WorldWideScience

Sample records for space-charge layer

  1. Effect of the space charge layer on pre-transition corrosion rate of Zr alloys

    International Nuclear Information System (INIS)

    Nanikawa, S.; Etoh, Y.

    1998-01-01

    The pre- and post-transition oxide films formed in steam at 673 K were investigated by an AC impedance method. The results showed that the space charge layer was present in the pre-transition oxide film and it was absent in the post-transition oxide film. The oxidation kinetics was simulated by oxygen diffusion in the space charge layer. Cubic or one-fourth power law was explained by the effect of the space charge layer. Supposing that the space charge layer formed the potential difference through the oxide film by 0.7 V, calculated oxidation kinetics agreed with the experimental one before transition. This potential difference corresponded to the measured value by AC impedance method within the experimental error. Shadow effect could be explained by this simulation supposing the disappearance of the space charge layer due to the formation of a negative electric field by β-rays. (author)

  2. Enhanced ionic conductivity in composite materials due to interfacial space charge layers

    International Nuclear Information System (INIS)

    Dudney, N.J.

    1985-01-01

    The ionic conductivity of a number of salts (e.g., β-AgI, LiI, CuCl, HgI 2 , etc.) can be enhanced by one to three orders of magnitude with the addition of fine particles of an insoluble and nonconducting material such as Al 2 O 3 or SiO 2 . Typically the conductivity increases with addition of the inert particles and reaches a peak at 10-40 vol % of the particles. The mechanism responsible for the enhanced conductivity of the composite is not understood at this time. Some claim that this effect is due to an increased concentration of charge carriers in a diffuse space charge layer near the charged surface of the particle. The goal of the present study is to test this proposed mechanism by calculating the maximum space charge layer effect and then using this result to estimate the conductivity of a composite with a random distribution of Al 2 O 3 particles. Also, the conductivity of composite systems has been investigated assuming an ordered distribution of particles which are surrounded by a high conductivity layer

  3. Space-charge-limited ion flow through an ionizing neutral layer

    International Nuclear Information System (INIS)

    Duvall, R.E.; Litwin, C.; Maron, Y.

    1993-01-01

    Space-charge-limited ion flow through an ionizing layer of neutral atoms is studied. The ion flow is between two parallel conducting plates (anode and cathode) with an externally applied voltage between them. An expanding layer of neutral atoms is adjacent to the anode surface, extending a finite distance into the anode--cathode gap. All ions originate either from the anode surface or from the ionization of neutrals; electrons originate only from ionization. Electrons are strongly magnetized by an externally applied, time-independent direct current (dc) magnetic field directed across the ion flow. The ions are unmagnetized, all motion being perpendicular to the conducting plates. Two different models of the anode layer were used to analyze this problem: a multifluid steady-state model and a single fluid time-dependent model. From both models it was found that the anode surface becomes shielded after the ion flux from the ionizing layer becomes larger than the space-charge-limited flux of the reduced gap between the neutral layer and cathode. Comparison was made between the time-dependent model and results from magnetically insulated ion beam diode (MID) experiments. Using an initial areal density of neutral hydrogen and carbon equal to the final observed electron areal density, comparison was made between calculated plasma shielding times and upper bounds on the shielding time observed in experiments. It was found that a layer of neutral hydrogen must contain a minimum of 15% carbon (by number density) to explain the rapid electric field screening observed in experiments

  4. Effect of applied DC voltages and temperatures on space charge behaviour of multi-layer oil-paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Tang Chao; Liao Ruijin [The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, G [School of Electronics and Computer Science, University of Southampton (United Kingdom); Fu, M, E-mail: tangchao_1981@163.co [AVERA T and D Technology Centre, Stafford (United Kingdom)

    2009-08-01

    In this paper, space charge in a multi-layer oil-paper insulation system was investigated using the pulsed electroacoustic (PEA) technique. A series of measurements had been carried following subjection of the insulation system to different applied voltages and different temperatures. Charge behaviours in the insulation system were analyzed and the influence of temperature on charge dynamics was discussed. The test results shows that homocharge injection takes place under all the test conditions, the applied DC voltage mainly affects the amount of space charge, while the temperature has greater influence on the distribution and mobility of space charge inside oil-paper samples.

  5. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  6. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer.

    Science.gov (United States)

    Dell'Angela, M; Anniyev, T; Beye, M; Coffee, R; Föhlisch, A; Gladh, J; Kaya, S; Katayama, T; Krupin, O; Nilsson, A; Nordlund, D; Schlotter, W F; Sellberg, J A; Sorgenfrei, F; Turner, J J; Öström, H; Ogasawara, H; Wolf, M; Wurth, W

    2015-03-01

    Vacuum space charge induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  7. Intrinsic space charge resonances and the space charge limit

    International Nuclear Information System (INIS)

    Parzen, G.

    1990-01-01

    A study has been done of the dependence of the space charge limit on the choice of ν-values using a simulation program. This study finds a strong dependence of the space charge limit on the location of the ν-values relative to the intrinsic space charge resonances, which are driven by the space charge forces due to the beam itself. Four accelerators were studied. For some of these accelerators the study suggest that the space charge limit can be increased by about a factor of 2 proper choice of the ν-values. The lower order 1/2 and 1/4 intrinsic resonances appear to be the important resonances. There is some evidence for effects due to the 1/6 and 1/8 intrinsic resonances, particularly for larger synchrotrons. 5 figs

  8. Space-charge effects in vacuum-deposited polyimide layer

    Czech Academy of Sciences Publication Activity Database

    Zhivkov, I.; Strijkova, V.; Spassova, E.; Danev, G.; Nešpůrek, Stanislav; Iwamoto, M.

    2005-01-01

    Roč. 7, č. 1 (2005), s. 245-248 ISSN 1454-4164 R&D Projects: GA MŠk ME 558 Grant - others:Ministry of Education and Science(BG) X-1322 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyimide * electrical conductivity * space-charge spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.138, year: 2005

  9. Abnormal Multiple Charge Memory States in Exfoliated Few-Layer WSe2 Transistors.

    Science.gov (United States)

    Chen, Mikai; Wang, Yifan; Shepherd, Nathan; Huard, Chad; Zhou, Jiantao; Guo, L J; Lu, Wei; Liang, Xiaogan

    2017-01-24

    To construct reliable nanoelectronic devices based on emerging 2D layered semiconductors, we need to understand the charge-trapping processes in such devices. Additionally, the identified charge-trapping schemes in such layered materials could be further exploited to make multibit (or highly desirable analog-tunable) memory devices. Here, we present a study on the abnormal charge-trapping or memory characteristics of few-layer WSe 2 transistors. This work shows that multiple charge-trapping states with large extrema spacing, long retention time, and analog tunability can be excited in the transistors made from mechanically exfoliated few-layer WSe 2 flakes, whereas they cannot be generated in widely studied few-layer MoS 2 transistors. Such charge-trapping characteristics of WSe 2 transistors are attributed to the exfoliation-induced interlayer deformation on the cleaved surfaces of few-layer WSe 2 flakes, which can spontaneously form ambipolar charge-trapping sites. Our additional results from surface characterization, charge-retention characterization at different temperatures, and density functional theory computation strongly support this explanation. Furthermore, our research also demonstrates that the charge-trapping states excited in multiple transistors can be calibrated into consistent multibit data storage levels. This work advances the understanding of the charge memory mechanisms in layered semiconductors, and the observed charge-trapping states could be further studied for enabling ultralow-cost multibit analog memory devices.

  10. Surface Layer Fluorination-Modulated Space Charge Behaviors in HVDC Cable Accessory

    Directory of Open Access Journals (Sweden)

    Jin Li

    2018-05-01

    Full Text Available Space charges tend to accumulate on the surface and at the interface of ethylene–propylene–diene terpolymer (EPDM, serving as high voltage direct current (HVDC cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

  11. Synthetic high-charge organomica: effect of the layer charge and alkyl chain length on the structure of the adsorbed surfactants.

    Science.gov (United States)

    Pazos, M Carolina; Castro, Miguel A; Orta, M Mar; Pavón, Esperanza; Valencia Rios, Jesús S; Alba, María D

    2012-05-15

    A family of organomicas was synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg(6)F(4)O(20)·XH(2)O, where n = 2, 3, and 4) exchanged with dodecylammonium and octadecylammonium cations. The molecular arrangement of the surfactant was elucidated on the basis on XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas was investigated by (13)C, (27)Al, and (29)Si MAS NMR. The arrangement of alkylammonium ions in these high-charge synthetic micas depends on the combined effects of the layer charge of the mica and the chain length of the cation. In the organomicas with dodecylammonium, a transition from a parallel layer to a bilayer-paraffin arrangement is observed when the layer charge of the mica increases. However, when octadecylammonium is the interlayer cation, the molecular arrangement of the surfactant was found to follow the bilayer-paraffin model for all values of layer charge. The amount of ordered conformation all-trans is directly proportional of layer charge.

  12. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  13. Effect of surface topography and morphology on space charge packets in polyethylene

    International Nuclear Information System (INIS)

    Zhou Yuanxiang; Wang Yunshan; Sun Qinghua; Wang Ninghua

    2009-01-01

    Polyethylene (PE) is a major kind of internal insulating material. With great progresses of space charge measurement technologies in the last three decades, lots of researches are focused on space charge in PE. The heat pressing and annealing condition of polyethylene affect its morphology obviously. During the heat pressing, the surface of PE forms different surface topographies because of different substrate materials. Surface topography has great relation to the epitaxial crystallization layer and influences the space charge characteristic of PE dramatically. This paper studied the formation process of different surface topographies and their micrographic characters in low density polyethylene (LDPE). pulsed electro-acoustic (PEA) method was used to measure the space charge distribution of samples with different surface topographies and morphologies in LDPE. The effect of surface topography and morphology to space charge packet were studied. The surface topography has great influence on space charge packet polarity and morphology has influence on both movement speed rate and polarity of space charge packet.

  14. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    Science.gov (United States)

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration.

  15. In-situ potential mapping of space charge layer in GaN nanowires under electrical field by off-axis electron holography

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2016-04-01

    Full Text Available In situ potential mapping of space charge (SC layer in a single GaN nanowire (NW contacted to the Au metal electrode has been conducted using off-axis electron holography in order to study the space distribution of SC layer under electric biases. Based on the phase image reconstructed from the complex hologram the electrostatic potential at the SC layer was clearly revealed; the SC width was estimated to be about 76 nm under zero bias condition. In order to study dynamic interrelation between the SC layer and bias conditions, the variation of the electrostatic potential due to change of the SC widths respond to the different bias conditions have also been examined. The measured SC layers are found to vary between 68 nm and 91 nm, which correspond to the saturated SC layers at the GaN-Au contact under the forward and reverse bias conditions, respectively. By plotting the square widths of the SC layer against the applied voltages, donor density of GaN NWs was derived to be about 4.3*106 cm−3. Our experiments demonstrate that in-situ electron holography under electric field can be a useful method to investigate SC layers and donor density in single NW and other heterostructures.

  16. Space-Charge Effect

    International Nuclear Information System (INIS)

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented. (author)

  17. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  18. Space charge effects of CSR

    International Nuclear Information System (INIS)

    Liu Yong; Xia Jiawen; Xu Xiangyang; Lu Xiaowen; Wu Junli

    2000-01-01

    Cooler Storage Ring (CSR), and upgrading program planned at the Heavy Ion Research Facility in Lanzhou (HIRFL), will supply beams with higher quality and intensity. Space charge effects should be considered due to this magnitude of intensity in CSR. The concept and some phenomena of space charge effects are discussed. Space charge intensity limit and space charge tune shift of normal CSR operation are given. It is of significance for the construction and operation of the future facility

  19. Charge state of oxide layer of SIMOX-structures

    CERN Document Server

    Askinazi, A Y; Dmitriev, V A; Miloglyadova, L V

    2001-01-01

    The charge state of the oxide layer of the SIMOX-structures, obtained in the course of forming the oxide layers, bricked up in the silicon volume, through the oxygen ions implantation into the Si, is studied. The charge state of the given structures is studied through the method of the layer-by-layer profiling, which makes it possible to obtain the dependence of the plane zones potential on the oxide layer thickness. It is established, that during the process of the SIMOX-structures formation in the oxide layer near the boundary with the Si there appear defects, responsible for the charge. The radiation from the near-the-ultraviolet (NUV) area without the applied electric field neutralizes the given charge. The simultaneous impact of the NUV-radiation and electric field leads to the formation of significantly positive charge

  20. Charged particle layers in the Debye limit.

    Science.gov (United States)

    Golden, Kenneth I; Kalman, Gabor J; Kyrkos, Stamatios

    2002-09-01

    We develop an equivalent of the Debye-Hückel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r--> infinity limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation.

  1. Charged particle layers in the Debye limit

    International Nuclear Information System (INIS)

    Golden, Kenneth I.; Kalman, Gabor J.; Kyrkos, Stamatios

    2002-01-01

    We develop an equivalent of the Debye-Hueckel weakly coupled equilibrium theory for layered classical charged particle systems composed of one single charged species. We consider the two most important configurations, the charged particle bilayer and the infinite superlattice. The approach is based on the link provided by the classical fluctuation-dissipation theorem between the random-phase approximation response functions and the Debye equilibrium pair correlation function. Layer-layer pair correlation functions, screened and polarization potentials, static structure functions, and static response functions are calculated. The importance of the perfect screening and compressibility sum rules in determining the overall behavior of the system, especially in the r→∞ limit, is emphasized. The similarities and differences between the quasi-two-dimensional bilayer and the quasi-three-dimensional superlattice are highlighted. An unexpected behavior that emerges from the analysis is that the screened potential, the correlations, and the screening charges carried by the individual layers exhibit a marked nonmonotonic dependence on the layer separation

  2. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    Science.gov (United States)

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  3. Spectral investigation of a complex space charge structure in plasma

    International Nuclear Information System (INIS)

    Gurlui, S.; Dimitriu, D. G.; Ionita, C.; Schrittwieser, R. W.

    2009-01-01

    Complex space charge structures bordered by electrical double layers were spectrally investigated in argon plasma in the domain 400-1000 nm, identifying the lines corresponding to the transitions from different excited states of argon. The electron excitation temperature in the argon atoms was estimated from the spectral lines intensity ratio. (authors)

  4. Space charge effects: tune shifts and resonances

    International Nuclear Information System (INIS)

    Weng, W.T.

    1986-08-01

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs

  5. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  6. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  7. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  8. Single-Bunch Stability With Direct Space Charge

    CERN Multimedia

    Oeftiger, Adrian

    2017-01-01

    Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.

  9. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-07-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. We briefly discuss the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Author)

  10. Double layers in space

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-01-01

    For more than a decade it has been realised that electrostatic double layers are likely to occur in space. The author briefly discusses the theoretical background of such double layers. Most of the paper is devoted to an account of the observational evidence for double layers in the ionosphere and magnetosphere of the Earth. Several different experiments are reviewed including rocket and satellite measurements and ground based observations. It is concluded that the observational evidence for double layers in space is very strong. The experimental results indicate that double layers with widely different properties may exist in space. (Auth.)

  11. Time dependent charging of layer clouds in the global electric circuit

    Science.gov (United States)

    Zhou, Limin; Tinsley, Brian A.

    2012-09-01

    There is much observational data consistent with the hypothesis that the ionosphere-earth current density (Jz) in the global electric circuit, which is modulated by both solar activity and thunderstorm activity, affects atmospheric dynamics and cloud cover. One candidate mechanism involves Jz causing the accumulation of space charge on droplets and aerosol particles, that affects the rate of scavenging of the latter, notably those of Cloud Condensation Nuclei (CCN) and Ice Forming Nuclei (IFN) (Tinsley, 2008, 2010). Space charge is the difference, per unit volume, between total positive and total negative electrical charge that is on droplets, aerosol particles (including the CCN and IFN) and air ions. The cumulative effects of the scavenging in stratiform clouds and aerosol layers in an air mass over the lifetime of the aerosol particles of 1-10 days affects the concentration and size distribution of the CCN, so that in subsequent episodes of cloud formation (including deep convective clouds) there can be effects on droplet size distribution, coagulation, precipitation processes, and even storm dynamics.Because the time scales for charging for some clouds can be long compared to cloud lifetimes, the amount of charge at a given time, and its effect on scavenging, depend more on the charging rate than on the equilibrium charge that would eventually be attained. To evaluate this, a new time-dependent charging model has been developed. The results show that for typical altostratus clouds with typical droplet radii 10 μm and aerosol particles of radius of 0.04 μm, the time constant for charging in response to a change in Jz is about 800 s, which is comparable to cloud formation and dissipation timescales for some cloud situations. The charging timescale is found to be strong functions of altitude and aerosol concentration, with the time constant for droplet charging at 2 km in air with a high concentration of aerosols being about an hour, and for clouds at 10 km in

  12. Intra- and inter-layer charge redistribution in biased bilayer graphene

    Directory of Open Access Journals (Sweden)

    Rui-Ning Wang

    2016-03-01

    Full Text Available We investigate the spatial redistribution of the electron density in bilayer graphene in the presence of an interlayer bias within density functional theory. It is found that the interlayer charge redistribution is inhomogeneous between the upper and bottom layers and the transferred charge from the upper layer to the bottom layer linearly increases with the external voltage which further makes the gap at K point linearly increase. However, the band gap will saturate to 0.29 eV in the strong-field regime, but it displays a linear field dependence at the weak-field limit. Due to the AB-stacked way, two carbon atoms per unit cell in the same layer are different and there is also a charge transfer between them, making the widths of π valence bands reduced. In the bottom layer, the charge transfers from the direct atoms which directly face another carbon atom to the indirect atoms facing the center of the hexagon on the opposite layer, while the charge transfers from the indirect atoms to the direct atoms in the upper layer. Furthermore, there is a diploe between the upper and bottom layers which results in the reduction of the interlayer hopping interaction.

  13. Space charge tracking code for a synchrotron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ottinger, M.B.; Tajima, T. [Univ. of Texas, Austin, TX (United States); Hiramoto, K. [Hitachi Ltd., Hitachi, Ibaraki (Japan). Hitachi Research Lab.

    1997-06-01

    An algorithm has been developed to compute particle tracking, including self-consistent space charge effects for synchrotron accelerators. In low-energy synchrotrons space charge plays a central role in enhancing emittance of the beam. The space charge effects are modeled by mutually interacting (through the Coulombic force) N cylindrical particles (2-{1/2}-dimensional dynamics) whose axis is in the direction of the equilibrium particle flow. On the other hand, their interaction with synchrotron lattice magnets is treated with the thin-lens approximation and in a fully 3-dimensional way. Since the existing method to treat space charge fully self-consistently involved 3-D space charge effect computation, the present method allows far more realistic physical parameters and runs in far shorter time (about 1/20). Some examples on space charge induced instabilities are presented.

  14. Space-charge-limit instabilities in electron beams

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Sullivan, D.J.

    1983-01-01

    The method of characteristics and multiple-scaling perturbation techniques are used to study the space-charge instability of electron beams. It is found that the stable oscillating state (virtual cathode) created when the space-charge limit is exceeded is similar to a collisionless shock wave. The oscillatory solution originates at the bifurcation point of two unstable steady states. Complementary behavior (virtual anode) results when an ion beam exceeds its space-charge limit. The virtual cathode can also exist in the presence of a neutralizing heavy-ion background. The Pierce instability, where the electron and ion charge densities are equal, is a special case of this broader class. Estimates of the nonlinear growth rate of the instability at the space-charge limit are given

  15. Charge distributions in transverse coordinate space and in impact parameter space

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Dae Sung [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)], E-mail: dshwang@slac.stanford.edu; Kim, Dong Soo [Department of Physics, Kangnung National University, Kangnung 210-702 (Korea, Republic of); Kim, Jonghyun [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2008-11-27

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  16. Charge distributions in transverse coordinate space and in impact parameter space

    OpenAIRE

    Hwang, Dae Sung; Kim, Dong Soo; Kim, Jonghyun

    2008-01-01

    We study the charge distributions of the valence quarks inside nucleon in the transverse coordinate space, which is conjugate to the transverse momentum space. We compare the results with the charge distributions in the impact parameter space.

  17. Direct convertor based upon space charge effects

    International Nuclear Information System (INIS)

    Gitomer, S.J.

    1977-01-01

    A device capable of converting directly the kinetic energy of charged particles into electrical energy is considered. The device differs from earlier ones (such as Post's periodic focus electrostatic direct convertor) in that it makes use of the space charge repulsion in a high density charged particle beam. The beam is directed into a monotonic decelerating electrostatic field of a several-stage planar-finned structure. The collector fins coincide with vacuum equipotential surfaces. Space charge blowup of the beam directs particles onto various collector fins. The energy efficiency of a 4-stage device has been determined using a numberical simulation approach. We find that efficiencies approaching 75 percent are possible. An approximate scaling law is derived for the space charge based direct converter and a comparison is made to the periodic focus direct convertor. We find the space charge based direct convertor to be superior to a number of ways

  18. Booted domain wall and charged Kaigorodov space

    International Nuclear Information System (INIS)

    Cai Ronggen

    2003-01-01

    The Kaigorodov space is a homogeneous Einstein space and it describes a pp-wave propagating in anti-de Sitter space. It is conjectured in the literature that M-theory or string theory on the Kaigorodov space times a compact manifold is dual to a conformal field theory in an infinitely-boosted frame with constant momentum density. In this Letter we present a charged generalization of the Kaigorodov space by boosting a non-extremal charged domain wall to the ultrarelativity limit where the boost velocity approaches the speed of light. The finite boost of the domain wall solution gives the charged generalization of the Carter-Novotny-Horsky metric. We study the thermodynamics associated with the charged Carter-Novotny-Horsky space and discuss its relation to that of the static black domain walls and its implications in the domain wall/QFT (quantum field theory) correspondence

  19. Space-charge calculations in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.

    1993-05-01

    One obvious bottleneck of achieving high luminosity in hadron colliders, such as the Superconducting Super Collider (SSC), is the beam emittance growth, due to space-charge effects in low energy injector synchrotrons. Although space-charge effects have been recognized since the alternating-gradient synchrotron was invented, and the Laslett tune shift usually calculated to quantify these effects, our understanding of the effects is limited, especially when the Laslett tune shift becomes a large fraction of the integer. Using the Simpsons tracking code, which we developed to study emittance preservation issues in proton synchrotrons, we investigated space-charge effects in the SSC Low Energy Booster (LEB). We observed detailed dependence on parameters such as beam intensity, initial emittance, injection energy, lattice function, and longitudinal motion. A summary of those findings, as well as the tracking technique we developed for the study, are presented.

  20. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George

    2011-01-01

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10 -2 ∼10 6 Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  1. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George, E-mail: jh210v@ecs.soton.ac.uk [School of Electronics and Computer Science, University of Southampton (United Kingdom)

    2011-08-12

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10{sup -2}{approx}10{sup 6}Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  2. Synthesis and charge storage properties of double-layered NiSi nanocrystals

    International Nuclear Information System (INIS)

    Yoon, Jong-Hwan

    2010-01-01

    Based on bidirectional diffusion of Ni atoms, double-layered nickel silicide (NiSi) nanocrystals (NCs) for multilevel charge storage were fabricated, and their charge storage properties were examined. The double layer was produced by long-term thermal annealing (for 4 h at 900 o C) of a sandwich structure comprised of a thin Ni film of 0.3 nm sandwiched between two silicon-rich oxide (SiO 1.36 ) layers. Transmission electron microscopic image clearly exhibits a distinct NiSi nanocrystal double layer with a gap of about 7 nm between the mean positions of particle distribution in each NC layer. Capacitance-voltage measurements on the metal/oxide/semiconductor (MOS) capacitors with the double-layered NiSi nanocrystals are shown to have the apparent two plateaus of charge storage, the large memory window of about 9 V and the improved charge retention stability.

  3. Silver nanoparticles as a key feature of a plasma polymer composite layer in mitigation of charge injection into polyethylene under dc stress

    International Nuclear Information System (INIS)

    Milliere, L; Makasheva, K; Laurent, C; Despax, B; Boudou, L; Teyssedre, G

    2016-01-01

    The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm −1 , 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm −1 ) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection

  4. Longitudinal Space Charge in the SPS

    CERN Document Server

    Lasheen, Alexandre

    2016-01-01

    Longitudinal instabilities due to the SPS beam coupling impedance are a major issue for future projects and it is essential to have an accurate SPS impedance model to study them. The longitudinal space charge effect can be modelled by a pure reactive impedance and should also be included in simulations as it may have an impact at low energy. In this Note, the effect of the longitudinal space charge in the SPS is evaluated by taking into account the variation of the transverse beam size and vacuum chamber geometry along the ring. Scaling laws are used to investigate what are the most important parameters for the evaluation of the longitudinal space charge impedance.

  5. A space-charge treatment of the increased concentration of reactive species at the surface of a ceria solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Zurhelle, Alexander F.; Souza, Roger A. de [Institute of Physical Chemistry, RWTH Aachen University (Germany); Tong, Xiaorui; Mebane, David S. [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV (United States); Klein, Andreas [Institute of Materials Science, TU Darmstadt (Germany)

    2017-11-13

    A space-charge theory applicable to concentrated solid solutions (Poisson-Cahn theory) was applied to describe quantitatively as a function of temperature and oxygen partial pressure published data obtained by in situ X-ray photoelectron spectroscopy (XPS) for the concentration of Ce{sup 3+} (the reactive species) at the surface of the oxide catalyst Ce{sub 0.8}Sm{sub 0.2}O{sub 1.9}. In contrast to previous theoretical treatments, these calculations clearly indicate that the surface is positively charged and compensated by an attendant negative space-charge zone. The high space-charge potential that develops at the surface (>0.8 V) is demonstrated to be hardly detectable by XPS measurements because of the short extent of the space-charge layer. This approach emphasizes the need to take into account defect interactions and to allow deviations from local charge neutrality when considering the surfaces of oxide catalysts. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene-gold hybrid systems.

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhu, Yi; Yan, Han; Pei, Jiajie; Myint, Ye Win; Zhang, Shuang; Lu, Yuerui

    2016-01-07

    The surface potential and the efficiency of interfacial charge transfer are extremely important for designing future semiconductor devices based on the emerging two-dimensional (2D) phosphorene. Here, we directly measured the strong layer-dependent surface potential of mono- and few-layered phosphorene on gold, which is consistent with the reported theoretical prediction. At the same time, we used an optical way photoluminescence (PL) spectroscopy to probe charge transfer in the phosphorene-gold hybrid system. We firstly observed highly anisotropic and layer-dependent PL quenching in the phosphorene-gold hybrid system, which is attributed to the highly anisotropic/layer-dependent interfacial charge transfer.

  7. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  8. Charge separation in contact systems with CdSe quantum dot layers

    Energy Technology Data Exchange (ETDEWEB)

    Zillner, Elisabeth Franziska

    2013-03-06

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO{sub 2} and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer ({approx} 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  9. Charge separation in contact systems with CdSe quantum dot layers

    International Nuclear Information System (INIS)

    Zillner, Elisabeth Franziska

    2013-01-01

    Quantum dot (QD) solar cells are a fast developing area in the field of solution processed photovoltaics. Central aspects for the application of QDs in solar cells are separation and transport of charge carriers in the QD layers and the formation of charge selective contacts. Even though efficiencies of up to 7% were reached in QD solar cells, these processes are not yet fully understood. In this thesis the mechanisms of charge separation, transport and recombination in CdSe QD layers and layer systems were studied. Charge separation was measured via surface photovoltage (SPV) at CdSe QD layers with thicknesses in the range of monolayers. To determine the influence of interparticle distance of QDs and trap states on the surface of QDs on charge separation, QDs with four different surfactant layers were studied. Layers of CdSe QDs were prepared on ITO, Si, SiO 2 and CdS by dip coating under inert atmosphere. The layers were characterized by Rutherford backscattering spectrometry, UV-vis spectroscopy, step profilometry and scanning electron microscopy to determine the areal density, the absorption and thickness of CdSe QD monolayers. SPV measurements show that initial charge separation from the CdSe QDs on ITO only happened from the fi rst monolayer of QDs. Electrons, photo-excited in the fi rst monolayer of CdSe QDs, were trapped on the ITO surface. The remaining free holes were trapped in surface states and/or diffused into the neighboring QD layers. The thick surfactant layer (∼ 1.6 nm) of pristine QDs had to be reduced by washing and/or ligand exchange for separation of photo-excited charge carriers. Both, interparticle distance and trap density, influenced the processes of charge separation and recombination. SPV transients of CdSe monolayers could be described by a single QD approximation model, based on Miller-Abrahams hopping of holes between the delocalized excitonic state, traps on the surface of the QD and the filled trap on the ITO surface

  10. Spin-coupled charge dynamics in layered manganite crystals

    CERN Document Server

    Tokura, Y; Ishikawa, T

    1998-01-01

    Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.

  11. Si/SiC heterojunction optically controlled transistor with charge compensation layer

    Directory of Open Access Journals (Sweden)

    Pu Hongbin

    2016-01-01

    Full Text Available A novel n-SiC/p-Si/n-Si optically controlled transistor with charge compensation layer has been studied in the paper. The performance of the device is simulated using Silvaco Atlas tools, which indicates excellent performances of the device in both blocking state and conducting state. The device also has a good switching characteristic with 0.54μs as rising time and 0.66μs as falling time. With the charge compensation layer, the breakdown voltage and the spectral response intensity of the device are improved by 90V and 33A/W respectively. Compared with optically controlled transistor without charge compensation layer, the n-SiC/p-Si/n-Si optically controlled transistor with charge compensation layer has a better performance.

  12. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  13. Study of space--charge effect by computer

    International Nuclear Information System (INIS)

    Sasaki, T.

    1982-01-01

    The space--charge effect in high density electron beams (beam current approx.2 μA) focused by a uniform magnetic field is studied computationally. On an approximation of averaged space-- charge force, a theory of trajectory displacements of beam electrons is developed. The theory shows that the effect of the averaged space--charge force appears as a focal length stretch. The theory is confirmed not only qualitatively but also quantitatively by simulations. Empirical formulas for the trajectory displacement and the energy spread are presented. A comparison between the empirical formulas and some theoretical formulas is made, leading to a severe criticism on the theories of energy spreads

  14. Self-excitation of space charge waves

    DEFF Research Database (Denmark)

    Lyuksyutov, Sergei; Buchhave, Preben; Vasnetsov, Mikhail

    1997-01-01

    We report a direct observation of space charge waves in photorefractive crystals with point group 23 (sillenites) based on their penetration into an area with uniform light illumination. It is shown experimentally that the quality factor of the waves increases substantially with respect to what c...... current theory predicts [B. Sturman el al., Appl. Phys. A 55, 235 (1992)]. This results in the appearance of strong spontaneous beams caused by space charge wave self-excitation....

  15. The role of interfacial water layer in atmospherically relevant charge separation

    Science.gov (United States)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no

  16. Incorporating space charge in the transverse phase-space matching and tomography at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Kourkafas, Georgios

    2015-11-15

    The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.

  17. Incorporating space charge in the transverse phase-space matching and tomography at PITZ

    International Nuclear Information System (INIS)

    Kourkafas, Georgios

    2015-11-01

    The ever-expanding achievements in the field of particle accelerators push their specifications to very demanding levels. The performance of many modern applications depends on their ability to be operated with high bunch charges confined in small volumes. However, the consequence of increased intensity is strong space-charge forces, which perplex the beam manipulation and undermine the beam quality. As a result, reliable methods are needed to control and measure the accelerated particles under these extraordinary conditions. The phase space tomography is a diagnostic technique which can reveal details of the transverse beam parameters for a wide range of intensities and energies, with minimal influence from the machine instabilities, in a quasi non-destructive way. The accuracy of this method relies on the precise knowledge and control of the particle dynamics under the influence of space charge in different stages of the measurement. On the one hand, the matching of the beam to the measurement's design transverse parameters requires a procedure which efficiently compensates the effects of space charge. Depending on the structure of the magnetic lattice, different aspects of these effects prevail, therefore different strategies have to be developed. On the other hand, the impact of the space-charge forces on the phase-space transformations during the data acquisition has to be included in the model which is used for the tomographic reconstruction. The aim of this thesis is to provide and test time-efficient solutions for the incorporation of space charge in the transverse beam matching and phase space tomography.

  18. Resonance behavior in the presence of space charge

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    An analysis is presented of the resonance behavior of particle beams in the presence of space charge fields. Since self-consistent requirements are ignored, the results describe onset or early behavior. It is shown that in a beam of uniform current resonances excited by magnetic field errors are stabilized by the detuning effect of the self-field space charge force. This situation is changed when a radiofrequency accelerating field is applied. As beam bunching results after rf turn-on, the space charge force becomes modulated along the bunches, vanishing at the ends. At these regions of small or vanishing space charge, stabilization from non-linear detuning tends to disappear, thus leaving particles susceptible to resonance blow-up. This picture of the effect of beam bunching can be studied by considering the phase space structure for particles at different positions along the bunches. A somewhat unusual conclusion is made on the use of this analysis to model beam capture in a synchrotron at low energy

  19. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  20. Equilibrium phase-space distributions and space charge limits in linacs

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1977-10-01

    Limits on beam current and emittance in proton and heavy ion linear accelerators resulting from space charge forces are calculated. The method involves determining equilibrium distributions in phase space using a continuous focusing, no acceleration, model in two degrees of freedom using the coordinates r and z. A nonlinear Poisson equation must be solved numerically. This procedure is a matching between the longitudinal and transverse directions to minimize the effect of longitudinal-transverse coupling which is believed to be the main problem in emittance growth due to space charge in linacs. Limits on the Clinton P. Anderson Meson Physics Facility (LAMPF) accelerator performance are calculated as an example. The beam physics is described by a few space charge parameters so that accelerators with different physical parameters can be compared in a natural way. The main result of this parameter study is that the requirement of a high-intensity beam is best fulfilled with a low-frequency accelerator whereas the requirement of a high-brightness beam is best fulfilled with a high-frequency accelerator

  1. Three-dimensional space-charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1980-09-01

    A method is presented for calculating space-charge forces on individual particles in a particle tracing simulation code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface. When the boundary condition is defined by an impressed radio-frequency field, the external electric fields as well as the space-charge fields are determined. A least squares fitting procedure is used to calculate the coefficients of expansion functions, which need not be orthogonal nor individually satisfy the boundary condition

  2. Conductivity and Space Charges in PE with Additives

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, J.

    2003-01-01

    temperatures. Space charge formation under an applied electrical field of 20 kV/mm was investigated by means of the pulse-electro-acoustic method (PEA) at room temperature. The results were compared to space charge formation and conductivity in common LDPE. The measurements showed considerable differences...... between materials and only minor influence of crosslinking process and the addition of antioxidant with respect to the electrical properties of the material. Possible correlations between conductivity and space charge formation are discussed in the paper. The relevance of the findings for application...

  3. Klystron - Space-charge limited flow, guns, Perveance

    International Nuclear Information System (INIS)

    Isagawa, S.

    1999-01-01

    This paper treats Thermionic emission, Cathode as an e - emitter, Space-charge limited effect and 3/2 power law, Perveance, Beam spread due to space charge, Pierce guns, Magnetically immersed guns, Method of gun design including simulations, and Examples, mainly treating E3786, which attendees will operate above 1 MW-CW in a practical exercise course at KEK. (author). 74 refs

  4. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  5. Dynamic space charge behaviour in polymeric DC cables

    DEFF Research Database (Denmark)

    Rasmussen, Claus Nygaard; Holbøll, Joachim; Henriksen, Mogens

    2002-01-01

    The use of extruded insulation for DC cables involves a risk of local electric field enhancement, caused by a space charge build-up within the dielectric. In this work, the theory of charge generation and transport in polymers is applied in a numerical computer model in order to predict...... the formation and transport of space charges in a polymeric dielectric. The model incorporates the processes of field assisted electron-hole pair generation from impurity atoms, trapping and charge injection at the electrodes. Its aim has been to study the field- and temperature dependent dynamic behaviour...

  6. Nonlinear periodic space-charge waves in plasma

    International Nuclear Information System (INIS)

    Kovalev, V. A.

    2009-01-01

    A solution is obtained in the form of coupled nonlinear periodic space-charge waves propagating in a magnetoactive plasma. The wave spectrum in the vicinity of the critical point, where the number of harmonics increases substantially, is found to fall with harmonic number as ∝ s -1/3 . Periodic space-charge waves are invoked to explain the zebra pattern in the radio emission from solar flares.

  7. Stability of anisotropic beams with space charge

    International Nuclear Information System (INIS)

    Hofmann, I.

    1997-07-01

    We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)

  8. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  9. Influence of the charge double layer on solid oxide fuel cell stack behavior

    Science.gov (United States)

    Whiston, Michael M.; Bilec, Melissa M.; Schaefer, Laura A.

    2015-10-01

    While the charge double layer effect has traditionally been characterized as a millisecond phenomenon, longer timescales may be possible under certain operating conditions. This study simulates the dynamic response of a previously developed solid oxide fuel cell (SOFC) stack model that incorporates the charge double layer via an equivalent circuit. The model is simulated under step load changes. Baseline conditions are first defined, followed by consideration of minor and major deviations from the baseline case. This study also investigates the behavior of the SOFC stack with a relatively large double layer capacitance value, as well as operation of the SOFC stack under proportional-integral (PI) control. Results indicate that the presence of the charge double layer influences the SOFC stack's settling time significantly under the following conditions: (i) activation and concentration polarizations are significantly increased, or (ii) a large value of the double layer capacitance is assumed. Under normal (baseline) operation, on the other hand, the charge double layer effect diminishes within milliseconds, as expected. It seems reasonable, then, to neglect the charge double layer under normal operation. However, careful consideration should be given to potential variations in operation or material properties that may give rise to longer electrochemical settling times.

  10. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    Science.gov (United States)

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Space charge in nanostructure resonances

    Science.gov (United States)

    Price, Peter J.

    1996-10-01

    In quantum ballistic propagation of electrons through a variety of nanostructures, resonance in the energy-dependent transmission and reflection probabilities generically is associated with (1) a quasi-level with a decay lifetime, and (2) a bulge in electron density within the structure. It can be shown that, to a good approximation, a simple formula in all cases connects the density of states for the latter to the energy dependence of the phase angles of the eigen values of the S-matrix governing the propagation. For both the Lorentzian resonances (normal or inverted) and for the Fano-type resonances, as a consequence of this eigen value formula, the space charge due to filled states over the energy range of a resonance is just equal (for each spin state) to one electron charge. The Coulomb interaction within this space charge is known to 'distort' the electrical characteristics of resonant nanostructures. In these systems, however, the exchange effect should effectively cancel the interaction between states with parallel spins, leaving only the anti-parallel spin contribution.

  12. Poling effect of a charge-trapping layer in glass waveguides

    DEFF Research Database (Denmark)

    Ren, Yitao; Marckmann, Carl Johan; Jacobsen, Rune Shim

    2004-01-01

    Germanium-doped multi-layer waveguides containing a silicon oxy-nitride layer as a charge trapper are thermally poled in an air environment. Compared to the waveguides without the trapping layer, the induced linear electro-optic coefficient increases more than 20%. A comparable rise in the intern...

  13. Charge migration contribution to the sensitive layer of a silicon detector

    International Nuclear Information System (INIS)

    Croitoru, N.; Seidman, A.; Rancoita, P.G.

    1984-01-01

    The charge migration from the field-free region has been investigated, by comparing the expected peak position (which takes into account the depleted layer only) of the energy-loss of relativistic electrons with the measured one. The measurement sensitive layer was found to be systematically larger than the depleted one. This effect is accounted for the charge migration to diffusion

  14. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  15. Electrical charging characteristics of the hetero layer film for reducing water-borne paint contamination in electrostatic rotary atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Imanishi, T.; Yoshida, O.; Mizuno, A. [ABB Japan, Tokyo (Japan)

    2010-07-01

    The electrostatic rotary atomizer is the most efficient of all liquid spray painting methods. Its use minimizes the waste of paint and reduces emissions of volatile organic compounds (VOCs). Water-borne painting processes which use water-soluble paint also reduce VOC emissions, but the atomizer body is easily contaminated by the paint mists. The Institute of Electrical and Electronics Engineers (IEEE) considered the causes of water-borne paint contamination and presented the experimental results of a contamination proof system in which the atomizer is surrounded by the repelling film that is charged and repels the incoming paint droplets. Among the key factors for repelling film were electrical properties, such as low capacitance and high insulation to keep high surface potential. Charging uniformity was found to be among the most important characteristic to avoid contamination. The pulse electro-acoustic (PEA) method was used to check these features using space charge measurements inside the repelling film. It was concluded that hetero layer films have more uniform charging characteristics than single layer films.

  16. Space-Charge Effects in a Gas Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D.D.

    2010-12-03

    Discussion of space-charge effects in a photoluminescence cell that will be used as a nondisruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  17. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  18. Transfer of electrical space charge from corona between ground and thundercloud: Measurements and modeling

    Science.gov (United States)

    Soula, Serge

    1994-01-01

    The evolution of the vertical electric field profile deduced from simultaneous field measurements at several levels below a thundercloud shows the development of a space charge layer at least up to 600 m. The average charge density in the whole layer from 0 m to 600 m can reach about 1 nC m(exp -3). The ions are generated at the ground by corona effect and the production rate is evaluated with a new method from the comparison of field evolutions at the ground and at altitude after a lightning flash. The modeling of the relevant processes shows tht ground corona accounts for the observed field evolutions and that the aerosol particles concentration has a very large effect on the evolution of corona ions. However, with a realistic value for this concentration a large amount of ground corona ions reach the level of 600 m.

  19. Reduction of space charge breakdown in e-beam irradiated nano/polymethyl methacrylate composites

    International Nuclear Information System (INIS)

    Zheng Feihu; Zhang Yewen; An Zhenlian; Dong Jianxing; Lei Qingquan

    2013-01-01

    Fast discharge of numerous space charges in dielectric materials can cause space charge breakdown. This letter reports the role of nanoparticles in affecting space charge breakdown of nano/polymethyl methacrylate composites. Space charge distributions in the composites, implanted by electron beam irradiation, were measured by pressure wave propagation method. The results show that the nanoparticles have significant effects on the isothermal charge decay and space charge breakdown in the nanocomposites. The resistance to space charge breakdown in the nanocomposites is attributed to the combined action of the introduction of deep trapping states and the scattering effect by the added nanoparticles.

