoretical Physics, Trieste (Italy)

    1981-06-01

    The historical developments in physics which started with Galileo in the 11th century, Newton in the 17 century, culminated in the unification of space-time by Einstein in this century are traced. The theories put forward by Einstein himself and by subsequent workers in the field after him, regarding the unification of all basic forces of nature (i.e.) the electromagnetic and the gravitational ones and the weak and strong nuclear forces are discussed. The experiments being conducted in Kolar and other places to detect a heavier photon which would be a positive proof of the validity of the unification theory, are touched upon. The possible application of this concept even in industry has been pointed out.

  16. Space-time foam as the universal regulator

    International Nuclear Information System (INIS)

    Crane, L.; Smolin, L.

    1985-01-01

    A distribution of virtual black holes in the vacuum will induce modifications in the density of states for small perturbations of gravitational and matter fields. If the virtual black holes fill the volume of a typical spacelike surface then perturbation theory becomes more convergent and may even be finite, depending on how fast the number of virtual black holes increases as their size decreases. For distributions of virtual black holes which are scale invariant the effective dimension of space-time is lowered to a noninteger value less than 4, leading to an interpretation in terms of fractal geometry. In this case general relativity is renormalizable in the 1/N expansion without higher derivative terms. As the Hamiltonian is not modified the theory is stable. (author)

  17. Point splitting in a curved space-time background

    International Nuclear Information System (INIS)

    Liggatt, P.A.J.; Macfarlane, A.J.

    1979-01-01

    A prescription is given for point splitting in a curved space-time background which is a natural generalization of that familiar in quantum electrodynamics and Yang-Mills theory. It is applied (to establish its validity) to the verification of the gravitational anomaly in the divergence of a fermion axial current. Notable features of the prescription are that it defines a point-split current that can be differentiated straightforwardly, and that it involves a natural way of averaging (four-dimensionally) over the directions of point splitting. The method can extend directly from the spin-1/2 fermion case treated to other cases, e.g., to spin-3/2 Rarita-Schwinger fermions. (author)

  18. Virtual Black Holes and Space-Time Structure

    Science.gov (United States)

    't Hooft, Gerard

    2018-01-01

    In the standard formalism of quantum gravity, black holes appear to form statistical distributions of quantum states. Now, however, we can present a theory that yields pure quantum states. It shows how particles entering a black hole can generate firewalls, which however can be removed, replacing them by the `footprints' they produce in the out-going particles. This procedure can preserve the quantum information stored inside and around the black hole. We then focus on a subtle but unavoidable modification of the topology of the Schwarzschild metric: antipodal identification of points on the horizon. If it is true that vacuum fluctuations include virtual black holes, then the structure of space-time is radically different from what is usually thought.

  19. Transient space-time surface waves characterization using Gabor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, L; Wilkie-Chancellier, N; Caplain, E [Universite de Cergy Pontoise, ENS Cachan, UMR CNRS 8029, Laboratoire Systemes et Applications des Techniques de l' Information et de l' Energie (SATIE), 5 mail Gay-Lussac, F 9500 Cergy-Pontoise (France); Glorieux, C; Sarens, B, E-mail: nicolas.wilkie-chancellier@u-cergy.f [Katholieke Universiteit Leuven, Laboratorium voor Akoestiek en Thermische Fysica (LATF), Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2009-11-01

    Laser ultrasonics allow the observation of transient surface waves along their propagation media and their interaction with encountered objects like cracks, holes, borders. In order to characterize and localize these transient aspects in the Space-Time-Wave number-Frequency domains, the 1D, 2D and 3D Gabor transforms are presented. The Gabor transform enables the identification of several properties of the local wavefronts such as their shape, wavelength, frequency, attenuation, group velocity and the full conversion sequence along propagation. The ability of local properties identification by Gabor transform is illustrated by two experimental studies: Lamb waves generated by an annular source on a circular quartz and Lamb wave interaction with a fluid droplet. In both cases, results obtained with Gabor transform enable ones to identify the observed local waves.

  20. Space/time non-commutative field theories and causality

    International Nuclear Information System (INIS)

    Bozkaya, H.; Fischer, P.; Pitschmann, M.; Schweda, M.; Grosse, H.; Putz, V.; Wulkenhaar, R.

    2003-01-01

    As argued previously, amplitudes of quantum field theories on non-commutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann-Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction-point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time non-commutative φ 4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only. (orig.)

  1. Fermions in odd space-time dimensions: back to basics

    International Nuclear Information System (INIS)

    Anguiano Jesus de, Ma.; Bashir, A.

    2005-01-01

    It is a well-known feature of odd space-time dimensions d that there exist two inequivalent fundamental representations A and B of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in A and B. As a consequence, a parity-invariant Lagrangian can only be constructed by incorporating both the representation. Based upon these ideas and contrary to long-held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge-conjugation operations. We work explicitly in 2 + 1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions. (author)

  2. The method of covariant symbols in curved space-time

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2007-01-01

    Diagonal matrix elements of pseudodifferential operators are needed in order to compute effective Lagrangians and currents. For this purpose the method of symbols is often used, which however lacks manifest covariance. In this work the method of covariant symbols, introduced by Pletnev and Banin, is extended to curved space-time with arbitrary gauge and coordinate connections. For the Riemannian connection we compute the covariant symbols corresponding to external fields, the covariant derivative and the Laplacian, to fourth order in a covariant derivative expansion. This allows one to obtain the covariant symbol of general operators to the same order. The procedure is illustrated by computing the diagonal matrix element of a nontrivial operator to second order. Applications of the method are discussed. (orig.)

  3. Quantum field theory on discrete space-time. II

    International Nuclear Information System (INIS)

    Yamamoto, H.

    1985-01-01

    A quantum field theory of bosons and fermions is formulated on discrete Lorentz space-time of four dimensions. The minimum intervals of space and time are assumed to have different values in this paper. As a result the difficulties encountered in the previous paper (complex energy, incompleteness of solutions, and inequivalence between phase representation and momentum representation) are removed. The problem in formulating a field theory of fermions is solved by introducing a new operator and considering a theorem of translation invariance. Any matrix element given by a Feynman diagram is calculated in this theory to give a finite value regardless of the kinds of particles concerned (massive and/or massless bosons and/or fermions)

  4. Baryogenesis via Hawking-like radiation in the FRW space-time

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Sujoy K. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); Singleton, Douglas [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); California State University, Department of Physics, Fresno, CA (United States)

    2015-05-15

    We present a phenomenological model for baryogenesis based on particle creation in the Friedman-Robertson-Walker (FRW) space-time. This study is a continuation of our proposal that Hawking-like radiation in FRW space-time explains several physical aspects of the early Universe including inflation. In this model we study a coupling between the FRW space-time, in the form of the derivative of the Ricci scalar, and the B-L current, J{sub B-L}{sup μ}, which leads to a different chemical potential between baryons and anti-baryons, resulting in an excess of baryons over anti-baryons with the right order of magnitude. In this model the generation of baryon asymmetry, in principle, occurs over the entire history of the Universe, starting from the beginning of the radiation phase. However, in practice, almost the entire contribution to the baryon asymmetry only comes from the very beginning of the Universe and is negligible thereafter. There is a free parameter in our model which can be interpreted as defining the boundary between the unknown quantum gravity regime and the inflation/baryogenesis regime covered by our model. When this parameter is adjusted to give the observed value of baryon asymmetry we get a higher than usual energy scale for our inflation model which, however, may be in line with the Grand Unified Theory scale for inflation in view of the BICEP2 and Planck results. In addition our model provides the correct temperature for the CMB photons at the time of decoupling. (orig.)

  5. Coupling gravity, electromagnetism and space-time for space propulsion breakthroughs

    Science.gov (United States)

    Millis, Marc G.

    1994-01-01

    spaceflight would be revolutionized if it were possible to propel a spacecraft without rockets using the coupling between gravity, electromagnetism, and space-time (hence called 'space coupling propulsion'). New theories and observations about the properties of space are emerging which offer new approaches to consider this breakthrough possibility. To guide the search, evaluation, and application of these emerging possibilities, a variety of hypothetical space coupling propulsion mechanisms are presented to highlight the issues that would have to be satisfied to enable such breakthroughs. A brief introduction of the emerging opportunities is also presented.

  6. Deep-Inelastic Final States in a Space-Time Description of Shower Development and Hadronization

    OpenAIRE

    Ellis, John; Geiger, Klaus; Kowalski, Henryk

    1996-01-01

    We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic $ep$ collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, an...

  7. Quantum mechanics in curved space-time and its consequences for the theory on the flat space-time

    International Nuclear Information System (INIS)

    Tagirov, E.A.