  20. Implementation of Space Charge Forces in BimBim

    CERN Document Server

    Gottlob, Emmanuel; Oeftiger, Adrian

    An numerical algorithm is described for the implementation of linearised coherent space charge forces into BimBim, an eigenvalue solver for the coherent modes of oscillation of multibunch beams in the presence of beam coupling impedance, beam-beam, transverse feedback and now space charge effects. First results obtained with the model are described and compared to existing results where applicable.

  1. Low-energy beam transport using space-charge lenses

    International Nuclear Information System (INIS)

    Meusel, O.; Bechtold, A.; Pozimski, J.; Ratzinger, U.; Schempp, A.; Klein, H.

    2005-01-01

    Space-charge lenses (SCL) of the Gabor type provide strong cylinder symmetric focusing for low-energy ion beams using a confined nonneutral plasma. They need modest magnetic and electrostatic field strength and provide a short installation length when compared to conventional LEBT-lenses like quadrupoles and magnetic solenoids. The density distribution of the enclosed space charge within the Gabor lens is given by the confinement in transverse and longitudinal directions. In the case of a positive ion beam, the space charge of the confined electron cloud may cause an overcompensation of the ion beam space-charge force and consequently focuses the beam. To investigate the capabilities of an SCL double-lens system for ion beam into an RFQ, a test injector was installed at IAP and put into operation successfully. Furthermore, to study the focusing capabilities of this lens at beam energies up to 500 keV, a high-field Gabor lens was built and installed downstream of the RFQ. Experimental results of the beam injection into the RFQ are presented as well as those of these first bunched beam-focusing tests with the 110 A keV He + beam

  2. Equivalent circuit modeling of space charge dominated magnetically insulated transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hiraoka, Kazuki; Nakajima, Mitsuo; Horioka, Kazuhiko

    1997-12-31

    A new equivalent circuit model for space charge dominated MITLs (Magnetically Insulated Transmission Lines) was developed. MITLs under high power operation are dominated with space charge current flowing between anode and cathode. Conventional equivalent circuit model does not account for space charge effects on power flow. The model was modified to discuss the power transportation through the high power MITLs. With this model, it is possible to estimate the effects of space charge current on the power flow efficiency, without using complicated particle code simulations. (author). 3 figs., 3 refs.

  3. Stochastic Coulomb interactions in space charge limited electron emission

    NARCIS (Netherlands)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    A Monte Carlo simulation tool, which was used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics, was discussed. It was found that interactions in the space charge cloud affect the electron trajectories such that the velocity

  4. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  5. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  6. Beam test of a 12-layer scintillating-fiber charged-particle tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.; Howell, B.L.; Koltick, D.; McIlwain, R.L.; Schmitz, C.J.; Shibata, E.I.; Zhou, Z.; Baumbaugh, B.; Ivancic, M.; Jaques, J.; Kehoe, R.; Kelley, M.; Mahoney, M.; Marchant, J.; Ruchti, R.; Wayne, M.; Atac, M.; Baumbaugh, A.; Elias, J.E.; Romero, A.; Chrisman, D.; Park, J.; Adams, M.R.; Chung, M.; Goldberg, H.; Margulies, S.; Solomon, J.; Chaney, R.; Orgeron, J.; Armstrong, T.; Lewis, R.A.; Mitchell, G.S.; Moore, R.S.; Passaneau, J.; Smith, G.A.; Corcoran, M.; Adams, D.; Bird, F.; Fenker, H.; Regan, T.; Thomas, J. (Dept. of Physics, Purdue Univ., West Lafayette, IN (United States) Dept. of Physics, Univ. of Notre Dame, IN (United States) Fermilab, Batavia, IL (United States) Dept. of Physics, Univ. of California, Los Angeles, CA (United States) Dept. of Physics, Univ. of Illinois, Chicago, IL (United States) Dept. of Physics, Univ. of Texas, Richardson, TX (United States) Dept. of Physics, Pennsylvania State Univ., University Park, PA (United States) Dept. of Physics, Rice Univ

    1994-02-01

    A 96-channel, 3-superlayer, scintillating-fiber tracking system has been tested in a 5 GeV/c [pi][sup -] beam. The scintillating fibers were 830 [mu]m in diameter, spaced 850 [mu]m apart, and 4.3 m in length. They were coupled to 6 m long, clear fiber waveguides and finally to visible light photon counters. A spatial resolution of [approx]150 [mu]m for a double-layered ribbon was achieved with this tracking system. This first prototype of a charged-particle tracking system configured for the Solenoidal Detector Collaboration at the Superconducting Super Collider is a benchmark in verifying the expected number of photoelectrons from the fibers. (orig.)

  7. Determination of charged particle beam parameters with taking into account of space charge

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Poseryaev, A.V.; Shvedunov, V.I.

    2005-01-01

    One describes a procedure to determine the basic parameters of a paraxial axially-symmetric beam of charged particles taking account of space charge contribution. The described procedure is based on application of the general equation for beam envelope. Paper presents data on its convergence and resistance to measurement errors. The position determination error of crossover (stretching) and radius of beam in crossover is maximum 15% , while the emittance determination error depends on emittance and space charge correlation. The introduced procedure was used to determine parameters of the available electron gun 20 keV energy beam with 0.64 A current. The derived results turned to agree closely with the design parameters [ru

  8. Space-Charge Experiments at the CERN Proton Synchrotron

    CERN Document Server

    Franchetti, Giuliano; Hofmann, I; Martini, M; Métral, E; Qiang, J; Ryne, D; Steerenberg, R; CFA Beam Dynamics Workshop “High Intensity and Brightness Hadron Beams”

    2005-01-01

    Benchmarking of the simulation codes used for the design of the next generation of high beam power accelerators is of paramount importance due to the very demanding requirements on the level of beam losses. This is usually accomplished by comparing simulation results against available theories, and more importantly, against experimental observations. To this aim, a number of well-defined test cases, obtained by accurate measurements made in existing machines, are of great interest. Such measurements have been made in the CERN Proton Synchrotron to probe three space-charge effects: (i) transverse emittance blow-up due to space-charge induced crossing of the integer or half-integer stop-band, (ii) space-charge and octupole driven resonance trapping, and (iii) intensity-dependent emittance transfer between the two transverse planes. The last mechanism is discussed in detail in this paper and compared to simulation predictions.

  9. Space-charge effects in Penning ion traps

    Science.gov (United States)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  10. Discrete element simulation of charging and mixed layer formation in the ironmaking blast furnace

    Science.gov (United States)

    Mitra, Tamoghna; Saxén, Henrik

    2016-11-01

    The burden distribution in the ironmaking blast furnace plays an important role for the operation as it affects the gas flow distribution, heat and mass transfer, and chemical reactions in the shaft. This work studies certain aspects of burden distribution by small-scale experiments and numerical simulation by the discrete element method (DEM). Particular attention is focused on the complex layer-formation process and the problems associated with estimating the burden layer distribution by burden profile measurements. The formation of mixed layers is studied, and a computational method for estimating the extent of the mixed layer, as well as its voidage, is proposed and applied on the results of the DEM simulations. In studying a charging program and its resulting burden distribution, the mixed layers of coke and pellets were found to show lower voidage than the individual burden layers. The dynamic evolution of the mixed layer during the charging process is also analyzed. The results of the study can be used to gain deeper insight into the complex charging process of the blast furnace, which is useful in the design of new charging programs and for mathematical models that do not consider the full behavior of the particles in the burden layers.

  11. Space charge effect in an accelerated beam

    Directory of Open Access Journals (Sweden)

    G. Stupakov

    2008-01-01

    Full Text Available It is usually assumed that the space charge effects in relativistic beams scale with the energy of the beam as γ^{-2}, where γ is the relativistic factor. We show that for a beam accelerated in the longitudinal direction there is an additional space charge effect in free space that scales as E/γ, where E is the accelerating field. This field has the same origin as the “electromagnetic mass of the electron” discussed in textbooks on electrodynamics. It keeps the balance between the kinetic energy of the beam and the energy of the electromagnetic field of the beam. We then consider the effect of this field on a beam generated in an rf gun and calculate the energy spread produced by this field in the beam.

  12. EBQ code: Transport of space-charge beams in axially symmetric devices

    Science.gov (United States)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  13. EBQ code: transport of space-charge beams in axially symmetric devices

    International Nuclear Information System (INIS)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present

  14. Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques

    Directory of Open Access Journals (Sweden)

    Chao Tang

    2016-01-01

    Full Text Available This paper focuses on the space charge behavior in oil-paper insulation systems used in power transformers. It begins with the importance of understanding the space charge behavior in oil-paper insulation systems, followed by the introduction of the pulsed electrostatic technique (PEA. After that, the research progress on the space charge behavior of oil-paper insulation during the recent twenty years is critically reviewed. Some important aspects such as the environmental conditions and the acoustic wave recovery need to be addressed to acquire more accurate space charge measurement results. Some breakthroughs on the space charge behavior of oil-paper insulation materials by the research team at the University of Southampton are presented. Finally, future work on space charge measurement of oil-paper insulation materials is proposed.

  15. Stochastic Coulomb interactions in space charge limited electron emission

    International Nuclear Information System (INIS)

    Nijkerk, M.D.; Kruit, P.

    2004-01-01

    Emission models that form the basis of self-consistent field computations make use of the approximation that emitted electrons form a smooth space charge jelly. In reality, electrons are discrete particles that are subject to statistical Coulomb interactions. A Monte Carlo simulation tool is used to evaluate the influence of discrete space charge effects on self-consistent calculations of cathode-ray tube optics. We find that interactions in the space charge cloud affect the electron trajectories such that the velocity distribution is Maxwellian, regardless of the current density. Interactions near the emitter effectively conserve the Maxwellian distribution. The surprising result is that the width of the distribution of transversal velocities does not change. The distribution of longitudinal velocities does broaden, as expected from existing theories

  16. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  17. Modulating the Electrochemical Performances of Layered Cathode Materials for Sodium Ion Batteries through Tuning Coulombic Repulsion between Negatively Charged TMO2 Slabs.

    Science.gov (United States)

    Li, Zheng-Yao; Wang, Huibo; Yang, Wenyun; Yang, Jinbo; Zheng, Lirong; Chen, Dongfeng; Sun, Kai; Han, Songbai; Liu, Xiangfeng

    2018-01-17

    Exploiting advanced layered transition metal oxide cathode materials is of great importance to rechargeable sodium batteries. Layered oxides are composed of negatively charged TMO 2 slabs (TM = transition metal) separated by Na + diffusion layers. Herein, we propose a novel insight, for the first time, to control the electrochemical properties by tuning Coulombic repulsion between negatively charged TMO 2 slabs. Coulombic repulsion can finely tailor the d-spacing of Na ion layers and material structural stability, which can be achieved by employing Na + cations to serve as effective shielding layers between TMO 2 layers. A series of O3-type Na x Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 (x = 1.0, 0.9, 0.8, and 0.7) have been prepared, and Na 0.7 Mn 1/3 Fe 1/3 Cu 1/6 Mg 1/6 O 2 shows the largest Coulombic repulsion between TMO 2 layers, the largest space for Na ion diffusion, the best structural stability, and also the longest Na-O chemical bond with weaker Coulombic attraction, thus leading to the best electrochemical performance. Meanwhile, the thermal stability depends on the Na concentration in pristine materials. Ex situ X-ray absorption (XAS) analysis indicates that Mn, Fe, and Cu ions are all electrochemically active components during insertion and extraction of sodium ion. This study enables some new insights to promote the development of advanced layered Na x TMO 2 materials for rechargeable sodium batteries in the future.

  18. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  19. Space charge effects in proton linear accelerators

    International Nuclear Information System (INIS)

    Prome, Michel

    1971-01-01

    Space charge difficulties are relatively well known because of the inconveniences they cause, but the physical mechanisms by which they operate are obscure; an attempt was made to explain some of these mechanisms. The method chosen involves a numerical simulation of the beam; computer programs describing beam dynamics with space charge are presented; they are used to check results obtained elsewhere. A series of experiments was performed demonstrating that coupling phenomena produce an equalization of r. m. s. velocities in the 3 directions; new quantity (sort of hyper-emittance) is introduced: its growth between the input and output of a given linac is proportional to the beam intensity. (author) [fr

  20. A double layer review

    International Nuclear Information System (INIS)

    Block, L.P.

    1977-06-01

    A review of the main results on electrostatic double layers (sometimes called space charge layers or sheaths) obtained from theory, and laboratory and space experiments up to the spring of 1977 is given. By means of barium jets and satellite probes, double layers have now been found at the altitudes, earlier predicted theoretically. The general potential distribution above the auroral zone, suggested by inverted V-events and electric field reversals, is corroborated. (author)

  1. Space charge beam dynamics studies for a pulsed spallation source accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.; Lessner, E.

    1995-12-31

    Feasibility studies for 2-GeV, 1-MW and 10-GeV, 5-MW rapid cycling synchrotrons (RCS) for spallation neutron sources have been completed. Both synchrotrons operate at a repetition rate of 30 Hz, and accelerate 1.04 {times} 10{sup 14} protons per pulse. The injection energy of the 2-GeV ring is 400 MeV, and the 10-GeV RCS accepts the beam from the 2-GeV machine. Work performed to-date includes calculation of the longitudinal space charge effects in the 400-MeV beam transfer line, and of both longitudinal and transverse space charge effects during the injection, capture and acceleration processes in the two rings. Results of space charge calculations in the rings led to proper choices of the working points and of rf voltage programs that prevents beam loss. Space charge effects in the 2-GeV synchrotron, in both transverse and longitudinal phase space, have major impact on the design due to the fact that the injection energy is 400 MeV. The design achieves the required performance while alleviating harmful effects due to space charge.

  2. Simulation of space charge effects in a synchrotron

    International Nuclear Information System (INIS)

    Machida, Shinji; Ikegami, Masanori

    1998-01-01

    We have studied space charge effects in a synchrotron with multi-particle tracking in 2-D and 3-D configuration space (4-D and 6-D phase space, respectively). First, we will describe the modelling of space charge fields in the simulation and a procedure of tracking. Several ways of presenting tracking results will be also mentioned. Secondly, it is discussed as a demonstration of the simulation study that coherent modes of a beam play a major role in beam stability and intensity limit. The incoherent tune in a resonance condition should be replaced by the coherent tune. Finally, we consider the coherent motion of a beam core as a driving force of halo formation. The mechanism is familiar in linac, and we apply it in a synchrotron

  3. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  4. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2009-01-01

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  5. Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries

    KAUST Repository

    Huang, Jing-Kai

    2018-01-04

    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn2(benzimidazolate)2(OH)2 at the air–water interface. The hydroxyl (−OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li–S battery shows that the Zn2(benzimidazolate)2(OH)2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.

  6. Space-charge Effect on Electroresistance in Metal-Ferroelectric-Metal capacitors

    Science.gov (United States)

    Tian, Bo Bo; Liu, Yang; Chen, Liu Fang; Wang, Jian Lu; Sun, Shuo; Shen, Hong; Sun, Jing Lan; Yuan, Guo Liang; Fusil, Stéphane; Garcia, Vincent; Dkhil, Brahim; Meng, Xiang Jian; Chu, Jun Hao

    2015-12-01

    Resistive switching through electroresistance (ER) effect in metal-ferroelectric-metal (MFM) capacitors has attracted increasing interest due to its potential applications as memories and logic devices. However, the detailed electronic mechanisms resulting in large ER when polarisation switching occurs in the ferroelectric barrier are still not well understood. Here, ER effect up to 1000% at room temperature is demonstrated in C-MOS compatible MFM nanocapacitors with a 8.8 nm-thick poly(vinylidene fluoride) (PVDF) homopolymer ferroelectric, which is very promising for silicon industry integration. Most remarkably, using theory developed for metal-semiconductor rectifying contacts, we derive an analytical expression for the variation of interfacial barrier heights due to space-charge effect that can interpret the observed ER response. We extend this space-charge model, related to the release of trapped charges by defects, to MFM structures made of ferroelectric oxides. This space-charge model provides a simple and straightforward tool to understand recent unusual reports. Finally, this work suggests that defect-engineering could be an original and efficient route for tuning the space-charge effect and thus the ER performances in future electronic devices.

  7. Longitudinal Phase Space Tomography with Space Charge

    CERN Document Server

    Hancock, S; Lindroos, M

    2000-01-01

    Tomography is now a very broad topic with a wealth of algorithms for the reconstruction of both qualitative and quantitative images. In an extension in the domain of particle accelerators, one of the simplest algorithms has been modified to take into account the non-linearity of large-amplitude synchrotron motion. This permits the accurate reconstruction of longitudinal phase space density from one-dimensional bunch profile data. The method is a hybrid one which incorporates particle tracking. Hitherto, a very simple tracking algorithm has been employed because only a brief span of measured profile data is required to build a snapshot of phase space. This is one of the strengths of the method, as tracking for relatively few turns relaxes the precision to which input machine parameters need to be known. The recent addition of longitudinal space charge considerations as an optional refinement of the code is described. Simplicity suggested an approach based on the derivative of bunch shape with the properties of...

  8. Three-dimensional space charge distribution measurement in electron beam irradiated PMMA

    International Nuclear Information System (INIS)

    Imaizumi, Yoichi; Suzuki, Ken; Tanaka, Yasuhiro; Takada, Tatsuo

    1996-01-01

    The localized space charge distribution in electron beam irradiated PMMA was investigated using pulsed electroacoustic method. Using a conventional space charge measurement system, the distribution only in the depth direction (Z) can be measured assuming the charges distributed uniformly in the horizontal (X-Y) plane. However, it is difficult to measure the distribution of space charge accumulated in small area. Therefore, we have developed the new system to measure the three-dimensional space charge distribution using pulsed electroacoustic method. The system has a small electrode with a diameter of 1mm and a motor-drive X-Y stage to move the sample. Using the data measured at many points, the three-dimensional distribution were obtained. To estimate the system performance, the electron beam irradiated PMMA was used. The electron beam was irradiated from transmission electron microscope (TEM). The depth of injected electron was controlled using the various metal masks. The measurement results were compared with theoretically calculated values of electron range. (author)

  9. Atomic layer-deposited Al–HfO{sub 2}/SiO{sub 2} bi-layers towards 3D charge trapping non-volatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Congedo, Gabriele, E-mail: gabriele.congedo@mdm.imm.cnr.it; Wiemer, Claudia; Lamperti, Alessio; Cianci, Elena; Molle, Alessandro; Volpe, Flavio G.; Spiga, Sabina, E-mail: sabina.spiga@mdm.imm.cnr

    2013-04-30

    A metal/oxide/high-κ dielectric/oxide/silicon (MOHOS) planar charge trapping memory capacitor including SiO{sub 2} as tunnel oxide, Al–HfO{sub 2} as charge trapping layer, SiO{sub 2} as blocking oxide and TaN metal gate was fabricated and characterized as test vehicle in the view of integration into 3D cells. The thin charge trapping layer and blocking oxide were grown by atomic layer deposition, the technique of choice for the implementation of these stacks into 3D structures. The oxide stack shows a good thermal stability for annealing temperature of 900 °C in N{sub 2}, as required for standard complementary metal–oxide–semiconductor processes. MOHOS capacitors can be efficiently programmed and erased under the applied voltages of ± 20 V to ± 12 V. When compared to a benchmark structure including thin Si{sub 3}N{sub 4} as charge trapping layer, the MOHOS cell shows comparable program characteristics, with the further advantage of the equivalent oxide thickness scalability due to the high dielectric constant (κ) value of 32, and an excellent retention even for strong testing conditions. Our results proved that high-κ based oxide structures grown by atomic layer deposition can be of interest for the integration into three dimensionally stacked charge trapping devices. - Highlights: ► Charge trapping device with Al–HfO{sub 2} storage layer is fabricated and characterized. ► Al–HfO{sub 2} and SiO{sub 2} blocking oxides are deposited by atomic layer deposition. ► The oxide stack shows a good thermal stability after annealing at 900 °C. ► The device can be efficiently programmed/erased and retention is excellent. ► The oxide stack could be used for 3D-stacked Flash non-volatile memories.

  10. Emergence of charge density waves and a pseudogap in single-layer TiTe2.

    Science.gov (United States)

    Chen, P; Pai, Woei Wu; Chan, Y-H; Takayama, A; Xu, C-Z; Karn, A; Hasegawa, S; Chou, M Y; Mo, S-K; Fedorov, A-V; Chiang, T-C

    2017-09-11

    Two-dimensional materials constitute a promising platform for developing nanoscale devices and systems. Their physical properties can be very different from those of the corresponding three-dimensional materials because of extreme quantum confinement and dimensional reduction. Here we report a study of TiTe 2 from the single-layer to the bulk limit. Using angle-resolved photoemission spectroscopy and scanning tunneling microscopy and spectroscopy, we observed the emergence of a (2 × 2) charge density wave order in single-layer TiTe 2 with a transition temperature of 92 ± 3 K. Also observed was a pseudogap of about 28 meV at the Fermi level at 4.2 K. Surprisingly, no charge density wave transitions were observed in two-layer and multi-layer TiTe 2 , despite the quasi-two-dimensional nature of the material in the bulk. The unique charge density wave phenomenon in the single layer raises intriguing questions that challenge the prevailing thinking about the mechanisms of charge density wave formation.Due to reduced dimensionality, the properties of 2D materials are often different from their 3D counterparts. Here, the authors identify the emergence of a unique charge density wave (CDW) order in monolayer TiTe 2 that challenges the current understanding of CDW formation.

  11. Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-10-01

    Full Text Available Cellulose insulation polymer (paper/pressboard has been widely used in high voltage direct current (HVDC transformers. One of the most challenging issues in the insulation material used for HVDC equipment is the space charge accumulation. Effective ways to suppress the space charge injection/accumulation in insulation material is currently a popular research topic. In this study, an aluminium oxide functional film was deposited on a cellulose insulation pressboard surface using reactive radio frequency (RF magnetron sputtering. The sputtered thin film was characterized by the scanning electron microscopy/energy dispersive spectrometer (SEM/EDS, X-ray photoelectron spectroscopy (XPS, and X-ray diffraction (XRD. The influence of the deposited functional film on the dielectric properties and the space charge injection/accumulation behaviour was investigated. A preliminary exploration of the space charge suppression effect is discussed. SEM/EDS, XPS, and XRD results show that the nano-structured Al2O3 film with amorphous phase was successfully fabricated onto the fibre surface. The cellulose insulation pressboard surface sputtered by Al2O3 film has lower permittivity, conductivity, and dissipation factor values in the lower frequency (<103 Hz region. The oil-impregnated sputtered pressboard presents an apparent space-charge suppression effect. Compared with the pressboard sputtered with Al2O3 film for 90 min, the pressboard sputtered with Al2O3 film for 60 min had a better space charge suppression effect. Ultra-small Al2O3 particles (<10 nm grew on the surface of the larger nanoparticles. The nano-structured Al2O3 film sputtered on the fibre surface could act as a functional barrier layer for suppression of the charge injection and accumulation. This study offers a new perspective in favour of the application of insulation pressboard with a nano-structured function surface against space charge injection/accumulation in HVDC equipment.

  12. Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.

    Science.gov (United States)

    Chan, Derek Y C

    2015-09-15

    Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.

  13. Course Notes: United States Particle Accelerator School Beam Physics with Intense Space-Charge

    International Nuclear Information System (INIS)

    Barnard, J.J.; Lund, S.M.

    2008-01-01

    The purpose of this course is to provide a comprehensive introduction to the physics of beams with intense space charge. This course is suitable for graduate students and researchers interested in accelerator systems that require sufficient high intensity where mutual particle interactions in the beam can no longer be neglected. This course is intended to give the student a broad overview of the dynamics of beams with strong space charge. The emphasis is on theoretical and analytical methods of describing the acceleration and transport of beams. Some aspects of numerical and experimental methods will also be covered. Students will become familiar with standard methods employed to understand the transverse and longitudinal evolution of beams with strong space charge. The material covered will provide a foundation to design practical architectures. In this course, we will introduce you to the physics of intense charged particle beams, focusing on the role of space charge. The topics include: particle equations of motion, the paraxial ray equation, and the Vlasov equation; 4-D and 2-D equilibrium distribution functions (such as the Kapchinskij-Vladimirskij, thermal equilibrium, and Neuffer distributions), reduced moment and envelope equation formulations of beam evolution; transport limits and focusing methods; the concept of emittance and the calculation of its growth from mismatches in beam envelope and from space-charge non-uniformities using system conservation constraints; the role of space-charge in producing beam halos; longitudinal space-charge effects including small amplitude and rarefaction waves; stable and unstable oscillation modes of beams (including envelope and kinetic modes); the role of space charge in the injector; and algorithms to calculate space-charge effects in particle codes. Examples of intense beams will be given primarily from the ion and proton accelerator communities with applications from, for example, heavy-ion fusion, spallation

  14. MOHOS-type memory performance using HfO2 nanoparticles as charge trapping layer and low temperature annealing

    International Nuclear Information System (INIS)

    Molina, Joel; Ortega, Rafael; Calleja, Wilfrido; Rosales, Pedro; Zuniga, Carlos; Torres, Alfonso

    2012-01-01

    Highlights: ► HfO 2 nanoparticles used as charge trapping layer in MOHOS memory devices. ► Increasing HfO 2 nanoparticles concentration enhances charge injection and trapping. ► Enhancement of memory performance with low temperature annealing. ► Charge injection is done without using any hot-carrier injection mechanism. ► Using injected charge density is better for comparison of scaled memory devices. - Abstract: In this work, HfO 2 nanoparticles (np-HfO 2 ) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal–oxide–high-k–oxide–silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol–gel spin coating method after using different concentrations of np-HfO 2 and low temperature annealing (down to 425 °C) in order to obtain charge–retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO 2 concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO 2 as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.

  15. Space charge dynamic of irradiated cyanate ester/epoxy at cryogenic temperatures

    Science.gov (United States)

    Wang, Shaohe; Tu, Youping; Fan, Linzhen; Yi, Chengqian; Wu, Zhixiong; Li, Laifeng

    2018-03-01

    Glass fibre reinforced polymers (GFRPs) have been widely used as one of the main electrical insulating structures for superconducting magnets. A new type of GFRP insulation material using cyanate ester/epoxy resin as a matrix was developed in this study, and the samples were irradiated by Co-60 for 1 MGy and 5 MGy dose. Space charge distributed within the sample were tested using the pulsed electroacoustic method, and charge concentration was found at the interfaces between glass fibre and epoxy resin. Thermally stimulated current (TSC) and dc conduction current were also tested to evaluate the irradiation effect. It was supposed that charge mobility and density were suppressed at the beginning due to the crosslinking reaction, and for a higher irradiation dose, molecular chain degradation dominated and led to more sever space charge accumulation at interfaces which enhance the internal electric field higher than the external field, and transition field for conduction current was also decreased by irradiation. Space charge dynamic at cryogenic temperature was revealed by conduction current and TSC, and space charge injection was observed for the irradiated samples at 225 K, which was more obvious for the irradiated samples.

  16. Space charge and magnet error simulations for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Beebe-Wang, J.; Fedotov, A.V.; Wei, J.; Machida, S.

    2000-01-01

    The effects of space charge forces and magnet errors in the beam of the Spallation Neutron Source (SNS) accumulator ring are investigated. In this paper, the focus is on the emittance growth and halo/tail formation in the beam due to space charge with and without magnet errors. The beam properties of different particle distributions resulting from various injection painting schemes are investigated. Different working points in the design of SNS accumulator ring lattice are compared. The simulations in close-to-resonance condition in the presence of space charge and magnet errors are presented. (author)

  17. Modelling of Coke Layer Collapse during Ore Charging in Ironmaking Blast Furnace by DEM

    Science.gov (United States)

    Narita, Yoichi; Mio, Hiroshi; Orimoto, Takashi; Nomura, Seiji

    2017-06-01

    A technical issue in an ironmaking blast furnace operation is to realize the optimum layer thickness and the radial distribution of burden (ore and coke) to enhance its efficiency and productivity. When ore particles are charged onto the already-embedded coke layer, the coke layer-collapse phenomenon occurs. The coke layer-collapse phenomenon has a significant effect on the distribution of ore and coke layer thickness in the radial direction. In this paper, the mechanical properties of coke packed bed under ore charging were investigated by the impact-loading test and the large-scale direct shear test. Experimental results show that the coke particle is broken by the impact force of ore charging, and the particle breakage leads to weaken of coke-layer strength. The expression of contact force for coke in Discrete Element Method (DEM) was modified based on the measured data, and it followed by the 1/3-scaled experiment on coke's collapse phenomena. Comparing a simulation by modified model to the 1/3-scaled experiment, they agreed well in the burden distribution.

  18. Chaos in Time-Dependent Space-Charge Potentials

    CERN Document Server

    Betzel, Gregory T; Sideris, Ioannis V

    2005-01-01

    We consider a spherically symmetric, homologously breathing, space-charge-dominated beam bunch in the spirit of the particle-core model. The question we ask is: How does the time dependence influence the population of chaotic orbits? The static beam has zero chaotic orbits; the equation of particle motion is integrable up to quadrature. This is generally not true once the bunch is set into oscillation. We quantify the population of chaotic orbits as a function of space charge and oscillation amplitude (mismatch). We also apply a newly developed measure of chaos, one that distinguishes between regular, sticky, and wildly chaotic orbits, to characterize the phase space in detail. We then introduce colored noise into the system and show how its presence modifies the dynamics. One finding is that, despite the presence of a sizeable population of chaotic orbits, halo formation in the homologously breathing beam is much less prevalent than in an envelope-matched counterpart wherein an internal collective mode is ex...

  19. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  20. Study of static properties of magnetron-type space charges

    International Nuclear Information System (INIS)

    Delcroix, Jean-Loup

    1953-01-01

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  1. Ti–Al–O nanocrystal charge trapping memory cells fabricated by atomic layer deposition

    International Nuclear Information System (INIS)

    Cao, Zheng-Yi; Li, Ai-Dong; Li, Xin; Cao, Yan-Qiang; Wu, Di

    2014-01-01

    Charge trapping memory cells using Ti–Al–O (TAO) film as charge trapping layer and amorphous Al 2 O 3 as the tunneling and blocking layers were fabricated on Si substrates by atomic layer deposition method. As-deposited TAO films were annealed at 700 °C, 800 °C and 900 °C for 3 min in N 2 with a rapid thermal annealing process to form nanocrystals. High-resolution transmission electron microscopy and X-ray photoelectron spectroscopy were used to characterize the microstructure and band diagram of the heterostructures. The electrical characteristics and charge storage properties of the Al 2 O 3 /TAO/Al 2 O 3 /Si stack structures were also evaluated. Compared to 700 °C and 900 °C samples, the memory cells annealed at 800 °C exhibit better memory performance with larger memory window of 4.8 V at ± 6 V sweeping, higher program/erase speed and excellent endurance. - Highlights: • The charge trapping memory cells were fabricated by atomic layer deposition method. • The anneal temperature plays a key role in forming nanocrystals. • The memory cells annealed at 800 °C exhibit better memory performance. • The band alignment is beneficial to enhance the retention characteristics

  2. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    International Nuclear Information System (INIS)

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-01-01

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster

  3. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    International Nuclear Information System (INIS)

    Paret, Stefan

    2010-01-01

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  4. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  5. Double layer for hard spheres with an off-center charge

    Directory of Open Access Journals (Sweden)

    W. Silvestre-Alcantara

    2016-02-01

    Full Text Available Simulations for the density and potential profiles of the ions in the planar electrical double layer of a model electrolyte or an ionic liquid are reported. The ions of a real electrolyte or an ionic liquid are usually not spheres; in ionic liquids, the cations are molecular ions. In the past, this asymmetry has been modelled by considering spheres that are asymmetric in size and/or valence (viz., the primitive model or by dimer cations that are formed by tangentially touching spheres. In this paper we consider spherical ions that are asymmetric in size and mimic the asymmetrical shape through an off-center charge that is located away from the center of the cation spheres, while the anion charge is at the center of anion spheres. The various singlet density and potential profiles are compared to (i the dimer situation, that is, the constituent spheres of the dimer cation are tangentially tethered, and (ii the standard primitive model. The results reveal the double layer structure to be substantially impacted especially when the cation is the counterion. As well as being of intrinsic interest, this off-center charge model may be useful for theories that consider spherical models and introduce the off-center charge as a perturbation.

  6. Internal electric fields of electrolytic solutions induced by space-charge polarization

    Science.gov (United States)

    Sawada, Atsushi

    2006-10-01

    The dielectric dispersion of electrolytic solutions prepared using chlorobenzene as a solvent and tetrabutylammonium tetraphenylborate as a solute is analyzed in terms of space-charge polarization in order to derive the ionic constants, and the Stokes radius obtained is discussed in comparison with the values that have been measured by conductometry. A homogeneous internal electric field is assumed for simplicity in the analysis of the space-charge polarization. The justification of the approximation by the homogeneous field is discussed from two points of view: one is the accuracy of the Stokes radius value observed and the other is the effect of bound charges on electrodes in which they level the highly inhomogeneous field, which has been believed in the past. In order to investigate the actual electric field, numerical calculations based on the Poisson equation are carried out by considering the influence of the bound charges. The variation of the number of bound charges with time is clarified by determining the relaxation function of the dielectric constant attributed to the space-charge polarization. Finally, a technique based on a two-field approximation, where homogeneous and hyperbolic fields are independently applied in relevant frequency ranges, is introduced to analyze the space-charge polarization of the electrolytic solutions, and further improvement of the accuracy in the determination of the Stokes radius is achieved.

  7. Performance improvement of charge trap flash memory by using a composition-modulated high-k trapping layer

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    A composition-modulated (HfO 2 ) x (Al 2 O3) 1−x charge trapping layer is proposed for charge trap flash memory by controlling the Al atom content to form a peak and valley shaped band gap. It is found that the memory device using the composition-modulated (HfO 2 ) x (Al 2 O 3 ) 1−x as the charge trapping layer exhibits a larger memory window of 11.5 V, improves data retention even at high temperature, and enhances the program/erase speed. Improvements of the memory characteristics are attributed to the special band-gap structure resulting from the composition-modulated trapping layer. Therefore, the composition-modulated charge trapping layer may be useful in future nonvolatile flash memory device application. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Optical absorption in silicon layers in the presence of charge inversion/accumulation or ion implantation

    International Nuclear Information System (INIS)

    Alloatti, L.; Lauermann, M.; Koos, C.; Freude, W.; Sürgers, C.; Leuthold, J.

    2013-01-01

    We determine the optical losses in gate-induced charge accumulation/inversion layers at a Si/SiO 2 interface. Comparison between gate-induced charge layers and ion-implanted thin silicon films having an identical sheet resistance shows that optical losses can be significantly lower for gate-induced layers. For a given sheet resistance, holes produce higher optical loss than electrons. Measurements have been performed at λ = 1550 nm

  9. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, Michael F.; Bruhwiler, David L.

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach

  10. MOHOS-type memory performance using HfO{sub 2} nanoparticles as charge trapping layer and low temperature annealing

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Joel, E-mail: jmolina@inaoep.mx [National Institute of Astrophysics, Optics and Electronics. Electronics Department, Luis Enrique Erro 1, Tonantzintla, Puebla 72000 (Mexico); Ortega, Rafael; Calleja, Wilfrido; Rosales, Pedro; Zuniga, Carlos; Torres, Alfonso [National Institute of Astrophysics, Optics and Electronics. Electronics Department, Luis Enrique Erro 1, Tonantzintla, Puebla 72000 (Mexico)

    2012-09-20

    Highlights: Black-Right-Pointing-Pointer HfO{sub 2} nanoparticles used as charge trapping layer in MOHOS memory devices. Black-Right-Pointing-Pointer Increasing HfO{sub 2} nanoparticles concentration enhances charge injection and trapping. Black-Right-Pointing-Pointer Enhancement of memory performance with low temperature annealing. Black-Right-Pointing-Pointer Charge injection is done without using any hot-carrier injection mechanism. Black-Right-Pointing-Pointer Using injected charge density is better for comparison of scaled memory devices. - Abstract: In this work, HfO{sub 2} nanoparticles (np-HfO{sub 2}) are embedded within a spin-on glass (SOG)-based oxide matrix and used as a charge trapping layer in metal-oxide-high-k-oxide-silicon (MOHOS)-type memory applications. This charge trapping layer is obtained by a simple sol-gel spin coating method after using different concentrations of np-HfO{sub 2} and low temperature annealing (down to 425 Degree-Sign C) in order to obtain charge-retention characteristics with a lower thermal budget. The memory's charge trapping characteristics are quantized by measuring both the flat-band voltage shift of MOHOS capacitors (writing/erasing operations) and their programming retention times after charge injection while correlating all these data to np-HfO{sub 2} concentration and annealing temperature. Since a large memory window has been obtained for our MOHOS memory, the relatively easy injection/annihilation (writing/erasing) of charge injected through the substrate opens the possibility to use this material as an effective charge trapping layer. It is shown that by using lower annealing temperatures for the charge trapping layer, higher densities of injected charge are obtained along with enhanced retention times. In conclusion, by using np-HfO{sub 2} as charge trapping layer in memory devices, moderate programming and retention characteristics have been obtained by this simple and yet low-cost spin-coating method.

  11. Charge-collection efficiency of GaAs field effect transistors fabricated with a low temperature grown buffer layer: dependence on charge deposition profile

    International Nuclear Information System (INIS)

    McMorrow, D.; Knudson, A.R.; Melinger, J.S.; Buchner, S.

    1999-01-01

    The results presented here reveal a surprising dependence of the charge-collection efficiency of LT GaAs FETs (field effect transistors) on the depth profile of the deposited charge. Investigation of the temporal dependence of the signal amplitude, carrier density contours, and potential contours reveals different mechanisms for charge collection arising from carriers deposited above and below the LT GaAs buffer layer, respectively. In particular, carriers deposited below the LT GaAs buffer layer dissipate slowly and give rise to a persistent charge collection that is associated with a bipolar-like gain process. These results may be of significance in understanding the occurrence of single-event upsets from protons, neutrons, and large-angle, glancing heavy-ion strikes. (authors)

  12. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  13. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  14. Space charge limited avalanche growth in multigap resistive plate chambers

    International Nuclear Information System (INIS)

    Akindinov, A.N.; Kaidalov, A.B.; Kisselev, S.M.; Alici, A.; Basile, M.; Cifarelli, L.; Anselmo, F.; Antonioli, P.; Romeo, G. Cara; Cindolo, F.; Baek, Y.; Kim, D.H.; Cosenza, F.; Caro, A. De; Pasquale, S. De; Bartolomeo, A. Di; Girard, M. Fusco; Guida, M.; Hatzifotiadou, D.; Kim, D.W.; Laurenti, G.; Lee, K.; Lee, S.C.; Lioublev, E.; Luvisetto, M.L.; Margotti, A.; Martemiyanov, A.N.; Nania, R.; Noferini, F.; Otiougova, P.; Pierella, F.; Polozov, P.A.; Scapparone, E.; Scioli, G.; Sellitto, S.B.; Smirnitski, A.V.; Tchoumakov, M.M.; Valenti, G.; Vicinanza, D.; Voloshin, K.G.; Williams, M.C.S.; Zagreev, B.V.; Zampolli, C.; Zichichi, A.

    2004-01-01

    Abstract The ALICE TOF array will be built using the Multigap Resistive Plate Chamber(MRPC) configured as a double stack. Each stack contains 5 gas gaps with width of 250 μm. There has been an intense R and D effort to optimise this new detector to withstand the problems connected with the high level of radiation at the LHC. One clear outcome of the R and D is that the growth of the gas avalanche is strongly affected by space charge. The effect of the space charge is a decrease in the rate of change in gain with electric field; this allows more stable operation of this detector. We have measured the gain as a function of the electric field and also measured the ratio of the fast charge to the total charge produced in the gas gap. It is well established that RPCs built with 250 μm gas gap have a much superior performance than 2 mm gaps; we discuss and compare the performance of 250 μm gap MRPCs with 2 mm gap RPCs to show the importance of space-charge limitation of avalanche growth. (orig.)

  15. Stasis, Charging the Space of Change

    Directory of Open Access Journals (Sweden)

    Sarah Riviere

    2017-02-01

    Full Text Available This article fossicks through the fragments of historical understandings of the word stasis in ancient Greece – where stasis, in its extreme state, involved conflictual hostilities between kindred parties, often termed ‘civil war’ today. Through a series of readings of ancient Greek texts on topics ranging from pathology to literature and politics, stasis is revealed as a powerfully charged state of located dynamic exchange that operates through a precise temporal and spatial performance. This article teases out relevant aspects of the state of stasis – its high levels of spatial engagement, its inevitable resolution into energetic productivity, its precise restraint, its demand for full participation, and its role in the integration of change – all of which were acknowledged as part of the enactment and resolution of a stasis at that time. The intention of this article is to resurrect a more nuanced understanding of the state of stasis that can enrich current concepts of the dynamic in architectural and urban discourse. This understanding of stasis also poses new questions for the future design of spaces that can accommodate charged kindred engagement: lively spaces where contest becomes opportunity, and located spaces of kindred understanding that promise productive reconciliation as the common aim of all the parties involved.

  16. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  17. Mobility of charge carriers in porous silicon layers

    International Nuclear Information System (INIS)

    Forsh, P. A.; Martyshov, M. N.; Latysheva, A. P.; Vorontsov, A. S.; Timoshenko, V. Yu.; Kashkarov, P. K.