    1997-01-01

    Thus, the structure is extracted from the initial general-relativistic setting of the quantum theory of the scalar field φ that can be considered as quantum mechanics in V 1,3 in the Schroedinger picture, which includes relativistic corrections not only in the Hamiltonian of the Schroedinger equation but also in the operators of primary observables. In the terms pertaining to these corrections the operators differ from their counterparts resulting from quantization of a classical spinless particle. In general, they do not commute at all and thus the quantum phase space loses the feature that half its coordinates retain a manifold structure, which Biedenharn called 'a miracle of quantization'. This non-commutativity expands up to the exact (in the sense 'non-asymptotic in c -2 ') quantum mechanics of a free motion in the Minkowski space-time if curvilinear coordinates are taken as observables, which are necessary if non-inertial frames of references are considered

  8. Super-nodal methods for space-time kinetics

    Science.gov (United States)

    Mertyurek, Ugur

    The purpose of this research has been to develop an advanced Super-Nodal method to reduce the run time of 3-D core neutronics models, such as in the NESTLE reactor core simulator and FORMOSA nuclear fuel management optimization codes. Computational performance of the neutronics model is increased by reducing the number of spatial nodes used in the core modeling. However, as the number of spatial nodes decreases, the error in the solution increases. The Super-Nodal method reduces the error associated with the use of coarse nodes in the analyses by providing a new set of cross sections and ADFs (Assembly Discontinuity Factors) for the new nodalization. These so called homogenization parameters are obtained by employing consistent collapsing technique. During this research a new type of singularity, namely "fundamental mode singularity", is addressed in the ANM (Analytical Nodal Method) solution. The "Coordinate Shifting" approach is developed as a method to address this singularity. Also, the "Buckling Shifting" approach is developed as an alternative and more accurate method to address the zero buckling singularity, which is a more common and well known singularity problem in the ANM solution. In the course of addressing the treatment of these singularities, an effort was made to provide better and more robust results from the Super-Nodal method by developing several new methods for determining the transverse leakage and collapsed diffusion coefficient, which generally are the two main approximations in the ANM methodology. Unfortunately, the proposed new transverse leakage and diffusion coefficient approximations failed to provide a consistent improvement to the current methodology. However, improvement in the Super-Nodal solution is achieved by updating the homogenization parameters at several time points during a transient. The update is achieved by employing a refinement technique similar to pin-power reconstruction. A simple error analysis based on the relative

  9. Spinorial Regge trajectories and Hagedorn-like temperatures. Spinorial space-time and preons as an alternative to strings

    Science.gov (United States)

    Gonzalez-Mestres, Luis

    2016-11-01

    The development of the statistical bootstrap model for hadrons, quarks and nuclear matter occurred during the 1960s and the 1970s in a period of exceptional theoretical creativity. And if the transition from hadrons to quarks and gluons as fundamental particles was then operated, a transition from standard particles to preons and from the standard space-time to a spinorial one may now be necessary, including related pre-Big Bang scenarios. We present here a brief historical analysis of the scientific problematic of the 1960s in Particle Physics and of its evolution until the end of the 1970s, including cosmological issues. Particular attention is devoted to the exceptional role of Rolf Hagedorn and to the progress of the statistical boostrap model until the experimental search for the quark-gluon plasma started being considered. In parallel, we simultaneously expose recent results and ideas concerning Particle Physics and in Cosmology, an discuss current open questions. Assuming preons to be constituents of the physical vacuum and the standard particles excitations of this vacuum (the superbradyon hypothesis we introduced in 1995), together with a spinorial space-time (SST), a new kind of Regge trajectories is expected to arise where the angular momentum spacing will be of 1/2 instead of 1. Standard particles can lie on such Regge trajectories inside associated internal symmetry multiplets, and the preonic vacuum structure can generate a new approach to Quantum Field Theory. As superbradyons are superluminal preons, some of the vacuum excitations can have critical speeds larger than the speed of light c, but the cosmological evolution selects by itself the particles with the smallest critical speed (the speed of light). In the new Particle Physics and Cosmology emerging from the pattern thus developed, Hagedornlike temperatures will naturally be present. As new space, time, momentum and energy scales are expected to be generated by the preonic vacuum dynamics, the

  10. A Bayesian approach to model uncertainty

    International Nuclear Information System (INIS)

    Buslik, A.

    1994-01-01

    A Bayesian approach to model uncertainty is taken. For the case of a finite number of alternative models, the model uncertainty is equivalent to parameter uncertainty. A derivation based on Savage's partition problem is given

  11. Study of spontaneously broken conformal symmetry in curved space-times

    International Nuclear Information System (INIS)

    Janson, M.M.

    1977-05-01

    Spontaneous breakdown of Weyl invariance (local scale invariance) in a conformally-invariant extension of a gauge model for weak and electromagnetic interactions is considered. The existence of an asymmetric vacuum for the Higgs field, phi, is seen to depend on the space-time structure via the Gursey-Penrose term, approximately phi + phi R, in the action. (R denotes the scalar curvature.) The effects of a prescribed space-time structure on spontaneously broken Weyl invariance is investigated. In a cosmological space-time, it is found that initially, in the primordial fireball, the symmetry must hold exactly. Spontaneous symmetry breaking (SSB) develops as the universe expands and cools. Consequences of this model include a dependence of G/sub F/, the effective weak interaction coupling strength, on ''cosmic time.'' It is seen to decrease monotonically; in the present epoch (G/sub F//G/sub F/)/sub TODAY/ approximately less than 10 -10 (year) -1 . The effects of the Schwarzschild geometry on SSB are explored. In the interior of a neutron star the Higgs vacuum expectation value, and consequently G/sub F/, is found to have a radial dependence. The magnitude of this variation does not warrant revision of present models of neutron star structures. Another perspective on the problem considered a theory of gravitation (conformal relativity) to be incorporated in the conformally invariant gauge model of weak and electromagnetic interactions. If SSB develops, the vacuum gravitational field equations are the Einstein field equations with a cosmological constant. The stability of the asymmetric vacuum solution is investigated to ascertain whether SSB can occur

  12. On the stability of scalar-vacuum space-times

    Energy Technology Data Exchange (ETDEWEB)

    Bronnikov, K.A. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); PFUR, Institute of Gravitation and Cosmology, Moscow (Russian Federation); Fabris, J.C. [Universidade Federal do Espirito Santo, Departamento de Fisica, Vitoria, ES (Brazil); Zhidenko, A. [Universidade Federal do ABC, Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil)

    2011-11-15

    We study the stability of static, spherically symmetric solutions to the Einstein equations with a scalar field as the source. We describe a general methodology of studying small radial perturbations of scalar-vacuum configurations with arbitrary potentials V({phi}), and in particular space-times with throats (including wormholes), which are possible if the scalar is phantom. At such a throat, the effective potential for perturbations V{sub eff} has a positive pole (a potential wall) that prevents a complete perturbation analysis. We show that, generically, (i) V{sub eff} has precisely the form required for regularization by the known S-deformation method, and (ii) a solution with the regularized potential leads to regular scalar field and metric perturbations of the initial configuration. The well-known conformal mappings make these results also applicable to scalar-tensor and f(R) theories of gravity. As a particular example, we prove the instability of all static solutions with both normal and phantom scalars and V({phi}){identical_to}0 under spherical perturbations. We thus confirm the previous results on the unstable nature of anti-Fisher wormholes and Fisher's singular solution and prove the instability of other branches of these solutions including the anti-Fisher ''cold black holes''. (orig.)

  13. Voluble: a space-time diagram of the solar system

    Science.gov (United States)

    Aguilera, Julieta C.; SubbaRao, Mark U.

    2008-02-01

    Voluble is a dynamic space-time diagram of the solar system. Voluble is designed to help users understand the relationship between space and time in the motion of the planets around the sun. Voluble is set in virtual reality to relate these movements to our experience of immediate space. Beyond just the visual, understanding dynamic systems is naturally associated to the articulation of our bodies as we perform a number of complex calculations, albeit unconsciously, to deal with simple tasks. Such capabilities encompass spatial perception and memory. Voluble investigates the balance between the visually abstract and the spatially figurative in immersive development to help illuminate phenomena that are beyond the reach of human scale and time. While most diagrams, even computer-based interactive ones, are flat, three-dimensional real-time virtual reality representations are closer to our experience of space. The representation can be seen as if it was "really there," engaging a larger number of cues pertaining to our everyday spatial experience.

  14. Space-time wind speed forecasting for improved power system dispatch

    KAUST Repository

    Zhu, Xinxin

    2014-02-27

    To support large-scale integration of wind power into electric energy systems, state-of-the-art wind speed forecasting methods should be able to provide accurate and adequate information to enable efficient, reliable, and cost-effective scheduling of wind power. Here, we incorporate space-time wind forecasts into electric power system scheduling. First, we propose a modified regime-switching, space-time wind speed forecasting model that allows the forecast regimes to vary with the dominant wind direction and with the seasons, hence avoiding a subjective choice of regimes. Then, results from the wind forecasts are incorporated into a power system economic dispatch model, the cost of which is used as a loss measure of the quality of the forecast models. This, in turn, leads to cost-effective scheduling of system-wide wind generation. Potential economic benefits arise from the system-wide generation of cost savings and from the ancillary service cost savings. We illustrate the economic benefits using a test system in the northwest region of the United States. Compared with persistence and autoregressive models, our model suggests that cost savings from integration of wind power could be on the scale of tens of millions of dollars annually in regions with high wind penetration, such as Texas and the Pacific northwest. © 2014 Sociedad de Estadística e Investigación Operativa.

  15. Space-Time Trellis Coded 8PSK Schemes for Rapid Rayleigh Fading Channels

    Directory of Open Access Journals (Sweden)

    Salam A. Zummo

    2002-05-01

    Full Text Available This paper presents the design of 8PSK space-time (ST trellis codes suitable for rapid fading channels. The proposed codes utilize the design criteria of ST codes over rapid fading channels. Two different approaches have been used. The first approach maximizes the symbol-wise Hamming distance (HD between signals leaving from or entering to the same encoder′s state. In the second approach, set partitioning based on maximizing the sum of squared Euclidean distances (SSED between the ST signals is performed; then, the branch-wise HD is maximized. The proposed codes were simulated over independent and correlated Rayleigh fading channels. Coding gains up to 4 dB have been observed over other ST trellis codes of the same complexity.

  16. Two-Dimensional Space-Time Analysis and Matrix Represen-Tation on the Principle of the Capacitive Displacement Transducer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z Y [College of Metrological Technology and Engineering, China Jiliang University, Hangzhou (China); Luo, J X [Zhejiang Radio Factory, Zhejiang (China)

    2006-10-15

    In order to provide a design method of the capacitive displacement transducer and to improve its measuring performance it is desperately needed to offer a refined mathematic model of the transducer of mulitiphase drive and phase-modulated. On the basis of fully considering its characteristic of digital signals, first it is found that their actual waveforms and space-time characteristics could be tersely represented by matrixes [u{sub ij}], [c{sub j}] and [v{sub i}], and corresponding matrix elements u{sub ij}, c{sub j} and v{sub i} through deeply analyzing space-time and quantum characteristics of their mulitiphase driving signals U{sub i}(t), capacitive coupling signals C{sub j}(x) and output signal V(t). and space-time transform function possessed by U(x,t) itself. Then the basic expression of the relations of the transducer is derived, which is expressed by matrixes, thereby the characteristics of space-time transform and phase modulation are brought to light. The demodulation process and demodulated waveforms and its characteristics in the transducer are also expressed by demodulated matrixes [b{sub ij}]. Finally, the reason for the principle and periodic error produced in the transducer is revealed by sampling matrix [s{sub ij}]. Thus the full process of the produce of driving signals, modulation, demodulation and space-time transform that happen in the transducer, also waveforms and characteristics of various signals in the process are concisely expressed by two-dimensional space-time matrixes. Experimental results indicate that the use of the mathematical model enables its resolving power to reach 1 {mu}m, and the mathematical model proposed is an all-things-considered model to express processes that happen in the transducer.

  17. System Behavior Models: A Survey of Approaches

    Science.gov (United States)

    2016-06-01

    OF FIGURES Spiral Model .................................................................................................3 Figure 1. Approaches in... spiral model was chosen for researching and structuring this thesis, shown in Figure 1. This approach allowed multiple iterations of source material...applications and refining through iteration. 3 Spiral Model Figure 1. D. SCOPE The research is limited to a literature review, limited

  18. A global conformal extension theorem for perfect fluid Bianchi space-times

    International Nuclear Information System (INIS)

    Luebbe, Christian; Tod, Paul

    2008-01-01

    A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed

  19. Environmental Controls on Space-Time Biodiversity Patterns in the Amazon

    Science.gov (United States)

    Porporato, A. M.; Bonetti, S.; Feng, X.

    2014-12-01

    The Amazon/Andes territory is characterized by the highest biodiversity on Earth and understanding how all these ecological niches and different species originated and developed is an open challenge. The niche perspective assumes that species have evolved and occupy deterministically different roles within its environment. This view differs from that of the neutral theories, which assume ecological equivalence between all species but incorporates stochastic demographic processes along with long-term migration and speciation rates. Both approaches have demonstrated tremendous power in predicting aspects species biodiversity. By combining tools from both approaches, we use modified birth and death processes to simulate plant species diversification in the Amazon/Andes and their space-time ecohydrological controls. By defining parameters related to births and deaths as functions of available resources, we incorporate the role of space-time resource variability on niche formation and community composition. We also explicitly include the role of a heterogeneous landscape and topography. The results are discussed in relation to transect datasets from neotropical forests.

  20. Pornography classification: The hidden clues in video space-time.

    Science.gov (United States)

    Moreira, Daniel; Avila, Sandra; Perez, Mauricio; Moraes, Daniel; Testoni, Vanessa; Valle, Eduardo; Goldenstein, Siome; Rocha, Anderson

    2016-11-01

    As web technologies and social networks become part of the general public's life, the problem of automatically detecting pornography is into every parent's mind - nobody feels completely safe when their children go online. In this paper, we focus on video-pornography classification, a hard problem in which traditional methods often employ still-image techniques - labeling frames individually prior to a global decision. Frame-based approaches, however, ignore significant cogent information brought by motion. Here, we introduce a space-temporal interest point detector and descriptor called Temporal Robust Features (TRoF). TRoF was custom-tailored for efficient (low processing time and memory footprint) and effective (high classification accuracy and low false negative rate) motion description, particularly suited to the task at hand. We aggregate local information extracted by TRoF into a mid-level representation using Fisher Vectors, the state-of-the-art model of Bags of Visual Words (BoVW). We evaluate our original strategy, contrasting it both to commercial pornography detection solutions, and to BoVW solutions based upon other space-temporal features from the scientific literature. The performance is assessed using the Pornography-2k dataset, a new challenging pornographic benchmark, comprising 2000 web videos and 140h of video footage. The dataset is also a contribution of this work and is very assorted, including both professional and amateur content, and it depicts several genres of pornography, from cartoon to live action, with diverse behavior and ethnicity. The best approach, based on a dense application of TRoF, yields a classification error reduction of almost 79% when compared to the best commercial classifier. A sparse description relying on TRoF detector is also noteworthy, for yielding a classification error reduction of over 69%, with 19× less memory footprint than the dense solution, and yet can also be implemented to meet real-time requirements

  1. VLSI Architectures for Sliding-Window-Based Space-Time Turbo Trellis Code Decoders

    Directory of Open Access Journals (Sweden)

    Georgios Passas

    2012-01-01

    Full Text Available The VLSI implementation of SISO-MAP decoders used for traditional iterative turbo coding has been investigated in the literature. In this paper, a complete architectural model of a space-time turbo code receiver that includes elementary decoders is presented. These architectures are based on newly proposed building blocks such as a recursive add-compare-select-offset (ACSO unit, A-, B-, Γ-, and LLR output calculation modules. Measurements of complexity and decoding delay of several sliding-window-technique-based MAP decoder architectures and a proposed parameter set lead to defining equations and comparison between those architectures.

  2. Infinite-parametric extension of the conformal algebra in D>2 space-time dimension

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Linetsky, V.Ya.

    1990-09-01

    On the basis of the analytic continuations of semisimple Lie algebras discovered recently by us we construct manifestly quasiconformal infinite-dimensional algebras AC(so(4,1)) and PAC(so(3,2)) extending the conformal algebras in three-dimensional Euclidean and Minkowski space-time like the Virasoro algebra extends so(2,1). Their higher spin generalizations are also constructed. A counterpart of the central extension for D>2 and possible applications in exactly solvable conformal quantum field models in D>2 are discussed. (author). 31 refs, 2 figs

  3. Infrared behaviour of massless QED in space-time dimensions 2

    International Nuclear Information System (INIS)

    Mitra, Indrajit; Ratabole, Raghunath; Sharatchandra, H.S.

    2005-01-01

    We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2< d<4

  4. Infrared behaviour of massless QED in space-time dimensions 2

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Indrajit [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India) and Theory Group, Saha Institute of Nuclear Physics, 1/AF Bidhan-Nagar, Kolkata 700064 (India)]. E-mail: indra@theory.saha.ernet.in; Ratabole, Raghunath [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: raghu@imsc.res.in; Sharatchandra, H.S. [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani P.O., Chennai 600113 (India)]. E-mail: sharat@imsc.res.in

    2005-04-07

    We show that the logarithmic infrared divergences in electron self-energy and vertex function of massless QED in 2+1 dimensions can be removed at all orders of 1/N by an appropriate choice of a non-local gauge. Thus the infrared behaviour given by the leading order in 1/N is not modified by higher order corrections. Our analysis gives a computational scheme for the Amati-Testa model, resulting in a non-trivial conformal invariant field theory for all space-time dimensions 2

  5. Thermal ambience of expanding event horizon in Minkowski space-time

    International Nuclear Information System (INIS)

    Gerlach, U.H.

    1983-01-01

    It is shown that in flat space-time the thermal ambience of accelerated observers is not associated exclusively with flat event horizons, but arises also with (observer-dependent) event horizons that are light cones. The quanta of this ambience are characterized by a generalized frequency which identifies the representation of the Lorentz group. Global and local model detectors capable of responding to quanta of any given generalized frequency are exhibited. The discussion of the thermal ambience is implemented in terms of a partial-wave analysis using a set of harmonics on the hyperboloid x 2 +y 2 +z 2 -t 2 = 1

  6. Skeleton series and multivaluedness of the self-energy functional in zero space-time dimensions

    Science.gov (United States)

    Rossi, Riccardo; Werner, Félix

    2015-12-01

    Recently, Kozik, Ferrero and Georges discovered numerically that for a family of fundamental models of interacting fermions, the self-energy {{Σ }}[G] is a multi-valued functional of the fully dressed single-particle propagator G, and that the skeleton diagrammatic series {{{Σ }}}{{bold}}[G] converges to the wrong branch above a critical interaction strength. We consider the zero space-time dimensional case, where the same mathematical phenomena appear from elementary algebra. We also find a similar phenomenology for the fully bold formalism built on the fully dressed single-particle propagator and pair propagator.

  7. Energy-momentum tensor and definition of particle states for Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Brown, M.R.; Dutton, C.R.