    2008-01-01

    The (conduction) mobility of majority charge carriers in porous silicon layers of the n and p types is estimated by joint measurements of electrical conductivity and free charge carrier concentration, which is determined from IR absorption spectra. Adsorption of donor and acceptor molecules leading to a change in local electric fields in the structure is used to identify the processes controlling the mobility in porous silicon. It is found that adsorption of acceptor and donor molecules at porous silicon of the p and n types, respectively, leads to a strong increase in electrical conductivity, which is associated with an increase in the concentration of free carrier as well as in their mobility. The increase in the mobility of charge carriers as a result of adsorption indicates the key role of potential barriers at the boundaries of silicon nanocrystals and may be due to a decrease in the barrier height as a result of adsorption

  18. Space-charge effects of the proportional counters in a multiple-ionization chamber

    International Nuclear Information System (INIS)

    Mang, M.

    1993-01-01

    At the ALADIN spectrometer of the GSI in october 1991 for the first time the new multiple ionization chamber was applied, in the two anode planes of which are additional multiwire-proportional counters. The proportional counters are required in order to make the detection of light fragments (Z 4 gold projectiles per second by these positive space charges the homogeneous electric field of the MUSIC is disturbed. This effect is especially strong in the beam plane. As consequence of the space charge additionally electrons are focused on the proportional counter so that their amplitudes in dependence on the beam intensity increase up to the 2.5-fold. Furthermore the y coordinate is falsified, because the electrons are diverted to the medium plane. On the measurement of the x coordinate this diversion has with maximally 0.1% only a small influence. These space-charge effects can be qualitatively described by a schematic model, which assumes a stationary positive space charge. Additionally for the proportional counters, which are not in the beam plane, their resolution was determined. In these counters the space-charge effects are small, because essentially fewer particles are registrated than in the medium MWPC's. By this charges of fragments with Z<10 could be separated. The charge resolution amounted at lithium 0.8 charge units. The position resolution of the proportional counters in y direction was determined to less than 8 mm. The detection probability of the fragments amounts for lithium 90% and from boron all fragments are detected

  19. Space Charge Effect in the Sheet and Solid Electron Beam

    Science.gov (United States)

    Song, Ho Young; Kim, Hyoung Suk; Ahn, Saeyoung

    1998-11-01

    We analyze the space charge effect of two different types of electron beam ; sheet and solid electron beam. Electron gun simulations are carried out using shadow and control grids for high and low perveance. Rectangular and cylindrical geometries are used for sheet and solid electron beam in planar and disk type cathode. The E-gun code is used to study the limiting current and space charge loading in each geometries.

  20. One-carrier free space charge motion under applied voltage

    Energy Technology Data Exchange (ETDEWEB)

    de ALMEIDA, L E.C.; FERREIRA, G F.L. [SAO PAULO UNIV., SAO CARLOS (BRAZIL). INSTITUTO DE FISICA E QUIMICA

    1975-12-01

    It is shown how to transform the system of partial differential equations, describing the free one-carrier space charge motion in solid dielectrics under a given applied voltage and while the charge distribution touches only one of the electrodes, into a first order ordinary differential equation from whose solution all the interesting quantities may be easily derived. It was found that some charge distributions can display current reversal.

  1. Determination of space charge region width and diffusion length in Cu(In,Ga)(S,Se)2 absorber from solar cell spectral characteristic

    International Nuclear Information System (INIS)

    Tivanov, M.; Mazanik, A.; Drozdov, N.; Zaretskaya, E.

    2010-01-01

    Full text : The space-charge region width and diffusion length of minority charge carriers in the base region (Cu(In,Ga)(S,Se) 2 absorber) are the most important parameters of the solar cell. These parameters determine the efficiency of a solar cell therefore the problem of their control is essential. In this work it is present simple non-destructive method of extracting the parameters of Cu(In,Ga)(S,Se) 2 -based solar cell (space-charge region width and diffusion length of minority charge carriers in Cu(In,Ga)(S,Se) 2 absorber) from the analysis of solar cell spectral photoresponse. The method is based on one-dimensional model of a solar cell and on the change of in-depth distribution of the photogenerated carriers in the solar cell and, hence, on the change of its photoresponse with the wave-length variation. The following assumptions are accepted: the reflection of charge carriers from a back contact and the ''drawing'' field in the quasi-neutral area of the absorber layers are absent, window and buffer layers are transparent in the analyzed part of photoresponse spectrum, the injection level of minority charge carriers is low, the recombination losses at the metallurgical p-n-junction interface of the studied photosensitive structure linearly depend on the photocurrent density. For the calculation it is necessary to obtain the following set of the experimental data: the spectral density of incident radiation, the spectral dependence of photocurrent or photovoltage of the studied photosensitive structure, the spectral dependences of optical absorption coefficient and reflectance.

  2. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  3. On Beam Matching and the Space-Charge Effect in protoDUNE-SP

    CERN Document Server

    Mandalia, Jesal Paresh

    2017-01-01

    In this project simulations using LArSoft have been analysed in particular looking at how the space-charge effect will affect the matching of particle tracks from the beam line monitor to the TPC and the TPC's performance measuring $\\frac{dE}{dx}$ in protoDUNE-SP. The analysis here provides some preliminary calibrations for protoDUNE-SP to account for the impact the space charge effect will have. Many areas of pion cross section analysis will be affected by the space charge effect so it is vital for a calibration to be developed.

  4. High-order space charge effects using automatic differentiation

    International Nuclear Information System (INIS)

    Reusch, M.F.; Bruhwiler, D.L.; Computer Accelerator Physics Conference Williamsburg, Virginia 1996)

    1997-01-01

    The Northrop Grumman Topkark code has been upgraded to Fortran 90, making use of operator overloading, so the same code can be used to either track an array of particles or construct a Taylor map representation of the accelerator lattice. We review beam optics and beam dynamics simulations conducted with TOPKARK in the past and we present a new method for modeling space charge forces to high-order with automatic differentiation. This method generates an accurate, high-order, 6-D Taylor map of the phase space variable trajectories for a bunched, high-current beam. The spatial distribution is modeled as the product of a Taylor Series times a Gaussian. The variables in the argument of the Gaussian are normalized to the respective second moments of the distribution. This form allows for accurate representation of a wide range of realistic distributions, including any asymmetries, and allows for rapid calculation of the space charge fields with free space boundary conditions. An example problem is presented to illustrate our approach. copyright 1997 American Institute of Physics

  5. Effect of the space-charge force on tracking at low energy

    International Nuclear Information System (INIS)

    Furman, M.A.

    1987-01-01

    The authors present tracking results for the SSC's Low Energy Booster at injection energy, including the effect of the space-charge force. The bunches are assumed to be gaussian with elliptical cross-section. Magnet errors and sextupoles are not included, but an RF cavity is. The authors compare the phase space with and without synchrotron oscillations, with and without space-charge. The effective emittance is not significantly altered. They also present results on tune shifts with amplitude

  6. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging

    Science.gov (United States)

    Capozza, R.; Vanossi, A.; Benassi, A.; Tosatti, E.

    2015-02-01

    Electrical charging of parallel plates confining a model ionic liquid down to nanoscale distances yields a variety of charge-induced changes in the structural features of the confined film. That includes even-odd switching of the structural layering and charging-induced solidification and melting, with important changes of local ordering between and within layers, and of squeezout behavior. By means of molecular dynamics simulations, we explore this variety of phenomena in the simplest charged Lennard-Jones coarse-grained model including or excluding the effect a neutral tail giving an anisotropic shape to one of the model ions. Using these models and open conditions permitting the flow of ions in and out of the interplate gap, we simulate the liquid squeezout to obtain the distance dependent structure and forces between the plates during their adiabatic approach under load. Simulations at fixed applied force illustrate an effective electrical pumping of the ionic liquid, from a thick nearly solid film that withstands the interplate pressure for high plate charge to complete squeezout following melting near zero charge. Effective enthalpy curves obtained by integration of interplate forces versus distance show the local minima that correspond to layering and predict the switching between one minimum and another under squeezing and charging.

  7. The effects of electromagnetic space-charge fields in RF photocathode guns

    International Nuclear Information System (INIS)

    Park, C.S.; Hess, M.

    2010-01-01

    In high-brightness rf photocathode guns, the effects of space-charge are important for electron bunches with high bunch charge. In an effort to accurately simulate the effects of these space-charge fields without the presence of numerical grid dispersion, a Green's function based code called IRPSS (Indiana Rf Photocathode Source Simulator) was developed. In this paper, we show the results of numerical simulations of the Argonne Wakefield Accelerator photocathode gun using IRPSS, and compare them with the results of an electrostatic Green's function version of IRPSS.

  8. Design of achromatic bending systems in the presence of space charge

    International Nuclear Information System (INIS)

    Jason, A.J.; Svaton, E.M.; Blind, B.; Heighway, E.A.

    1987-01-01

    The usual conditions for achromaticity of a dispersive system are shown to be inadequate when space-charge effects are included. Using a matrix formulation describing linear space-charge forces, we give generalized criteria necessary for a system to be achromatic. Additionally, these conditions are necessary for conservation of transverse emittances. An example of such a system is given

  9. Design of achromatic bending systems in the presence of space charge

    International Nuclear Information System (INIS)

    Jason, A.J.; Svaton, E.M.; Blind, B.; Heighway, E.A.

    1987-01-01

    The usual conditions for achromaticity of a dispersive system are shown to be inadequate when space-charge effects are included. Using a matrix formulation describing linear space-charge forces, the authors give generalized criteria necessary for a system to be achromatic. Additionally, these conditions are necessary for conservation of transverse emittances. An example of such a system is given

  10. Space-charge-limited currents: An E-infinity Cantorian approach

    Czech Academy of Sciences Publication Activity Database

    Zmeškal, O.; Nešpůrek, Stanislav; Weiter, M.

    2007-01-01

    Roč. 34, č. 2 (2007), s. 143-158 ISSN 0960-0779 R&D Projects: GA MPO FT-TA/036; GA AV ČR IAA100100622 Institutional research plan: CEZ:AV0Z40500505 Keywords : space charge * fractal * charge injection Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.025, year: 2007

  11. Space-charge effects in high-energy photoemission

    Energy Technology Data Exchange (ETDEWEB)

    Verna, Adriano, E-mail: adriano.verna@uniroma3.it [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Greco, Giorgia [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Lollobrigida, Valerio [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Scuola Dottorale in Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); Offi, Francesco; Stefani, Giovanni [Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy); CNISM Unità di Roma Tre, Via della Vasca Navale 84, I-00146 Roma (Italy)

    2016-05-15

    Highlights: • N-body simulations of interacting photoelectrons in hard X-ray experiments. • Secondary electrons have a pivotal role in determining the energy broadening. • Space charge has negligible effects on the photoelectron momentum distribution. • A simple model provides the characteristic time for energy-broadening mechanism. • The feasibility of time-resolved high-energy experiments with FELs is discussed. - Abstract: Pump-and-probe photoelectron spectroscopy (PES) with femtosecond pulsed sources opens new perspectives in the investigation of the ultrafast dynamics of physical and chemical processes at the surfaces and interfaces of solids. Nevertheless, for very intense photon pulses a large number of photoelectrons are simultaneously emitted and their mutual Coulomb repulsion is sufficiently strong to significantly modify their trajectory and kinetic energy. This phenomenon, referred as space-charge effect, determines a broadening and shift in energy for the typical PES structures and a dramatic loss of energy resolution. In this article we examine the effects of space charge in PES with a particular focus on time-resolved hard X-ray (∼10 keV) experiments. The trajectory of the electrons photoemitted from pure Cu in a hard X-ray PES experiment has been reproduced through N-body simulations and the broadening of the photoemission core-level peaks has been monitored as a function of various parameters (photons per pulse, linear dimension of the photon spot, photon energy). The energy broadening results directly proportional to the number N of electrons emitted per pulse (mainly represented by secondary electrons) and inversely proportional to the linear dimension a of the photon spot on the sample surface, in agreement with the literature data about ultraviolet and soft X-ray experiments. The evolution in time of the energy broadening during the flight of the photoelectrons is also studied. Despite its detrimental consequences on the energy

  12. Analysis of beam envelope by transverse space charge effect

    International Nuclear Information System (INIS)

    Toyama, Shin'ichi

    1997-09-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)

  13. The Influence of Pre-Conditioning on Space Charge Formation in LDPE

    DEFF Research Database (Denmark)

    Fleming, Robert J.; Henriksen, Mogens; Holbøll, Joachim T.

    1996-01-01

    In this paper we present space charge accumulation data for planar low density polyethylene samples subjected to 20 kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40oC in ......C in short-circuit at rotary pump pressure for 48 hr prior to measurement. Such conditioning had no consistent effect on the space charge. The extent of charge injection/extraction at the semicon electrodes appeared to vary considerably between samples....

  14. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

    NARCIS (Netherlands)

    Dhont, J.K.G.; Briels, Willem J.

    2008-01-01

    The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that

  15. Space Charge Mitigation With Longitudinally Hollow Bunches

    CERN Multimedia

    Oeftiger, Adrian; Rumolo, Giovanni

    2016-01-01

    Hollow longitudinal phase space distributions have a flat profile and hence reduce the impact of transverse space charge. Dipolar parametric excitation with the phase loop feedback systems provides such hollow distributions under reproducible conditions. We present a procedure to create hollow bunches during the acceleration ramp of CERN’s PS Booster machine with minimal changes to the operational cycle. The improvements during the injection plateau of the downstream Proton Synchrotron are assessed in comparison to standard parabolic bunches.

  16. Space-charge effects on bunching of electrons in the CEBAF injector

    International Nuclear Information System (INIS)

    Liu, H.

    1997-01-01

    The main injector for the 4 GeV CEBAF accelerator at Thomas Jefferson national accelerator facility was designed to deliver simultaneously three CW electron beams for nuclear physics research. The maximum design current for a single beam from the injector is 100 μA, or 0.2 pC per microbunch at a repetition rate of 499 MHz. It was found through computer simulation that space charge even at a subpicocoulomb level can spoil the bunching of electrons significantly, and some unexpected phenomena observed experimentally could be explained accordingly. This problem arises because of the low-momentum tilt allowed for bunching to preserve low-momentum spread. In this paper, we analyze in detail the space-charge effects on bunching of electrons with the CEBAF injector as an example. Conditions for effective matching of longitudinal phase space in the presence of space charge are discussed. (orig.)

  17. Charge conjugation and internal space time symmetries

    International Nuclear Information System (INIS)

    Pavsic, M.; Recami, E.

    1982-01-01

    The relativistic framework in which fundamental particles are regarded as extended objects is adopted. Then it is shown than the geometrical operation which reflects the internal space time particle is equivalent to the operation C which inverts the sign of all its additive charges

  18. Charge patterns as templates for the assembly of layered biomolecular structures.

    Science.gov (United States)

    Naujoks, Nicola; Stemmer, Andreas

    2006-08-01

    Electric fields are used to guide the assembly of biomolecules in predefined geometric patterns on solid substrates. Local surface charges serve as templates to selectively position proteins on thin-film polymeric electret layers, thereby creating a basis for site-directed layered assembly of biomolecular structures. Charge patterns are created using the lithographic capabilities of an atomic force microscope, namely by applying voltage pulses between a conductive tip and the sample. Samples consist of a poly(methyl methacrylate) layer on a p-doped silicon support. Subsequently, the sample is developed in a water-in-oil emulsion, consisting of a dispersed aqueous phase containing biotin-modified immunoglobulinG molecules, and a continuous nonpolar, insulating oil phase. The electrostatic fields cause a net force of (di)electrophoretic nature on the droplet, thereby guiding the proteins to the predefined locations. Due to the functionalization of the immunoglobulinG molecules with biotin-groups, these patterns can now be used to initiate the localized layer-by-layer assembly of biomolecules based on the avidin-biotin mechanism. By binding 40 nm sized biotin-labelled beads to the predefined locations via a streptavidin linker, we verify the functionality of the previously deposited immunoglobulinG-biotin. All assembly steps following the initial deposition of the immunoglobulinG from emulsion can conveniently be conducted in aqueous solutions. Results show that pattern definition is maintained after immersion into aqueous solution.

  19. Two stacked tandem white organic light-emitting diodes employing WO3 as a charge generation layer

    Science.gov (United States)

    Bin, Jong-Kwan; Lee, Na Yeon; Lee, SeungJae; Seo, Bomin; Yang, JoongHwan; Kim, Jinook; Yoon, Soo Young; Kang, InByeong

    2016-09-01

    Recently, many studies have been conducted to improve the electroluminescence (EL) performance of organic lightemitting diodes (OLEDs) by using appropriate organic or inorganic materials as charge generation layer (CGL) for their application such as full color displays, backlight units, and general lighting source. In a stacked tandem white organic light-emitting diodes (WOLEDs), a few emitting units are electrically interconnected by a CGL, which plays the role of generating charge carriers, and then facilitate the injection of it into adjacent emitting units. In the present study, twostacked WOLEDs were fabricated by using tungsten oxide (WO3) as inorganic charge generation layer and 1,4,5,8,9,11- hexaazatriphenylene hexacarbonitrile (HAT-CN) as organic charge generation layer (P-CGL). Organic P-CGL materials were used due to their ease of use in OLED fabrication as compared to their inorganic counterparts. To obtain high efficiency, we demonstrate two-stacked tandem WOLEDs as follows: ITO/HIL/HTL/HTL'/B-EML/ETL/N-CGL/P-CGL (WO3 or HAT-CN)/HTL″/YG-EML/ETL/LiF/Al. The tandem devices with blue- and yellow-green emitting layers were sensitive to the thickness of an adjacent layer, hole transporting layer for the YG emitting layer. The WOLEDs containing the WO3 as charge generation layer reach a higher power efficiency of 19.1 lm/W and the current efficiency of 51.2 cd/A with the white color coordinate of (0.316, 0.318) than the power efficiency of 13.9 lm/W, and the current efficiency of 43.7 cd/A for organic CGL, HAT-CN at 10 mA/cm2, respectively. This performance with inserting WO3 as CGL exhibited the highest performance with excellent CIE color coordinates in the two-stacked tandem OLEDs.

  20. Space charge-limited emission studies using Coulomb's Law

    OpenAIRE

    Carr, Christopher G.

    2004-01-01

    Approved for Public Release; Distribution is Unlimited Child and Langmuir introduced a solution to space charge limited emission in an infinite area planar diode. The solution follows from starting with Poisson's equation, and requires solving a non-linear differential equation. This approach can also be applied to cylindrical and spherical geometries, but only for one-dimensional cases. By approaching the problem from Coulomb's law and applying the effect of an assumed charge distribution...

  1. Negative space charge effects in photon-enhanced thermionic emission solar converters

    International Nuclear Information System (INIS)

    Segev, G.; Weisman, D.; Rosenwaks, Y.; Kribus, A.

    2015-01-01

    In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionic converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163

  2. Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors.

    Science.gov (United States)

    Love, John A; Feuerstein, Markus; Wolff, Christian M; Facchetti, Antonio; Neher, Dieter

    2017-12-06

    Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.

  3. A Method to Overcome Space Charge at Injection

    International Nuclear Information System (INIS)

    Ya. Derbenev

    2005-01-01

    The transverse space charge forces in a high current, low energy beam can be reduced by mean of a large increase of the beam's transverse sizes while maintaining the beam area in the 4D phase space. This can be achieved by transforming the beam area in phase space of each of two normal 2D transverse (either plane or circular) modes from a spot shape into a narrow ring of a large amplitude, but homogeneous in phase. Such a transformation results from the beam evolution in the island of a dipole resonance when the amplitude width of the island shrinks adiabatically. After stacking (by using stripping foils or cooling) the beam in such a state and accelerating to energies sufficiently high that the space charge becomes insignificant, the beam then can be returned back to a normal spot shape by applying the reverse transformation. An arrangement that can provide such beam gymnastics along a transport line after a linac and before a booster and/or in a ring with circulating beam will be described and numerical estimates will be presented. Other potential applications of the method will be briefly discussed

  4. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin; Wang, Zhihong; Du, Yuanmin; Zhang, Xixiang; Wu, Tao

    2014-01-01

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current

  5. The longitudinal space charge problem in the high current linear proton accelerators

    International Nuclear Information System (INIS)

    Lustfeld, H.

    1984-01-01

    In a linear proton accelerator peak currents of 200 mA lead to high space charge densities and the resultant space charge forces reduce the effective focussing considerably. In particular the longitudinal focussing is affected. A new concept based on linear theory is proposed that restricts the influence of the space charge forces on the longitudinal focussing by increasing a, the mean transverse bunch radius, as a proportional(βγ)sup(3/8). This concept is compared with other concepts for the Alvarez (1 MeV - 100 MeV) and for the high energy part (100 MeV - 1100 MeV) of the SNQ linear accelerator. (orig.)

  6. Cancellation of the centrifugal space-charge force

    International Nuclear Information System (INIS)

    Lee, E.P.

    1990-01-01

    The transverse dynamics of high-energy electrons confined in curved geometry are examined, including the effects of space-charge-induced fields. Attention is restricted to the centrifugal-space-charge force, which is the result of noncancellation of beam-induced transverse electric and magnetic fields in the curved geometry. This force is shown to be nearly cancelled in the evaluation of the horizontal tune and chromaticity by another, often overlooked term in the equation of motion. The additional term is the consequence of oscillations of the kinetic energy, which accompany betatron oscillations in the beam-induced electric potential. In curved geometry this term is of first order in the amplitude of the radial oscillation. A highly simplified system model is employed so that physical effects appear in as clear a form as possible. We assume azimuthal and median plane symmetry, static fields, and ultrarelativistic particle velocity (1/γ 2 ->0). (author) 9 refs

  7. Interlayer Structures and Dynamics of Arsenate and Arsenite Intercalated Layered Double Hydroxides: A First Principles Study

    Directory of Open Access Journals (Sweden)

    Yingchun Zhang

    2017-03-01

    Full Text Available In this study, by using first principles simulation techniques, we explored the basal spacings, interlayer structures, and dynamics of arsenite and arsenate intercalated Layered double hydroxides (LDHs. Our results confirm that the basal spacings of NO3−-LDHs increase with layer charge densities. It is found that Arsenic (As species can enter the gallery spaces of LDHs with a Mg/Al ratio of 2:1 but they cannot enter those with lower charge densities. Interlayer species show layering distributions. All anions form a single layer distribution while water molecules form a single layer distribution at low layer charge density and a double layer distribution at high layer charge densities. H2AsO4− has two orientations in the interlayer regions (i.e., one with its three folds axis normal to the layer sheets and another with its two folds axis normal to the layer sheets, and only the latter is observed for HAsO42−. H2AsO3− orientates in a tilt-lying way. The mobility of water and NO3− increases with the layer charge densities while As species have very low mobility. Our simulations provide microscopic information of As intercalated LDHs, which can be used for further understanding of the structures of oxy-anion intercalated LDHs.

  8. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  9. Displacement field for an edge dislocation in a layered half-space

    Science.gov (United States)

    Savage, J.C.

    1998-01-01

    The displacement field for an edge dislocation in an Earth model consisting of a layer welded to a half-space of different material is found in the form of a Fourier integral following the method given by Weeks et al. [1968]. There are four elementary solutions to be considered: the dislocation is either in the half-space or the layer and the Burgers vector is either parallel or perpendicular to the layer. A general two-dimensional solution for a dip-slip faulting or dike injection (arbitrary dip) can be constructed from a superposition of these elementary solutions. Surface deformations have been calculated for an edge dislocation located at the interface with Burgers vector inclined 0??, 30??, 60??, and 90?? to the interface for the case where the rigidity of the layer is half of that of the half-space and the Poisson ratios are the same. Those displacement fields have been compared to the displacement fields generated by similarly situated edge dislocations in a uniform half-space. The surface displacement field produced by the edge dislocation in the layered half-space is very similar to that produced by an edge dislocation at a different depth in a uniform half-space. In general, a low-modulus (high-modulus) layer causes the half-space equivalent dislocation to appear shallower (deeper) than the actual dislocation in the layered half-space.

  10. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Lombardi, A.M.; Tanke, E.; Valero, S.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    A new routine and a computer code (DYNAC) for the calculation of space charge densities in a new generation of linear accelerators for various industrial applications is presented. The new beam dynamics method used in this code, employs a set of quasi-Liouvillian equations, allowing beam dynamics computations in long and complex structures for electrons, as well as protons and ions. With this new beam dynamics method, the coordinates of particles are known at any position in the accelerating elements, allowing multistep space charge calculations. (K.A.)

  11. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  12. Effect of ion compensation of the beam space charge on gyrotron operation

    Energy Technology Data Exchange (ETDEWEB)

    Fokin, A. P.; Glyavin, M. Yu. [Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Nusinovich, G. S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742-3511 (United States)

    2015-04-15

    In gyrotrons, the coherent radiation of electromagnetic waves takes place when the cyclotron resonance condition between the wave frequency and the electron cyclotron frequency or its harmonic holds. The voltage depression caused by the beam space charge field changes the relativistic cyclotron frequency and, hence, can play an important role in the beam-wave interaction process. In long pulse and continuous-wave regimes, the beam space charge field can be partially compensated by the ions, which appear due to the beam impact ionization of neutral molecules of residual gases in the interaction space. In the present paper, the role of this ion compensation of the beam space charge on the interaction efficiency is analyzed. We also analyze the effect of the electron velocity spread on the limiting currents and discuss some effects restricting the ion-to-beam electron density ratio in the saturation stage. It is shown that the effect of the ion compensation on the voltage depression caused by the beam space charge field can cause significant changes in the efficiency of gyrotron operation and, in some cases, even result in the break of oscillations.

  13. Theory and Simulation of the Physics of Space Charge Dominated Beams

    International Nuclear Information System (INIS)

    Haber, Irving

    2002-01-01

    This report describes modeling of intense electron and ion beams in the space charge dominated regime. Space charge collective modes play an important role in the transport of intense beams over long distances. These modes were first observed in particle-in-cell simulations. The work presented here is closely tied to the University of Maryland Electron Ring (UMER) experiment and has application to accelerators for heavy ion beam fusion

  14. Space charge models and PATH

    International Nuclear Information System (INIS)

    Wald, H.B.

    1990-01-01

    The 'PATH' codes are used to design magnetic optics subsystems for neutral particle beam systems. They include a 2-1/2D and three 3-D space charge models, two of which have recently been added. This paper describes the 3-D models and reports on preliminary benchmark studies in which these models are checked for stability as the cloud size is varied and for consistency with each other. Differences between the models are investigated and the computer time requirements for running these models are established

  15. Space Charge Correction on Emittance Measurement of Low Energy Electron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Treado, Colleen J.; /Massachusetts U., Amherst

    2012-09-07

    The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

  16. Electronic structure and superconductivity of multi-layered organic charge transfer salts

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, Harald O.; Altmeyer, Michaela; Guterding, Daniel; Valenti, Roser [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt, 60438 Frankfurt (Germany)

    2015-07-01

    We examine the electronic properties of polymorphs of (BEDT-TTF){sub 2}Ag(CF{sub 3}){sub 4}(TCE) (1,1,2-trichloroethane) within density functional theory (DFT). While a phase with low superconducting transition temperature T{sub c}=2.6 K exhibits a κ packing motif, two high T{sub c} phases are layered structures consisting of α{sup '} and κ packed layers. We determine the electronic structures and discuss the influence of the insulating α{sup '} layer on the conducting κ layer. In the κ-α{sub 1}{sup '} dual-layered compound, we find that the stripes of high and low charge in the α{sup '} layer correspond to a stripe pattern of hopping parameters in the κ layer. Based on the different underlying Hamiltonians, we study the superconducting properties and try to explain the differences in T{sub c}.

  17. The double-layer of penetrable ions: an alternative route to charge reversal.

    Science.gov (United States)

    Frydel, Derek; Levin, Yan

    2013-05-07

    We investigate a double-layer of penetrable ions near a charged wall. We find a new mechanism for charge reversal that occurs in the weak-coupling regime and, accordingly, the system is suitable for the mean-field analysis. The penetrability is achieved by smearing-out the ionic charge inside a sphere, so there is no need to introduce non-electrostatic forces and the system in the low coupling limit can be described by a modified version of the Poisson-Boltzmann equation. The predictions of the theory are compared with the Monte Carlo simulations.

  18. Beam halo formation from space-charge dominated beams in uniform focusing channels

    International Nuclear Information System (INIS)

    O'Connell, J.S.; Wangler, T.P.; Mills, R.S.; Crandall, K.R.

    1993-01-01

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which results in a 2-component beam consisting of an inner core and an outer halo. The halo is very prominent in mismatched beams, and the potential for accelerator activation is of concern for a next generation of cw, high-power proton linacs that could be applied for intense neutron generators to process nuclear materials. We present new results about beam halo and the evolution of space-charge dominated beams from multiparticle simulation of initial laminar beams in a uniform linear focusing channel, and from a model consisting of single particle interactions with a uniform-density beam core. We study the energy gain from particle interactions with the space-charge field of the core, and we identify the resonant characteristic of this interaction as the basic cause of the separation of the beam into the two components. We identify three different particle-trajectory types, and we suggest that one of these types may lead to continuous halo growth, even after the halo is removed by collimators

  19. Space Charge Effects for the ERL Prototype Injector Line at Daresbury Laboratory

    CERN Document Server

    Muratori, Bruno; Owen, Hywel; de Loos, Marieke; van der Geer, Bas

    2005-01-01

    Daresbury Laboratory is currently building an Energy Recovery Linac Prototype (ERLP) that will operate at a beam energy of 35 MeV. In this paper we examine the space charge effects on the beam dynamics in the ERLP injector line. A Gaussian particle distribution is tracked with GPT (General Particle Tracer) through the injection line to the main linac to calculate the effect of 3Dspace charge in the dipoles. The nominal beam energy in the injection line is 8.3 MeV and the bunch charge 80 pC. The effects of space charge on the transverse and longitudinal emittance are studied for various electron beam parameter settings.

  20. Nanomechanics of layer-by-layer polyelectrolyte complexes: a manifestation of ionic cross-links and fixed charges.

    Science.gov (United States)

    Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin

    2016-01-28

    This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further

  1. Experiments on ion space-charge neutralization with pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Herleb, U; Riege, H [CERN LHC-Division, Geneva (Switzerland)

    1997-12-31

    The method of space-charge neutralization of heavy ion beams with electron beam pulses generated with electron guns incorporating ferroelectric cathodes was investigated experimentally. Several experiments are described, the results of which prove that the intensity of selected ion beam parts with defined charge states generated in a laser ion source can be increased by an order of magnitude. For elevated charge states the intensity amplification is more significant and may reach a factor of 4 for highly charged ions from an Al target. (author). 7 figs., 3 -refs.

  2. Three-dimensional space charge calculation method

    International Nuclear Information System (INIS)

    Lysenko, W.P.; Wadlinger, E.A.

    1981-01-01

    A method is presented for calculating space-charge forces suitable for use in a particle tracing code. Poisson's equation is solved in three dimensions with boundary conditions specified on an arbitrary surface by using a weighted residual method. Using a discrete particle distribution as our source input, examples are shown of off-axis, bunched beams of noncircular crosssection in radio-frequency quadrupole (RFQ) and drift-tube linac geometries

  3. Operation mode switchable charge-trap memory based on few-layer MoS2

    Science.gov (United States)

    Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-03-01

    Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.

  4. Quantum theory of space charge limited current in solids

    Energy Technology Data Exchange (ETDEWEB)

    González, Gabriel, E-mail: gabriel.gonzalez@uaslp.mx [Cátedras Conacyt, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000, Mexico and Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78000 (Mexico)

    2015-02-28

    We present a quantum model of space charge limited current transport inside trap-free solids with planar geometry in the mean field approximation. We use a simple transformation which allows us to find the exact analytical solution for the steady state current case. We use our approach to find a Mott-Gurney like behavior and the mobility for single charge carriers in the quantum regime in solids.

  5. Space charge effect in the spiral inflector

    International Nuclear Information System (INIS)

    Toprek, Dragan

    2000-01-01

    This paper presents the analytical and numerical theory of the space charge effects in the beam in the spiral inflector. It considers a simplified model of a 'straight' cylindrical beam by using a uniform particle distribution. Numerical results represented in this paper are obtained by using a modified version of the program CASINO

  6. Space-charge limits in linear accelerators

    International Nuclear Information System (INIS)

    Wangler, T.P.

    1980-12-01

    This report presents equations that allow an approximate evaluation of the limiting beam current for a large class of radio-frequency linear accelerators, which use quadrupole strong focusing. Included are the Alvarez, the Wideroe, and the radio-frequency quadrupole linacs. The limiting-current formulas are presented for both the longitudinal and the transverse degrees of freedom by assuming that the average space-charge force in the beam bunch arises from a uniformly distributed charge within an azimuthally symmetric three-dimensional ellipsoid. The Mathieu equation is obtained as an approximate, but general, form for the transverse equation of motion. The smooth-approximation method is used to obtain a solution and an expression for the transverse current limit. The form of the current-limit formulas for different linac constraints is discussed

  7. Space-charge effect in electron time-of-flight analyzer for high-energy photoemission spectroscopy

    International Nuclear Information System (INIS)

    Greco, G.; Verna, A.; Offi, F.; Stefani, G.

    2016-01-01

    Highlights: • Two methods for the simulation of space-charge effect in time-resolved PES. • Reliability and advantages in the use of the SIMION"® software. • Simulation of the space-charge effect in an electron TOF analyzer. • Feasibility of a TOF analyzer in time-resolved high-energy PES experiments at FEL. - Abstract: The space-charge effect, due to the instantaneous emission of many electrons after the absorption of a single photons pulse, causes distortion in the photoelectron energy spectrum. Two calculation methods have been applied to simulate the expansion during a free flight of clouds of mono- and bi-energetic electrons generated by a high energy pulse of light and their results have been compared. The accuracy of a widely used tool, such as SIMION"®, in predicting the energy distortion caused by the space-charge has been tested and the reliability of its results is verified. Finally we used SIMION"® to take into account the space-charge effects in the simulation of simple photoemission experiments with a time-of-flight analyzer.

  8. Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.

    Science.gov (United States)

    Su, Chia-Chi; Shen, Yun-Hwei

    2009-04-01

    The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.

  9. Performance improvement of charge-trap memory by using a stacked Zr_0_._4_6Si_0_._5_4O_2/Al_2O_3 charge-trapping layer

    International Nuclear Information System (INIS)

    Tang, Zhenjie; Hu, Dan; Zhang, Xiwei; Zhao, Yage; Li, Rong

    2016-01-01

    The postdeposition annealing (PDA)-treated charge-trap flash memory capacitor with stacked Zr_0_._4_6Si_0_._5_4O_2/Al_2O_3 charge-trapping layer flanked by a SiO_2 tunneling oxide and an Al_2O_3 blocking oxide was fabricated and investigated. It is observed that the memory capacitor exhibits prominent memory characteristics with large memory windows 12.8 V in a ±10 V gate sweeping voltage range, faster program/erase speed, and good data-retention characteristics even at 125 C compared to a single charge-trapping layer (Zr_0_._4_6Si_0_._5_4O_2, Zr_0_._7_9Si_0_._2_1O_2, and Zr_0_._4_6Al_1_._0_8O_2_._5_4). The quantum wells and introduced interfacial traps of the stacked trapping layer regulate the storage and loss behavior of charges, and jointly contribute to the improved memory characteristics. Hence, the memory capacitor with a stacked trapping layer is a promising candidate in future nonvolatile charge-trap memory device design and application. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. The influence of oxidation on space charge formation in gamma-irradiated low-density polyethylene

    CERN Document Server

    Chen, G; Xie, H K; Banford, H M; Davies, A E

    2003-01-01

    The research presented in this paper investigates the role of oxidation in the formation of space charge in gamma-irradiated low-density polyethylene after being electrically stressed under dc voltage. Polyethylene plaques both with and without antioxidant were irradiated up to 500 kGy using a sup 6 sup 0 Co gamma source and space charge distributions were measured using the piezoelectric induced pressure wave propagation method. It has been found that a large amount of positive charge evolved adjacent to the cathode in the sample without antioxidant and was clearly associated with oxidation of the surface. The amount of charge formed for a given applied stress increased with the dose absorbed by the material. A model has been proposed to explain the formation of space charge and its profile. The charge decay after the removal of the external applied stress is dominated by a process being controlled by the cathode interfacial stress (charge injection) rather than a conventional RC circuit model. On the other ...

  11. Memory characteristics of silicon nitride with silicon nanocrystals as a charge trapping layer of nonvolatile memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Yang, Hyundeok; Chang, Man; Baek, Sungkweon; Hwang, Hyunsang; Jeon, Sanghun; Kim, Juhyung; Kim, Chungwoo

    2005-01-01

    Silicon nitride with silicon nanocrystals formed by low-energy silicon plasma immersion ion implantation has been investigated as a charge trapping layer of a polycrystalline silicon-oxide-nitride-oxide-silicon-type nonvolatile memory device. Compared with the control sample without silicon nanocrystals, silicon nitride with silicon nanocrystals provides excellent memory characteristics, such as larger width of capacitance-voltage hysteresis, higher program/erase speed, and lower charge loss rate at elevated temperature. These improved memory characteristics are derived by incorporation of silicon nanocrystals into the charge trapping layer as additional accessible charge traps with a deeper effective trap energy level

  12. Space Charge Effects and Advanced Modelling for CERN Low Energy Machines

    CERN Document Server

    AUTHOR|(CDS)2088716; Rumolo, Giovanni

    The strong space charge regime of future operation of CERN’s circular particle accelerators is investigated and mitigation strategies are developed in the framework of the present thesis. The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the particle accelerators to meet the requirements of the High-Luminosity LHC project. Producing the specified characteristics of the future LHC beams imperatively relies on injecting brighter bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron (PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful interaction with betatron resonances. Possible beam emittance growth and losses as a consequence thereof threaten to degrade the beam brightness. These space charge effects are partly mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge tune ...

  13. The effect of space charge force on beams extracted from ECR ion sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.

    1989-01-01

    A new 3 dimensional ray tracing code BEAM-3D, with a simple model to calculate the space charge force of multiple ion species, is under development and serves as a theoretical tool to study the ECRIS beam formation. Excellent agreement between the BEAM-3D calculations and beam profile and emittance measurements of the total extracted helium 1+ beam from the RTECR ion source was obtained when a low degree of beam neutralization was assumed in the calculations. The experimental evidence indicates that the positive space charge effects dominate the early RTECR ion source beam formation and beamline optics matching process. A review of important beam characteristics is made, including a conceptual model for the space charge beam blow up. Better beam transport through the RTECR beamline analysis magnet has resulted after an extraction geometry modification in which the space charge force was more correctly matched. This work involved the development of an online beam characteristic measuring apparatus which will also be described

  14. Space charge build-up in XLPE-cable with temperature gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Hjerrild, Jesper

    2000-01-01

    and temperatures were applied in the 20 - 80°C range with gradients across the insulation of up to 15°C. In this paper, the observed charge phenomena in the bulk and at the interfaces are related to the external conditions, in particular to the temperature gradient. The measured space charge distributions...

  15. Experimental and numerical studies on penetration of shaped charge into concrete and pebble layered targets

    Directory of Open Access Journals (Sweden)

    C Wang

    2017-09-01

    Full Text Available Experiments on penetrating into concrete and pebble layered targets were performed by shaped charge with different cone angles, liner wall thicknesses, length to diameter ratios and charge diameters at different standoffs. Based on the experimental data, the influence of shaped charge’s structural parameters on crater diameter, hole diameter, crater depth and penetration depth was analyzed in detail. Meanwhile, formation and penetration processes of all shaped charges were simulated by AUTODYN software for investigating the more intrinsic mechanisms, in which the numerical models are the same as those set up in the experiments. The results obtained in this paper indicate that there are obvious differences between jetting projectile charge (JPC and explosively formed projectile (EFP in penetrating into multi-layer targets. For the same charge diameter, the values of hole diameter formed by EFP were much larger than JPC. However, for the same standoff, the penetration depth caused by JCP were larger than EFP. The interfacial effect exists in the penetration progress of JPC.

  16. The defect structure of the double layer in yttria-stabilised zirconia

    NARCIS (Netherlands)

    Hendriks, M.G.H.M.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.; Verweij, H.

    2002-01-01

    The space charge density of 2–10 mol% yttria-stabilised zirconia (YSZ) at the interface with a gold electrode was determined from differential capacity measurements at 748–848 K. The oxygen vacancy fraction in the space charge layer was calculated as function of bias potential, temperature and

  17. The effect of interfacial layers on charge transport in organic solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Mbuyise, Xolani G.; Tonui, Patrick; Mola, Genene Tessema, E-mail: mola@ukzn.ac.za

    2016-09-01

    The effect of interfacial buffer layers in organic photovoltaic cell (OPV) whose active layer is composed of poly(3 hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend was studied. The electrical properties of OPV devices produced with and without interfacial layers are compared and discussed in terms of measured parameters of the cells. The charge transport properties showed significant difference on the mobility and activation factor between the two types of device structures. The life time measurements in the unprotected conditions are also presented and discussed.

  18. Space-charge effects in Penning ion traps

    Czech Academy of Sciences Publication Activity Database

    Porobic, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Flechard, X.; Lienard, E.; Ban, G.; Zákoucký, Dalibor; Soti, G.; Van Gorp, S.; Weinheimer, C.; Wursten, E.; Severijns, N.

    2015-01-01

    Roč. 785, JUN (2015), s. 153-162 ISSN 0168-9002 R&D Projects: GA MŠk LA08015; GA MŠk(CZ) LG13031 Institutional support: RVO:61389005 Keywords : Penning trap * space-charge * magnetron motion * ion trapping * buffer gas cooling * ion cyclotron resonance Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.200, year: 2015

  19. Alternating phase focussing including space charge

    International Nuclear Information System (INIS)

    Cheng, W.H.; Gluckstern, R.L.