    1978-01-01

    A new regularization scheme is developed for calculating expectation values of the energy-momentum tensor of a quantized scalar field in Robertson-Walker space-times. Using this regularized stress tensor we consider a definition for the vacuum state of the scalar field on any initial hypersurface. Asymptotic methods are developed to investigate the structure of both the divergent and finite terms of the stress tensor when evaluated in this state. The conformal anomaly is discussed in the context of this model. It does not naturally enter into the analysis and we argue that its inclusion is unnecessary

  8. Renormalization of non-abelian gauge theories in curved space-time

    International Nuclear Information System (INIS)

    Freeman, M.D.

    1984-01-01

    We use indirect, renormalization group arguments to calculate the gravitational counterterms needed to renormalize an interacting non-abelian gauge theory in curved space-time. This method makes it straightforward to calculate terms in the trace anomaly which first appear at high order in the coupling constant, some of which would need a 4-loop calculation to find directly. The role of gauge invariance in the theory is considered, and we discuss briefly the effect of using coordinate-dependent gauge-fixing terms. We conclude by suggesting possible applications of this work to models of the very early universe

  9. Learning Actions Models: Qualitative Approach

    DEFF Research Database (Denmark)

    Bolander, Thomas; Gierasimczuk, Nina

    2015-01-01

    In dynamic epistemic logic, actions are described using action models. In this paper we introduce a framework for studying learnability of action models from observations. We present first results concerning propositional action models. First we check two basic learnability criteria: finite ident...

  10. Two methods of space--time energy densification

    International Nuclear Information System (INIS)

    Sahlin, R.L.

    1976-01-01

    With a view to the goal of net energy production from a DT microexplosion, we study two ideas (methods) through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. We first discuss the advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy and identify the amplification of laser pulses as a key factor in energy compression. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea we discuss is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target

  11. Surviving in a metastable de Sitter space-time

    International Nuclear Information System (INIS)

    Kashyap, Sitender Pratap; Mondal, Swapnamay; Sen, Ashoke; Verma, Mritunjay

    2015-01-01

    In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.

  12. Two methods of space-time energy densification

    International Nuclear Information System (INIS)

    Sahlin, H.L.

    1975-01-01

    With a view to the goal of net energy production from a DT microexplosion, two ideas (methods) are studied through which (separately or in combination) energy may be ''concentrated'' into a small volume and short period of time--the so-called space-time energy densification or compression. The advantages and disadvantages of lasers and relativistic electron-beam (E-beam) machines as the sources of such energy are studied and the amplification of laser pulses as a key factor in energy compression is discussed. The pulse length of present relativistic E-beam machines is the most serious limitation of this pulsed-power source. The first energy-compression idea discussed is the reasonably efficient production of short-duration, high-current relativistic electron pulses by the self interruption and restrike of a current in a plasma pinch due to the rapid onset of strong turbulence. A 1-MJ plasma focus based on this method is nearing completion at this Laboratory. The second energy-compression idea is based on laser-pulse production through the parametric amplification of a self-similar or solitary wave pulse, for which analogs can be found in other wave processes. Specifically, the second energy-compression idea is a proposal for parametric amplification of a solitary, transverse magnetic pulse in a coaxial cavity with a Bennett dielectric rod as an inner coax. Amplifiers of this type can be driven by the pulsed power from a relativistic E-beam machine. If the end of the inner dielectric coax is made of LiDT or another fusionable material, the amplified pulse can directly drive a fusion reaction--there would be no need to switch the pulse out of the system toward a remote target. (auth)

  13. Surviving in a metastable de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Sitender Pratap; Mondal, Swapnamay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Verma, Mritunjay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); International Centre for Theoretical Sciences,Malleshwaram, Bengaluru 560 012 (India)

    2015-09-21

    In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.

  14. Electromagnetic-field equations in the six-dimensional space-time R6

    International Nuclear Information System (INIS)

    Teli, M.T.; Palaskar, D.

    1984-01-01

    Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts

  15. The Hadamard construction of Green's functions on a curved space-time: physics and explicit rigorous results

    International Nuclear Information System (INIS)

    John, R.W.

    1987-01-01

    First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)

  16. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    Science.gov (United States)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  17. Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method

    Science.gov (United States)

    Chang, Chau-lyan

    2007-01-01

    The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.

  18. Centre-containing spiral-geometric structure of the space-time and nonrelativistic relativity of the unit time

    International Nuclear Information System (INIS)

    Shakhazizyan, S.R.

    1987-01-01

    The problem of nonrelativistic dependence of unit length and unit time on the position in the space is considered on the basis of centre-containing spiral-geometric structure of the space-time. The experimental results of variation of the unit time are analyzed which well agree with the requirements of the model proposed. 13 refs.; 12 figs

  19. A epidemia de aids no Estado de São Paulo: uma aplicação do modelo espaço-temporal bayesiano completo The aids epidemic in the State of São Paulo: application of the full Bayesian space-time model

    Directory of Open Access Journals (Sweden)

    Rogério Ruscitto do Prado

    2009-10-01

    Full Text Available O Estado de São Paulo, por compreender aproximadamente 40% dos casos de aids notificados no Brasil, oferece uma situação propícia para análise espaço-temporal, visando melhor compreensão da disseminação do HIV/aids. Utilizando os casos de aids notificados ao Ministério da Saúde nos anos de 1990 a 2004 para pessoas com idade igual ou superior a 15 anos, tendo como fonte de informação o Sistema de Informação de Agravos e Notificação, Ministério da Saúde, foram estimados os riscos relativos de aids segundo sexo para períodos de 3 anos utilizando modelos bayesianos completos. Os modelos utilizados se mostraram adequados para explicar o processo de disseminação da aids no Estado de São Paulo e evidenciam os processos de feminização e interiorização da doença, além de sugerir que os municípios atualmente mais atingidos se encontram em regiões de pólos de crescimento econômico e possuem população inferior a 50.000 habitantes.The State of São Paulo accounts for approximately 40% of the AIDS cases notified in Brazil and provides a suitable opportunity for space-time analysis aimed at better understanding of the dissemination of HIV/AIDS. Using the AIDS cases notified to the Ministry of Health between 1990 and 2004, among individuals aged 15 years or over, and the Ministry of Health's information system for disease notification (Sistema de Informação de Agravos e Notificação, SINAN as the information source, the relative risks of AIDS over three-year periods were estimated using full Bayesian models, for each gender. The models used were shown to be adequate for explaining the process of AIDS dissemination in the State of São Paulo and demonstrated the growth among females and in small-sized municipalities. They also suggested that the municipalities currently most affected are in regions of economic growth and have populations of less than 50,000 inhabitants.

  20. Tracking and visualization of space-time activities for a micro-scale flu transmission study.

    Science.gov (United States)

    Qi, Feng; Du, Fei

    2013-02-07

    Infectious diseases pose increasing threats to public health with increasing population density and more and more sophisticated social networks. While efforts continue in studying the large scale dissemination of contagious diseases, individual-based activity and behaviour study benefits not only disease transmission modelling but also the control, containment, and prevention decision making at the local scale. The potential for using tracking technologies to capture detailed space-time trajectories and model individual behaviour is increasing rapidly, as technological advances enable the manufacture of small, lightweight, highly sensitive, and affordable receivers and the routine use of location-aware devices has become widespread (e.g., smart cellular phones). The use of low-cost tracking devices in medical research has also been proved effective by more and more studies. This study describes the use of tracking devices to collect data of space-time trajectories and the spatiotemporal processing of such data to facilitate micro-scale flu transmission study. We also reports preliminary findings on activity patterns related to chances of influenza infection in a pilot study. Specifically, this study employed A-GPS tracking devices to collect data on a university campus. Spatiotemporal processing was conducted for data cleaning and segmentation. Processed data was validated with traditional activity diaries. The A-GPS data set was then used for visual explorations including density surface visualization and connection analysis to examine space-time activity patterns in relation to chances of influenza infection. When compared to diary data, the segmented tracking data demonstrated to be an effective alternative and showed greater accuracies in time as well as the details of routes taken by participants. A comparison of space-time activity patterns between participants who caught seasonal influenza and those who did not revealed interesting patterns. This study

  1. Contribution to the stochastically studies of space-time dependable hydrological processes

    International Nuclear Information System (INIS)

    Kjaevski, Ivancho

    2002-12-01

    One of the fundaments of today's planning and water economy is Science of Hydrology. Science of Hydrology through the history had followed the development of the water management systems. Water management systems, during the time from single-approach evolved to complex and multi purpose systems. The dynamic and development of the today's society contributed for increasing the demand of clean water, and in the same time, the resources of clean water in the nature are reduced. In this kind of conditions, water management systems should resolve problems that are more complicated during managing of water sources. Solving the problems in water management, enable development and applying new methods and technologies in planning and management with water resources and water management systems like: systematical analyses, operational research, hierarchy decisions, expert systems, computer technology etc. Planning and management of water sources needs historical measured data for hydro metrological processes. In our country there are data of hydro metrological processes in period of 50-70, but in some Europe countries there are data more than 100 years. Water economy trends follow the hydro metrological trend research. The basic statistic techniques like sampling, probability distribution function, correlation and regression, are used about one intended and simple water management problems. Solving new problems about water management needs using of space-time stochastic technique, modem mathematical and statistical techniques during simulation and optimization of complex water systems. We need tree phases of development of the techniques to get secure hydrological models: i) Estimate the quality of hydro meteorological data, analyzing of their consistency, and homogeneous; ii) Structural analyze of hydro meteorological processes; iii) Mathematical models for modeling hydro meteorological processes. Very often, the third phase is applied for analyzing and modeling of hydro

  2. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  3. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  4. A short essay on quantum black holes and underlying noncommutative quantized space-time

    International Nuclear Information System (INIS)

    Tanaka, Sho

    2017-01-01

    We emphasize the importance of noncommutative geometry or Lorenz-covariant quantized space-time towards the ultimate theory of quantum gravity and Planck scale physics. We focus our attention on the statistical and substantial understanding of the Bekenstein–Hawking area-entropy law of black holes in terms of the kinematical holographic relation (KHR). KHR manifestly holds in Yang’s quantized space-time as the result of kinematical reduction of spatial degrees of freedom caused by its own nature of noncommutative geometry, and plays an important role in our approach without any recourse to the familiar hypothesis, so-called holographic principle. In the present paper, we find a unified form of KHR applicable to the whole region ranging from macroscopic to microscopic scales in spatial dimension d   =  3. We notice a possibility of nontrivial modification of area-entropy law of black holes which becomes most remarkable in the extremely microscopic system close to Planck scale. (paper)

  5. Exploring space-time structure of human mobility in urban space

    Science.gov (United States)

    Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.

    2011-03-01

    Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.

  6. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  7. Ordinary matter, dark matter, and dark energy on normal Zeeman space-times

    Science.gov (United States)

    Imre Szabó, Zoltán

    2017-01-01

    Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].

  8. A Unified Approach to Modeling and Programming

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    2010-01-01

    of this paper is to go back to the future and get inspiration from SIMULA and propose a unied approach. In addition to reintroducing the contributions of SIMULA and the Scandinavian approach to object-oriented programming, we do this by discussing a number of issues in modeling and programming and argue3 why we......SIMULA was a language for modeling and programming and provided a unied approach to modeling and programming in contrast to methodologies based on structured analysis and design. The current development seems to be going in the direction of separation of modeling and programming. The goal...

  9. Space-time coupled spectral/hp least-squares finite element formulation for the incompressible Navier-Stokes equations

    International Nuclear Information System (INIS)

    Pontaza, J.P.; Reddy, J.N.

    2004-01-01

    We consider least-squares finite element models for the numerical solution of the non-stationary Navier-Stokes equations governing viscous incompressible fluid flows. The paper presents a formulation where the effects of space and time are coupled, resulting in a true space-time least-squares minimization procedure, as opposed to a space-time decoupled formulation where a least-squares minimization procedure is performed in space at each time step. The formulation is first presented for the linear advection-diffusion equation and then extended to the Navier-Stokes equations. The formulation has no time step stability restrictions and is spectrally accurate in both space and time. To allow the use of practical C 0 element expansions in the resulting finite element model, the Navier-Stokes equations are expressed as an equivalent set of first-order equations by introducing vorticity as an additional independent variable and the least-squares method is used to develop the finite element model of the governing equations. High-order element expansions are used to construct the discrete model. The discrete model thus obtained is linearized by Newton's method, resulting in a linear system of equations with a symmetric positive definite coefficient matrix that is solved in a fully coupled manner by a preconditioned conjugate gradient method in matrix-free form. Spectral convergence of the L 2 least-squares functional and L 2 error norms in space-time is verified using a smooth solution to the two-dimensional non-stationary incompressible Navier-Stokes equations. Numerical results are presented for impulsively started lid-driven cavity flow, oscillatory lid-driven cavity flow, transient flow over a backward-facing step, and flow around a circular cylinder; the results demonstrate the predictive capability and robustness of the proposed formulation. Even though the space-time coupled formulation is emphasized, we also present the formulation and numerical results for least

  10. On the Space-Time Structure of Sheared Turbulence

    DEFF Research Database (Denmark)

    de Mare, Martin Tobias; Mann, Jakob

    2016-01-01

    We develop a model that predicts all two-point correlations in high Reynolds number turbulent flow, in both space and time. This is accomplished by combining the design philosophies behind two existing models, the Mann spectral velocity tensor, in which isotropic turbulence is distorted according......-assisted feed forward control and wind-turbine wake modelling....

  11. Multiple Model Approaches to Modelling and Control,

    DEFF Research Database (Denmark)

    on the ease with which prior knowledge can be incorporated. It is interesting to note that researchers in Control Theory, Neural Networks,Statistics, Artificial Intelligence and Fuzzy Logic have more or less independently developed very similar modelling methods, calling them Local ModelNetworks, Operating......, and allows direct incorporation of high-level and qualitative plant knowledge into themodel. These advantages have proven to be very appealing for industrial applications, and the practical, intuitively appealing nature of the framework isdemonstrated in chapters describing applications of local methods...... to problems in the process industries, biomedical applications and autonomoussystems. The successful application of the ideas to demanding problems is already encouraging, but creative development of the basic framework isneeded to better allow the integration of human knowledge with automated learning...

  12. Riemann-Christoffel Tensor in Differential Geometry of Fractional Order Application to Fractal Space-Time

    Science.gov (United States)

    Jumarie, Guy

    2013-04-01

    By using fractional differences, one recently proposed an alternative to the formulation of fractional differential calculus, of which the main characteristics is a new fractional Taylor series and its companion Rolle's formula which apply to non-differentiable functions. The key is that now we have at hand a differential increment of fractional order which can be manipulated exactly like in the standard Leibniz differential calculus. Briefly the fractional derivative is the quotient of fractional increments. It has been proposed that this calculus can be used to construct a differential geometry on manifold of fractional order. The present paper, on the one hand, refines the framework, and on the other hand, contributes some new results related to arc length of fractional curves, area on fractional differentiable manifold, covariant fractal derivative, Riemann-Christoffel tensor of fractional order, fractional differential equations of fractional geodesic, strip modeling of fractal space time and its relation with Lorentz transformation. The relation with Nottale's fractal space-time theory then appears in quite a natural way.

  13. Knox meets Cox: adapting epidemiological space-time statistics to demographic studies.

    Science.gov (United States)

    Schmertmann, Carl P; Assuçãon, Renato M; Potter, Joseph E

    2010-08-01

    Many important questions and theories in demography focus on changes over time, and on how those changes differ over geographic and social space. Space-time analysis has always been important in studying fertility transitions, for example. However demographers have seldom used formal statistical methods to describe and analyze time series of maps. One formal method, used widely in epidemiology, criminology, and public health, is Knox 's space-time interaction test. In this article, we discuss the potential of the Knox test in demographic research and note some possible pitfalls. We demonstrate how to use familiar proportional hazards models to adapt the Knox test for demographic applications. These adaptations allow for nonrepeatable events and for the incorporation of structural variables that change in space and time. We apply the modified test to data on the onset offertility decline in Brazil over 1960-2000 and show how the modified method can produce maps indicating where and when diffusion effects seem strongest, net of covariate effects.

  14. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  15. Space, time and color in hadron production via e+ e- --> Z$^{0}$ and e+ e- --> W$^{+}$W$^{-}$

    CERN Document Server

    Ellis, John R.; Ellis, John; Geiger, Klaus

    1996-01-01

    The time-evolution of jets in hadronic e+ e- events at LEP is investigated in both position- and momentum-space, with emphasis on effects due to color flow and particle correlations. We address dynamical aspects of the four simultanously-evolving, cross-talking parton cascades that appear in the reaction e+ e- --> .gamma./Z.sup(0) --> W+W- --> q1 q~2 q3 q~4, and compare with the familiar two-parton cascades in e+ e- --> Z.sup(0) --> q1 q~2. We use a QCD statistical transport approach, in which the multiparticle final state is treated as an evolving mixture of partons and hadrons, whose proportions are controlled by their local space-time geography via standard perturbative QCD parton shower evolution and a phenomenological model for non-perturbative parton-cluster formation followed by cluster decays into hadrons. Our numerical simulations exhibit a characteristic "inside-outside" evolution simultanously in position and momentum space. We compare three different model treatments of color flow, and find large ...

  16. Current approaches to gene regulatory network modelling

    Directory of Open Access Journals (Sweden)

    Brazma Alvis

    2007-09-01

    Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.

  17. Gravitational-recoil effects on fermion propagation in space-time foam

    CERN Document Server

    Ellis, John R.; Nanopoulos, Dimitri V.; Volkov, G.

    2000-01-01

    Motivated by the possible experimental opportunities to test quantum gravity via its effects on high-energy neutrinos propagating through space-time foam, we discuss how to incorporate spin structures in our D-brane description of gravitational recoil effects in vacuo. We also point to an interesting analogous condensed-matter system. We use a suitable supersymmetrization of the Born-Infeld action for excited D-brane gravitational backgrounds to argue that energetic fermions may travel slower than the low-energy velocity of light: pulses of neutrinos at energies approaching 10^{19} eV: these would be observable only if M \\gsim 10^{27} GeV.