    1992-01-01

    Longitudinal stability can be obtained in a non-relativistic drift tube accelerator by traversing each gap as the rf accelerating field rises. However, the rising accelerating field leads to a transverse defocusing force which is usually overcome by magnetic focussing inside the drift tubes. The radio frequency quadrupole is one way of providing simultaneous longitudinal and transverse focusing without the use of magnets. One can also avoid the use of magnets by traversing alternate gaps between drift tubes as the field is rising and falling, thus providing an alternation of focussing and defocusing forces in both the longitudinal and transverse directions. The stable longitudinal phase space area is quite small, but recent efforts suggest that alternating phase focussing (APF) may permit low velocity acceleration of currents in the 100-300 ma range. This paper presents a study of the parameter space and a test of crude analytic predictions by adapting the code PARMILA, which includes space charge, to APF. 6 refs., 3 figs

  20. Grafted polymers layers: neutral chains to charged chains; Couches de polymeres greffes: des chaines neutres aux chaines chargees

    Energy Technology Data Exchange (ETDEWEB)

    Mir, Y

    1995-09-29

    This work concerns an experimental study, by small angle neutrons scattering, of neutral or charged grafted polymers layers structures. The method consisted in exploiting the acknowledges got on neutral brushes, to reach the problem of grafted polyelectrolyte layers. The difficulty of charged layers making has been, until this day, an important obstacle to the experimental study of these systems. It has been partially resolved in the case of sodium sulfonate polystyrene layers, and allowed to study their structure. (N.C.). 72 refs., 74 figs., 24 tabs.

  1. Study of electric field distorted by space charges under positive lightning impulse voltage

    Science.gov (United States)

    Wang, Zezhong; Geng, Yinan

    2018-03-01

    Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.

  2. Generation of initial kinetic distributions for simulation of long-pulse charged particle beams with high space-charge intensity

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2009-11-01

    Full Text Available Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel—both in terms of low-order rms (envelope properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including the following: the Kapchinskij-Vladimirskij (KV equilibrium, continuous-focusing equilibria with specific detailed examples, and various nonequilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of standard accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear focusing, single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for noncontinuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulations that more precisely probe intrinsic stability properties and machine performance.

  3. Transparent Flash Memory using Single Ta2O5 Layer for both Charge Trapping and Tunneling Dielectrics

    KAUST Repository

    Hota, Mrinal Kanti

    2017-06-08

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta2O5 layer is used simultaneously as charge trapping and tunneling layer. This is different from conventional flash cells, where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ~10 V. Moreover, the flash memory device shows a stable 2-bit memory performance, good reliability, including data retention for more than 104 sec and endurance performance for more than 100 cycles. The use of a common charge trapping and tunneling layer can simplify advanced flash memory fabrication.

  4. Transparent Flash Memory using Single Ta2O5 Layer for both Charge Trapping and Tunneling Dielectrics

    KAUST Repository

    Hota, Mrinal Kanti; Alshammari, Fwzah H.; Salama, Khaled N.; Alshareef, Husam N.

    2017-01-01

    We report reproducible multibit transparent flash memory in which a single solution-derived Ta2O5 layer is used simultaneously as charge trapping and tunneling layer. This is different from conventional flash cells, where two different dielectric layers are typically used. Under optimized programming/erasing operations, the memory device shows excellent programmable memory characteristics with a maximum memory window of ~10 V. Moreover, the flash memory device shows a stable 2-bit memory performance, good reliability, including data retention for more than 104 sec and endurance performance for more than 100 cycles. The use of a common charge trapping and tunneling layer can simplify advanced flash memory fabrication.

  5. Longitudinal and transverse space charge limitations on transport of maximum power beams

    International Nuclear Information System (INIS)

    Khoe, T.K.; Martin, R.L.

    1977-01-01

    The maximum transportable beam power is a critical issue in selecting the most favorable approach to generating ignition pulses for inertial fusion with high energy accelerators. Maschke and Courant have put forward expressions for the limits on transport power for quadrupole and solenoidal channels. Included in a more general way is the self consistent effect of space charge defocusing on the power limit. The results show that no limits on transmitted power exist in principal. In general, quadrupole transport magnets appear superior to solenoids except for transport of very low energy and highly charged particles. Longitudinal space charge effects are very significant for transport of intense beams

  6. Simulation of space charge effects and transition crossing in the Fermilab Booster

    International Nuclear Information System (INIS)

    Lucas, P.; MacLachlan, J.

    1987-03-01

    The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem

  7. Electrostatic plasma lens for focusing negatively charged particle beams.

    Science.gov (United States)

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  8. Tandem white organic light-emitting diodes adopting a C60:rubrene charge generation layer

    International Nuclear Information System (INIS)

    Bi Wen-Tao; Wu Xiao-Ming; Hua Yu-Lin; Sun Jin-E; Xiao Zhi-Hui; Wang Li; Yin Shou-Gen

    2014-01-01

    Organic bulk heterojunction fullerence (C 60 ) doped 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) as the high quality charge generation layer (CGL) with high transparency and superior charge generating capability for tandem organic light emitting diodes (OLEDs) is developed. This CGL shows excellent optical transparency about 90%, which can reduce the optical interference effect formed in tandem OLEDs. There is a stable white light emission including 468 nm and 500 nm peaks from the blue emitting layer and 620 nm peak from the red emitting layer in tandem white OLEDs. A high efficiency of about 17.4 cd/A and CIE coordinates of (0.40, 0.35) at 100 cd/m 2 and (0.36, 0.34) at 1000 cd/m 2 have been demonstrated by employing the developed CGL, respectively. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Absence of a space-charge-derived enhancement of ionic conductivity in β|γ- heterostructured 7H- and 9R-AgI

    International Nuclear Information System (INIS)

    Morgan, B J; Madden, P A

    2012-01-01

    Extreme room temperature conductivity enhancements have been reported for nanocrystalline AgI of up to × 10 4 relative to bulk β-AgI (Guo et al 2005 Adv. Mater. 17 2815-9). These samples were identified as possessing 7H and 9R polytype structures, which can be considered as heterostructures composed of thin, commensurate layers in the β (wurtzite) and γ (zincblende) phases. It has been proposed that space-charge layer formation at β|γ-interfaces causes near complete disordering of the Ag + sublattice in these polytypes, resulting in a massive intrinsic enhancement of ionic conductivity. We have performed molecular dynamics simulations of β- and γ-AgI and mixed β|γ superlattices, to study the effect of heterostructuring on intrinsic defect populations and Ag + transport. The ionic conductivities and Ag + diffusion coefficients vary as β > 7H ≈ 9R ≈ 10L > γ. The β|γ-heterostructured polytypes show no enhancement in defect populations or Ag + mobilities relative to the β-AgI phase, and instead behave as simple composites of β- and γ-AgI. This contradicts the proposal that the extreme conductivity enhancement observed for 7H and 9R polytypes is explained by extensive space-charge formation. (paper)

  10. Space charge and beam stability issues of the Fermilab proton driver in Phase I

    Energy Technology Data Exchange (ETDEWEB)

    K. Y. Ng

    2001-08-24

    Issues concerning beam stability of the proposed Fermilab Proton Driver are studied in its Phase I. Although the betatron tune shifts are dominated by space charge, these shifts are less than 0.25 and will therefore not drive the symmetric and antisymmetric modes of the beam envelope into instability. The longitudinal space charge force is large and inductive inserts may be needed to compensate for the distortion of the rf potential. Although the longitudinal impedance is space charge dominated, it will not drive any microwave instability, unless the real part of the impedance coming from the inductive inserts and wall resistivity of the beam tube are large enough. The design of the beam tube is therefore very important in order to limit the flow of eddy current and keep wall resistivity low. The transverse impedance is also space charge dominated. With the Proton Driver operated at an imaginary transition gamma, however, Landau damping will never be canceled and beam stability can be maintained with negative chromaticities.

  11. Heterojunction PbS nanocrystal solar cells with oxide charge-transport layers.

    Science.gov (United States)

    Hyun, Byung-Ryool; Choi, Joshua J; Seyler, Kyle L; Hanrath, Tobias; Wise, Frank W

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Room-temperature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures.

  12. Charge carriers bulk recombination instead of electroplex emission after their tunneling through hole-blocking layer in OLEDs

    Science.gov (United States)

    Yang, S. Y.; Liu, D.; Jiang, Y.; Teng, F.; Xu, Z.; Hou, Y.; Xu, X. R.

    2006-08-01

    Charge carriers bulk recombination instead of forming electroplex after their tunneling through a hole-blocking layer, i.e. 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), in organic electroluminescence (EL) device ITO/poly-(N-vinyl-carbazole)(PVK)/BCP/tris(8-hydroxyquinoline) aluminum (Alq3)/Al is reported. By changing the thickness of BCP layer, one can find that high electric fields enhance the tunneling process of holes accumulated at the PVK/BCP interface into BCP layer instead of forming “electroplex emission” as reported earlier in literatures. Our experimental data show that charge carriers bulk recombination takes place in both PVK layer and BCP layer, and even in Alq3 layer when BCP layer is thin enough. Further, it is suggested that PVK is the origin of the emission shoulder at 595 nm in the EL spectra of trilayer device ITO/PVK/BCP/Alq3/Al.

  13. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A., E-mail: aliaksei.halavanau@gmail.com [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Piot, P. [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-05-21

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. This “micro-bunching instabilities” is naturally broadband and could possibly support the generation of coherent radiation over a broad region of the spectrum. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we refine these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program ELEGANT. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We finally employ the developed model to investigate the performance of a cascaded LSC amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.

  14. Adaptive matching of the iota ring linear optics for space charge compensation

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, A. [Fermilab; Bruhwiler, D. L. [RadiaSoft, Boulder; Cook, N. [RadiaSoft, Boulder; Hall, C. [RadiaSoft, Boulder

    2016-10-09

    Many present and future accelerators must operate with high intensity beams when distortions induced by space charge forces are among major limiting factors. Betatron tune depression of above approximately 0.1 per cell leads to significant distortions of linear optics. Many aspects of machine operation depend on proper relations between lattice functions and phase advances, and can be i proved with proper treatment of space charge effects. We implement an adaptive algorithm for linear lattice re matching with full account of space charge in the linear approximation for the case of Fermilab’s IOTA ring. The method is based on a search for initial second moments that give closed solution and, at the same predefined set of goals for emittances, beta functions, dispersions and phase advances at and between points of interest. Iterative singular value decomposition based technique is used to search for optimum by varying wide array of model parameters

  15. Generalized space-charge limited current and virtual cathode behaviors in one-dimensional drift space

    International Nuclear Information System (INIS)

    Yang, Zhanfeng; Liu, Guozhi; Shao, Hao; Chen, Changhua; Sun, Jun

    2013-01-01

    This paper reports the space-charge limited current (SLC) and virtual cathode behaviors in one-dimensional grounded drift space. A simple general analytical solution and an approximate solution for the planar diode are given. Through a semi-analytical method, a general solution for SLC in one-dimensional drift space is obtained. The behaviors of virtual cathode in the drift space, including dominant frequency, electron transit time, position, and transmitted current, are yielded analytically. The relationship between the frequency of the virtual cathode oscillation and the injected current presented may explain previously reported numerical works. Results are significant in facilitating estimations and further analytical studies

  16. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordstroem space-time: Analytical solutions

    International Nuclear Information System (INIS)

    Grunau, Saskia; Kagramanova, Valeria

    2011-01-01

    We present the full set of analytical solutions of the geodesic equations of charged test particles in the Reissner-Nordstroem space-time in terms of the Weierstrass weierp, σ, and ζ elliptic functions. Based on the study of the polynomials in the θ and r equations, we characterize the motion of test particles and discuss their properties. The motion of charged test particles in the Reissner-Nordstroem space-time is compared with the motion of neutral test particles in the field of a gravitomagnetic monopole. Electrically or magnetically charged particles in the Reissner-Nordstroem space-time with magnetic or electric charges, respectively, move on cones similar to neutral test particles in the Taub-NUT space-times.

  17. Study of static properties of magnetron-type space charges; Etude des proprietes statiques des charges d'espace du type magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Delcroix, Jean-Loup

    1953-05-30

    This research thesis reports an in-depth analysis of physical properties of static regimes to address the issue of space charges. This theoretical study of the Hull magnetron is followed by the description of experiments on the Hull magnetron which highlight transitions between the different regimes. Then, another theoretical approach aims at generalising the magnetron theory, based on other types of magnetron theory (general equations of magnetron-type space charges, inverted Hull magnetron theory, circular field magnetron theory)

  18. Chemical-Vapor-Deposited Graphene as Charge Storage Layer in Flash Memory Device

    Directory of Open Access Journals (Sweden)

    W. J. Liu

    2016-01-01

    Full Text Available We demonstrated a flash memory device with chemical-vapor-deposited graphene as a charge trapping layer. It was found that the average RMS roughness of block oxide on graphene storage layer can be significantly reduced from 5.9 nm to 0.5 nm by inserting a seed metal layer, which was verified by AFM measurements. The memory window is 5.6 V for a dual sweep of ±12 V at room temperature. Moreover, a reduced hysteresis at the low temperature was observed, indicative of water molecules or −OH groups between graphene and dielectric playing an important role in memory windows.

  19. Transverse modes of a bunched beam with space charge dominated impedance

    Directory of Open Access Journals (Sweden)

    V. Balbekov

    2009-12-01

    Full Text Available Transverse coherent oscillations of a bunched beam in a ring accelerator are considered with space charge dominated impedance, taking into account linear synchrotron oscillations. A general equation of the bunch eigenmodes is derived, its exact analytical solution is presented for boxcar bunch, and numerical solutions are found for several realistic models. Both low and high synchrotron frequency approximations are considered and compared, fields of their applicability are determined, and some estimations are developed in the intermediate region. It is shown that most of the bunch eigenmodes are stabilized by Landau damping due to the space charge produced tune spread.

  20. Ion Transport through Diffusion Layer Controlled by Charge Mosaic Membrane

    Directory of Open Access Journals (Sweden)

    Akira Yamauchi

    2012-01-01

    Full Text Available The kinetic transport behaviors in near interface of the membranes were studied using commercial anion and cation exchange membrane and charge mosaic membrane. Current-voltage curve gave the limiting current density that indicates the ceiling of conventional flux. From chronopotentiometry above the limiting current density, the transition time was estimated. The thickness of boundary layer was derived with conjunction with the conventional limiting current density and the transition time from steady state flux. On the other hand, the charge mosaic membrane was introduced in order to examine the ion transport on the membrane surface in detail. The concentration profile was discussed by the kinetic transport number with regard to the water dissociation (splitting on the membrane surface.

  1. Combined effects of space charge and energetic disorder on photocurrent efficiency loss of field-dependent organic photovoltaic devices

    International Nuclear Information System (INIS)

    Yoon, Sangcheol; Hwang, Inchan; Park, Byoungchoo

    2015-01-01

    The loss of photocurrent efficiency by space-charge effects in organic solar cells with energetic disorder was investigated to account for how energetic disorder incorporates space-charge effects, utilizing a drift-diffusion model with field-dependent charge-pair dissociation and suppressed bimolecular recombination. Energetic disorder, which induces the Poole–Frenkel behavior of charge carrier mobility, is known to decrease the mobility of charge carriers and thus reduces photovoltaic performance. We found that even if the mobilities are the same in the absence of space-charge effects, the degree of energetic disorder can be an additional parameter affecting photocurrent efficiency when space-charge effects occur. Introducing the field-dependence parameter that reflects the energetic disorder, the behavior of efficiency loss with energetic disorder can differ depending on which charge carrier is subject to energetic disorder. While the energetic disorder that is applied to higher-mobility charge carriers decreases photocurrent efficiency further, the efficiency loss can be suppressed when energetic disorder is applied to lower-mobility charge carriers. (paper)

  2. One-carrier free space charge motion under applied voltage

    International Nuclear Information System (INIS)

    Camargo, P.C.; Ferreira, G.F.L.

    1976-01-01

    The system of partial differential equations describing the one-carrier free space-charge motion under a given applied voltage is transformed into a system of two ordinary differential equations. The method is applied to find the external current injection [pt

  3. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Manley, N.B.; Fabrikant, J.I.; Alpen, E.L.

    1988-12-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. This study concerns the cell population and cell cycle kinetics of the subependymal layer in the mouse brain, and the effects of charged particle irradiations on this cell population. Quantitative high resolution autoradiography was used to study the kinetic parameters in this cell layer. This study should help in understanding the effects of these high-energy heavy ions on normal mammalian brain tissue. The response of the mammalian brain exposure to charged particle ionizing radiation may be extremely variable. It varies from minimal physiological changes to overt tissue necrosis depending on a number of factors such as: the administered dose, dose-rate, the volume of the irradiated tissue, and the biological end-point being examined.

  4. Effect of the surface charge discretization on electric double layers. A Monte Carlo simulation study

    OpenAIRE

    Madurga Díez, Sergio; Martín-Molina, Alberto; Vilaseca i Font, Eudald; Mas i Pujadas, Francesc; Quesada-Pérez, Manuel

    2007-01-01

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are...

  5. Investigation of charges carrier density in phosphorus and boron doped SiNx:H layers for crystalline silicon solar cells

    International Nuclear Information System (INIS)

    Paviet-Salomon, B.; Gall, S.; Slaoui, A.

    2013-01-01

    Highlights: ► We investigate the properties of phosphorus and boron-doped silicon nitride films. ► Phosphorus-doped layers yield higher lifetimes than undoped ones. ► The fixed charges density decreases when increasing the films phosphorus content. ► Boron-doped films feature very low lifetimes. ► These doped layers are of particular interest for crystalline silicon solar cells. -- Abstract: Dielectric layers are of major importance in crystalline silicon solar cells processing, especially as anti-reflection coatings and for surface passivation purposes. In this paper we investigate the fixed charge densities (Q fix ) and the effective lifetimes (τ eff ) of phosphorus (P) and boron (B) doped silicon nitride layers deposited by plasma-enhanced chemical vapour deposition. P-doped layers exhibit a higher τ eff than standard undoped layers. In contrast, B-doped layers exhibit lower τ eff . A strong Q fix decrease is to be seen when increasing the P content within the film. Based on numerical simulations we also demonstrate that the passivation obtained with P- and B-doped layers are limited by the interface states rather than by the fixed charges

  6. Search for space charge effects in the ICARUS T600 LAr-TPC

    Science.gov (United States)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.

  7. Search for space charge effects in the ICARUS T600 LAr-TPC

    International Nuclear Information System (INIS)

    Torti, Marta

    2016-01-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown

  8. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    Science.gov (United States)

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  9. Space charge effects in a bending magnet system

    International Nuclear Information System (INIS)

    Lee, E.P.; Close, E.; Smith, L.

    1987-03-01

    In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented

  10. Space charge effects in a bending magnet system

    International Nuclear Information System (INIS)

    Lee, E.P.; Close, E.; Smith, L.

    1987-01-01

    In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented

  11. Heterojunction PbS Nanocrystal Solar Cells with Oxide Charge-Transport Layers

    KAUST Repository

    Hyun, Byung-Ryool

    2013-12-23

    Oxides are commonly employed as electron-transport layers in optoelectronic devices based on semiconductor nanocrystals, but are relatively rare as hole-transport layers. We report studies of NiO hole-transport layers in PbS nanocrystal photovoltaic structures. Transient fluorescence experiments are used to verify the relevant energy levels for hole transfer. On the basis of these results, planar heterojunction devices with ZnO as the photoanode and NiO as the photocathode were fabricated and characterized. Solution-processed devices were used to systematically study the dependence on nanocrystal size and achieve conversion efficiency as high as 2.5%. Optical modeling indicates that optimum performance should be obtained with thinner oxide layers than can be produced reliably by solution casting. Roomerature sputtering allows deposition of oxide layers as thin as 10 nm, which enables optimization of device performance with respect to the thickness of the charge-transport layers. The best devices achieve an open-circuit voltage of 0.72 V and efficiency of 5.3% while eliminating most organic material from the structure and being compatible with tandem structures. © 2013 American Chemical Society.

  12. Plasma-induced evolution behavior of space-charge-limited current for multiple-needle cathodes

    International Nuclear Information System (INIS)

    Li Limin; Liu Lie; Zhang Jun; Wen Jianchun; Liu Yonggui; Wan Hong

    2009-01-01

    Properties of the plasma and beam flow produced by tufted carbon fiber cathodes in a diode powered by a ∼500 kV, ∼400 ns pulse are investigated. Under electric fields of 230-260 kV cm -1 , the electron current density was in the range 210-280 A cm -2 , and particularly at the diode gap of 20 mm, a maximum beam power density of about 120 MW cm -2 was obtained. It was found that space-charge-limited current exhibited an evolution behavior as the accelerating pulse proceeded. There exists a direct relation between the movement of plasma within the diode and the evolution of space-charge-limited current. Initially in the accelerating pulse, the application of strong electric fields caused the emission sites to explode, forming cathode flares or plasma spots, and in this stage the space-charge-limited current was approximately described by a multiple-needle cathode model. As the pulse proceeded, these plasma spots merged and expanded towards the anode, thus increasing the emission area and shortening the diode gap, and the corresponding space-charge-limited current followed a planar cathode model. Finally, the space-charge-limited current is developed from a unipolar flow into a bipolar flow as a result of the appearance of anode plasma. In spite of the nonuniform distribution of cathode plasma, the cross-sectional uniformity of the extracted electron beam is satisfactory. The plasma expansion within the diode is found to be a major factor in the diode perveance growth and instability. These results show that these types of cathodes can offer promising applications for high-power microwave tubes.

  13. Modal description of longitudinal space-charge fields in pulse-driven free-electron devices

    Directory of Open Access Journals (Sweden)

    Yu. Lurie

    2010-05-01

    Full Text Available In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects leading to an expansion of short electron bunches along their trajectory. This effect restricts an application of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is required in order to achieve an accurate description of the self-fields and the resulted electron beam dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic field (including self-fields in terms of transverse eigenmodes of the (cold cavity, in which the field is excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant velocity. This enables consideration and study of the role played by different terms of the resulted expressions, such as components arising from forward and backward waves, propagating waves, and under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge fields are discussed.

  14. Study of the charge transport characteristics of dendrimer molecular thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.C., E-mail: jcli@mail.neu.edu.cn; Han, N.; Wang, S.S.; Ba, D.C.

    2011-05-31

    In this work, we systematically studied the electrical characteristics of two types of dendritic arylamine thin film devices. We observed that, for devices with different interfacial structures, their charge injection barriers and transport properties are obviously different. The smallest charge injection barrier is observed in dendrimer devices without charge-transfer interfacial layers. The Richardson-Schottky thermionic emission model can be well used to fit the experimental current-voltage characteristics at a lower voltage region. The charge injection barrier increases about 0.4 eV and 0.5 eV when a 1-decanethiol self-assembly layer and -CN terminated dendrimer thin films are inserted as the interfacial layer, respectively. It is shown that the molecule/electrode charge-transfer interfaces can largely affect the device charge injection/transport process and consequently change the device performance. In this case, the space charge limited conduction theory is more applicable to simulate the device conduction mechanism. Owing to its ultra-thin thickness, the self-assembly monolayer technique is proved to be an efficient approach in engineering the interfacial electronic structures of dendrimer thin film devices.

  15. Study of the charge transport characteristics of dendrimer molecular thin films

    International Nuclear Information System (INIS)

    Li, J.C.; Han, N.; Wang, S.S.; Ba, D.C.

    2011-01-01

    In this work, we systematically studied the electrical characteristics of two types of dendritic arylamine thin film devices. We observed that, for devices with different interfacial structures, their charge injection barriers and transport properties are obviously different. The smallest charge injection barrier is observed in dendrimer devices without charge-transfer interfacial layers. The Richardson-Schottky thermionic emission model can be well used to fit the experimental current-voltage characteristics at a lower voltage region. The charge injection barrier increases about 0.4 eV and 0.5 eV when a 1-decanethiol self-assembly layer and -CN terminated dendrimer thin films are inserted as the interfacial layer, respectively. It is shown that the molecule/electrode charge-transfer interfaces can largely affect the device charge injection/transport process and consequently change the device performance. In this case, the space charge limited conduction theory is more applicable to simulate the device conduction mechanism. Owing to its ultra-thin thickness, the self-assembly monolayer technique is proved to be an efficient approach in engineering the interfacial electronic structures of dendrimer thin film devices.

  16. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  17. Space charge physics for particle accelerators

    CERN Document Server

    Hofmann, Ingo

    2017-01-01

    Understanding and controlling the physics of space charge effects in linear and circular proton and ion accelerators are essential to their operation, and to future high-intensity facilities. This book presents the status quo of this field from a theoretical perspective, compares analytical approaches with multi-particle computer simulations and – where available – with experiments. It discusses fundamental concepts of phase space motion, matched beams and modes of perturbation, along with mathematical models of analysis – from envelope to Vlasov-Poisson equations. The main emphasis is on providing a systematic description of incoherent and coherent resonance phenomena; parametric instabilities and sum modes; mismatch and halo; error driven resonances; and emittance exchange due to anisotropy, as well as the role of Landau damping. Their distinctive features are elaborated in the context of numerous sample simulations, and their potential impacts on beam quality degradation and beam loss are discussed....

  18. Charge transport along luminescent oxide layers containing Si and SiC nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jambois, O. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)]. E-mail: ojambois@el.ub.es; Vila, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Pellegrino, P. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Carreras, J. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Perez-Rodriguez, A. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Garrido, B. [EME, Departament d' Electronica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Bonafos, C. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France); BenAssayag, G. [Nanomaterials Group, CEMES-CNRS, 29 rue J. Marvig 31055, Toulouse (France)

    2006-12-15

    The electrical conductivity of silicon oxides containing silicon and silicon-carbon nanoparticles has been investigated. By use of sequential Si{sup +} and C{sup +} ion implantations in silicon oxide followed by an annealing at 1100 deg. C, luminescent Si nanocrystals and SiC nanoparticles were precipitated. The characterization of the electrical transport has been carried out on two kinds of structures, allowing parallel or perpendicular transport, with respect to the substrate. The first type of samples were elaborated by means of a focus-ion-beam technique: electrical contacts to embedded nanoparticles were made by milling two nanotrenches on the sample surface until reaching the buried layer, then filling them with tungsten. The distance between the electrodes is about 100 nm. The second type of samples correspond to 40 nm thick typical MOS capacitors. The electron transport along the buried layer has shown a dramatic lowering of the electrical current, up to five orders of magnitude, when applying a sequence of voltages. It has been related to a progressive charge retention inside the nanoparticles, which, on its turn, suppresses the electrical conduction along the layer. On the other hand, the MOS capacitors show a reversible carrier charge and discharge effect that limits the current at low voltage, mostly due to the presence of C in the layers. A typical Fowler-Nordheim injection takes place at higher applied voltages, with a threshold voltage equal to 23 V.

  19. EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.

    2002-06-03

    The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.

  20. Controlling the interface charge density in GaN-based metal-oxide-semiconductor heterostructures by plasma oxidation of metal layers

    International Nuclear Information System (INIS)

    Hahn, Herwig; Kalisch, Holger; Vescan, Andrei; Pécz, Béla; Kovács, András; Heuken, Michael

    2015-01-01

    In recent years, investigating and engineering the oxide-semiconductor interface in GaN-based devices has come into focus. This has been driven by a large effort to increase the gate robustness and to obtain enhancement mode transistors. Since it has been shown that deep interface states act as fixed interface charge in the typical transistor operating regime, it appears desirable to intentionally incorporate negative interface charge, and thus, to allow for a positive shift in threshold voltage of transistors to realise enhancement mode behaviour. A rather new approach to obtain such negative charge is the plasma-oxidation of thin metal layers. In this study, we present transmission electron microscopy and energy dispersive X-ray spectroscopy analysis as well as electrical data for Al-, Ti-, and Zr-based thin oxide films on a GaN-based heterostructure. It is shown that the plasma-oxidised layers have a polycrystalline morphology. An interfacial amorphous oxide layer is only detectable in the case of Zr. In addition, all films exhibit net negative charge with varying densities. The Zr layer is providing a negative interface charge density of more than 1 × 10 13  cm –2 allowing to considerably shift the threshold voltage to more positive values

  1. Efficient green phosphorescent tandem organic light emitting diodes with solution processable mixed hosts charge generating layer

    Energy Technology Data Exchange (ETDEWEB)

    Talik, N.A.; Yeoh, K.H.; Ng, C.Y.B [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia); ItraMAS Corporation. Sdn. Bhd., 542A-B Mukim 1, Lorong Perusahaan Baru 2, Kawasan Perindustrian, Perai 13600, Penang (Malaysia); Yap, B.K. [Center of Microelectronic and Nanotechnology Engineering (CeMNE), College of Engineering, Universiti Tenaga Nasional, Jln. Uniten-Ikram, 4300 Kajang, Selangor (Malaysia); Woon, K.L., E-mail: ph7klw76@um.edu.my [Low Dimensional Research Center, Department of Physics, University Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-10-15

    A novel solution processable charge generating layer (CGL) that consists of 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HATCN{sub 6})/Poly(N-vinylcarbazole) (PVK): 1,1-bis-(4-bis(4-tolyl)-aminophenyl) cyclohexene (TAPC) for a tandem green phosphorescent organic light emitting diode (PHOLED) is demonstrated. The use of orthogonal solvent to dissolve HATCN{sub 6} and PVK:TAPC is the key to overcome the interface erosion problem for the solution processed CGL. The current efficiency of the 2 wt% TAPC mixed with PVK is the highest at 24.2 cd/A, which is more than three-folds higher than that of the single device at 1000 cd/m{sup 2}. - Highlights: • A solution processable tandem OLED is built using a novel charge generating layer. • HATCN{sub 6} and PVK:TAPC are shown to be effective charge generating layers. • The turn on voltages for tandem devices are almost similar to single unit. • 2 wt% TAPC blended with PVK exhibits three-folds increase in efficiency.

  2. Chaotic behaviour induced by space charge

    International Nuclear Information System (INIS)

    Lagniel, J.M.

    1994-01-01

    In numerous non-linear dynamical systems studied in various disciplines (fluid dynamics, celestial mechanisms, chemistry, biology, economy, ecology...), chaotic motions are generated by the dynamics itself whereas no random force is present. This phenomenon, already studied in the particle accelerator field to understand the beam-beam effect, is also observed in numerical experiments on space-charge dominated beams. Stochasticity threshold and halo formation are discussed for a continuous focusing channel (1D beam) and for a FODO channel (2D beam) with the possibility to take into account the defocusing effects of RF gaps localized between the quadrupoles. (authors). 7 refs., 4 figs

  3. Performance improvement of charge-trap memory by using a stacked Zr{sub 0.46}Si{sub 0.54}O{sub 2}/Al{sub 2}O{sub 3} charge-trapping layer

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenjie; Hu, Dan; Zhang, Xiwei; Zhao, Yage [College of Physics and Electronic Engineering, Anyang Normal University, Anyang 455000 (China); Li, Rong [School of Mathematics and Statistics, Anyang Normal University, Anyang 455000 (China)

    2016-11-15

    The postdeposition annealing (PDA)-treated charge-trap flash memory capacitor with stacked Zr{sub 0.46}Si{sub 0.54}O{sub 2}/Al{sub 2}O{sub 3} charge-trapping layer flanked by a SiO{sub 2} tunneling oxide and an Al{sub 2}O{sub 3} blocking oxide was fabricated and investigated. It is observed that the memory capacitor exhibits prominent memory characteristics with large memory windows 12.8 V in a ±10 V gate sweeping voltage range, faster program/erase speed, and good data-retention characteristics even at 125 C compared to a single charge-trapping layer (Zr{sub 0.46}Si{sub 0.54}O{sub 2}, Zr{sub 0.79}Si{sub 0.21}O{sub 2}, and Zr{sub 0.46}Al{sub 1.08}O{sub 2.54}). The quantum wells and introduced interfacial traps of the stacked trapping layer regulate the storage and loss behavior of charges, and jointly contribute to the improved memory characteristics. Hence, the memory capacitor with a stacked trapping layer is a promising candidate in future nonvolatile charge-trap memory device design and application. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  5. Effect of the surface charge discretization on electric double layers: a Monte Carlo simulation study.

    Science.gov (United States)

    Madurga, Sergio; Martín-Molina, Alberto; Vilaseca, Eudald; Mas, Francesc; Quesada-Pérez, Manuel

    2007-06-21

    The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups, a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.

  6. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  7. A Self Consistent Multiprocessor Space Charge Algorithm that is Almost Embarrassingly Parallel

    International Nuclear Information System (INIS)

    Nissen, Edward; Erdelyi, B.; Manikonda, S.L.

    2012-01-01

    We present a space charge code that is self consistent, massively parallelizeable, and requires very little communication between computer nodes; making the calculation almost embarrassingly parallel. This method is implemented in the code COSY Infinity where the differential algebras used in this code are important to the algorithm's proper functioning. The method works by calculating the self consistent space charge distribution using the statistical moments of the test particles, and converting them into polynomial series coefficients. These coefficients are combined with differential algebraic integrals to form the potential, and electric fields. The result is a map which contains the effects of space charge. This method allows for massive parallelization since its statistics based solver doesn't require any binning of particles, and only requires a vector containing the partial sums of the statistical moments for the different nodes to be passed. All other calculations are done independently. The resulting maps can be used to analyze the system using normal form analysis, as well as advance particles in numbers and at speeds that were previously impossible.

  8. Dynamics of space and polarization charges of ferroelectric thin films measured by atomic force microscopy

    International Nuclear Information System (INIS)

    Oh, Y.J.; Lee, J.H.; Jo, W.

    2006-01-01

    Retention behavior and local hysteresis characteristics in Pb(Zr 0.52 Ti 0.48 )O 3 (PZT) thin films on Pt electrodes have been investigated by electrostatic force microscopy (EFM). A sol-gel method is used to synthesize PZT thin films and drying conditions are carefully explored over a wide range of temperature. Decay and retention mechanisms of single-poled and reverse-poled regions of the ferroelectric thin films are explained by space charge redistribution. Trapping behavior of space charges is dependent on the nature of interface between ferroelectric thin films and bottom electrodes. Local measurement of polarization-electric field curves by EFM shows inhomogeneous space charge entrapment

  9. A prototype silicon detector system for space cosmic-ray charge measurement

    Science.gov (United States)

    Zhang, Fei; Fan, Rui-Rui; Peng, Wen-Xi; Dong, Yi-Fa; Gong, Ke; Liang, Xiao-Hua; Liu, Ya-Qing; Wang, Huan-Yu

    2014-06-01

    A readout electronics system used for space cosmic-ray charge measurement for multi-channel silicon detectors is introduced in this paper, including performance measurements. A 64-channel charge sensitive ASIC (VA140) from the IDEAS company is used. With its features of low power consumption, low noise, large dynamic range, and high integration, it can be used in future particle detecting experiments based on silicon detectors.

  10. Charge spill-out and work function of few-layer graphene on SiC(0 0 0 1)

    International Nuclear Information System (INIS)

    Renault, O; Rotella, H; Kaja, K; Blaise, P; Poiroux, T; Pascon, A M; Fonseca, L R C; Mathieu, C; Rault, J E; Barrett, N

    2014-01-01

    We report on the charge spill-out and work function of epitaxial few-layer graphene on 6 H-SiC(0 0 0 1). Experiments from high-resolution, energy-filtered x-ray photoelectron emission microscopy (XPEEM) are combined with ab initio density functional theory calculations using a relaxed interface model. The work function values obtained from theory and experiments are in qualitative agreement, reproducing the previously observed trend of increasing work function with each additional graphene plane. Electron transfer at the SiC/graphene interface through a buffer layer (BL) causes an interface dipole moment which is at the origin of the graphene work function modulation. The total charge transfer is independent of the number of graphene layers, and is consistent with the constant binding energy of the SiC component of the C 1s core-level, measured by XPEEM. Charge leakage into a vacuum depends on the number of graphene layers, explaining why the experimental, layer-dependent C 1s graphene core-level binding energy shift does not rigidly follow that of the work function. Thus, a combination of charge transfer at the SiC/graphene interface and charge spill-out into the vacuum resolves the apparent discrepancy between the experimental work function and C 1s binding energy. (paper)

  11. Space charge in ionization detectors and the NA48 electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Palestini, S.; Barr, G.D.; Biino, C.; Calafiura, P.; Ceccucci, A.; Cerri, C.; Chollet, J.C.; Cirilli, M.; Cogan, J.; Costantini, F.; Crepe, S.; Cundy, D.; Fantechi, R.; Fayard, L.; Fischer, G.; Formica, A.; Frabetti, P.L.; Funk, W.; Gianoli, A.; Giudici, S.; Gonidec, A.; Gorini, B.; Govi, G.; Iconomidou-Fayard, L.; Kekelidze, V.; Kubischta, W.; Luitz, S.; Mannelli, I.; Martini, M.; Mikulec, I.; Norton, A.; Ocariz, J.; Schinzel, D.; Sozzi, M.; Tatishvili, G.; Tkatchev, A.; Unal, G.; Velasco, M.; Vossnack, O.; Wahl, H.

    1999-01-01

    The subject of space charge due to positive ions slowly moving in parallel plate ionization chambers is considered. A model for the degradation of the detector response is developed, with particular emphasis on electromagnetic calorimeters.The topics discussed include: (a) the stationary; (b) the time dependent cases; (c) the limit of very large space charge; (d) the electric field dependence of the electron drift velocity; (e) the effect of longitudinal development of showers; (f) the behaviour of the average reductions of response; (g) the non-uniformity of response for different positions of the shower axis inside the cell defined by the electrodes. The NA48 calorimeter is used as application and for comparison of results

  12. Space-charge calculation for bunched beams with 3-D ellipsoidal symmetry

    International Nuclear Information System (INIS)

    Garnett, R.W.; Wangler, T.P.

    1991-01-01

    A method for calculating 3-D space-charge forces has been developed that is suitable for bunched beams of either ions or relativistic electrons. The method is based on the analytic relations between charge-density and electric fields for a distribution with 3-D ellipsoidal symmetry in real space. At each step we use a Fourier-series representation for the smooth particle-density function obtained from the distribution of the macroparticles being tracked through the elements of the system. The resulting smooth electric fields reduce the problem of noise from artificial collisions, associated with small numbers of interacting macroparticles. Example calculations will be shown for comparison with other methods. 4 refs., 2 figs., 1 tab

  13. A heterogeneous CPU+GPU Poisson solver for space charge calculations in beam dynamics studies

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Dawei; Rienen, Ursula van [University of Rostock, Institute of General Electrical Engineering (Germany)

    2016-07-01

    In beam dynamics studies in accelerator physics, space charge plays a central role in the low energy regime of an accelerator. Numerical space charge calculations are required, both, in the design phase and in the operation of the machines as well. Due to its efficiency, mostly the Particle-In-Cell (PIC) method is chosen for the space charge calculation. Then, the solution of Poisson's equation for the charge distribution in the rest frame is the most prominent part within the solution process. The Poisson solver directly affects the accuracy of the self-field applied on the charged particles when the equation of motion is solved in the laboratory frame. As the Poisson solver consumes the major part of the computing time in most simulations it has to be as fast as possible since it has to be carried out once per time step. In this work, we demonstrate a novel heterogeneous CPU+GPU routine for the Poisson solver. The novel solver also benefits from our new research results on the utilization of a discrete cosine transform within the classical Hockney and Eastwood's convolution routine.

  14. The propagation of nonlinear rayleigh waves in layered elastic half-space

    International Nuclear Information System (INIS)

    Ahmetolan, S.

    2004-01-01

    In this work, the propagation of small but finite amplitude generalized Rayleigh waves in an elastic half-space covered by a different elastic layer of uniform and finite thickness is considered. The constituent materials are assumed to be homogeneous, isotropic, compressible hyperelastic. Excluding the harmonic resonance phenomena, it is shown that the nonlinear self modulation of generalized Rayleigh waves is governed asymptotically by a nonlinear Schrodinger (NLS) equation. The stability of the solutions and the existence of solitary wave-type solutions a NLS are strongly depend on the sign of the product of the coefficients of the nonlinear and dipersion terms of the equation.Therefore the analysis continues with the examination of dependence of these coefficients on the nonlinear material parameters. Three different models have been considered which are nonlinear layer-nonlinear half space, linear layer-nonlinear half space and nonlinear layer-linear half space. The behavior of the coefficients of the NLS equation was also analyzed the limit as h(thickness of the layer) goes to zero and k(the wave number) is constant. Then conclusions are drawn about the effect of nonlinear material parameters on the wave modulation. In the numerical investigations both hypothetical and real material models are used

  15. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    OpenAIRE

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, Robert; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Neher, D.; Koch, N.

    2017-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 104 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contr...

  16. Improved speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer

    International Nuclear Information System (INIS)

    Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming

    2011-01-01

    This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO 2 /Ta 2 O 5 charge-trapping layer. In comparison to a memory capacitor with a single HfO 2 trapping layer, the erase speed of a memory capacitor with a stacked HfO 2 /Ta 2 O 5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔV FB = 4 V, the device with a stacked HfO 2 /Ta 2 O 5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO 2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO 2 /Ta 2 O 5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application

  17. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  18. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    Science.gov (United States)

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  19. Highly ductile multilayered films by layer-by-layer assembly of oppositely charged polyurethanes for biomedical applications.

    Science.gov (United States)

    Podsiadlo, Paul; Qin, Ming; Cuddihy, Meghan; Zhu, Jian; Critchley, Kevin; Kheng, Eugene; Kaushik, Amit K; Qi, Ying; Kim, Hyoung-Sug; Noh, Si-Tae; Arruda, Ellen M; Waas, Anthony M; Kotov, Nicholas A

    2009-12-15

    Multilayered thin films prepared with the layer-by-layer (LBL) assembly technique are typically "brittle" composites, while many applications such as flexible electronics or biomedical devices would greatly benefit from ductile, and tough nanostructured coatings. Here we present the preparation of highly ductile multilayered films via LBL assembly of oppositely charged polyurethanes. Free-standing films were found to be robust, strong, and tough with ultimate strains as high as 680% and toughness of approximately 30 MJ/m(3). These results are at least 2 orders of magnitude greater than most LBL materials presented until today. In addition to enhanced ductility, the films showed first-order biocompatibility with animal and human cells. Multilayered structures incorporating polyurethanes open up a new research avenue into the preparation of multifunctional nanostructured films with great potential in biomedical applications.

  20. Influence of charge on encapsulation and release behavior of small molecules in self-assembled layer-by-layer microcapsules.

    Science.gov (United States)

    Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K

    2014-12-01

    The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.

  1. Installation and Characterization of Charged Particle Sources for Space Environmental Effects Testing

    Science.gov (United States)

    Skevington, Jennifer L.