  18. Reduced-Complexity Wireless Transceiver Architectures and Techniques for Space-Time Communications

    DEFF Research Database (Denmark)

    Tsakalaki, Elpiniki

    2012-01-01

    The dissertation sheds light on the performance gains of multi-antenna systems when the antenna aspects and the associated signal processing and coding aspects are integrated together in a multidisciplinary approach, addressing a variety of challenging tasks pertaining to the joint design of smart...... wireless transceivers and communication techniques. These tasks are at the intersection of different scientific disciplines including signal processing, communications, antennas and propagation. Specifically, the thesis deals with reduced-complexity space-time wireless transceiver architectures...... and associated communication techniques for multi-input multi-output (MIMO) and cognitive radio (CR) systems as well as wireless sensor networks (WSNs). The low-complexity architectures are obtained by equipping the wireless transceiver with passive control ports which require the minimum amount of RF hardware...

  19. Understanding the distribution of activities of urban dwellers using the Space Time Cube

    DEFF Research Database (Denmark)

    Kveladze, Irma; Kraak, Menno-Jan; Ahas, Rein

    2012-01-01

    Urban geographers study the development of cities, and seek to understand the fac-tors that influence human movements over space and time. New communication tech-nologies are significantly impacting these studies, especially in field of data collec-tion. The use case presented here is based...... with a typical temporal nature: ‘Is there a difference in distribution of activi-ties between weekdays and weekends?’ and ‘Are there differences during the day?’ To answer these questions a visual problem solving approach was followed where different graphic representations of the data were used. The choice...... of the maps and diagrams is based on the questions to be answered, for instance a map for the domi-nant where-questions, and the Space Time Cube (STC) for the dominant when-questions. All graphics were integrated in a single multiple coordinated view envi-ronment which allows one to see the impact...

  20. Einstein's space-time an introduction to special and general relativity

    CERN Document Server

    Ferraro, Rafael

    2007-01-01

    Einstein's Space-Time: An Introduction to Special and General Relativity is a textbook addressed to students in physics and other people interested in Relativity and a history of physics. The book contains a complete account of Special Relativity that begins with the historical analysis of the reasons that led to a change in our manner of regarding the space and time. The first chapters are aimed to afford a deep understanding of the relativistic spacetime and its consequences for Dynamics. The chapter about covariant formulation includes among its topics the concepts of volume and hypersurfaces in manifolds, energy-momentum tensor of a fluid, and prepares the language for General Relativity. The last two chapters are devoted to an introduction of General Relativity and Cosmology in a modern approach connected with the latest discoveries in these areas.

  1. Space-time foam effects on particle interactions and the Greisen-Zatsepin-Kuzmin cutoff

    International Nuclear Information System (INIS)

    Ellis, John; Mavromatos, N. E.; Nanopoulos, D. V.

    2001-01-01

    Modeling space-time foam using a noncritical Liouville-string model for the quantum fluctuations of D-branes with recoil, we discuss the issues of momentum and energy conservation in particle propagation and interactions. We argue that momentum should be conserved exactly during propagation and on the average during interactions, but that energy is conserved only on the average during propagation and is in general not conserved during particle interactions, because of changes in the background metric. We discuss the possible modification of the GZK cutoff on high-energy cosmic rays, in the light of this energy non-conservation as well as the possible modification of the usual relativistic momentum-energy relation

  2. Lyra’s cosmology of hybrid universe in Bianchi-V space-time

    Science.gov (United States)

    Yadav, Anil Kumar; Bhardwaj, Vinod Kumar

    2018-06-01

    In this paper we have searched for the existence of Lyra’s cosmology in a hybrid universe with minimal interaction between dark energy and normal matter using Bianchi-V space-time. To derive the exact solution, the average scale factor is taken as a={({t}n{e}kt)}\\frac{1{m}} which describes the hybrid nature of the scale factor and generates a model of the transitioning universe from the early deceleration phase to the present acceleration phase. The quintessence model makes the matter content of the derived universe remarkably able to satisfy the null, dominant and strong energy condition. It has been found that the time varying displacement β(t) co-relates with the nature of cosmological constant Λ(t). We also discuss some physical and geometrical features of the universe.

  3. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  4. Service creation: a model-based approach

    NARCIS (Netherlands)

    Quartel, Dick; van Sinderen, Marten J.; Ferreira Pires, Luis

    1999-01-01

    This paper presents a model-based approach to support service creation. In this approach, services are assumed to be created from (available) software components. The creation process may involve multiple design steps in which the requested service is repeatedly decomposed into more detailed

  5. Models of galaxies - The modal approach

    International Nuclear Information System (INIS)

    Lin, C.C.; Lowe, S.A.

    1990-01-01

    The general viability of the modal approach to the spiral structure in normal spirals and the barlike structure in certain barred spirals is discussed. The usefulness of the modal approach in the construction of models of such galaxies is examined, emphasizing the adoption of a model appropriate to observational data for both the spiral structure of a galaxy and its basic mass distribution. 44 refs

  6. Black holes in loop quantum gravity: the complete space-time.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2008-10-17

    We consider the quantization of the complete extension of the Schwarzschild space-time using spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is known partially numerically and therefore a proper global analysis is not possible, a global structure akin to a singularity-free Reissner-Nordström space-time including a Cauchy horizon is suggested.

  7. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)

    1979-04-11

    A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.

  8. SHOVAV-JUEL. A one dimensional space-time kinetic code for pebble-bed high-temperature reactors with temperature and Xenon feedback

    International Nuclear Information System (INIS)

    Nabbi, R.; Meister, G.; Finken, R.; Haben, M.

    1982-09-01

    The present report describes the modelling basis and the structure of the neutron kinetics-code SHOVAV-Juel. Information for users is given regarding the application of the code and the generation of the input data. SHOVAV-Juel is a one-dimensional space-time-code based on a multigroup diffusion approach for four energy groups and six groups of delayed neutrons. It has been developed for the analysis of the transient behaviour of high temperature reactors with pebble-bed core. The reactor core is modelled by horizontal segments to which different materials compositions can be assigned. The temperature dependence of the reactivity is taken into account by using temperature dependent neutron cross sections. For the simulation of transients in an extended time range the time dependence of the reactivity absorption by Xenon-135 is taken into account. (orig./RW)

  9. Features of a relativistic space-time with seven isometries

    International Nuclear Information System (INIS)

    Reboucas, M.J.; Teixeira, A.F.F.

    1986-01-01

    Previous works on the Reboucas-Tiomno spacetime are extended. It is shown that the RT model is Petrov type 0 and exhibit its conformally flat form. The geodesic equations are fully integrated and corresponding motions are discussed at lenght. Confrontation with other rare solutions possessing seven isometries is made. (Author) [pt

  10. Multiscale approach to equilibrating model polymer melts

    DEFF Research Database (Denmark)

    Svaneborg, Carsten; Ali Karimi-Varzaneh, Hossein; Hojdis, Nils

    2016-01-01

    We present an effective and simple multiscale method for equilibrating Kremer Grest model polymer melts of varying stiffness. In our approach, we progressively equilibrate the melt structure above the tube scale, inside the tube and finally at the monomeric scale. We make use of models designed...

  11. From the Weyl theory to a theory of locally anisotropic space-time

    International Nuclear Information System (INIS)

    Bogoslovsky, G.Yu.

    1991-01-01

    It is shown that Weyl ideas, pertaining to local conformal invariance, find natural embodiment within the framework of a relativistic theory based on a viable Finslerian model of space-time. This is associated with the peculiar property of the conformal invariant Finslerian metric which describes a locally anisotropic space of events. The local conformal transformations of the Riemannian metric tensor leave invariant rest masses as well as all observables and thus appear as local gauge transformations. The corresponding Finslerian theory of gravitation turns out, as a result, to be an Abelian gauge theory. It satisfies the principle of correspondence with Einstein theory and predicts a number of nontrivial physical effects accessible for experimental test under laboratory conditions. 13 refs

  12. Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->

    Science.gov (United States)

    Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.

    2008-05-01

    By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.

  13. On black holes, space-time foam and the nature of time in string theory

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy

    1993-04-01

    It is shown that the light particles in string theory obey an effective quantum mechanics modified by the inclusion of a quantum-gravitational friction term, induced by unavoidable couplings to unobserved massive string states in the space-time foam. This term is related to the W-symmetries that couple light particles to massive solitonic string states in black hole backgrounds, and has a formal similarity to simple models of environmental quantum friction. All properties follow from a definition of target-time as a Renormalization Group scale parameter and the associated (generic) properties of the renormalization group flow. Some experimental consequences, concerning CPT violation detectable in systems that are generally considered as sensitive probes of quantum mechanics (e.g. neutral kaons), are briefly discussed. (author). 52 refs., 1 fig

  14. Analysis of space-time core dynamics on reactor accident at Chernobyl

    International Nuclear Information System (INIS)

    Takano, Makoto; Shindo, Ryuichi; Yamashita, Kiyonobu; Sawa, Kazuhiro

    1987-05-01

    Regarding reactor accident at Chernobyl in USSR, core dynamics has been analyzed by COMIC code which solves space-time dependent diffusion equation in three-dimension taking spatial thermohydraulic effect into account. The code was originally developed for high temperature gas-cooled reactors (HTGR), however, has been modified to include light water as coolant, instead of helium, for analysis of the accident. In the analysis, emphasis is placed on spatial effects on core dynamics. The analyses are performed for the cases of modeling the core fully and partially where 6 fuel channels surround one control rod channel. The result shows that the speed of applying void reactivity averaged over the core depends on the power and coolant flow distributions. Therefore, these distributions have potential to influence on the value and the time of peak power estimated by calculation. (author)

  15. Black objects and hoop conjecture in five-dimensional space-time

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuta; Shinkai, Hisa-aki, E-mail: m1m08a26@info.oit.ac.j, E-mail: shinkai@is.oit.ac.j [Faculty of Information Science and Technology, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka 573-0196 (Japan)

    2010-02-21

    We numerically investigated the sequences of initial data of a thin spindle and a thin ring in five-dimensional space-time in the context of the cosmic censorship conjecture. We modeled the matter in non-rotating homogeneous spheroidal or toroidal configurations under the momentarily static assumption, solved the Hamiltonian constraint equation and searched the apparent horizons. We discussed when S{sup 3} (black-hole) or S{sup 1} x S{sup 2} (black-ring) horizons ('black objects') are formed. By monitoring the location of the maximum Kretchmann invariant, an appearance of 'naked singularity' or 'naked ring' under special situations is suggested. We also discuss the validity of the hyper-hoop conjecture using a minimum area around the object, and show that the appearance of the ring horizon does not match with this hoop.

  16. A hybrid method of estimating pulsating flow parameters in the space-time domain

    Science.gov (United States)

    Pałczyński, Tomasz

    2017-05-01

    This paper presents a method for estimating pulsating flow parameters in partially open pipes, such as pipelines, internal combustion engine inlets, exhaust pipes and piston compressors. The procedure is based on the method of characteristics, and employs a combination of measurements and simulations. An experimental test rig is described, which enables pressure, temperature and mass flow rate to be measured within a defined cross section. The second part of the paper discusses the main assumptions of a simulation algorithm elaborated in the Matlab/Simulink environment. The simulation results are shown as 3D plots in the space-time domain, and compared with proposed models of phenomena relating to wave propagation, boundary conditions, acoustics and fluid mechanics. The simulation results are finally compared with acoustic phenomena, with an emphasis on the identification of resonant frequencies.

  17. Dynamic Theory: a new view of space, time, and matter

    International Nuclear Information System (INIS)

    Williams, P.E.

    1980-12-01

    The theory presented represents a different approach toward unification of the various branches of physics. The foundation of the theory rests upon generalizations of the classical laws of thermodynamics, particularly Caratheodory's abstract statement of the second law. These adopted laws are shown to produce, as special cases, current theories such as Einstein's General and Special Relativity, Maxwell's electromagnetism, classical thermodynamics, and quantum principles. In addition to this unification, the theory provides predictions that may be experimentally investigated. Some of the predictions are a limiting rate of mass conversion, reduced pressures in electromagnetically contained plasmas, increased viscous effects in shocked materials, a finite self-energy for a charged particle, and the possible creation of particles with velocities greater than the speed of light. 8 figures

  18. Physical relativity. Space-time structure from a dynamical perspective

    Science.gov (United States)

    Brown, Harvey R.

    Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown's new interpretation of relativity theory will interest anyone working on

  19. Application of various FLD modelling approaches

    Science.gov (United States)

    Banabic, D.; Aretz, H.; Paraianu, L.; Jurco, P.

    2005-07-01

    This paper focuses on a comparison between different modelling approaches to predict the forming limit diagram (FLD) for sheet metal forming under a linear strain path using the recently introduced orthotropic yield criterion BBC2003 (Banabic D et al 2005 Int. J. Plasticity 21 493-512). The FLD models considered here are a finite element based approach, the well known Marciniak-Kuczynski model, the modified maximum force criterion according to Hora et al (1996 Proc. Numisheet'96 Conf. (Dearborn/Michigan) pp 252-6), Swift's diffuse (Swift H W 1952 J. Mech. Phys. Solids 1 1-18) and Hill's classical localized necking approach (Hill R 1952 J. Mech. Phys. Solids 1 19-30). The FLD of an AA5182-O aluminium sheet alloy has been determined experimentally in order to quantify the predictive capabilities of the models mentioned above.

  20. Supersymmetric Dirac particles in Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Rumpf, H.

    1981-01-01

    A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a nontrivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The equations of motion implied by this model coincide with a consistent classical limit of the Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the latter equation is shown to arise from canonical quantization of the classical system. The Heisenberg equations are obtained exact in all powers of h/2π and thus complete the partial results of previous WKB calculations. The author also considers such matters of principle as the mathematical realization of anticommuting variables, the physical interpretation of supersymmetry transformations, and the effective variability of rest mass. (Auth.)

  1. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  2. Fascioliasis risk factors and space-time clusters in domestic ruminants in Bangladesh.

    Science.gov (United States)

    Rahman, A K M Anisur; Islam, S K Shaheenur; Talukder, Md Hasanuzzaman; Hassan, Md Kumrul; Dhand, Navneet K; Ward, Michael P

    2017-05-08

    A retrospective observational study was conducted to identify fascioliasis hotspots, clusters, potential risk factors and to map fascioliasis risk in domestic ruminants in Bangladesh. Cases of fascioliasis in cattle, buffalo, sheep and goats from all districts in Bangladesh between 2011 and 2013 were identified via secondary surveillance data from the Department of Livestock Services' Epidemiology Unit. From each case report, date of report, species affected and district data were extracted. The total number of domestic ruminants in each district was used to calculate fascioliasis cases per ten thousand animals at risk per district, and this was used for cluster and hotspot analysis. Clustering was assessed with Moran's spatial autocorrelation statistic, hotspots with the local indicator of spatial association (LISA) statistic and space-time clusters with the scan statistic (Poisson model). The association between district fascioliasis prevalence and climate (temperature, precipitation), elevation, land cover and water bodies was investigated using a spatial regression model. A total of 1,723,971 cases of fascioliasis were reported in the three-year study period in cattle (1,164,560), goats (424,314), buffalo (88,924) and sheep (46,173). A total of nine hotspots were identified; one of these persisted in each of the three years. Only two local clusters were found. Five space-time clusters located within 22 districts were also identified. Annual risk maps of fascioliasis cases correlated with the hotspots and clusters detected. Cultivated and managed (P fascioliasis in Bangladesh, respectively. Results indicate that due to land use characteristics some areas of Bangladesh are at greater risk of fascioliasis. The potential risk factors, hot spots and clusters identified in this study can be used to guide science-based treatment and control decisions for fascioliasis in Bangladesh and in other similar geo-climatic zones throughout the world.

  3. Space-time evolution of electron cascades in diamond

    International Nuclear Information System (INIS)

    Ziaja, Beata; Szoeke, Abraham; Spoel, David van der; Hajdu, Janos

    2002-01-01

    The impact of a primary electron initiates a cascade of secondary electrons in solids, and these cascades play a significant role in the dynamics of ionization. Here we describe model calculations to follow the spatiotemporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E∼250 eV. This energy is similar to the energy of an Auger electron from carbon. Two limiting cases were considered: the case in which electrons transmit energy to the lattice, and the case where no such energy transfer is permitted. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (∼5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud, and it increases exponentially with the radial size of the cascade. This means that the long-range Coulomb field is not shielded within this cloud, and the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E∼250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. At 10 fs the cascade has a maximal radius of ∼70 A, and is already dominated by low-energy electrons

  4. Risk Modelling for Passages in Approach Channel

    Directory of Open Access Journals (Sweden)

    Leszek Smolarek

    2013-01-01

    Full Text Available Methods of multivariate statistics, stochastic processes, and simulation methods are used to identify and assess the risk measures. This paper presents the use of generalized linear models and Markov models to study risks to ships along the approach channel. These models combined with simulation testing are used to determine the time required for continuous monitoring of endangered objects or period at which the level of risk should be verified.

  5. Using nuclei to probe space-time properties of hadronization

    International Nuclear Information System (INIS)

    Eliseev, S.M.

    1998-01-01

    Many of the key issues in understanding quantum chromodynamics (QCD) involve the interactions with many particles in the final state. We discuss, in an introductory fashion, some latest developments in the study of particle production in high energy collisions. We introduce and briefly discuss a model for propagation of quark and gluon jets in nuclear matter, taking into account the Landau- Pomeranchuk-Migdal (LPM) effect and cascading of soft particles in a nucleus. Calculations were performed by the Monte Carlo method. The hadrons, including cumulative nucleons produced in neutrino interactions with nuclei were investigated and the formation zone length was obtained

  6. Coding space-time stimulus dynamics in auditory brain maps

    Directory of Open Access Journals (Sweden)

    Yunyan eWang

    2014-04-01

    Full Text Available Sensory maps are often distorted representations of the environment, where ethologically-important ranges are magnified. The implication of a biased representation extends beyond increased acuity for having more neurons dedicated to a certain range. Because neurons are functionally interconnected, non-uniform representations influence the processing of high-order features that rely on comparison across areas of the map. Among these features are time-dependent changes of the auditory scene generated by moving objects. How sensory representation affects high order processing can be approached in the map of auditory space of the owl’s midbrain, where locations in the front are over-represented. In this map, neurons are selective not only to location but also to location over time. The tuning to space over time leads to direction selectivity, which is also topographically organized. Across the population, neurons tuned to peripheral space are more selective to sounds moving into the front. The distribution of direction selectivity can be explained by spatial and temporal integration on the non-uniform map of space. Thus, the representation of space can induce biased computation of a second-order stimulus feature. This phenomenon is likely observed in other sensory maps and may be relevant for behavior.