    2010-01-01

    Charged particle sources are integral devices used by Marshall Space Flight Center s Environmental Effects Branch (EM50) in order to simulate space environments for accurate testing of materials and systems. By using these sources inside custom vacuum systems, materials can be tested to determine charging and discharging properties as well as resistance to sputter damage. This knowledge can enable scientists and engineers to choose proper materials that will not fail in harsh space environments. This paper combines the steps utilized to build a low energy electron gun (The "Skevington 3000") as well as the methods used to characterize the output of both the Skevington 3000 and a manufactured Xenon ion source. Such characterizations include beam flux, beam uniformity, and beam energy. Both sources were deemed suitable for simulating environments in future testing.

  2. Space charge limited conduction in CdSe thin films

    Indian Academy of Sciences (India)

    Unknown

    of trap limited space charge limited conduction (SCLC) at higher voltage. The transition voltage (Vt ) from ohmic to SCLC is found to be quite independent of ambient temperature as well as intensity of illumination. SCLC is explained on the basis of the exponential trap distribution in CdSe films. Trap depths estimated from.

  3. Quantum electrodynamics with arbitrary charge on a noncommutative space

    International Nuclear Information System (INIS)

    Zhou Wanping; Long Zhengwen; Cai Shaohong

    2009-01-01

    Using the Seiberg-Witten map, we obtain a quantum electrodynamics on a noncommutative space, which has arbitrary charge and keep the gauge invariance to at the leading order in theta. The one-loop divergence and Compton scattering are reinvestigated. The noncommutative effects are larger than those in ordinary noncommutative quantum electrodynamics. (authors)

  4. THERMAL CONSOLIDATION OF LAYERED POROUS HALF-SPACE TO VARIABLE THERMAL LOADING

    Institute of Scientific and Technical Information of China (English)

    BAI Bing

    2006-01-01

    An analytical method was derived for the thermal consolidation of layered,saturated porous half-space to variable thermal loading with time. In the coupled governing equations of linear thermoelastic media, the influences of thermo-osmosis effect and thermal filtration effect were introduced. Solutions in Laplace transform space were first obtained and then numerically inverted. The responses of a double-layered porous space subjected to exponential decaying thermal loading were studied. The influences of the differences between the properties of the two layers (e.g., the coefficient of thermal consolidation, elastic modulus) on thermal consolidation were discussed. The studies show that the coupling effects of displacement and stress fields on temperature field can be completely neglected, however, thc thermo-osmosis effect has an obvious influence on thermal responses.

  5. Space Charge Modules for PyHEADTAIL

    CERN Multimedia

    Oeftiger, Adrian

    2016-01-01

    PyHEADTAIL is a 6D tracking tool developed at CERN to simulate collective effects. We present recent developments of the direct space charge (SC) suite, which is available for both the CPU and GPU. A new 3D particle-in-cell solver with open boundary conditions has been implemented. For the transverse plane, there is a semi-analytical Bassetti-Erskine model as well as 2D self-consistent particle-in-cell solvers with both open and closed boundary conditions. For the longitudinal plane, PyHEADTAIL offers line density derivative models. Simulations with these models are benchmarked with experiments at the injection plateau of CERN’s SPS.

  6. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  7. Multigrid Algorithms for the Fast Calculation of Space-Charge Effects in Accelerator Design

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Geer, van der S.B.; Loos, de M.J.

    2004-01-01

    Numerical prediction of charged particle dynamics in accelerators is essential for the design and understanding of these machines. Methods to calculate the self-fields of the bunch, the so-called space-charge forces, become increasingly important as the demand for high-quality bunches increases. We

  8. Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films

    Science.gov (United States)

    Jiang, A. Q.; Scott, J. F.; Dawber, M.; Wang, C.

    2002-12-01

    We have performed fatigue tests on lead zirconate titanate (PZT) multilayers having stacks of Pb(Zr0.8Ti0.2)O3/Pb(Zr0.2Ti0.8)O3 with repeated distances of 12 formula groups. The results are compared with single-layer n-type (0.5 at. % Ta-doped) PZT films. We conclude that fatigue is dominated by space-charge layers in each case, but that in the multilayer such space charge accumulates at the layer interfaces, rather than at the electrode-dielectric interface. The model, which includes both drift and diffusion, is quantitative and yields a rate-limiting mobility of 6.9±0.9×10-12 cm2/V s, in excellent agreement with the oxygen vacancy mobility for perovskite oxides obtained from Zafar et al.

  9. Space Charge Modulated Electrical Breakdown of Oil Impregnated Paper Insulation Subjected to AC-DC Combined Voltages

    Directory of Open Access Journals (Sweden)

    Yuanwei Zhu

    2018-06-01

    Full Text Available Based on the existing acknowledgment that space charge modulates AC and DC breakdown of insulating materials, this investigation promotes the related investigation into the situations of more complex electrical stress, i.e., AC-DC combined voltages. Experimentally, the AC-DC breakdown characteristics of oil impregnated paper insulation were systematically investigated. The effects of pre-applied voltage waveform, AC component ratio, and sample thickness on AC-DC breakdown characteristics were analyzed. After that, based on an improved bipolar charge transport model, the space charge profiles and the space charge induced electric field distortion during AC-DC breakdown were numerically simulated to explain the differences in breakdown characteristics between the pre-applied AC and pre-applied DC methods under AC-DC combined voltages. It is concluded that large amounts of homo-charges are accumulated during AC-DC breakdown, which results in significantly distorted inner electric field, leading to variations of breakdown characteristics of oil impregnated paper insulation. Therefore, space charges under AC-DC combined voltages must be considered in the design of converter transformers. In addition, this investigation could provide supporting breakdown data for insulation design of converter transformers and could promote better understanding on the breakdown mechanism of insulating materials subjected to AC-DC combined voltages.

  10. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  11. Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Piot, P. [NICADD, DeKalb

    2015-06-01

    Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such “microbunching instabilities” were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses [1, 2]. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body “Barnes-Hut” algorithm [3] to simulate the 3D space charge force in the beam combined with elegant [4] and explore the limitation of the 1D model often used

  12. Space charge limitation of the current in implanted SiO2 layers

    International Nuclear Information System (INIS)

    Szydlo, N.; Poirier, R.

    1974-01-01

    Metal-oxide-semiconductor capacitors were studied where the metal is a semitransparent gold layer of 5mm diameter, the oxide is thermal silica whose, thickness depends on the nature of the implant, and the semiconductor is N-type silicon of 5 ohms/cm. The SiO 2 thickness was chosen in such a way that the maximum of the profile of the implanted substance is in the medium of the oxide layer. In the case of virgin silica, the oscillations in the photocurrent versus energy and exponential variations versus the applied voltage show that the photoconduction obeys the model of injection limited current. In the case of the oxide after ion bombardment, the photocurrent similarity, independent of the direction of the electric field in silica, shows that volume transport phenomena become preponderent [fr

  13. SNS accumulator ring design and space charge considerations

    International Nuclear Information System (INIS)

    Weng, W.T.

    1998-01-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5micros with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10 14 protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H - beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed

  14. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    International Nuclear Information System (INIS)

    Ligorio, G.; Nardi, M. V.; Steyrleuthner, R.; Neher, D.; Ihiawakrim, D.; Crespo-Monteiro, N.; Brinkmann, M.; Koch, N.

    2016-01-01

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10 4 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  15. Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy

    International Nuclear Information System (INIS)

    Chen, Qian Nataly; Li, Jiangyu; Adler, Stuart B.

    2014-01-01

    Nanocrystalline ceria exhibits a total conductivity several orders of magnitude higher than microcrystalline ceria in air at high temperature. The most widely accepted theory for this enhancement (based on fitting of conductivity data to various transport and kinetic models) is that relatively immobile positively charged defects and/or impurities accumulate at the grain boundary core, leading to a counterbalancing increase in the number of mobile electrons (small polarons) within a diffuse space charge region adjacent to each grain boundary. In an effort to validate this model, we have applied electrochemical strain microscopy to image the location and relative population of mobile electrons near grain boundaries in polycrystalline Sm-doped ceria in air at 20–200 °C. Our results show the first direct (spatially resolved) evidence that such a diffuse space charge region does exist in ceria, and is localized to both grain boundaries and the gas-exposed surface

  16. Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian Nataly; Li, Jiangyu, E-mail: jjli@uw.edu [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Adler, Stuart B., E-mail: stuadler@uw.edu [Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 (United States)

    2014-11-17

    Nanocrystalline ceria exhibits a total conductivity several orders of magnitude higher than microcrystalline ceria in air at high temperature. The most widely accepted theory for this enhancement (based on fitting of conductivity data to various transport and kinetic models) is that relatively immobile positively charged defects and/or impurities accumulate at the grain boundary core, leading to a counterbalancing increase in the number of mobile electrons (small polarons) within a diffuse space charge region adjacent to each grain boundary. In an effort to validate this model, we have applied electrochemical strain microscopy to image the location and relative population of mobile electrons near grain boundaries in polycrystalline Sm-doped ceria in air at 20–200 °C. Our results show the first direct (spatially resolved) evidence that such a diffuse space charge region does exist in ceria, and is localized to both grain boundaries and the gas-exposed surface.

  17. Preparation of Layered-Spinel Microsphere/Reduced Graphene Oxide Cathode Materials for Ultrafast Charge-Discharge Lithium-Ion Batteries.

    Science.gov (United States)

    Luo, Dong; Fang, Shaohua; Yang, Li; Hirano, Shin-Ichi

    2017-12-22

    Although Li-rich layered oxides (LLOs) have the highest capacity of any cathodes used, the rate capability of LLOs falls short of meeting the requirements of electric vehicles and smart grids. Herein, a layered-spinel microsphere/reduced graphene oxide heterostructured cathode (LS@rGO) is prepared in situ. This cathode is composed of a spinel phase, two layered structures, and a small amount of reduced graphene oxide (1.08 wt % of carbon). The assembly delivers a considerable charge capacity (145 mA h g -1 ) at an ultrahigh charge- discharge rate of 60 C (12 A g -1 ). The rate capability of LS@rGO is influenced by the introduced spinel phase and rGO. X-ray absorption and X-ray photoelectron spectroscopy data indicate that Cr ions move from octahedral lattice sites to tetrahedral lattice sites, and that Mn ions do not participate in the oxidation reaction during the initial charge process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental investigation of limit space charge accumulation mode operation in a semi-insulating GaAs photoconductive semiconductor switch

    International Nuclear Information System (INIS)

    Ma Xiangrong; Shi Wei; Xiang Mei

    2013-01-01

    Experiments with the limited space-charge accumulation (LSA) mode of oscillation in a large gap semi-insulating (SI) GaAs photoconductive semiconductor switch (PCSS) are discussed. It has been observed that growth and drift of a photo-activated charge domain (PACD) are quenched only when the bias voltage is more than twice the threshold voltage. The original negative resistance characteristics are directly utilized in the LSA mode; during LSA operation the spatial average of the electric field varies over a large portion of the negative differential mobility region of the velocity—electric field characteristic. The work efficiency of an SI GaAs PCSS is remarkably enhanced by electric field excursions into the positive resistance region when the total electric field is only below the threshold part of the time. The LSA mode can only operate in the certain conditions that satisfy the quenching of the accumulation layer and the smaller initial domain voltage. (semiconductor devices)

  19. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON

    International Nuclear Information System (INIS)

    BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.

    2002-01-01

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed

  20. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  1. Enhanced memory performance by tailoring the microstructural evolution of (ZrO{sub 2}){sub 0.6}(SiO{sub 2}){sub 0.4} charge trapping layer in the nanocrystallites-based charge trap flash memory cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenjie; Xu, Hanni; Xia, Yidong; Yin, Jiang; Li, Aidong; Liu, Zhiguo [Nanjing University, Department of Materials Science and Engineering and National Laboratory of Solid State Microstructures, Nanjing (China); Zhu, Xinhua [Nanjing University, Department of Physics and National and Laboratory of Solid State Microstructures, Nanjing (China); Yan, Feng [Nanjing University, School of Electronics Science and Engineering, Nanjing (China)

    2012-07-15

    ZrO{sub 2} nanocrystallites based charge trap memory cells by incorporating a (ZrO{sub 2}){sub 0.6}(SiO{sub 2}){sub 0.4} film as a charge trapping layer and amorphous Al{sub 2}O{sub 3} as tunneling and blocking layer were prepared and investigated. The precipitation reaction in charge trapping layer forming ZrO{sub 2} nanocrystallites during rapid thermal annealing was investigated by transmission electron microscopy. The density and size of ZrO{sub 2} nanocrystallites are the critical factors for controlling the charge storage characteristics. The ZrO{sub 2} nanocrystallites based memory cells after postannealing at 800 C for 60 s exhibit the best electrical characteristics and a low charge loss {proportional_to}5 % after 10{sup 5} write/erase cycles operation. (orig.)

  2. A feasibility study of space-charge neutralized ion induction linacs: Final report

    International Nuclear Information System (INIS)

    Slutz, S.A.; Primm, P.; Renk, T.; Johnson, D.J.

    1997-03-01

    Applications for high current (> 1 kA) ion beams are increasing. They include hardening of material surfaces, transmutation of radioactive waste, cancer treatment, and possibly driving fusion reactions to create energy. The space-charge of ions limits the current that can be accelerated in a conventional ion linear accelerator (linac). Furthermore, the accelerating electric field must be kept low enough to avoid the generation and acceleration of counter-streaming electrons. These limitations have resulted in ion accelerator designs that employ long beam lines and would be expensive to build. Space-charge neutralization and magnetic insulation of the acceleration gaps could substantially reduce these two limitations, but at the expense of increasing the complexity of the beam physics. We present theory and experiments to determine the degree of charge-neutralization that can be achieved in various environments found in ion accelerators. Our results suggest that, for high current applications, space-charge neutralization could be used to improve on the conventional ion accelerator technology. There are two basic magnetic field geometries that can be used to insulate the accelerating gaps, a radial field or a cusp field. We will present studies related to both of these geometries. We shall also present numerical simulations of open-quotes multicuspclose quotes accelerator that would deliver potassium ions at 400 MeV with a total beam power of approximately 40 TW. Such an accelerator could be used to drive fusion

  3. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  4. Floating liquid bridge charge dynamics

    Science.gov (United States)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  5. Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer

    International Nuclear Information System (INIS)

    Kim, Chaeho; Jeon, D.

    2008-01-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO 2 surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO 2 and pentacene wetting layer

  6. A multigrid based 3D space-charge routine in the tracking code GPT

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Loos, de M.J.; Geer, van der S.B.; Berz, M.; Makino, K.

    2005-01-01

    Fast calculation of3D non-linear space-charge fields is essential for the simulation ofhigh-brightness charged particle beams. We report on our development of a new 3D spacecharge routine in the General Particle Tracer (GPT) code. The model is based on a nonequidistant multigrid Poisson solver that

  7. The effect of hole transporting layer in charge accumulation properties of p-i-n perovskite solar cells

    Directory of Open Access Journals (Sweden)

    Fedros Galatopoulos

    2017-07-01

    Full Text Available The charge accumulation properties of p-i-n perovskite solar cells were investigated using three representative organic and inorganic hole transporting layer (HTL: (a Poly(3,4-ethylenedioxythiophene-poly(styrenesulfonate (PEDOT:PSS, Al 4083, (b copper-doped nickel oxide (Cu:NiOx, and (c Copper oxide (CuO. Through impedance spectroscopy analysis and modelling, it is shown that charge accumulation is decreased in the HTL/perovskite interface, between PEDOT:PSS to Cu:NiOx and CuO. This was indicative from the decrease in double layer capacitance (Cdl and interfacial charge accumulation capacitance (Cel, resulting in an increase to recombination resistance (Rrec, thus decreased charge recombination events between the three HTLs. Through AFM measurements, it is also shown that the reduced recombination events (followed by the increase in Rrec are also a result of increased grain size between the three HTLs, thus reduction in the grain boundary area. These charge accumulation properties of the three HTLs have resulted in an increase to the power conversion efficiency between the PEDOT:PSS (8.44%, Cu:NiOx (11.45%, and CuO (15.3%-based devices.

  8. Injection space charge: enlargements of flux density functioning point choice

    International Nuclear Information System (INIS)

    Ropert, A.

    In Saturne, injection consists of a synchrobetatron filling of the chamber, with the goal of providing a beam with the following characteristics circulating in the machine: horizontal flux density 90 πmm mrd, vertical flux density 210 πmm mrd, dispersion in moments +- 7 x 10 -3 , and number of particles 2 x 10 12 . The determination of the principal injection parameters was made by means of GOC calculation programs. The goal of this study is to show a certain number of phenomena induced by the forces due to space charge and left suspended up to this point: variations in the intensity injectable into the machine extension of the beam occupation zone in the ν/sub x'/ ν/sub z/ diagram, and turn-turn interactions. The effects of the space charge lead to a deterioration of the injected beam for certain functioning points leading to the selection of a zone in the ν/sub x'/ ν/sub z/ diagram that is particularly suitable for beam injection

  9. SNS accumulator ring design and space charge considerations

    Energy Technology Data Exchange (ETDEWEB)

    Weng, W.T.

    1998-08-01

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5 {micro}s with average beam power of 1 MW. To achieve such purpose, a proton storage ring operated at 60 Hz with 1 {times} 10{sup 14} protons per pulse at 1 GeV is required. The Accumulator Ring (AR) receives 1 msec long H{sup {minus}} beam bunches of 28 mA from a 1 GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1 mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generatino and beam collimation etc. is discussed.

  10. SNS ACCUMULATOR RING DESIGN AND SPACE CHARGE CONSIDERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    WENG,W.T.

    1998-05-04

    The goal of the proposed Spallation Neutron Source (SNS) is to provide a short pulse proton beam of about 0.5{micro}s with average beam power of 1MW. To achieve such purpose, a proton storage ring operated at 60Hz with 1 x 10{sup 14} protons per pulse at 1GeV is required. The Accumulator Ring (AR) receives 1msec long H{sup {minus}} beam bunches of 28mA from a 1GeV linac. Scope and design performance goals of the AR are presented. About 1,200 turns of charge exchange injection is needed to accumulate 1mA in the ring. After a brief description of the lattice design and machine performance parameters, space charge related issues, such as: tune shifts, stopband corrections, halo generation and beam collimation etc. is discussed.

  11. Charge generation layers for solution processed tandem organic light emitting diodes with regular device architecture.

    Science.gov (United States)

    Höfle, Stefan; Bernhard, Christoph; Bruns, Michael; Kübel, Christian; Scherer, Torsten; Lemmer, Uli; Colsmann, Alexander

    2015-04-22

    Tandem organic light emitting diodes (OLEDs) utilizing fluorescent polymers in both sub-OLEDs and a regular device architecture were fabricated from solution, and their structure and performance characterized. The charge carrier generation layer comprised a zinc oxide layer, modified by a polyethylenimine interface dipole, for electron injection and either MoO3, WO3, or VOx for hole injection into the adjacent sub-OLEDs. ToF-SIMS investigations and STEM-EDX mapping verified the distinct functional layers throughout the layer stack. At a given device current density, the current efficiencies of both sub-OLEDs add up to a maximum of 25 cd/A, indicating a properly working tandem OLED.

  12. Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Energy Technology Data Exchange (ETDEWEB)

    Ligorio, G.; Nardi, M. V. [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Steyrleuthner, R.; Neher, D. [Institute of Physics and Astronomy, Universität Potsdam, Karl-Liebknecht Str. 24, 14476 Potsdam (Germany); Ihiawakrim, D. [Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, Cedex2 (France); Crespo-Monteiro, N.; Brinkmann, M. [Institut Charles Sadron CNRS, 23 rue du Loess, 67034 Strasbourg (France); Koch, N., E-mail: norbert.koch@physik.hu-berlin.de [Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor Str. 6, 12489 Berlin (Germany); Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Erneuerbare Energien, Albert-Einstein Str. 15, 12489 Berlin (Germany)

    2016-04-11

    We reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 10{sup 4} due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed.

  13. Numerical design of electron guns and space charge limited transport systems

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1980-10-01

    This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included

  14. Halo and space charge issues in the SNS Ring

    International Nuclear Information System (INIS)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-01-01

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring

  15. Halo and space charge issues in the SNS Ring

    Energy Technology Data Exchange (ETDEWEB)

    Fedotov, A.V.; Abell, D.T.; Beebe-Wang, J.; Lee, Y.Y.; Malitsky, N.; Wei, J.; Gluckstern, R.L.

    2000-06-30

    The latest designs for high-intensity proton rings require minimizing beam-induced radioactivation of the vacuum chamber. Although the tune depression in the ring is much smaller than in high-intensity linacs, space-charge contributions to halo formation and, hence, beam loss may be significant. This paper reviews our current understanding of halo formation issues for the Spallation Neutron Source (SNS) accumulator ring.

  16. Development and Application of a Wireless Sensor for Space Charge Density Measurement in an Ultra-High-Voltage, Direct-Current Environment.

    Science.gov (United States)

    Xin, Encheng; Ju, Yong; Yuan, Haiwen

    2016-10-20

    A space charge density wireless measurement system based on the idea of distributed measurement is proposed for collecting and monitoring the space charge density in an ultra-high-voltage direct-current (UHVDC) environment. The proposed system architecture is composed of a number of wireless nodes connected with space charge density sensors and a base station. The space charge density sensor based on atmospheric ion counter method is elaborated and developed, and the ARM microprocessor and Zigbee radio frequency module are applied. The wireless network communication quality and the relationship between energy consumption and transmission distance in the complicated electromagnetic environment is tested. Based on the experimental results, the proposed measurement system demonstrates that it can adapt to the complex electromagnetic environment under the UHVDC transmission lines and can accurately measure the space charge density.

  17. Ion trajectories calculation in a three dimensional beam subjected to a space charge

    International Nuclear Information System (INIS)

    Tauth, T.

    1978-04-01

    Physical and geometrical conditions allowing a first approximation of necessary sizes to numerical integration of the ions movement equations subjected to electrical and magnetic crossed fields and space charge action are investigated here. To take into consideration the effect of the last one, two artifices are put forward: replacing charged particles by equivalent particles in calculating the coulomb force, electrical field calculation produced in different points situated on the beam envelope by the uniform charges distribution [fr

  18. Phase space properties of charged fields in theories of local observables

    International Nuclear Information System (INIS)

    Buchholz, D.; D'Antoni, C.

    1994-10-01

    Within the setting of algebraic quantum field theory a relation between phase-space properties of observables and charged fields is established. These properties are expressed in terms of compactness and nuclarity conditions which are the basis for the characterization of theories with physically reasonable causal and thermal features. Relevant concepts and results of phase space analysis in algebraic qunatum field theory are reviewed and the underlying ideas are outlined. (orig.)

  19. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    Science.gov (United States)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  20. Numerical analysis of ion wind flow using space charge for optimal design

    Science.gov (United States)

    Ko, Han Seo; Shin, Dong Ho; Baek, Soo Hong

    2014-11-01

    Ion wind flow has been widly studied for its advantages of a micro fluidic device. However, it is very difficult to predict the performance of the ion wind flow for various conditions because of its complicated electrohydrodynamic phenomena. Thus, a reliable numerical modeling is required to design an otimal ion wind generator and calculate velocity of the ion wind for the proper performance. In this study, the numerical modeling of the ion wind has been modified and newly defined to calculate the veloctiy of the ion wind flow by combining three basic models such as electrostatics, electrodynamics and fluid dynamics. The model has included presence of initial space charges to calculate transfer energy between space charges and air gas molecules using a developed space charge correlation. The simulation has been performed for a geometry of a pin to parallel plate electrode. Finally, the results of the simulation have been compared with the experimental data for the ion wind velocity to confirm the accuracy of the modified numerical modeling and to obtain the optimal design of the ion wind generator. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. 2013R1A2A2A01068653).

  1. Space charge effects and aberrations on electron pulse compression in a spherical electrostatic capacitor.

    Science.gov (United States)

    Yu, Lei; Li, Haibo; Wan, Weishi; Wei, Zheng; Grzelakowski, Krzysztof P; Tromp, Rudolf M; Tang, Wen-Xin

    2017-12-01

    The effects of space charge, aberrations and relativity on temporal compression are investigated for a compact spherical electrostatic capacitor (α-SDA). By employing the three-dimensional (3D) field simulation and the 3D space charge model based on numerical General Particle Tracer and SIMION, we map the compression efficiency for a wide range of initial beam size and single-pulse electron number and determine the optimum conditions of electron pulses for the most effective compression. The results demonstrate that both space charge effects and aberrations prevent the compression of electron pulses into the sub-ps region if the electron number and the beam size are not properly optimized. Our results suggest that α-SDA is an effective compression approach for electron pulses under the optimum conditions. It may serve as a potential key component in designing future time-resolved electron sources for electron diffraction and spectroscopy experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Phase space imaging of a beam of charged particles by frictional forces

    International Nuclear Information System (INIS)

    Daniel, H.

    1977-01-01

    In the case of frictional forces, defined by always acting opposite to the particle motion, Liouville's theorem does not apply. The effect of such forces on a beam of charged particles is calculated in closed form. Emphasis is given to the phase space imaging by a moderator. Conditions for an increase in phase space density are discussed. (Auth.)

  3. An FPGA computing demo core for space charge simulation

    International Nuclear Information System (INIS)

    Wu, Jinyuan; Huang, Yifei

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  4. An FPGA computing demo core for space charge simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  5. Analysis of the Deposit Layer from Electrolyte Side Reaction on the Anode of the Pouch Type Lithium Ion Polymer Batteries: The Effect of State of Charge and Charge Rate

    International Nuclear Information System (INIS)

    Agubra, Victor A.; Fergus, Jeffrey W.; Fu, Rujian; Choe, Song-yul

    2014-01-01

    Highlights: • Raising the battery cycling potential increased the rate of side reaction. • Growth of deposit layer thickness at the electrode/electrolyte interface at high SOC. • A significant amount of lithium was consumed in forming the deposit layer. • Some of the lithium were “trapped” in the graphite after the discharge cycle. - Abstract: The formation of the solid electrolyte interface (SEI) layer on the surface of the anode electrode of a lithium ion battery prevents further electrolyte decomposition reaction. However, at certain battery operating conditions, the SEI breakdown leading to more electrolyte decomposition reactions that form several species on the anode electrode surface. This paper focuses on the effect of battery potential and charge rate on the decomposition side reaction on the anode electrode of a lithium ion polymer battery, as a result of the breakdown of the SEI layer. The results from this study indicate that raising the state of charge (SOC) increases the rate of the electrolyte decomposition side reaction that resulted in formation of a thick deposit layer at the electrolyte/electrolyte interface. This deposit layer contains lithium that can no longer participate in the reversible electrochemical reaction. In addition, at high cycling potential and charge rates the amount of lithium in the graphite after complete cell discharge increased due to the entrapment of lithium in the graphite. The amount of irreversible capacity loss for the batteries cycled at high potential and current correlates with the amount of trapped lithium in the graphite and the growth of the deposit layer thickness at the electrode/electrolyte interface

  6. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  7. Longitudinal holes in debunched particle beams in storage rings, perpetuated by space-charge forces

    Directory of Open Access Journals (Sweden)

    Shane Koscielniak

    2001-04-01

    Full Text Available Stationary, self-consistent, and localized longitudinal density perturbations on an unbunched charged-particle beam, which are solutions of the nonlinearized Vlasov-Poisson equation, have recently received some attention. In particular, we address the case that space charge is the dominant longitudinal impedance and the storage ring operates below transition energy so that the negative mass instability is not an explanation for persistent beam structure. Under the customary assumption of a bell-shaped steady-state distribution, about which the expansion is made, the usual wave theory of Keil and Schnell for perturbations on unbunched beams predicts that self-sustaining perturbations are possible only (below transition if the impedance is inductive (or resistive or if the bell shape is inverted. Space charge gives a capacitive impedance. Nevertheless, we report numerous experimental measurements made at the CERN Proton Synchrotron Booster that plainly show the longevity of holelike structures in coasting beams. We shall also report on computer simulations of boosterlike beams that provide compelling evidence that it is space-charge force which perpetuates the holes. We shall show that the localized solitonlike structures, i.e., holes, decouple from the steady-state distribution and that they are simple solutions of the nonlinearized time-independent Vlasov equation. We have derived conditions for stationarity of holes that satisfy the requirement of self-consistency; essentially, the relation between the momentum spread and depth of the holes is given by the Hamiltonian—with the constraint that the phase-space density be high enough to support the solitons. The stationarity conditions have scaling laws similar to the Keil-Schnell criteria except that the charge and momentum spread of the hole replaces that of the beam.

  8. Layering and Ordering in Electrochemical Double Layers

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yihua [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Kawaguchi, Tomoya [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States; Pierce, Michael S. [Rochester Institute of Technology, School of Physics and Astronomy, Rochester, New York 14623, United States; Komanicky, Vladimir [Faculty of Science, Safarik University, 041 54 Kosice, Slovakia; You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States

    2018-02-26

    Electrochemical double layers (EDL) form at electrified interfaces. While Gouy-Chapman model describes moderately charged EDL, formation of Stern layers was predicted for highly charged EDL. Our results provide structural evidence for a Stern layer of cations, at potentials close to hydrogen evolution in alkali fluoride and chloride electrolytes. Layering was observed by x-ray crystal truncation rods and atomic-scale recoil responses of Pt(111) surface layers. Ordering in the layer is confirmed by glancing-incidence in-plane diffraction measurements.

  9. Numerical investigation of space charge electric field for a sheet ...

    Indian Academy of Sciences (India)

    One of the problems in scaling high power vacuum and plasma microwave sources to higher frequencies is the need to transport beams with higher space charge density, since the radio frequency circuit transverse dimensions tend to decrease with wavelength. The use of sheet electron beams can alleviate this difficulty ...

  10. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  11. Stability analysis of Hasegawa space-charge waves in a plasma waveguide with collisional ion beam

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-12-01

    The dispersion relation for the Hasegawa space-charge wave propagating in a cylindrical waveguide dusty plasma containing collision-dominated ion stream is derived by using the fluid equations and the Poisson equation which lead to a Bessel equation. The solution of Bessel equation is null at the boundary and then the roots of the Bessel function would characterize the property of space-charge wave propagation. We have found that the Hasegawa space-charge wave can be excited for a large axial wave number. The growth rate of excitation increases as the order of the roots of the Bessel function increases. The growth rate decreases with an increase of the radius of cylindrical waveguide as well as with an increase of the collision frequency. We found that the disturbance of wave can be damped only for small wave numbers.

  12. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    International Nuclear Information System (INIS)

    Teyssedre, G.; Laurent, C.; Vu, T. T. N.

    2015-01-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10 −14 –10 −13  m 2  V −1  s −1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets

  13. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Science.gov (United States)

    Teyssedre, G.; Vu, T. T. N.; Laurent, C.

    2015-12-01

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  14. Excitation of hybridized Dirac plasmon polaritons and transition radiation in multi-layer graphene traversed by a fast charged particle

    Science.gov (United States)

    Akbari, Kamran; Mišković, Zoran L.; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-06-01

    We analyze the energy loss channels for a fast charged particle traversing a multi-layer graphene (MLG) structure with N layers under normal incidence. Focusing on a terahertz (THz) range of frequencies, and assuming equally doped graphene layers with a large enough separation d between them to neglect interlayer electron hopping, we use the Drude model for two-dimensional conductivity of each layer to describe hybridization of graphene’s Dirac plasmon polaritons (DPPs). Performing a layer decomposition of ohmic energy losses, which include excitation of hybridized DPPs (HDPPs), we have found for N = 3 that the middle HDPP eigenfrequency is not excited in the middle layer due to symmetry constraint, whereas the excitation of the lowest HDPP eigenfrequency produces a Fano resonance in the graphene layer that is first traversed by the charged particle. While the angular distribution of transition radiation emitted in the far field region also shows asymmetry with respect to the traversal order by the incident charged particle at supra-THz frequencies, the integrated radiative energy loss is surprisingly independent of both d and N for N ≤ 5, which is explained by a dominant role of the outer graphene layers in transition radiation. We have further found that the integrated ohmic energy loss in optically thin MLG scales as ∝1/N at sub-THz frequencies, which is explained by exposing the role of dissipative processes in graphene at low frequencies. Finally, prominent peaks are observed at supra-THz frequencies in the integrated ohmic energy loss for MLG structures that are not optically thin. The magnitude of those peaks is found to scale with N for N ≥ 2, while their shape and position replicate the peak in a double-layer graphene (N = 2), which is explained by arguing that plasmon hybridization in such MLG structures is dominated by electromagnetic interaction between the nearest-neighbor graphene layers.

  15. Safety of information in electronic equipment influenced by the charged space particles

    Directory of Open Access Journals (Sweden)

    Ksenia Gennad’evna Sizova

    2016-10-01

    Full Text Available A version of the existing evaluation method of electronic equipment to the influence of charged space particles causing single event effects for the purpose of improving the accuracy of calculation in the field of information safety is suggested. On the basis of the existing and modified methods radiation tolerance of real payload spacecraft responsible for the security of transmitted information are defined. The results of comparison are introduced. Significant differences not only in quantitative but also in qualitative character of tolerance indicators are revealed. It is demonstrated that the modified method allows to take into account the functional complexity of the hardware and the application efficiency of the sophisticated single event effects protection tools. To confirm the applicability of the modified method of equipment tolerance evaluation method to the influence of charged space particles causing single event effects proposals to the procedure of ground tests of the payload and the space experiment are developed.

  16. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  17. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  18. Parallel Finite Element Particle-In-Cell Code for Simulations of Space-charge Dominated Beam-Cavity Interactions

    International Nuclear Information System (INIS)

    Candel, A.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.

    2007-01-01

    Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element (FE) particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order FE methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented

  19. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    Energy Technology Data Exchange (ETDEWEB)

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J. [Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2014-06-16

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C{sub 60}. While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  20. Optical spacing effect in organic photovoltaic cells incorporating a dilute acceptor layer

    International Nuclear Information System (INIS)

    Menke, S. Matthew; Lindsay, Christopher D.; Holmes, Russell J.

    2014-01-01

    The addition of spacing layers in organic photovoltaic cells (OPVs) can enhance light absorption by optimizing the spatial distribution of the incident optical field in the multilayer structure. We explore the optical spacing effect in OPVs achieved using a diluted electron acceptor layer of C 60 . While optical spacing is often realized by optimizing buffer layer thickness, we find that optical spacing via dilution leads to cells with similar or enhanced photocurrent. This is observed despite a smaller quantity of absorbing molecules, suggesting a more efficient use of absorbed photons. In fact, dilution is found to concentrate optical absorption near the electron donor-acceptor interface, resulting in a marked increase in the exciton diffusion efficiency. Contrasting the use of changes in thickness to engineer optical absorption, the use of dilution does not significantly alter the overall thickness of the OPV. Optical spacing via dilution is shown to be a viable alternative to more traditional optical spacing techniques and may be especially useful in the continued optimization of next-generation, tandem OPVs where it is important to minimize competition for optical absorption between individual sub-cells.

  1. Current distribution in triodes neglecting space charge and initial velocities

    NARCIS (Netherlands)

    Hamaker, H.C.

    1950-01-01

    A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid

  2. Analysis of Conduction and Charging Mechanisms in Atomic Layer Deposited Multilayered HfO2/Al2O3 Stacks for Use in Charge Trapping Flash Memories

    Directory of Open Access Journals (Sweden)

    Nenad Novkovski

    2018-01-01

    Full Text Available Method for characterization of electrical and trapping properties of multilayered high permittivity stacks for use in charge trapping flash memories is proposed. Application of the method to the case of multilayered HfO2/Al2O3 stacks is presented. By applying our previously developed comprehensive model for MOS structures containing high-κ dielectrics on the J-V characteristics measured in the voltage range without marked degradation and charge trapping (from −3 V to +3 V, several parameters of the structure connected to the interfacial layer and the conduction mechanisms have been extracted. We found that the above analysis gives precise information on the main characteristics and the quality of the injection layer. C-V characteristics of stressed (with write and erase pulses structures recorded in a limited range of voltages between −1 V and +1 V (where neither significant charge trapping nor visible degradation of the structures is expected to occur were used in order to provide measures of the effect of stresses with no influence of the measurement process. Both trapped charge and the distribution of interface states have been determined using modified Terman method for fresh structures and for structures stressed with write and erase cycles. The proposed method allows determination of charge trapping and interface state with high resolution, promising a precise characterization of multilayered high permittivity stacks for use in charge trapping flash memories.

  3. Phase modulation spectroscopy of space-charge wave resonances in Bi12SiO20

    DEFF Research Database (Denmark)

    Vasnetsov, M.; Buchhave, Preben; Lyuksyutov, S.

    1997-01-01

    A new experimental method for the study of resonance effects and space-charge wave excitation in photorefractive Bi12SiO20 crystals by using a combination of frequency detuning and phase modulation technique has been developed. The accuracy of the method allows a detection of resonance peaks...... of diffraction efficiency within 0.5 Hz. Numerical simulations of the nonlinear differential equations describing the behaviour of the space-charge waves in photorefractive crystals have been performed and found to be in a good agreement with experiment. We have measured the photocurrent through the crystal...

  4. An alternative approach to charge transport in semiconducting electrodes

    Science.gov (United States)

    Thomchick, J.; Buoncristiani, A. M.

    1980-01-01

    The excess-carrier charge transport through the space-charge region of a semiconducting electrode is analyzed by a technique known as the flux method. In this approach reflection and transmission coefficients appropriate for a sheet of uniform semiconducting material describe its transport properties. A review is presented of the flux method showing that the results for a semiconductor electrode reduce in a limiting case to those previously found by Gaertner if the depletion layer is treated as a perfectly transmitting medium in which scattering and recombination are ignored. Then, in the framework of the flux method the depletion layer is considered more realistically by explicitly taking into account scattering and recombination processes which occur in this region.

  5. Chaos in charged AdS black hole extended phase space

    Science.gov (United States)

    Chabab, M.; El Moumni, H.; Iraoui, S.; Masmar, K.; Zhizeh, S.

    2018-06-01

    We present an analytical study of chaos in a charged black hole in the extended phase space in the context of the Poincare-Melnikov theory. Along with some background on dynamical systems, we compute the relevant Melnikov function and find its zeros. Then we analyse these zeros either to identify the temporal chaos in the spinodal region, or to observe spatial chaos in the small/large black hole equilibrium configuration. As a byproduct, we derive a constraint on the Black hole' charge required to produce chaotic behaviour. To the best of our knowledge, this is the first endeavour to understand the correlation between chaos and phase picture in black holes.

  6. Relations between focusing power of space-charge lenses and external electromagnetic fields

    International Nuclear Information System (INIS)

    Yu Qingchang; Qiu Hong; Huang Jiachang

    1991-01-01

    Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed

  7. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  8. Aberration of a negative ion beam caused by space charge effect

    International Nuclear Information System (INIS)

    Miyamoto, K.; Wada, S.; Hatayama, A.

    2010-01-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  9. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  10. Aberration of a negative ion beam caused by space charge effect.

    Science.gov (United States)

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  11. Electrostatic double-layer interaction between stacked charged bilayers

    Science.gov (United States)

    Hishida, Mafumi; Nomura, Yoko; Akiyama, Ryo; Yamamura, Yasuhisa; Saito, Kazuya

    2017-10-01

    The inapplicability of the DLVO theory to multilayered anionic bilayers is found in terms of the co-ion-valence dependence of the lamellar repeat distance. Most of the added salt is expelled from the interlamellar space to the bulk due to the Gibbs-Donnan effect on multiple bilayers with the bulk. The electrostatic double-layer interaction is well expressed by the formula recently proposed by Trefalt. The osmotic pressure due to the expelled ions, rather than the van der Waals interaction, is the main origin of the attractive force between the bilayers.

  12. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  13. An investigation of the double layers caused by space vehicles moving through the ionosphere

    International Nuclear Information System (INIS)

    Liu Sanqiu; Liao Jingjing

    2010-01-01

    On the basis of non-steady-state nonlinear coupling equations of high-frequency field, density disturbance and potential, the evolution of double layers in the wake region of space vehicles moving through the ionosphere is numerically simulated in the non-static limit case. The results show that the interactions among plasmas, the vehicle and high-frequency electromagnetic waves radiated from the antenna system of the vehicle can lead to the formation of double layers. It is shown that the double layer is a nonlinear entity-caviton. Potential disturbance far away from the vehicle and the peak value of potential near the vehicle in the double layer are obvious. This is very important for detecting space vehicles with a stealth characteristic and preventing space vehicles from being harmed by double layers.

  14. Working Group 2 summary: Space charge effects in bending systems

    International Nuclear Information System (INIS)

    Bohn, C.L.; Emma, P.J.

    2000-01-01

    At the start of the Workshop, the authors asked the Working Group 2 participants to concentrate on three basic goals: (1) survey the status of how comprehensively the physics concerning space-charge effects in bends is understood and how complete is the available ensemble of analytic and computational tools; (2) guided by data from experiments and operational experience, identify sources of, and cures for, beam degradation; and (3) review space-charge physics in rings and the limitations it introduces. As the Workshop unfolded, the third goal naturally folded into the other two goals, and these goals, they believe, were fulfilled in that the Working Group was able to compile an end product consisting of a set of recommendations for potentially fruitful future work. This summary constitutes an overview of the deliberations of the Working Group, and it is their hope that the summary clarifies the motivation for the recommended work listed at the end. The summary is organized according to the two aforementioned goals, and the prime topics of discussion appear as subsections under these goals

  15. The space charge effects on the slow extraction process

    International Nuclear Information System (INIS)

    Ohmori, Chihiro.