  7. What have we learned from quantum field theory in curved space-time

    International Nuclear Information System (INIS)

    Fulling, S.A.

    1984-01-01

    The paper reviews the quantum field theory in curved space-time. Field quantization in gravitational backgrounds; particle creation by black holes; Hawking radiation; quantum field theory in curved space-time; covariant renormalization of the stress-energy-momentum tensor; quantum field theory and quantum gravity; are all discussed. (U.K.)

  8. Exact solutions of space-time fractional EW and modified EW equations

    International Nuclear Information System (INIS)

    Korkmaz, Alper

    2017-01-01

    The bright soliton solutions and singular solutions are constructed for the space-time fractional EW and the space-time fractional modified EW (MEW) equations. Both equations are reduced to ordinary differential equations by the use of fractional complex transform (FCT) and properties of modified Riemann–Liouville derivative. Then, various ansatz method are implemented to construct the solutions for both equations.

  9. Quantum energy-momentum tensor in space-time with time-like killing vector

    International Nuclear Information System (INIS)

    Frolov, V.P.; Zel'nikov, A.I.

    1987-01-01

    An approximate expression for the vacuum and thermal average μν > ren of the stress-energy tensor of conformal massless fields in static Ricci-flat space-times is constructed. The application of this approximation to the space-time of a Schwarzschild black hole and its relation to the Page-Brown-Ottewill approximation are briefly discussed. (orig.)

  10. Explicit Minkowski invariance and differential calculus in the quantum space-time

    International Nuclear Information System (INIS)

    Xu Zhan.

    1991-11-01

    In terms of the R-circumflex matrix of the quantum group SL q (2), the explicit Minkowski coordinate commutation relations in the four-dimensional quantum space-time are given, and the invariance of the Minkowski metric is shown. The differential calculus in this quantum space-time is discussed and the corresponding commutation relations are proposed. (author). 17 refs

  11. On the electromagnetic field and the Teukolsky relations in arbitrary space-times

    International Nuclear Information System (INIS)

    Coll, B.; Ferrando, J.J.

    1985-01-01

    The relations on the electromagnetic field obtained by Teukolsky for type D, vacuum space-times are studied. The role played by the maxwellian geometry of the basic tetrad is shown. It is proved that Teukolsky relations are, generically, incomplete. Once completed, their generalization to arbitrary space-times is given [fr

  12. Density perturbations due to the inhomogeneous discrete spatial structure of space-time

    International Nuclear Information System (INIS)

    Wolf, C.

    1998-01-01

    For the case that space-time permits an inhomogeneous discrete spatial structure due to varying gravitational fields or a foam-like structure of space-time, it is demonstrated that thermodynamic reasoning implies that matter-density perturbations will arise in the early universe

  13. On scattering of scalar waves in static space-times, particularly Schwarzschild

    International Nuclear Information System (INIS)

    Beig, R.

    1982-01-01

    This paper aims at laying foundations of a rigorous scattering theory for scalar waves in a static space-time. The treatment includes geometries which can be thought of as representing the exterior of a black hole. Schwarzschild space-time, as a particular example, is studied in more detail. (Auth.)

  14. Theorizing Space-Time Relations in Education: The Concept of Chronotope

    Science.gov (United States)

    Ritella, Giuseppe; Ligorio, Maria Beatrice; Hakkarainen, Kai

    2016-01-01

    Due to ongoing cultural-historical transformations, the space-time of learning is radically changing, and theoretical conceptualizations are needed to investigate how such evolving space-time frames can function as a ground for learning. In this article, we argue that the concept of chronotope--from Greek chronos and topos, meaning time and…

  15. Trade-offs across space, time, and ecosystem services

    Science.gov (United States)

    Rodriguez, J.P.; Beard, T.D.; Bennett, E.M.; Cumming, Graeme S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D.

    2006-01-01

    Ecosystem service (ES) trade-offs arise from management choices made by humans, which can change the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs occur when the provision of one ES is reduced as a consequence of increased use of another ES. In some cases, a trade-off may be an explicit choice; but in others, trade-offs arise without premeditation or even awareness that they are taking place. Trade-offs in ES can be classified along three axes: spatial scale, temporal scale, and reversibility. Spatial scale refers to whether the effects of the trade-off are felt locally or at a distant location. Temporal scale refers to whether the effects take place relatively rapidly or slowly. Reversibility expresses the likelihood that the perturbed ES may return to its original state if the perturbation ceases. Across all four Millennium Ecosystem Assessment scenarios and selected case study examples, trade-off decisions show a preference for provisioning, regulating, or cultural services (in that order). Supporting services are more likely to be "taken for granted." Cultural ES are almost entirely unquantified in scenario modeling; therefore, the calculated model results do not fully capture losses of these services that occur in the scenarios. The quantitative scenario models primarily capture the services that are perceived by society as more important - provisioning and regulating ecosystem services - and thus do not fully capture trade-offs of cultural and supporting services. Successful management policies will be those that incorporate lessons learned from prior decisions into future management actions. Managers should complement their actions with monitoring programs that, in addition to monitoring the short-term provisions of services, also monitor the long-term evolution of slowly changing variables. Policies can then be developed to take into account ES trade-offs at multiple spatial and temporal scales. Successful strategies will

  16. Trade-offs across Space, Time, and Ecosystem Services

    Directory of Open Access Journals (Sweden)

    Jon Paul. Rodríguez

    2006-06-01

    Full Text Available Ecosystem service (ES trade-offs arise from management choices made by humans, which can change the type, magnitude, and relative mix of services provided by ecosystems. Trade-offs occur when the provision of one ES is reduced as a consequence of increased use of another ES. In some cases, a trade-off may be an explicit choice; but in others, trade-offs arise without premeditation or even awareness that they are taking place. Trade-offs in ES can be classified along three axes: spatial scale, temporal scale, and reversibility. Spatial scale refers to whether the effects of the trade-off are felt locally or at a distant location. Temporal scale refers to whether the effects take place relatively rapidly or slowly. Reversibility expresses the likelihood that the perturbed ES may return to its original state if the perturbation ceases. Across all four Millennium Ecosystem Assessment scenarios and selected case study examples, trade-off decisions show a preference for provisioning, regulating, or cultural services (in that order. Supporting services are more likely to be "taken for granted." Cultural ES are almost entirely unquantified in scenario modeling; therefore, the calculated model results do not fully capture losses of these services that occur in the scenarios. The quantitative scenario models primarily capture the services that are perceived by society as more important - provisioning and regulating ecosystem services - and thus do not fully capture trade-offs of cultural and supporting services. Successful management policies will be those that incorporate lessons learned from prior decisions into future management actions. Managers should complement their actions with monitoring programs that, in addition to monitoring the short-term provisions of services, also monitor the long-term evolution of slowly changing variables. Policies can then be developed to take into account ES trade-offs at multiple spatial and temporal scales

  17. Relativity Based on Physical Processes Rather Than Space-Time

    Science.gov (United States)

    Giese, Albrecht

    2013-09-01

    Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.

  18. Space-Time Data fusion for Remote Sensing Applications

    Science.gov (United States)

    Braverman, Amy; Nguyen, H.; Cressie, N.

    2011-01-01

    NASA has been collecting massive amounts of remote sensing data about Earth's systems for more than a decade. Missions are selected to be complementary in quantities measured, retrieval techniques, and sampling characteristics, so these datasets are highly synergistic. To fully exploit this, a rigorous methodology for combining data with heterogeneous sampling characteristics is required. For scientific purposes, the methodology must also provide quantitative measures of uncertainty that propagate input-data uncertainty appropriately. We view this as a statistical inference problem. The true but notdirectly- observed quantities form a vector-valued field continuous in space and time. Our goal is to infer those true values or some function of them, and provide to uncertainty quantification for those inferences. We use a spatiotemporal statistical model that relates the unobserved quantities of interest at point-level to the spatially aggregated, observed data. We describe and illustrate our method using CO2 data from two NASA data sets.

  19. Nonlinear Spinor Field in Non-Diagonal Bianchi Type Space-Time

    Directory of Open Access Journals (Sweden)

    Saha Bijan

    2018-01-01

    Full Text Available Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.

  20. Pseudo-Newtonian Equations for Evolution of Particles and Fluids in Stationary Space-times

    Energy Technology Data Exchange (ETDEWEB)

    Witzany, Vojtěch; Lämmerzahl, Claus, E-mail: vojtech.witzany@zarm.uni-bremen.de, E-mail: claus.laemmerzahl@zarm.uni-bremen.de [ZARM, Universität Bremen, Am Fallturm, D-28359 Bremen (Germany)

    2017-06-01

    Pseudo-Newtonian potentials are a tool often used in theoretical astrophysics to capture some key features of a black hole space-time in a Newtonian framework. As a result, one can use Newtonian numerical codes, and Newtonian formalism, in general, in an effective description of important astrophysical processes such as accretion onto black holes. In this paper, we develop a general pseudo-Newtonian formalism, which pertains to the motion of particles, light, and fluids in stationary space-times. In return, we are able to assess the applicability of the pseudo-Newtonian scheme. The simplest and most elegant formulas are obtained in space-times without gravitomagnetic effects, such as the Schwarzschild rather than the Kerr space-time; the quantitative errors are smallest for motion with low binding energy. Included is a ready-to-use set of fluid equations in Schwarzschild space-time in Cartesian and radial coordinates.