    1992-06-01

    The calculation of the slow extraction which includes the space charge effects has been performed for the Compressor/Stretcher Ring (CSR) of the proposed Japanese Hadron Project. We have investigated the slow extraction of 1 GeV proton beam with an average current of 100μA. Calculation shows not only the emittance growth of the extracted beam but also decrease of the extraction efficiency and discontinuity of beam spill. (author)

  16. Space charge effects for multipactor in coaxial lines

    Energy Technology Data Exchange (ETDEWEB)

    Sorolla, E., E-mail: eden.sorolla@xlim.fr [XLIM, UMR 7252, Université de Limoges/CNRS, 123 Av. Albert Thomas, 87060 Limoges (France); Sounas, A.; Mattes, M. [Laboratoire d' Électromagnétisme et d' Acoustique (LEMA), École Polytechnique Fédérale de Lausanne, Station 11, CH-1015 Lausanne (Switzerland)

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  17. Space charge effects for multipactor in coaxial lines

    International Nuclear Information System (INIS)

    Sorolla, E.; Sounas, A.; Mattes, M.

    2015-01-01

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion

  18. Negative differential mobility for negative carriers as revealed by space charge measurements on crosslinked polyethylene insulated model cables

    Energy Technology Data Exchange (ETDEWEB)

    Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); CNRS, LAPLACE, F-31062 Toulouse (France); Vu, T. T. N. [Université de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse cedex 9 (France); Electric Power University, 235 Hoang Quoc Viet, 10000 Hanoi (Viet Nam)

    2015-12-21

    Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.

  19. Aspects of space charge theory applied to dielectric under electron beam irradiation

    International Nuclear Information System (INIS)

    Oliveira, L.N. de.

    1975-01-01

    Irradiation of solid dielectric with electron beams has been used as a power full tool in investigations of charge storage and transport in such materials. Some of the results that have been obtained in this area are reviewed and the formulation of a transport equation for excess charge in irradiated insulators is dicussed. This equation is subsequently applied to various experimental set-ups. It is found that space charge effects play an essential role in the establishment of stationary currents in samples subject to quasi-penetrating electron beams. Such effects may, however, be neglected for low electron ranges. Theoretical results are in good agreement with experimental findings by Spear (1955)

  20. Studies on space charge neutralization and emittance measurement of beam from microwave ion source

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Anuraag; Goswami, A.; Sing Babu, P.; Srivastava, S.; Pandit, V. S., E-mail: pandit@vecc.gov.in, E-mail: vspandit12@gmail.com [Variable Energy Cyclotron Centre, 1-AF, Bidhannagar, Kolkata 700 064 (India)

    2015-11-15

    A 2.45 GHz microwave ion source together with a beam transport system has been developed at VECC to study the problems related with the injection of high current beam into a compact cyclotron. This paper presents the results of beam profile measurement of high current proton beam at different degrees of space charge neutralisation with the introduction of neon gas in the beam line using a fine leak valve. The beam profiles have been measured at different pressures in the beam line by capturing the residual gas fluorescence using a CCD camera. It has been found that with space charge compensation at the present current level (∼5 mA at 75 keV), it is possible to reduce the beam spot size by ∼34%. We have measured the variation of beam profile as a function of the current in the solenoid magnet under the neutralised condition and used these data to estimate the rms emittance of the beam. Simulations performed using equivalent Kapchinsky-Vladimirsky beam envelope equations with space charge neutralization factor are also presented to interpret the experimental results.

  1. Charge-carrier transport in epitactical strontium titanate layers for the application in superconducting components

    International Nuclear Information System (INIS)

    Grosse, Veit

    2011-01-01

    In this thesis thin STO layers were epitactically deposited on YBCO for a subsequent electrical characterization. YBCO layers with a roughness of less than 2 nm (RMS), good out-of-plane orientation with a half-width in the rocking curve in the range (0.2..0.3) at only slightly diminished critical temperature could be reached. The STO layers exhibited also very good crystallographic properties. The charge-carrier transport in STO is mainly dominated by interface-limited processes. By means of an in thesis newly developed barrier model thereby the measured dependencies j(U,T) respectively σ(U,T) could be described very far-reachingly. At larger layer thicknesses and low temperatures the charge-carrier transport succeeds by hopping processes. So in the YBCO/STO/YBCO system the variable-range hopping could be identified as dominating transport process. Just above U>10 V a new behaviour is observed, which concerning its temperature dependence however is also tunnel-like. The STO layers exhibit here very large resistances, so that fields up to 10 7 ..10 8 V/m can be reached without flowing of significant leakage currents through the barrier. In the system YBCO/STO/Au the current transport can be principally in the same way as in the YBCO/STO/YBCO system. The special shape and above all the asymmetry of the barrier however work out very distinctly. It could be shown that at high temperatures according to the current direction a second barrier on the opposite electrode must be passed. So often observed breakdown effects can be well described. For STO layer-thicknesses in the range around 25 nm in the whole temperature range studied inelastic tunneling over chains of localized states was identified as dominating transport process. It could however for the first time be shown that at very low temperatures in the STO layers Coulomb blockades can be formed.

  2. Improving radiation hardness in space-based Charge-Coupled Devices through the narrowing of the charge transfer channel

    Science.gov (United States)

    Hall, D. J.; Skottfelt, J.; Soman, M. R.; Bush, N.; Holland, A.

    2017-12-01

    Charge-Coupled Devices (CCDs) have been the detector of choice for imaging and spectroscopy in space missions for several decades, such as those being used for the Euclid VIS instrument and baselined for the SMILE SXI. Despite the many positive properties of CCDs, such as the high quantum efficiency and low noise, when used in a space environment the detectors suffer damage from the often-harsh radiation environment. High energy particles can create defects in the silicon lattice which act to trap the signal electrons being transferred through the device, reducing the signal measured and effectively increasing the noise. We can reduce the impact of radiation on the devices through four key methods: increased radiation shielding, device design considerations, optimisation of operating conditions, and image correction. Here, we concentrate on device design operations, investigating the impact of narrowing the charge-transfer channel in the device with the aim of minimising the impact of traps during readout. Previous studies for the Euclid VIS instrument considered two devices, the e2v CCD204 and CCD273, the serial register of the former having a 50 μm channel and the latter having a 20 μm channel. The reduction in channel width was previously modelled to give an approximate 1.6× reduction in charge storage volume, verified experimentally to have a reduction in charge transfer inefficiency of 1.7×. The methods used to simulate the reduction approximated the charge cloud to a sharp-edged volume within which the probability of capture by traps was 100%. For high signals and slow readout speeds, this is a reasonable approximation. However, for low signals and higher readout speeds, the approximation falls short. Here we discuss a new method of simulating and calculating charge storage variations with device design changes, considering the absolute probability of capture across the pixel, bringing validity to all signal sizes and readout speeds. Using this method, we

  3. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    Energy Technology Data Exchange (ETDEWEB)

    Markovik, A.

    2005-09-28

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  4. Numerical computation of space-charge fields of electron bunches in a beam pipe of elliptical shape

    International Nuclear Information System (INIS)

    Markovik, A.

    2005-01-01

    This work deals in particularly with 3D numerical simulations of space-charge fields from electron bunches in a beam pipe with elliptical cross-section. To obtain the space-charge fields it is necessary to calculate the Poisson equation with given boundary condition and space charge distribution. The discretization of the Poisson equation by the method of finite differences on a Cartesian grid, as well as setting up the coefficient matrix A for the elliptical domain are explained in the section 2. In the section 3 the properties of the coefficient matrix and possible numerical algorithms suitable for solving non-symmetrical linear systems of equations are introduced. In the following section 4, the applied solver algorithms are investigated by numerical tests with right hand side function for which the analytical solution is known. (orig.)

  5. Depletion length and space charge layer capacitance in doped semiconductor nanoshpere

    International Nuclear Information System (INIS)

    Nersesyan, S R; Petrosyan, S G

    2012-01-01

    The depletion length in a semiconductor nanosphere depends not only on the material parameters but on the nanosphere radius as well. For this reason, the depletion length does not present a universal characteristic length for all spherical interfaces. The difference from the standard flat model caused by the surface curvature is significant for a structure with the depletion length comparable to the radius of a nanosphere. We show that the depletion layer capacitance in a nanosphere becomes quite sensitive to the light intensity when, as a result of increasing optical generation rate, the surface potential barrier height is decreased and becomes very small. (paper)

  6. Bifurcation of space-charge wave in a plasma waveguide including the wake potential effect

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics and Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588, South Korea and Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2016-09-15

    The wake potential effects on the propagation of the space-charge dust ion-acoustic wave are investigated in a cylindrically bounded dusty plasma with the ion flow. The results show that the wake potential would generate the double frequency modes in a cylindrically bounded dusty plasma. It is found that the upper mode of the wave frequency with the root of higher-order is smaller than that with the root of lower-order in intermediate wave number domains. However, the lower mode of the scaled wave frequency with the root of higher-order is found to be greater than that with the root of lower-order. It is found that the influence in the order of the root of the Bessel function on the wave frequency of the space-charge dust-ion-acoustic wave in a cylindrically confined dusty plasma decreases with an increase in the propagation wave number. It is also found that the double frequency modes increase with increasing Mach number due to the ion flow in a cylindrical dusty plasma. In addition, it is found that the upper mode of the group velocity decreases with an increase in the scaled radius of the plasma cylinder. However, it is shown that the lower mode of the scaled group velocity of the space-charge dust ion acoustic wave increases with an increase in the radius of the plasma cylinder. The variation of the space-charge dust-ion-acoustic wave due to the wake potential and geometric effects is also discussed.

  7. Spectroelectrochemical evidence for the effect of phase structure and interface on charge behavior in poly(3-hexylthiophene): Fullerene active layer

    International Nuclear Information System (INIS)

    Hu, Rong; Ni, Haitao; Wang, Zhaodong; Liu, Yurong; Liu, Hongdong; Yang, Xin; Cheng, Jiang

    2016-01-01

    Highlights: • The steady-state absorption spectra of P3HT"·"+, P3HT"·"−, PCBM"+ and PCBM"− were obtained. • The effect of morphology of active layer on charge generation was identified. • Non-equilibrium transport of electron and hole was confirmed in PSCs. - Abstract: To investigate the correlation between morphology of active layer and performance of polymer solar cells (PSCs). Poly(3-hexylthiophene):[6,6]-phenyl-C_6_1-butyric acid methyl ester (P3HT:PCBM) were selected as research object and five PSCs based on active layers with varied morphology were fabricated. The results showed that P3HT crystalline phase and donor-acceptor (D-A) interface had an important influence on PSCs performance, which was revealed by structure characterization and J-V measurement. To further understanding the effect of phase structure and D-A interface on charge behavior. Spectroelectrochemistry measurement (SEC) was performed to characterize the steady-state optical absorption of P3HT, PCBM cation and anion in varied active layers, and the spectra difference of cations and anions was analyzed. The results were found that D-A interface could promote charge generation. P3HT crystalline phase and PCBM aggregation phase were beneficial for improving the charge transport ability. Meanwhile, the non-equilibrium transport of electron and hole in PSCs was corroborated by SEC.

  8. Unequilibrium kinetic of collisionless boundary layers in binary plasmas

    International Nuclear Information System (INIS)

    Kotelnikov, V.A.; Nikolaev, F.A.; Cherepanov, V.V.

    1985-01-01

    Relaxation processes of kinetic nonequilibrium collisionless boundary layers near spherical charged full absorbing surfaces in binary low-temperature plasmas are investigated. The effect of magnetic field on relaxation processes was neglected. The dynamics of components of the ionized gas was treated near the boundary layer. The potential distribution and the space dependence of concentration were calculated numerically. These results agree well with the experimental data. (D.Gy.)

  9. Numerical simulation of amplification of space charge waves in n-InP films

    International Nuclear Information System (INIS)

    Garcia-Barrientos, Abel; Palankovski, Vassil

    2011-01-01

    The non-linear interaction of space charge waves including the amplification in microwave and millimeter wave range in n-InP films, possessing the negative differential conductance phenomenon, is investigated theoretically. Both the amplified signal and the generation of harmonics of the input signal are demonstrated, which are due to non-linear effect of the negative differential resistance. It is possible to observe an amplification of the space charge waves in n-InP films of submicron thicknesses at essentially higher frequencies f <70 GHz, when compared with n-GaAs films f < 44 GHz. The increment observed in the gain is due to the larger dynamic range in n-InP than in n-GaAs films.

  10. Study by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress

    Directory of Open Access Journals (Sweden)

    Y. A. Baadj

    2017-06-01

    Full Text Available Multidielectric polyethylene is a material that is generally employed as insulation for  the HVDC isolations. In this paper, the influence of temperature on space charge dynamics has been studied, low-density polyethylene (LDPE and Fluorinated Ethylene Propylene (FEP sandwiched between two electrodes were subjected to voltage application of 5kV (14.3 kV/mm for extended duration of time and the space charge measurements were taken using bipolar model is one-dimensional, taking into account trapping, detrapping and the rencommbinaison in order to determine the charge density and electric field of the sample depending on the thickness. The simulation was carried out at three different temperatures (20, 40,  and 60°C. The results of this model going to compare with experimental space charge measurements . Finally, simulation results demonstrated that the temperature has many effects on the dynamic space charge  and of influences the charge injection, charge mobility, electrical conduction, trapping and detrapping.

  11. Long-time self-diffusion of charged spherical colloidal particles in parallel planar layers.

    Science.gov (United States)

    Contreras-Aburto, Claudio; Báez, César A; Méndez-Alcaraz, José M; Castañeda-Priego, Ramón

    2014-06-28

    The long-time self-diffusion coefficient, D(L), of charged spherical colloidal particles in parallel planar layers is studied by means of Brownian dynamics computer simulations and mode-coupling theory. All particles (regardless which layer they are located on) interact with each other via the screened Coulomb potential and there is no particle transfer between layers. As a result of the geometrical constraint on particle positions, the simulation results show that D(L) is strongly controlled by the separation between layers. On the basis of the so-called contraction of the description formalism [C. Contreras-Aburto, J. M. Méndez-Alcaraz, and R. Castañeda-Priego, J. Chem. Phys. 132, 174111 (2010)], the effective potential between particles in a layer (the so-called observed layer) is obtained from integrating out the degrees of freedom of particles in the remaining layers. We have shown in a previous work that the effective potential performs well in describing the static structure of the observed layer (loc. cit.). In this work, we find that the D(L) values determined from the simulations of the observed layer, where the particles interact via the effective potential, do not agree with the exact values of D(L). Our findings confirm that even when an effective potential can perform well in describing the static properties, there is no guarantee that it will correctly describe the dynamic properties of colloidal systems.

  12. Supersaturated Self-Assembled Charge-Selective Interfacial Layers for Organic Solar Cells

    Science.gov (United States)

    2014-11-24

    layers (IFLs) on the tin-doped indium oxide (ITO) anodes of organic photovoltaic (OPV) cells, a series of Ar2N-(CH2)n-SiCl3 precursors with Ar = 3,4...Bulk- heterojunction OPV devices are fabricated with these SHSAMs: ITO/IFL/poly[[4,8- bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][2...phobicity,15,19,20 electrical conductivity,21−23 and charge in- jection/collection selectivity through the film.1,2,10 For example, on metal oxide substrates

  13. Modeling Electric Double-Layer Capacitors Using Charge Variation Methodology in Gibbs Ensemble

    Directory of Open Access Journals (Sweden)

    Ganeshprasad Pavaskar

    2018-01-01

    Full Text Available Supercapacitors deliver higher power than batteries and find applications in grid integration and electric vehicles. Recent work by Chmiola et al. (2006 has revealed unexpected increase in the capacitance of porous carbon electrodes using ionic liquids as electrolytes. The work has generated curiosity among both experimentalists and theoreticians. Here, we have performed molecular simulations using a recently developed technique (Punnathanam, 2014 for simulating supercapacitor system. In this technique, the two electrodes (containing electrolyte in slit pore are simulated in two different boxes using the Gibbs ensemble methodology. This reduces the number of particles required and interfacial interactions, which helps in reducing computational load. The method simulates an electric double-layer capacitor (EDLC with macroscopic electrodes with much smaller system sizes. In addition, the charges on individual electrode atoms are allowed to vary in response to movement of electrolyte ions (i.e., electrode is polarizable while ensuring these atoms are at the same electric potential. We also present the application of our technique on EDLCs with the electrodes modeled as slit pores and as complex three-dimensional pore networks for different electrolyte geometries. The smallest pore geometry showed an increase in capacitance toward the potential of 0 charge. This is in agreement with the new understanding of the electrical double layer in regions of dense ionic packing, as noted by Kornyshev’s theoretical model (Kornyshev, 2007, which also showed a similar trend. This is not addressed by the classical Gouy–Chapman theory for the electric double layer. Furthermore, the electrode polarizability simulated in the model improved the accuracy of the calculated capacitance. However, its addition did not significantly alter the capacitance values in the voltage range considered.

  14. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  15. Theory of space-charge polarization for determining ionic constants of electrolytic solutions

    Science.gov (United States)

    Sawada, Atsushi

    2007-06-01

    A theoretical expression of the complex dielectric constant attributed to space-charge polarization has been derived under an electric field calculated using Poisson's equation considering the effects of bound charges on ions. The frequency dependence of the complex dielectric constant of chlorobenzene solutions doped with tetrabutylammonium tetraphenylborate (TBATPB) has been analyzed using the theoretical expression, and the impact of the bound charges on the complex dielectric constant has been clarified quantitatively in comparison with a theory that does not consider the effect of the bound charges. The Stokes radius of TBA +(=TPB-) determined by the present theory shows a good agreement with that determined by conductometry in the past; hence, the present theory should be applicable to the direct determination of the mobility of ion species in an electrolytic solution without the need to measure ionic limiting equivalent conductance and transport number.

  16. Beam test of a dual layer silicon charge detector (SCD) for the CREAM experiment

    International Nuclear Information System (INIS)

    Park, N.H.; Ahn, H.S.; Ganel, O.; Han, J.H.; Jeon, J.A.; Kim, C.H.; Kim, K.C.; Lutz, L.; Lee, M.H.; Malinin, A.; Nam, S.; Park, I.H.; Park, J.H.; Seo, E.S.; Walpole, P.; Wu, J.; Yang, J.; Yoo, J.H.; Yoon, Y.S.; Zinn, S.Y.

    2007-01-01

    The Cosmic Ray Energetics and Mass (CREAM) balloon-borne experiment is designed for direct measurement of high-energy cosmic rays. The experimental goal is to measure single-element fluxes of all cosmic-ray nuclei from hydrogen to iron with energies up to the 'knee', or spectral index change near 10 15 eV, observed in the all-particle spectrum. The dual layer Silicon Charge Detector (SCD) was designed to provide precise charge measurements. Each SCD layer has an active area of 77.9cmx79.5cm and consists of 156 silicon sensors mounted on 24 ladders. Each sensor contains a 4 x 4 array of single-sided DC type silicon pixels with an active area of 2.1cm 2 . The detector was flown on the second CREAM flight (December 2005-January 2006) and recovered successfully. The SCD was refurbished for the third CREAM flight and tested with high-energy electron and hadron beams at CERN. This paper reports on the performance of the SCD during the beam test

  17. O({alpha}{sub s}) heavy flavor corrections to charged current deep-inelastic scattering in Mellin space

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J.; Hasselhuhn, A.; Kovacikova, P.; Moch, S.

    2011-04-15

    We provide a fast and precise Mellin-space implementation of the O({alpha}{sub s}) heavy flavor Wilson coefficients for charged current deep inelastic scattering processes. They are of importance for the extraction of the strange quark distribution in neutrino-nucleon scattering and the QCD analyses of the HERA charged current data. Errors in the literature are corrected. We also discuss a series of more general parton parameterizations in Mellin space. (orig.)

  18. A Regional Time-of-Use Electricity Price Based Optimal Charging Strategy for Electrical Vehicles

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2016-08-01

    Full Text Available With the popularization of electric vehicles (EVs, the out-of-order charging behaviors of large numbers of EVs will bring new challenges to the safe and economic operation of power systems. This paper studies an optimal charging strategy for EVs. For that a typical urban zone is divided into four regions, a regional time-of-use (RTOU electricity price model is proposed to guide EVs when and where to charge considering spatial and temporal characteristics. In light of the elastic coefficient, the user response to the RTOU electricity price is analyzed, and also a bilayer optimization charging strategy including regional-layer and node-layer models is suggested to schedule the EVs. On the one hand, the regional layer model is designed to coordinate the EVs located in different time and space. On the other hand, the node layer model is built to schedule the EVs to charge in certain nodes. According to the simulations of an IEEE 33-bus distribution network, the performance of the proposed optimal charging strategy is verified. The results demonstrate that the proposed bilayer optimization strategy can effectively decrease the charging cost of users, mitigate the peak-valley load difference and the network loss. Besides, the RTOU electricity price shows better performance than the time-of-use (TOU electricity price.

  19. Investigations of space charge effects in the cryogenic gas filled stopping cell for the FRS ion catcher

    Energy Technology Data Exchange (ETDEWEB)

    Heisse, Fabian [IKTP, TU Dresden (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Dickel, Timo; Plass, Wolfgang; Geissel, Hans; Scheidenberger, Christoph [II. Physikalisches Institut, JLU Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Reiter, Moritz Pascal; Rink, Ann-Kathrin [II. Physikalisches Institut, JLU Giessen (Germany); Zuber, Kai [IKTP, TU Dresden (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2015-07-01

    At the FRS Ion Catcher experiment precision mass measurements of short lived projectile and fission fragments are performed. Therefore highly charged ions with relativistic energies need to be thermalized to kinetic energies of several eV. This process takes place in the cryogenic gas filled stopping cell (CSC). All stopping cells suffer at large ion rates under space charge effects, which lead to decreasing efficiencies and can also influence the extraction time. Thus the understanding of space charge effects is of greatest importance to make full use of the higher yields at future rare ion beam facilities like FAIR. For this purpose simulation with the software SIMION {sup registered} concerning space charge effects were done. In this presentation the calculated transport efficiency of the CSC for different intensities, electric fields and spill structures are discussed and compared with measured results. Furthermore an outlook and first results of the simulation for the new CSC for the Low-Energy Branch at FAIR are given.

  20. Calcium carbonate electronic-insulating layers improve the charge collection efficiency of tin oxide photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Shaikh, Shoyebmohamad F.; Mane, Rajaram S.; Hwang, Yun Jeong; Joo, Oh-Shim

    2015-01-01

    In dye-sensitized solar cells (DSSCs), a surface passivation layer has been employed on the tin oxide (SnO 2 ) photoanodes to enhance the charge collection efficiency, and thus the power conversion efficiency. Herein, we demonstrate that the electronic-insulating layering of calcium carbonate (CaCO 3 ) can improve the charge collection efficiency in dye-sensitized solar cells designed with photoanodes. In order to evaluate the effectiveness of CaCO 3 layering, both layered and pristine SnO 2 photoanodes are characterized with regard to their structures, morphologies, and photo-electrochemical measurements. The SnO 2 -6L CaCO 3 photoanode has demonstrated as high as 3.5% power conversion efficiency; 3.5-fold greater than that of the pristine SnO 2 photoanode. The enhancement in the power conversion efficiency is corroborated with the number of the dye molecules, the passivation of surface states, a negative shift in the conduction band position, and the reduced electron recombination rate of photoelectrons following the coating of the CaCO 3 surface layer

  1. Laboratory investigation of physical mechanisms of auroral charged particle acceleration in the field-aligned currents layers

    Science.gov (United States)

    Gavrilov, B.; Zetzer, J.; Sobyanin, D.; Podgorny, I.

    One of the major topics of space weather research is to understand auroral structure and the processes that guide, accelerate, and otherwise control particle precipitation and produce auroral substorms. Navigation, communications and radars in the high latitude regions are severely affected through the effects on the ionosphere. It has long been recognized that the direct cause of the aurora is the precipitation of energetic electrons and ions into the atmosphere leading to excitation of the ambient atmospheric gases. Observations of the ionospheric ionization profiles and auroral precipitation characteristics have shown that field-aligned potential drops are formed to create this effect. The problem is that it is not clear the structure of the regions of magnetic field-aligned electric fields and how they are supported in the magnetospheric plasma. The objective of this research is to study the physical mechanisms of these phenomena in a laboratory experiment. It should be achieved by simulating the charged particle acceleration due to field-aligned electrical field generation in all totality of the interconnected events: generation of a plasma flow, its evolution in the magnetic field, polarization of plasma, generation of the field-aligned currents, development of instabilities in the plasma and current layers, double layers or anomalous resistance regions appearance, electrons acceleration. Parameters of the laboratory simulation and preliminary results of the experiment are discussed.

  2. Internal transmission coefficient in charges carrier generation layer of graphene/Si based solar cell device

    International Nuclear Information System (INIS)

    Rosikhin, Ahmad; Winata, Toto

    2016-01-01

    Internal transmission profile in charges carrier generation layer of graphene/Si based solar cell has been explored theoretically. Photovoltaic device was constructed from graphene/Si heterojunction forming a multilayer stuck with Si as generation layer. The graphene/Si sheet was layered on ITO/glass wafer then coated by Al forming Ohmic contact with Si. Photon incident propagate from glass substrate to metal electrode and assumed that there is no transmission in Al layer. The wavelength range spectra used in this calculation was 200 – 1000 nm. It found that transmission intensity in the generation layer show non-linear behavior and partitioned by few areas which related with excitation process. According to this information, it may to optimize the photons absorption to create more excitation process by inserting appropriate material to enhance optical properties in certain wavelength spectra because of the exciton generation is strongly influenced by photon absorption.

  3. Modeling space charge in beams for heavy-ion fusion

    International Nuclear Information System (INIS)

    Sharp, W.M.

    1995-01-01

    A new analytic model is presented which accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson's equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models

  4. Dual structure in the charge excitation spectrum of electron-doped cuprates

    Science.gov (United States)

    Bejas, Matías; Yamase, Hiroyuki; Greco, Andrés

    2017-12-01

    Motivated by the recent resonant x-ray scattering (RXS) and resonant inelastic x-ray scattering (RIXS) experiments for electron-doped cuprates, we study the charge excitation spectrum in a layered t -J model with the long-range Coulomb interaction. We show that the spectrum is not dominated by a specific type of charge excitations, but by different kinds of charge fluctuations, and is characterized by a dual structure in the energy space. Low-energy charge excitations correspond to various types of bond-charge fluctuations driven by the exchange term (J term), whereas high-energy charge excitations are due to usual on-site charge fluctuations and correspond to plasmon excitations above the particle-hole continuum. The interlayer coupling, which is frequently neglected in many theoretical studies, is particularly important to the high-energy charge excitations.

  5. A modified space charge routine for high intensity bunched beams

    International Nuclear Information System (INIS)

    Lapostolle, P.; Garnett, R.W.; Wangler, T.P.

    1996-01-01

    In 1991 a space charge calculation for bunched beam with a three-dimensional ellipsoid was proposed, replacing the usual SCHEFF routines. It removes the cylindrical symmetry required in SCHEFF and avoids the point to point interaction computation, whose number of simulation points is limited. This routine has now been improved with the introduction of two or three ellipsoids giving a good representation of the complex non-symmetrical form of the bunch (unlike the 3-d ellipsoidal assumption). The ellipsoidal density distributions are computed with a new method, avoiding the difficulty encountered near the centre (the axis in 2-d problems) by the previous method. It also provides a check of the ellipsoidal symmetry for each part of the distribution. Finally, the Fourier analysis reported in 1991 has been replaced by a very convenient Hermite expansion, which gives a simple but accurate representation of practical distributions. Comparisons with other space charge routines have been made, particularly with the ones applying other techniques such as SCHEFF. Introduced in the versatile beam dynamics code DYNAC, it should provide a good tool for the study of the various parameters responsible for the halo formation in high intensity linacs. (orig.)

  6. Observation of Octupole Driven Resonance Phenomena with Space Charge at the CERN Proton Synchrotron

    CERN Document Server

    Métral, E; Martini, M; Steerenberg, R; Franchetti, Giuliano; Hofmann, I

    2006-01-01

    Several benchmarking space charge experiments have been performed during the last few years in the CERN Proton Synchrotron. These controlled experiments are of paramount importance to validate the present very powerful simulation codes. The observations of the combined effect of space charge and nonlinear resonance on beam loss and emittance, using a single controllable octupole during ~ 1 s at 1.4 GeV kinetic energy, are discussed in some detail in the present paper. By lowering the working point towards the octupolar resonance, a gradual transition from a regime of loss-free core emittance blow-up to a regime of continuous loss was found.

  7. Space charge effects and coherent stability limits in barrier buckets

    Directory of Open Access Journals (Sweden)

    Oliver Boine-Frankenheim

    2003-03-01

    Full Text Available A large-scale Vlasov simulation study of the microwave instability below transition energy in a beam confined between two barrier pulses is performed. Starting from a matched distribution function for the confined ion beam including the space charge impedance the stability threshold in the longitudinal impedance plane is obtained. A simple stability criterium is found to be in good agreement with the simulation results.

  8. Progress in 3D Space-charge Calculations in the GPT Code

    NARCIS (Netherlands)

    Pöplau, G.; Rienen, van U.; Loos, de M.J.; Geer, van der S.B.

    2004-01-01

    The mesh-based 3D space-charge routine in the GPT (General Particle Tracer, Pulsar Physics) code scales linearly with the number of particles in terms of CPU time and allows a million particles to be tracked on a normal PC. The crucial ingredient of the routine is a non-equidistant multi-grid

  9. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    Science.gov (United States)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  10. Electrical Double-Layer and Ion Bridging Forces between Symmetric and Asymmetric Charged Surfaces in the Presence of Mono- and Divalent Ions

    DEFF Research Database (Denmark)

    Liu, Xiaoyan; Feilberg, Karen Louise; Yan, Wei

    2017-01-01

    charged (3-aminopropyl)trimethoxysilane, and the negatively charged (3-mercaptopropyl)trimethoxysilane. The interactions between the three symmetric systems, as well as between the three asymmetric combinations of surfaces, were measured and compared to calculated electrical double-layer forces...

  11. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    Energy Technology Data Exchange (ETDEWEB)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel [Plasma Physics Group, Faculty of Sciences-Physics, Theoretical Physics Laboratory, University of Bab-Ezzouar, USTHB BP 32, El Alia, Algiers 16111 (Algeria)], E-mail: mtribeche@usthb.dz

    2009-09-15

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  12. Semi-analytic variable charge solitary waves involving dust phase-space vortices (holes)

    International Nuclear Information System (INIS)

    Tribeche, Mouloud; Younsi, Smain; Amour, Rabia; Aoutou, Kamel

    2009-01-01

    A semi-analytic model for highly nonlinear solitary waves involving dust phase-space vortices (holes) is outlined. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate the localized structures that may occur in a dusty plasma with variable charge trapped dust particles. Our results which complement the previously published work on this problem (Schamel et al 2001 Phys. Plasmas 8 671) should be of basic interest for experiments that involve the trapping of dust particles in ultra-low-frequency dust acoustic modes.

  13. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Stangl, Rolf [Solar Energy Research Institute of Singapore, National University of Singapore, Singapore 117574 (Singapore); Peters, Ian Marius

    2015-06-28

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t{sup +}-i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO{sub x}) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO{sub x} parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t{sup +}-i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm{sup 2}, according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed.

  14. On the use of a charged tunnel layer as a hole collector to improve the efficiency of amorphous silicon thin-film solar cells

    International Nuclear Information System (INIS)

    Ke, Cangming; Sahraei, Nasim; Aberle, Armin G.; Stangl, Rolf; Peters, Ian Marius

    2015-01-01

    A new concept, using a negatively charged tunnel layer as a hole collector, is proposed and theoretically investigated for application in amorphous silicon thin-film solar cells. The concept features a glass/transparent conductive oxide/ultra-thin negatively charged tunnel layer/intrinsic a-Si:H/n-doped a-Si:H/metal structure. The key feature of this so called t + -i-n structure is the introduction of a negatively charged tunnel layer (attracting holes from the intrinsic absorber layer), which substitutes the highly recombination active p-doped a-Si:H layer in a conventional p-i-n configuration. Atomic layer deposited aluminum oxide (ALD AlO x ) is suggested as a potential candidate for such a tunnel layer. Using typical ALD AlO x parameters, a 27% relative efficiency increase (i.e., from 9.7% to 12.3%) is predicted theoretically for a single-junction a-Si:H solar cell on a textured superstrate. This prediction is based on parameters that reproduce the experimentally obtained external quantum efficiency and current-voltage characteristics of a conventional processed p-i-n a-Si:H solar cell, reaching 9.7% efficiency and serving as a reference. Subsequently, the p-doped a-Si:H layer is replaced by the tunnel layer (studied by means of numerical device simulation). Using a t + -i-n configuration instead of a conventional p-i-n configuration will not only increase the short-circuit current density (from 14.4 to 14.9 mA/cm 2 , according to our simulations), it also enhances the open-circuit voltage and the fill factor (from 917 mV to 1.0 V and from 74% to 83%, respectively). For this concept to work efficiently, a high work function front electrode material or a high interface charge is needed

  15. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids.

    Science.gov (United States)

    Lian, Cheng; Zhao, Shuangliang; Liu, Honglai; Wu, Jianzhong

    2016-11-28

    Understanding the charging kinetics of electric double layers is of fundamental importance for the design and development of novel electrochemical devices such as supercapacitors and field-effect transistors. In this work, we study the dynamic behavior of room-temperature ionic liquids using a classical time-dependent density functional theory that accounts for the molecular excluded volume effects, the electrostatic correlations, and the dispersion forces. While the conventional models predict a monotonic increase of the surface charge with time upon application of an electrode voltage, our results show that dispersion between ions results in a non-monotonic increase of the surface charge with the duration of charging. Furthermore, we investigate the effects of van der Waals attraction between electrode/ionic-liquid interactions on the charging processes.

  16. Whimsicality of multi-mode Hasegawa space-charge waves in a complex plasma containing collision-dominated electrons and streaming ions

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The influence of collision-dominated electrons on multi-mode Hasegawa space-charge waves are investigated in a complex plasma containing streaming ions. The dispersion relation for the multi-mode Hasegawa space-charge wave propagating in a cylindrical waveguide filled with dusty plasma containing collision-dominated electrons and streaming ions is derived by using the fluid equations and Poisson’s equation which lead to a Bessel equation. By the boundary condition, the roots of the Bessel function would characterize the property of space-charge wave propagation. It is found that two solutions exist for wave frequency, which are affected by the radius of waveguide and the roots of the Bessel function. The damping and growing modes are found to be enhanced by an increase of the radius. However, an increase of electron collision frequency would suppress the damping and the growing modes of the propagating space-charge wave in a cylindrical waveguide plasma.

  17. An Improved Treatment of AC Space Charge Fields in Large Signal Simulation Codes

    National Research Council Canada - National Science Library

    Dialetis, D; Chernin, D; Antonsen, Jr., T. M; Levush, B

    2006-01-01

    An accurate representation of the AC space charge electric field is required in order to be able to predict the performance of linear beam tubes, including TWT's and klystrons, using a steady state...

  18. Space charge and steady state current in LDPE samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Bambery, K. R.; Fleming, R. J.

    2000-01-01

    Electromagnetic theory predicts that a dielectric sample in which a steady DC current of density ε is flowing, and in which the ratio of permittivity ε to conductivity σ varies with position, will acquire a space charge density j·grad(ε/σ). A simple and convenient way to generate an ε/σ gradient...... in a homogeneous sample is to establish a temperature gradient across it. The resulting spatial variation in ε is usually small in polymeric insulators, but the variation in σ can be appreciable. Laser induced pressure pulse (LIPP) measurements were made on 1.5 mm thick plaques of ultra pure LDPE equipped...... with vacuum-evaporated aluminium electrodes. Temperature differences up to 27°C were maintained across the samples, which were subjected to DC fields up to 20 kV/mm. Current density was measured as a function of temperature and field. Negligible thermally generated space charge was observed. The charge...

  19. A scenario of vehicle-to-grid implementation and its double-layer optimal charging strategy for minimizing load variance within regional smart grids

    International Nuclear Information System (INIS)

    Jian, Linni; Zhu, Xinyu; Shao, Ziyun; Niu, Shuangxia; Chan, C.C.

    2014-01-01

    Highlights: • A scenario of vehicle-to-grid implementation within regional smart grid is discussed and mathematically formulated. • A double-layer optimal charging strategy for plug-in electric vehicles is proposed. • The proposed double-layer optimal charging algorithm aims to minimize power grid’s load variance. • The performance of proposed double-layer optimal charging algorithm is evaluated through comparative study. - Abstract: As an emerging new electrical load, plug-in electric vehicles (PEVs)’ impact on the power grid has drawn increasing attention worldwide. An optimal scenario is that by digging the potential of PEVs as a moveable energy storage device, they may not harm the power grid by, for example, triggering extreme surges in demand at rush hours, conversely, the large-scale penetration of PEVs could benefit the grid through flattening the power load curve, hence, increase the stability, security and operating economy of the grid. This has become a hot issue which is known as vehicle-to-grid (V2G) technology within the framework of smart grid. In this paper, a scenario of V2G implementation within regional smart grids is discussed. Then, the problem is mathematically formulated. It is essentially an optimization problem, and the objective is to minimize the overall load variance. With the increase of the scale of PEVs and charging posts involved, the computational complexity will become tremendously high. Therefore, a double-layer optimal charging (DLOC) strategy is proposed to solve this problem. The comparative study demonstrates that the proposed DLOC algorithm can effectively solve the problem of tremendously high computational complexity arising from the large-scaled PEVs and charging posts involved

  20. CHARGE-TRANSFER BETWEEN LAYERS IN MISFIT LAYER COMPOUNDS

    NARCIS (Netherlands)

    WIEGERS, GA

    1995-01-01

    Electron donation from MX double layers to TX(2) sandwiches, the interlayer bonding and the localization of conduction electrons in misfit layer compounds (MX)(p)(TX(2))(n) (M=Sn, Pb, Sb, Bi, rare earth metals; T=Ti, V, Cr, Nb, Ta; X=S, Se; 1.08

  1. Space charge emission in cylindrical diode

    International Nuclear Information System (INIS)

    Torres-Córdoba, Rafael; Martínez-García, Edgar

    2014-01-01

    In this paper, a mathematical model to describe cylindrical electron current emissions through a physics approximation method is presented. The proposed mathematical approximation consists of analyzing and solving the nonlinear Poisson's equation, with some determined mathematical restrictions. Our findings tackle the problem when charge-space creates potential barrier that disable the steady-state of the beam propagation. In this problem, the potential barrier effects of electron's speed with zero velocity emitted through the virtual cathode happens. The interaction between particles and the virtual cathode have been to find the inter-atomic potentials as boundary conditions from a quantum mechanics perspective. Furthermore, a non-stationary spatial solution of the electrical potential between anode and cathode is presented. The proposed solution is a 2D differential equation that was linearized from the generalized Poisson equation. A single condition was used solely, throughout the radial boundary conditions of the current density formation

  2. Enhanced memory effect with embedded graphene nanoplatelets in ZnO charge trapping layer

    International Nuclear Information System (INIS)

    El-Atab, Nazek; Nayfeh, Ammar; Cimen, Furkan; Alkis, Sabri; Okyay, Ali K.

    2014-01-01

    A charge trapping memory with graphene nanoplatelets embedded in atomic layer deposited ZnO (GNIZ) is demonstrated. The memory shows a large threshold voltage V t shift (4 V) at low operating voltage (6/−6 V), good retention (>10 yr), and good endurance characteristic (>10 4 cycles). This memory performance is compared to control devices with graphene nanoplatelets (or ZnO) and a thicker tunnel oxide. These structures showed a reduced V t shift and retention characteristic. The GNIZ structure allows for scaling down the tunnel oxide thickness along with improving the memory window and retention of data. The larger V t shift indicates that the ZnO adds available trap states and enhances the emission and retention of charges. The charge emission mechanism in the memory structures with graphene nanoplatelets at an electric field E ≥ 5.57 MV/cm is found to be based on Fowler-Nordheim tunneling. The fabrication of this memory device is compatible with current semiconductor processing, therefore, has great potential in low-cost nano-memory applications.

  3. Organic nonvolatile memory devices with charge trapping multilayer graphene film

    International Nuclear Information System (INIS)

    Ji, Yongsung; Choe, Minhyeok; Cho, Byungjin; Song, Sunghoon; Yoon, Jongwon; Ko, Heung Cho; Lee, Takhee

    2012-01-01

    We fabricated an array-type organic nonvolatile memory device with multilayer graphene (MLG) film embedded in polyimide (PI) layers. The memory devices showed a high ON/OFF ratio (over 10 6 ) and a long retention time (over 10 4 s). The switching of the Al/PI/MLG/PI/Al memory devices was due to the presence of the MLG film inserted into the PI layers. The double-log current–voltage characteristics could be explained by the space-charge-limited current conduction based on a charge-trap model. A conductive atomic force microscopy found that the conduction paths in the low-resistance ON state were distributed in a highly localized area, which was associated with a carbon-rich filamentary switching mechanism. (paper)

  4. A multislit transverse-emittance diagnostic for space-charge-dominated electron beams

    International Nuclear Information System (INIS)

    Piot, P.; Song, J.; Li, R.

    1997-01-01

    Jefferson Lab is developing a 10 MeV injector to provide an electron beam for a high-power free-electron laser (FEL). To characterize the transverse phase space of the space-charged-dominated beam produced by this injector, the authors designed an interceptive multislit emittance diagnostic. It incorporates an algorithm for phase-space reconstruction and subsequent calculation of the Twiss parameters and emittance for both transverse directions at an update rate exceeding 1 Hz, a speed that will facilitate the transverse-phase-space matching between the injector and the FEL's accelerator that is critical for proper operation. This paper describes issues pertaining to the diagnostic's design. It also discusses the acquisition system, as well as the software algorithm and its implementation in the FEL control system. First results obtained from testing this diagnostic in Jefferson Lab's Injector Test Stand are also included

  5. KOBRA 3 - a code for the calculation of space-charge-influenced trajectories in 3-dimensions

    International Nuclear Information System (INIS)

    Spaedtke, P.; Wipf, S.

    1989-06-01

    KOBRA3 is a three-dimensional multi-purpose program, written in standard FORTRAN77. The main purpose of the program is to calculate the trajectories of charged particles through a static electro-magnetic field in three dimensions. If space charge is not negligible its influence is taken into account by an iterative process. The Laplace equation is solved for the scalar potential. During the ray tracing, in which the equations of motion for charged particles are solved, the space charge term in the Poisson equation is distributed onto the mesh. By repeating this procedure the steady-state Vlasov equation is solved: ∇ 2 φ+∫∫∫f p dxdydz = 0, where φ is the electro-static potential and f p (r vector, v vector) describes the distribution of the charged particles in space. KOBRA3 can handle finite plasma boundaries, which are found by the program automatically. Special features are included within the program to investigate the beam quality (emittance, transverse energy), and to display the geometry, the trajectories and the potential and magnetic fields graphically. The modular structure of the program enables the user to create his (her) own diagnostic programs or interfaces to the main program. This report is intended to facilitate the use of KOBRA3 by describing the theory, structure and numerical methods used. At GSI (Gesellschaft fuer Schwerionenforschung) the program runs on an IBM 3090-40E. The program has been installed on other machines e.g. CRAY XM-P, CRAY II, VAX 8600, IBM 3090-200, IBM 3033, ATARI ST, IBM-AT. (orig./HSI)

  6. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  7. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.

    2012-01-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface

  8. Light-induced space-charge fields for the structuration of dielectric materials

    International Nuclear Information System (INIS)

    Eggert, H.A.

    2006-11-01

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  9. Thermal Performance of Cryogenic Multilayer Insulation at Various Layer Spacings

    Science.gov (United States)

    Johnson, Wesley Louis

    2010-01-01

    varied. The simplest method of determining the thermal performance of MLI at cryogenic temperature is by boil-off calorimetry. Several blankets were procured and tested at various layer densities at the Cryogenics Test Laboratory at Kennedy Space Center. The densities that the blankets were tested over covered a wide range of layer densities including the analytical minimum. Several of the blankets were tested at the same insulation thickness while changing the layer density (thus a different number of reflector layers). Optimizing the layer density of multilayer insulation systems for heat transfer would remove a layer density from the complex method of designing such insulation systems. Additional testing was performed at various warm boundary temperatures and pressures. The testing and analysis was performed to simplify the analysis of cryogenic thermal insulation systems. This research was funded by the National Aeronautics and Space Administration's Exploration Technology Development Program's Cryogenic Fluid Management Project

  10. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    Science.gov (United States)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  11. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  12. Observation and simulation of space-charge effects in a radio-frequency photoinjector using a transverse multibeamlet distribution

    Directory of Open Access Journals (Sweden)

    M. Rihaoui

    2009-12-01

    Full Text Available We report on an experimental study of space-charge effects in a radio-frequency (rf photoinjector. A 5 MeV electron bunch, consisting of a number of beamlets separated transversely, was generated in an rf photocathode gun and propagated in the succeeding drift space. The collective interaction of these beamlets was studied for different experimental conditions. The experiment allowed the exploration of space-charge effects and its comparison with 3D particle-in-cell simulations. Our observations also suggest the possible use of a multibeam configuration to tailor the transverse distribution of an electron beam.

  13. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  14. A note on dust grain charging in space plasmas

    Science.gov (United States)

    Rosenberg, M.; Mendis, D. A.

    1992-01-01

    Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.

  15. Modeling space-charge-limited currents in organic semiconductors: Extracting trap density and mobility

    KAUST Repository

    Dacuñ a, Javier; Salleo, Alberto

    2011-01-01

    We have developed and have applied a mobility edge model that takes drift and diffusion currents to characterize the space-charge-limited current in organic semiconductors into account. The numerical solution of the drift-diffusion equation allows

  16. Modelling of electric tree progression due to space charge modified fields

    International Nuclear Information System (INIS)

    Seralathan, K E; Mahajan, A; Gupta, Nandini

    2008-01-01

    Tree initiation and growth require localized field enhancement that results in material erosion and formation of tree channels. Tree progression is linked to partial discharges within the tree tubules, characterized by recurrent periods of activity followed by quiescent states. Charge builds up across the non-conducting tree channels during the inactive regime, and discharge follows. In this work, the role of the space charge modified field during the non-discharging regime in deciding the site of subsequent discharges and thereby shaping tree structures is studied. A simple stochastic model was developed, in order to understand the respective effects of charges trapped on the walls of tree tubules, at channel tips, or in the volume of the dielectric. While some charge distributions are seen to arrest tree growth, others encourage axial growth towards the other electrode, and some aid in producing bushy trees clustered around the needle tip. The effect of carbon deposition within tree channels, making them effectively conducting, was also investigated. The insights gained from the simulations were successfully used to explain tree growth in the laboratory under high- and low-field conditions

  17. Triboelectric charge generation by semiconducting SnO2 film grown by atomic layer deposition

    Science.gov (United States)

    Lee, No Ho; Yoon, Seong Yu; Kim, Dong Ha; Kim, Seong Keun; Choi, Byung Joon

    2017-07-01

    Improving the energy harvesting efficiency of triboelectric generators (TEGs) requires exploring new types of materials that can be used, and understanding their properties. In this study, we have investigated semiconducting SnO2 thin films as friction layers in TEGs, which has not been explored thus far. Thin films of SnO2 with various thicknesses were grown by atomic layer deposition on Si substrates. Either polymer or glass was used as counter friction layers. Vertical contact/separation mode was utilized to evaluate the TEG efficiency. The results indicate that an increase in the SnO2 film thickness from 5 to 25 nm enhances the triboelectric output voltage of the TEG. Insertion of a 400-nm-thick Pt sub-layer between the SnO2 film and Si substrate further increased the output voltage up to 120 V in a 2 cm × 2 cm contact area, while the enhancement was cancelled out by inserting a 10-nm-thick insulating Al2O3 film between SnO2 and Pt films. These results indicate that n-type semiconducting SnO2 films can provide triboelectric charge to counter-friction layers in TEGs.[Figure not available: see fulltext.

  18. Influence of space charge during the injection in Saturne II

    International Nuclear Information System (INIS)

    Lemaire, J.L.

    Calculations were made in which a fixed acceptance window, established since the beginning of the injection, was considered, and a filling pattern that was a linear function of time was supposed. Evidently, these conditions are no longer met if the space charge modifies the wave number of the beam and, consequently, the filling rate changes with time. The importance of these conditions upon injection for the theoretical operation point zone 3 is reported

  19. Space charge effects and electronic bistability

    International Nuclear Information System (INIS)

    Ruffini, A.; Strumia, F.; Tommasi, O.

    1996-01-01

    The excitation of metastable states in an atomic beam apparatus by means of electron collision is a widespread technique. The authors have observed a large bistable behaviour in apparatus designed to provide an intense and collimated beam of metastable helium by excitation with orthogonally impinging electrons. This bistable behaviour largely affects the efficiency of the apparatus and is therefore worth of being carefully investigated. The apparatus has an electrode configuration equivalent to that of a tetrode valve with large intergrid distances. The bistability consists in a hysteresis cycle in the curve of the anode current vs. grid voltage. Experimental measurements, supported by a simple theoretical model and by numerical simulation, stress out the crucial role played by space charge effects for the onset of bistability. A comparison with previous observations of this phenomenon is given. Spontaneous current oscillations with various shapes have been recorded in one of the two curves of the hysteresis cycle

  20. Space charge distributions in glass fibre/epoxy resin composites under dc 10 kV mm-1 electric field

    International Nuclear Information System (INIS)

    Tanaka, Hidesato; Ohki, Yoshimichi; Fukunaga, Kaori; Maeno, Takashi; Okamoto, Kenji

    2007-01-01

    In this paper, the authors discuss one- and three-dimensional space charge distributions in glass fibre/epoxy resin composites. By the conventional pulsed electroacoustic (PEA) method, only a one-dimensional distribution of the average charge over a whole area parallel to the two electrodes can be observed. Therefore, the authors have developed a new PEA system capable of measuring a three-dimensional space charge distribution. Using this system, they measured the charge distribution in glass fibre/epoxy resin composites made of lattice-woven glass fibre and epoxy resin. It has become clear that spatial variation in signal intensity observed depends on the internal structure of the composite. There appear repetitious positions where a high charge density is observed on the same lateral cross section along the vertical direction in the composite. Such positions are consistent with the intersections of the glass fibres. Accumulation of mobile charge carriers or appearance of polarization charge due to mismatch of the ratio of the conductivity and permittivity between the glass fibre and the epoxy resin is thought to be responsible for the PEA signals

  1. Planned studies of charge collection in non-uniformly irradiated Si and GaAs detectors

    International Nuclear Information System (INIS)

    Rosenfeld, A.; Reinhard, M.; Carolan, M.; Kaplan, G.; Lerch, M.; Alexiev, D.

    1995-01-01

    The aim of this project is to study the time and amplitude characteristics of silicon ion-implanted detectors non-uniformly irradiated with fast neutrons in order to predict their radiation behaviour in the LHC and space. It is expected in such detectors increases of the charge deficit due to trapping by large scale traps and transient time increases due to the reduction of the mobility. The theoretical model will be modified to describe the charge kinetics in the electrical field of the detector created by a non uniform space charge distribution. Experimental confirmation techniques are needed to develop non uniform predictable damage of silicon detectors using fast neutron sources (accelerators, reactors) and to study peculiarities of the charge transport in different parts of the detector. In parallel to experimental research will be started the theoretical development of the charge transport model for non-uniform distribution of space charge in the depletion layer (Neff). The model will include the linear distribution of Neff(y) along the detector as well as the change of sign of Neff (conversion from n to p type of silicon) inside the detector

  2. Investigations of the Dynamics of Space Charged Dominated Beams

    International Nuclear Information System (INIS)

    York, Richard C.

    2002-01-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool

  3. Investigations of the Dynamics of Space Charged Dominated Beams

    Energy Technology Data Exchange (ETDEWEB)

    York, Richard C.

    2002-08-01

    We propose to perform investigations of the dynamics of space charge dominated beams. These investigations will support present activities such as the electron ring project at the University of Maryland as well as provide an improved basis for future accelerator designs. Computer simulations will provide the primary research element with improved code development being an integral part of the activities during the first period. We believe that one of the code development projects provides a unique strategy for the inclusion of longitudinal dynamics, and that this concept should provide a computationally rapid research tool.

  4. An integrodifferential Dirac equation with quantized charge in one space dimension

    International Nuclear Information System (INIS)

    Ranada, A.F.

    1985-01-01

    An integrodifferential Dirac equation in one space dimension is proposed, such that there is a close correspondence between its solutions and a subset of those of the sine-Gordon equation. It has solitonic solutions, quantized charge and positive definite energy density, so that it can be considered a spinorial version of sine-Gordon. Accordingly, it could be named the sine-Dirac equation. (orig.)

  5. An equivalent body surface charge model representing three-dimensional bioelectrical activity

    Science.gov (United States)

    He, B.; Chernyak, Y. B.; Cohen, R. J.

    1995-01-01

    A new surface-source model has been developed to account for the bioelectrical potential on the body surface. A single-layer surface-charge model on the body surface has been developed to equivalently represent bioelectrical sources inside the body. The boundary conditions on the body surface are discussed in relation to the surface-charge in a half-space conductive medium. The equivalent body surface-charge is shown to be proportional to the normal component of the electric field on the body surface just outside the body. The spatial resolution of the equivalent surface-charge distribution appears intermediate between those of the body surface potential distribution and the body surface Laplacian distribution. An analytic relationship between the equivalent surface-charge and the surface Laplacian of the potential was found for a half-space conductive medium. The effects of finite spatial sampling and noise on the reconstruction of the equivalent surface-charge were evaluated by computer simulations. It was found through computer simulations that the reconstruction of the equivalent body surface-charge from the body surface Laplacian distribution is very stable against noise and finite spatial sampling. The present results suggest that the equivalent body surface-charge model may provide an additional insight to our understanding of bioelectric phenomena.

  6. Torsional surface waves in an inhomogeneous layer over a gravitating anisotropic porous half-space

    International Nuclear Information System (INIS)

    Gupta, Shishir; Pramanik, Abhijit

    2015-01-01

    The present work aims to deal with the propagation of torsional surface wave in an inhomogeneous layer over a gravitating anisotropic porous half space. The inhomogeneous layer exhibits the inhomogeneity of quadratic type. In order to show the effect of gravity the equation for the velocity of torsional wave has been obtained. It is also observed that for a layer over a homogeneous half space without gravity, the torsional surface wave does not propagate. An attempt is also made to assess the possible propagation of torsional surface waves in that medium in the absence of the upper layer. The effects of inhomogeneity factors and porosity on the phase velocity are depicted by means of graphs. (paper)

  7. Atomic-layer deposited IrO2 nanodots for charge-trap flash-memory devices

    International Nuclear Information System (INIS)

    Choi, Sangmoo; Cha, Young-Kwan; Seo, Bum-Seok; Park, Sangjin; Park, Ju-Hee; Shin, Sangmin; Seol, Kwang Soo; Park, Jong-Bong; Jung, Young-Soo; Park, Youngsoo; Park, Yoondong; Yoo, In-Kyeong; Choi, Suk-Ho

    2007-01-01

    Charge-trap flash- (CTF) memory structures have been fabricated by employing IrO 2 nanodots (NDs) grown by atomic-layer deposition. A band of isolated IrO 2 NDs of about 3 nm lying almost parallel to Si/SiO 2 interface is confirmed by transmission electron microscopy and x-ray photoelectron spectroscopy. The memory device with IrO 2 NDs shows much larger capacitance-voltage (C-V) hysteresis and memory window compared with the control sample without IrO 2 NDs. After annealing at 800 deg. C for 20 min, the ND device shows almost no change in the width of C-V hysteresis and the ND distribution. These results indicate that the IrO 2 NDs embedded in SiO 2 can be utilized as thermally stable, discrete charge traps, promising for metal oxide-ND-based CTF memory devices

  8. Influence of polycrystalline silicon layer on flow through «metal — p-Si» contact

    Directory of Open Access Journals (Sweden)

    Smyntyna V. A.

    2011-11-01

    Full Text Available Based on the results of investigations of charge transport in the "metal — p-Si" contacts with different thickness of polycrystalline p-Si layer the mechanisms of charge transport through such structures are shown. It is established that with increasing thickness of the layer of polycrystalline p-Si current transport mechanism changes from a double injection into the drift-diffusion. This change is due to an increase in the drift current component in the space charge zone of "metal — p-Si" contact, which arises as a result of increased surface density of scattering barriers, which are localized at the boundaries of neighboring silicon polycrystals.

  9. Observation Of Electron-beam-induced Phase Evolution Mimicking The Effect Of Charge-discharge Cycle In Li-rich Layered Cathode Materials Used For Li-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ping; Yan, Pengfei; Romero, Eric; Spoerke, Erik D.; Zhang, Jiguang; Wang, Chong M.

    2015-02-24

    Capacity loss, and voltage fade upon electrochemical charge-discharge cycling observed in lithium-rich layered cathode oxides (Li[LixMnyTM1-x-y]O2 , TM = Ni, Co or Fe) have recently been identified to be correlated to the gradual phase transformation, featuring the formation of a surface reconstructed layer (SRL) that evolves from a thin (<2 nm), defect spinel layer upon the first charge, to a relatively thick (~5 nm), spinel or rock-salt layer upon continuous charge-discharge cycling. Here we report observations of a SRL and structural evolution of the SRL on the Li[Li0.2Ni0.2Mn0.6]O2 (LMR) particles, which are identical to those reported due to the charge-discharge cycle but are a result of electron-beam irradiation during scanning transmission electron microscopy (STEM) imaging. Sensitivity of the lithium-rich layered oxides to high-energy electrons leads to the formation of thin, defect spinel layer on surfaces of the particles when exposed to a 200 kV electron beam for as little as 30 seconds under normal high-resolution STEM imaging conditions. Further electron irradiation produces a thicker layer of the spinel phase, ultimately producing a rock-salt layer at a higher electron exposure. Atomic-scale chemical mapping by energy dispersive X-ray spectroscopy in STEM indicates the electron-beam-induced SRL formation on LMR is accomplished by migration of the transition metal ions to the Li sites without breaking down the lattice. This study provides an insight for understanding the mechanism of forming the SRL and also possibly a mean to study structural evolution in the Li-rich layered oxides without involving the electrochemistry.

  10. Camera memory study for large space telescope. [charge coupled devices

    Science.gov (United States)

    Hoffman, C. P.; Brewer, J. E.; Brager, E. A.; Farnsworth, D. L.

    1975-01-01

    Specifications were developed for a memory system to be used as the storage media for camera detectors on the large space telescope (LST) satellite. Detectors with limited internal storage time such as intensities charge coupled devices and silicon intensified targets are implied. The general characteristics are reported of different approaches to the memory system with comparisons made within the guidelines set forth for the LST application. Priority ordering of comparisons is on the basis of cost, reliability, power, and physical characteristics. Specific rationales are provided for the rejection of unsuitable memory technologies. A recommended technology was selected and used to establish specifications for a breadboard memory. Procurement scheduling is provided for delivery of system breadboards in 1976, prototypes in 1978, and space qualified units in 1980.

  11. Gain reduction due to space charge at high counting rates in multiwire proportional chambers

    International Nuclear Information System (INIS)

    Smith, G.C.; Mathieson, E.

    1986-10-01

    Measurements with a small MWPC of gas gain reduction, due to ion space charge at high counting rates, have been compared with theoretical predictions. The quantity ln(q/q 0 )/(q/q 0 ), where (q/q 0 ) is the relative reduced avalanche charge, has been found to be closely proportional to count rate, as predicted. The constant of proportionality is in good agreement with calculations made with a modified version of the original, simplified theory

  12. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Directory of Open Access Journals (Sweden)

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  13. Photosensitive space charge limited current in screen printed CdTe thin films

    Science.gov (United States)

    Vyas, C. U.; Pataniya, Pratik; Zankat, Chetan K.; Patel, Alkesh B.; Pathak, V. M.; Patel, K. D.; Solanki, G. K.

    2018-05-01

    Group II-VI Compounds have emerged out as most suitable in the class of photo sensitive material. They represent a strong position in terms of their applications in the field of detectors as well as photo voltaic devices. Cadmium telluride is the prime member of this Group, because of high acceptance of this material as active component in opto-electronic devices. In this paper we report preparation and characterization of CdTe thin films by using a most economical screen printing technique in association with sintering at 510°C temperature. Surface morphology and smoothness are prime parameters of any deposited to be used as an active region of devices. Thus, we studied of the screen printed thin film by means of atomic force microscopy (AFM) and scanning electron microscopy (SEM) for this purpose. However, growth processes induced intrinsic defects in fabricated films work as charge traps and affect the conduction process significantly. So the conduction mechanism of deposited CdTe thin film is studied under dark as well as illuminated conditions. It is found that the deposited films showed the space charge limited conduction (SCLC) mechanism and hence various parameters of space charge limited conduction (SCLC) of CdTe film were evaluated and discussed and the photo responsive resistance is also presented in this paper.

  14. Rf and space-charge induced emittances in laser-driven rf guns

    International Nuclear Information System (INIS)

    Kim, Kwang-Je; Chen, Yu-Jiuan.

    1988-10-01

    Laser-driven rf electron guns are potential sources of high-current, low-emittance, short bunch-length electron beams, which are required for many advanced accelerator applications, such as free-electron lasers and injectors for high-energy machines. In such guns the design of which was pioneered at Los Alamos National Laboratory and which is currently being developed at several other laboratories, a high-power laser beam illuminates a photo-cathode surface placed on an end wall of an rf cavity. The main advantages of this type of gun are that the time structure of the electron beam is controlled by the laser, eliminating the need for bunchers, and that the electric field in rf cavities can be made very strong, so that the effects due to space-charge repulsion can be minimized. In this paper, we present an approximate but simple analysis for the transverse and longitudinal emittances in rf guns that takes into account both the time variation of the rf field and the space-charge effect. The results are compared and found to agree well with those from simulation. 7 refs., 6 figs

  15. Charge modification of the endothelial surface layer modulates the permeability barrier of isolated rat mesenteric small arteries

    NARCIS (Netherlands)

    van Haaren, Paul M. A.; VanBavel, Ed; Vink, Hans; Spaan, Jos A. E.

    2005-01-01

    We hypothesized that modulation of the effective charge density of the endothelial surface layer ( ESL) results in altered arterial barrier properties to transport of anionic solutes. Rat mesenteric small arteries ( diameter similar to 190 mu m) were isolated, cannulated, perfused, and superfused

  16. A parallel implementation of particle tracking with space charge effects on an INTEL iPSC/860

    International Nuclear Information System (INIS)

    Chang, L.; Bourianoff, G.; Cole, B.; Machida, S.

    1993-05-01

    Particle-tracking simulation is one of the scientific applications that is well-suited to parallel computations. At the Superconducting Super Collider, it has been theoretically and empirically demonstrated that particle tracking on a designed lattice can achieve very high parallel efficiency on a MIMD Intel iPSC/860 machine. The key to such success is the realization that the particles can be tracked independently without considering their interaction. The perfectly parallel nature of particle tracking is broken if the interaction effects between particles are included. The space charge introduces an electromagnetic force that will affect the motion of tracked particles in 3-D space. For accurate modeling of the beam dynamics with space charge effects, one needs to solve three-dimensional Maxwell field equations, usually by a particle-in-cell (PIC) algorithm. This will require each particle to communicate with its neighbor grids to compute the momentum changes at each time step. It is expected that the 3-D PIC method will degrade parallel efficiency of particle-tracking implementation on any parallel computer. In this paper, we describe an efficient scheme for implementing particle tracking with space charge effects on an INTEL iPSC/860 machine. Experimental results show that a parallel efficiency of 75% can be obtained

  17. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian, E-mail: zlt@jlu.edu.cn, E-mail: wwei99@jlu.edu.cn; Wang, Wei, E-mail: zlt@jlu.edu.cn, E-mail: wwei99@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2016-04-25

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (V{sub on}) and severe degradation of the memory window (ΔV{sub on}) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of V{sub on} at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔV{sub on} of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  18. Radial space-charge-limited electron flow in semi-insulating GaN:Fe

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří J.; Hubík, Pavel; Krištofik, Jozef; Prušáková, Lucie; Uxa, Štěpán; Paskova, T.; Evans, K.

    2011-01-01

    Roč. 110, č. 1 (2011), 013723/1-013723/6 ISSN 0021-8979 R&D Projects: GA ČR GAP204/10/0212 Institutional research plan: CEZ:AV0Z10100521 Keywords : gallium nitride * semi-insulator * space-charge-limited current Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.168, year: 2011

  19. Global forward-predicting dynamic routing for traffic concurrency space stereo multi-layer scale-free network

    International Nuclear Information System (INIS)

    Xie Wei-Hao; Zhou Bin; Liu En-Xiao; Lu Wei-Dang; Zhou Ting

    2015-01-01

    Many real communication networks, such as oceanic monitoring network and land environment observation network, can be described as space stereo multi-layer structure, and the traffic in these networks is concurrent. Understanding how traffic dynamics depend on these real communication networks and finding an effective routing strategy that can fit the circumstance of traffic concurrency and enhance the network performance are necessary. In this light, we propose a traffic model for space stereo multi-layer complex network and introduce two kinds of global forward-predicting dynamic routing strategies, global forward-predicting hybrid minimum queue (HMQ) routing strategy and global forward-predicting hybrid minimum degree and queue (HMDQ) routing strategy, for traffic concurrency space stereo multi-layer scale-free networks. By applying forward-predicting strategy, the proposed routing strategies achieve better performances in traffic concurrency space stereo multi-layer scale-free networks. Compared with the efficient routing strategy and global dynamic routing strategy, HMDQ and HMQ routing strategies can optimize the traffic distribution, alleviate the number of congested packets effectively and reach much higher network capacity. (paper)

  20. Study on discrete space charge effects in electron beams and guns

    International Nuclear Information System (INIS)

    Tang Tiantong

    1990-01-01

    The discrete space charge effects in electron beams are studied and a statistical dynamics equation of the ensemble of beam electrons is derived. An approximated analytical solution of this equation is given. This equation has been applied to beam crossover and field-emission and thermal-emission gun problems. The computer calculation results agree on the whole with those of Monte Carlo simulation and experimental data. (orig.)

  1. The Effects of Space-Charge on the Dynamics of the Ion Booster in the Jefferson Lab EIC (JLEIC)

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nissen, Edward [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-05-01

    Optimization of the booster synchrotron design to operate in the extreme space-charge dominated regime is proposed. This study is motivated by the ultra-high luminosity promised by the JLEIC accelerator complex, which poses several beam dynamics and lattice design challenges for its individual components. We examine the effects of space charge on the dynamics of the booster synchrotron for the proposed JLEIC electron ion collider. This booster will inject and accumulate protons and heavy ions at an energy of 280 MeV and then engage in a process of acceleration and electron cooling to bring it to its extraction energy of 8 GeV. This would then be sent into the ion collider ring part of JLEIC. In order to examine the effects of space charge on the dynamics of this process we use the software SYNERGIA.

  2. Effect of nonuniform radial density distribution on the space charge dominated beam bunching

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V. S.

    2011-01-01

    Beam dynamics of a space charge dominated beam during the bunch compression is studied self consistently for the case of fixed shape non-uniform bell shape and hollow shape density distributions in the transverse direction. We have used thick slices at different parts of the beam to account for variation in the beam radius in the study of the transverse dynamics. The longitudinal dynamics has been studied using the disc model. The axial variation of the radius of the slices and emittance growth arising from the phase dependence of the transverse rf forces are also included in the simulation. We have modified the beam envelope equation to take into account the longitudinal space charge effect on the transverse motion which arises due to the finite bunch size. To demonstrate the application of the theoretical formulations developed, we have studied a sinusoidal beam bunching system and presented detailed numerical results.

  3. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  4. Particle trapping by nonlinear resonances and space charge

    International Nuclear Information System (INIS)

    Franchetti, G.; Hofmann, I.

    2006-01-01

    In the FAIR [C.D.R. http://www.gsi.de/GSI Future/cdr/] facility planned at GSI high space charge effects and nonlinear dynamics may play an important role for limiting nominal machine performance. The most relevant interplay of these two effects on the single particle dynamics has been proposed in terms of trapping of particles into stable islands [G. Franchetti, I. Hofmann, AIP Conf. Proc. 642 (2002) 260]. Subsequent numerical studies and dedicated experiments have followed [G. Franchetti et al., Phys. Rev. ST Accel. Beams 6 (2003) 124201; G. Franchetti et al., AIP Conf. Proc. 773 (2005) 137]. We present here the effect of the chromaticity on the mechanisms of halo formation induced by particle trapping into resonances

  5. Radiation and Internal Charging Environments for Thin Dielectrics in Interplanetary Space

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard; Altstatt, Richard L.

    2004-01-01

    Spacecraft designs using solar sails for propulsion or thin membranes to shade instruments from the sun to achieve cryogenic operating temperatures are being considered for a number of missions in the next decades. A common feature of these designs are thin dielectric materials that will be exposed to the solar wind, solar energetic particle events, and the distant magnetotail plasma environments encountered by spacecraft in orbit about the Earth-Sun L2 point. This paper will discuss the relevant radiation and internal charging environments developed to support spacecraft design for both total dose radiation effects as well as dose rate dependent phenomenon, such as internal charging in the solar wind and distant magnetotail environments. We will describe the development of radiation and internal charging environment models based on nearly a complete solar cycle of Ulysses solar wind plasma measurements over a complete range of heliocentric latitudes and the early years of the Geotail mission where distant magnetotail plasma environments were sampled beyond X(sub GSE) = -100 Re to nearly L2 (X(sub GSE) -236 Re). Example applications of the environment models are shown to demonstrate the radiation and internal charging environments of thin materials exposed to the interplanetary space plasma environments.

  6. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Science.gov (United States)

    Hori, Tetsuro; Moritou, Hiroki; Fukuoka, Naoki; Sakamoto, Junki; Fujii, Akihiko; Ozaki, Masanori

    2010-01-01

    Organic thin-film solar cells with a conducting polymer (CP)/fullerene (C60) interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of molybdenum trioxide (VI) (MoO3) and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers. PMID:28883360

  7. Photovoltaic Properties in Interpenetrating Heterojunction Organic Solar Cells Utilizing MoO3 and ZnO Charge Transport Buffer Layers

    Directory of Open Access Journals (Sweden)

    Tetsuro Hori

    2010-11-01

    Full Text Available Organic thin-film solar cells with a conducting polymer (CP/fullerene (C60 interpenetrating heterojunction structure, fabricated by spin-coating a CP onto a C60 deposit thin film, have been investigated and demonstrated to have high efficiency. The photovoltaic properties of solar cells with a structure of indium-tin-oxide/C60/ poly(3-hexylthiophene (PAT6/Au have been improved by the insertion of molybdenum trioxide (VI (MoO3 and zinc oxide charge transport buffer layers. The enhanced photovoltaic properties have been discussed, taking into consideration the ground-state charge transfer between PAT6 and MoO3 by measurement of the differential absorption spectra and the suppressed contact resistance at the interface between the organic and buffer layers.

  8. Cell and tissue kinetics of the subependymal layer in mouse brain following heavy charged particle irradiation

    International Nuclear Information System (INIS)

    Manley, N.B.

    1988-01-01

    The following studies investigate the cellular response and cell population kinetics of the subependymal layer in the mouse brain exposed to heavy charged particle irradiation. Partial brain irradiation with helium and neon ions was confined to one cortex of the brain. Both the irradiated and the unirradiated contralateral cortex showed similar disturbances of the cell and tissue kinetics in the subependymal layers. The irradiated hemisphere exhibited histological damage, whereas the unirradiated side appeared normal histologically. The decrease in the values of the labeling indices 1 week after charged particle irradiation was dose- and ion-dependent. Mitotic indices 1 week after 10 and 25 Gy helium and after 10 Gy neon were the same as those seen in the control mice. Analysis of cell kinetics 1 week after 10 Gy helium and 10 Gy neon irradiation suggests the presence of a progenitor subpopulation that is proliferating with a shorter cell cycle. Comparison of the responses to the different charged particle beams indicates that neon ions are more effective in producing direct cellular damage than the helium ions, but the surviving proliferating cells several divisions later continue to maintain active cell renewal. Based on the 1 week post-irradiation H 3 -TdR labeling indices, a rough estimate of the RBE for neon ions is at least 2.5 when compared to helium ions

  9. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  10. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  11. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K., E-mail: rossnagel@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel (Germany)

    2016-06-14

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  12. Quantum computing based on space states without charge transfer

    International Nuclear Information System (INIS)

    Vyurkov, V.; Filippov, S.; Gorelik, L.

    2010-01-01

    An implementation of a quantum computer based on space states in double quantum dots is discussed. There is no charge transfer in qubits during a calculation, therefore, uncontrolled entanglement between qubits due to long-range Coulomb interaction is suppressed. Encoding and processing of quantum information is merely performed on symmetric and antisymmetric states of the electron in double quantum dots. Other plausible sources of decoherence caused by interaction with phonons and gates could be substantially suppressed in the structure as well. We also demonstrate how all necessary quantum logic operations, initialization, writing, and read-out could be carried out in the computer.

  13. In situ measurement of fixed charge evolution at silicon surfaces during atomic layer deposition

    International Nuclear Information System (INIS)

    Ju, Ling; Watt, Morgan R.; Strandwitz, Nicholas C.

    2015-01-01

    Interfacial fixed charge or interfacial dipoles are present at many semiconductor-dielectric interfaces and have important effects upon device behavior, yet the chemical origins of these electrostatic phenomena are not fully understood. We report the measurement of changes in Si channel conduction in situ during atomic layer deposition (ALD) of aluminum oxide using trimethylaluminum and water to probe changes in surface electrostatics. Current-voltage data were acquired continually before, during, and after the self-limiting chemical reactions that result in film growth. Our measurements indicated an increase in conductance on p-type samples with p + ohmic contacts and a decrease in conductance on analogous n-type samples. Further, p + contacted samples with n-type channels exhibited an increase in measured current and n + contacted p-type samples exhibited a decrease in current under applied voltage. Device physics simulations, where a fixed surface charge was parameterized on the channel surface, connect the surface charge to changes in current-voltage behavior. The simulations and analogous analytical relationships for near-surface conductance were used to explain the experimental results. Specifically, the changes in current-voltage behavior can be attributed to the formation of a fixed negative charge or the modification of a surface dipole upon chemisorption of trimethylaluminum. These measurements allow for the observation of fixed charge or dipole formation during ALD and provide further insight into the electrostatic behavior at semiconductor-dielectric interfaces during film nucleation

  14. Conduction mechanisms in thin atomic layer deposited Al2O3 layers

    International Nuclear Information System (INIS)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-01-01

    Thin Al 2 O 3 layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current

  15. Fracture spacing in tensile brittle layers adhering to a rigid substrate

    Science.gov (United States)

    Lazarus, Véronique

    2017-01-01

    A natural question arising when observing crack networks in brittle layers such as, e.g., paints, muds, skins, pottery glazes, coatings, ceramics, is what determines the distance between cracks. This apparently simple question received a wealth of more or less complex and appropriate answers, but no consensus has emerged. Here, we show that the cracks interact mutually as soon as the spacing between them is smaller than ten times the thickness of the layer. Then, a simple Griffith-type balance between the elastic deformation energy and the fracture bulk and debonding costs captures a broad number of observations, going from the square-root or linear increase of the spacing with the thickness, to its decrease with loading until saturation. The adhesion strength is identified as playing a key role in these behaviour changes. As illustration, we show how the model can be applied to study the influence of the layer thickness on crack patterns. We believe that the versatility of the approach should permit wide applicability, from geosciences to engineering.

  16. Controlled supramolecular structure of guanosine monophosphate in the interlayer space of layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Gyeong-Hyeon Gwak

    2016-12-01

    Full Text Available Guanosine monophosphates (GMPs were intercalated into the interlayer space of layered double hydroxides (LDHs and the molecular arrangement of GMP was controlled in LDHs. The intercalation conditions such as GMP/LDH molar ratio and reaction temperature were systematically adjusted. When the GMP/LDH molar ratio was 1:2, which corresponds to the charge balance between positive LDH sheets and GMP anions, GMP molecules were well-intercalated to LDH. At high temperature (100 and 80 °C, a single GMP molecule existed separately in the LDH interlayer. On the other hand, at lower temperature (20, 40 and 60 °C, GMPs tended to form ribbon-type supramolecular assemblies. Differential scanning calorimetry showed that the ribbon-type GMP assembly had an intermolecular interaction energy of ≈101 kJ/mol, which corresponds to a double hydrogen bond between guanosine molecules. Once stabilized, the interlayer GMP orientations, single molecular and ribbon phase, were successfully converted to the other phase by adjusting the external environment by stoichiometry or temperature control.

  17. Inherent Electrochemistry and Charge Transfer Properties of Few-Layer Two Dimensional Ti3C2Tx MXene

    KAUST Repository

    Nayak, Pranati

    2018-05-25

    We report the effect of Ti3C2Tx MXene flake thickness on its inherent electrochemistry and heterogeneous charge transfer characteristics. It is shown that the Ti3C2Tx undergoes irreversible oxidation in the positive potential window, which strongly depends on the flake thickness and pH of the electrolyte. Few-layer Ti3C2Tx exhibits faster electron transfer kinetics (k0=0.09533 cm/s) with Fe(CN)64−/3− redox mediator compared to multi-layer Ti3C2Tx (k0= 0.00503 cm/s). In addition, few-layer free standing Ti3C2Tx film electrode remains intact after enduring irreversible oxidation.

  18. Inherent Electrochemistry and Charge Transfer Properties of Few-Layer Two Dimensional Ti3C2Tx MXene

    KAUST Repository

    Nayak, Pranati; Jiang, Qiu; Mohanraman, Rajeshkumar; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2018-01-01

    We report the effect of Ti3C2Tx MXene flake thickness on its inherent electrochemistry and heterogeneous charge transfer characteristics. It is shown that the Ti3C2Tx undergoes irreversible oxidation in the positive potential window, which strongly depends on the flake thickness and pH of the electrolyte. Few-layer Ti3C2Tx exhibits faster electron transfer kinetics (k0=0.09533 cm/s) with Fe(CN)64−/3− redox mediator compared to multi-layer Ti3C2Tx (k0= 0.00503 cm/s). In addition, few-layer free standing Ti3C2Tx film electrode remains intact after enduring irreversible oxidation.

  19. Space distribution and energy straggling of charged particles via Fokker-Planck equation

    International Nuclear Information System (INIS)

    Manservisi, S.; Molinari, V.; Nespoli, A.

    1996-01-01

    The Fokker-Planck equation describing a beam of charged particles entering a homogeneous medium is solved here for a stationary case. Interactions are taken into account through Coulomb cross-section. Starting from the charged-particle distribution as a function of velocity and penetration depth, some important kinetic quantities are calculated, like mean velocity, range and the loss of energy per unit space. In such quantities the energy straggling is taken into account. This phenomenon is not considered in the continuous slowing-down approximation that is commonly used to obtain the range and the stopping power. Finally the well-know Bohr of Bethe formula is found as a first-order approximation of the Fokker-Planck equation

  20. Beam-envelope calculations of space-charge loaded beams in MeV dc ion-implantation facilities

    International Nuclear Information System (INIS)

    Urbanus, W.H.; Bannenberg, J.G.; Doorn, S.; Saris, F.W.; Koudijs, R.; Dubbelman, P.; Koelewijn, W.

    1989-01-01

    MeV dc ion accelerators are being developed that can deliver a beam current up to several hundred micro-amperes. At the low-energy part of the accelerator, the beam transport is space-charge dominated rather than emittance dominated. A system of differential equations has been derived, based on the Kapchinski-Vladimirski equations, which describe the envelope of a space-charge loaded ion beam, taking a longitudinal electrical field in an accelerating tube into account. The equations have been used to design the accelerator of a high-current 1 MV heavy-ion implantation facility. Furthermore, the design of a 2 MV accelerator is presented, which is used for analyzing techniques such as RBS and PIXE. Both facilities are based on single-ended Van de Graaff accelerators. (orig.)

  1. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  2. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.

    Science.gov (United States)

    Muralidharan, Ajay; Pratt, Lawrence R; Hoffman, Gary G; Chaudhari, Mangesh I; Rempe, Susan B

    2018-05-03

    Electrochemical double-layer capacitances of charged carbon nanotube (CNT) forests with tetraethyl ammonium tetrafluoro borate electrolyte in propylene carbonate are studied on the basis of molecular dynamics simulation. Direct molecular simulation of the filling of pore spaces of the forest is feasible even with realistic, small CNT spacings. The numerical solution of the Poisson equation based on the extracted average charge densities then yields a regular experimental dependence on the width of the pore spaces, in contrast to the anomalous pattern observed in experiments on other carbon materials and also in simulations on planar slot-like pores. The capacitances obtained have realistic magnitudes but are insensitive to electric potential differences between the electrodes in this model. This agrees with previous calculations on CNT forest supercapacitors, but not with experiments which have suggested electrochemical doping for these systems. Those phenomena remain for further theory/modeling work. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sheet beam model for intense space charge: Application to Debye screening and the distribution of particle oscillation frequencies in a thermal equilibrium beam

    Directory of Open Access Journals (Sweden)

    Steven M. Lund

    2011-05-01

    Full Text Available A one-dimensional Vlasov-Poisson model for sheet beams is reviewed and extended to provide a simple framework for analysis of space-charge effects. Centroid and rms envelope equations including image-charge effects are derived and reasonable parameter equivalences with commonly employed 2D transverse models of unbunched beams are established. This sheet-beam model is then applied to analyze several problems of fundamental interest. A sheet-beam thermal equilibrium distribution in a continuous focusing channel is constructed and shown to have analogous properties to two- and three-dimensional thermal equilibrium models in terms of the equilibrium structure and Debye screening properties. The simpler formulation for sheet beams is exploited to explicitly calculate the distribution of particle oscillation frequencies within a thermal equilibrium beam. It is shown that as space-charge intensity increases, the frequency distribution becomes broad, suggesting that beams with strong space-charge can have improved stability relative to beams with weak space-charge.

  4. PIC space-charge emission with finite Δt and Δz

    International Nuclear Information System (INIS)

    Hewett, D.W.; Chen, Yu-Jiuan.

    1993-01-01

    A new algorithm for space charge emission has been developed to provide the correct (to a few percent) Child-Langmuir steady-state current limits as the number of mesh points in the voltage gap drops to O(10). Further, the transient behavior of such flows compares well with idealized, analytic cases, lending confidence as we extend these algorithms into full RZ geometry with curved emitting surfaces to investigate transient characteristics of realistic injector designs

  5. Nondispersive hole transport in a spin-coated dendrimer film measured by the charge-generation-layer time-of-flight method

    Science.gov (United States)

    Markham, Jonathan P. J.; Anthopoulos, Thomas D.; Samuel, Ifor D. W.; Richards, Gary J.; Burn, Paul L.; Im, Chan; Bassler, Heinz

    2002-10-01

    Measurements of the mobility of a first-generation (G1) bis-fluorene cored dendrimer have been performed on spin-coated samples of 500 nm thickness using the charge-generation-layer time-of-flight (TOF) technique. A 10 nm perylene charge generation layer was excited by the 532 nm line of a Q-switched Nd:YAG laser and the generated carriers swept through the dendrimer film under an applied field. We observe nondispersive hole transport in the dendrimer layer with a room-temperature mobility mu=2.0 x10-4 cm2/V s at a field of 0.55 MV/cm. There is a weak field dependence of the mobility and it increases from mu=1.6 x10-4 cm2/V s at 0.2 MV/cm to mu=3.0 x10-4 cm2/V s at 1.4 MV/cm. These results suggest that the measurement of mobility by TOF in spin-coated samples on thickness scales relevant to organic light-emitting diodes can yield valuable information, and that dendrimers are promising materials for device applications.

  6. Space-charge effects in the Fermilab Main Ring at 8 GeV

    International Nuclear Information System (INIS)

    Mane, S.R.

    1989-03-01

    I use computer tracking to investigate the effects of space-charge on particle motion in the Fermilab Main Ring at p = 8 GeV/c. The results are found to agree with the Laslett tuneshift formula. Simple model cases are also studied to speed up the tracking. The effects of synchrotron oscillations, via tune modulation and dispersion, are included. 2 refs., 5 figs

  7. Adaptive Multi-Layered Space-Time Block Coded Systems in Wireless Environments

    KAUST Repository

    Al-Ghadhban, Samir

    2014-01-01

    © 2014, Springer Science+Business Media New York. Multi-layered space-time block coded systems (MLSTBC) strike a balance between spatial multiplexing and transmit diversity. In this paper, we analyze the block error rate performance of MLSTBC

  8. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  9. Space-charge flow in a non-cylindrically symmetric diode

    International Nuclear Information System (INIS)

    Quintenz, J.P.; Poukey, J.W.

    1976-01-01

    The one-dimensional cylindrical space-charge-limited emission and flow results of Langmuir and Blodgett are extended to the two-dimensional (r-theta) non-symmetric case by solving a fluid model numerically. It is found that particle beams thus generated can be controlled by suitable adjustment of the applied potentials and cylinder radii. A particle code has been modified to treat razor blade cathodes by including a simplified model for the blade emission. Numerical results are compared with experimental data. These results indicate that beams produced by razor blades pinch less tightly than those from block cathodes, but in some cases may still pinch enough to be interesting

  10. Space-charge effects on the propagation of hollow electron beams

    International Nuclear Information System (INIS)

    Barroso, J.J.; Stellati, C.

    1994-01-01

    The dynamics of hollow electron beams with gyro motion propagating down a cylindrical drift tube is analysed on the basis of a non-adiabatic-gun-generated laminar beam. Due to the action of beam's self-space charge field, the transverse velocity spread has an oscillatory behavior along the drift tube wherein the spatial auto modulation period shortens with increasing current. Numerical simulation results indicate that even at a 10 A beam current, the resulting transverse velocity spread is still less than the spread for a zero beam current. (author). 5 refs, 3 figs

  11. Program NAJOCSC and space charge effect simulation in C01

    International Nuclear Information System (INIS)

    Tang, J.Y.; Chabert, A.; Baron, E.

    1999-01-01

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.)

  12. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  13. Thermal blurring effects on fluctuations of conserved charges in rapidity space

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, M.; Kitazawa, M.; Onishi, Y.; Sakaida, M.

    2016-12-15

    We argue that the diffusion in the hadron phase and the thermal blurring at thermal freezeout affect observed conserved charge fluctuations considerably in relativistic heavy ion collisions, and show that their effects are of similar order at RHIC and LHC, and thus equally important in understanding experimental data. We also argue that, in order to disentangle them and obtain the initial state charge fluctuations, which we are interested in, it is crucial to measure their dependence on the rapidity window size. In the energy range of the beam energy scan program at RHIC, the diffusion effect would be less important because of the shorter duration of the hadron phase, but the importance of thermal blurring is not reduced. In addition, it is necessary to take account of the complex correspondence between the space-time rapidity and rapidity of observed particles, there.

  14. Spinorial charges and their role in the fusion of internal and space-time symmetries

    International Nuclear Information System (INIS)

    Daniel, M.; Ktorides, C.N.

    1976-01-01

    The advent of supersymmetry immediately led to speculations that a non-trivial mixing of internal and space-time symmetries could be achieved within its framework. In fact, the well-known no-go theorems do not apply to the supersymmetry algebra due to the presence, in the latter, of (anticommuting) spinorial charges. However, not until the recent work of Haag, Lopuszanski and Sohnius did a clearcut picture emerge as to how the aforementioned nontrivial mixing can take place. Most notably, the presence of the conformal algebra within the supersymmetry algebra turns out to be vital. The findings of Haag et al. are solidified through an explicit construction which uses as underlying space the pseudo-Euclidean space E(4, 2), i.e. the space for which the conformal group is the group of rotations, and which employs as main tools the spinors associated with the space E(4, 2). The algebro-geometric approach of Cartan is followed in order to understand both the introduction and the properties of these spinors. In this manner, many insights are gained regarding the mathematical foundations of supersymmetry. Thus, the emergence of the anticommutator, rather than the commutator, among spinor charges is fully understood as a natural algebraic consequence and not as an a priori given fact. In addition, it is clearly seen how an (internal) unitary symmetry group can make its appearance within the supersymmetry scheme and verify, via this explicit construction, the results of Haag et al. (Auth.)

  15. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  16. Theory of accelerated orbits and space charge effects in an AVF cyclotron

    International Nuclear Information System (INIS)

    Kleeven, W.J.G.M.

    1988-01-01

    In the first part of this thesis the influence of the accelerating electric field upon the motion of particles in a cyclotron is studied. A general relativistic Hamiltonian theory is derived which allows for a simultaneous study of the transverse and longitudinal motion as well as the coupling between both motions. It includes azimuthally varying magnetic fields and therefore describes phenomena which are due to the interfering influences of a given geometrical dee system with the azimuthally varying part of the magnetic field. As an example the electric gap crossing resonance is treated. The second part deals with space charge effects in a AVF cyclotron. The properties of the bunch, like the sizes, emittances and momentum spread, are represented in terms of second order moments of the phase space distribution function, and two sets of differential equations are derived which describe the time evolution of these moments under space charge conditions. The model takes into account the coupling between the longitudinal and radial motion, and the fact that the revolution frequency of the particles is independent of their energy. The analytical models developed can be applied to a given cyclotron by adopting the relevant parameters. Some calculations are presented for the small 3 MeV Iscochroneous Low Energy Cyclotron ILEC which is presently under construction at the Eindhoven University. Also some attention to the construction of this machine is given. (H.W.). 49 refs.; 37 figs

  17. Deformation of a layered half-space due to a very long tensile fault

    Indian Academy of Sciences (India)

    The problem of the coseismic deformation of an earth model consisting of an elastic layer of uniform thickness overlying an elastic half-space due to a very long tensile fault in the layer is solved analytically. Integral expressions for the surface displacements are obtained for a vertical tensile fault and a horizontal tensile fault.

  18. Space charge and wake field analysis for a high brightness electron source

    International Nuclear Information System (INIS)

    Parsa, Z.

    1991-01-01

    We present a brief overview of the formalism used, and some simulation results for transverse and longitudinal motion of a bunch of particles moving through a cavity (e.g., the Brookhaven National Laboratory high brightness photocathode gun), including effects of the accelerating field, space charge forces (e.g., arising from the interaction of the cavity surface and the self field of the bunch). 3 refs., 12 figs

  19. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Science.gov (United States)

    Talman, Richard; Malitsky, Nikolay; Stulle, Frank

    2009-01-01

    Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries) string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004)PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004); R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006), Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes): (i) Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel , Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000)NIMAER0168-900210.1016/S0168-9002(00)00729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]). All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance γx on beam width (as controlled by the lattice βx function) at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening , in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001), http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR). (ii) A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the 2004 FEL Conference, pp. 18

  20. Emittance growth due to static and radiative space charge forces in an electron bunch compressor

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2009-01-01

    Full Text Available Evolution of short intense electron bunches passing through bunch-compressing beam lines is studied using the UAL (Unified Accelerator Libraries string space charge formulation [R. Talman, Phys. Rev. ST Accel. Beams 7, 100701 (2004PRABFM1098-440210.1103/PhysRevSTAB.7.100701; N. Malitsky and R. Talman, in Proceedings of the 9th European Particle Accelerator Conference, Lucerne, 2004 (EPS-AG, Lucerne, 2004; R. Talman, Accelerator X-Ray Sources (Wiley-VCH, Weinheim, 2006, Chap. 13]. Three major configurations are studied, with the first most important and studied in greatest detail (because actual experimental results are available and the same results have been simulated with other codes: (i Experimental bunch compression results were obtained at CTF-II, the CERN test facility for the “Compact Linear Collider” using electrons of about 40 MeV. Previous simulations of these results have been performed (using TraFiC4* [A. Kabel et al., Nucl. Instrum. Methods Phys. Res., Sect. A 455, 185 (2000NIMAER0168-900210.1016/S0168-9002(0000729-4] and ELEGANT [M. Borland, Argonne National Laboratory Report No. LS-287, 2000]. All three simulations are in fair agreement with the data except that the UAL simulation predicts a substantial dependence of horizontal emittance ϵ_{x} on beam width (as controlled by the lattice β_{x} function at the compressor location. This is consistent with the experimental observations, but inconsistent with other simulations. Excellent agreement concerning dependence of bunch energy loss on bunch length and magnetic field strength [L. Groening et al., in Proceedings of the Particle Accelerator Conference, Chicago, IL, 2001 (IEEE, New York, 2001, http://groening.home.cern/groening/csr_00.htm] confirms our understanding of the role played by coherent synchrotron radiation (CSR. (ii A controlled comparison is made between the predictions of the UAL code and those of CSRTrack [M. Dohlus and T. Limberg, in Proceedings of the

  1. Electronically shielded solid state charged particle detector

    International Nuclear Information System (INIS)

    Balmer, D.K.; Haverty, T.W.; Nordin, C.W.; Tyree, W.H.

    1996-01-01

    An electronically shielded solid state charged particle detector system having enhanced radio frequency interference immunity includes a detector housing with a detector entrance opening for receiving the charged particles. A charged particle detector having an active surface is disposed within the housing. The active surface faces toward the detector entrance opening for providing electrical signals representative of the received charged particles when the received charged particles are applied to the active surface. A conductive layer is disposed upon the active surface. In a preferred embodiment, a nonconductive layer is disposed between the conductive layer and the active surface. The conductive layer is electrically coupled to the detector housing to provide a substantially continuous conductive electrical shield surrounding the active surface. The inner surface of the detector housing is supplemented with a radio frequency absorbing material such as ferrite. 1 fig

  2. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    Science.gov (United States)

    Alton, G. D.; Bilheux, H.

    2004-05-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j+ext, and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j+ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects.

  3. Extraction of space-charge-dominated ion beams from an ECR ion source: Theory and simulation

    International Nuclear Information System (INIS)

    Alton, G.D.; Bilheux, H.

    2004-01-01

    Extraction of high quality space-charge-dominated ion beams from plasma ion sources constitutes an optimization problem centered about finding an optimal concave plasma emission boundary that minimizes half-angular divergence for a given charge state, independent of the presence or lack thereof of a magnetic field in the extraction region. The curvature of the emission boundary acts to converge/diverge the low velocity beam during extraction. Beams of highest quality are extracted whenever the half-angular divergence, ω, is minimized. Under minimum half-angular divergence conditions, the plasma emission boundary has an optimum curvature and the perveance, P, current density, j +ext , and extraction gap, d, have optimum values for a given charge state, q. Optimum values for each of the independent variables (P, j +ext and d) are found to be in close agreement with those derived from elementary analytical theory for extraction with a simple two-electrode extraction system, independent of the presence of a magnetic field. The magnetic field only increases the emittances of beams through additional aberrational effects caused by increased angular divergences through coupling of the longitudinal to the transverse velocity components of particles as they pass though the mirror region of the electron cyclotron resonance (ECR) ion source. This article reviews the underlying theory of elementary extraction optics and presents results derived from simulation studies of extraction of space-charge dominated heavy-ion beams of varying mass, charge state, and intensity from an ECR ion source with emphasis on magnetic field induced effects

  4. Space charge profiles in low density polyethylene samples containing a permittivity/conductivity gradient

    DEFF Research Database (Denmark)

    Bambery, K.R.; Fleming, R.J.; Holbøll, Joachim

    2001-01-01

    .5×107 V m-1. Current density was also measured as a function of temperature and field. Space charge due exclusively to the temperature gradient was detected, with density of order 0.01 C m-3. The activation energy associated with the transport of electrons through the bulk was calculated as 0.09 e...

  5. Through space and through bridge channels of charge transfer at p-n nano-junctions: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Dandu, Naveen [Department of Chemistry and Biochemistry, NDSU, Fargo, ND 58108 (United States); Tretiak, Sergei [Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, 57069, NM 87454 (United States); Kilina, Svetlana [Department of Chemistry and Biochemistry, NDSU, Fargo, ND 58108 (United States); Kilin, Dmitri, E-mail: Dmitri.Kilin@ndsu.edu [Department of Chemistry and Biochemistry, NDSU, Fargo, ND 58108 (United States)

    2016-12-20

    Highlights: • Properties of interacting QDs depend on the fashion of interaction: through-bond or through-space. • The disconnected and undoped dimer models shows FÓ§rster band formation. • Dimer models with some doping exhibit degenerate charge-transfer excitons. • p- and n-doped qds shows polarization at the interface. • A photoexcitation polarizes p-n interface, in relation to phototovoltaic effect. - Abstract: Details of charge density distribution at p-n nano interface are analyzed with density functional theory techniques using model system of dimers of doped silicon quantum dots interacting through bond and through space. Spatial distributions of transition densities between the ground and excited states suggest the character of essential electronic excitations, which have a FÓ§rster, bound, unbound, or charge transfer character. A redistribution of electronic density from n-impurities to p-impurities results in a ground state polarization and creates an offset of energies of the bands localized on p-doped quantum dot and the bands localized on n-doped quantum dot. Although impurities contribute very few orbitals to the total density, a ground state charge redistribution and polarization are both responsible for the presence of a large number of charge transfer excitations involving solely silicon orbitals.

  6. Intrinsic Charge Carrier Mobility in Single-Layer Black Phosphorus.

    Science.gov (United States)

    Rudenko, A N; Brener, S; Katsnelson, M I

    2016-06-17

    We present a theory for single- and two-phonon charge carrier scattering in anisotropic two-dimensional semiconductors applied to single-layer black phosphorus (BP). We show that in contrast to graphene, where two-phonon processes due to the scattering by flexural phonons dominate at any practically relevant temperatures and are independent of the carrier concentration n, two-phonon scattering in BP is less important and can be considered negligible at n≳10^{13}  cm^{-2}. At smaller n, however, phonons enter in the essentially anharmonic regime. Compared to the hole mobility, which does not exhibit strong anisotropy between the principal directions of BP (μ_{xx}/μ_{yy}∼1.4 at n=10^{13} cm^{-2} and T=300  K), the electron mobility is found to be significantly more anisotropic (μ_{xx}/μ_{yy}∼6.2). Absolute values of μ_{xx} do not exceed 250 (700)  cm^{2} V^{-1} s^{-1} for holes (electrons), which can be considered as an upper limit for the mobility in BP at room temperature.

  7. Breakdown of a Space Charge Limited Regime of a Sheath in a Weakly Collisional Plasma Bounded by Walls with Secondary Electron Emission

    International Nuclear Information System (INIS)

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2009-01-01

    A new regime of plasma-wall interaction is identified in particle-in-cell simulations of a hot plasma bounded by walls with secondary electron emission. Such a plasma has a strongly non-Maxwellian electron velocity distribution function and consists of bulk plasma electrons and beams of secondary electrons. In the new regime, the plasma sheath is not in a steady space charge limited state even though the secondary electron emission produced by the plasma bulk electrons is so intense that the corresponding partial emission coefficient exceeds unity. Instead, the plasma-sheath system performs relaxation oscillations by switching quasiperiodically between the space charge limited and non-space-charge limited states.

  8. Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-01-15

    In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)

  9. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    Science.gov (United States)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  10. New Method for Shallow and Deep Trap Distribution Analysis in Oil Impregnated Insulation Paper Based on the Space Charge Detrapping

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-01-01

    Full Text Available Space charge has close relation with the trap distribution in the insulation material. The phenomenon of charges trapping and detrapping has attracted significant attention in recent years. Space charge and trap parameters are effective parameters for assessing the ageing condition of the insulation material qualitatively. In this paper, a new method for calculating trap distribution based on the double exponential fitting analysis of charge decay process and its application on characterizing the trap distribution of oil impregnated insulation paper was investigated. When compared with the common first order exponential fitting analysis method, the improved dual-level trap method could obtain the energy level range and density of both shallow traps and deep traps, simultaneously. Space charge decay process analysis of the insulation paper immersed with new oil and aged oil shows that the improved trap distribution calculation method can distinguish the physical defects and chemical defects. The trap density shows an increasing trend with the oil ageing, especially for the deep traps mainly related to chemical defects. The greater the energy could be filled by the traps, the larger amount of charges could be trapped, especially under higher electric field strength. The deep trap energy level and trap density could be used to characterize ageing. When one evaluates the ageing condition of oil-paper insulation using trap distribution parameters, the influence of oil performance should not be ignored.

  11. Charge and excitation dynamics in semiconducting polymer layers doped with emitters and charge carrier traps; Ladungstraeger- und Anregungsdynamik in halbleitenden Polymerschichten mit eingemischten Emittern und Ladungstraegerfallen

    Energy Technology Data Exchange (ETDEWEB)

    Jaiser, F

    2006-06-15

    Light-emitting diodes generate light from the recombination of injected charge carriers. This can be obtained in inorganic materials. Here, it is necessary to produce highly ordered crystalline structures that determine the properties of the device. Another possibility is the utilization of organic molecules and polymers. Based on the versatile organic chemistry, it is possible to tune the properties of the semiconducting polymers already during synthesis. In addition, semiconducting polymers are mechanically flexible. Thus, it is possible to construct flexible, large-area light sources and displays. The first light-emitting diode using a polymer emitter was presented in 1990. Since then, this field of research has grown rapidly up to the point where first products are commercially available. It has become clear that the properties of polymer light-emitting diodes such as color and efficiency can be improved by incorporating multiple components inside the active layer. At the same time, this gives rise to new interactions between these components. While components are often added either to improve the charge transport or to change the emission, it has to made sure that other processes are not influenced in a negative manner. This work investigates some of these interactions and describes them with simple physical models. First, blue light-emitting diodes based on polyfluorene are analyzed. This polymer is an efficient emitter, but it is susceptible to the formation of chemical defects that can not be suppressed completely. These defects form electron traps, but their effect can be compensated by the addition of hole traps. The underlying process, namely the changed charge carrier balance, is explained. In the following, blend systems with dendronized emitters that form electron traps are investigated. The different influence of the insulating shell on the charge and energy transfer between polymer host and the emissive core of the dendrimers is examined. In the

  12. Broadband Light Absorption and Efficient Charge Separation Using a Light Scattering Layer with Mixed Cavities for High-Performance Perovskite Photovoltaic Cells with Stability.

    Science.gov (United States)

    Moon, Byeong Cheul; Park, Jung Hyo; Lee, Dong Ki; Tsvetkov, Nikolai; Ock, Ilwoo; Choi, Kyung Min; Kang, Jeung Ku

    2017-08-01

    CH 3 NH 3 PbI 3 is one of the promising light sensitizers for perovskite photovoltaic cells, but a thick layer is required to enhance light absorption in the long-wavelength regime ranging from PbI 2 absorption edge (500 nm) to its optical band-gap edge (780 nm) in visible light. Meanwhile, the thick perovskite layer suppresses visible-light absorption in the short wavelengths below 500 nm and charge extraction capability of electron-hole pairs produced upon light absorption. Herein, we find that a new light scattering layer with the mixed cavities of sizes in 100 and 200 nm between transparent fluorine-doped tin oxide and mesoporous titanium dioxide electron transport layer enables full absorption of short-wavelength photons (λ cell with a light scattering layer of mixed cavities is stabilized due to suppressed charge accumulation. Consequently, this work provides a new route to realize broadband light harvesting of visible light for high-performance perovskite photovoltaic cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Irradiation of layered metallic dichalcogenides: disorder in the charge density waves

    International Nuclear Information System (INIS)

    Mutka, Hannu.

    1983-01-01

    This thesis is an experimental study on electron-irradiated metallic layer compounds (VSe 2 , NbSe 2 , TaS 2 , TaSe 2 ). The metal atoms displaced by irradiation remain in the form of stable defects up to 300 K; their concentration (10 - 5 ... 10 - 2 )is known from measurements of displacement threshold energy and magnetic susceptibility. The effect of these defects on the charge densite wave (CDW) phases and on the electronic and superconducting properties forms the major part of this study. In 1T-TaS 2 , a microstructure of CDW domains pinned to defects is observed by electron microscopy. The effects of this kind of disorder are also manifest in the thermodynamic properties of the CDW and in the electronic transport, as well as in the superconducting properties [fr

  14. Transport and matching of low energy space charge dominated beams

    International Nuclear Information System (INIS)

    Pandit, V.S.

    2013-01-01

    The transport and matching of low energy high intensity beams from the ion source to the subsequent accelerating structure are of considerable interest in recent years for variety of applications such as Accelerator driven system (ADSS), transmutation of nuclear waste, spallation neutron sources etc. It is essential to perform detailed simulations with experimentation to predict the beam evolution in the presence of nonlinear self as well as external fields before the design of the next accelerating structure is finalized. In order to study and settle various physics and technical issues related with transport of space charge dominated beams we have developed a 2.45 GHz microwave ion source at VECC which is now delivering more than 10 mA proton beam current at 80 keV. We have successfully transported well collimated 8 mA proton beam through the solenoid based 3 meter long transport line and studied various beam properties. We have also studied the transport of beam through spiral inflector at low beam current ∼ 1mA. In this article we will discuss the beam transport issues and describe a technique for simulation of beam envelopes in presence of linear space charge effects. We use canonical description of the motion of a single particle and then obtain first order differential equations for evolution of the moments of beam ensemble by assuming uniform distribution of the beam. We will also discuss the methodology used in the simulations to understand the observed beam behaviour during transport. (author)

  15. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  16. Role of space--time topology in quantum phenomena: Superselection of charge and emergence of nontrivial vacua

    International Nuclear Information System (INIS)

    Ashtekar, A.; Sen, A.

    1980-01-01

    Schwarzschild--Kruskal space--time admits a two-parameter family of everywhere regular, static, source-free Maxwell fields. It is shown that there exists a corresponding two-parameter family of unitarily inequivalent representations of the canonical commutation relations. Elements of the underlying Hilbert space may be interpreted as ''quantum fluctuations of the Maxwell field off nontrivial classical vacua.'' The representation corresponding to the ''trivial'' sector: i.e., the zero classical solution: is the usual Fock representation. All others are ''non-Fock.'' In particular, in all other sectors, the Maxwell field develops a nonzero vacuum expectation value. The parameters labelling the family can be interpreted as electric and magnetic charges. Therefore, unitary inequivalence naturally leads to superselection rules for these charges. These features arise in spite of the linearity of field equations only because the space--time topology is ''nontrivial.'' Also, because of linearity, an exact analysis is possible at the quantum level; recourse to perturbation theory is unnecessary

  17. Multi-layer planting as a strategy of greening the transitional space in high-rise buildings: A review

    Science.gov (United States)

    Prihatmanti, Rani; Taib, Nooriati

    2018-03-01

    The issues regarding the rapid development in the urban have resulted in the increasing number of infrastructure built, including the high-rise buildings to accommodate the urban dwellers. Lack of greeneries due to the land limitation in the urban area has increased the surface radiation as well as the air temperature that leads to the Urban Heat Island (UHI) phenomena. Where urban land is limited, growing plants vertically could be a solution. Plants, which are widely known as one of the sustainability elements in the built environment could be integrated in building as a part of urban faming by growing edible plant species. This is also to address the food security issue in the urban as well as high-density cities. Since space is limited, the function of transitional space could be optimized for the green space. This paper explores the strategy of greening transitional space in the high-rise setting. To give a maximum impact in a limited space, multi-layer planting concept could be introduced. This concept is believed that multiple layers of plants could modify the microclimate, as well as the radiation to the building, compare to single layer plant. In addition to that, the method selected also determines the efficacy of the vertical greeneries. However, there are many other limitations related to the multi-layer planting method if installed in a transitional space that needs to be further studied. Despite its limitations, the application of vertical greeneries with multi-layer planting concept could be a promising solution for greening the limited space as well as improving the thermal comfort in the high-rise building.

  18. Space charge calibration of the ALICE TPC operated with an open gating grid

    Energy Technology Data Exchange (ETDEWEB)

    Hellbaer, Ernst [Institut fuer Kernphysik, Goethe-Universitaet Frankfurt (Germany); Ivanov, Marian [GSI (Germany); Wiechula, Jens [Universitaet Tuebingen (Germany); Collaboration: ALICE-Collaboration

    2015-07-01

    The Time Projection Chamber (TPC) is the main particle identification detector of the ALICE experiment at the CERN LHC. High interaction rates of 50 kHz in Pb-Pb during the Run 3 period after 2020 require a major upgrade of the TPC readout. The currently used Multiwire Proportional Chambers (MWPCs) will be replaced by readout chambers (ROCs) based on Gas Electron Multiplier (GEM) technology which will be operated in a continuous mode. While the gating grid of the MWPCs prevents the positive ions of the amplification region from entering the drift volume, the GEM-based ROCs will introduce an ion backflow (IBF) of about 1%. In combination with the high-luminosity environment, this amount of back-drifting ions results in a considerable space charge density which distorts the drift path of the primary ionisation electrons significantly. In order to still provide a high tracking efficiency and cluster-to-track association, an efficient calibration scheme will be implemented. As a test ground for the new calibration scheme, pp collision data was taken during Run 1 with the gating grid operated in a transparent mode allowing the ions to enter the drift volume. The measured space point distortions due to the space charge are presented together with the corrected data and compared to simulations for Run 3.

  19. MOSFET Electric-Charge Sensor

    Science.gov (United States)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  20. Electronic self-organization in layered transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, Tobias

    2015-10-30

    The interplay between different self-organized electronically ordered states and their relation to unconventional electronic properties like superconductivity constitutes one of the most exciting challenges of modern condensed matter physics. In the present thesis this issue is thoroughly investigated for the prototypical layered material 1T-TaS{sub 2} both experimentally and theoretically. At first the static charge density wave order in 1T-TaS{sub 2} is investigated as a function of pressure and temperature by means of X-ray diffraction. These data indeed reveal that the superconductivity in this material coexists with an inhomogeneous charge density wave on a macroscopic scale in real space. This result is fundamentally different from a previously proposed separation of superconducting and insulating regions in real space. Furthermore, the X-ray diffraction data uncover the important role of interlayer correlations in 1T-TaS{sub 2}. Based on the detailed insights into the charge density wave structure obtained by the X-ray diffraction experiments, density functional theory models are deduced in order to describe the electronic structure of 1T-TaS{sub 2} in the second part of this thesis. As opposed to most previous studies, these calculations take the three-dimensional character of the charge density wave into account. Indeed the electronic structure calculations uncover complex orbital textures, which are interwoven with the charge density wave order and cause dramatic differences in the electronic structure depending on the alignment of the orbitals between neighboring layers. Furthermore, it is demonstrated that these orbital-mediated effects provide a route to drive semiconductor-to-metal transitions with technologically pertinent gaps and on ultrafast timescales. These results are particularly relevant for the ongoing development of novel, miniaturized and ultrafast devices based on layered transition metal dichalcogenides. The discovery of orbital textures

  1. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    Science.gov (United States)

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  2. Vacuum polarization and topological self-interaction of a charge in multiconic space

    International Nuclear Information System (INIS)

    Gal'tsov, D.V.; Grats, Y.V.; Lavrent'ev, A.B.

    1995-01-01

    The behavior of classical and quantized massless scalar fields in n-dimensional multiconic space-time is considered. An expression for the Euclidean Green's function is obtained using the methods of perturbation theory. It is shown that a nontrivial topology of the space distorts the electrostatic field of a pointlike charge; as a result, the self-energy of the particle assumes a nonzero value, and a force of topological self-interaction arises. Similarly, a change in the spectrum of vacuum fluctuations of a quantized scalar field leads to nonzero vacuum expectation values left-angle φ 2 right-angle vac and left-angle T μv right-angle va and gives rise to vacuum attraction between parallel cosmic strings. 28 refs

  3. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  4. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  5. Effect of paraelectrode processes on contraction of space charge in periodic-pulse lasers

    Science.gov (United States)

    Arytyunyan, R. V.; Baranov, V. Yu.; Borisov, V. M.; Vinokhodov, A. Yu.; Kiryukhin, Yu. B.

    1986-05-01

    A characteristic feature of periodic-pulse electric-discharge CO2-lasers and excimer lasers is contraction of the space charge as the pulse repetition rate increases. The emission energy per pulse decreases as a consequence, with the average laser power first ceasing to increase linearly beyond a certain corner repetition rate and then decreasing beyond a certain critical repetition rate. A study of this phenomenon was made, for the purpose of separating the effect of paracathode processes from the effect of gas dynamics and then evaluating the effect of the former alone. Paraelectrode perturbations were simulated by focusing the radiation from the an XeCl-laser on the cathode surface in an atmosphere of nonabsorbing gases. Laser pulses of up to approximately 0.5 J energy and of approximately 50 ns duration were focused within a spot of 1 mm(2) area on a cathode inside a discharge chamber, with the power density of incident radiation regulated by means of an attenuator. A space charge within a volume of 2.5x4.5x9 cm(3) was generated between this specially shaped cathode and a mesh anode with an approximately 50% optical transmission coefficient. The space charge in helium and in neon was photographed, and the time lag of a discharge pulse behind a contracting laser pulse was measured as a function of the laser pulse energy for these two gases, as well as for a He+C12 gas mixture. The general trend was found to be the same in each case, the time lag increasing with increasing energy first at a slower rate up to a critical energy level and then faster. It has been established that plasma does not build up on the cathode before the laser pulse energy reaches 30 mJ (for a 3 mm(2) surface area), while plasma glow begins as the laser pulse energy reaches 150 mJ. A contracted channel begins to form within the laser-cathode interaction space, with an attendant fast increase of the time lag owing to evaporation of the cathode metal.

  6. Charge-transport anisotropy in black phosphorus: critical dependence on the number of layers.

    Science.gov (United States)

    Banerjee, Swastika; Pati, Swapan K

    2016-06-28

    Phosphorene is a promising candidate for modern electronics because of the anisotropy associated with high electron-hole mobility. Additionally, superior mechanical flexibility allows the strain-engineering of various properties including the transport of charge carriers in phosphorene. In this work, we have shown the criticality of the number of layers to dictate the transport properties of black phosphorus. Trilayer black phosphorus (TBP) has been proposed as an excellent anisotropic material, based on the transport parameters using Boltzmann transport formalisms coupled with density functional theory. The mobilities of both the electron and the hole are found to be higher along the zigzag direction (∼10(4) cm(2) V(-1) s(-1) at 300 K) compared to the armchair direction (∼10(2) cm(2) V(-1) s(-1)), resulting in the intrinsic directional anisotropy. Application of strain leads to additional electron-hole anisotropy with 10(3) fold higher mobility for the electron compared to the hole. Critical strain for maximum anisotropic response has also been determined. Whether the transport anisotropy is due to the spatial or charge-carrier has been determined through analyses of the scattering process of electrons and holes, and their recombination as well as relaxation dynamics. In this context, we have derived two descriptors (S and F(k)), which are general enough for any 2D or quasi-2D systems. Information on the scattering involving purely the carrier states also helps to understand the layer-dependent photoluminescence and electron (hole) relaxation in black phosphorus. Finally, we justify trilayer black phosphorus (TBP) as the material of interest with excellent transport properties.

  7. Highly efficient tandem OLED based on C{sub 60}/rubrene: MoO{sub 3} as charge generation layer and LiF/Al as electron injection layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384 (China); Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin 300384 (China); College of Science, Tianjin University of Technology, Tianjin 300384 (China); Wu, Xiaoming, E-mail: wxm@tjut.edu.cn [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384 (China); Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin 300384 (China); Xiao, Zhihui; Gao, Jian; Zhang, Juan; Rui, Hongsong; Lin, Xin; Zhang, Nan; Hua, Yulin [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384 (China); Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin 300384 (China); Yin, Shougen, E-mail: sgyin@tjut.edu.cn [School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384 (China); Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300384 (China); Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin 300384 (China)

    2017-08-15

    Highlights: • Highly efficient blue fluorescent tandem OLEDs are fabricated. • The optimal tandem OLED consists of C{sub 60}/rubrene: MoO{sub 3} as a CGL and LiF/Al as an EIL. • Current efficiency and power efficiency of optimal tandem OLED is markedly enhanced. • The turn-on and driving voltages of optimal tandem OLED is obviously reduced. - Abstract: Tandem organic light-emitting diodes (OLEDs) have received much attention in solid-state lighting due to their high current efficiency, long lifetime and excellent stability. The highly efficient blue fluorescent tandem OLEDs based on the charge generation layer (CGL) of C{sub 60}/rubrene: MoO{sub 3} and the electron injection layer (EIL) of LiF/Al were fabricated. The ultra-thin Al layer in EIL was introduced to further increase electron injection from CGL to the emission unit. We found that the maximal current efficiency and power efficiency of optimal tandem device can reach to 43.1 cd/A and 15.1 lm/W, respectively, which are approximately 2.8 and 1.9 times compared with those of single-emissive-unit device. Moreover, compared with the traditional tandem device, the driving voltage of the optimal device is reduced by 6 V, and the turn-on voltage is reduced by 2.4 V. We analyzed the mechanism and characterization of these tandem devices. The effective charge separation and transport of C{sub 60}/rubrene: MoO{sub 3}, and excellent electron injection ability of ultra-thin Al layer are the main factors for the remarkable enhancement in both current efficiency and power efficiency of tandem OLEDs.

  8. Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.

    Science.gov (United States)

    Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi

    2016-09-14

    The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH.

  9. Space charge effect measurements for a multi-channel ionization chamber used for synchrotron radiation

    International Nuclear Information System (INIS)

    Nasr, Amgad

    2012-01-01

    In vivo coronary angiography is one of the techniques used to investigate the heart diseases, by using catheter to inject a contrast medium of a given absorption coefficient into the heart vessels. Taking X-ray images produced by X-ray tube or synchrotron radiation for visualizing the blood in the coronary arteries. As the synchrotron radiation generated by the relativistic charged particle at the bending magnets, which emits high intensity photons in comparison with the X-ray tube. The intensity of the synchrotron radiation is varies with time. However for medical imaging it's necessary to measure the incoming intensity with the integrated time. The thesis work includes building a Multi-channel ionization chamber which can be filled with noble gases N 2 , Ar and Xe with controlled inner pressure up to 30 bar. This affects the better absorption efficiency in measuring the high intensity synchrotron beam fluctuation. The detector is a part of the experimental setup used in the k-edge digital subtraction angiography project, which will be used for correcting the angiography images taken by another detector at the same time. The Multi-channel ionization chamber calibration characteristics are measured using 2 kW X-ray tube with molybdenum anode with characteristic energy of 17.44 keV. According to the fast drift velocity of the electrons relative to the positive ions, the electrons will be collected faster at the anode and will induce current signals, while the positive ions is still drifting towards the cathode. However the accumulation of the slow ions inside the detector disturbs the homogeneous applied electric field and leads to what is known a space charge effect. In this work the space charge effect is measured with very high synchrotron photons intensity from EDR beam line at BESSYII. The strong attenuation in the measured amplitude signal occurs when operating the chamber in the recombination region. A plateau is observed at the amplitude signal when

  10. Plasmon-enhanced scattering and charge transfer in few-layer graphene interacting with buried printed 2D-pattern of silver nanoparticles

    Science.gov (United States)

    Carles, R.; Bayle, M.; Bonafos, C.

    2018-04-01

    Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.

  11. Mechanism of charge transport in ligand-capped crystalline CdTe nanoparticles according to surface photovoltaic and photoacoustic results

    Energy Technology Data Exchange (ETDEWEB)

    Li Kuiying, E-mail: kuiyingli@ysu.edu.cn [National Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Hebei Str. 438, Qinhuangdao, Hebei Province 066004 (China); Zhang Hao [Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012 (China); Yang Weiyong; Wei Sailing [National Laboratory of Metastable Materials Manufacture Technology and Science, Yanshan University, Hebei Str. 438, Qinhuangdao, Hebei Province 066004 (China); Wang Dayang, E-mail: dayang@mpikg-golm.mpg.de [Max Planck Institute of Colloids and Interfaces, Potsdam 14424 (Germany)

    2010-09-01

    By combining surface photovoltaic and photoacoustic techniques, we probed the photogenerated charge transport channels of 3-mercaptopropionic acid (MPA)- and 2-mercaptoethylamine (MA)-capped crystalline CdTe nanoparticles on illumination with UV-near IR light. The results experimentally confirmed the presence of a CdS shell outside the CdTe core that formed through the self-assembly and decomposition of mercapto ligands during CdTe preparation. The data revealed that the CdS layer was partly responsible for the deexcitation behavior of the photogenerated carriers, which is related to the quantum tunnel effect. Experiments demonstrated that two quantum wells were located at wavelengths of 440 and 500 nm in buried interfacial space-charge regions, whereas the formation of a ligand layer obstructed charge transfer transitions of the core CdTe nanoparticles to a certain extent.

  12. Emittance growth due to space charge compensation and beam intensity instabilities in negative ion beams

    Directory of Open Access Journals (Sweden)

    C. A. Valerio-Lizarraga

    2018-03-01

    Full Text Available The need to extract the maximum beam intensity with low transversal emittance often comes with the drawback of operating the ion source to limits where beam current instabilities arise, such fluctuations can change the beam properties producing a mismatch in the following sections of the machine. The space charge compensation (SCC generated by the beam particles colliding with the residual gas reaches a steady state after a build-up time. This paper shows how once in the steady state, the beam ends with a transversal emittance value bigger than the case without compensation. In addition, we study how the beam intensity variation can disturb the SCC dynamics and its impact on the beam properties. The results presented in this work come from 3-D simulations using tracking codes taking into account the secondary ions to estimate the degree of the emittance growth due to space charge and SCC.

  13. Simulation of space-charge effects in an ungated GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Böhmer, F.V., E-mail: felix.boehmer@tum.de; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-08-11

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P{sup ¯}ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm{sup −3} are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC.

  14. Simulation of space-charge effects in an ungated GEM-based TPC

    International Nuclear Information System (INIS)

    Böhmer, F.V.; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-01-01

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P ¯ ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm −3 are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC

  15. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  16. Magnetically controlled space charge capacitance at La{sub 1-x}Sr{sub x}MnO{sub 3}/Sr{sub x}La{sub 1-x}TiO{sub 3} interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Rainer; Garcia-Barriocanal, Javier; Leon, Carlos; Santamaria, Jacobo [Facultad de Ciencias Fisicas, Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, GFMC (Spain); Unidad Asociada ' ' Laboratorio de Heteroestructuras con Aplicacion en Espintronica' ' , UCM/CSIC, Madrid (Spain); Varela, Maria [Facultad de Ciencias Fisicas, Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, GFMC (Spain); Oak Ridge National Laboratory, Oak Ridge, TN (United States); Instituto Pluridisciplinar, Universidad Complutense de Madrid (Spain); Garcia-Hernandez, Mar [Instituto de Ciencia de Materiales de Madrid - Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Madrid (Spain)

    2016-08-15

    This work reports on magnetocapacitance (MC) effects in epitaxial heterostructures of nominally 15 unit cells (u.c.) LaMnO{sub 3} (LMO) and 2 u.c. SrTiO{sub 3} (STO) with an alternating layer-repetition rate of 8: (LMO{sub 15}/STO{sub 2}){sub 8}. Epitaxial multilayer growth at high temperatures (900 C) activates a selective inter-diffusion of La{sup 3+} and Sr{sup 2+} cations across the interfaces, which gives rise to Sr p-doping of the LMO and La n-doping of the STO layers. MC effects at the buried La{sub 1-x}Sr{sub x}MnO{sub 3}/Sr{sub x}La{sub 1-x}TiO{sub 3} (LSMO/SLTO) interfaces are probed by frequency, temperature and magnetic field dependent AC impedance spectroscopy. The technique is shown to be appropriate to account for the separate analysis of different resistance and capacitance contributions at the buried interfaces. As a result of the La/Sr inter-diffusion process, Schottky barriers are formed at the LSMO/SLTO interfaces, which give rise to massive MC of up to ∼ -200% in the out-of-plane film direction. The capacitance of the manganite-titanate LSMO/SLTO interfaces may be coupled indirectly to the resistance of the LSMO layers, because the Schottky space-charge layers and their capacitance can be modulated by varying the concentration of highly mobile charge carriers in the LSMO with a magnetic field. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The Influence of Pre-conditioning on the Space Charge Formation in LDPE and XLPE

    DEFF Research Database (Denmark)

    Henriksen, Mogens; Holbøll, Joachim T.; Fleming, R.J.

    1996-01-01

    Planar LDPE and XLPE samples were conditioned by holding in short circuit for 48 hrs. at 40oC under rotary pump pressure, and space charge accumulation in these samples under DC fields of 20 kV/mm was then compared with the corresponding accumulation in unconditioned samples.The test results were...

  18. Manipulating the dipole layer of polar organic molecules on metal surfaces via different charge-transfer channels

    Science.gov (United States)

    Lin, Meng-Kai; Nakayama, Yasuo; Zhuang, Ying-Jie; Wang, Chin-Yung; Pi, Tun-Wen; Ishii, Hisao; Tang, S.-J.

    The key properties of organic films such as energy level alignment (ELA), work functions, and injection barriers are closely linked to this dipole layer. Using angle resolved photoemission spectroscopy (ARPES), we systemically investigate the coverage-dependent work functions and spectra line shapes of occupied molecular orbital states of a polar molecule, chloroaluminium phthalocyanine (ClAlPc), grown on Ag(111) to show that the orientations of the first ClAlPc layer can be manipulated via the molecule deposition rate and post annealing, causing ELA at organic-metal interface to differ for about 0.3 eV between Cl-up and Cl-down configuration. Moreover, by comparing the experimental results with the calculations based on both gas-phase model and realistic model of ClAlPc on Ag(111) , we evidence that the different orientations of ClAlPc dipole layers lead to different charge-transfer channels between ClAlPc and Ag, a key factor that controls the ELA at organic-metal interface.

  19. Increased-accuracy numerical modeling of electron-optical systems with space-charge

    International Nuclear Information System (INIS)

    Sveshnikov, V.

    2011-01-01

    This paper presents a method for improving the accuracy of space-charge computation for electron-optical systems. The method proposes to divide the computational region into two parts: a near-cathode region in which analytical solutions are used and a basic one in which numerical methods compute the field distribution and trace electron ray paths. A numerical method is used for calculating the potential along the interface, which involves solving a non-linear equation. Preliminary results illustrating the improvement of accuracy and the convergence of the method for a simple test example are presented.

  20. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions