WorldWideScience

Sample records for space-borne spectroscopic measurements

  1. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  2. Surface-Borne Time-of-Reception Measurements (STORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Invocon proposes the Surface-borne Time-Of-Reception Measurements (STORM) system as a method to locate the position of lightning strikes on aerospace vehicles....

  3. Very large area multiwire spectroscopic proportional counters

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F.

    1981-01-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) succesfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm 2 with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results. (orig.)

  4. Very large area multiwire spectroscopic proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; Mastropietro, M.; La Padula, C.D.; Patriarca, R.; Polcaro, V.F. (Istituto di Astrofisica Spaziale, Frascati (Italy))

    1981-07-01

    As a result of a five year development program, a final prototype of a Very Large Area Spectroscopic Proportional Counter (VLASPC), to be employed in space borne payloads, was produced at the Istituto di Astrofisica Spaziale, Frascati. The instrument is the last version of a new generation of Multiwire Spectroscopic Proportional Counters (MWSPC) successfully employed in many balloon borne flights, devoted to hard X-ray astronomy. The sensitive area of this standard unit is 2700 cm/sup 2/ with an efficiency higher than 10% in the range 15-180 keV (80% at 60 keV). The low cost and weight make this new type of VLASPC competitive with Nal arrays, phoswich and GSPC detectors in terms of achievable scientific results.

  5. Forward modeling of space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Rubbo, Louis J.; Cornish, Neil J.; Poujade, Olivier

    2004-01-01

    Planning is underway for several space-borne gravitational wave observatories to be built in the next 10 to 20 years. Realistic and efficient forward modeling will play a key role in the design and operation of these observatories. Space-borne interferometric gravitational wave detectors operate very differently from their ground-based counterparts. Complex orbital motion, virtual interferometry, and finite size effects complicate the description of space-based systems, while nonlinear control systems complicate the description of ground-based systems. Here we explore the forward modeling of space-based gravitational wave detectors and introduce an adiabatic approximation to the detector response that significantly extends the range of the standard low frequency approximation. The adiabatic approximation will aid in the development of data analysis techniques, and improve the modeling of astrophysical parameter extraction

  6. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  7. Automated reliability assessment for spectroscopic redshift measurements

    Science.gov (United States)

    Jamal, S.; Le Brun, V.; Le Fèvre, O.; Vibert, D.; Schmitt, A.; Surace, C.; Copin, Y.; Garilli, B.; Moresco, M.; Pozzetti, L.

    2018-03-01

    Context. Future large-scale surveys, such as the ESA Euclid mission, will produce a large set of galaxy redshifts (≥106) that will require fully automated data-processing pipelines to analyze the data, extract crucial information and ensure that all requirements are met. A fundamental element in these pipelines is to associate to each galaxy redshift measurement a quality, or reliability, estimate. Aim. In this work, we introduce a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function. Methods: We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process and produce a redshift posterior probability density function (PDF). To automate the assessment of a reliability flag, we exploit key features in the redshift posterior PDF and machine learning algorithms. Results: As a working example, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification in order to describe different types of redshift PDFs, but due to the subjective definition of these flags (classification accuracy 58%), we soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions (classification accuracy 98%), we projected unlabeled data from preliminary mock simulations for the Euclid space mission into this mapping to predict their redshift reliability labels. Conclusions: Through the development of a methodology in which a system can build its own experience to assess the quality of a parameter, we are able to set a preliminary basis of an automated reliability assessment for

  8. Born's reciprocity principle in stochastic phase space

    International Nuclear Information System (INIS)

    Prugovecki, E.

    1981-01-01

    It is shown that the application of Born's reciprocity principle to relativistic quantum mechanics in stochastic phase space (by the requirement that the proper wave functions of extended particles satisfy the Born-Lande as well as the Klein-Gordon equation) leads to the unique determination of these functions for any given value of their rms radius. The resulting particle propagators display not only Lorentz but also reciprocal invariance. This feature remains true even in the case of mass-zero particles, such as photons, when their localization is achieved by means of extended test particles whose proper wave functions obey the reciprocity principle. (author)

  9. Development of reaction-sintered SiC mirror for space-borne optics

    Science.gov (United States)

    Yui, Yukari Y.; Kimura, Toshiyoshi; Tange, Yoshio

    2017-11-01

    We are developing high-strength reaction-sintered silicon carbide (RS-SiC) mirror as one of the new promising candidates for large-diameter space-borne optics. In order to observe earth surface or atmosphere with high spatial resolution from geostationary orbit, larger diameter primary mirrors of 1-2 m are required. One of the difficult problems to be solved to realize such optical system is to obtain as flat mirror surface as possible that ensures imaging performance in infrared - visible - ultraviolet wavelength region. This means that homogeneous nano-order surface flatness/roughness is required for the mirror. The high-strength RS-SiC developed and manufactured by TOSHIBA is one of the most excellent and feasible candidates for such purpose. Small RS-SiC plane sample mirrors have been manufactured and basic physical parameters and optical performances of them have been measured. We show the current state of the art of the RS-SiC mirror and the feasibility of a large-diameter RS-SiC mirror for space-borne optics.

  10. Space-borne clear air lidar measurements in the presence of broken cloud

    Directory of Open Access Journals (Sweden)

    I. Astin

    Full Text Available A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM and DIAL missions (e.g. WALES are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.

    Key words. Atmospheric composition and structure (aerosols and particles Meteorology and atmospheric dynamics (instruments and techniques; general circulation

  11. Modeling Sub-500MHz Space-Borne Radar Signal Propagation in Complex Media

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-borne radar platforms are becoming increasingly prevalent in current and planned missions by NASA and partner organizations (e.g. the European Space Agency...

  12. Angular signatures, and a space-borne measurement concept

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1996-05-01

    The nature and value of angular signatures in remote sensing are reviewed with emphasis on the canopy hot-spot as a directionally localized angular signature and an important special case of a BRDF (bidirectional reflectance distribution function). A new concept is presented that allows hot spot measurements from space by using active (laser) illumination and bistatic detection. The detectors are proposed as imaging array sensors that are circulating the illumination source (or vice versa) and are connected with it through tethers in space which also provide the directional controls needed so that the entire system becomes pointable like a search light. Near infrared or IR operation in an atmospheric transmission winodw is envisioned with night-time data acquistion. Detailed feasibility and systems analyses have yet to be performed.

  13. Quantification of Greenhouse Gas Emission Rates from strong Point Sources by Space-borne IPDA Lidar Measurements: Results from a Sensitivity Analysis Study

    Science.gov (United States)

    Ehret, G.; Kiemle, C.; Rapp, M.

    2017-12-01

    The practical implementation of the Paris Agreement (COP21) vastly profit from an independent, reliable and global measurement system of greenhouse gas emissions, in particular of CO2, in order to complement and cross-check national efforts. Most fossil-fuel CO2 emitters emanate from large sources such as cities and power plants. These emissions increase the local CO2 abundance in the atmosphere by 1-10 parts per million (ppm) which is a signal that is significantly larger than the variability from natural sources and sinks over the local source domain. Despite these large signals, they are only sparsely sampled by the ground-based network which calls for satellite measurements. However, none of the existing and forthcoming passive satellite instruments, operating in the NIR spectral domain, can measure CO2 emissions at night time or in low sunlight conditions and in high latitude regions in winter times. The resulting sparse coverage of passive spectrometers is a serious limitation, particularly for the Northern Hemisphere, since these regions exhibit substantial emissions during the winter as well as other times of the year. In contrast, CO2 measurements by an Integrated Path Differential Absorption (IPDA) Lidar are largely immune to these limitations and initial results from airborne application look promising. In this study, we discuss the implication for a space-borne IPDA Lidar system. A Gaussian plume model will be used to simulate the CO2-distribution of large power plants downstream to the source. The space-borne measurements are simulated by applying a simple forward model based on Gaussian error distribution. Besides the sampling frequency, the sampling geometry (e.g. measurement distance to the emitting source) and the error of the measurement itself vastly impact on the flux inversion performance. We will discuss the results by incorporating Gaussian plume and mass budget approaches to quantify the emission rates.

  14. Scientific Considerations for Future Spectroscopic Measurements from Space of Activity on the Sun

    Science.gov (United States)

    Holman, Gordon D.

    2016-01-01

    High-resolution UV and X-ray spectroscopy are important to understanding the origin and evolution of magnetic energy release in the solar atmosphere, as well as the subsequent evolution of heated plasma and accelerated particles. Electromagnetic radiation is observed from plasma heated to temperatures ranging from about 10 k K to above 10 MK, from accelerated electrons emitting photons primarily at X-ray energies, and from ions emitting in gamma rays. These observations require space-based instruments sensitive to emissions at wavelengths shorter than the near UV. This article reviews some recent observations with emphasis on solar eruptive events, the models that describe them, and the measurements they indicate are needed for substantial progress in the future. Specific examples are discussed demonstrating that imaging spectroscopy with a cadence of seconds or better is needed to follow, understand, and predict the evolution of solar activity. Critical to substantial progress is the combination of a judicious choice of UV, EUV, and soft X-ray imaging spectroscopy sensitive to the evolution of this thermal plasma combined with hard X-ray imaging spectroscopy sensitive to suprathermal electrons. The major challenge will be to conceive instruments that, within the bounds of possible technologies and funding, have the flexibility and field of view to obtain spectroscopic observations where and when events occur while providing an optimum balance of dynamic range, spectral resolution and range, and spatial resolution.

  15. Four Decades of Space-Borne Radio Sounding

    Science.gov (United States)

    Benson, Robert F.

    2010-01-01

    A review is given of the 38 rocket, satellite, and planetary payloads dedicated to ionospheric/magnetospheric radio sounding since 1961. Between 1961 and 1995, eleven sounding-rocket payloads from four countries evolved from proof-of-concept flights to sophisticated instruments. Some involved dual payloads, with the sounder transmitter on one and the sounder receiver on the other. The rocket sounders addressed specific space-plasma-wave questions, and provided improved measurements of ionospheric electron-density (N(sub e)) field-aligned irregularities (FAI). Four countries launched 12 ionospheric topside-sounder satellites between 1962 and 1994, and an ionospheric sounder was placed on the Mir Space Station in 1998. Eleven magnetospheric radio sounders, most of the relaxation type, were launched from 1977 to 2000. The relaxation sounders used low-power transmitters, designed to stimulate plasma resonances for accurate local Ne determinations. The latest magnetospheric sounder designed for remote sensing incorporated long antennas and digital signal processing techniques to overcome the challenges posed by low Ne values and large propagation distances. Three radio sounders from three countries were included on payloads to extraterrestrial destinations from 1990 to 2003. The scientific accomplishments of space-borne radio sounders included (1) a wealth of global N(sub e) information on the topside ionosphere and magnetosphere, based on vertical and magnetic-field-aligned N(sub e) profiles; (2) accurate in-situ N(sub e) values, even under low-density conditions; and (3) fundamental advances in our understanding of the excitation and propagation of plasma waves, which have even led to the prediction of a new plasma-wave mode.

  16. Electromagnetic modelling of a space-borne far-infrared interferometer

    Science.gov (United States)

    Donohoe, Anthony; O'Sullivan, Créidhe; Murphy, J. Anthony; Bracken, Colm; Savini, Giorgio; Pascale, Enzo; Ade, Peter; Sudiwala, Rashmi; Hornsby, Amber

    2016-02-01

    In this paper I will describe work done as part of an EU-funded project `Far-infrared space interferometer critical assessment' (FISICA). The aim of the project is to investigate science objectives and technology development required for the next generation THz space interferometer. The THz/FIR is precisely the spectral region where most of the energy from stars, exo-planetary systems and galaxy clusters deep in space is emitted. The atmosphere is almost completely opaque in the wave-band of interest so any observation that requires high quality data must be performed with a space-born instrument. A space-borne far infrared interferometer will be able to answer a variety of crucial astrophysical questions such as how do planets and stars form, what is the energy engine of most galaxies and how common are the molecule building blocks of life. The FISICA team have proposed a novel instrument based on a double Fourier interferometer that is designed to resolve the light from an extended scene, spectrally and spatially. A laboratory prototype spectral-spatial interferometer has been constructed to demonstrate the feasibility of the double-Fourier technique at far infrared wavelengths (0.15 - 1 THz). This demonstrator is being used to investigate and validate important design features and data-processing methods for future instruments. Using electromagnetic modelling techniques several issues related to its operation at long baselines and wavelengths, such as diffraction, have been investigated. These are critical to the design of the concept instrument and the laboratory testbed.

  17. High-Sensitivity Semiconductor Photocathodes for Space-Born UV Photon-Counting and Imaging, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Many UV photon-counting and imaging applications, including space-borne astronomy, missile tracking and guidance, UV spectroscopy for chemical/biological...

  18. The Use of Digital Educational Technology and Third Spaces with Foreign-Born Latinos

    Science.gov (United States)

    Guerra-Nunez, Oscar

    2017-01-01

    This article addresses the concept of educational third spaces that move beyond the paternalistic concept of a teacher as a font of knowledge filling the empty vessels of the students' minds, especially for foreign-born Latino (FBL) students. These students often struggle and lag behind their native-born peers as they master the new language of…

  19. PRISM: Processing routines in IDL for spectroscopic measurements (installation manual and user's guide, version 1.0)

    Science.gov (United States)

    Kokaly, Raymond F.

    2011-01-01

    This report describes procedures for installing and using the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software. PRISM provides a framework to conduct spectroscopic analysis of measurements made using laboratory, field, airborne, and space-based spectrometers. Using PRISM functions, the user can compare the spectra of materials of unknown composition with reference spectra of known materials. This spectroscopic analysis allows the composition of the material to be identified and characterized. Among its other functions, PRISM contains routines for the storage of spectra in database files, import/export of ENVI spectral libraries, importation of field spectra, correction of spectra to absolute reflectance, arithmetic operations on spectra, interactive continuum removal and comparison of spectral features, correction of imaging spectrometer data to ground-calibrated reflectance, and identification and mapping of materials using spectral feature-based analysis of reflectance data. This report provides step-by-step instructions for installing the PRISM software and running its functions.

  20. Spectroscopic studies on colloid-borne uranium

    International Nuclear Information System (INIS)

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.

    2005-01-01

    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  1. Goddard Technology Efforts to Improve Space Borne Laser Reliability

    Science.gov (United States)

    Heaps, William S.

    2006-01-01

    In an effort to reduce the risk, perceived and actual, of employing instruments containing space borne lasers NASA initiated the Laser Risk Reduction Program (LRRP) in 2001. This program managed jointly by NASA Langley and NASA Goddard and employing lasers researchers from government, university and industrial labs is nearing the conclusion of its planned 5 year duration. This paper will describe some of the efforts and results obtained by the Goddard half of the program.

  2. Extended phase space thermodynamics and P-V criticality: Brans-Dicke-Born-Infeld vs. Einstein-Born-Infeld-dilaton black holes

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P. O. Box 55134-441, Maragha (Iran, Islamic Republic of); Tad, R.M.; Armanfard, Z.; Talezadeh, M.S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of)

    2016-05-15

    Motivated by a thermodynamic analogy of black holes and Van der Waals liquid/gas systems, in this paper, we study P-V criticality of both dilatonic Born-Infeld black holes and their conformal solutions, Brans-Dicke-Born-Infeld solutions. Due to the conformal constraint, we have to neglect the old Lagrangian of dilatonic Born-Infeld theory and its black hole solutions, and introduce a new one. We obtain spherically symmetric nonlinearly charged black hole solutions in both Einstein and Jordan frames and then we calculate the related conserved and thermodynamic quantities. After that, we extend the phase space by considering the proportionality of the cosmological constant and thermodynamical pressure. We obtain critical values of the thermodynamic coordinates through numerical methods and plot the relevant P-V and G-T diagrams. Investigation of the mentioned diagrams helps us to study the thermodynamical phase transition. We also analyze the effects of varying different parameters on the phase transition of black holes. (orig.)

  3. Investigation and measures to noise on spectroscopic measurement system in JT-60U

    International Nuclear Information System (INIS)

    Nagaya, Susumu; Kubo, Hirotaka; Sugie, Tatsuo; Onizawa, Masami; Kawai, Isao; Nakata, Hisao.

    1997-11-01

    Breakdown of a negative-ion-based neutral beam injection (N-NBI) has caused noise trouble to several systems. The control circuit of a spectroscopic measurement system had not well worked because of the noise. The noise has been measured by an optical-fiber isolation system during operation of JT-60U. The amplitude and the frequency were 15-18 V and 15 MHz respectively. The transmission noise has been reduced by putting ferrite cores to all cables connecting with the control circuits. As a result, the trouble with the spectroscopic measurement system has completely been solved. Adding condensers and resistors to the circuit was not effective to reduce the noise. (author)

  4. Spectroscopic measurements of anode plasma with cryogenic pulsed ion sources

    International Nuclear Information System (INIS)

    Yoneda, H.; Urata, T.; Ohbayashi, K.; Kim, Y.; Horioka, K.; Kasuya, K.

    1987-01-01

    In ion beam diodes, electromagnetic wave is coupled to ion beam. Ion is extracted from anode plasma, which is produced early in the power pulse. However, exact mechanism of anode plasma production, expansion and ion extraction process is unknown. In particularly, anode plasma expansion is seemed to be one of the reasons of rapid impedance collapse of the diode, which is serious problem in high power experiments. Some experimental results showed that anode plasma expansion velocity was about 5 times larger than that inferred from simple thermal velocity. Several explanations for these results were proposed; for example, electron collisionarity in anode plasma, fast neutral gas particle, diamagnetism. To solve this question, it is necessary to measure the characteristic of anode plasma with space and time resolution. The authors made spectroscopic measurements to investigate variety of electron temperature, electron density, expansion velocity of anode plasma with various ion sources

  5. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    International Nuclear Information System (INIS)

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  6. Spectroscopic diagnostics and measurements at Jet

    International Nuclear Information System (INIS)

    Giannella, R.

    1994-01-01

    A concise review is presented of activity in the field spectroscopic diagnostic at JET during the latest few years. Together with a description of instruments, examples are given of the measurements conducted with these systems and some experimental result obtained with such activity are outlined. Emphasis is also given to the upgrading of existing apparatuses and the construction of new diagnostics ahead of the next experimental phase. 48 refs., 5 figs

  7. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  8. Validation of the Atmospheric Chemistry Experiment (ACE version 2.2 temperature using ground-based and space-borne measurements

    Directory of Open Access Journals (Sweden)

    R. J. Sica

    2008-01-01

    Full Text Available An ensemble of space-borne and ground-based instruments has been used to evaluate the quality of the version 2.2 temperature retrievals from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS. The agreement of ACE-FTS temperatures with other sensors is typically better than 2 K in the stratosphere and upper troposphere and 5 K in the lower mesosphere. There is evidence of a systematic high bias (roughly 3–6 K in the ACE-FTS temperatures in the mesosphere, and a possible systematic low bias (roughly 2 K in ACE-FTS temperatures near 23 km. Some ACE-FTS temperature profiles exhibit unphysical oscillations, a problem fixed in preliminary comparisons with temperatures derived using the next version of the ACE-FTS retrieval software. Though these relatively large oscillations in temperature can be on the order of 10 K in the mesosphere, retrieved volume mixing ratio profiles typically vary by less than a percent or so. Statistical comparisons suggest these oscillations occur in about 10% of the retrieved profiles. Analysis from a set of coincident lidar measurements suggests that the random error in ACE-FTS version 2.2 temperatures has a lower limit of about ±2 K.

  9. Analysis of transfer reactions: determination of spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)

    2007-07-01

    An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.

  10. English/Russian terminology on radiometric calibration of space-borne optoelectronic sensors

    Science.gov (United States)

    Privalsky, V.; Zakharenkov, V.; Humpherys, T.; Sapritsky, V.; Datla, R.

    The efficient use of data acquired through exo-atmospheric observations of the Earth within the framework of existing and newly planned programs requires a unique understanding of respective terms and definitions. Yet, the last large-scale document on the subject - The International Electrotechnical Vocabulary - had been published 18 years ago. This lack of a proper document, which would reflect the changes that had occurred in the area since that time, is especially detrimental to the developing international efforts aimed at global observations of the Earth from space such as the Global Earth Observations Program proposed by the U.S.A. at the 2003 WMO Congress. To cover this gap at least partially, a bi-lingual explanatory dictionary of terms and definitions in the area of radiometric calibration of space-borne IR sensors is developed. The objectives are to produce a uniform terminology for the global space-borne observations of the Earth, establish a unique understanding of terms and definitions by the radiometric communities, including a correspondence between the Russian and American terms and definitions, and to develop a formal English/Russian reference dictionary for use by scientists and engineers involved in radiometric observations of the Earth from space. The dictionary includes close to 400 items covering basic concepts of geometric, wave and corpuscular optics, remote sensing technologies, and ground-based calibration as well as more detailed treatment of terms and definitions in the areas of radiometric quantities, symbols and units, optical phenomena and optical properties of objects and media, and radiometric systems and their properties. The dictionary contains six chapters: Basic Concepts, Quantities, Symbols, and Units, Optical phenomena, Optical characteristics of surfaces and media, Components of Radiometric Systems, Characteristics of radiometric system components, plus English/Russian and Russian/Inglish indices.

  11. Single-Mode, High Repetition Rate, Compact Ho:YLF Laser for Space-Borne Lidar Applications

    Science.gov (United States)

    Bai, Yingxin; Yu, Jirong; Wong, Teh-Hwa; Chen, Songsheng; Petros, Mulugeta; Singh, Upendra N.

    2014-01-01

    A single transverse/longitudinal mode, compact Q-switched Ho:YLF laser has been designed and demonstrated for space-borne lidar applications. The pulse energy is between 34-40 mJ for 100-200 Hz operation. The corresponding peak power is >1 MW.

  12. Inter-comparison of stratospheric O3 and NO2 abundances retrieved from balloon borne direct sun observations and Envisat/SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Butz

    2006-01-01

    Full Text Available Stratospheric O3 and NO2 abundances measured by different remote sensing instruments are inter-compared: (1 Line-of-sight absorptions and vertical profiles inferred from solar spectra in the ultra-violet (UV, visible and infrared (IR wavelength ranges measured by the LPMA/DOAS (Limb Profile Monitor of the Atmosphere/Differential Optical Absorption Spectroscopy balloon payload during balloon ascent/descent and solar occultation are examined with respect to internal consistency. (2 The balloon borne stratospheric profiles of O3 and NO2 are compared to collocated space-borne skylight limb observations of the Envisat/SCIAMACHY satellite instrument. The trace gas profiles are retrieved from SCIAMACHY spectra using different algorithms developed at the Universities of Bremen and Heidelberg and at the Harvard-Smithsonian Center for Astrophysics. A comparison scheme is used that accounts for the spatial and temporal mismatch as well as differing photochemical conditions between the balloon and satellite borne measurements. It is found that the balloon borne measurements internally agree to within ±10% and ±20% for O3 and NO2, respectively, whereas the agreement with the satellite is ±20% for both gases in the 20 km to 30 km altitude range and in general worse below 20 km.

  13. Time-delay interferometric ranging for space-borne gravitational-wave detectors

    International Nuclear Information System (INIS)

    Tinto, Massimo; Vallisneri, Michele; Armstrong, J.W.

    2005-01-01

    Space-borne interferometric gravitational-wave detectors, sensitive in the low-frequency (mHz) band, will fly in the next decade. In these detectors, the spacecraft-to-spacecraft light-travel times will necessarily be unequal and time varying, and (because of aberration) will have different values on up- and down-links. In such unequal-armlength interferometers, laser-phase noise will be canceled by taking linear combinations of the laser-phase observables measured between pairs of spacecraft, appropriately time shifted by the light propagation times along the corresponding arms. This procedure, known as time-delay interferometry (TDI), requires an accurate knowledge of the light-time delays as functions of time. Here we propose a high-accuracy technique to estimate these time delays, and we study its use in the context of the Laser Interferometer Space Antenna (LISA) mission. We refer to this ranging technique, which relies on the TDI combinations themselves, as time-delay interferometric ranging (TDIR). For every TDI combination, we show that, by minimizing the rms power in that combination (averaged over integration times ∼10 4 s) with respect to the time-delay parameters, we obtain estimates of the time delays accurate enough to cancel laser noise to a level well below the secondary noises. Thus TDIR allows the implementation of TDI without the use of dedicated interspacecraft ranging systems, with a potential simplification of the LISA design. In this paper we define the TDIR procedure formally, and we characterize its expected performance via simulations with the Synthetic LISA software package

  14. Spectroscopic analysis applied to temperature measurement in plasmas

    International Nuclear Information System (INIS)

    Fieffe-Prevost, P.

    1978-01-01

    The plasma temperature is defined only if the plasma is in a state near thermodynamic equilibrium. This plasma state is analysed in detail and spectroscopic methods for measuring the temperature are discussed. As an application the hydrogen arc of the National Institute of Metrology of the Conservatoire National des Arts et Metiers (Paris) is briefly described [fr

  15. Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

    Science.gov (United States)

    Quets, Jan; De Lannoy, Gabrielle; Reichle, Rolf; Cosh, Michael; van der Schalie, Robin; Wigneron, Jean-Pierre

    2017-01-01

    The uncertainty associated with passive soil moisture retrieval is hard to quantify, and known to be underlain by various, diverse, and complex causes. Factors affecting space-borne retrieved soil moisture estimation include: (i) the optimization or inversion method applied to the radiative transfer model (RTM), such as e.g. the Single Channel Algorithm (SCA), or the Land Parameter Retrieval Model (LPRM), (ii) the selection of the observed brightness temperatures (Tbs), e.g. polarization and incidence angle, (iii) the definition of the cost function and the impact of prior information in it, and (iv) the RTM parameterization (e.g. parameterizations officially used by the SMOS L2 and SMAP L2 retrieval products, ECMWF-based SMOS assimilation product, SMAP L4 assimilation product, and perturbations from those configurations). This study aims at disentangling the relative importance of the above-mentioned sources of uncertainty, by carrying out soil moisture retrieval experiments, using SMOS Tb observations in different settings, of which some are mentioned above. The ensemble uncertainties are evaluated at 11 reference CalVal sites, over a time period of more than 5 years. These experimental retrievals were inter-compared, and further confronted with in situ soil moisture measurements and operational SMOS L2 retrievals, using commonly used skill metrics to quantify the temporal uncertainty in the retrievals.

  16. Rocket-borne EUV-visible emission measurements

    International Nuclear Information System (INIS)

    Schmidtke, G.; Baker, K.D.; Stasek, G.

    1982-01-01

    Two rocket-borne experiments for measuring EUV atmospheric emissions have been conducted. The first measured emissions at 391.4 nm and 557.7 nm, and the second measured emissions in the range from 50 to 650 nm. Height profiles of selected auroral emissions from atomic oxygen at 130.4 nm (exhibiting resonant radiation diffusion) and from atomic oxygen at 557.7 nm, and from neutral and ionized molecular nitrogen are shown. Some details of the recorded spectra are given. In the shorter wavelength regions, emissions from atomic oxygen and nitrogen dominate. Over 140 nm, Lyman-Birge-Hopfield bands, second positive bands and Vegard-Kaplan bands of molecular nitrogen contribute most strongly except for some atomic lines. The Lyman-Birge-Hopfield bands of molecular nitrogen are relatively weak during the auroral arc as compared to the diffuse aurora

  17. SPECTROSCOPIC AND INTERFEROMETRIC MEASUREMENTS OF NINE K GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Baines, Ellyn K. [Remote Sensing Division, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Döllinger, Michaela P. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Guenther, Eike W.; Hatzes, Artie P. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Hrudkovu, Marie [Isaac Newton Group of Telescopes, Apartado de Correos 321, E-387 00 Santa Cruz de la Palma, Canary Islands (Spain); Belle, Gerard T. van, E-mail: ellyn.baines@nrl.navy.mil [Lowell Observatory, Flagstaff, AZ 86001 (United States)

    2016-09-01

    We present spectroscopic and interferometric measurements for a sample of nine K giant stars. These targets are of particular interest because they are slated for stellar oscillation observations. Our improved parameters will directly translate into reduced errors in the final masses for these stars when interferometric radii and asteroseismic densities are combined. Here, we determine each star’s limb-darkened angular diameter, physical radius, luminosity, bolometric flux, effective temperature, surface gravity, metallicity, and mass. When we compare our interferometric and spectroscopic results, we find no systematic offsets in the diameters and the values generally agree within the errors. Our interferometric temperatures for seven of the nine stars are hotter than those determined from spectroscopy with an average difference of about 380 K.

  18. Cosmic homogeneity: a spectroscopic and model-independent measurement

    Science.gov (United States)

    Gonçalves, R. S.; Carvalho, G. C.; Bengaly, C. A. P., Jr.; Carvalho, J. C.; Bernui, A.; Alcaniz, J. S.; Maartens, R.

    2018-03-01

    Cosmology relies on the Cosmological Principle, i.e. the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.

  19. Normal-incidence spectroscopic ellipsometry for critical dimension monitoring

    International Nuclear Information System (INIS)

    Huang, Hsu-Ting; Kong, Wei; Terry, Fred Lewis

    2001-01-01

    In this letter, we show that normal-incidence spectroscopic ellipsometry can be used for high-accuracy topography measurements on surface relief gratings. We present both experimental and theoretical results which show that spectroscopic ellipsometry or reflectance-difference spectroscopy at near-normal incidence coupled with vector diffraction theory for data analysis is capable of high-accuracy critical dimension (CD), feature height, and sidewall angle measurements in the extreme submicron regime. Quantitative comparisons of optical and cross-sectional scanning electron microscopy (SEM) topography measurements from a number of 350 nm line/space reactive-ion-etched Si gratings demonstrate the strong potential for in situ etching monitoring. This technique can be used for both ex situ and in situ applications and has the potential to replace the use of CD-SEM measurements in some applications. [copyright] 2001 American Institute of Physics

  20. GESE: A Small UV Space Telescope to Conduct a Large Spectroscopic Survey of Z-1 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2013-01-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z is approximately 1 (look-back time of approximately 8 billion years). GESE is a 1.5-meter space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 micrometers at a spectral resolving power, R approximately 500. This observed spectral range corresponds to 0.1-0.2 micrometers as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next- Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  1. ANALYSIS OF RADAR AND OPTICAL SPACE BORNE DATA FOR LARGE SCALE TOPOGRAPHICAL MAPPING

    Directory of Open Access Journals (Sweden)

    W. Tampubolon

    2015-03-01

    Full Text Available Normally, in order to provide high resolution 3 Dimension (3D geospatial data, large scale topographical mapping needs input from conventional airborne campaigns which are in Indonesia bureaucratically complicated especially during legal administration procedures i.e. security clearance from military/defense ministry. This often causes additional time delays besides technical constraints such as weather and limited aircraft availability for airborne campaigns. Of course the geospatial data quality is an important issue for many applications. The increasing demand of geospatial data nowadays consequently requires high resolution datasets as well as a sufficient level of accuracy. Therefore an integration of different technologies is required in many cases to gain the expected result especially in the context of disaster preparedness and emergency response. Another important issue in this context is the fast delivery of relevant data which is expressed by the term “Rapid Mapping”. In this paper we present first results of an on-going research to integrate different data sources like space borne radar and optical platforms. Initially the orthorectification of Very High Resolution Satellite (VHRS imagery i.e. SPOT-6 has been done as a continuous process to the DEM generation using TerraSAR-X/TanDEM-X data. The role of Ground Control Points (GCPs from GNSS surveys is mandatory in order to fulfil geometrical accuracy. In addition, this research aims on providing suitable processing algorithm of space borne data for large scale topographical mapping as described in section 3.2. Recently, radar space borne data has been used for the medium scale topographical mapping e.g. for 1:50.000 map scale in Indonesian territories. The goal of this on-going research is to increase the accuracy of remote sensing data by different activities, e.g. the integration of different data sources (optical and radar or the usage of the GCPs in both, the optical and the

  2. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Brammer, Gabriel B.; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Nelson, Erica; Bezanson, Rachel; Leja, Joel; Lundgren, Britt; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbé, Ivo; Rix, Hans-Walter; Schmidt, Kasper B.; Da Cunha, Elisabete; Kriek, Mariska; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Magee, Dan

    2012-01-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ∼7000 galaxies at 1 2 ) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ∼5 per resolution element at H 140 ∼ 23.1 and a 5σ emission-line sensitivity of ∼5 × 10 –17 erg s –1 cm –2 for typical objects, improving by a factor of ∼2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ∼0.''13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s –1 . We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ∼ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space Telescope.

  3. Combining Space-Based and In-Situ Measurements to Track Flooding in Thailand

    Science.gov (United States)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Tran, Daniel; Tanpipat, Veerachai; Chitradon, Royal; Boonya-aaroonnet, Surajate; Thanapakpawin, Porranee; Khunboa, Chatchai; Leelapatra, Watis; hide

    2011-01-01

    We describe efforts to integrate in-situ sensing, space-borne sensing, hydrological modeling, active control of sensing, and automatic data product generation to enhance monitoring and management of flooding. In our approach, broad coverage sensors and missions such as MODIS, TRMM, and weather satellite information and in-situ weather and river gauging information are all inputs to track flooding via river basin and sub-basin hydrological models. While these inputs can provide significant information as to the major flooding, targetable space measurements can provide better spatial resolution measurements of flooding extent. In order to leverage such assets we automatically task observations in response to automated analysis indications of major flooding. These new measurements are automatically processed and assimilated with the other flooding data. We describe our ongoing efforts to deploy this system to track major flooding events in Thailand.

  4. Efficient and compact hyperspectral imager for space-borne applications

    Science.gov (United States)

    Pisani, Marco; Zucco, Massimo

    2017-11-01

    In the last decades Hyperspectral Imager (HI) have become irreplaceable space-borne instruments for an increasing number of applications. A number of HIs are now operative onboard (e.g. CHRIS on PROBA), others are going to be launched (e.g. PRISMA, EnMAP, HyspIRI), many others are at the breadboard level. The researchers goal is to realize HI with high spatial and spectral resolution, having low weight and contained dimensions. The most common HI technique is based on the use of a dispersive mean (a grating or a prism) or on the use of band pass filters (tunable or linear variable). These approaches have the advantages of allowing compact devices. Another approach is based on the use of interferometer based spectrometers (Michelson or Sagnac type). The advantage of the latter is a very high efficiency in light collection because of the well-known Felgett and Jaquinot principles.

  5. A direct measure of free electron gas via the kinematic Sunyaev-Zel'dovich effect in Fourier-space analysis

    Science.gov (United States)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.

    2018-04-01

    We present the measurement of the kinematic Sunyaev-Zel'dovich (kSZ) effect in Fourier space, rather than in real space. We measure the density-weighted pairwise kSZ power spectrum, the first use of this promising approach, by cross-correlating a cleaned cosmic microwave background (CMB) temperature map, which jointly uses both Planck Release 2 and Wilkinson Microwave Anisotropy Probe nine-year data, with the two galaxy samples, CMASS and LOWZ, derived from the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12. To estimate the CMB temperature distortion associated with each galaxy, we apply an aperture photometry filter. With the current data, we constrain the average optical depth τ multiplied by the ratio of the Hubble parameter at redshift z and the present day, E = H/H0; we find τE = (3.95 ± 1.62) × 10-5 for LOWZ, which corresponds to the statistical significance of S/N = 2.44, and τE = (1.25 ± 1.06) × 10-5 for CMASS, which is consistent with a null hypothesis of no signal. While this analysis results in the kSZ signals with only evidence for a detection, the combination of future CMB and spectroscopic galaxy surveys should enable precision measurements. We estimate that the combination of CMB-S4 and data from Dark Energy Spectroscopic Instrument should yield detections of the kSZ signal with S/N = 70-100, depending on the resolution of CMB-S4.

  6. On-line data processing apparatus for spectroscopic measurements of atomic uranium

    International Nuclear Information System (INIS)

    Miron, E.; Levin, L.A.; Erez, G; Baumatz, D; Goren, I.; Shpancer, I.

    1977-01-01

    A computer-based apparatus for on-line spectroscopic measurements of atomic uranium is described. The system is capable of enhancing the signal-to-noise ratio by averaging, and performing calculations. Computation flow charts and programs are included

  7. 3D-HST: A Wide-field Grism Spectroscopic Survey with the Hubble Space Telescope

    Science.gov (United States)

    Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Kriek, Mariska; Nelson, Erica; Schmidt, Kasper B.; Bezanson, Rachel; da Cunha, Elisabete; Erb, Dawn K.; Fan, Xiaohui; Förster Schreiber, Natascha; Illingworth, Garth D.; Labbé, Ivo; Leja, Joel; Lundgren, Britt; Magee, Dan; Marchesini, Danilo; McCarthy, Patrick; Momcheva, Ivelina; Muzzin, Adam; Quadri, Ryan; Steidel, Charles C.; Tal, Tomer; Wake, David; Whitaker, Katherine E.; Williams, Anna

    2012-06-01

    We present 3D-HST, a near-infrared spectroscopic Treasury program with the Hubble Space Telescope for studying the physical processes that shape galaxies in the distant universe. 3D-HST provides rest-frame optical spectra for a sample of ~7000 galaxies at 1 < z < 3.5, the epoch when ~60% of all star formation took place, the number density of quasars peaked, the first galaxies stopped forming stars, and the structural regularity that we see in galaxies today must have emerged. 3D-HST will cover three quarters (625 arcmin2) of the CANDELS Treasury survey area with two orbits of primary WFC3/G141 grism coverage and two to four orbits with the ACS/G800L grism in parallel. In the IR, these exposure times yield a continuum signal-to-noise ratio of ~5 per resolution element at H 140 ~ 23.1 and a 5σ emission-line sensitivity of ~5 × 10-17 erg s-1 cm-2 for typical objects, improving by a factor of ~2 for compact sources in images with low sky background levels. The WFC3/G141 spectra provide continuous wavelength coverage from 1.1 to 1.6 μm at a spatial resolution of ~0farcs13, which, combined with their depth, makes them a unique resource for studying galaxy evolution. We present an overview of the preliminary reduction and analysis of the grism observations, including emission-line and redshift measurements from combined fits to the extracted grism spectra and photometry from ancillary multi-wavelength catalogs. The present analysis yields redshift estimates with a precision of σ(z) = 0.0034(1 + z), or σ(v) ≈ 1000 km s-1. We illustrate how the generalized nature of the survey yields near-infrared spectra of remarkable quality for many different types of objects, including a quasar at z = 4.7, quiescent galaxies at z ~ 2, and the most distant T-type brown dwarf star known. The combination of the CANDELS and 3D-HST surveys will provide the definitive imaging and spectroscopic data set for studies of the 1 < z < 3.5 universe until the launch of the James Webb Space

  8. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  9. GESE: a small UV space telescope to conduct a large spectroscopic survey of z˜1 Galaxies

    Science.gov (United States)

    Heap, Sara R.; Gong, Qian; Hull, Tony; Kruk, Jeffrey; Purves, Lloyd

    2014-11-01

    One of the key goals of NASA's astrophysics program is to answer the question: How did galaxies evolve into the spirals and elliptical galaxies that we see today? We describe a space mission concept called Galaxy Evolution Spectroscopic Explorer (GESE) to address this question by making a large spectroscopic survey of galaxies at a redshift, z˜1 (look-back time of ˜8 billion years). GESE is a 1.5-m space telescope with an ultraviolet (UV) multi-object slit spectrograph that can obtain spectra of hundreds of galaxies per exposure. The spectrograph covers the spectral range, 0.2-0.4 μm at a spectral resolving power, R˜500. This observed spectral range corresponds to 0.1-0.2 μm as emitted by a galaxy at a redshift, z=1. The mission concept takes advantage of two new technological advances: (1) light-weighted, wide-field telescope mirrors, and (2) the Next-Generation MicroShutter Array (NG-MSA) to be used as a slit generator in the multi-object slit spectrograph.

  10. Tests of the gravitational redshift effect in space-born and ground-based experiments

    Science.gov (United States)

    Vavilova, I. B.

    2018-02-01

    This paper provides a brief overview of experiments as concerns with the tests of the gravitational redshift (GRS) effect in ground-based and space-born experiments. In particular, we consider the GRS effects in the gravitational field of the Earth, the major planets of the Solar system, compact stars (white dwarfs and neutron stars) where this effect is confirmed with a higher accuracy. We discuss availabilities to confirm the GRS effect for galaxies and galaxy clusters in visible and X-ray ranges of the electromagnetic spectrum.

  11. Spectroscopic techniques for measuring ion diode space-charge distributions and ion source properties

    Energy Technology Data Exchange (ETDEWEB)

    Filuk, A B; Bailey, J E; Adams, R G [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    The authors are using time- and space-resolved visible spectroscopy to measure applied-B ion diode dynamics on the 20 TW Particle Beam Fusion Accelerator II. Doppler broadening of fast Li atoms, as viewed parallel to the anode, is used in a charge-exchange model to obtain the Li{sup +} ion divergence within 100 {mu}m of the anode surface. The characteristic Stark/Zeeman shifts in spectra of alkali neutrals or singly-ionized alkaline-earths are used to measure the strong electric (10{sup 9} V/m) an magnetic ({approx} 6 T) fields in the diode gap. Large Stark shifts within 0.5 mm of the anode indicate the LiF emits with a finite field threshold rather than with Child-Langmuir-type emission, and the small slope in the electric field indicates an unexpected build-up of electrons near the anode. In the diode gap, the authors aim to unfold fields to quantify the time-dependent ion and electron space-charge distributions that determine the ion beam properties. Observed electric field non-uniformities give local beam deflections that can be comparable to the total beam microdivergence. The authors are implementing active laser absorption and laser-induced fluorescence spectroscopy on low-density Na atoms injected into the diode gap prior to the power pulse. The small Doppler broadening in the Na spectra should allow simultaneous electric and magnetic field mapping with improved spatial resolution. (author). 4 figs., 13 refs.

  12. Transient full-field vibration measurement using spectroscopical stereo photogrammetry.

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Zhang, Ming; Chen, Shan

    2010-12-20

    Contrasted with other vibration measurement methods, a novel spectroscopical photogrammetric approach is proposed. Two colored light filters and a CCD color camera are used to achieve the function of two traditional cameras. Then a new calibration method is presented. It focuses on the vibrating object rather than the camera and has the advantage of more accuracy than traditional camera calibration. The test results have shown an accuracy of 0.02 mm.

  13. Probing superconductors. Spectroscopic-imaging scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Hanaguri, Tetsuo

    2011-01-01

    Discovery of high-temperature superconductivity in a cuprate triggered developments of various spectroscopic tools which have been utilized to elucidate electronic states of this mysterious compound. Particularly, angle-resolved photoemission spectroscopy and scanning-tunneling microscopy/spectroscopy are improved considerably. It is now possible to map the superconducting gap in both momentum and real spaces using these two techniques. Here we review spectroscopic-imaging scanning tunneling microscopy which is able to explore momentum-space phase structure of the superconducting gap, as well as real-space structure. Applications of this technique to a cuprate and an iron-based superconductor are discussed. (author)

  14. Single hole spectroscopic strength in 98Ru through the 99Ru(d,t) reaction

    International Nuclear Information System (INIS)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Barbosa, M.D.L.; Silva, G.B. da; Ukita, G.M.

    2002-01-01

    The 99 Ru(d,t) 98 Ru reaction was measured for the first time at 16 MeV incident energy with the Sao Paulo Pelletron-Enge-spectrograph facility employing the nuclear emulsion technique. In all, up to 3.5 MeV, 23 levels were detected, eight of them new; angular distributions are presented for all of them. Least squares fits of distorted wave Born approximation one-neutron pickup predictions to the rather well structured experimental angular distributions enabled the determination of l transfers and of the corresponding spectroscopic factors for 19 of these states, some being tentative attributions. Only transfers of l=0, 2, and 4 were observed. Several states were populated through single l transfers. A pure l=2 transfer is associated with the 2 1 + level and with several other states which are considered collective, as well as with the (4 + ) state at 2.277 MeV, which presents the highest spectroscopic strength. Considering five valence neutrons above the N=50 core, only 41% of the spectroscopic strength expected for 99 Ru was detected

  15. Development of transition edge superconducting bolometers for the SAFARI Far-Infrared spectrometer on the SPICA space-borne telescope

    NARCIS (Netherlands)

    Mauskopf, P.; Morozov, D.; Glowacka, D.; Goldie, D.; Withington, S.; Bruijn, M.; De Korte, P.; Hoevers, H.; Ridder, M.; Van der Kuur, J.; Gao, J.R.

    2008-01-01

    We describe the optimization of transition edge superconducting (TES) detectors for use in a far-infrared (FIR) Fourier transform spectrometer (FTS) mounted on a cryogenically cooled space-borne telescope (e.g. SPICA). The required noise equivalent power (NEP) of the detectors is approximately 10?19

  16. Dunham spectroscopic constants for the ground and excited states of H2+

    International Nuclear Information System (INIS)

    Murai, Tomokazu

    1975-01-01

    The Dunham spectroscopic constants for 12 of the electronic states of H 2 + are computed theoretically from the adiabatic potentials, which are calculated by the author based on the method presented by Bates et al. in the Born-Oppenheimer approximation. (author)

  17. Optical constants of graphene measured by spectroscopic ellipsometry

    NARCIS (Netherlands)

    Weber, J.W.; Calado, V.E.; Van de Sanden, M.C.M.

    2010-01-01

    A mechanically exfoliated graphene flake ( ? 150×380??m2) on a silicon wafer with 98 nm silicon dioxide on top was scanned with a spectroscopic ellipsometer with a focused spot ( ? 100×55??m2) at an angle of 55°. The spectroscopic ellipsometric data were analyzed with an optical model in which the

  18. Optical constants of graphene measured by spectroscopic ellipsometry

    NARCIS (Netherlands)

    Weber, J.W.; Calado, V.E.; Sanden, van de M.C.M.

    2010-01-01

    A mechanically exfoliated graphene flake ( ~ 150×380 µm2) on a silicon wafer with 98 nm silicon dioxide on top was scanned with a spectroscopic ellipsometer with a focused spot ( ~ 100×55 µm2) at an angle of 55°. The spectroscopic ellipsometric data were analyzed with an optical model in which the

  19. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  20. Potential of Space-Borne Hyperspectral Data for Biomass Quantification in an Arid Environment: Advantages and Limitations

    Directory of Open Access Journals (Sweden)

    Harald Zandler

    2015-04-01

    Full Text Available In spite of considerable efforts to monitor global vegetation, biomass quantification in drylands is still a major challenge due to low spectral resolution and considerable background effects. Hence, this study examines the potential of the space-borne hyperspectral Hyperion sensor compared to the multispectral Landsat OLI sensor in predicting dwarf shrub biomass in an arid region characterized by challenging conditions for satellite-based analysis: The Eastern Pamirs of Tajikistan. We calculated vegetation indices for all available wavelengths of both sensors, correlated these indices with field-mapped biomass while considering the multiple comparison problem, and assessed the predictive performance of single-variable linear models constructed with data from each of the sensors. Results showed an increased performance of the hyperspectral sensor and the particular suitability of indices capturing the short-wave infrared spectral region in dwarf shrub biomass prediction. Performance was considerably poorer in the area with less vegetation cover. Furthermore, spatial transferability of vegetation indices was not feasible in this region, underlining the importance of repeated model building. This study indicates that upcoming space-borne hyperspectral sensors increase the performance of biomass prediction in the world’s arid environments.

  1. Born in an infinite universe: A cosmological interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Aguirre, Anthony; Tegmark, Max

    2011-01-01

    We study the quantum measurement problem in the context of an infinite, statistically uniform space, as could be generated by eternal inflation. It has recently been argued that when identical copies of a quantum measurement system exist, the standard projection operators and Born rule method for calculating probabilities must be supplemented by estimates of relative frequencies of observers. We argue that an infinite space actually renders the Born rule redundant, by physically realizing all outcomes of a quantum measurement in different regions, with relative frequencies given by the square of the wave-function amplitudes. Our formal argument hinges on properties of what we term the quantum confusion operator, which projects onto the Hilbert subspace where the Born rule fails, and we comment on its relation to the oft-discussed quantum frequency operator. This analysis unifies the classical and quantum levels of parallel universes that have been discussed in the literature, and has implications for several issues in quantum measurement theory. Replacing the standard hypothetical ensemble of measurements repeated ad infinitum by a concrete decohered spatial collection of experiments carried out in different distant regions of space provides a natural context for a statistical interpretation of quantum mechanics. It also shows how, even for a single measurement, probabilities may be interpreted as relative frequencies in unitary (Everettian) quantum mechanics. We also argue that after discarding a zero-norm part of the wave function, the remainder consists of a superposition of indistinguishable terms, so that arguably 'collapse' of the wave function is irrelevant, and the ''many worlds'' of Everett's interpretation are unified into one. Finally, the analysis suggests a 'cosmological interpretation' of quantum theory in which the wave function describes the actual spatial collection of identical quantum systems, and quantum uncertainty is attributable to the

  2. Precise Orbit Solution for Swarm Using Space-Borne GPS Data and Optimized Pseudo-Stochastic Pulses

    Directory of Open Access Journals (Sweden)

    Bingbing Zhang

    2017-03-01

    Full Text Available Swarm is a European Space Agency (ESA project that was launched on 22 November 2013, which consists of three Swarm satellites. Swarm precise orbits are essential to the success of the above project. This study investigates how well Swarm zero-differenced (ZD reduced-dynamic orbit solutions can be determined using space-borne GPS data and optimized pseudo-stochastic pulses under high ionospheric activity. We choose Swarm space-borne GPS data from 1–25 October 2014, and Swarm reduced-dynamic orbits are obtained. Orbit quality is assessed by GPS phase observation residuals and compared with Precise Science Orbits (PSOs released by ESA. Results show that pseudo-stochastic pulses with a time interval of 6 min and a priori standard deviation (STD of 10−2 mm/s in radial (R, along-track (T and cross-track (N directions are optimized to Swarm ZD reduced-dynamic precise orbit determination (POD. During high ionospheric activity, the mean Root Mean Square (RMS of Swarm GPS phase residuals is at 9–11 mm, Swarm orbit solutions are also compared with Swarm PSOs released by ESA and the accuracy of Swarm orbits can reach 2–4 cm in R, T and N directions. Independent Satellite Laser Ranging (SLR validation indicates that Swarm reduced-dynamic orbits have an accuracy of 2–4 cm. Swarm-B orbit quality is better than those of Swarm-A and Swarm-C. The Swarm orbits can be applied to the geomagnetic, geoelectric and gravity field recovery.

  3. Investigation of pulse shape analyzers for phoswich detectors in space-borne hard X-ray experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bleeker, J A.M.; Overtoom, J M [Huygens Lab., Leiden (Netherlands). Cosmic Ray Working Group

    1979-12-01

    A low-background telescope for hard X-ray astronomy (15-250 keV), comprising arrays of NaI(Tl)/CsI(Na) phoswiches as photon collectors, was recently developed. The background rejection efficiency of such a telescope, and hence the minimum source in a given time, critically depends on the performance of the phoswich pulse shape analyzer (PSA) in a space radiation environment. Results from theoretical and experimental work on analyzer configurations based on zero-crossing detection are presented. This led to the selection of an optimum configuration for space application. The in-situ performance of this analyzer was evaluated in a balloon-borne hard X-ray experiment, showing excellent discrimination efficiency throughout the entire energy regime.

  4. Performance Evaluation of Target Detection with a Near-Space Vehicle-Borne Radar in Blackout Condition.

    Science.gov (United States)

    Li, Yanpeng; Li, Xiang; Wang, Hongqiang; Deng, Bin; Qin, Yuliang

    2016-01-06

    Radar is a very important sensor in surveillance applications. Near-space vehicle-borne radar (NSVBR) is a novel installation of a radar system, which offers many benefits, like being highly suited to the remote sensing of extremely large areas, having a rapidly deployable capability and having low vulnerability to electronic countermeasures. Unfortunately, a target detection challenge arises because of complicated scenarios, such as nuclear blackout, rain attenuation, etc. In these cases, extra care is needed to evaluate the detection performance in blackout situations, since this a classical problem along with the application of an NSVBR. However, the existing evaluation measures are the probability of detection and the receiver operating curve (ROC), which cannot offer detailed information in such a complicated application. This work focuses on such requirements. We first investigate the effect of blackout on an electromagnetic wave. Performance evaluation indexes are then built: three evaluation indexes on the detection capability and two evaluation indexes on the robustness of the detection process. Simulation results show that the proposed measure will offer information on the detailed performance of detection. These measures are therefore very useful in detecting the target of interest in a remote sensing system and are helpful for both the NSVBR designers and users.

  5. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  6. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    Science.gov (United States)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  7. Ages and Stages Questionnaire used to measure cognitive deficit in children born extremely preterm

    DEFF Research Database (Denmark)

    Klamer, Anja; Lando, Ane; Pinborg, Anja

    2005-01-01

    AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence--Revised.......AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence...

  8. Far-infared spectroscopic observations with a Balloon-Borne infrared telescope

    International Nuclear Information System (INIS)

    Maihara, Toshinori; Takami, Hideki; Mizutani, Kohei

    1986-01-01

    The first observations of far-infrared celestial objects using the 50-cm Balloon-Borne Infrared Telescope were made in Alice Springs, Australia. Far-infrared spectrophotometric data between 45 and 115 μm were taken for the Orion-KL region, Saturn and a southern H II region RCW 38. The data including high excitation transition lines of CO for Orion-KL, O III lines for RCW 38 and a PH 3 absorption feature of Saturn will be presented. (author)

  9. Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin

    2012-01-01

    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.

  10. Assessing boreal forest photosynthetic dynamics through space-borne measurements of greenness, chlorophyll fluorescence and model GPP

    Science.gov (United States)

    Walther, Sophia; Guanter, Luis; Voigt, Maximilian; Köhler, Philipp; Jung, Martin; Joiner, Joanna

    2015-04-01

    sophia.walther@gfz-potsdam.de The seasonality of photosynthesis of boreal forests is an essential driver of the terrestrial carbon, water and energy cycles. However, current carbon cycle model results only poorly represent interannual variability and predict very different magnitudes and timings of carbon fluxes between the atmosphere and the land surface (e.g. Jung et al. 2011, Richardson et al. 2012). Reflectance-based satellite measurements, which give an indication of the amount of green biomass on the Earth's surface, have so far been used as input to global carbon cycle simulations, but they have limitations as they are not directly linked to instantaneous photosynthesis. As an alternative, space-borne retrievals of sun-induced chlorophyll fluorescence (SIF) boast the potential to provide a direct indication of the seasonality of boreal forest photosynthetic activity and thus to improve carbon model performances. SIF is a small electromagnetic signal that is re-emitted from the photosystems in the chloroplasts, which results in a direct relationship to photosynthetic efficiency. In this contribution we examine the seasonality of the boreal forests with three different vegetation parameters, namely greenness, SIF and model simulations of gross primary production (gross carbon flux into the plants by photosynthesis, GPP). We use the enhanced vegetation index (EVI) to represent green biomass. EVI is calculated from NBAR MODIS reflectance measurements (0.05deg, 16 days temporal resolution) for the time from January 2007-May 2013. SIF data originate from GOME-2 measurements on board the MetOp-A satellite in a spatial resolution of 0.5deg for the time from 2007-2011 (Joiner et al. (2013), Köhler et al. (2014)). As a third data source, data-driven GPP model results are used for the time from 2006-2012 with 0.5deg spatial resolution. The method to quantify phenology developed by Gonsamo et al. (2013) is applied to infer the main phenological phases (greenup/onset of

  11. Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

    Directory of Open Access Journals (Sweden)

    R. Stosius

    2010-06-01

    Full Text Available Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009, a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar altimetry, multiple height measurements within a wide field of view can be made simultaneously. With a dedicated Low Earth Orbit (LEO constellation of satellites equipped with GNSS-R, densely spaced sea surface height measurements could be established to detect tsunamis. This simulation study compares the Walker and the meshed comb constellation with respect to their global reflection point distribution. The detection performance of various LEO constellation scenarios with GPS, GLONASS and Galileo as signal sources is investigated. The study concentrates on the detection performance for six historic tsunami events in the Indian Ocean generated by earthquakes of different magnitudes, as well as on different constellation types and orbit parameters. The GNSS-R carrier phase is compared with the PARIS or code altimetry approach. The study shows that Walker constellations have a much better reflection point distribution compared to the meshed comb constellation. Considering simulation assumptions and assuming technical feasibility it can be demonstrated that strong tsunamis with magnitudes (M ≥8.5 can be detected with certainty from any orbit altitude within 15–25 min by a 48/8 or 81/9 Walker constellation if tsunami waves of 20 cm or higher can be detected by space-borne GNSS-R. The carrier phase approach outperforms the PARIS altimetry approach especially at low orbit altitudes and for a low number of LEO satellites.

  12. Spectroscopic measurement of the electric field in a helium plasma jet

    NARCIS (Netherlands)

    Hofmans, M.; Sobota, A.

    2017-01-01

    The electric field in a plasma jet is measured spectroscopically utilizing the Stark-effect. A cold atmospheric pressure helium plasma jet is used, which operates at a μs-pulsed applied voltage of 6 kV, a frequency of 5 kHz and with a helium flow of 1.5 slm. Due to the electric field in the jet, the

  13. On-board event processing algorithms for a CCD-based space borne X-ray spectrometer

    International Nuclear Information System (INIS)

    Chun, H.J.; Bowles, J.A.; Branduardi-Raymont, G.; Gowen, R.A.

    1996-01-01

    This paper describes two alternative algorithms which are applied to reduce the telemetry requirements for a Charge Coupled Device (CCD) based, space-borne, X-ray spectrometer by on-board reconstruction of the X-ray events split over two or more adjacent pixels. The algorithms have been developed for the Reflection Grating Spectrometer (RGS) on the X-ray multi-mirror (XMM) mission, the second cornerstone project in the European Space Agency's Horizon 2000 programme. The overall instrument and some criteria which provide the background of the development of the algorithms, implemented in Tartan ADA on an MA31750 microprocessor, are described. The on-board processing constraints and requirements are discussed, and the performances of the algorithms are compared. Test results are presented which show that the recursive implementation is faster and has a smaller executable file although it uses more memory because of its stack requirements. (orig.)

  14. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  15. A Large Underestimate of Formic Acid from Tropical Fires: Constraints from Space-Borne Measurements.

    Science.gov (United States)

    Chaliyakunnel, S; Millet, D B; Wells, K C; Cady-Pereira, K E; Shephard, M W

    2016-06-07

    Formic acid (HCOOH) is one of the most abundant carboxylic acids and a dominant source of atmospheric acidity. Recent work indicates a major gap in the HCOOH budget, with atmospheric concentrations much larger than expected from known sources. Here, we employ recent space-based observations from the Tropospheric Emission Spectrometer with the GEOS-Chem atmospheric model to better quantify the HCOOH source from biomass burning, and assess whether fire emissions can help close the large budget gap for this species. The space-based data reveal a severe model HCOOH underestimate most prominent over tropical burning regions, suggesting a major missing source of organic acids from fires. We develop an approach for inferring the fractional fire contribution to ambient HCOOH and find, based on measurements over Africa, that pyrogenic HCOOH:CO enhancement ratios are much higher than expected from direct emissions alone, revealing substantial secondary organic acid production in fire plumes. Current models strongly underestimate (by 10 ± 5 times) the total primary and secondary HCOOH source from African fires. If a 10-fold bias were to extend to fires in other regions, biomass burning could produce 14 Tg/a of HCOOH in the tropics or 16 Tg/a worldwide. However, even such an increase would only represent 15-20% of the total required HCOOH source, implying the existence of other larger missing sources.

  16. Mapping Palaeohydrography in Deserts: Contribution from Space-Borne Imaging Radar

    Directory of Open Access Journals (Sweden)

    Philippe Paillou

    2017-03-01

    Full Text Available Space-borne Synthetic Aperture Radar (SAR has the capability to image subsurface features down to several meters in arid regions. A first demonstration of this capability was performed in the Egyptian desert during the early eighties, thanks to the first Shuttle Imaging Radar mission. Global coverage provided by recent SARs, such as the Japanese ALOS/PALSAR sensor, allowed the mapping of vast ancient hydrographic systems in Northern Africa. We present a summary of palaeohydrography results obtained using PALSAR data over large deserts such as the Sahara and the Gobi. An ancient river system was discovered in eastern Lybia, connecting in the past the Kufrah oasis to the Mediterranean Sea, and the terminal part of the Tamanrasett river was mapped in western Mauritania, ending with a large submarine canyon. In southern Mongolia, PALSAR images combined with topography analysis allowed the mapping of the ancient Ulaan Nuur lake. We finally show the potentials of future low frequency SAR sensors by comparing L-band (1.25 GHz and P-band (435 MHz airborne SAR acquisitions over a desert site in southern Tunisia.

  17. Development of a Neutron Spectroscopic System Utilizing Compressed Sensing Measurements

    Directory of Open Access Journals (Sweden)

    Vargas Danilo

    2016-01-01

    Full Text Available A new approach to neutron detection capable of gathering spectroscopic information has been demonstrated. The approach relies on an asymmetrical arrangement of materials, geometry, and an ability to change the orientation of the detector with respect to the neutron field. Measurements are used to unfold the energy characteristics of the neutron field using a new theoretical framework of compressed sensing. Recent theoretical results show that the number of multiplexed samples can be lower than the full number of traditional samples while providing the ability to have some super-resolution. Furthermore, the solution approach does not require a priori information or inclusion of physics models. Utilizing the MCNP code, a number of candidate detector geometries and materials were modeled. Simulations were carried out for a number of neutron energies and distributions with preselected orientations for the detector. The resulting matrix (A consists of n rows associated with orientation and m columns associated with energy and distribution where n < m. The library of known responses is used for new measurements Y (n × 1 and the solver is able to determine the system, Y = Ax where x is a sparse vector. Therefore, energy spectrum measurements are a combination of the energy distribution information of the identified elements of A. This approach allows for determination of neutron spectroscopic information using a single detector system with analog multiplexing. The analog multiplexing allows the use of a compressed sensing solution similar to approaches used in other areas of imaging. A single detector assembly provides improved flexibility and is expected to reduce uncertainty associated with current neutron spectroscopy measurement.

  18. Progress towards a space-borne quantum gravity gradiometer

    Science.gov (United States)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  19. Carotid body size measured by computed tomographic angiography in individuals born prematurely.

    Science.gov (United States)

    Bates, Melissa L; Welch, Brian T; Randall, Jess T; Petersen-Jones, Humphrey G; Limberg, Jacqueline K

    2018-05-24

    We tested the hypothesis that the carotid bodies would be smaller in individuals born prematurely or exposed to perinatal oxygen therapy when compared individuals born full term that did not receive oxygen therapy. A retrospective chart review was conducted on patients who underwent head/neck computed tomography angiography (CTA) at the Mayo Clinic between 10 and 40 years of age (n = 2503). Patients were identified as premature ( body images captured during the CTA were performed. Carotid body visualization was possible in 43% of patients and 52% of age, sex, and body mass index (BMI)-matched controls but only 17% of juvenile preterm subjects (p = 0.07). Of the carotid bodies that could be visualized, widest axial measurements of the carotid bodies in individuals born prematurely (n = 7, 34 ± 4 weeks gestation, birth weight: 2460 ± 454 g; average size: 2.5 ± 0.2 cm) or individuals exposed to perinatal oxygen therapy (n = 3, 38 ± 2 weeks gestation, Average size: 2.2 ± 0.1 cm) were not different when compared to controls (2.3 ± 0.2 cm and 2.3 ± 0.2 cm, respectively, p > 0.05). Carotid body size, as measured using CTA, is not smaller in adults born prematurely or exposed to perinatal oxygen therapy when compared to sex, age, and BMI-matched controls. However, carotid body visualization was lower in juvenile premature patients. The decreased ability to visualize the carotid bodies in these individuals may be a result of their prematurity. Copyright © 2018. Published by Elsevier B.V.

  20. Thermal analysis of a prototype cryogenic polarization modulator for use in a space-borne CMB polarization experiment

    Science.gov (United States)

    Iida, T.; Sakurai, Y.; Matsumura, T.; Sugai, H.; Imada, H.; Kataza, H.; Ohsaki, H.; Hazumi, M.; Katayama, N.; Yamamoto, R.; Utsunomiya, S.; Terao, Y.

    2017-12-01

    We report a thermal analysis of a polarization modulator unit (PMU) for use in a space-borne cosmic microwave background (CMB) project. A measurement of the CMB polarization allows us to probe the physics of early universe, and that is the best method to test the cosmic inflation experimentally. One of the key instruments for this science is to use a halfwave plate (HWP) based polarization modulator. The HWP is required to rotate continuously at about 1 Hz below 10 K to minimize its own thermal emission to a detector system. The rotating HWP system at the cryogenic environment can be realized by using a superconducting magnetic bearing (SMB) without significant heat dissipation by mechanical friction. While the SMB achieves the smooth rotation due to the contactless bearing, an estimation of a levitating HWP temperature becomes a challenge. We manufactured a one-eighth scale prototype model of PMU and built a thermal model. We verified our thermal model with the experimental data. We forecasted the projected thermal performance of PMU for a full-scale model based on the thermal model. From this analysis, we discuss the design requirement toward constructing the full-scale model for use in a space environment such as a future CMB satellite mission, LiteBIRD.

  1. Comparison of spectroscopically measured tissue alcohol concentration to blood and breath alcohol measurements

    Science.gov (United States)

    Ridder, Trent D.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2009-09-01

    Alcohol testing is an expanding area of interest due to the impacts of alcohol abuse that extend well beyond drunk driving. However, existing approaches such as blood and urine assays are hampered in some testing environments by biohazard risks. A noninvasive, in vivo spectroscopic technique offers a promising alternative, as no body fluids are required. The purpose of this work is to report the results of a 36-subject clinical study designed to characterize tissue alcohol measured using near-infrared spectroscopy relative to venous blood, capillary blood, and breath alcohol. Comparison of blood and breath alcohol concentrations demonstrated significant differences in alcohol concentration [root mean square of 9.0 to 13.5 mg/dL] that were attributable to both assay accuracy and precision as well as alcohol pharmacokinetics. A first-order kinetic model was used to estimate the contribution of alcohol pharmacokinetics to the differences in concentration observed between the blood, breath, and tissue assays. All pair-wise combinations of alcohol assays were investigated, and the fraction of the alcohol concentration variance explained by pharmacokinetics ranged from 41.0% to 83.5%. Accounting for pharmacokinetic concentration differences, the accuracy and precision of the spectroscopic tissue assay were found to be comparable to those of the blood and breath assays.

  2. Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Directory of Open Access Journals (Sweden)

    M. Dorf

    2006-01-01

    Full Text Available For the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM. Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY satellite instrument. The balloon observations include (a balloon-borne in situ resonance fluorescence detection of BrO (Triple, (b balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy of BrO in the UV, and (c BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5 pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ

  3. Born reciprocity in string theory and the nature of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Freidel, Laurent, E-mail: lfreidel@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St., N, Ontario N2L 2Y5, Waterloo (Canada); Leigh, Robert G., E-mail: rgleigh@uiuc.edu [Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801 (United States); Minic, Djordje, E-mail: dminic@vt.edu [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-03-07

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  4. Born reciprocity in string theory and the nature of spacetime

    International Nuclear Information System (INIS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2014-01-01

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  5. Scalar and configuration traces of operators in large spectroscopic spaces

    International Nuclear Information System (INIS)

    Chang, B.D.; Wong, S.S.M.

    1978-01-01

    In statistical spectroscopic calculations, the primary input is the trace of products of powers of Hamiltonian and excitation operators. The lack of a systematic approach to trace evaluation has been in the past one of the major difficulties in the applications of statistical spectroscopic methods. A general method with a simple derivation is described here to evaluate the scalar and configuration traces for operators expressed either in the m-scheme or fully coupled JT scheme. It is shown to be an effective method by actually programming it on a computer. Implications on the future applications of statistical spectroscopy in the area of level density, strength function and perturbation theory are also briefly discussed. (Auth.)

  6. Infrared spectroscopic analysis of the effects of simulated space radiation on a polyimide

    Science.gov (United States)

    Ferl, J. E.; Long, E. R., Jr.

    1981-01-01

    Infrared spectroscopic techniques have been used to study the effects of electron radiation on the polyimide PMDA-p,p-prime- ODA. The radiation exposures were made at various dose rates, for a total dose approximately equal to that for 30 years of exposure to electron radiation in geosynchronous earth orbit. At high dose rates the major effect was probably the formation of a polyisoimide or a charged quaternary amine, and at the low dose rates the effect was a reduction in the amount or aromatic ether linkage. In addition, the effects of dose rate for a small total dose were studied. Elevated temperatures occurred at high dose rates and were, in part, probably the cause of the radiation product. The data suggest that dose rates for accelerated simulations of the space environment should not exceed 100,000 rads/sec.

  7. Multi-slice echo-planar spectroscopic MR imaging provides both global and local metabolite measures in multiple sclerosis

    DEFF Research Database (Denmark)

    Mathiesen, Henrik Kahr; Tscherning, Thomas; Sorensen, Per Soelberg

    2005-01-01

    MR spectroscopy (MRS) provides information about neuronal loss or dysfunction by measuring decreases in N-acetyl aspartate (NAA), a metabolite widely believed to be a marker of neuronal viability. In multiple sclerosis (MS), whole-brain NAA (WBNAA) has been suggested as a marker of disease...... progression and treatment efficacy in treatment trials, and the ability to measure NAA loss in specific brain regions early in the evolution of this disease may have prognostic value. Most spectroscopic studies to date have been limited to single voxels or nonlocalized measurements of WBNAA only......, measurements of metabolites in specific brain areas chosen after image acquisition (e.g., normal-appearing white matter (NAWM), gray matter (GM), and lesions) can be obtained. The identification and exclusion of regions that are inadequate for spectroscopic evaluation in global assessments can significantly...

  8. Estimation of the terrestrial gamma-ray levels from car-borne measurements

    International Nuclear Information System (INIS)

    Badran, H.M.

    1998-01-01

    A place to place variation of the gamma-radiation has been measured. The terrestrial gamma-ray levels were obtained with a portable Nal(Tl) detector. Gamma-ray levels were measured inside a car for a distance of about 220 km, from Norman up to Tulsa, Oklahoma, USA. Simultaneous measurements have also been carried out outside the vehicle and at distances 1 m and 5 m from the car. A series of data was collected every 1 mile (∼ 1.6 km). The measurements were also repeated different time under different conditions. The measured car-borne levels were correlated with the outdoor equivalent levels at 1 m above flat ground. The result permits a good estimation of the outdoor gamma-ray levels from the car measurements after the correction due to the vehicle shielding

  9. Measuring Galactic Feedback with the Origins Space Telescope

    Science.gov (United States)

    Armus, Lee; Bolatto, Alberto; Pope, Alexandra; Bradford, Charles Matt; Origins Space Telescope Science and Technology Definition Team

    2018-01-01

    Since a significant fraction of star formation and black hole growth occurs behind dust, our understanding of how and why galaxies evolve will remain incomplete until deep, wide area spectroscopic surveys in the FIRcan be carried out from space. The Origins Space Telescope (OST), a mission concept being studied for presentation to the 2020 Decadal Survey, represents an enormous leap over any existing infrared mission, and will uniquely measure black hole growth and star formation in dusty galaxies over more than 95% of cosmic history. Energetic feedback from AGN, young stars, and supernovae can regulate galaxy growth over a wide range in mass and be important for the enrichment of the interstellar and circumgalactic medium, yet the existence and type of feedback as a function of redshift, luminosity, and environment is poorly constrained. With wide wavelength coverage (5-600 microns), a large primary mirror actively cooled to ~4K, and a capable suite of imagers and spectrometers, OST will be an extremely sensitive probe of the effects of feedback on the multi-phase ISM in galaxies, through measurement of key feedback tracers such as OH and H2O absorption lines, fine structure emission lines, and PAH dust features. With OST we can directly observe the role of feedback in quenching galaxies, derive the wind kinetic energy and mass outflow rates, and correlate these with key galaxy properties (AGN or starburst power, environment, mass, age). In this poster we will explain how blind and targeted surveys with OST will have an enormous impact on our understanding of the duty cycle and basic physical properties of feedback in AGN and starburst galaxies over the last 12 Gyr.

  10. X-ray spectroscopic measurements of dielectronic recombination of highly charged krypton ions

    International Nuclear Information System (INIS)

    Biedermann, C.; Fuchs, T.; Liebisch, P.; Radtke, R.; Behar, E.; Doron, R.

    1999-01-01

    We have performed X-ray spectroscopic measurements of the dielectronic recombination (DR) resonance strengths for the KLn (n = 2, .., 5) series of He-, Li-, and Be-like krypton ions. The ions were produced with an electron beam ion trap, and the strengths were obtained from a fit procedure that compares the experimental excitation function for DR to theory. The results agree well with the predictions. By looking at the KLL resonance, the time evolution of different krypton charge states was measured with this technique and compared with a model of the trap inventory. (orig.)

  11. Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013

    Directory of Open Access Journals (Sweden)

    D. Griffin

    2017-09-01

    Full Text Available This paper presents 8 years (2006–2013 of measurements obtained from Fourier transform spectrometers (FTSs in the high Arctic at the Polar Environment Atmospheric Research Laboratory (PEARL; 80.05° N, 86.42° W. These measurements were taken as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment validation campaigns that have been carried out since 2004 during the polar sunrise period (from mid-February to mid-April. Each spring, two ground-based FTSs were used to measure total and partial columns of HF, O3, and trace gases that impact O3 depletion, namely, HCl and HNO3. Additionally, some tropospheric greenhouse gases and pollutant species were measured, namely CH4, N2O, CO, and C2H6. During the same time period, the satellite-based ACE-FTS made measurements near Eureka and provided profiles of the same trace gases. Comparisons have been carried out between the measurements from the Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR and the co-located high-resolution Bruker 125HR FTS, as well as with the latest version of the ACE-FTS retrievals (v3.5. The total column comparison between the two co-located ground-based FTSs, PARIS-IR and Bruker 125HR, found very good agreement for most of these species (except HF, with differences well below the estimated uncertainties ( ≤ 6  % and with high correlations (R ≥ 0. 8. Partial columns have been used for the ground-based to space-borne comparison, with coincident measurements selected based on time, distance, and scaled potential vorticity (sPV. The comparisons of the ground-based measurements with ACE-FTS show good agreement in the partial columns for most species within 6  % (except for C2H6 and PARIS-IR HF, which is consistent with the total retrieval uncertainty of the ground-based instruments. The correlation coefficients (R of the partial column comparisons for all eight species range from approximately 0.75 to 0

  12. Multi-year comparisons of ground-based and space-borne Fourier transform spectrometers in the high Arctic between 2006 and 2013

    Science.gov (United States)

    Griffin, Debora; Walker, Kaley A.; Conway, Stephanie; Kolonjari, Felicia; Strong, Kimberly; Batchelor, Rebecca; Boone, Chris D.; Dan, Lin; Drummond, James R.; Fogal, Pierre F.; Fu, Dejian; Lindenmaier, Rodica; Manney, Gloria L.; Weaver, Dan

    2017-09-01

    This paper presents 8 years (2006-2013) of measurements obtained from Fourier transform spectrometers (FTSs) in the high Arctic at the Polar Environment Atmospheric Research Laboratory (PEARL; 80.05° N, 86.42° W). These measurements were taken as part of the Canadian Arctic ACE (Atmospheric Chemistry Experiment) validation campaigns that have been carried out since 2004 during the polar sunrise period (from mid-February to mid-April). Each spring, two ground-based FTSs were used to measure total and partial columns of HF, O3, and trace gases that impact O3 depletion, namely, HCl and HNO3. Additionally, some tropospheric greenhouse gases and pollutant species were measured, namely CH4, N2O, CO, and C2H6. During the same time period, the satellite-based ACE-FTS made measurements near Eureka and provided profiles of the same trace gases. Comparisons have been carried out between the measurements from the Portable Atmospheric Research Interferometric Spectrometer for the InfraRed (PARIS-IR) and the co-located high-resolution Bruker 125HR FTS, as well as with the latest version of the ACE-FTS retrievals (v3.5). The total column comparison between the two co-located ground-based FTSs, PARIS-IR and Bruker 125HR, found very good agreement for most of these species (except HF), with differences well below the estimated uncertainties ( ≤ 6  %) and with high correlations (R ≥ 0. 8). Partial columns have been used for the ground-based to space-borne comparison, with coincident measurements selected based on time, distance, and scaled potential vorticity (sPV). The comparisons of the ground-based measurements with ACE-FTS show good agreement in the partial columns for most species within 6  % (except for C2H6 and PARIS-IR HF), which is consistent with the total retrieval uncertainty of the ground-based instruments. The correlation coefficients (R) of the partial column comparisons for all eight species range from approximately 0.75 to 0.95. The comparisons show no

  13. Maritime Aerosol optical properties measured by ship-borne sky radiometer

    Science.gov (United States)

    Aoki, K.

    2017-12-01

    Maritime aerosols play an important role in the earth climate change. We started the measurements of aerosol optical properties since 1994 by using ship-borne sky radiometer (POM-01 MK-II and III; Prede Co. Ltd., Japan) over the ocean. We report the results of an aerosol optical properties over the ocean by using Research Vessel of the ship-borne sky radiometers. Aerosol optical properties observation were made in MR10-02 to MR16-09 onboard the R/V Mirai, JAMSTEC. The sky radiometer measure the direct and diffuse solar radiance with seven interference filters (0.315, 0.4, 0.5, 0.675, 0.87, 0.94, and 1.02 µm). Observation interval was made every five minutes by once, only in daytime under the clear sky conditions. GPS provides the position with longitude and latitude and heading direction of the vessel, and azimuth and elevation angle of the sun. The aerosol optical properties were computed using the SKYRAD.pack version 4.2. The obtained Aerosol optical properties (Aerosol optical thickness, Ångström exponent, Single scattering albedo, and etc.) and size distribution volume clearly showed spatial and temporal variability over the ocean. Aerosol optical thickness found over the near the coast (Asia and Tropical area) was high and variable. The size distribution volume have peaks at small particles at Asian coast and large particles at Tropical coast area. We provide the information, in this presentation, on the aerosol optical properties measurements with temporal and spatial variability in the Maritime Aerosol. This project is validation satellite of GCOM-C/SGLI, JAXA and other. The GCOM-C satellite scheduled to be launched in 2017 JFY.

  14. Spectroscopic characterization of extrasolar planets from ground-, space- and airborne-based observatories

    Science.gov (United States)

    Angerhausen, Daniel

    2010-11-01

    This thesis deals with techniques and results of observations of exoplanets from several platforms. In this work I present and then attempt solutions to particular issues and problems connected to ground- and space-based approaches to spectroscopic characterization of extrasolar planets. Furthermore, I present the future prospects of the airborne observatory, SOFIA, in this field of astronomy. The first part of this thesis covers results of an exploratory study to use near-infrared integral-field-spectroscopy to observe transiting extrasolar planets. I demonstrate how adaptive-optics assisted integral field spectroscopy compares with other spectroscopic techniques currently applied, foremost being slit spectroscopy. An advanced reduction method using elements of a spectral-differential decorrelation and optimized observation strategies is discussed. This concept was tested with K-Band time series observations of secondary eclipses of HD 209458b and HD 189733b obtained with the SINFONI at the Very Large Telescope (VLT), at spectral resolution of R~3000. In ground-based near infrared (NIR) observations, there is considerable likelihood of confusion between telluric absorption features and spectral features in the targeted object. I describe a detailed method that can cope with such confusion by a forward modelling approach employing Earth transmission models. In space-based transit spectroscopy with Hubble's NICMOS instrument, the main source of systematic noise is the perturbation in the instrument's configuration due to the near Earth orbital motion of the spacecraft. I present an extension to a pre-existing data analysis sequence that has allowed me to extract a NIR transmission spectrum of the hot-Neptune class planet GJ 436b from a data set that was highly corrupted by the above mentioned effects. Satisfyingly, I was able to obtain statistical consistency in spectra (acquired over a broad wavelength grid) over two distinct observing visits by HST. Earlier

  15. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: OVERVIEW AND EARLY DATA

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle S.; Bautista, Julian E. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire dástrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Alam, Shadab [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213 (United States); Albareti, Franco D. [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Anderson, Scott F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Armengaud, Eric [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Aubourg, Éric [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Bailey, Stephen; Beutler, Florian [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, PMB 401807, 2401 Vanderbilt Place, Nashville, TN 37240 (United States); Bershady, Matthew A. [University of Wisconsin-Madison, Department of Astronomy, 475 N. Charter St., Madison WI 53703 (United States); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, sunspot, NM 88349 (United States); Blanton, Michael R., E-mail: kdawson@astro.utah.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); and others

    2016-02-15

    In a six-year program started in 2014 July, the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) will conduct novel cosmological observations using the BOSS spectrograph at Apache Point Observatory. These observations will be conducted simultaneously with the Time Domain Spectroscopic Survey (TDSS) designed for variability studies and the Spectroscopic Identification of eROSITA Sources (SPIDERS) program designed for studies of X-ray sources. In particular, eBOSS will measure with percent-level precision the distance-redshift relation with baryon acoustic oscillations (BAO) in the clustering of matter. eBOSS will use four different tracers of the underlying matter density field to vastly expand the volume covered by BOSS and map the large-scale-structures over the relatively unconstrained redshift range 0.6 < z < 2.2. Using more than 250,000 new, spectroscopically confirmed luminous red galaxies at a median redshift z = 0.72, we project that eBOSS will yield measurements of the angular diameter distance d{sub A}(z) to an accuracy of 1.2% and measurements of H(z) to 2.1% when combined with the z > 0.6 sample of BOSS galaxies. With ∼195,000 new emission line galaxy redshifts, we expect BAO measurements of d{sub A}(z) to an accuracy of 3.1% and H(z) to 4.7% at an effective redshift of z = 0.87. A sample of more than 500,000 spectroscopically confirmed quasars will provide the first BAO distance measurements over the redshift range 0.9 < z < 2.2, with expected precision of 2.8% and 4.2% on d{sub A}(z) and H(z), respectively. Finally, with 60,000 new quasars and re-observation of 60,000 BOSS quasars, we will obtain new Lyα forest measurements at redshifts z > 2.1; these new data will enhance the precision of d{sub A}(z) and H(z) at z > 2.1 by a factor of 1.44 relative to BOSS. Furthermore, eBOSS will provide improved tests of General Relativity on cosmological scales through redshift-space distortion measurements, improved tests for non

  16. Measures for minimizing radiation hazardous to the environment in the advent of large-scale space commercialization

    International Nuclear Information System (INIS)

    Murthy, S.N.

    1990-01-01

    The nature of hazardous effects from radio-frequency (RF), light, infrared, and nuclear radiation on human and other biological species in the advent of large-scale space commercialization is considered. Attention is focused on RF/microwave radiation from earth antennas and domestic picture phone communication links, exposure to microwave radiation from space solar-power satellites, and the continuous transmission of information from spacecraft as well as laser radiation from space. Measures for preventing and/or reducing these effects are suggested, including the use of interlocks for cutting off radiation toward ground, off-pointing microwave energy beams in cases of altitude failure, limiting the satellite off-axis gain data-rate product, the use of reflective materials on buildings and in personnel clothing to protect from space-borne lasers, and underwater colonies in cases of high-power lasers. For nuclear-power satellites, deposition in stable points in the solar system is proposed. 12 refs

  17. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  18. X-ray micro-beam characterization of a small pixel spectroscopic CdTe detector

    Science.gov (United States)

    Veale, M. C.; Bell, S. J.; Seller, P.; Wilson, M. D.; Kachkanov, V.

    2012-07-01

    A small pixel, spectroscopic, CdTe detector has been developed at the Rutherford Appleton Laboratory (RAL) for X-ray imaging applications. The detector consists of 80 × 80 pixels on a 250 μm pitch with 50 μm inter-pixel spacing. Measurements with an 241Am γ-source demonstrated that 96% of all pixels have a FWHM of better than 1 keV while the majority of the remaining pixels have FWHM of less than 4 keV. Using the Diamond Light Source synchrotron, a 10 μm collimated beam of monochromatic 20 keV X-rays has been used to map the spatial variation in the detector response and the effects of charge sharing corrections on detector efficiency and resolution. The mapping measurements revealed the presence of inclusions in the detector and quantified their effect on the spectroscopic resolution of pixels.

  19. THE GALACTIC O-STAR SPECTROSCOPIC SURVEY (GOSSS). II. BRIGHT SOUTHERN STARS

    International Nuclear Information System (INIS)

    Sota, A.; Apellániz, J. Maíz; Alfaro, E. J.; Morrell, N. I.; Barbá, R. H.; Arias, J. I.; Walborn, N. R.; Gamen, R. C.

    2014-01-01

    We present the second installment of GOSSS, a massive spectroscopic survey of Galactic O stars, based on new homogeneous, high signal-to-noise ratio, R ∼ 2500 digital observations from both hemispheres selected from the Galactic O-Star Catalog (GOSC). In this paper we include bright stars and other objects drawn mostly from the first version of GOSC, all of them south of δ = –20°, for a total number of 258 O stars. We also revise the northern sample of Paper I to provide the full list of spectroscopically classified Galactic O stars complete to B = 8, bringing the total number of published GOSSS stars to 448. Extensive sequences of exceptional objects are given, including the early Of/WN, O Iafpe, Ofc, ON/OC, Onfp, Of?p, and Oe types, as well as double/triple-lined spectroscopic binaries. The new spectral subtype O9.2 is also discussed. The magnitude and spatial distributions of the observed sample are analyzed. We also present new results from OWN, a multi-epoch high-resolution spectroscopic survey coordinated with GOSSS that is assembling the largest sample of Galactic spectroscopic massive binaries ever attained. The OWN data combined with additional information on spectroscopic and visual binaries from the literature indicate that only a very small fraction (if any) of the stars with masses above 15-20 M ☉ are born as single systems. In the future we will publish the rest of the GOSSS survey, which is expected to include over 1000 Galactic O stars

  20. Multi-pass spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Stehle, Jean-Louis; Samartzis, Peter C.; Stamataki, Katerina; Piel, Jean-Philippe; Katsoprinakis, George E.; Papadakis, Vassilis; Schimowski, Xavier; Rakitzis, T. Peter; Loppinet, Benoit

    2014-01-01

    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films

  1. Zeff from spectroscopic bremsstrahlung measurements at ASDEX Upgrade and JET

    International Nuclear Information System (INIS)

    Meister, H.; Fischer, R.; Horton, L.D.; Maggi, C.F.; Nishijima, D.; Giroud, C.; Zastrow, K.-D.; Zaniol, B.

    2004-01-01

    The effective ionic charge Z eff is a means to assess the impurity content of a fusion plasma. It can be derived from measurements of bremsstrahlung intensity. These have been extended at ASDEX Upgrade by the usage of the sight lines for the charge exchange recombination diagnostic. Together with a previously installed sight line array, it is now possible to routinely determine the bremsstrahlung intensity over the whole minor radius purely from spectroscopic measurements. In a tokamak where the plasma facing components are made up of various materials, this is necessary to check if measurements are contaminated by line radiation. The bremsstrahlung background of the respective spectra is determined using Bayesian probability theory, giving consistent and improved error statistics. Using the information for electron temperature and density profiles, the Z eff profile is determined by an integrated method. The same approach to assess the Z eff profile has been demonstrated to be successful also at the JET tokamak

  2. Stratospheric BrO abundance measured by a balloon-borne submillimeterwave radiometer

    Directory of Open Access Journals (Sweden)

    R. A. Stachnik

    2013-03-01

    Full Text Available Measurements of mixing ratio profiles of stratospheric bromine monoxide (BrO were made using observations of BrO rotational line emission at 650.179 GHz by a balloon-borne SIS (superconductor-insulator-superconductor submillimeterwave heterodyne limb sounder (SLS. The balloon was launched from Ft. Sumner, New Mexico (34° N on 22 September 2011. Peak mid-day BrO abundance varied from 16 ± 2 ppt at 34 km to 6 ± 4 ppt at 16 km. Corresponding estimates of total inorganic bromine (Bry, derived from BrO vmr (volume mixing ratio using a photochemical box model, were 21 ± 3 ppt and 11 ± 5 ppt, respectively. Inferred Bry abundance exceeds that attributable solely to decomposition of long-lived methyl bromide and other halons, and is consistent with a contribution from bromine-containing very short lived substances, BryVSLS, of 4 ppt to 8 ppt. These results for BrO and Bry were compared with, and found to be in good agreement with, those of other recent balloon-borne and satellite instruments.

  3. Thermoluminescent measurement in space radiation dosimetry

    International Nuclear Information System (INIS)

    Chen Mei; Qi Zhangnian; Li Xianggao; Huang Zengxin; Jia Xianghong; Wang Genliang

    1999-01-01

    The author introduced the space radiation environment and the application of thermoluminescent measurement in space radiation dosimetry. Space ionization radiation is charged particles radiation. Space radiation dosimetry was developed for protecting astronauts against space radiation. Thermoluminescent measurement is an excellent method used in the spaceship cabin. Also the authors mentioned the recent works here

  4. Ages and Stages Questionnaire used to measure cognitive deficit in children born extremely preterm

    DEFF Research Database (Denmark)

    Klamer, Anja; Lando, Ane; Pinborg, Anja

    2005-01-01

    AIM: To validate the Ages and Stages Questionnaire (ASQ) and to measure average cognitive deficit in children born extremely preterm. METHODS: Parents of 30 term children aged 36-42 mo completed the ASQ and the children underwent the Wechsler Preschool and Primary Scales of Intelligence...

  5. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Science.gov (United States)

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  6. Design of a rocket-borne radiometer for stratospheric ozone measurements

    International Nuclear Information System (INIS)

    Barnes, R.A.; Simeth, P.G.

    1989-01-01

    A four-filter ultraviolet radiometer for measuring stratospheric ozone is described. The payload is launched aboard a Super-Loki rocket to an apogee of 70 km. The instrument measures the solar ultraviolet irradiance over its filter wavelengths as it descends on a parachute. The amount of ozone in the path between the radiometer and the sun is calculated from the attenuation of solar flux using the Beer-Lambert law. Radar at the launch site measures the height of the instrument throughout its flight. The fundamental ozone value measured by the ROCOZ-A radiometer is the vertical ozone overburden as a function of geometric altitude. Ozone measurements are obtained for altitudes from 55 to 20 km, extending well above the altitude range of balloon-borne ozone-measuring instruments. The optics and electronics in the radiometer have been designed within relatively severe size and weight limitations imposed by the launch vehicle. The electronics in the improved rocket ozonesonde (ROCOZ-A) provide essentially drift-free outputs throughout 40-min ozone soundings at stratospheric temperatures. The modest cost of the payload precludes recovery and makes the instrument a versatile tool compared to larger ozonesondes

  7. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  8. Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases

    Directory of Open Access Journals (Sweden)

    Jean-Marie Aerts

    2012-11-01

    Full Text Available The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.

  9. We have "born digital" - now what about "born semantic"?

    Science.gov (United States)

    Leadbetter, Adam; Fredericks, Janet

    2014-05-01

    The phrase "born-digital" refers to those materials which originate in a digital form. In Earth and Space Sciences, this is now very much the norm for data: analogue to digital converters sit on instrument boards and produce a digital record of the observed environment. While much effort has been put in to creating and curating these digital data, there has been little work on using semantic mark up of data from the point of collection - what we term 'born semantic'. In this presentation we report on two efforts to expand this area: Qartod-to-OGC (Q2O) and SenseOCEAN. These projects have taken a common approach to 'born semantic': create or reuse appropriate controlled vocabularies, published to World Wide Web Commission (W3C) standards use standards from the Open Geospatial Consortium's Sensor Web Enablement (SWE) initiative to describe instrument setup, deployment and/or outputs using terms from those controlled vocabularies embed URLs from the controlled vocabularies within the SWE documents in a "Linked Data" conformant approach Q2O developed best practices examples of SensorML descriptions of Original Equipment Manufacturers' metadata (model characteristics, capabilities, manufacturer contact, etc ...) set-up and deployment SensorML files; and data centre process-lineage using registered vocabularies to describe terms (including input, output, processes, parameters, quality control flags) One Q2O use case, the Martha's Vineyard Coastal Observatory ADCP Waves instance, uses SensorML and registered vocabularies to fully describe the process of computing wave parameters from sensed properties, including quality control tests and associated results. The European Commission Framework Programme 7 project SenseOCEAN draws together world leading marine sensor developers to create a highly integrated multifunction and cost-effective in situ marine biogeochemical sensor system. This project will provide a quantum leap in the ability to measure crucial biogeochemical

  10. Heat engines for dilatonic Born-Infeld black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Chandrasekhar; Yerra, Pavan Kumar [Indian Institute of Technology Bhubaneswar, School of Basic Sciences, Bhubaneswar (India)

    2017-08-15

    In the context of dilaton coupled Einstein gravity with a negative cosmological constant and a Born-Infeld field, we study heat engines where a charged black hole is the working substance. Using the existence of a notion of thermodynamic mass and volume (which depend on the dilaton coupling), the mechanical work takes place via the pdV terms present in the first law of extended gravitational thermodynamics. The efficiency is analyzed as a function of dilaton and Born-Infeld couplings, and the results are compared with analogous computations in the related conformal solutions in the Brans-Dicke-Born-Infeld theory and black holes in anti-de Sitter space-time. (orig.)

  11. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements.

    Science.gov (United States)

    Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

  12. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    International Nuclear Information System (INIS)

    Filippi, F.; Mostacci, A.; Palumbo, L.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Ferrario, M.; Cianchi, A.; Zigler, A.

    2016-01-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC-LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 10 16 –10 17  cm −3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  13. Spectroscopic measurements of plasma emission light for plasma-based acceleration experiments

    Science.gov (United States)

    Filippi, F.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Zigler, A.

    2016-09-01

    Advanced particle accelerators are based on the excitation of large amplitude plasma waves driven by either electron or laser beams. Future experiments scheduled at the SPARC_LAB test facility aim to demonstrate the acceleration of high brightness electron beams through the so-called resonant Plasma Wakefield Acceleration scheme in which a train of electron bunches (drivers) resonantly excites wakefields into a preformed hydrogen plasma; the last bunch (witness) injected at the proper accelerating phase gains energy from the wake. The quality of the accelerated beam depends strongly on plasma density and its distribution along the acceleration length. The measurements of plasma density of the order of 1016-1017 cm-3 can be performed with spectroscopic measurements of the plasma-emitted light. The measured density distribution for hydrogen filled capillary discharge with both Balmer alpha and Balmer beta lines and shot-to-shot variation are here reported.

  14. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: anisotropic Baryon Acoustic Oscillations measurements in Fourier-space with optimal redshift weights

    Science.gov (United States)

    Wang, Dandan; Zhao, Gong-Bo; Wang, Yuting; Percival, Will J.; Ruggeri, Rossana; Zhu, Fangzhou; Tojeiro, Rita; Myers, Adam D.; Chuang, Chia-Hsun; Baumgarten, Falk; Zhao, Cheng; Gil-Marín, Héctor; Ross, Ashley J.; Burtin, Etienne; Zarrouk, Pauline; Bautista, Julian; Brinkmann, Jonathan; Dawson, Kyle; Brownstein, Joel R.; de la Macorra, Axel; Schneider, Donald P.; Shafieloo, Arman

    2018-06-01

    We present a measurement of the anisotropic and isotropic Baryon Acoustic Oscillations (BAO) from the extended Baryon Oscillation Spectroscopic Survey Data Release 14 quasar sample with optimal redshift weights. Applying the redshift weights improves the constraint on the BAO dilation parameter α(zeff) by 17 per cent. We reconstruct the evolution history of the BAO distance indicators in the redshift range of 0.8 < z < 2.2. This paper is part of a set that analyses the eBOSS DR14 quasar sample.

  15. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Science.gov (United States)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  16. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Directory of Open Access Journals (Sweden)

    P. Behm

    2017-11-01

    Full Text Available We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  17. Weighted semiconvex spaces of measurable functions

    International Nuclear Information System (INIS)

    Olaleru, J.O.

    2001-12-01

    Semiconvex spaces are intermediates between locally convex spaces and the non locally convex topological vector spaces. They include all locally convex spaces; hence it is a generalization of locally convex spaces. In this article, we make a study of weighted semiconvex spaces parallel to weighted locally convex spaces where continuous functions are replaced with measurable functions and N p family replaces Nachbin family on a locally compact space X. Among others, we examine the Hausdorffness, completeness, inductive limits, barrelledness and countably barrelledness of weighted semiconvex spaces. New results are obtained while we have a more elegant proofs of old results. Furthermore, we get extensions of some of the old results. It is observed that the technique of proving theorems in weighted locally convex spaces can be adapted to that of weighted semicovex spaces of measurable functions in most cases. (author)

  18. Conceptualizing Innovation in Born Global Firms

    DEFF Research Database (Denmark)

    Zijdemans, Erik; Tanev, Stoyan

    2014-01-01

    This research provides insights from recent literature on innovativeness in the environment of born globals. This article will be relevant to researchers interested in born globals and their business environments and, more specifically, the role that innovation plays in their foundation and devel...... of knowledge acquisition, networking capabilities and the lean startup approach in born global innovation. Finally, the article addresses the issue of quantifying and measuring innovativeness....

  19. Spectroscopic measurements of soybeans used to parameterize physiological traits in the AgroIBIS ecosystem model

    Science.gov (United States)

    Singh, A.; Serbin, S.; Kucharik, C. J.; Townsend, P. A.

    2014-12-01

    Ecosystem models such AgroIBIS require detailed parameterizations of numerous vegetation traits related to leaf structure, biochemistry and photosynthetic capacity to properly assess plant carbon assimilation and yield response to environmental variability. In general, these traits are estimated from a limited number of field measurements or sourced from the literature, but rarely is the full observed range of variability in these traits utilized in modeling activities. In addition, pathogens and pests, such as the exotic soybean aphid (Aphis glycines), which affects photosynthetic pathways in soybean plants by feeding on phloem and sap, can potentially impact plant productivity and yields. Capturing plant responses to pest pressure in conjunction with environmental variability is of considerable interest to managers and the scientific community alike. In this research, we employed full-range (400-2500 nm) field and laboratory spectroscopy to rapidly characterize the leaf biochemical and physiological traits, namely foliar nitrogen, specific leaf area (SLA) and the maximum rate of RuBP carboxylation by the enzyme RuBisCo (Vcmax) in soybean plants, which experienced a broad range of environmental conditions and soybean aphid pressures. We utilized near-surface spectroscopic remote sensing measurements as a means to capture the spatial and temporal patterns of aphid impacts across broad aphid pressure levels. In addition, we used the spectroscopic data to generate a much larger dataset of key model parameters required by AgroIBIS than would be possible through traditional measurements of biochemistry and leaf-level gas exchange. The use of spectroscopic retrievals of soybean traits allowed us to better characterize the variability of plant responses associated with aphid pressure to more accurately model the likely impacts of soybean aphid on soybeans. Our next steps include the coupling of the information derived from our spectral measurements with the Agro

  20. Car-borne survey measurements with a 3x3` NaI detector

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, E.; Ugletveit, F.; Floe, L.; Mikkelborg, O. [Norwegian Radiation Protection Authority, Oesteraas (Norway)

    1997-12-31

    The Norwegian Radiation Protection Authority (NRPA) took part in the international survey measurement exercise RESUME95 that was arranged in Finland in August 1995. NRPA performed measurements with a simple car-borne measuring system based on standard equipment, a 3x3` NaI detector, an MCA and a GPS connected to a portable PC. The results show substantial variations in dose rate inside areas of a few square kilometres. Spectrum analysis shows that a major part of these differences are caused by variations in deposition of {sup 137}Cs. Our results show that even standard 3x3` NaI detectors can be used for car based survey measurements in fall out situations and search for sources. The detection limits are higher than for larger detectors, but the main limiting factor seem to be the timing capabilities of the acquisition system. (au).

  1. Car-borne survey measurements with a 3x3' NaI detector

    International Nuclear Information System (INIS)

    Larsen, E.; Ugletveit, F.; Floe, L.; Mikkelborg, O.

    1997-01-01

    The Norwegian Radiation Protection Authority (NRPA) took part in the international survey measurement exercise RESUME95 that was arranged in Finland in August 1995. NRPA performed measurements with a simple car-borne measuring system based on standard equipment, a 3x3' NaI detector, an MCA and a GPS connected to a portable PC. The results show substantial variations in dose rate inside areas of a few square kilometres. Spectrum analysis shows that a major part of these differences are caused by variations in deposition of 137 Cs. Our results show that even standard 3x3' NaI detectors can be used for car based survey measurements in fall out situations and search for sources. The detection limits are higher than for larger detectors, but the main limiting factor seem to be the timing capabilities of the acquisition system. (au)

  2. Car-borne survey measurements with a 3x3` NaI detector

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, E; Ugletveit, F; Floe, L; Mikkelborg, O [Norwegian Radiation Protection Authority, Oesteraas (Norway)

    1998-12-31

    The Norwegian Radiation Protection Authority (NRPA) took part in the international survey measurement exercise RESUME95 that was arranged in Finland in August 1995. NRPA performed measurements with a simple car-borne measuring system based on standard equipment, a 3x3` NaI detector, an MCA and a GPS connected to a portable PC. The results show substantial variations in dose rate inside areas of a few square kilometres. Spectrum analysis shows that a major part of these differences are caused by variations in deposition of {sup 137}Cs. Our results show that even standard 3x3` NaI detectors can be used for car based survey measurements in fall out situations and search for sources. The detection limits are higher than for larger detectors, but the main limiting factor seem to be the timing capabilities of the acquisition system. (au).

  3. The inductively coupled plasma as a source for the measurement of fundamental spectroscopic constants

    International Nuclear Information System (INIS)

    Farnsworth, P.B.

    1993-01-01

    Inductively coupled plasmas (ICPs) are stable, robust sources for the generation of spectra from neutral and singly ionized atoms. They are used extensively for analytical spectrometry, but have seen limited use for the measurement of fundamental spectroscopic constants. Several properties of the ICP affect its suitability for such fundamental measurements. They include: spatial structure, spectral background, noise characteristics, electron densities and temperatures, and the state of equilibrium in the plasma. These properties are particularly sensitive to the means by which foreign atoms are introduced into the plasma. With some departures from the operating procedures normally used in analytical measurements, the ICP promise to be a useful source for the measurement of fundamental atomic constants. (orig.)

  4. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  5. Adiponectin levels measured in dried blood spot samples from neonates born small and appropriate for gestational age

    DEFF Research Database (Denmark)

    Klamer, A; Skogstrand, Kristin; Hougaard, D M

    2007-01-01

    Adiponectin levels measured in neonatal dried blood spot samples (DBSS) might be affected by both prematurity and being born small for gestational age (SGA). The aim of the study was to measure adiponectin levels in routinely collected neonatal DBSS taken on day 5 (range 3-12) postnatal from...

  6. Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Directory of Open Access Journals (Sweden)

    R. E. Mamouri

    2009-09-01

    Full Text Available We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E. A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA in the framework of the European Aerosol Research LIdar NETwork (EARLINET, the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60% which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar.

  7. Adolescents' Perceptions of Parental Affect: An Investigation of Only Children vs. Firstborns and the Effect of Spacing

    Science.gov (United States)

    Kidwell, Jeannie S.

    1978-01-01

    Research results revealed only-born adolescents to perceive higher positive perceptions in three measures of parental affect than do first-born adolescents. Perceived parental affect was found to vary by spacing in a consistent pattern for males towards both parents. (Author/MA)

  8. Spectroscopic characterization of low dose rate brachytherapy sources

    Science.gov (United States)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  9. Spectroscopic observation of the middle ultraviolet earth albedo by S-520-4 rocket and mesospheric ozone density profile

    International Nuclear Information System (INIS)

    Suzuki, Katsuhisa; Ogawa, Toshihiro.

    1982-01-01

    The ozone Hartey absorption band in the middle ultraviolet range is commonly adopted for the ozone measurement by rocket and satellite observations. In Japan, since 1965 the ozone absorption in the solar ultraviolet radiation has been observed by rocket-borne uv photometers. On the other hand the spectroscopic measurements of the scattered solar ultraviolet radiation from the terrestrial atmosphere will be performed by the EXOS-C satellite which will be launched in 1984. We tested the spectrometer for this satellite experiment by S-520-4 rocket launched on 5 September 1981. This instrument observed the scattered radiation of 2500 A -- 3300 A and the visible earth albedo of 4030 A. The spectrometer is consisted of a concave grating and has about 10 A wavelength resolution. A photomultiplier having a Cs-Te photocathode is used as a uv detector. The visible albedo is measured by a photometer consisting of an interference filter and a phototube. We estimated the atmospheric ozone profile, comparing the uv spectrum obtained by this experiment with the model calculations. The estimated ozone density profile higher than 30 km altitude has good agreement with the profile obtained by the previous uv photometer experiments at Uchinoura. There are differences between the observed spectrum and the calculated one in = 3100 A. We can explain them by the effect of Mie scattering and the uv stray light. In the present experiment we could successfully test the functions of the instrument in the space. rocket, spectrometer, solar ultraviolet radiation, earth albedo, ozone (author)

  10. DISCOVERY OF A WIDE BINARY BROWN DWARF BORN IN ISOLATION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Mamajek, E. E.; Muench, A. A.; Finkbeiner, D. P.

    2009-01-01

    During a survey for stars with disks in the Taurus star-forming region using the Spitzer Space Telescope, we have discovered a pair of young brown dwarfs, FU Tau A and B, in the Barnard 215 dark cloud. They have a projected angular separation of 5.''7, corresponding to 800 AU at the distance of Taurus. To assess the nature of these two objects, we have obtained spectra of them and constructed spectral energy distributions. Both sources are young (∼1 Myr) according to their Hα emission, gravity-sensitive spectral features, and mid-infrared excess emission. The proper motion of FU Tau A provides additional evidence of its membership in Taurus. We measure spectral types of M7.25 and M9.25 for FU Tau A and B, respectively, which correspond to masses of ∼0.05 and ∼0.015 M sun according to the evolutionary models of Chabrier and Baraffe. FU Tau A is significantly overluminous relative to an isochrone passing through FU Tau B and relative to other members of Taurus near its spectral type, which may indicate that it is an unresolved binary. FU Tau A and B are likely to be components of a binary system based on the low probability (∼3 x 10 -4 ) that Taurus would produce two unrelated brown dwarfs with a projected separation of a ≤ 6''. Barnard 215 contains only one other young star and is in a remote area of Taurus, making FU Tau A and B the first spectroscopically confirmed brown dwarfs discovered forming in isolation rather than in a stellar cluster or aggregate. Because they were born in isolation and comprise a weakly bound binary, dynamical interactions with stars could not have played a role in their formation, and thus are not essential for the birth of brown dwarfs.

  11. Derived Born cross sections of e+e‑ annihilation into open charm mesons from CLEO-c measurements

    Science.gov (United States)

    Dong, Xiang-Kun; Wang, Liang-Liang; Yuan, Chang-Zheng

    2018-04-01

    The exclusive Born cross sections of the production of D0, D+ and {{{D}}}{{s}}{{+}} mesons in e+e‑ annihilation at 13 energy points between 3.970 and 4.260 GeV are obtained by applying corrections for initial state radiation and vacuum polarization to the observed cross sections measured by the CLEO-c experiment. Both the statistical and the systematic uncertainties for the obtained Born cross sections are estimated. Supported in part by National Natural Science Foundation of China (NSFC) (11235011, 11475187, 11521505, U1632106), the Ministry of Science and Technology of China (2015CB856701), Key Research Program of Frontier Sciences, CAS, (QYZDJ-SSW-SLH011) and the CAS Center for Excellence in Particle Physics (CCEPP)

  12. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  13. Measuring space radiation shielding effectiveness

    Directory of Open Access Journals (Sweden)

    Bahadori Amir

    2017-01-01

    Full Text Available Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  14. Measuring space radiation shielding effectiveness

    Science.gov (United States)

    Bahadori, Amir; Semones, Edward; Ewert, Michael; Broyan, James; Walker, Steven

    2017-09-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles is described. Using accelerated alpha particles at the National Aeronautics and Space Administration Space Radiation Laboratory at Brookhaven National Laboratory, the method is applied to sample tiles from the Heat Melt Compactor, which were created by melting material from a simulated astronaut waste stream, consisting of materials such as trash and unconsumed food. The shielding effectiveness calculated from measurements of the Heat Melt Compactor sample tiles is about 10% less than the shielding effectiveness of polyethylene. Shielding material produced from the astronaut waste stream in the form of Heat Melt Compactor tiles is therefore found to be an attractive solution for protection against space radiation.

  15. NewSpace: The Emerging Commercial Space Industry

    Science.gov (United States)

    Martin, Gary

    2016-01-01

    A lecture to students at the International Space University. Topics include: - We are at a turning point in the history of space exploration and development the cusp of a revolution, new industries are being born that use space in many non-traditional ways - The established military industrial space sector is no longer the only game in town - Increased competition and new capabilities will change the marketplace forever - Everyone interested in working in the space sector will be affected.

  16. ISOMAX: a balloon-borne instrument to measure cosmic ray isotopes

    International Nuclear Information System (INIS)

    Hof, M.; Bremerich, M.; Goebel, H.; Hams, T.; Menn, W.; Simon, M.; Barbier, L.M.; Christian, E.R.; Geier, S.; Gupta, S.K.; Krizmanic, J.F.; Mitchell, J.W.; Ormes, J.F.; Streitmatter, R.E.; Davis, A.J.; Nolfo, G.A. de; Mewaldt, R.A.; Schindler, S.M.

    2000-01-01

    The Isotope Magnet Experiment (ISOMAX) is a new balloon-borne instrument developed to measure the isotopic composition of the light elements in the cosmic radiation, in particular to obtain the ratio of the radioactive 10 Be to stable 9 Be. ISOMAX was first flown in August 4-5, 1998, from Lynn Lake, Manitoba, Canada. ISOMAX has a geometry factor of 450 cm 2 sr and was configured for this flight with a large, Helmholtz-like, superconducting magnet in combination with a drift-chamber tracking system, a state-of-the-art time-of-flight system and two aerogel Cherenkov detectors to measure light isotopes with a mass resolution of better than 0.25 amu. In the 1998 flight the obtained maximum detectable rigidity of the magnetic spectrometer was 970 GeV/c for helium at 60% of the full magnetic field. ISOMAX took data for more than 16 h at float altitudes above 36 km. We here present the performance of the individual detectors and initial isotopic results of the instrument

  17. Tracking reliability for space cabin-borne equipment in development by Crow model.

    Science.gov (United States)

    Chen, J D; Jiao, S J; Sun, H L

    2001-12-01

    Objective. To study and track the reliability growth of manned spaceflight cabin-borne equipment in the course of its development. Method. A new technique of reliability growth estimation and prediction, which is composed of the Crow model and test data conversion (TDC) method was used. Result. The estimation and prediction value of the reliability growth conformed to its expectations. Conclusion. The method could dynamically estimate and predict the reliability of the equipment by making full use of various test information in the course of its development. It offered not only a possibility of tracking the equipment reliability growth, but also the reference for quality control in manned spaceflight cabin-borne equipment design and development process.

  18. Measurements of impurity spectra using UV/visible spectroscopic system in a GAMMA 10 plasma

    International Nuclear Information System (INIS)

    Matama, K.; Yoshikawa, M.; Kobayashi, T.; Kubota, Y.; Cho, T.

    2006-01-01

    Impurity spectra have been measured and identified using a newly designed ultraviolet and visible (UV/visible) spectroscopic system in the tandem mirror GAMMA 10. It is constructed using two spectrometers to obtain an entire wavelength range of UV/visible impurity spectra with a high wavelength resolution in one plasma shot. We successfully obtained the emission intensities of the radiation spectra in detail and information on the time-varying population densities of the impurities. We evaluate radiation loss from the GAMMA 10 plasma in the UV/visible range; further we estimate the electron density and temperature after applying the measured spectral intensity to a collisional-radiative model

  19. Time and space resolved spectroscopic investigation during anode plume formation in a high-current vacuum arc

    Science.gov (United States)

    Khakpour, A.; Methling, R.; Uhrlandt, D.; Franke, St.; Gortschakow, S.; Popov, S.; Batrakov, A.; Weltmann, K. D.

    2017-05-01

    This paper presents time and space resolved results of spectroscopic measurements during the formation of an anode plume in the late current pulse phase of a high-current vacuum arc. The formation of the anode plume is investigated systematically based on the occurrence of high-current anode spots, depending on gap distance and current for AC 100 Hz and CuCr7525 butt contacts with a diameter of 10 mm. The anode plume is observed after the extinction of anode spot type 2 in which both the anode and cathode are active. It is concluded from the spatial profiles of the atomic and ionic radiation, parallel and perpendicular to anode surface, that the inner part of the plume is dominated by Cu I radiation, whereas a halo of light emitted by Cu II covers the plume. The radiation intensity of Cu III lines is quite low across the whole anode plume. Upper level excited state densities corresponding to Cu I lines at 510.55, 515.32, 521.82, 578.21 nm are determined. The temporal evolution of the resulting excitation temperature in the centre of the plume varies from 8500 K to 6000 K at 500 µs to 100 µs before current zero, respectively. The density calculated for Cu I at position in the plume is in the range of 1-5  ×  1019 m-3.

  20. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  1. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    International Nuclear Information System (INIS)

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S.; Schlegel, David J.; Bailey, Stephen; Anderson, Scott F.; Bhardwaj, Vaishali; Aubourg, Éric; Bautista, Julian E.; Barkhouser, Robert H.; Beifiori, Alessandra; Berlind, Andreas A.; Bizyaev, Dmitry; Brewington, Howard; Blake, Cullen H.; Blanton, Michael R.; Blomqvist, Michael; Borde, Arnaud; Bovy, Jo; Brandt, W. N.

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg 2 to measure BAO to redshifts z A to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Lyα forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D A (z) and H –1 (z) parameters to an accuracy of 1.9% at z ∼ 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  2. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Science.gov (United States)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  3. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Osada, Takashi; Endo, Youichi [Graduate Student, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan); Kanazawa, Chikara [Undergraduate, Chiba University 1-33 Yayoi, Inage, Chiba, 63-8522 (Japan); Ota, Masanori; Maeno, Kazuo, E-mail: maeno@faculty.chiba-u.j [Graduate School of Engineering, Chiba University 1-33 Yayoi, Inage, Chiba, 263-8522 (Japan)

    2009-02-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N{sub 2} are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  4. Nonlinear CARS measurement of nitrogen vibrational and rotational temperatures behind hypervelocity strong shock wave

    International Nuclear Information System (INIS)

    Osada, Takashi; Endo, Youichi; Kanazawa, Chikara; Ota, Masanori; Maeno, Kazuo

    2009-01-01

    The hypervelocity strong shock waves are generated, when the space vehicles reenter the atmosphere from space. Behind the shock wave radiative and non-equilibrium flow is generated in front of the surface of the space vehicle. Many studies have been reported to investigate the phenomena for the aerospace exploit and reentry. The research information and data on the high temperature flows have been available to the rational heatproof design of the space vehicles. Recent development of measurement techniques with laser systems and photo-electronics now enables us to investigate the hypervelocity phenomena with greatly advanced accuracy. In this research strong shock waves are generated in low-density gas to simulate the reentry range gas flow with a free-piston double-diaphragm shock tube, and CARS (Coherent Anti-stokes Raman Spectroscopy) measurement method is applied to the hypervelocity flows behind the shock waves, where spectral signals of high space/time resolution are acquired. The CARS system consists of YAG and dye lasers, a spectroscope, and a CCD camera system. We obtain the CARS signal spectrum data by this special time-resolving experiment, and the vibrational and rotational temperatures of N 2 are determined by fitting between the experimental spectroscopic profile data and theoretically estimated spectroscopic data.

  5. Feasibility study of carbon particles injection by laser ablation to calibrate spectroscopic erosion measurements in Tore Supra

    International Nuclear Information System (INIS)

    Naiim Habib, M.; Mercadier, L.; Marandet, Y.; Delaporte, Ph.; Hernandez, C.; Grisolia, C.; Monier-Garbet, P.

    2011-01-01

    To check if spectroscopic measurements can be used for erosion determination, we propose to inject in the line of sight of the diagnostic, during plasma operation, a known carbon particle source, produced by laser ablation. A first assessment of this technique will be presented in the context of the Tore Supra tokamak.

  6. Space-borne observation of mesospheric bore by Visible and near Infrared Spectral Imager onboard the International Space Station

    Science.gov (United States)

    Hozumi, Y.; Saito, A.; Sakanoi, T.; Yamazaki, A.; Hosokawa, K.

    2017-12-01

    Mesospheric bores were observed by Visible and near Infrared Spectral Imager (VISI) of the ISS-IMAP mission (Ionosphere, Mesosphere, upper Atmosphere and Plasmasphere mapping mission from the International Space Station) in O2 airglow at 762 nm wavelength. The mesospheric bore is moving front of sharp jump followed by undulations or turbulence in the mesopause region. Since previous studies of mesospheric bore were mainly based on ground-based airglow imaging that is limited in field-of-view and observing site, little is known about its horizontal extent and global behavior. Space-borne imaging by ISS-IMAP/VISI provides an opportunity to study the mesospheric bore with a wide field-of-view and global coverage. A mesospheric bore was captured by VISI in two consecutive paths on 9 July 2015 over the south of African continent (48ºS - 54ºS and 15ºE). The wave front aligned with south-north direction and propagated to west. The phase velocity and wave length of the following undulation were estimated to 100 m/s and 30 km, respectively. Those parameters are similar to those reported by previous studies. 30º anti-clockwise rotation of the wave front was recognized in 100 min. Another mesospheric bore was captured on 9 May 2013 over the south Atlantic ocean (35ºS - 43ºS and 24ºW - 1ºE) with more than 2,200 km horizontal extent of wave front. The wave front aligned with southeast-northwest direction. Because the following undulation is recognized in the southwest side of the wave front, it is estimated to propagate to northeast direction. The wave front was modulated with 1,000 km wave length. This modulation implies inhomogeneity of the phase velocity.

  7. Phase-dependent space weathering effects and spectroscopic identification of retained helium in a lunar soil grain

    Science.gov (United States)

    Burgess, K. D.; Stroud, R. M.

    2018-03-01

    The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.

  8. Soil sample moisture content as a function of time during oven drying for gamma-ray spectroscopic measurements

    International Nuclear Information System (INIS)

    Benke, R.R.; Kearfott, K.J.

    1999-01-01

    In routine gamma-ray spectroscopic analysis of collected soil samples, procedure often calls to remove soil moisture by oven drying overnight at a temperature of 100 deg. C . Oven drying not only minimizes the gamma-ray self-attenuation of soil samples due to the absence of water during the gamma-ray spectroscopic analysis, but also allows for a straightforward calculation of the specific activity of radionuclides in soil, historically based on the sample dry weight. Because radon exhalation is strongly dependent on moisture , knowledge of the oven-drying time dependence of the soil moisture content, combined with radon exhalation measurements during oven drying and at room temperature for varying soil moisture contents, would allow conclusions to be made on how the oven-drying radon exhalation rate depends on soil moisture content. Determinations of the oven-drying radon exhalation from soil samples allow corrections to be made for the immediate laboratory gamma-ray spectroscopy of radionuclides in the natural uranium decay chain. This paper presents the results of soil moisture content measurements during oven drying and suggests useful empirical fits to the moisture data

  9. Spectroscopic measurement of target plate erosion in the ASDEX Upgrade divertor

    Energy Technology Data Exchange (ETDEWEB)

    Filed, A R; Garcia-Rosales, C; Lieder, G; Pitcher, C S; Radtke, R [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); ASDEX Upgrade Team

    1996-02-01

    The erosion of the graphite divertor plates in the ASDEX Upgrade tokamak is measured spectroscopically. Spatial profiles of the D{sup 0} and C{sup +} influxes across the outer target plate are determined from measured absolute line intensities. Plasma parameters (n{sub e}, T{sub e}) at the target, which are required to determine the appropriate photon emission efficiencies for these lines, are obtained from an in-vessel reciprocating Langmuir probe above the target plate. Yields for the erosion of the graphite by the incident D{sup +} flux are determined from the ratio of the measured C{sup +} to D{sup 0} fluxes. Over a range of moderate densities the measured yields of {<=} 4% are explicable in terms of physical sputtering alone. Chemical sputtering by low energy Franck-Condon neutrals probably contributes, however, to the total erosion. At higher densities detachment of the plasma from the targets occurs owing to formation of a MARFE near the X point. Under these conditions localized physical sputtering of the targets ceases. The impurity level (Z{sub eff}) is, however, maintained following detachment, indicating a corresponding maintenance of carbon influx, perhaps due to chemical erosion of the total graphite surface and/or an improvement in particle confinement in the detached state. (author). 26 refs, 14 figs, 1 tab.

  10. Evaluating the influence of particulate matter on spectroscopic measurements of a combusting flow

    Science.gov (United States)

    Herlan, Jonathan; Murray, Nathan

    2017-11-01

    An adiabatic table-top burner has been used to develop a method for estimating the temperature and concentration of OH in a measurement volume of a non-premixed, hydrogen-air flame. The estimation method uses a nonlinear curve-fitting routine to compare experimental absorption spectra with a model derived, using statistical mechanics, from the Beer-Lambert law. With the aim of applying this method to the analysis of rocket exhaust plumes, this study evaluates whether or not it provides faithful estimates of temperature and OH concentration when the combusting flow contains particulate matter-such as soot or tracers used for particle image velocimetry (PIV) measurements. The hydrogen line of the table-top burner will be seeded with alumina, Al2O3, particles and their influence on spectroscopic measurements elucidated. The authors wish to thank Mr. Bernard Jansen for his support and insight in laboratory activities.

  11. Security for safety critical space borne systems

    Science.gov (United States)

    Legrand, Sue

    1987-01-01

    The Space Station contains safety critical computer software components in systems that can affect life and vital property. These components require a multilevel secure system that provides dynamic access control of the data and processes involved. A study is under way to define requirements for a security model providing access control through level B3 of the Orange Book. The model will be prototyped at NASA-Johnson Space Center.

  12. Multi-slice echo-planar spectroscopic MR imaging provides both global and local metabolite measures in multiple sclerosis

    DEFF Research Database (Denmark)

    Mathiesen, Henrik Kahr; Tscherning, Thomas; Sorensen, Per Soelberg

    2005-01-01

    MR spectroscopy (MRS) provides information about neuronal loss or dysfunction by measuring decreases in N-acetyl aspartate (NAA), a metabolite widely believed to be a marker of neuronal viability. In multiple sclerosis (MS), whole-brain NAA (WBNAA) has been suggested as a marker of disease...... progression and treatment efficacy in treatment trials, and the ability to measure NAA loss in specific brain regions early in the evolution of this disease may have prognostic value. Most spectroscopic studies to date have been limited to single voxels or nonlocalized measurements of WBNAA only...

  13. Reliability of routine clinical measurements of neonatal circumferences and research measurements of neonatal skinfold thicknesses: findings from the Born in Bradford study

    Science.gov (United States)

    West, Jane; Manchester, Ben; Wright, John; Lawlor, Debbie A; Waiblinger, Dagmar

    2011-01-01

    Summary West J, Manchester B, Wright J, Lawlor DA, Waiblinger D. Reliability of routine clinical measurements of neonatal circumferences and research measurements of neonatal skinfold thicknesses: findings from the Born in Bradford study. Paediatric and Perinatal Epidemiology 2011. Assessing neonatal size reliably is important for research and clinical practice. The aim of this study was to examine the reliability of routine clinical measurements of neonatal circumferences and of skinfold thicknesses assessed for research purposes. All measurements were undertaken on the same population of neonates born in a large maternity unit in Bradford, UK. Technical error of measurement (TEM), relative TEM and the coefficient of reliability are reported. Intra-observer TEMs for routine circumference measurements were all below 0.4 cm and were generally within ±2-times the mean. Inter-observer TEM ranged from 0.20 to 0.36 cm for head circumference, 0.19 to 0.39 cm for mid upper arm circumference and from 0.39 to 0.77 cm for abdominal circumference. Intra and inter-observer TEM for triceps skinfold thickness ranged from 0.22 to 0.35 mm and 0.15 to 0.54 mm, respectively. Subscapular skinfold thickness TEM values were 0.14 to 0.25 mm for intra-observer measurements and 0.17 to 0.63 mm for inter-observer measurements. Relative TEM values for routine circumferences were all below 4.00% but varied between 2.88% and 14.23% for research skinfold measurements. Reliability was mostly between 80% and 99% for routine circumference measurements and ≥70% for most research skinfold measurements. Routine clinical measurements of neonatal circumferences are reliably assessed in Bradford. Assessing skinfolds in neonates has variable reliability, but on the whole is good. The greater intra-observer, compared with inter-observer, reliability for both sets of measurements highlights the importance of having a minimal number of assessors whenever possible. PMID:21281329

  14. The calibration of photographic and spectroscopic films. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS3, STS8, and STS7

    Science.gov (United States)

    Hammond, Ernest C., Jr.

    1987-01-01

    The results of these studies have implications for the utilization of the IIaO spectroscopic film on the future shuttle and space lab missions. These responses to standard photonic energy sources will have immediate application for the uneven responses of the film photographing a star field in a terrestrial or extraterrestrial environment with associated digital imaging equipment.

  15. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    International Nuclear Information System (INIS)

    Stratton, B.C.; Bitter, M.; Hill, K.W.; Hillis, D.L.; Hogan, J.T.

    2007-01-01

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  16. Passive Spectroscopic Diagnostics for Magnetically-confined Fusion Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, B. C.; Biter, M.; Hill, K. W.; Hillis, D. L.; Hogan, J. T.

    2007-07-18

    Spectroscopy of radiation emitted by impurities and hydrogen isotopes plays an important role in the study of magnetically-confined fusion plasmas, both in determining the effects of impurities on plasma behavior and in measurements of plasma parameters such as electron and ion temperatures and densities, particle transport, and particle influx rates. This paper reviews spectroscopic diagnostics of plasma radiation that are excited by collisional processes in the plasma, which are termed 'passive' spectroscopic diagnostics to distinguish them from 'active' spectroscopic diagnostics involving injected particle and laser beams. A brief overview of the ionization balance in hot plasmas and the relevant line and continuum radiation excitation mechanisms is given. Instrumentation in the soft X-ray, vacuum ultraviolet, ultraviolet, visible, and near-infrared regions of the spectrum is described and examples of measurements are given. Paths for further development of these measurements and issues for their implementation in a burning plasma environment are discussed.

  17. Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Figueroa Aguirre, Griselda [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)

    2012-11-15

    We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory. (orig.)

  18. Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory

    International Nuclear Information System (INIS)

    Eiroa, Ernesto F.; Figueroa Aguirre, Griselda

    2012-01-01

    We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory. (orig.)

  19. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G.; Pirre, M.; Robert, C. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B.; Louvet, Y.; Ramaroson, R. [Office National d`Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C.C. [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y. [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D. [Reims Univ., 51 (France). Faculte des Sciences

    1997-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  20. A new project, SPIRALE. Balloon-borne in situ multi-component measurement using infrared diode lasers

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, G; Pirre, M; Robert, C [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France); Rosier, B; Louvet, Y; Ramaroson, R [Office National d` Etudes et de Recherches Aerospatiales, 91 - Palaiseau (France); Peyret, C C [Universite Pierre et Marie Curie, 75 - Paris (France); Macleod, Y [Universite Pierreet Marie Curie, 75 - Paris (France); Courtois, D [Reims Univ., 51 (France). Faculte des Sciences

    1998-12-31

    The scientific goals and the description of a new experiment for stratospheric studies SPIRALE are presented which is a balloon-borne instrument, able to measure in situ several air components (up to 10). Infrared diode laser spectroscopy is applied for monitoring simultaneously atmospheric trace gases at high rate. Its specificity, sensitivity, and wide range of compounds to which it can be applied is described. (R.P.) 5 refs.

  1. Velocity-space sensitivity of neutron spectrometry measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Eriksson, J.

    2015-01-01

    Neutron emission spectrometry (NES) measures the energies of neutrons produced in fusion reactions. Here we present velocity-space weight functions for NES and neutron yield measurements. Weight functions show the sensitivity as well as the accessible regions in velocity space for a given range...

  2. In vivo, noninvasive functional measurements of bone sarcoma using diffuse optical spectroscopic imaging

    Science.gov (United States)

    Peterson, Hannah M.; Hoang, Bang H.; Geller, David; Yang, Rui; Gorlick, Richard; Berger, Jeremy; Tingling, Janet; Roth, Michael; Gill, Jonathon; Roblyer, Darren

    2017-12-01

    Diffuse optical spectroscopic imaging (DOSI) is an emerging near-infrared imaging technique that noninvasively measures quantitative functional information in thick tissue. This study aimed to assess the feasibility of using DOSI to measure optical contrast from bone sarcomas. These tumors are rare and pose technical and practical challenges for DOSI measurements due to the varied anatomic locations and tissue depths of presentation. Six subjects were enrolled in the study. One subject was unable to be measured due to tissue contact sensitivity. For the five remaining subjects, the signal-to-noise ratio, imaging depth, optical properties, and quantitative tissue concentrations of oxyhemoglobin, deoxyhemoglobin, water, and lipids from tumor and contralateral normal tissues were assessed. Statistical differences between tumor and contralateral normal tissue were found in chromophore concentrations and optical properties for four subjects. Low signal-to-noise was encountered during several subject's measurements, suggesting increased detector sensitivity will help to optimize DOSI for this patient population going forward. This study demonstrates that DOSI is capable of measuring optical properties and obtaining functional information in bone sarcomas. In the future, DOSI may provide a means to stratify treatment groups and monitor chemotherapy response for this disease.

  3. Mid-infrared spectroscopic investigation

    International Nuclear Information System (INIS)

    Walter, L.; Vergo, N.; Salisbury, J.W.

    1987-01-01

    Mid-infrared spectroscopic research efforts are discussed. The development of a new instrumentation to permit advanced measurements in the mid-infrared region of the spectrum, the development of a special library of well-characterized mineral and rock specimens for interpretation of remote sensing data, and cooperative measurements of the spectral signatures of analogues of materials that may be present on the surfaces of asteroids, planets or their Moons are discussed

  4. Comparison of high-pressure liquid chromatography (HPLC) and Griess reagent-spectroscopic methods for the measurement of nitrate in serum from healthy individuals in the Nordic countries.

    Science.gov (United States)

    Larsen, Tine Lise; Nilsen, Valentina; Andersen, Dag Olav; Francis, George; Rustad, Pål; Mansoor, Mohammad Azam

    2008-12-01

    Bioavailability of NO can be estimated by measuring the concentration of nitrate (NO(3)) in serum. However, the methods used for the measurement NO(3) in plasma or serum show a great degree of variation. Therefore, we compared two analytical methods for the measurement of NO(3) in serum. The concentration of NO(3) in 600 serum samples collected from healthy individuals was determined by the HPLC and by the Griess reagent-spectroscopic method. The concentration of NO(3) in the samples was 29.4+/-16.1 micromol/L and 26.2+/-14.0 micromol/L (mean+/-SD) measured by HPLC and Griess reagent-spectroscopic method respectively (pHPLC method.

  5. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    Science.gov (United States)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  6. Spectroscopic study of low-lying 16N levels

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  7. Birth Order, Age-Spacing, IQ Differences, and Family Relations.

    Science.gov (United States)

    Pfouts, Jane H.

    1980-01-01

    Very close age spacing was an obstacle to high academic performance for later borns. In family relations and self-esteem, first borns scored better and performed in school as well as their potentially much more able younger siblings, regardless of age spacing. (Author)

  8. Inter-laboratory comparisons of hexenuronic acid measurements in kraft eucalyptus pulps using a UV-Vis spectroscopic method

    Science.gov (United States)

    J.Y. Zhu; H.F Zhou; Chai X.S.; Donna Johannes; Richard Pope; Cristina Valls; M. Blanca Roncero

    2014-01-01

    An inter-laboratory comparison of a UV-Vis spectroscopic method (TAPPI T 282 om-13 “Hexeneuronic acid content of chemical pulp”) for hexeneuronic acid measurements was conducted using three eucalyptus kraft pulps. The pulp samples were produced in a laboratory at kappa numbers of approximately 14, 20, and 35. The hexeneuronic acid contents of the three pulps were...

  9. Measuring space radiation shielding effectiveness

    OpenAIRE

    Bahadori Amir; Semones Edward; Ewert Michael; Broyan James; Walker Steven

    2017-01-01

    Passive radiation shielding is one strategy to mitigate the problem of space radiation exposure. While space vehicles are constructed largely of aluminum, polyethylene has been demonstrated to have superior shielding characteristics for both galactic cosmic rays and solar particle events due to the high hydrogen content. A method to calculate the shielding effectiveness of a material relative to reference material from Bragg peak measurements performed using energetic heavy charged particles ...

  10. Growth and development in children born very low birthweight.

    Science.gov (United States)

    Scharf, Rebecca J; Stroustrup, Annemarie; Conaway, Mark R; DeBoer, Mark D

    2016-09-01

    To examine the relationships between growth (birth to age 2 years) and developmental outcomes in children born with very low birthweight (VLBW). Motor and mental development in children born with VLBW were regressed on anthropometric measurements at birth, 9 months and 2 years using multivariable regression. The Early Childhood Longitudinal Study-Birth Cohort, a longitudinal cohort, community sample, designed to be representative of children born across the USA. 950 children born with VLBW (children exhibited poor growth, with length-for-age z-scores children at 9 months (adjusted for prematurity) and 34.2% of children at 2 years. Compared with children having z-scores >-2, children with growth shortfalls in head circumference, length and weight had a higher adjusted OR (aOR) of low Bayley motor scores at 9 months and 2 years (aOR ranging from 1.8 to 3.3, all pchildren born with VLBW. While careful length measures may be a particularly useful marker, deficits in all anthropometric measures were risk factors for developmental delays. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Measurement of joint space width and erosion size

    NARCIS (Netherlands)

    Sharp, JI; van der Heijde, D; Angwin, J; Duryea, J; Moens, HJB; Jacobs, JWG; Maillefert, JF; Strand, CV

    2005-01-01

    Measurement of radiographic abnormalities in metric units has been reported by several investigators during the last 15 years. Measurement of joint space in large joints has been employed in a few trials to evaluate therapy in osteoarthritis. Measurement of joint space width in small joints has been

  12. Influence of space radiation on satellite magnetics

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, M K [Vikram Sarabhai Space Centre, Trivandrum (India)

    1978-12-01

    The magnetic circuits and devices used in space-borne systems such as satellites are naturally exposed to space environments having among others, hazardous radiations. Such radiations, in turn, may be of solar, cosmic or nuclear origin depending upon the altitude as well as the propulsion/power systems involving mini atomic reactors when utilised. The influence of such radiations on the magnetic components of the satellite have been analysed revealing the critical hazards in the latter circuits system. Remedial measures by appropriate shielding, etc. necessary for maintaining optimum performance of the satellite have been discussed.

  13. Time- and space-resolved light emission and spectroscopic research of the flashover plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gleizer, J. Z.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel); Leopold, J. [Department of Applied Physics, Rafael Laboratories, Box 2250, Haifa 31021 (Israel)

    2015-02-21

    The results of an experimental study of the evolution of surface flashover across the surface of an insulator in vacuum subject to a high-voltage pulse and the parameters of the flashover plasma are reported. For the system studied, flashover is always initiated at the cathode triple junctions. Using time-resolved framing photography of the plasma light emission the velocity of the light emission propagation along the surface of the insulator was found to be ∼2.5·10{sup 8} cm/s. Spectroscopic measurements show that the flashover is characterized by a plasma density of 2–4 × 10{sup 14} cm{sup −3} and neutral and electron temperatures of 2–4 eV and 1–3 eV, respectively, corresponding to a plasma conductivity of ∼0.2 Ω{sup −1} cm{sup −1} and a discharge current density of up to ∼10 kA/cm{sup 2}.

  14. Spectroscopic system for impurity measurements in the TJ-1 Tokamak of JEN

    International Nuclear Information System (INIS)

    Navas, G.; Zurro, B.

    1982-01-01

    we describe a spectroscopic system with spatial resolution capability that has been configured for plasma diagnostic in the TJ-1 Tokamak of JEN. The experimental system, based on a one meter monochromator, has been absolutely calibrated using a tungsten-halogen lamp. The calibration procedures and the absolute spectral sensitivity are presented as well as its dependence with the polarization. A simplified spectroscopic model of the radiation emitted by the intrinsic plasma impurities (C, 0, . . . ) has been developed. A one dimensional model of the temporal evolution of various ionization stages in coronal equilibrium is used to predict the electron temperature and impurity concentration. This model has been applied to experimental data from several Tokamaks. (Author) 23 refs

  15. Approximated solutions to Born-Infeld dynamics

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Nigro, Mauro

    2016-01-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  16. Approximated solutions to Born-Infeld dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina); Nigro, Mauro [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,Ciudad Universitaria, Pabellón I, 1428 Buenos Aires (Argentina)

    2016-02-01

    The Born-Infeld equation in the plane is usefully captured in complex language. The general exact solution can be written as a combination of holomorphic and anti-holomorphic functions. However, this solution only expresses the potential in an implicit way. We rework the formulation to obtain the complex potential in an explicit way, by means of a perturbative procedure. We take care of the secular behavior common to this kind of approach, by resorting to a symmetry the equation has at the considered order of approximation. We apply the method to build approximated solutions to Born-Infeld electrodynamics. We solve for BI electromagnetic waves traveling in opposite directions. We study the propagation at interfaces, with the aim of searching for effects susceptible to experimental detection. In particular, we show that a reflected wave is produced when a wave is incident on a semi-space containing a magnetostatic field.

  17. Geometrical dynamics of Born-Infeld objects

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N., Unidad Adolfo Lopez Mateos, Edificio 9, 07738 Mexico, D.F. (Mexico); Molgado, Alberto [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Col. Villas San Sebastian, Colima (Mexico); Rojas, Efrain [Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico)

    2007-03-21

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS{sub 3} x S{sup 3} background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation.

  18. Geometrical dynamics of Born-Infeld objects

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2007-01-01

    We present a geometrically inspired study of the dynamics of Dp-branes. We focus on the usual non-polynomial Dirac-Born-Infeld action for the worldvolume swept out by the brane in its evolution in general background spacetimes. We emphasize the form of the resulting equations of motion which are quite simple and resemble Newton's second law, complemented with a conservation law for a worldvolume bicurrent. We take a closer look at the classical Hamiltonian analysis which is supported by the ADM framework of general relativity. The constraints and their algebra are identified as well as the geometrical role they play in phase space. In order to illustrate our results, we review the dynamics of a D1-brane immersed in a AdS 3 x S 3 background spacetime. We exhibit the mechanical properties of Born-Infeld objects paving the way to a consistent quantum formulation

  19. The regular cosmic string in Born-Infeld gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael; Fiorini, Franco, E-mail: ferraro@iafe.uba.ar, E-mail: franco@iafe.uba.ar [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2011-09-22

    It is shown that Born-Infeld gravity -a high energy deformation of Einstein gravity-removes the singularities of a cosmic string. The respective vacuum solution results to be free of conical singularity and closed timelike curves. The space ends at a minimal circle where the curvature invariants vanish; but this circle cannot be reached in a finite proper time.

  20. Physical Fitness in Young Adults Born Preterm.

    Science.gov (United States)

    Tikanmäki, Marjaana; Tammelin, Tuija; Sipola-Leppänen, Marika; Kaseva, Nina; Matinolli, Hanna-Maria; Miettola, Satu; Eriksson, Johan G; Järvelin, Marjo-Riitta; Vääräsmäki, Marja; Kajantie, Eero

    2016-01-01

    Young adults born preterm have higher levels of cardiometabolic risk factors than their term-born peers. Muscular and cardiorespiratory fitness have important cardiometabolic and other health benefits. We assessed muscular, cardiorespiratory, and self-rated fitness in preterm-born young adults. We studied unimpaired participants of the ESTER (Ennenaikainen syntymä ja aikuisiän terveys [Preterm Birth and Early-Life Programming of Adult Health and Disease]) birth cohort study at age 23.3 (SD: 1.2) years: 139 born early preterm (EPT; Young adults born EPT (-0.8; 95% confidence interval: -1.5 to -0.1; adjusted for gender, age, and source cohort) and LPT (-0.8; -1.4 to -0.3) performed fewer modified push-ups than controls. Handgrip strength was 23.8 (0.9-46.8) N lower in EPT participants. Cardiorespiratory fitness, measured by submaximal step test, was similar. On a self-rated fitness scale (1-5), the EPT adults reported 0.2 (0.0-0.4) lower scores than controls. After adjustment for early-life confounders, the results remained. They attenuated after further adjustment for mediating factors. Young adults born EPT and LPT had lower muscular fitness than controls, which may predispose them to cardiometabolic and other chronic diseases. Adults born EPT also perceived themselves as less fit than controls. Copyright © 2016 by the American Academy of Pediatrics.

  1. The Extended Relativity Theory in Born-Clifford Phase Spaces with a Lower and Upper Length Scales and Clifford Group Geometric Unification

    CERN Document Server

    Castro, C

    2004-01-01

    We construct the Extended Relativity Theory in Born-Clifford-Phase spaces with an upper and lower length scales (infrared/ultraviolet cutoff). The invariance symmetry leads naturally to the real Clifford algebra Cl (2, 6, R ) and complexified Clifford Cl_C ( 4 ) algebra related to Twistors. We proceed with an extensive review of Smith's 8D model based on the Clifford algebra Cl ( 1 ,7) that reproduces at low energies the physics of the Standard Model and Gravity; including the derivation of all the coupling constants, particle masses, mixing angles, ....with high precision. Further results by Smith are discussed pertaining the interplay among Clifford, Jordan, Division and Exceptional Lie algebras within the hierarchy of dimensions D = 26, 27, 28 related to bosonic string, M, F theory. Two Geometric actions are presented like the Clifford-Space extension of Maxwell's Electrodynamics, Brandt's action related the 8D spacetime tangent-bundle involving coordinates and velocities (Finsler geometries) followed by a...

  2. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: constraining modified gravity

    Science.gov (United States)

    Mueller, Eva-Maria; Percival, Will; Linder, Eric; Alam, Shadab; Zhao, Gong-Bo; Sánchez, Ariel G.; Beutler, Florian; Brinkmann, Jon

    2018-04-01

    We use baryon acoustic oscillation and redshift space distortion from the completed Baryon Oscillation Spectroscopic Survey, corresponding to Data Release 12 of the Sloan Digital Sky Survey, combined sample analysis in combination with cosmic microwave background, supernova, and redshift space distortion measurements from additional spectroscopic surveys to test deviations from general relativity. We present constraints on several phenomenological models of modified gravity: First, we parametrize the growth of structure using the growth index γ, finding γ = 0.566 ± 0.058 (68 per cent C.L.). Secondly, we modify the relation of the two Newtonian potentials by introducing two additional parameters, GM and GL. In this approach, GM refers to modifications of the growth of structure whereas GL to modification of the lensing potential. We consider a power law to model the redshift dependence of GM and GL as well as binning in redshift space, introducing four additional degrees of freedom, GM(z 0.5), GL(z 0.5). At 68 per cent C.L., we measure GM = 0.980 ± 0.096 and GL = 1.082 ± 0.060 for a linear model, GM = 1.01 ± 0.36 and GL = 1.31 ± 0.19 for a cubic model as well as GM(z 0.5) = 0.986 ± 0.022, GL(z 0.5) = 1.037 ± 0.029. Thirdly, we investigate general scalar tensor theories of gravity, finding the model to be mostly unconstrained by current data. Assuming a one-parameter f(R) model, we can constrain B0 < 7.7 × 10-5 (95 per cent C.L). For all models we considered, we find good agreement with general relativity.

  3. Being an only or last-born child increases later risk of obesity.

    Directory of Open Access Journals (Sweden)

    Line K Haugaard

    Full Text Available BACKGROUND: Studies have suggested that number of siblings and birth order is associated with obesity. However, studies combining these exposures are needed. This study aimed at investigating obesity in children and young adults in regard to different combinations of family size and birth order. METHODS: Two cohorts selected from the general population were investigated: The Copenhagen School Health Records Register (CSHRR and a Draft Board (DB sample with measured heights and weights in childhood (age 13 years and young adulthood (age 19 years, respectively. Information on birth order, number of siblings, and relevant covariates were available on 29 327 children, as well as on 323 obese young men and 575 randomly selected controls of young men representing approximately 58 000. The relation between number of siblings and birth order, respectively, and having a Body Mass Index (BMI z-score above or equal to the 95(th percentile in childhood or having a BMI of at least 31.00 kg/m(2 in young adulthood was analysed using logistic regression analyses adjusted for relevant confounders. RESULTS: Only children had significantly higher odds of obesity both in childhood and in young adulthood compared with children with siblings, odds ratio (OR =1.44 (95% Confidence Interval (CI: 1.26-1.66 and OR=1.76 (95% CI: 1.18-2.61, respectively. No association between first-born status and obesity was found. The OR of last-born children being obese was also significantly increased in childhood, e.g. OR=1.93 (95% CI: 1.09-3.43 of obesity if last-born in a family of four children. This was not found in young adulthood. Additionally, higher spacing to previous sibling (average 1872 vs. 1303 days; p=0.026 in four children families was observed in obese last-born compared to non-obese last-born children. CONCLUSION: Being an only or last-born child is associated with obesity. These associations may provide leads to targeted prevention of obesity in children.

  4. Probing early universe cosmology and high energy physics through space-borne interferometers

    International Nuclear Information System (INIS)

    Ungarelli, C.; Vecchio, A.

    2001-01-01

    We discuss the impact of space-borne laser interferometric experiments operating in the low-frequency window (∼ 1 μHz - 1 Hz), with the goal of identifying the fundamental issues that regard the detection of a primordial background of GW predicted by slow-roll inflationary models, corresponding to h 100 2 Ω ∼ 10 -16 - 10 -15 . We analyse the capabilities of the planned single-instrument LISA mission and the sensitivity improvements that could be achieved by cross-correlating the data streams from a pair of detectors of the LISA-class. We show that the two-detectors configuration is extremely powerful, and leads to the detection of a stochastic background as weak as h 100 2 Ω ∼ 10 -14 . However, such instrumental sensitivity cannot be exploited to achieve a comparable performance for the detection of the primordial component of the background, due to the overwhelming power of the stochastic signal produced by short-period solar-mass binary systems of compact objects, that cannot be resolved as individual sources. We estimate that the primordial background can be detected only if its fractional energy density h 100 2 Ω is greater than a few times 10 -12 . The key conclusion of our analysis is that the typical mHz frequency band, regardless of the instrumental noise level, is the wrong observational window to probe slow-roll inflationary models. We discuss possible follow-on missions with optimal sensitivity in the ∼ μHz-regime and/or in the ∼ 0.1Hz-band specifically aimed at gravitational wave cosmology. (author)

  5. AsteroidFinder - the space-borne telescope to search for NEO Asteroids

    Science.gov (United States)

    Hartl, M.; Mosebach, H.; Schubert, J.; Michaelis, H.; Mottola, S.; Kührt, E.; Schindler, K.

    2017-11-01

    This paper presents the mission profile as well as the optical configuration of the space-borne AsteroidFinder telescope. Its main objective is to retrieve asteroids with orbits interior to the earth's orbit. The instrument requires high sensitivity to detect asteroids with a limiting magnitude of equal or larger than 18.5mag (V-Band) and astrometric accuracy of 1arcsec (1σ). This requires a telescope aperture greater than 400cm2, high image stability, detector with high quantum efficiency (peak > 90%) and very low noise, which is only limited by zodiacal background. The telescope will observe the sky between 30° and 60° in solar elongation. The telescope optics is based on a Cook type TMA. An effective 2°×2° field of view (FOV) is achieved by a fast F/3.4 telescope with near diffraction-limited performance. The absence of centre obscuration or spiders in combination with an accessible intermediate field plane and exit pupil allow for efficient stray light mitigation. Design drivers for the telescope are the required point spread function (PSF) values, an extremely efficient stray light suppression (due to the magnitude requirement mentioned above), the detector performance, and the overall optical and mechanical stability for all orientations of the satellite. To accommodate the passive thermal stabilization scheme and the necessary structural stability, the materials selection for the telescope main structure and the mirrors are of vital importance. A focal plane with four EMCCD detectors is envisaged. The EMCCD technology features shorter integration times, which is in favor regarding the pointing performance of the satellite. The launch of the mission is foreseen for the year 2013 with a subsequent mission lifetime of at least 1 year.

  6. End-to-end simulations and planning of a small space telescopes: Galaxy Evolution Spectroscopic Explorer: a case study

    Science.gov (United States)

    Heap, Sara; Folta, David; Gong, Qian; Howard, Joseph; Hull, Tony; Purves, Lloyd

    2016-08-01

    Large astronomical missions are usually general-purpose telescopes with a suite of instruments optimized for different wavelength regions, spectral resolutions, etc. Their end-to-end (E2E) simulations are typically photons-in to flux-out calculations made to verify that each instrument meets its performance specifications. In contrast, smaller space missions are usually single-purpose telescopes, and their E2E simulations start with the scientific question to be answered and end with an assessment of the effectiveness of the mission in answering the scientific question. Thus, E2E simulations for small missions consist a longer string of calculations than for large missions, as they include not only the telescope and instrumentation, but also the spacecraft, orbit, and external factors such as coordination with other telescopes. Here, we illustrate the strategy and organization of small-mission E2E simulations using the Galaxy Evolution Spectroscopic Explorer (GESE) as a case study. GESE is an Explorer/Probe-class space mission concept with the primary aim of understanding galaxy evolution. Operation of a small survey telescope in space like GESE is usually simpler than operations of large telescopes driven by the varied scientific programs of the observers or by transient events. Nevertheless, both types of telescopes share two common challenges: maximizing the integration time on target, while minimizing operation costs including communication costs and staffing on the ground. We show in the case of GESE how these challenges can be met through a custom orbit and a system design emphasizing simplification and leveraging information from ground-based telescopes.

  7. Brown dwarf photospheres are patchy: A Hubble space telescope near-infrared spectroscopic survey finds frequent low-level variability

    International Nuclear Information System (INIS)

    Buenzli, Esther; Apai, Dániel; Radigan, Jacqueline; Reid, I. Neill; Flateau, Davin

    2014-01-01

    Condensate clouds strongly impact the spectra of brown dwarfs and exoplanets. Recent discoveries of variable L/T transition dwarfs argued for patchy clouds in at least some ultracool atmospheres. This study aims to measure the frequency and level of spectral variability in brown dwarfs and to search for correlations with spectral type. We used Hubble Space Telescope/Wide Field Camera 3 to obtain spectroscopic time series for 22 brown dwarfs of spectral types ranging from L5 to T6 at 1.1-1.7 μm for ≈40 minutes per object. Using Bayesian analysis, we find six brown dwarfs with confident (p > 95%) variability in the relative flux in at least one wavelength region at sub-percent precision, and five brown dwarfs with tentative (p > 68%) variability. We derive a minimum variability fraction f min =27 −7 +11 % over all covered spectral types. The fraction of variables is equal within errors for mid-L, late-L, and mid-T spectral types; for early-T dwarfs we do not find any confident variable but the sample is too small to derive meaningful limits. For some objects, the variability occurs primarily in the flux peak in the J or H band, others are variable throughout the spectrum or only in specific absorption regions. Four sources may have broadband peak-to-peak amplitudes exceeding 1%. Our measurements are not sensitive to very long periods, inclinations near pole-on and rotationally symmetric heterogeneity. The detection statistics are consistent with most brown dwarf photospheres being patchy. While multiple-percent near-infrared variability may be rare and confined to the L/T transition, low-level heterogeneities are a frequent characteristic of brown dwarf atmospheres.

  8. Spectroscopic databases - A tool for structure elucidation

    Energy Technology Data Exchange (ETDEWEB)

    Luksch, P [Fachinformationszentrum Karlsruhe, Gesellschaft fuer Wissenschaftlich-Technische Information mbH, Eggenstein-Leopoldshafen (Germany)

    1990-05-01

    Spectroscopic databases have developed to useful tools in the process of structure elucidation. Besides the conventional library searches, new intelligent programs have been added, that are able to predict structural features from measured spectra or to simulate for a given structure. The example of the C13NMR/IR database developed at BASF and available on STN is used to illustrate the present capabilities of online database. New developments in the field of spectrum simulation and methods for the prediction of complete structures from spectroscopic information are reviewed. (author). 10 refs, 5 figs.

  9. Spectroscopic Doppler analysis for visible-light optical coherence tomography

    Science.gov (United States)

    Shu, Xiao; Liu, Wenzhong; Duan, Lian; Zhang, Hao F.

    2017-12-01

    Retinal oxygen metabolic rate can be effectively measured by visible-light optical coherence tomography (vis-OCT), which simultaneously quantifies oxygen saturation and blood flow rate in retinal vessels through spectroscopic analysis and Doppler measurement, respectively. Doppler OCT relates phase variation between sequential A-lines to the axial flow velocity of the scattering medium. The detectable phase shift is between -π and π due to its periodicity, which limits the maximum measurable unambiguous velocity without phase unwrapping. Using shorter wavelengths, vis-OCT is more vulnerable to phase ambiguity since flow induced phase variation is linearly related to the center wavenumber of the probing light. We eliminated the need for phase unwrapping using spectroscopic Doppler analysis. We split the whole vis-OCT spectrum into a series of narrow subbands and reconstructed vis-OCT images to extract corresponding Doppler phase shifts in all the subbands. Then, we quantified flow velocity by analyzing subband-dependent phase shift using linear regression. In the phantom experiment, we showed that spectroscopic Doppler analysis extended the measurable absolute phase shift range without conducting phase unwrapping. We also tested this method to quantify retinal blood flow in rodents in vivo.

  10. Brown adipose tissue in young adults who were born preterm or small for gestational age.

    Science.gov (United States)

    Kistner, Anna; Rydén, Henric; Anderstam, Björn; Hellström, Ann; Skorpil, Mikael

    2018-06-27

    Brown adipose tissue (BAT) is present and functions to dissipate energy as heat in young adults and can be assessed using magnetic resonance imaging (MRI) to estimate the voxel fat fraction, i.e. proton density fat fraction (PDFF). It is hypothesized that subjects born preterm or small for gestational age (SGA) may exhibit disrupted BAT formation coupled to metabolic factors. Our purpose was to assess the presence of BAT in young adults born extremely preterm or SGA in comparison with controls. We studied 30 healthy subjects (median age, 21 years): 10 born extremely preterm, 10 full term but SGA and 10 full term with a normal birth weight (controls). We utilized an MRI technique combining multiple scans to enable smaller echo spacing and an advanced fat-water separation method applying graph cuts to estimate B0 inhomogeneity. We measured supraclavicular/cervical PDFF, R2*, fat volume, insulin-like growth factor 1, glucagon, thyroid stimulating hormone and the BAT-associated hormones fibroblast growth factor 21 and irisin. The groups did not significantly differ in supraclavicular/cervical PDFF, R2*, fat volume or hormone levels. The mean supraclavicular/cervical PDFF was equivalent between the groups (range 75-77%). Young adults born extremely preterm or SGA show BAT development similar to those born full term at a normal birth weight. Thus, the increased risk of cardiovascular and metabolic disorders in these groups is not due to the absence of BAT, although our results do not exclude possible BAT involvement in this scenario. Larger studies are needed to understand these relationships.

  11. Computed tomography of the head of new born premature infants

    International Nuclear Information System (INIS)

    Ohno, Tsutomu; Mizobe, Naoki; Takehiro, Hideo

    1983-01-01

    Evaluation of the extracerebral space on CT resulted as follows: The existence of the etracerebral space in the parieto-occipital region (PO-ECS) was physiological findings characteristic to premature infants. Its incidence was higher and the width of the space was greater, in those of premature infants. Generally PO-ECS disappeared around 40 weeks of gestation, while it tended to remaine beyond 40 weeks in premature infants born after less than 30 weeks of pregnancy. The appearance and disappearance of the PO-ECS may present some approach to learning the development of the brain in premature infants. (Ueda, J.)

  12. Estimating surface CO2 fluxes from space-borne CO2 dry air mole fraction observations using an ensemble Kalman Filter

    Directory of Open Access Journals (Sweden)

    S. Dance

    2009-04-01

    Full Text Available We have developed an ensemble Kalman Filter (EnKF to estimate 8-day regional surface fluxes of CO2 from space-borne CO2 dry-air mole fraction observations (XCO2 and evaluate the approach using a series of synthetic experiments, in preparation for data from the NASA Orbiting Carbon Observatory (OCO. The 32-day duty cycle of OCO alternates every 16 days between nadir and glint measurements of backscattered solar radiation at short-wave infrared wavelengths. The EnKF uses an ensemble of states to represent the error covariances to estimate 8-day CO2 surface fluxes over 144 geographical regions. We use a 12×8-day lag window, recognising that XCO2 measurements include surface flux information from prior time windows. The observation operator that relates surface CO2 fluxes to atmospheric distributions of XCO2 includes: a the GEOS-Chem transport model that relates surface fluxes to global 3-D distributions of CO2 concentrations, which are sampled at the time and location of OCO measurements that are cloud-free and have aerosol optical depths 2 profiles to XCO2, accounting for differences between nadir and glint measurements, and the associated scene-dependent observation errors. We show that OCO XCO2 measurements significantly reduce the uncertainties of surface CO2 flux estimates. Glint measurements are generally better at constraining ocean CO2 flux estimates. Nadir XCO2 measurements over the terrestrial tropics are sparse throughout the year because of either clouds or smoke. Glint measurements provide the most effective constraint for estimating tropical terrestrial CO2 fluxes by accurately sampling fresh continental outflow over neighbouring oceans. We also present results from sensitivity experiments that investigate how flux estimates change with 1 bias and unbiased errors, 2 alternative duty cycles, 3 measurement density and correlations, 4 the spatial resolution of estimated flux estimates, and 5 reducing the length of the lag window and the

  13. Progress on High-Energy 2-micron Solid State Laser for NASA Space-Based Wind and Carbon Dioxide Measurements

    Science.gov (United States)

    Singh, Upendra N.

    2011-01-01

    Sustained research efforts at NASA Langley Research Center during last fifteen years have resulted in significant advancement of a 2-micron diode-pumped, solid-state laser transmitter for wind and carbon dioxide measurements from ground, air and space-borne platforms. Solid-state 2-micron laser is a key subsystem for a coherent Doppler lidar that measures the horizontal and vertical wind velocities with high precision and resolution. The same laser, after a few modifications, can also be used in a Differential Absorption Lidar system for measuring atmospheric CO2 concentration profiles. Researchers at NASA Langley Research Center have developed a compact, flight capable, high energy, injection seeded, 2-micron laser transmitter for ground and airborne wind and carbon dioxide measurements. It is capable of producing 250 mJ at 10 Hz by an oscillator and one amplifier. This compact laser transmitter was integrated into a mobile trailer based coherent Doppler wind and CO2 DIAL system and was deployed during field measurement campaigns. This paper will give an overview of 2-micron solid-state laser technology development and discuss results from recent ground-based field measurements.

  14. Beam tests of the balloon-borne ATIC experiment

    CERN Document Server

    Ganel, O; Ahn, H S; Ampe, J; Bashindzhagian, G L; Case, G; Chang, H; Ellison, S; Fazely, A; Gould, R; Granger, D; Gunasingha, R M; Guzik, T G; Han, Y J; Isbert, J; Kim, H J; Kim, K C; Kim, S K; Kwon, Y; Panasyuk, M Y; Panov, A; Price, B; Samsonov, G; Schmidt, W K H; Sen, M; Seo, E S; Sina, R; Sokolskaya, N; Stewart, M; Voronin, A; Wagner, D; Wang, J Z; Wefel, J P; Wu, J; Zatsepin, V

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurements from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide information about some of the most fundamental questions in astroparticle physics today. ATIC's design centers on an 18 radiation length (X0) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75λint graphite target. In September 1999, the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000–January 2001 and again in December 2002–January 2003, ATIC flew on the first two of a series of long-duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam tests, including energy resolutions for electrons and protons at several beam energies from 100 to 375 G...

  15. The Space-Borne SBAS-DInSAR Technique as a Supporting Tool for Sustainable Urban Policies: The Case of Istanbul Megacity, Turkey

    Directory of Open Access Journals (Sweden)

    Fabiana Calò

    2015-12-01

    Full Text Available In today’s urbanizing world, home of 28 megacities, there is a growing need for tools to assess urban policies and support the design and implementation of effective development strategies. Unsustainable practices of urbanization bring major implications for land and environment, and cause a dramatic increase of urban vulnerability to natural hazards. In Istanbul megacity, disaster risk reduction represents a challenging issue for urban managers. In this paper, we show the relevance of the space-borne Differential SAR Interferometry (DInSAR technique as a tool for supporting risk management, and thus contributing to achieve the urban sustainability. To this aim, we use a dataset of high resolution SAR images collected by the TerraSAR-X satellite that have been processed through the advanced (multi-temporal Small BAseline Subset (SBAS—DInSAR technique, thus producing spatially-dense deformation velocity maps and associated time-series. Results allow to depict an up-to-date picture of surface deformations occurring in Istanbul, and thus to identify urban areas subject to potential risk. The joint analysis of remotely sensed measurements and ancillary data (geological and urban development information provides an opportunity for city planners and land professionals to discuss on the mutual relationship between urban development policies and natural/man-made hazards.

  16. The effect of spectroscopic parameter inaccuracies on ground-based millimeter wave remote sensing of the atmosphere

    International Nuclear Information System (INIS)

    Ryan, Niall J.; Walker, Kaley A.

    2015-01-01

    A sensitivity study was performed to assess the impact that uncertainties in the spectroscopic parameters of atmospheric species have on the retrieval of gas concentrations using the 265–280 GHz region of the electromagnetic spectrum. Errors in the retrieval of O 3 , N 2 O, HNO 3 , and ClO from spectra measured by ground-based radiometers were investigated. The goal of the study was to identify the spectroscopic parameters of these target species, and other interfering species, available in the JPL and HITRAN 2008 catalogues, which contribute the largest error to retrieved atmospheric concentration profiles in order to provide recommendations for new laboratory measurements. The parameters investigated were the line position, line strength, broadening coefficients and their temperature dependence, and pressure shift. Uncertainties in the air broadening coefficients of gases tend to contribute the largest error to retrieved atmospheric concentration profiles. For O 3 and N 2 O, gases with relatively strong spectral signatures, the retrieval is sensitive to uncertainties in the parameters of the main spectral line that is observed. For HNO 3 , the uncertainties in many closely spaced HNO 3 lines can cause large errors in the retrieved profile, and for ClO, the error in the profile is dominated by uncertainties in nearby, stronger O 3 lines. Fourteen spectroscopic parameters are identified, for which updated measurements would have the most impact on the accuracy of ground-based remote sensing of the target species at 265–280 GHz. - Highlights: • The sensitivity of retrievals to spectroscopic parameters is assessed. • Air broadening parameters contribute the most to the error budget. • O 3 and N 2 O retrievals are sensitive to parameters of the target spectral lines. • Many HNO 3 lines in close proximity can cause large errors in HNO 3 retrievals. • ClO retrievals are sensitive to uncertainties in parameters of nearby O 3 lines

  17. Early Recollections of First-Borns.

    Science.gov (United States)

    Fakouri, M. Ebrahim; Hafner, James L.

    1984-01-01

    Compared the early recollections of 50 first-borns and 98 later-borns. The first-borns mentioned significantly more nonfamily members, illness/injury, hospital/doctor's office. Later-borns mentioned significantly more siblings than did first-borns. Findings were discussed in the context of Adler's personality theory. (JAC)

  18. Estimation of vegetation photosynthetic capacity from space-based measurements of chlorophyll fluorescence for terrestrial biosphere models.

    Science.gov (United States)

    Zhang, Yongguang; Guanter, Luis; Berry, Joseph A; Joiner, Joanna; van der Tol, Christiaan; Huete, Alfredo; Gitelson, Anatoly; Voigt, Maximilian; Köhler, Philipp

    2014-12-01

    Photosynthesis simulations by terrestrial biosphere models are usually based on the Farquhar's model, in which the maximum rate of carboxylation (Vcmax ) is a key control parameter of photosynthetic capacity. Even though Vcmax is known to vary substantially in space and time in response to environmental controls, it is typically parameterized in models with tabulated values associated to plant functional types. Remote sensing can be used to produce a spatially continuous and temporally resolved view on photosynthetic efficiency, but traditional vegetation observations based on spectral reflectance lack a direct link to plant photochemical processes. Alternatively, recent space-borne measurements of sun-induced chlorophyll fluorescence (SIF) can offer an observational constraint on photosynthesis simulations. Here, we show that top-of-canopy SIF measurements from space are sensitive to Vcmax at the ecosystem level, and present an approach to invert Vcmax from SIF data. We use the Soil-Canopy Observation of Photosynthesis and Energy (SCOPE) balance model to derive empirical relationships between seasonal Vcmax and SIF which are used to solve the inverse problem. We evaluate our Vcmax estimation method at six agricultural flux tower sites in the midwestern US using spaced-based SIF retrievals. Our Vcmax estimates agree well with literature values for corn and soybean plants (average values of 37 and 101 μmol m(-2)  s(-1) , respectively) and show plausible seasonal patterns. The effect of the updated seasonally varying Vcmax parameterization on simulated gross primary productivity (GPP) is tested by comparing to simulations with fixed Vcmax values. Validation against flux tower observations demonstrate that simulations of GPP and light use efficiency improve significantly when our time-resolved Vcmax estimates from SIF are used, with R(2) for GPP comparisons increasing from 0.85 to 0.93, and for light use efficiency from 0.44 to 0.83. Our results support the use of

  19. Combined raman/laser-induced breakdown spectrometer: space and non-space applications

    NARCIS (Netherlands)

    Sandtke, M.; Laan, E.C.; Ahlers, B.

    2010-01-01

    TNO has developed the combination of two spectroscopic analysis methods in one instrument. Raman spectroscopy and Laser-induced Breakdown Spectroscopy (LIBS) were brought together for an instrument to be flown on the ExoMars mission from the European Space Agency (ESA) to investigate the Martian

  20. Measurement of air dose rates over a wide area around the Fukushima Dai-ichi Nuclear Power Plant through a series of car-borne surveys

    International Nuclear Information System (INIS)

    Andoh, Masaki; Nakahara, Yukio; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Takahashi, Fumiaki; Mikami, Satoshi; Kinouchi, Nobuyuki; Sato, Tetsuro; Tanigaki, Minoru; Takamiya, Koichi; Sato, Nobuhiro; Okumura, Ryo; Uchihori, Yukio; Saito, Kimiaki

    2015-01-01

    A series of car-borne surveys using the Kyoto University RAdiation MApping (KURAMA) and KURAMA-II survey systems has been conducted over a wide area in eastern Japan since June 2011 to evaluate the distribution of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant and to evaluate the time-dependent trend of decrease in air dose rates. An automated data processing system for the KURAMA-II system was established, which enabled rapid analysis of large amounts of data obtained using about 100 KURAMA-II units. The initial data used for evaluating the migration status of radioactive cesium were obtained in the first survey, followed by other car-borne surveys conducted over more extensive and wider measurement ranges. By comparing the measured air dose rates obtained in each survey (until December 2012), the decreasing trend of air dose rates measured through car-borne surveys was found to be more pronounced than those expected on the basis of the physical decay of radioactive cesium and of the air dose rates measured using NaI (Tl) survey meters in the areas surrounding the roadways. In addition, it was found that the extent of decrease in air dose rates depended on land use, wherein it decreased faster for land used as building sites than for forested areas. - Highlights: • Air dose rates distribution maps were constructed by Car-borne surveys. • KURAMA and KURAMA-II systems have been used for the measurement since 2011. • An automated data processing system for the KURAMA-II system was established. • Decreasing of the dose rates was more pronounced than those of the physical decay. • The dose rates decreased faster for building sites than for forested areas

  1. Simultaneously time- and space-resolved spectroscopic characterization of laser-produced plasmas

    International Nuclear Information System (INIS)

    Charatis, G.; Young, B.K.F.; Busch, G.E.

    1988-01-01

    The CHROMA laser facility at KMS Fusion has been used to irradiate a variety of microdot targets. These include aluminum dots and mixed bromine dots doped with K-shell (magnesium) emitters. Simultaneously time- and space-resolved K-shell and L-shell spectra have been measured and compared to dynamic model predictions. The electron density profiles are measured using holographic interferometry. Temperatures, densities, and ionization distributions are determined using K-shell and L-shell spectral techniques. Time and spatial gradients are resolved simultaneously using three diagnostics: a framing crystal x-ray spectrometer, an x-ray streaked crystal spectrometer with a spatial imaging slit, and a 4-frame holographic interferometer. Significant differences have been found between the interferometric and the model-dependent spectral measurements of plasma density. Predictions by new non-stationary L-shell models currently being developed are also presented. 14 refs., 10 figs

  2. Performance Assessment of Balloon-Borne Trace Gas Sounding with the Terahertz Channel of TELIS

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2018-02-01

    Full Text Available Short-term variations in the atmospheric environment over polar regions are attracting increasing attention with respect to the reliable analysis of ozone loss. Balloon-borne remote sensing instruments with good vertical resolution and flexible sampling density can act as a prototype to overcome the potential technical challenges in the design of new spaceborne atmospheric sensors and represent a valuable tool for validating spaceborne observations. A multi-channel cryogenic heterodyne spectrometer known as the TErahertz and submillimeter LImb Sounder (TELIS has been developed. It allows limb sounding of the upper troposphere and stratosphere (10–40 km within the far infrared (FIR and submillimeter spectral regimes. This paper describes and assesses the performance of the profile retrieval scheme for TELIS with a focus on the ozone (O3, hydrogen chloride (HCl, carbon monoxide (CO, and hydroxyl radical (OH measured during three northern polar campaigns in 2009, 2010, and 2011, respectively. The corresponding inversion diagnostics reveal that some forward/instrument model parameters play important roles in the total retrieval error. The accuracy of the radiometric calibration and the spectroscopic knowledge has a significant impact on retrieval at higher altitudes, whereas the pointing accuracy dominates the total error at lower altitudes. The TELIS retrievals achieve a vertical resolution of ∼2–3 km through most of the stratosphere below the balloon height. Dominant water vapor (H2O contamination and low abundances of the target species reduce the retrieval sensitivity at the lowermost altitudes measured by TELIS. An extensive comparison shows that the TELIS profiles are consistent with profiles obtained by other limb sounders. The comparison appears to be very promising, except for discrepancies in the upper troposphere due to numerical regularization. This study not only consolidates the validity of balloon-borne TELIS FIR measurements

  3. Optimized spectroscopic scheme for enhanced precision CO measurements with applications to urban source attribution

    Science.gov (United States)

    Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.

    2014-12-01

    Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.

  4. Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp

    International Nuclear Information System (INIS)

    Shah, M.L.; Suri, B.M.; Gupta, G.P.

    2015-01-01

    The HCD (Hollow Cathode Discharge) lamps have been used as a source of free atoms of any metal, controllable by direct current in the lamp. The plasma parameters including neutral species temperature, atomic excitation temperature and electron number density in a see-through type, homemade uranium hollow cathode discharge lamp with neon as a buffer gas have been investigated using optical emission spectroscopic techniques. The neutral species temperature has been measured using the Doppler broadening of a neon atomic spectral line. The atomic excitation temperature has been measured using the Boltzmann plot method utilizing uranium atomic spectral lines. The electron number density has been determined from the Saha-Boltzmann equation utilizing uranium atomic and ionic spectral lines. To the best of our knowledge, all these three plasma parameters are simultaneously measured for the first time in a uranium hollow cathode discharge lamp

  5. WSN-Based Space Charge Density Measurement System.

    Science.gov (United States)

    Deng, Dawei; Yuan, Haiwen; Lv, Jianxun; Ju, Yong

    2017-01-01

    It is generally acknowledged that high voltage direct current (HVDC) transmission line endures the drawback of large area, because of which the utilization of cable for space charge density monitoring system is of inconvenience. Compared with the traditional communication network, wireless sensor network (WSN) shows advantages in small volume, high flexibility and strong self-organization, thereby presenting great potential in solving the problem. Additionally, WSN is more suitable for the construction of distributed space charge density monitoring system as it has longer distance and higher mobility. A distributed wireless system is designed for collecting and monitoring the space charge density under HVDC transmission lines, which has been widely applied in both Chinese state grid HVDC test base and power transmission projects. Experimental results of the measuring system demonstrated its adaptability in the complex electromagnetic environment under the transmission lines and the ability in realizing accurate, flexible, and stable demands for the measurement of space charge density.

  6. Modeling the effect of reflection from metallic walls on spectroscopic measurements

    International Nuclear Information System (INIS)

    Zastrow, K.-D.; Keatings, S. R.; O'Mullane, M. G.; Marot, L.; Temmerman, G. de

    2008-01-01

    A modification of JET is presently being prepared to bring operational experience with ITER-like first wall (Be) and divertor (W) materials, geometry and plasma parameters. Reflectivity measurements of JET sample tiles have been performed and the data are used within a simplified model of the JET and ITER vessels to predict additional contributions to quantitative spectroscopic measurements. The most general method to characterize reflectivity is the bidirectional reflection distribution function (BRDF). For extended sources however, such as bremsstrahlung and edge emission of fuel and intrinsic impurities, the results obtained in the modeling are almost as accurate if the total reflectivity with ideal Lambertian angular dependence is used. This is in contrast to the experience in other communities, such as optical design, lighting design, or rendering who deal mostly with pointlike light sources. This result is so far based on a very limited set of measurements and will be reassessed when more detailed BRDF measurements of JET tiles have been made. If it is true it offers the possibility of in situ monitoring of the reflectivity of selected parts of the wall during exposure to plasma operation, while remeasurement of the BRDF is performed during interventions. For a closed vessel structure such as ITER, it is important to consider multiple reflections. This makes it more important to represent the whole of the vessel reasonably accurately in the model, which on the other hand is easier to achieve than for the more complex internal structure of JET. In both cases the dominant contribution is from the first reflection, and a detailed model of the areas intersected by lines of sight of diagnostic interest is required.

  7. Spectroscopic measurement of H(1S) and H2(v double-prime,J double-prime) in an H- ion source plasma

    International Nuclear Information System (INIS)

    Stutzin, G.C.

    1990-08-01

    Low pressure H 2 discharges have been used for some time as sources of H - ions. These discharges contain many different species of particles which interact with each other and with the walls of the discharge chamber. Models exist that predict the populations of the various species for given macroscopic discharge parameters. However, many of the cross sections and wall catalyzation coefficients are unknown or somewhat uncertain. Therefore, it is of interest to measure the populations of as many of these species as possible, in order to determine the validity of the models. These models predict that H - is created predominantly by the two-step process of vibrational excitation of hydrogen molecules followed by dissociative attachment of slow electrons to these vibrationally-excited hydrogen molecules. Many different collisional processes must be included in the models to explain the dependence of the various populations upon macroscopic parameters. This work presents results of spectroscopic measurements of the density and translational temperature of hydrogen atoms and of specific rotationally- and vibrationally-excited states of electronic ground-state H 2 , in a discharge optimized for H - production, as well as conventional measurements of the various charged species within the plasma. The spectroscopic measurements are performed directly by narrowband, single-photon absorption in the vacuum ultraviolet

  8. Radiation Measured for Chinese Satellite SJ-10 Space Mission

    Science.gov (United States)

    Zhou, Dazhuang; Sun, Yeqing; Zhang, Binquan; Zhang, Shenyi; Sun, Yueqiang; Liang, Jinbao; Zhu, Guangwu; Jing, Tao; Yuan, Bin; Zhang, Huanxin; Zhang, Meng; Wang, Wei; Zhao, Lei

    2018-02-01

    Space biological effects are mainly a result of space radiation particles with high linear energy transfer (LET); therefore, accurate measurement of high LET space radiation is vital. The radiation in low Earth orbits is composed mainly of high-energy galactic cosmic rays (GCRs), solar energetic particles, particles of radiation belts, the South Atlantic Anomaly, and the albedo neutrons and protons scattered from the Earth's atmosphere. CR-39 plastic nuclear track detectors sensitive to high LET are the best passive detectors to measure space radiation. The LET method that employs CR-39 can measure all the radiation LET spectra and quantities. CR-39 detectors can also record the incident directions and coordinates of GCR heavy ions that pass through both CR-39 and biosamples, and the impact parameter, the distance between the particle's incident point and the seed's spore, can then be determined. The radiation characteristics and impact parameter of GCR heavy ions are especially beneficial for in-depth research regarding space radiation biological effects. The payload returnable satellite SJ-10 provided an excellent opportunity to investigate space radiation biological effects with CR-39 detectors. The space bio-effects experiment was successfully conducted on board the SJ-10 satellite. This paper introduces space radiation in low Earth orbits and the LET method in radiation-related research and presents the results of nuclear tracks and biosamples hitting distributions of GCR heavy ions, the radiation LET spectra, and the quantities measured for the SJ-10 space mission. The SJ-10 bio-experiment indicated that radiation may produce significant bio-effects.

  9. Open problems in Banach spaces and measure theory | Rodríguez ...

    African Journals Online (AJOL)

    We collect several open questions in Banach spaces, mostly related to measure theoretic aspects of the theory. The problems are divided into five categories: miscellaneous problems in Banach spaces (non-separable Lp spaces, compactness in Banach spaces, w*-null sequences in dual spaces), measurability in Banach ...

  10. [Tick-borne diseases].

    Science.gov (United States)

    Tissot Dupont, H; Raoult, D

    1993-05-01

    Due to their worldwide distribution, from hottest to coldest climates, and due to their behaviour, ticks are capable of transmitting numerous human and animal bacterial viral or parasitous diseases. Depending on the disease, they play the role of biological vector or intermediate host. In France, six tick borne diseases are of epidemiologic importance. Q fever (not often tick-borne), Mediterranean Spotted Fever, Lyme disease, Turalemia (human and animal), Babesiosis and Tick-borne Viral Encephalitis.

  11. Impact of Neighborhood Environments on Health Consciousness, Information Seeking, and Attitudes among US-Born and Non-US-Born Free Clinic Patients.

    Science.gov (United States)

    Kamimura, Akiko; Ashby, Jeanie; Jess, Allison; Trinh, Ha Ngoc; Nourian, Maziar M; Finlayson, Sarah Yukie; Prudencio, Liana; Reel, Justine J

    2015-12-01

    This study examined the impact of neighborhood environments on health consciousness, information seeking, and attitudes among uninsured free clinic patients to better understand the specific needs of the population for health promotion and prevention efforts. US-born English-speaking, non-US-born English-speaking, and Spanish-speaking free clinic patients completed a self-administered survey using reliable measures in autumn 2014 (N = 769). The results of this study suggest that social cohesion is positively associated with health consciousness, information seeking, and attitudes. Lower levels of available healthy food in the community were associated with higher levels of health consciousness. Although Spanish speakers reported lower levels of the availability of healthy food, social cohesion, and access to the Internet or text messaging compared with US-born or non-US-born English speakers, they were more likely to be health conscious and have higher levels of health information seeking. Spanish speakers as well as non-US-born English speakers, were more likely to attend health education classes compared with US-born English speakers. Health education programs for free clinic patients should include strategies to increase social cohesion. Health education programs should consider the diverse needs of these individual populations to maximize the effectiveness of the programs for free clinic patients.

  12. Laboratory Investigation of Space and Planetary Dust Grains

    Science.gov (United States)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  13. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    International Nuclear Information System (INIS)

    Stottmeister, Alexander; Thiemann, Thomas

    2016-01-01

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems, which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).

  14. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, Kyle S.; Ahn, Christopher P.; Bolton, Adam S. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J.; Bailey, Stephen [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Anderson, Scott F.; Bhardwaj, Vaishali [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Aubourg, Eric; Bautista, Julian E. [APC, University of Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite (France); Barkhouser, Robert H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Beifiori, Alessandra [Max-Planck-Institut fuer Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching (Germany); Berlind, Andreas A. [Department of Physics and Astronomy, Vanderbilt University, VU Station 1807, Nashville, TN 37235 (United States); Bizyaev, Dmitry; Brewington, Howard [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Blake, Cullen H. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blomqvist, Michael [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Borde, Arnaud [CEA, Centre de Saclay, Irfu/SPP, F-91191 Gif-sur-Yvette (France); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Brandt, W. N., E-mail: kdawson@astro.utah.edu [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); and others

    2013-01-01

    The Baryon Oscillation Spectroscopic Survey (BOSS) is designed to measure the scale of baryon acoustic oscillations (BAO) in the clustering of matter over a larger volume than the combined efforts of all previous spectroscopic surveys of large-scale structure. BOSS uses 1.5 million luminous galaxies as faint as i = 19.9 over 10,000 deg{sup 2} to measure BAO to redshifts z < 0.7. Observations of neutral hydrogen in the Ly{alpha} forest in more than 150,000 quasar spectra (g < 22) will constrain BAO over the redshift range 2.15 < z < 3.5. Early results from BOSS include the first detection of the large-scale three-dimensional clustering of the Ly{alpha} forest and a strong detection from the Data Release 9 data set of the BAO in the clustering of massive galaxies at an effective redshift z = 0.57. We project that BOSS will yield measurements of the angular diameter distance d{sub A} to an accuracy of 1.0% at redshifts z = 0.3 and z = 0.57 and measurements of H(z) to 1.8% and 1.7% at the same redshifts. Forecasts for Ly{alpha} forest constraints predict a measurement of an overall dilation factor that scales the highly degenerate D{sub A} (z) and H {sup -1}(z) parameters to an accuracy of 1.9% at z {approx} 2.5 when the survey is complete. Here, we provide an overview of the selection of spectroscopic targets, planning of observations, and analysis of data and data quality of BOSS.

  15. Ultrasound Measurements of Thyroid Gland Volume at 36 Weeks' Corrected Gestational Age in Extremely Preterm Infants Born before 28 Weeks' Gestation.

    Science.gov (United States)

    Ng, Sze May; Turner, Mark A; Avula, Shivaram

    2018-01-01

    Thyroid ultrasound is a non-invasive imaging tool and provides good evaluation of thyroid anatomy, location, vascularisation, and echogenicity. The aim of this study was to assess thyroid function and thyroid volume in extremely preterm infants born before 28 weeks' gestation evaluated at 36 weeks' corrected gestational age (CGA) compared to term infants' normative data in the literature. In this largest prospective UK study of extremely premature infants born at less than 28 weeks' gestation, thyroid volume measurement was assessed at 36 weeks' CGA. Fifty-five extremely preterm infants (28 males) who were born before 28 weeks' gestation were recruited to the study. All infants had ultrasound assessment of the thyroid gland at 36 weeks' CGA. We also prospectively measured thyroid stimulating hormone (TSH) and free thyroxine (FT 4 ) in all infants at the time of recruitment (within 5 days of birth), at days 14, 21, and 28, and at 36 weeks' CGA. The mean thyroid volume was measured at 0.57 mL (SD ±0.18). There was no association between mean thyroid volume and thyroid function (TSH or FT 4 ). No associations were found between mean thyroid volume and gestation or birth weight in these infants. Our findings provide a reference range with a mean thyroid volume of 0.57 mL (SD ±0.18) in this extremely preterm age group if less than 28 weeks' gestation. Thyroid volume at birth can vary from country to country due to variations in iodine intake as well as gestational age.

  16. Measurement of air dose rates over a wide area around the Fukushima Dai-ichi Nuclear Power Plant through a series of car-borne surveys.

    Science.gov (United States)

    Andoh, Masaki; Nakahara, Yukio; Tsuda, Shuichi; Yoshida, Tadayoshi; Matsuda, Norihiro; Takahashi, Fumiaki; Mikami, Satoshi; Kinouchi, Nobuyuki; Sato, Tetsuro; Tanigaki, Minoru; Takamiya, Koichi; Sato, Nobuhiro; Okumura, Ryo; Uchihori, Yukio; Saito, Kimiaki

    2015-01-01

    A series of car-borne surveys using the Kyoto University RAdiation MApping (KURAMA) and KURAMA-II survey systems has been conducted over a wide area in eastern Japan since June 2011 to evaluate the distribution of air dose rates around the Fukushima Dai-ichi Nuclear Power Plant and to evaluate the time-dependent trend of decrease in air dose rates. An automated data processing system for the KURAMA-II system was established, which enabled rapid analysis of large amounts of data obtained using about 100 KURAMA-II units. The initial data used for evaluating the migration status of radioactive cesium were obtained in the first survey, followed by other car-borne surveys conducted over more extensive and wider measurement ranges. By comparing the measured air dose rates obtained in each survey (until December 2012), the decreasing trend of air dose rates measured through car-borne surveys was found to be more pronounced than those expected on the basis of the physical decay of radioactive cesium and of the air dose rates measured using NaI (Tl) survey meters in the areas surrounding the roadways. In addition, it was found that the extent of decrease in air dose rates depended on land use, wherein it decreased faster for land used as building sites than for forested areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Nuclear power in space

    International Nuclear Information System (INIS)

    Aftergood, S.; Hafemeister, D.W.; Prilutsky, O.F.; Rodionov, S.N.; Primack, J.R.

    1991-01-01

    Nuclear reactors have provided energy for satellites-with nearly disastrous results. Now the US government is proposing to build nuclear-powered boosters to launch Star Wars defenses. These authors represent scientific groups that are opposed to the use of nuclear power in near space. The authors feel that the best course for space-borne reactors is to ban them from Earth orbit and use them in deep space

  18. Innovative Born Globals

    DEFF Research Database (Denmark)

    Kraus, Sascha; Brem, Alexander; Muench, Miriam

    2017-01-01

    Internationalization is a hot topic in innovation management, whereby the phenomenon of “Born Globals” is still limited to research in the domains of Entrepreneurship and International Management. As business model design plays a key role for Born Globals, we link these two concepts. For this, we...... propose hypotheses about the influence of efficiency-centered and novelty-entered business model design on international firm performance. To test these hypotheses, we performed a quantitative survey with 252 founders of international companies in Germany, Switzerland and Liechtenstein. Additionally, we...... gained further insights through a case study analysis of 11 Born Globals. The results show that business model design matters to international firm performance and the business model design of Born Globals tends to be more efficiency-centered. Based on a multiple case study, we analyzed business models...

  19. Internalized racism and mental health among African-Americans, US-born Caribbean Blacks, and foreign-born Caribbean Blacks.

    Science.gov (United States)

    Mouzon, Dawne M; McLean, Jamila S

    2017-02-01

    The tripartite model of racism includes personally mediated racism, institutionalized racism, and the less-oft studied internalized racism. Internalized racism - or negative beliefs about one's racial group - results from cultural racism that is endemic in American society. In this project, we studied whether these negative stereotypes are associated with mental health among African-Americans and Caribbean Blacks. Using secondary data from the National Survey of American Life, we investigated the association between internalized racism and mental health (measured by depressive symptoms and serious psychological distress (SPD)) among these two groups. We also explored whether ethnicity/nativity and mastery moderate the association between internalized racism and mental health among African-Americans and Caribbean Blacks. Internalized racism was positively associated with depressive symptoms and SPD among all Black subgroups. However, internalized racism was a weaker predictor of SPD among foreign-born Caribbean Blacks than US-born Caribbean Blacks and US-born African-Americans. Additionally, higher mastery was protective against distress associated with internalized racism. Internalized racism is an important yet understudied determinant of mental health among Blacks. Future studies should take into account additional heterogeneity within the Black population (e.g. African-born individuals) and other potential protective mechanisms in addition to mastery (e.g. self-esteem and racial identity).

  20. Mathematics ability and related skills in preschoolers born very preterm.

    Science.gov (United States)

    Hasler, Holly M; Akshoomoff, Natacha

    2017-12-12

    Children born very preterm (VPT) are at risk for academic, behavioral, and/or emotional problems. Mathematics is a particular weakness and better understanding of the relationship between preterm birth and early mathematics ability is needed, particularly as early as possible to aid in early intervention. Preschoolers born VPT (n = 58) and those born full term (FT; n = 29) were administered a large battery of measures within 6 months of beginning kindergarten. A multiple-mediation model was utilized to characterize the difference in skills underlying mathematics ability between groups. Children born VPT performed significantly worse than FT-born children on a measure of mathematics ability as well as full-scale IQ, verbal skills, visual-motor integration, phonological awareness, phonological working memory, motor skills, and executive functioning. Mathematics was significantly correlated with verbal skills, visual-motor integration, phonological processing, and motor skills across both groups. When entered into the mediation model, verbal skills, visual-motor integration, and phonological awareness were significant mediators of the group differences. This analysis provides insights into the pre-academic skills that are weak in preschoolers born VPT and their relationship to mathematics. It is important to identify children who will have difficulties as early as possible, particularly for VPT children who are at higher risk for academic difficulties. Therefore, this model may be used in evaluating VPT children for emerging difficulties as well as an indicator that if other weaknesses are found, an assessment of mathematics should be conducted.

  1. U.S.-born compared to non-U.S.-born abused women: analysis of baseline data.

    Science.gov (United States)

    Montalvo-Liendo, Nora; Koci, Anne; McFarlane, Judith; Gilroy, Heidi; Maddoux, John

    2013-01-01

    It is evident from recent studies that a woman's citizenship status does not exempt her from exposure to partner violence. The purpose of this article was to examine if social support, self-efficacy, and marginalization of abused women differ based on U.S. born compared to non-U.S. born with and without documentation. The findings suggest that women who were born in the United States had significantly higher self-efficacy scores compared to non-U.S.-born women without documents. There were no significant differences in social support among abused women who are U.S. born compared to non-U.S. born with and without documentation. In addition, women who were not born in the United States and did not have documents had higher marginalization.

  2. Calibration Efforts and Unique Capabilities of the HST Space Telescope Imaging Spectrograph

    Science.gov (United States)

    Monroe, TalaWanda R.; Proffitt, Charles R.; Welty, Daniel; Branton, Doug; Carlberg, Joleen K.; debes, John Henry; Lockwood, Sean; Riley, Allyssa; Sohn, Sangmo Tony; Sonnentrucker, Paule G.; Walborn, Nolan R.; Jedrzejewski, Robert I.

    2018-01-01

    The Space Telescope Imaging Spectrograph (STIS) continues to offer the astronomy community the ability to carry out innovative UV and optical spectroscopic and imaging studies, two decades after its deployment on the Hubble Space Telescope (HST). Most notably, STIS provides spectroscopy in the FUV and NUV, including high spectral resolution echelle modes, imaging in the FUV, optical spectroscopy, and coronagraphic capabilities. Additionally, spatial scanning on the CCD with the long-slits is now possible to enable very high S/N spectroscopic observations without saturation while mitigating telluric and fringing concerns in the far red and near-IR. This new mode may especially benefit the diffuse interstellar bands and exoplanet transiting communities. We present recent calibration efforts for the instrument, including work to optimize the calibration of the echelle spectroscopic modes by improving the flux agreement of overlapping spectral orders affected by changes in the grating blaze function since HST Servicing Mission 4. We also discuss considerations to maintain the wavelength precision of the spectroscopic modes, and the current capabilities of CCD spectroscopic spatial trails.

  3. Dose measurements in space by the Hungarian Pille TLD system

    International Nuclear Information System (INIS)

    Apathy, I.; Deme, S.; Feher, I.; Akatov, Y.A.; Reitz, G.; Arkhanguelski, V.V.

    2002-01-01

    Exposure of crew, equipment, and experiments to the ambient space radiation environment in low Earth orbit poses one of the most significant problems to long-term space habitation. Accurate dose measurement has become increasingly important during the assembly (extravehicular activity (EVA)) and operation of space stations such as on Space Station Mir. Passive integrating detector systems such as thermoluminescent dosemeters (TLDs) are commonly used for dosimetry mapping and personal dosimetry on space vehicles. The well-known advantages of passive detector systems are their independence of power supply, small dimensions, high sensitivity, good stability, wide measuring range, resistance to environmental effects, and relatively low cost. Nevertheless, they have the general disadvantage that for evaluation purposes they need a laboratory or large--in mass and power consumption--terrestrial equipment, and consequently they cannot provide time-resolved dose data during long-term space flights. KFKI Atomic Energy Research Institute (KFKI AEKI) has developed and manufactured a series of thermoluminescent dosemeter systems for measuring cosmic radiation doses in the 10 μGy to 10 Gy range, consisting of a set of bulb dosemeters and a compact, self-contained, TLD reader suitable for on-board evaluation of the dosemeters. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations as well as on the Space Shuttle. A detailed description of the system is given and the comprehensive results of these measurements are summarised

  4. (Sub)millimeter emission lines of molecules in born-again stars

    Science.gov (United States)

    Tafoya, D.; Toalá, J. A.; Vlemmings, W. H. T.; Guerrero, M. A.; De Beck, E.; González, M.; Kimeswenger, S.; Zijlstra, A. A.; Sánchez-Monge, Á.; Treviño-Morales, S. P.

    2017-04-01

    Context. Born-again stars provide a unique possibility to study the evolution of the circumstellar envelope of evolved stars in human timescales. Up until now, most of the observations of the circumstellar material in these stars have been limited to studying the relatively hot gas and dust. In other evolved stars, the emission from rotational transitions of molecules, such as CO, is commonly used to study the cool component of their circumstellar envelopes. Thus, the detection and study of molecular gas in born-again stars is of great importance when attempting to understand their composition and chemical evolution. In addition, the molecular emission is an invaluable tool for exploring the physical conditions, kinematics, and formation of asymmetric structures in the circumstellar envelopes of these evolved stars. However, up until now, all attempts to detect molecular emission from the cool material around born-again stars have failed. Aims: We searched for emission from rotational transitions of molecules in the hydrogen-deficient circumstellar envelopes of born-again stars to explore the chemical composition, kinematics, and physical parameters of the relatively cool gas. Methods: We carried out observations using the APEX and IRAM 30 m telescopes to search for molecular emission toward four well-studied born-again stars, V4334 Sgr, V605 Aql, A30, and A78, that are thought to represent an evolutionary sequence. Results: For the first time, we detected emission from HCN and H13CN molecules toward V4334 Sgr, and CO emission in V605 Aql. No molecular emission was detected above the noise level toward A30 and A78. The detected lines exhibit broad linewidths ≳150 km s-1, which indicates that the emission comes from gas ejected during the born-again event, rather than from the old planetary nebula. A first estimate of the H12CN/H13CN abundance ratio in the circumstellar environment of V4334 Sgr is ≈3, which is similar to the value of the 12C/13C ratio measured

  5. Locating and classification of structure-borne sound occurrence using wavelet transformation

    International Nuclear Information System (INIS)

    Winterstein, Martin; Thurnreiter, Martina

    2011-01-01

    For the surveillance of nuclear facilities with respect to detached or loose parts within the pressure boundary structure-borne sound detector systems are used. The impact of loose parts on the wall causes energy transfer to the wall that is measured a so called singular sound event. The run-time differences of sound signals allow a rough locating of the loose part. The authors performed a finite element based simulation of structure-borne sound measurements using real geometries. New knowledge on sound wave propagation, signal analysis and processing, neuronal networks or hidden Markov models were considered. Using the wavelet transformation it is possible to improve the localization of structure-borne sound events.

  6. Optical properties of LiGaS2: an ab initio study and spectroscopic ellipsometry measurement

    International Nuclear Information System (INIS)

    Atuchin, V V; Lin, Z S; Isaenko, L I; Lobanov, S I; Kesler, V G; Kruchinin, V N

    2009-01-01

    Electronic and optical properties of lithium thiogallate crystal, LiGaS 2 , have been investigated by both experimental and theoretical methods. The plane-wave pseudopotential method based on DFT theory has been used for band structure calculations. The electronic parameters of Ga 3d orbitals have been corrected by the DFT+U methods to be consistent with those measured with x-ray photoemission spectroscopy. Evolution of optical constants of LiGaS 2 over a wide spectral range was determined by developed first-principles theory and dispersion curves were compared with optical parameters defined by spectroscopic ellipsometry in the photon energy range 1.2-5.0 eV. Good agreement has been achieved between theoretical and experimental results.

  7. Four Dimensional Trace Space Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, M.

    2005-02-10

    Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.

  8. Differences in the self-reported racism experiences of US-born and foreign-born Black pregnant women

    OpenAIRE

    Dominguez, Tyan Parker; Strong, Emily Ficklin; Krieger, Nancy; Gillman, Matthew W.; Rich-Edwards, Janet W.

    2009-01-01

    Differential exposure to minority status stressors may help explain differences in United States (US)-born and foreign-born Black women’s birth outcomes. We explored self-reports of racism recorded in a survey of 185 US-born and 114 foreign-born Black pregnant women enrolled in Project Viva, a prospective cohort study of pregnant women in Boston, Massachusetts, USA. Self-reported prevalence of personal racism and group racism was significantly higher among US-born than foreign-born Black preg...

  9. When L1 of a vector measure is an AL-space

    OpenAIRE

    Curbera Costello, Guillermo

    1994-01-01

    We consider the space of real functions which are integrable with respect to a countably additive vector measure with values in a Banach space. In a previous paper we showed that this space can be any order continuous Banach lattice with weak order unit. We study a priori conditions on the vector measure in order to guarantee that the resulting L is order isomorphic to an AL-space. We prove that for separable measures with no atoms there exists a Co-valued measure that generates the same spac...

  10. Measurements and modeling of 16O12C17O spectroscopic parameters at 2 μm

    Science.gov (United States)

    Jacquemart, David; Sung, Keeyoon; Coleman, Max; Crawford, Timothy; Brown, Linda R.; Mantz, Arlan W.; Smith, Mary Ann H.

    2017-12-01

    The lack of spectroscopic measurements for rare CO2 isotopologues was the main motivation of this work. In our present study we report line intensity measurements for 16O12C17O made with a high resolution Fourier transform spectrometer (Bruker IFS-125HR) and a 21 m path cryogenic Herriott cell at Jet Propulsion Laboratory. For this, a 17O-enriched CO2 gas sample was used, which comes as a mixture of primary and several minor CO2 isotopologues. The mole fraction of the 16O12C17O isotopologue in the mixture was determined to be 0.3991 by mass spectrometry from a Stable Isotope Ratio Mass Spectrometer (SIRMS) under stochastic distribution assumption at thermal equilibrium. Since the collisional narrowing effect was observed, the Rautian molecular line shape profile was systematically adopted instead of the Voigt profile. Absolute line positions were also investigated by performing a wavenumber calibration based on CO, HCl and a few well-known 16O12C16O transitions. Finally, around 1000 transitions were studied between 4604 and 5126 cm-1 involving 15 bands of the 16O12C17O isotopologue. All the measured line intensities were renormalized to be the values for 100% pure isotopologue sample. Transition dipole moments and Herman-Wallis factors were derived enabling a global comparison with theoretical calculations and predictions for the 15 bands of the 16O12C17O isotopologue. For the measured line positions, the absolute accuracy is around 2×10-4 cm-1. The accuracies of retrieved line intensities are 2 - 5% for five cold and two hot bands, and 6-30% for eight other weaker hot bands. Results from this work were in a good agreement with HITRAN 2012 for positions, but showed rather significant discrepancies for line intensities. An extensive line list was generated from new experimental measurements in order to improve and validate spectroscopic knowledge of 12C16O17O isotopologue in support of atmospheric remote sensing for the Earth (e.g., OCO-2 mission), Mars and Venus.

  11. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  12. Benchmarking of 3D space charge codes using direct phase space measurements from photoemission high voltage dc gun

    Directory of Open Access Journals (Sweden)

    Ivan V. Bazarov

    2008-10-01

    Full Text Available We present a comparison between space charge calculations and direct measurements of the transverse phase space of space charge dominated electron bunches from a high voltage dc photoemission gun followed by an emittance compensation solenoid magnet. The measurements were performed using a double-slit emittance measurement system over a range of bunch charge and solenoid current values. The data are compared with detailed simulations using the 3D space charge codes GPT and Parmela3D. The initial particle distributions were generated from measured transverse and temporal laser beam profiles at the photocathode. The beam brightness as a function of beam fraction is calculated for the measured phase space maps and found to approach within a factor of 2 the theoretical maximum set by the thermal energy and the accelerating field at the photocathode.

  13. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    International Nuclear Information System (INIS)

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-01-01

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T eff ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  14. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    Energy Technology Data Exchange (ETDEWEB)

    Gianninas, A.; Kilic, Mukremin [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Dufour, P.; Bergeron, P. [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec H3C 3J7 (Canada); Brown, Warren R. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Hermes, J. J., E-mail: alexg@nhn.ou.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  15. Preschool abilities of children born preterm and low weight

    Directory of Open Access Journals (Sweden)

    Sasha A. Martínez-Espiet

    2018-10-01

    Full Text Available The purpose of this study was to evaluate the development among a group of pre-school children born premature and with low weight. We evaluated a group of four years old children; 20 children born prematurely and 20 children born after a full gestation and desired weight, using the Beery-Buktenica visual-motor integration test. We also administered the Ages and Stages Questionnaire (ASQ-3 development test to all 40 mothers. Statistical analysis was performed using student t test for independent groups. The group of children born prematurely scored significantly lower on tests measuring visual perception skills (µ1 83.65 ; µ2 93.7 (p = 0.0001, visual-motor integration (µ1 93.6 ; µ2 104.8 (p = 0.001 and fine motor (µ1 36.00 ; µ2 44.25 (p=0.033 (p = 0.033, when compared to the group of children born after a full term. This study suggests that premature low weight born children have lower performance in the sensory-motor development during the preschool years. These disadvantages go unnoticed and may represent future delays on school tasks that require these skills. It is important to promote an early assessment and environmental stimulation among this population even in the absence of risk indicators.

  16. Spectrophotometric determination of substrate-borne polyacrylamide.

    Science.gov (United States)

    Lu, Jianhang; Wu, Laosheng

    2002-08-28

    Polyacrylamides (PAMs) have wide application in many industries and in agriculture. Scientific research and industrial applications manifested a need for a method that can quantify substrate-borne PAM. The N-bromination method (a PAM analytical technique based on N-bromination of amide groups and spectrophotometric determination of the formed starch-triiodide complex), which was originally developed for determining PAM in aqueous solutions, was modified to quantify substrate-borne PAM. In the modified method, the quantity of substrate-borne PAM was converted to a concentration of starch-triiodide complex in aqueous solution that was then measured by spectrophotometry. The method sensitivity varied with substrates due to sorption of reagents and reaction intermediates on the substrates. Therefore, separate calibration for each substrate was required. Results from PAM samples in sand, cellulose, organic matter burnt soils, and clay minerals showed that this method had good accuracy and reproducibility. The PAM recoveries ranged from 95.8% to 103.7%, and the relative standard deviations (n = 4) were application and facilitating PAM-related research.

  17. Social development of children born very preterm: a systematic review.

    Science.gov (United States)

    Ritchie, Kirsten; Bora, Samudragupta; Woodward, Lianne J

    2015-10-01

    To review systematically studies examining the development of social competence in children born very preterm (VPT) (gestation skills. Twenty-three studies were included. Seven focused on social competence and another 16 examined social competence within a range of outcomes. Study quality was low. Limitations included reliance on single informant data, cross-sectional measurement, use of brief screening tools, absence of child or peer report, and no conceptual model. In terms of social adjustment, 16 out of 21 studies found children born VPT had more peer problems and social withdrawal. Findings of social performance were mixed, with some studies suggesting differences in prosocial behavior (4/14) and others not. Social skills were assessed in four studies and showed children born VPT had poorer skills than children born at term. Predictors of social competence included gestational age, neonatal brain abnormalities, and family socio-economic status. Children born VPT have poorer social competence. These difficulties emerge early and persist throughout childhood. © 2015 Mac Keith Press.

  18. A SPECTROSCOPIC CATALOG OF THE BRIGHTEST (J < 9) M DWARFS IN THE NORTHERN SKY{sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Lepine, Sebastien; Wilde, Matthew; Rojas-Ayala, Barbara; Cruz, Kelle L. [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Hilton, Eric J.; Mann, Andrew W. [Institute for Astrophysics, University of Hawaii, Honolulu, HI 96822 (United States); Gaidos, Eric, E-mail: lepine@amnh.org, E-mail: brojas-ayala@amnh.org, E-mail: mwilde@amnh.org, E-mail: mshara@amnh.org, E-mail: hilton@ifa.hawaii.edu, E-mail: amann@ifa.hawaii.edu, E-mail: gaidos@hawaii.edu, E-mail: kellecruz@gmail.com [Department of Geology and Geophysics, University of Hawaii, 1680 East-West Road, Honolulu, HI 96822 (United States)

    2013-04-15

    plateau in the M1-M3 subtype range, in agreement with model fits of infrared spectra but at odds with photometric determinations of T{sub eff}. Existing geometric parallax measurements are extracted from the literature for 624 stars, and are used to determine spectroscopic and photometric distances for all the other stars. Active dwarfs are identified from measurements of H{alpha} equivalent widths, and we find a strong correlation between H{alpha} emission in M dwarfs and detected X-ray emission from ROSAT and/or a large UV excess in the GALEX point source catalog. We combine proper motion data and photometric distances to evaluate the (U, V, W) distribution in velocity space, which is found to correlate tightly with the velocity distribution of G dwarfs in the solar neighborhood. However, active stars show a smaller dispersion in their space velocities, which is consistent with those stars being younger on average. Our catalog will be most useful to guide the selection of the best M dwarf targets for exoplanet searches, in particular those using high-precision radial velocity measurements.

  19. Infrared spectroscopic measurement of skin hydration and sebum levels and comparison to corneometer and sebumeter

    Science.gov (United States)

    Ezerskaia, Anna; Pereira, S. F.; Urbach, H. P.; Varghese, Babu

    2016-05-01

    Skin health characterized by a system of water and lipids in Stratum Corneum provide protection from harmful external elements and prevent trans-epidermal water loss. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of skin health and plays a central role in protecting and preserving skin integrity. In this manuscript we present an infrared spectroscopic method for simultaneous and quantitative measurement of skin hydration and sebum levels utilizing differential detection with three wavelengths 1720, 1750, and 1770 nm, corresponding to the lipid vibrational bands that lie "in between" the prominent water absorption bands. The skin sebum and hydration values on the forehead under natural conditions and its variations to external stimuli were measured using our experimental set-up. The experimental results obtained with the optical set-up show good correlation with the results obtained with the commercially available instruments Corneometer and Sebumeter.

  20. One-stage tooth-borne distraction versus two stage bone-borne distraction in surgically assisted maxillary expansion (SARME).

    Science.gov (United States)

    Seeberger, Robin; Abe-Nickler, Dorothee; Hoffmann, Jürgen; Kunzmann, Kevin; Zingler, Sebastian

    2015-12-01

    To evaluate and compare the effects of tooth-borne and bone-borne distraction devices in surgically assisted maxillary expansion (SARME) on dental and skeletal structures. A sample of 33 skeletally mature patients with transverse maxillary deficiencies was examined with cone beam computed tomography (CBCT) before and 3 months after surgery. Fourteen patients were treated with tooth-borne devices and 19 patients with bone-borne devices. Dental crown expansion in the first premolars did not differ significantly between the two groups, and median expansion was 5.55 mm (interquartile range [IQR] 5.23) in the tooth-borne device group and 4.6 mm (IQR 3.4) in the bone-borne device group. In the first molars, crown expansion and lateral tipping were significantly greater in the tooth-borne device group (P ≤ .02). The median skeletal nasal isthmus increase was significantly more in the bone-borne device group at 3.0 mm than in the tooth-borne device group at 0.98 mm (P ≤ .02). Both tooth-borne and bone-borne devices are effective treatment modalities to correct maxillary transverse deficiencies. Bone-borne devices produced greater widening of the skeletal nasal floor and fewer dental side effects in the first molars. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The relationship between sleep problems and working memory in children born very preterm.

    Science.gov (United States)

    McCann, Marie; Bayliss, Donna M; Anderson, Mike; Campbell, Catherine; French, Noel; McMichael, Judy; Reid, Corinne; Bucks, Romola S

    2018-01-01

    In two studies, the relationship between sleep and working memory performance was investigated in children born very preterm (i.e., gestation less than 32 weeks) and the possible mechanisms underlying this relationship. In Study 1, parent-reported measures of snoring, night-time sleep quality, and daytime sleepiness were collected on 89 children born very preterm aged 6 to 7 years. The children completed a verbal working memory task, as well as measures of processing speed and verbal storage capacity. Night-time sleep quality was found to be associated with verbal working memory performance over and above the variance associated with individual differences in processing speed and storage capacity, suggesting that poor sleep may have an impact on the executive component of working memory. Snoring and daytime sleepiness were not found to be associated with working memory performance. Study 2 introduced a direct measure of executive functioning and examined whether sleep problems would differentially impact the executive functioning of children born very preterm relative to children born to term. Parent-reported sleep problems were collected on 43 children born very preterm and 48 children born to term (aged 6 to 9 years). Problematic sleep was found to adversely impact executive functioning in the very preterm group, while no effect of sleep was found in the control group. These findings implicate executive dysfunction as a possible mechanism by which problematic sleep adversely impacts upon cognition in children born very preterm, and suggest that sleep problems can increase the cognitive vulnerability already experienced by many of these children.

  2. Measuring the Microlensing Parallax from Various Space Observatories

    Science.gov (United States)

    Bachelet, E.; Hinse, T. C.; Street, R.

    2018-05-01

    A few observational methods allow the measurement of the mass and distance of the lens-star for a microlensing event. A first estimate can be obtained by measuring the microlensing parallax effect produced by either the motion of the Earth (annual parallax) or the contemporaneous observation of the lensing event from two (or more) observatories (space or terrestrial parallax) sufficiently separated from each other. Further developing ideas originally outlined by Gould as well as Mogavero & Beaulieu, we review the possibility of measuring systematically the microlensing parallax using a telescope based on the Moon surface and other space-based observing platforms, including the upcoming WFIRST space-telescope. We first generalize the Fisher matrix formulation and present results demonstrating the advantage for each observing scenario. We conclude by outlining the limitation of the Fisher matrix analysis when submitted to a practical data modeling process. By considering a lunar-based parallax observation, we find that parameter correlations introduce a significant loss in detection efficiency of the probed lunar parallax effect.

  3. Absolute continuity of autophage measures on finite-dimensional vector spaces

    Energy Technology Data Exchange (ETDEWEB)

    Raja, C R.E. [Stat-Math Unit, Indian Statistical Institute, Bangalore (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: creraja@isibang.ac.in

    2002-06-01

    We consider a class of measures called autophage which was introduced and studied by Szekely for measures on the real line. We show that the autophage measures on finite-dimensional vector spaces over real or Q{sub p} are infinitely divisible without idempotent factors and are absolutely continuous with bounded continuous density. We also show that certain semistable measures on such vector spaces are absolutely continuous. (author)

  4. A 2.5-dimensional method for the prediction of structure-borne low-frequency noise from concrete rail transit bridges.

    Science.gov (United States)

    Li, Qi; Song, Xiaodong; Wu, Dingjun

    2014-05-01

    Predicting structure-borne noise from bridges subjected to moving trains using the three-dimensional (3D) boundary element method (BEM) is a time consuming process. This paper presents a two-and-a-half dimensional (2.5D) BEM-based procedure for simulating bridge-borne low-frequency noise with higher efficiency, yet no loss of accuracy. The two-dimensional (2D) BEM of a bridge with a constant cross section along the track direction is adopted to calculate the spatial modal acoustic transfer vectors (MATVs) of the bridge using the space-wave number transforms of its 3D modal shapes. The MATVs calculated using the 2.5D method are then validated by those computed using the 3D BEM. The bridge-borne noise is finally obtained through the MATVs and modal coordinate responses of the bridge, considering time-varying vehicle-track-bridge dynamic interaction. The presented procedure is applied to predict the sound pressure radiating from a U-shaped concrete bridge, and the computed results are compared with those obtained from field tests on Shanghai rail transit line 8. The numerical results match well with the measured results in both time and frequency domains at near-field points. Nevertheless, the computed results are smaller than the measured ones for far-field points, mainly due to the sound radiation from adjacent spans neglected in the current model.

  5. The SPHEREx All-Sky Spectroscopic Survey

    Science.gov (United States)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Measurement of parapharyngeal space using CT images

    International Nuclear Information System (INIS)

    Ichimura, Keiichi; Kase, Yasuhiro; Iinuma, Toshitaka

    1991-01-01

    Parapharyngeal space can be defined as a potential space surrounded by deglutitional and masticator muscles and their covering, superficial and middle layer of deep cervical fascia. Parapharyngeal space has traditionally been divided by styloid process and fascia of tensor veli palatini muscle (nasopharyngeal level) or fascia of stylopharyngeus muscle (oropharyngeal level) into two compartments, prestyloid and poststyloid spaces. The latter is often called as carotid space. Prestyloid portion exclusively contains fat tissue, which yields hypoabsorption area in CT films and high density area in MRI. In most of papers in radiological journals, the term of parapharyngeal space is regarded as its prestyloid portion which is clearly identified. Axial CT images of 144 patients without any naso- or oropharyngeal lesions were analyzed. Two reference levels of nasopharynx were adopted for the study. The upper level passes through the plane of fossa of Rosenmuller, and the lower reference level transects soft palate. The following parameters of the space were measured; Length and width of the whole space, length and width of prestyloid fatty space, and furthermore, width of pre- and poststyloid space, that were divided by a imaginary line pararell to the axis of the whole space (the upper level); Length and width of the whole space, length of base and height of a triangle of the prestyloid part (the lower level). While parapharyngeal space was symmmetrical in the upper level, the rate of asymmetry amounted to a fourth in the lower level. Prestyloid space was broader than poststyloid one in the upper level. Men were dominant in length of the space in both the upper and the lower level and in length of the base of fatty space in the lower level. There was no difference between any age groups other than in fatty area in the lower level. Teens tended to be narrow, while 60's and older were wide. (author)

  7. Progress toward a microsecond duration, repetitive, intense-ion beam for active spectroscopic measurements on ITER

    International Nuclear Information System (INIS)

    Davis, H.A.; Bartsch, R.R.; Barnes, C.W.

    1996-01-01

    The authors describe the design of an intense, pulsed, repetitive, neutral beam based on magnetically insulated diode technology for injection into ITER for spectroscopic measurements of thermalizing alpha particle and thermal helium density profiles, ion temperature, plasma rotation, and low Z impurity concentrations in the confinement region. The beam is being developed to enhance low signal-to-noise ratios expected with conventional steady-state ion beams because of severe beam attenuation and intense bremstrahlung emission. A 5 GW (e.g., 100 keV, 50 kA) one-microsecond-duration beam would increase the signal by 10 3 compared to a conventional 5 MW beam with signal-to-noise ratios comparable to those from a chopped conventional beam in one second

  8. In vivo measurement of regional brain metabolic response to hyperventilation using magnetic resonance: proton echo planar spectroscopic imaging (PEPSI).

    Science.gov (United States)

    Posse, S; Dager, S R; Richards, T L; Yuan, C; Ogg, R; Artru, A A; Müller-Gärtner, H W; Hayes, C

    1997-06-01

    A new rapid spectroscopic imaging technique with improved sensitivity and lipid suppression, referred to as Proton Echo Planar Spectroscopic Imaging (PEPSI), has been developed to measure the 2-dimensional distribution of brain lactate increases during hyperventilation on a conventional clinical scanner equipped with a head surface coil phased array. PEPSI images (nominal voxel size: 1.125 cm3) in five healthy subjects from an axial section approximately 20 mm inferior to the intercommissural line were obtained during an 8.5-min baseline period of normocapnia and during the final 8.5 min of a 10-min period of capnometry-controlled hyperventilation (end-tidal PCO2 of 20 mmHg). The lactate/N-acetyl aspartate signal increased significantly from baseline during hyperventilation for the insular cortex, temporal cortex, and occipital regions of both the right and left hemisphere, but not in the basal ganglia. Regional or hemispheric right-to-left differences were not found. The study extends previous work using single-voxel MR spectroscopy to dynamically study hyperventilation effects on brain metabolism.

  9. A production of non-strain spacing of lattice planes measurement equipment and a measurement of general structure material

    International Nuclear Information System (INIS)

    Minakawa, Nobuaki; Moriai, Atsushi; Morii, Yukio

    2001-01-01

    It is necessary to determine Δd/d in the internal stress measurement by the neutron diffraction method. Therefore, in case the non-strain spacing of lattice planes d 0 (hkl) is measured using bulk material, even though it does and attaches in a sample table length or every width and it is performing the diffraction measurement, it is difficult to determine for a true non-strain spacing of lattice planes by a processing strain, the grain-orientation, etc. It is available for the infinite thing spacing of lattice planes near non-strain condition to be measured by doing random rotation for bulk material in a beam center, and measuring an average spacing of lattice planes. Practical non-strain spacing of lattice planes measurement equipment was made, and the measurement was performed about much structure material. (author)

  10. O-6 Optical Property Degradation of the Hubble Space Telescope's Wide Field Camera-2 Pick Off Mirror

    Science.gov (United States)

    McNamara, Karen M.; Hughes, D. W.; Lauer, H. V.; Burkett, P. J.; Reed, B. B.

    2011-01-01

    Degradation in the performance of optical components can be greatly affected by exposure to the space environment. Many factors can contribute to such degradation including surface contaminants; outgassing; vacuum, UV, and atomic oxygen exposure; temperature cycling; or combinations of parameters. In-situ observations give important clues to degradation processes, but there are relatively few opportunities to correlate those observations with post-flight ground analyses. The return of instruments from the Hubble Space Telescope (HST) after its final servicing mission in May 2009 provided such an opportunity. Among the instruments returned from HST was the Wide-Field Planetary Camera-2 (WFPC-2), which had been exposed to the space environment for 16 years. This work focuses on the identifying the sources of degradation in the performance of the Pick-off mirror (POM) from WFPC-2. Techniques including surface reflectivity measurements, spectroscopic ellipsometry, FTIR (and ATR-FTIR) analyses, SEM/EDS, X-ray photoelectron spectroscopy (XPS) with and without ion milling, and wet and dry physical surface sampling were performed. Destructive and contact analyses took place only after completion of the non-destructive measurements. Spectroscopic ellipsometry was then repeated to determine the extent of contaminant removal by the destructive techniques, providing insight into the nature and extent of polymerization of the contaminant layer.

  11. Long-term cognitive outcomes of infants born moderately and late preterm.

    Science.gov (United States)

    Odd, David Edward; Emond, Alan; Whitelaw, Andrew

    2012-08-01

    To investigate whether infants born late preterm have poorer cognitive outcomes than term-born infants. A cohort study based on the Avon Longitudinal Study of Parents and Children. Cognitive measures were assessed between the ages of 8 and 11 years. Exposure groups were defined as moderate/late preterm (32-36 weeks' gestation) or term (37-42 wk). Regression models were used to investigate the association between gestational age and IQ. Seven hundred and forty-one infants (5.4% of total eligible population; 422 males, 319 females; mean (SD) birthweight 2495 g [489]) were born between 32 and 36 weeks' gestation. The analysis was based on 6957 infants with IQ data at age 11 (50% of eligible infants). In the adjusted model, children born moderately and late preterm had similar IQ scores to peers born at term (mean difference [95% confidence interval] -0.18 [-1.88 to 1.52]). However, the preterm infants had a higher risk of having special educational needs at school (odds ratio 1.56 [1.18-2.07]). Despite an increased risk of special educational needs, there is little evidence of a reduction in IQ, memory, or attention measures at school age in children born between 32 and 36 weeks' gestation. Although interpretation is limited by the amount of missing data, further work is needed to identify why these infants have increased educational needs. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  12. Assessing Built Environment Walkability using Activity-Space Summary Measures.

    Science.gov (United States)

    Tribby, Calvin P; Miller, Harvey J; Brown, Barbara B; Werner, Carol M; Smith, Ken R

    There is increasing emphasis on active transportation, such as walking, in transportation planning as a sustainable form of mobility and in public health as a means of achieving recommended physical activity and better health outcomes. A research focus is the influence of the built environment on walking, with the ultimate goal of identifying environmental modifications that invite more walking. However, assessments of the built environment for walkability are typically at a spatially disaggregate level (such as street blocks) or at a spatially aggregate level (such as census block groups). A key issue is determining the spatial units for walkability measures so that they reflect potential walking behavior. This paper develops methods for assessing walkability within individual activity spaces : the geographic region accessible to an individual during a given walking trip. We first estimate street network-based activity spaces using the shortest path between known trip starting/ending points and a travel time budget that reflects potential alternative paths. Based on objective walkability measures of the street blocks, we use three summary measures for walkability within activity spaces: i) the average walkability score across block segments (representing the general level of walkability in the activity space); ii) the standard deviation (representing the walkability variation), and; iii) the network autocorrelation (representing the spatial coherence of the walkability pattern). We assess the method using data from an empirical study of built environment walkability and walking behavior in Salt Lake City, Utah, USA. We visualize and map these activity space summary measures to compare walkability among individuals' trips within their neighborhoods. We also compare summary measures for activity spaces versus census block groups, with the result that they agree less than half of the time.

  13. Free-Electron Laser (FEL) Utilization in Space Applications (Ship-Borne Pointing Accuracy, Deep-Space Communications, and Orbital Debris Tracking)

    Science.gov (United States)

    2011-12-01

    the energy to the target. From the stand point of weapon system considerations, the amount of available ammunition and the cost of running the...fired repeatedly for a minimal total cost . 7 Figure 1.3 FEL Efficiency. From [1] D. SHIP-BORNE EMPLOYMENT There are currently two primary possible...provided in [32]. This method requires three different geocentric vectors and their associated elevation angles with respect to the laser bore sight

  14. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    International Nuclear Information System (INIS)

    Chapman, J.T.

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8--20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation

  15. Spectroscopic measurement of the MHD dynamo in the MST reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, James Tharp [Univ. of Wisconsin, Madison, WI (United States)

    1998-09-01

    The author has directly observed the coupling of ion velocity fluctuations and magnetic field fluctuations to produce an MHD dynamo electric field in the interior of the MST reversed field pinch. Chord averaged ion velocity fluctuations were measured with a fast spectroscopic diagnostic which collects line radiation from intrinsic carbon impurities simultaneously along two lines of sight. The chords employed for the measurements resolved long wavelength velocity fluctuations of several km/s at 8-20 kHz as tiny, fast Doppler shifts in the emitted line profile. During discrete dynamo events the velocity fluctuations, like the magnetic fluctuations, increase dramatically. The toroidal and poloidal chords with impact parameters of 0.3 a and 0.6 a respectively, resolved fluctuation wavenumbers with resonance surfaces near or along the lines of sight indicating a radial velocity fluctuation width for each mode which spans only a fraction of the plasma radius. The phase between the measured toroidal velocity fluctuations and the magnetic fluctuations matches the predictions of resistive MHD while the poloidal velocity fluctuations exhibit a phase consistent with the superposition of MHD effects and the advection of a mean flow gradient past the poloidal line of sight. Radial velocity fluctuations resolved by a chord through the center of the plasma were small compared to the poloidal and toroidal fluctuations and exhibited low coherence with the magnetic fluctuations. The ensembled nonlinear product of the ion velocity fluctuations and fluctuations in the magnetic field indicates a substantial dynamo electric field which peaks during the periods of spontaneous flux generation.

  16. Spectra of globular clusters in the Sombrero galaxy: evidence for spectroscopic metallicity bimodality

    Science.gov (United States)

    Alves-Brito, Alan; Hau, George K. T.; Forbes, Duncan A.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.; Rhode, Katherine L.

    2011-11-01

    We present a large sample of over 200 integrated-light spectra of confirmed globular clusters (GCs) associated with the Sombrero (M104) galaxy taken with the Deep Imaging Multi-Object Spectrograph (DEIMOS) instrument on the Keck telescope. A significant fraction of the spectra have signal-to-noise ratio levels high enough to allow measurements of GC metallicities using the method of Brodie & Huchra. We find a distribution of spectroscopic metallicities in the range -2.2 < [Fe/H] < +0.1 that is bimodal, with peaks at [Fe/H]˜-1.4 and -0.6. Thus, the GC system of the Sombrero galaxy, like a few other galaxies now studied in detail, reveals a bimodal spectroscopic metallicity distribution supporting the long-held belief that colour bimodality reflects two metallicity subpopulations. This further suggests that the transformation from optical colour to metallicity for old stellar populations, such as GCs, is not strongly non-linear. We also explore the radial and magnitude distribution with metallicity for GC subpopulations but small number statistics prevent any clear trends in these distributions. Based on observations obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration.

  17. Analysis of time- and space-resolved Na-, Ne-, and F-like emission from a laser-produced bromine plasma

    International Nuclear Information System (INIS)

    Goldstein, W.H.; Young, B.K.F.; Osterheld, A.L.; Stewart, R.E.; Walling, R.S.; Bar-Shalom, A.

    1991-01-01

    Advances in the efficiency and accuracy of computational atomic physics and collisional radiative modeling promise to place the analysis and diagnostic application of L-shell emission on a par with the simpler K-shell regime. Coincident improvements in spectroscopic plasma measurements yield optically thin emission spectra from small, homogeneous regions of plasma, localized both in space and time. Together, these developments can severely test models for high-density, high-temperature plasma formation and evolution, and non-LTE atomic kinetics. In this paper we present highly resolved measurements of n=3 to n=2 X-ray line emission from a laser-produced bromine micro plasma. The emission is both space- and time-resolved, allowing us to apply simple, steady-state, 0-dimensional spectroscopic models to the analysis. These relativistic, multi-configurational, distorted wave collisional-radiative models were created using the HULLAC atomic physics package. Using these models, we have analyzed the F-like, Ne-like and Na-like (satellite) spectra with respect to temperature, density and charge-state distribution. This procedure leads to a full characterization of the plasma conditions. 9 refs., 3 figs

  18. Optimizing Spectroscopic and Photometric Galaxy Surveys: Same-Sky Benefits for Dark Energy and Modified Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Donnacha [University Coll. London; Lahav, Ofer [University Coll. London; Bridle, Sarah [Manchester U.; Jouvel, Stephanie [Barcelona, IEEC; Abdalla, Filipe B. [University Coll. London; Frieman, Joshua A. [Chicago U., KICP

    2015-08-21

    The combination of multiple cosmological probes can produce measurements of cosmological parameters much more stringent than those possible with any individual probe. We examine the combination of two highly correlated probes of late-time structure growth: (i) weak gravitational lensing from a survey with photometric redshifts and (ii) galaxy clustering and redshift space distortions from a survey with spectroscopic redshifts. We choose generic survey designs so that our results are applicable to a range of current and future photometric redshift (e.g. KiDS, DES, HSC, Euclid) and spectroscopic redshift (e.g. DESI, 4MOST, Sumire) surveys. Combining the surveys greatly improves their power to measure both dark energy and modified gravity. An independent, non-overlapping combination sees a dark energy figure of merit more than 4 times larger than that produced by either survey alone. The powerful synergies between the surveys are strongest for modified gravity, where their constraints are orthogonal, producing a non-overlapping joint figure of merit nearly 2 orders of magnitude larger than either alone. Our projected angular power spectrum formalism makes it easy to model the cross-correlation observable when the surveys overlap on the sky, producing a joint data vector and full covariance matrix. We calculate a same-sky improvement factor, from the inclusion of these cross-correlations, relative to non-overlapping surveys. We find nearly a factor of 4 for dark energy and more than a factor of 2 for modified gravity. The exact forecast figures of merit and same-sky benefits can be radically affected by a range of forecasts assumption, which we explore methodically in a sensitivity analysis. We show that that our fiducial assumptions produce robust results which give a good average picture of the science return from combining photometric and spectroscopic surveys.

  19. Calibration Methods for a Space Borne Backscatter Lidar

    NARCIS (Netherlands)

    Kunz, G.J.

    1996-01-01

    Lidar returns from cloud decks and from the Earth's surface are useful for calibrating single scatter lidar signals from space. To this end analytical methods (forward and backward) are presented for inverting lidar waveforms in terms of the path integrated lidar retum and the transmission losses

  20. Bisimulation on Markov Processes over Arbitrary Measurable Spaces

    DEFF Research Database (Denmark)

    Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand

    2014-01-01

    We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates with a mea......We introduce a notion of bisimulation on labelled Markov Processes over generic measurable spaces in terms of arbitrary binary relations. Our notion of bisimulation is proven to coincide with the coalgebraic definition of Aczel and Mendler in terms of the Giry functor, which associates...

  1. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    International Nuclear Information System (INIS)

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  2. Spectroscopic Needs for Imaging Dark Energy Experiments

    International Nuclear Information System (INIS)

    Newman, Jeffrey A.; Abate, Alexandra; Abdalla, Filipe B.; Allam, Sahar; Allen, Steven W.; Ansari, Reza; Bailey, Stephen; Barkhouse, Wayne A.; Beers, Timothy C.; Blanton, Michael R.; Brodwin, Mark; Brownstein, Joel R.; Brunner, Robert J.; Carrasco-Kind, Matias; Cervantes-Cota, Jorge; Chisari, Nora Elisa; Colless, Matthew; Coupon, Jean; Cunha, Carlos E.; Frye, Brenda L.; Gawiser, Eric J.; Gehrels, Neil; Grady, Kevin; Hagen, Alex; Hall, Patrick B.; Hearin, Andrew P.; Hildebrandt, Hendrik; Hirata, Christopher M.; Ho, Shirley; Huterer, Dragan; Ivezic, Zeljko; Kneib, Jean-Paul; Kruk, Jeffrey W.; Lahav, Ofer; Mandelbaum, Rachel; Matthews, Daniel J.; Miquel, Ramon; Moniez, Marc; Moos, H. W.; Moustakas, John; Papovich, Casey; Peacock, John A.; Rhodes, Jason; Ricol, Jean-Stepane; Sadeh, Iftach; Schmidt, Samuel J.; Stern, Daniel K.; Tyson, J. Anthony; Von der Linden, Anja; Wechsler, Risa H.; Wood-Vasey, W. M.; Zentner, A.

    2015-01-01

    Ongoing and near-future imaging-based dark energy experiments are critically dependent upon photometric redshifts (a.k.a. photo-z's): i.e., estimates of the redshifts of objects based only on flux information obtained through broad filters. Higher-quality, lower-scatter photo-z's will result in smaller random errors on cosmological parameters; while systematic errors in photometric redshift estimates, if not constrained, may dominate all other uncertainties from these experiments. The desired optimization and calibration is dependent upon spectroscopic measurements for secure redshift information; this is the key application of galaxy spectroscopy for imaging-based dark energy experiments. Hence, to achieve their full potential, imaging-based experiments will require large sets of objects with spectroscopically-determined redshifts, for two purposes: Training: Objects with known redshift are needed to map out the relationship between object color and z (or, equivalently, to determine empirically-calibrated templates describing the rest-frame spectra of the full range of galaxies, which may be used to predict the color-z relation). The ultimate goal of training is to minimize each moment of the distribution of differences between photometric redshift estimates and the true redshifts of objects, making the relationship between them as tight as possible. The larger and more complete our ''training set'' of spectroscopic redshifts is, the smaller the RMS photo-z errors should be, increasing the constraining power of imaging experiments; Requirements: Spectroscopic redshift measurements for ∼30,000 objects over >∼15 widely-separated regions, each at least ∼20 arcmin in diameter, and reaching the faintest objects used in a given experiment, will likely be necessary if photometric redshifts are to be trained and calibrated with conventional techniques. Larger, more complete samples (i.e., with longer exposure times) can improve photo

  3. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  4. Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements

    Science.gov (United States)

    Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.

    2017-12-01

    New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar

  5. Quantum chemical calculations and spectroscopic measurements of spectroscopic and thermodynamic properties of given uranyl complexes in aqueous solutions with possible environmental and industrial applications

    Directory of Open Access Journals (Sweden)

    Višňak Jakub

    2016-01-01

    Full Text Available A brief introduction into computational methodology and preliminary results for spectroscopic (excitation energies, vibrational frequencies in ground and excited electronic states and thermodynamic (stability constants, standard enthalpies and entropies of complexation reactions properties of some 1:1, 1:2 and 1:3 uranyl sulphato- and selenato- complexes in aqueos solutions will be given. The relativistic effects are included via Effective Core Potential (ECP, electron correlation via (TDDFT/B3LYP (dispersion interaction corrected and solvation is described via explicit inclusion of one hydration sphere beyond the coordinated water molecules. We acknowledge limits of this approximate description – more accurate calculations (ranging from semi-phenomenological two-component spin-orbit coupling up to four-component Dirac-Coulomb-Breit hamiltonian and Molecular Dynamics simulations are in preparation. The computational results are compared with the experimental results from Time-resolved Laser-induced Fluorescence Spectroscopy (TRLFS and UV-VIS spectroscopic studies (including our original experimental research on this topic. In case of the TRLFS and UV-VIS speciation studies, the problem of complex solution spectra decomposition into individual components is ill-conditioned and hints from theoretical chemistry could be very important. Qualitative agreement between our quantum chemical calculations of the spectroscopic properties and experimental data was achieved. Possible applications for geochemical modelling (e.g. safety studies of nuclear waste repositories, modelling of a future mining site and analytical chemical studies (including natural samples are discussed.

  6. Dielectric and impedance spectroscopic studies of neodymium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  7. Light-by-Light Scattering Constraint on Born-Infeld Theory.

    Science.gov (United States)

    Ellis, John; Mavromatos, Nick E; You, Tevong

    2017-06-30

    The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100  GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)_{Y} hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90  GeV, which, in turn, imposes a lower limit of ≳11  TeV on the magnetic monopole mass in such a U(1)_{Y} Born-Infeld theory.

  8. Spectroscopic factors measurements in the s,d and f,p shells below and above the Coulomb barrier by (3He,d) reactions

    International Nuclear Information System (INIS)

    Baghdadi, Ahmed.

    1974-01-01

    The overlap of t and d or 3 He and d wave functions may be measured by one neutron transfer in (d,t) or one proton transfer in ( 3 He,d). The measurement of the resulting normalization constant has been performed in subcoulombic conditions in the case of 58 Ni( 3 He,d) 59 Cu and 60 Ni( 3 He,d) 61 Cu leading to the first 3/2 - and 1/2 - states with a position sensitive detector in a Buechner spectrograph. The result: D 2 =2.7+-0.2 10 4 MeV 2 fm 3 is in agreement with the D 2 measurement for (t,d) reactions [3.1+-0.2 10 4 MeV 2 fm 3 ] and with the theoretical value proposed by L.J.B. Goldfarg and coworkers. This result was used for a determination of the spectroscopic factors of the 1.379MeV 3/2 - state, the 1.507MeV 1/2 - state and the 1.758MeV 3/2 - state in 57 Co. The subcoulombic approximation is also shown to be valid even in the case of (d,p) reactions, by the measurement of angular distributions and excitation curves of 60 Ni(d,p) reactions leading to the excited states at 4.760MeV (l=2) and 4.907MeV (l=0). In the second part, some spectroscopic factors in the s-d shell were measured by ( 3 He,d) reactions at MP Tandem energies. In the case of 27 Al( 3 He,d) 28 Si (states at 4.62, 6.88, 6.89, 9.32 and 0.38MeV) the normalization constant D 0 2 (deduced from the subcoulombic D 2 value) together with the first order finite range approximation leads to spectroscopic factors in good agreement with Wildenthal theoretical results. For 28 Si( 3 He,d) 29 p however, the values are too high compared to 29 Si. The conclusion is that it is better to use the DWBA treatment at subcoulombic energies everytime the experimental conditions may be fulfilled [fr

  9. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-06-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war.Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war.Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients.Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  10. Arthropod Borne Diseases in Imposed War during 1980-88

    Directory of Open Access Journals (Sweden)

    M Khoobdel

    2008-08-01

    Full Text Available Background: Personnel of military forces have close contact with natural habitat and usually encounter with bite of arthropods and prone to be infected with arthropod borne diseases. The imposed war against Iran was one of the most important and the longest war in the Middle East and even in the world and military people faced various diseases. The aim of this study was to review prevalence of arthropod borne diseases and to collect relevant information and valuable experiences during the imposed war. Methods: The present survey is a historical research and cross-sectional study, focused on arthropod fauna, situation of different arthropod borne diseases and also the ways which military personnel used to protect themselves against them. The information was adopted from valid military health files and also interviewing people who participated in the war. Results: Scabies, cutaneous leishmaniasis, sandfly fever and pediculosis were more prevalent among other arthropod -borne diseases in Iran-Iraq war. Measures to control arthropods and diseases at wartime mainly included: scheduled spraying of pesticides, leishmanization and treatment of patients. Conclusion: Although measures used during the war to control arthropods were proper, however, due to needs and importance of military forces to new equipment and technologies, it is recommended to use deltamethrin-impreg­nated bed net, permethrin treated military uniforms and various insect repellents in future.

  11. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.

    Science.gov (United States)

    Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko

    2013-02-19

    Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.

  12. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    Science.gov (United States)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  13. Aragats space-environmental centre: status and SEP forecasting possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Chilingarian, A; Avakyan, K; Babayan, V; Bostanjyan, N; Chilingarian, S; Eganov, V; Hovhanissyan, A; Karapetyan, G; Gevorgyan, N; Gharagyozyan, G; Ghazaryan, S; Garyaka, A; Ivanov, V; Martirosian, H; Martirosov, R; Melkumyan, L; Sogoyan, H; Sokhoyan, S; Tserunyan, S; Vardanyan, A; Zazyan, M [Cosmic Ray Division, Yerevan Physics Institute, Alikhanyan Brothers 2, Yerevan 36 (Armenia); Yeremian, A [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    2003-05-01

    The Aragats Space Environment Center in Armenia provides real-time monitoring of cosmic particle fluxes. Neutron monitors operating at altitudes of 2000 m and 3200 m on Mt Aragats continuously gather data to detect possible abrupt enhancement of the count rates. Additional high precision detectors, measuring muon and electron fluxes, along with directional information have been put in operation on Mt Aragats in the summer of 2002. We plan to use this information to establish an early warning system against extreme solar energetic particle (SEP) events which pose danger to the satellite electronics and the space station crew. Solar ion and proton fluxes as measured by space-borne sensors on ACE and GOES satellites are used to derive expected arrival times of highest energy ions at 1 AU. The peaks in the time series detected by Aragats neutron monitors, coincided with these times, demonstrate the possibility of early detection of SEP events using the ground-based detectors.

  14. Increased risk of peanut allergy in infants of Asian-born parents compared to those of Australian-born parents.

    Science.gov (United States)

    Koplin, J J; Peters, R L; Ponsonby, A-L; Gurrin, L C; Hill, D; Tang, M L K; Dharmage, S C; Allen, K J

    2014-12-01

    Asian infants appear to be over-represented among patients with clinical food allergy in Australia, but this has not been formally examined at the population level. Any difference in prevalence according to parental country of birth may be secondary to modifiable lifestyle factors. We aimed to quantify (i) differences in the prevalence of peanut allergy by parental country of birth and (ii) contribution of measured environmental exposures to these differences. The population-based HealthNuts study in Melbourne, Australia, screened 5276 infants (74% participation) with skin prick tests and sensitized infants underwent food challenge. Of these, 535 had a parent born in East Asia and 574 in UK/Europe. Associations between parents' country of birth and offspring peanut allergy were examined using multiple logistic regression. Compared to infants with two Australian-born parents, peanut allergy was more common among infants with parent/s born in East Asia (OR 3.4, 95% CI 2.2-5.1) but not those with parent/s born in the UK/Europe (OR 0.8, 95% CI 0.4-1.5). Paradoxically rates of allergic disease were lower among Asian parents. A higher prevalence of eczema among infants of Asian parents explained around 30% of the increase in peanut allergy, while differences in dog ownership explained around 18%. The high peanut allergy prevalence among infants of Asian-born parents appears to have occurred in a single generation and was not present among infants with parents migrating from other countries, suggesting gene-environment interactions are important. The role of eczema and microbial exposure in food allergy prevention warrants exploration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Space Shuttle dosimetry measurements with RME-III

    International Nuclear Information System (INIS)

    Hardy, K.A.; Golightly, M.J.; Hardy, A.C.; Atwell, W.; Quam, W.

    1991-10-01

    A description of the radiation monitoring equipment (RME-III) dosimetry instrument and the results obtained from six Space Shuttle flights are presented. The RME-III is a self-contained, active (real-time), portable dosimeter system developed for the USAF and adapted for utilization in measuring the ionizing radiation environment on the Space Shuttle. This instrument was developed to incorporate the capabilities of two earlier radiation instruments into a single unit and to minimize crew interaction times with longer battery life and expanded memory capacity. Flight data has demonstrated that the RME-III can be used to accurately assess dose from various sources of exposure, such as that encountered in the complex radiation environment of space

  16. Black Hole Solution of Einstein-Born-Infeld-Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Kun Meng

    2017-01-01

    Full Text Available A new four-dimensional black hole solution of Einstein-Born-Infeld-Yang-Mills theory is constructed; several degenerated forms of the black hole solution are presented. The related thermodynamical quantities are calculated, with which the first law of thermodynamics is checked to be satisfied. Identifying the cosmological constant as pressure of the system, the phase transition behaviors of the black hole in the extended phase space are studied.

  17. Simulation of a method for determining one-dimensional {sup 137}Cs distribution using multiple gamma spectroscopic measurements with an adjustable cylindrical collimator and center shield

    Energy Technology Data Exchange (ETDEWEB)

    Whetstone, Z.D.; Dewey, S.C. [Radiological Health Engineering Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, 1906 Cooley Building, Ann Arbor, MI 48109-2104 (United States); Kearfott, K.J., E-mail: kearfott@umich.ed [Radiological Health Engineering Laboratory, Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, 1906 Cooley Building, Ann Arbor, MI 48109-2104 (United States)

    2011-05-15

    With multiple in situ gamma spectroscopic measurements obtained with an adjustable cylindrical collimator and a circular shield, the arbitrary one-dimensional distribution of radioactive material can be determined. The detector responses are theoretically calculated, field measurements obtained, and a system of equations relating detector response to measurement geometry and activity distribution solved to estimate the distribution. This paper demonstrates the method by simulating multiple scenarios and providing analysis of the system conditioning.

  18. Potentiality of an orbiting interferometer for space-time experiments

    International Nuclear Information System (INIS)

    Grassi Strini, A.M.; Strini, G.; Tagliaferri, G.

    1979-01-01

    It is suggested that by putting a Michelson interferometer aboard a spacecraft orbiting around the earth, very substantial progress could be made in space-time experiments. It is estimated that in measurements of e.g. some anisotropy of the light velocity, a spacecraft-borne interferometer of quite small size (0.1 m arm-length) would reach a sensitivity greater by a factor of approximately 10 8 than the best achievements to date of ground-based devices. (author)

  19. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    Indian Academy of Sciences (India)

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  20. Three-dimensional space charge distribution measurement in electron beam irradiated PMMA

    International Nuclear Information System (INIS)

    Imaizumi, Yoichi; Suzuki, Ken; Tanaka, Yasuhiro; Takada, Tatsuo

    1996-01-01

    The localized space charge distribution in electron beam irradiated PMMA was investigated using pulsed electroacoustic method. Using a conventional space charge measurement system, the distribution only in the depth direction (Z) can be measured assuming the charges distributed uniformly in the horizontal (X-Y) plane. However, it is difficult to measure the distribution of space charge accumulated in small area. Therefore, we have developed the new system to measure the three-dimensional space charge distribution using pulsed electroacoustic method. The system has a small electrode with a diameter of 1mm and a motor-drive X-Y stage to move the sample. Using the data measured at many points, the three-dimensional distribution were obtained. To estimate the system performance, the electron beam irradiated PMMA was used. The electron beam was irradiated from transmission electron microscope (TEM). The depth of injected electron was controlled using the various metal masks. The measurement results were compared with theoretically calculated values of electron range. (author)

  1. Tick-Borne Encephalitis (TBE)

    Science.gov (United States)

    ... virus, Siberian tick-borne encephalitis virus, and Far eastern Tick-borne encephalitis virus (formerly known as Russian ... viruses are closely related to TBEV and Far-eastern TBE, and include Omsk hemorrhagic fever virus in ...

  2. Systems and methods for free space optical communication

    Science.gov (United States)

    Harper, Warren W [Benton City, WA; Aker, Pamela M [Richland, WA; Pratt, Richard M [Richland, WA

    2011-05-10

    Free space optical communication methods and systems, according to various aspects are described. The methods and systems are characterized by transmission of data through free space with a digitized optical signal acquired using wavelength modulation, and by discrimination between bit states in the digitized optical signal using a spectroscopic absorption feature of a chemical substance.

  3. Review and comparison of recent methods in space geodesy

    International Nuclear Information System (INIS)

    Varga, M.

    1983-01-01

    The study of geodynamic processes requires the application of new space-born geodesic measuring methods. A terrestrial reference system (TRS) is required for describing geodynamic processes. For this purpose satisfactory knowledge of polar motions, Earth rotation and tidal forces determined by laser, global positioning system (GPS) and VLBI measurements are needed. In addition, gravity and magnetic field of the Earth have to be known, modelled by using satellite to satellite traching (SST), altimetry, gradiometry and magnetometry results. Motions of the Earth-Moon system, as well as the relation between the terrestrial reference system and the inertial system can be determined by means of VLBI measurements. (author)

  4. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  5. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    International Nuclear Information System (INIS)

    Wang, H H; Yuan, Z H; Wu, J

    2006-01-01

    procedure, we use the transfer matrix of earth reference frame to geographic reference frame to transform the data measured by the magnetic orientation sensors and the gyroscope to the space orientations, then the PC104 controller use the space orientations value as feedback to complete revises

  6. Analysis of the Motion Control Methods for Stratospheric Balloon-Borne Gondola Platform

    Science.gov (United States)

    Wang, H. H.; Yuan, Z. H.; Wu, J.

    2006-10-01

    procedure, we use the transfer matrix of earth reference frame to geographic reference frame to transform the data measured by the magnetic orientation sensors and the gyroscope to the space orientations, then the PC104 controller use the space orientations value as feedback to complete revises.

  7. Racial/ethnic disparities in obesity among US-born and foreign-born adults by sex and education.

    Science.gov (United States)

    Barrington, Debbie S; Baquero, Maria C; Borrell, Luisa N; Crawford, Natalie D

    2010-02-01

    This study examines sex and education variations in obesity among US- and foreign-born whites, blacks, and Hispanics utilizing 1997-2005 data from the National Health Interview Survey on 267,585 adults aged > or =18 years. After adjusting for various demographic, health, and socioeconomic factors via logistic regression, foreign-born black men had the lowest odds for obesity relative to US-born white men. The largest racial/ethnic disparity in obesity was between US-born black and white women. High educational attainment diminished the US-born black-white and Hispanic-white disparities among women, increased these disparities among men, and had minimal effect on foreign-born Hispanic-white disparities among women and men. Comprehension of these relationships is vital for conducting effective obesity research and interventions within an increasingly diverse United States.

  8. Tick Talk: Tick-borne Diseases of South Dakota.

    Science.gov (United States)

    Huntington, Mark K; Allison, Jay

    2017-09-01

    In addition to being a nuisance, ticks can carry disease. This article presents a brief review of ticks and associated tick-borne disease relevant to South Dakota and surrounding regions. Tick-borne diseases of special relevance in South Dakota include tularemia, Rocky Mountain spotted fever, and Lyme disease. A number of others may also be encountered in the state as well. Prompt treatment of suspected cases is important to ensure a successful recovery, and tick-avoidance measures can reduce the risks of acquiring them. Most of these conditions are nationally reportable infectious diseases. Copyright© South Dakota State Medical Association.

  9. Foundations of symmetric spaces of measurable functions Lorentz, Marcinkiewicz and Orlicz spaces

    CERN Document Server

    Rubshtein, Ben-Zion A; Muratov, Mustafa A; Pashkova, Yulia S

    2016-01-01

    Key definitions and results in symmetric spaces, particularly Lp, Lorentz, Marcinkiewicz and Orlicz spaces are emphasized in this textbook. A comprehensive overview of the Lorentz, Marcinkiewicz and Orlicz spaces is presented based on concepts and results of symmetric spaces. Scientists and researchers will find the application of linear operators, ergodic theory, harmonic analysis and mathematical physics noteworthy and useful. This book is intended for graduate students and researchers in mathematics and may be used as a general reference for the theory of functions, measure theory, and functional analysis. This self-contained text is presented in four parts totaling seventeen chapters to correspond with a one-semester lecture course. Each of the four parts begins with an overview and is subsequently divided into chapters, each of which concludes with exercises and notes. A chapter called “Complements” is included at the end of the text as supplementary material to assist students with independent work.

  10. Space dosimetry measurement results using the Pille instrument during the EUROMIR/NASAMIR space flights

    International Nuclear Information System (INIS)

    Hejja, I.; Apathy, J.; Deme, S.

    1997-01-01

    The Pille dosimeter developed in Hungary for space applications is described briefly, and its two versions are presented for the two space flights. The results of the EUROMIR mission in 1995-1996 are discussed for positional dosimetric applications. The characteristic dose rates at various space stations in the Salyut range are displayed. The NASAMIR4 mission between January 1997 and September 1998 are also discussed from the dosimetric point of view. The results of the measurements are presented and a preliminary analysis is reported. (R.P.)

  11. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  12. Profile of tuberculosis among the foreign-born population in Japan, 2007-2014.

    Science.gov (United States)

    Kawatsu, Lisa; Uchimura, Kazuhiro; Izumi, Kiyohiko; Ohkado, Akihiro; Ishikawa, Nobukatsu

    2016-01-01

    The proportion of foreign-born people among the newly notified tuberculosis (TB) patients has been increasing in recent years and potentially poses a new challenge to TB control in Japan. In this report, we analysed the data from the Japan TB surveillance system between 2007 and 2014 to gain an overview of the trends and characteristics of foreign-born TB patients in Japan. We found that the proportion of foreign-born TB patients was especially high among the younger age groups - 44.1% among the 20-29 years age group in 2014. The largest groups of foreign-born patients were from China and the Philippines; however, the number of those from Nepal and Viet Nam was on the rise. Students comprised the second largest professional category group for TB after regular workers, and its proportion increased over the study period. Compared to Japan-born TB patients, foreign-born patients were more likely to be diagnosed through routine medical check-ups. Treatment successes and patients still on treatment were significantly lower among foreign-born patients than their Japan-born counterparts; and transferred-out and unknown outcomes were higher. Our results indicated that distinctive subgroups within the foreign-born population in Japan, especially students and regular workers, might have a higher risk of developing TB. Measures to ensure early diagnosis and treatment adherence should be adapted to such populations.

  13. The Born-Mayer-Huggins potential in high temperature superconductors

    Science.gov (United States)

    Singh, Hempal; Singh, Anu; Indu, B. D.

    2016-07-01

    The Born-Mayer-Huggins potential which has been found the best suitable potential to study the YBa2Cu3O7-δ type high temperature superconductors is revisited in a new framework. A deeper insight in it reveals that the Born-Mayer parameters for different interactions in high temperature superconductor are not simple quantities but several thermodynamic and spatial functions enter the problem. Based on the new theory, the expressions for pressure, bulk modulus and Born-Mayer parameters have been derived and it is established that these quantities depend upon Gruneisen parameter which is the measure of the strength of anharmonic effects in high temperature superconductors. This theory has been applied to a specific model YBa2Cu3O7-δ crystal for the purpose of numerical estimates to justify the new results.

  14. Synthesis of selectively 13C-labelled benzoic acid for nuclear magnetic resonance spectroscopic measurement of glycine conjugation activity

    International Nuclear Information System (INIS)

    Akira, Kazuki; Hasegawa, Hiroshi; Baba, Shigeo

    1995-01-01

    The synthesis of [4- 13 C]benzoic acid (BA) labelled in a single protonated carbon, for use as a probe to measure glycine conjugation activity by nuclear magnetic resonance (NMR) spectroscopy, has been reported. The labelled compound was prepared by a seven-step synthetic scheme on a relatively small scale using [2- 13 C] acetone as the source of label in overall yield of 16%. The usefulness of [4- 13 C]BA was demonstrated by the NMR spectroscopic monitoring of urinary excretion of [4- 13 C]hippuric acid in the rat administered with the labelled BA. (Author)

  15. Laser Cooling and Trapping of Neutral Strontium for Spectroscopic Measurements of Casimir-Polder Potentials

    Science.gov (United States)

    Cook, Eryn C.

    Casimir and Casimir-Polder effects are forces between electrically neutral bodies and particles in vacuum, arising entirely from quantum fluctuations. The modification to the vacuum electromagnetic-field modes imposed by the presence of any particle or surface can result in these mechanical forces, which are often the dominant interaction at small separations. These effects play an increasingly critical role in the operation of micro- and nano-mechanical systems as well as miniaturized atomic traps for precision sensors and quantum-information devices. Despite their fundamental importance, calculations present theoretical and numeric challenges, and precise atom-surface potential measurements are lacking in many geometric and distance regimes. The spectroscopic measurement of Casimir-Polder-induced energy level shifts in optical-lattice trapped atoms offers a new experimental method to probe atom-surface interactions. Strontium, the current front-runner among optical frequency metrology systems, has demonstrated characteristics ideal for such precision measurements. An alkaline earth atom possessing ultra-narrow intercombination transitions, strontium can be loaded into an optical lattice at the "magic" wavelength where the probe transition is unperturbed by the trap light. Translation of the lattice will permit controlled transport of tightly-confined atomic samples to well-calibrated atom-surface separations, while optical transition shifts serve as a direct probe of the Casimir-Polder potential. We have constructed a strontium magneto-optical trap (MOT) for future Casimir-Polder experiments. This thesis will describe the strontium apparatus, initial trap performance, and some details of the proposed measurement procedure.

  16. Differences in sleep habits, study time, and academic performance between US-born and foreign-born college students.

    Science.gov (United States)

    Eliasson, Arne H; Eliasson, Arn H; Lettieri, Christopher J

    2017-05-01

    To inform the design of a sleep improvement program for college students, we assessed academic performance, sleep habits, study hours, and extracurricular time, hypothesizing that there would be differences between US-born and foreign-born students. Questionnaires queried participants on bedtimes, wake times, nap frequency, differences in weekday and weekend sleep habits, study hours, grade point average, time spent at paid employment, and other extracurricular activities. Comparisons were made using chi square tests for categorical data and t tests for continuous data between US-born and foreign-born students. Of 120 participants (55 % women) with racial diversity (49 whites, 18 blacks, 26 Hispanics, 14 Asians, and 13 other), 49 (41 %) were foreign-born. Comparisons between US-born and foreign-born students showed no differences in average age or gender though US-born had more whites. There were no differences between US-born and foreign-born students for grade point averages, weekday bedtimes, wake times, or total sleep times. However, US-born students averaged 50 min less study time per day (p = 0.01), had almost 9 h less paid employment per week (14.5 vs 23.4 h per week, p = 0.001), and stayed up to socialize more frequently (63 vs 43 %, p = 0.03). Foreign-born students awakened an hour earlier and averaged 40 min less sleep per night on weekends. Cultural differences among college students have a profound effect on sleep habits, study hours, and extracurricular time. The design of a sleep improvement program targeting a population with diverse cultural backgrounds must factor in such behavioral variations in order to have relevance and impact.

  17. SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY

    International Nuclear Information System (INIS)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crites, A. T.; Haan, T. de

    2016-01-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg 2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W , of [O ii] λλ 3727, 3729 and H- δ , and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m ⋆ ). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  18. SPT-GMOS: A Gemini/GMOS-South Spectroscopic Survey of Galaxy Clusters in the SPT-SZ Survey

    Science.gov (United States)

    Bayliss, M. B.; Ruel, J.; Stubbs, C. W.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Bocquet, S.; Brodwin, M.; Capasso, R.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present the results of SPT-GMOS, a spectroscopic survey with the Gemini Multi-Object Spectrograph (GMOS) on Gemini South. The targets of SPT-GMOS are galaxy clusters identified in the SPT-SZ survey, a millimeter-wave survey of 2500 deg2 of the southern sky using the South Pole Telescope (SPT). Multi-object spectroscopic observations of 62 SPT-selected galaxy clusters were performed between 2011 January and 2015 December, yielding spectra with radial velocity measurements for 2595 sources. We identify 2243 of these sources as galaxies, and 352 as stars. Of the galaxies, we identify 1579 as members of SPT-SZ galaxy clusters. The primary goal of these observations was to obtain spectra of cluster member galaxies to estimate cluster redshifts and velocity dispersions. We describe the full spectroscopic data set and resulting data products, including galaxy redshifts, cluster redshifts, and velocity dispersions, and measurements of several well-known spectral indices for each galaxy: the equivalent width, W, of [O II] λλ3727, 3729 and H-δ, and the 4000 Å break strength, D4000. We use the spectral indices to classify galaxies by spectral type (i.e., passive, post-starburst, star-forming), and we match the spectra against photometric catalogs to characterize spectroscopically observed cluster members as a function of brightness (relative to m⋆). Finally, we report several new measurements of redshifts for ten bright, strongly lensed background galaxies in the cores of eight galaxy clusters. Combining the SPT-GMOS data set with previous spectroscopic follow-up of SPT-SZ galaxy clusters results in spectroscopic measurements for >100 clusters, or ∼20% of the full SPT-SZ sample.

  19. Technique for increasing dynamic range of space-borne ion composition instruments

    International Nuclear Information System (INIS)

    Burch, J.L.; Miller, G.P.; Santos, A. de los; Pollock, C.J.; Pope, S.E.; Valek, P. W.; Young, D.T.

    2005-01-01

    The dynamic range of ion composition spectrometers is limited by several factors, including saturation of particle counters and spillover of signals from highly dominant species into channels tuned to minor species. Instruments designed for composition measurements of hot plasmas in space can suffer greatly from both of these problems because of the wide energy range required and the wide disparity in fluxes encountered in various regions of interest. In order to detect minor ions in regions of very weak fluxes, geometry factors need to be as large as possible within the mass and volume resources available. As a result, problems with saturation by the dominant fluxes and spillover to minor-ion channels in plasma regions with intense fluxes become especially acute. This article reports on a technique for solving the dynamic-range problem in the few eV to several keV energy/charge range that is of central importance for space physics research where the dominant ion is of low mass/charge (typically H + ), and the minor ions are of higher mass/charge (typically O + ). The technique involves employing a radio-frequency modulation of the deflection electric field in the back section of an electrostatic analyzer in a time-of-flight instrument. This technique is shown to reduce H + counts by a controllable amount of up to factors of 1000 while reducing O + counts by only a few percent that can be calibrated

  20. Electron spectroscopy measurements with a shifted analyzing plane setting in the KATRIN main spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Dyba, Stephan [Institut fuer Kernphysik, Uni Muenster (Germany); Collaboration: KATRIN-Collaboration

    2016-07-01

    With the KATRIN (KArlsruhe TRItium Neutrino) experiment the endpoint region of the tritium beta decay will be measured to determine the electron-neutrino mass with a sensitivity of 200 meV/c{sup 2} (90% C.L.). For the high precision which is needed to achieve the sub-eV range a MAC-E filter type spectrometer is used to analyze the electron energy. To understand the various background contributions inside the spectrometer vessel different electric and magnetic field settings were investigated during the last commissioning phase. This talk will focus on the so called shifted analyzing plane measurement in which the field settings were tuned in a way to provide non standard potential barriers within the spectrometer. The different settings allowed to perform a spectroscopic measurement, determining the energy spectrum of background electrons born within the spectrometer.

  1. [Important vector-borne infectious diseases among humans in Germany. Epidemiological aspects].

    Science.gov (United States)

    Frank, C; Faber, M; Hellenbrand, W; Wilking, H; Stark, K

    2014-05-01

    Vector-borne infections pathogenic to humans play an important role in Germany. The relevant zoonotic pathogens are either endemic throughout Germany (e.g. Borrelia burgdorferi sensu latu) or only in specific regions, e.g. tick-borne encephalitis (TBE) virus and hantavirus. They cause a substantial burden of disease. Prevention and control largely rely on public advice and the application of personal protective measures (e.g. TBE virus vaccination and protection against vectors). High quality surveillance and targeted epidemiological studies are fundamental for the evaluation of temporal and spatial risks of infection and the effectiveness of preventive measures. Aside from endemic pathogens, vector-borne infections acquired abroad, mostly transmitted by mosquitoes, have to be systematically and intensively monitored as well, to assess the risk of infection for German residents traveling abroad and to adequately evaluate the risk of autochthonous transmission. Related issues, such as invasive species of mosquitoes in Germany and climate change, have to be taken into consideration. Such pathogens include West Nile, dengue and chikungunya viruses, as well as malaria parasites (Plasmodium species). The article presents an overview of the epidemiological situation of selected relevant vector-borne infections in Germany.

  2. Combining parallel detection of proton echo planar spectroscopic imaging (PEPSI) measurements with a data-consistency constraint improves SNR.

    Science.gov (United States)

    Tsai, Shang-Yueh; Hsu, Yi-Cheng; Chu, Ying-Hua; Kuo, Wen-Jui; Lin, Fa-Hsuan

    2015-12-01

    One major challenge of MRSI is the poor signal-to-noise ratio (SNR), which can be improved by using a surface coil array. Here we propose to exploit the spatial sensitivity of different channels of a coil array to enforce the k-space data consistency (DC) in order to suppress noise and consequently to improve MRSI SNR. MRSI data were collected using a proton echo planar spectroscopic imaging (PEPSI) sequence at 3 T using a 32-channel coil array and were averaged with one, two and eight measurements (avg-1, avg-2 and avg-8). The DC constraint was applied using a regularization parameter λ of 1, 2, 3, 5 or 10. Metabolite concentrations were quantified using LCModel. Our results show that the suppression of noise by applying the DC constraint to PEPSI reconstruction yields up to 32% and 27% SNR gain for avg-1 and avg-2 data with λ = 5, respectively. According to the reported Cramer-Rao lower bounds, the improvement in metabolic fitting was significant (p < 0.01) when the DC constraint was applied with λ ≥ 2. Using the DC constraint with λ = 3 or 5 can minimize both root-mean-square errors and spatial variation for all subjects using the avg-8 data set as reference values. Our results suggest that MRSI reconstructed with a DC constraint can save around 70% of scanning time to obtain images and spectra with similar SNRs using λ = 5. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Progress Towards a High-Precision Infrared Spectroscopic Survey of the H_3^+ Ion

    Science.gov (United States)

    Perry, Adam J.; Hodges, James N.; Markus, Charles R.; Kocheril, G. Stephen; Jenkins, Paul A., II; McCall, Benjamin J.

    2015-06-01

    The trihydrogen cation, H_3^+, represents one of the most important and fundamental molecular systems. Having only two electrons and three nuclei, H_3^+ is the simplest polyatomic system and is a key testing ground for the development of new techniques for calculating potential energy surfaces and predicting molecular spectra. Corrections that go beyond the Born-Oppenheimer approximation, including adiabatic, non-adiabatic, relativistic, and quantum electrodynamic corrections are becoming more feasible to calculate. As a result, experimental measurements performed on the H_3^+ ion serve as important benchmarks which are used to test the predictive power of new computational methods. By measuring many infrared transitions with precision at the sub-MHz level it is possible to construct a list of the most highly precise experimental rovibrational energy levels for this molecule. Until recently, only a select handful of infrared transitions of this molecule have been measured with high precision (˜ 1 MHz). Using the technique of Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, we are aiming to produce the largest high-precision spectroscopic dataset for this molecule to date. Presented here are the current results from our survey along with a discussion of the combination differences analysis used to extract the experimentally determined rovibrational energy levels. O. Polyansky, et al., Phil. Trans. R. Soc. A (2012), 370, 5014. M. Pavanello, et al., J. Chem. Phys. (2012), 136, 184303. L. Diniz, et al., Phys. Rev. A (2013), 88, 032506. L. Lodi, et al., Phys. Rev. A (2014), 89, 032505. J. Hodges, et al., J. Chem. Phys (2013), 139, 164201.

  4. Optical properties of LiGaS{sub 2}: an ab initio study and spectroscopic ellipsometry measurement

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V V [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Lin, Z S [Beijing Center for Crystal R and D, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, PO Box 2711, Beijing 100190 (China); Isaenko, L I; Lobanov, S I [Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kesler, V G [Laboratory of Physical Bases of Integrated Microelectronics, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation); Kruchinin, V N, E-mail: zslin@mail.ipc.ac.c [Laboratory for Ellipsometry of Semiconductor Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090 (Russian Federation)

    2009-11-11

    Electronic and optical properties of lithium thiogallate crystal, LiGaS{sub 2}, have been investigated by both experimental and theoretical methods. The plane-wave pseudopotential method based on DFT theory has been used for band structure calculations. The electronic parameters of Ga 3d orbitals have been corrected by the DFT+U methods to be consistent with those measured with x-ray photoemission spectroscopy. Evolution of optical constants of LiGaS{sub 2} over a wide spectral range was determined by developed first-principles theory and dispersion curves were compared with optical parameters defined by spectroscopic ellipsometry in the photon energy range 1.2-5.0 eV. Good agreement has been achieved between theoretical and experimental results.

  5. [Tick borne diseases].

    Science.gov (United States)

    Holzer, B R

    2005-11-01

    It is known for many years that tick-borne diseases have worldwide a high economical impact on farming industry and veterinary medicine. But only in the last twenty years the importance of such diseases were notified in human medicine by the medical community and the public with emerging of the tick borne encephalitis virus and the description of Borrelia burgdorferi. It is often forgotten that many other infectious agents as bacteria, virus, Rickettsia or protozoa can be transmitted by ticks. Such diseases are rarely diagnosed in Europe either they are overlooked and misdiagnosed or they are connected with special professional activities. The development of new regions for tourism with different out door activities (adventure trips, trekking, hunting) leads to an exposure to different tick borne diseases, which are often misdiagnosed.

  6. Research on the method of measuring space information network capacity in communication service

    Directory of Open Access Journals (Sweden)

    Zhu Shichao

    2017-02-01

    Full Text Available Because of the large scale characteristic of space information network in terms of space and time and the increasing of its complexity,existing measuring methods of information transmission capacity have been unable to measure the existing and future space information networkeffectively.In this study,we firstly established a complex model of space information network,and measured the whole space information network capacity by means of analyzing data access capability to the network and data transmission capability within the network.At last,we verified the rationality of the proposed measuring method by using STK and Matlab simulation software for collaborative simulation.

  7. Where was Joseph Babinski born?

    Directory of Open Access Journals (Sweden)

    H A G Teive

    2011-01-01

    Full Text Available There is controversy in the neurological literature about where Joseph Babinski was born, including a myth propounded by various important authors that he was born in Lima, Peru. However, according to the most consistent biographical data, he was in fact born in Paris, France, and became a medical celebrity there and in Poland as well as around the world.

  8. New isostatic mounting concept for a space born Three Mirror Anastigmat (TMA) on the Meteosat Third Generation Infrared Sounder Instrument (MTG-IRS)

    Science.gov (United States)

    Freudling, Maximilian; Klammer, Jesko; Lousberg, Gregory; Schumacher, Jean-Marc; Körner, Christian

    2016-07-01

    A novel isostatic mounting concept for a space born TMA of the Meteosat Third Generation Infrared Sounder is presented. The telescope is based on a light-weight all-aluminium design. The mounting concept accommodates the telescope onto a Carbon-Fiber-Reinforced Polymer (CRFP) structure. This design copes with the high CTE mismatch without introducing high stresses into the telescope structure. Furthermore a Line of Sight stability of a few microrads under geostationary orbit conditions is provided. The design operates with full performance at a temperature 20K below the temperature of the CFRP structure and 20K below the integration temperature. The mounting will sustain launch loads of 47g. This paper will provide the design of the Back Telescope Assembly (BTA) isostatic mounting and will summarise the consolidated technical baseline reached following a successful Preliminary Design Review (PDR).

  9. Early working memory and maternal communication in toddlers born very low birth weight.

    Science.gov (United States)

    Lowe, Jean; Erickson, Sarah J; Maclean, Peggy; Duvall, Susanne W

    2009-04-01

    Early working memory is emerging as an important indicator of developmental outcome predicting later cognitive, behavioural and academic competencies. The current study compared early working memory in a sample of toddlers (18-22 months) born very low birth weight (VLBW; n = 40) and full term (n = 51) and the relationship between early working memory, mental developmental index (MDI), and maternal communication in both samples. Early working memory, measured by object permanence; Bayley mental developmental index; and maternal communication, coded during mother-toddler play interaction, were examined in 39 toddlers born VLBW and 41 toddlers born full term. Toddlers born VLBW were found to be 6.4 times less likely to demonstrate attainment of object permanence than were toddlers born full term, adjusting for age at testing. MDI and maternal communication were found to be positively associated with attainment of object permanence in the VLBW group only. The difference found in the early working memory performance of toddlers born VLBW, compared with those born full term, emphasizes the importance of assessing early working memory in at-risk populations, while the maternal communication finding highlights potential targets of intervention for improving working memory in toddlers born VLBW.

  10. Continuous measurements of natural radionuclides on air-borne dust using β-α correlated events. Towards on-line detection of artificial radionuclides in nuclear-fuel reprocessing and its related facilities

    International Nuclear Information System (INIS)

    Hashimoto, Tetsuo; Ishiyama, Hisanobu; Itou, Shigeki

    2008-01-01

    On the highly sensitive and on-line detection for the contamination of artificial nuclides, much attention has been paid to the elimination of significant problem due to 222 Rn-progenies. A phosfich-type α- and β-ray radiation counter, which was fixed just above the dust-collecting filter paper within a space in a few mm, provides both α- and β-ray pulses during continuous collection of air-borne dust. Both pulse input times were registered into the memory buffer in a pulse time interval analyzing (TIA) system, followed rapidly by the data processing using MTA (multiple TIA) method. Resultant β-α TIA-spectrum (or decay-curve of β-α correlated events) and changes of α- and β-counting rates were displayed instantly on a PC-display with 1 μs time resolution using installed softwares. Thus, three practical values, including β-α correlated event rates (n αβ ), α-(n α ), and β-ray counting rates (n β ) were available from the present TIA-measurement system. A uranium deposited source (as mixture of α- and β-ray emitters), uranium mineral powder sample, and 226 Ra-source (as β-source) showed negligible contribution to β-α correlated events in TIA-spectrum, giving constant α/β counting ratios. In the case of air-borne dust samples, the β-α correlated events in TIA-spectrum showed certainly a presence of 164 μs decay-curve due to 214 Po, based on successive decay process such as 241 Bi(β) → 214 Po(α:T 1/2 =164 μs)→. By using three measuring values, new parameters, R α and R β [equal to (n α or n β ) * (n α + n β )/n αβ ], have been introduced for the highly sensitive and real-time indicators of contamination owing to artificial nuclides, even under the inevitable existence of 222 Rn progenies in the air-borne dust sample. The present radiation measurement system, combined with β-α correlated events, has been proved to be useful for the detection of extremely small contamination with artificial α-nuclides as well as

  11. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  12. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  13. Testing the white dwarf mass-radius relation and comparing optical and far-UV spectroscopic results with Gaia DR2, HST and FUSE

    Science.gov (United States)

    Joyce, S. R. G.; Barstow, M. A.; Casewell, S. L.; Burleigh, M. R.; Holberg, J. B.; Bond, H. E.

    2018-05-01

    Observational tests of the white dwarf mass-radius relationship have always been limited by the uncertainty in the available distance measurements. Most studies have focused on Balmer line spectroscopy because these spectra can be obtained from ground based observatories, while the Lyman lines are only accessible to space based UV telescopes. We present results using parallax data from Gaia DR2 combined with space based spectroscopy from HST and FUSE covering the Balmer and Lyman lines. We find that our sample supports the theoretical relation, although there is at least one star which is shown to be inconsistent. Comparison of results between Balmer and Lyman line spectra shows they are in agreement when the latest broadening tables are used. We also assess the factors which contribute to the error in the mass-radius calculations and confirm the findings of other studies which show that the spread in results for targets where multiple spectra are available is larger than the statistical error. The uncertainty in the spectroscopically derived log g parameter is now the main source of error rather than the parallax. Finally, we present new results for the radius and spectroscopic mass of Sirius B which agree with the dynamical mass and mass-radius relation within 1σ.

  14. Car-borne gamma spectrometry: a virtual exercise in emergency response

    DEFF Research Database (Denmark)

    Dowdall, M.; Smethurst, M.A.; Watson, R.

    2012-01-01

    experience in the field however are limited by cost considerations and practicability. These limitations are exacerbated by the fact that field data can differ significantly from data generated in the laboratory. As a means of exercising existing emergency measuring/surveying capability and introducing car......-borne measurements to a larger group, a virtual exercise was devised. The exercise ORPEX (Orphan Sources and Fresh Fallout Virtual Exercise in Mobile Measurement) featured two typical emergency scenarios: a search for orphan sources and surveying to delineate fallout from a local release point. Synthetic spectral...... a local fire involving radioactive material were added to real car-borne data, participants being asked to produce maps identifying and characterising the regions of contamination. Fourteen individual organisations from seven different countries supplied results which indicated that for strong sources...

  15. Tick-borne disease.

    Science.gov (United States)

    Bratton, Robert L; Corey, Ralph

    2005-06-15

    Tick-borne diseases in the United States include Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, tularemia, babesiosis, Colorado tick fever, and relapsing fever. It is important for family physicians to consider these illnesses when patients present with influenza-like symptoms. A petechial rash initially affecting the palms and soles of the feet is associated with Rocky Mountain spotted fever, whereas erythema migrans (annular macule with central clearing) is associated with Lyme disease. Various other rashes or skin lesions accompanied by fever and influenza-like illness also may signal the presence of a tick-borne disease. Early, accurate diagnosis allows treatment that may help prevent significant morbidity and possible mortality. Because 24 to 48 hours of attachment to the host are required for infection to occur, early removal can help prevent disease. Treatment with doxycycline or tetracycline is indicated for Rocky Mountain spotted fever, Lyme disease, ehrlichiosis, and relapsing fever. In patients with clinical findings suggestive of tick-borne disease, treatment should not be delayed for laboratory confirmation. If no symptoms follow exposure to tick bites, empiric treatment is not indicated. The same tick may harbor different infectious pathogens and transmit several with one bite. Advising patients about prevention of tick bites, especially in the summer months, may help prevent exposure to dangerous vector-borne diseases.

  16. Evaluation of lipid and glucose metabolism and cortisol and thyroid hormone levels in obese appropriate for gestational age (AGA) born and non-obese small for gestational age (SGA) born prepubertal Slovak children.

    Science.gov (United States)

    Blusková, Zuzana; Koštálová, Ludmila; Celec, Peter; Vitáriušová, Eva; Pribilincová, Zuzana; Maršálková, Marianna; Šemberová, Jana; Kyselová, Tatiana; Hlavatá, Anna; Kovács, László

    2014-07-01

    Obesity is the major determinant of metabolic syndrome. Being born small for gestational age (SGA) may be co-responsible. We aimed at evaluating the association between 1. obesity and 2. being born SGA and the presence of endocrine-metabolic abnormalities in prepubertal Slovak children. The study included 98 children, aged 3-10.9 years: 36 AGA-born obese children (OB), 31 SGA-born children (SGA) and 31 appropriate for gestational age born non-obese children (AGA). Fasting serum levels of glucose, total cholesterol, LDL, HDL, triglycerides, fT4, TSH, cortisol and insulin were determined. HOMA-IR was calculated. Personal data about birth weight and length and family history were collected. Actual anthropometric measurement was done. In every group, high prevalence of positive family history of metabolic disorder was found. In comparison with AGA children, OB children were taller (plevels and homeostasis model assessment for insulin resistance (HOMA-IR) (pcortisol levels (p=0.069) was noted. SGA-born children were shorter (plevels (plevels (p=0.085) and increased fT4 levels (pobese children and twice more metabolic abnormalities were present in SGA-born children in comparison with AGA-born children. SGA-born children are more prone to developing endocrine-metabolic abnormalities than non-obese children born AGA, but they are at less risk than obese AGA-born children. We should provide specialized care for obese children already in prepubertal age and pay attention to SGA-born children.

  17. 3D-Mössbauer spectroscopic microscope for mc-Si solar cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Y., E-mail: y-ino@ob.sist.ac.jp; Soejima, H.; Hayakawa, K.; Yukihira, K.; Tanaka, K.; Fujita, H.; Watanabe, T. [Shizuoka Institute of Science and Technology (Japan); Ogai, K.; Moriguchi, K.; Harada, Y. [APCO. Ltd. (Japan); Yoshida, Y. [Shizuoka Institute of Science and Technology (Japan)

    2016-12-15

    A 3D-Mössbauer Spectroscopic Microscope is developed to evaluate Fe impurities in multi-crystalline Si solar cells, which combines the Mössbauer spectroscopic microscope with a scanning electron microscope (SEM), an electron beam induced current (EBIC), an electron backscatter diffraction (EBSD), and an electron energy analyzer (HV-CSA). In addition, a new moving-coil-actuator with a liner encoder of 100 nm-resolution is incorporated for the operations with both a constant velocity and a constant acceleration mode successfully with the same precision as that obtained by the conventional transducers. Furthermore, a new multi-capillary X-ray lens is designed to achieve a γ-ray spot size less than 100 μm in diameter. The new microscope provides us to investigate the space correlation between Fe impurities and the lattice defects such as grain boundaries in multi-crystalline Si solar cells.

  18. Optimal Background Attenuation for Fielded Spectroscopic Detection Systems

    International Nuclear Information System (INIS)

    Robinson, Sean M.; Ashbaker, Eric D.; Schweppe, John E.; Siciliano, Edward R.

    2007-01-01

    Radiation detectors are often placed in positions difficult to shield from the effects of terrestrial background gamma radiation. This is particularly true in the case of Radiation Portal Monitor (RPM) systems, as their wide viewing angle and outdoor installations make them susceptible to radiation from the surrounding area. Reducing this source of background can improve gross-count detection capabilities in the current generation of non-spectroscopic RPM's as well as source identification capabilities in the next generation of spectroscopic RPM's. To provide guidance for designing such systems, the problem of shielding a general spectroscopic-capable RPM system from terrestrial gamma radiation is considered. This analysis is carried out by template matching algorithms, to determine and isolate a set of non-threat isotopes typically present in the commerce stream. Various model detector and shielding scenarios are calculated using the Monte-Carlo N Particle (MCNP) computer code. Amounts of nominal-density shielding needed to increase the probability of detection for an ensemble of illicit sources are given. Common shielding solutions such as steel plating are evaluated based on the probability of detection for 3 particular illicit sources of interest, and the benefits are weighed against the incremental cost of shielding. Previous work has provided optimal shielding scenarios for RPMs based on gross-counting measurements, and those same solutions (shielding the internal detector cavity, direct shielding of the ground between the detectors, and the addition of collimators) are examined with respect to their utility to improving spectroscopic detection

  19. Spectroscopic, microscopic, and internal stress analysis in cadmium telluride grown by close-space sublimation

    International Nuclear Information System (INIS)

    Manciu, Felicia S.; Salazar, Jessica G.; Diaz, Aryzbe; Quinones, Stella A.

    2015-01-01

    High quality materials with excellent ordered structure are needed for developing photovoltaic and infrared devices. With this end in mind, the results of our research prove the importance of a detailed, comprehensive spectroscopic and microscopic analysis in assessing cadmium telluride (CdTe) characteristics. The goal of this work is to examine not only material crystallinity and morphology, but also induced stress in the deposit material. A uniform, selective growth of polycrystalline CdTe by close-space sublimation on patterned Si(111) and Si(211) substrates is demonstrated by scanning electron microscopy images. Besides good crystallinity of the samples, as revealed by both Raman scattering and Fourier transform infrared absorption investigations, the far-infrared transmission data also show the presence of surface optical phonon modes, which is direct evidence of confinement in such a material. The qualitative identification of the induced stress was achieved by performing confocal Raman mapping microscopy on sample surfaces and by monitoring the existence of the rock-salt and zinc-blende structural phases of CdTe, which were associated with strained and unstrained morphologies, respectively. Although the induced stress in the material is still largely due to the high lattice mismatch between CdTe and the Si substrate, the current results provide a direct visualization of its partial release through the relaxation effect at crystallite boundaries and of preferential growth directions of less strain. Our study, thus offers significant value for improvement of material properties, by targeting the needed adjustments in the growth processes. - Highlights: • Assessing the characteristics of CdTe deposited on patterned Si substrates • Proving the utility of confocal Raman microscopy in monitoring the induced stress • Confirming the partial stress release through the grain boundary relaxation effect • Demonstrating the phonon confinement effect in low

  20. First laser measurements to space debris in Poland

    Science.gov (United States)

    Lejba, Paweł; Suchodolski, Tomasz; Michałek, Piotr; Bartoszak, Jacek; Schillak, Stanisław; Zapaśnik, Stanisław

    2018-05-01

    The Borowiec Satellite Laser Ranging station (BORL 7811, Borowiec) being a part of the Space Research Centre of the Polish Academy of Sciences (SRC PAS) went through modernization in 2014-2015. One of the main tasks of the modernization was the installation of a high-energy laser module dedicated to space debris tracking. Surelite III by Continuum is a Nd:YAG pulse laser with 10 Hz repetition rate, a pulse width of 3-5 ns and a pulse energy of 450 mJ for green (532 nm). This new laser unit was integrated with the SLR system at Borowiec performing standard satellite tracking. In 2016 BORL 7811 participated actively to the observational campaigns related to the space debris targets from LEO region managed by the Space Debris Study Group (SDSG) of the International Laser Ranging Service (ILRS). Currently, Borowiec station regularly tracks 36 space debris from the LEO regime, including typical rocket bodies (Russian/Chinese) and cooperative targets like the inactive TOPEX/Poseidon, ENVISAT, OICETS and others. In this paper the first results of space debris laser measurements obtained by the Borowiec station in period August 2016 - January 2017 are presented. The results gained by the SRC PAS Borowiec station confirm the rotation of the defunct TOPEX/Poseidon satellite which spins with a period of approximately 10 s. The novelty of this work is the presentation of the sample results of the Chinese CZ-2C R/B target (NORAD catalogue number 31114) which is equipped (probably) with retroreflectors. Laser measurements to space debris is a very desirable topic for the next years, especially in the context of the Space Surveillance and Tracking (SST) activity. Some targets are very easy to track like defunct ENVISAT or TOPEX/Poseidon. On the other hand, there is a big population of different LEO targets with different orbital and physical parameters, which are challenging for laser ranging like small irregular debris and rocket boosters.

  1. Shattered Shangri-la: differences in depressive and anxiety symptoms in students born in Tibet compared to Tibetan students born in exile.

    Science.gov (United States)

    Evans, Dabney; Buxton, David C; Borisov, Andrey; Manatunga, Amita K; Ngodup, Dawa; Raison, Charles L

    2008-06-01

    As a result of ongoing political tensions within Tibetan regions of the People's Republic of China, several thousand Tibetans escape across the Himalayas every year to seek refuge in India and Nepal. Prior studies have found a high prevalence of depressive and anxiety symptoms in these refugees, many of whom are young and have been exposed to significant trauma. However, it is not known whether depressive and anxiety symptoms are more prevalent in these refugees than in ethnic Tibetans born and raised in the relative political and social stability of exile communities in North India and Nepal. We conducted a cross-sectional survey of a convenience sample of 319 students attending school at the Tibetan Children's Villages in Northern India to test the a priori hypothesis that adolescents and young adults who escaped from Tibet to India would demonstrate increased depressive and anxiety symptoms when compared to ethnic Tibetans born and raised in exile. The Hopkins Symptom Checklist-25 (HSCL-25) was used to measure depressive and anxiety symptoms. In addition, demographic information on age, sex, country of birth and frequency of family contact was collected. Students born in Tibet had higher mean HSCL-25 depressive and anxiety symptom scores than did ethnic Tibetans born in exile. Female students demonstrated higher depressive and anxiety scores, as did those with limited contact with immediate family. After adjusting for sex, age and frequency of family contact, being born in Tibet was associated with increased HSCL-25 depressive and anxiety symptom scores (depression: F[2, 316] = 29.96, P < 0.0001; anxiety: F[4, 316] = 43.57, P < 0.0001). The experience of being raised in Tibet and escaping to India appears to be a risk factor for increased depressive and anxiety symptoms when compared to being born and raised within an exile community in India or Nepal.

  2. Maternal and pregnancy-related factors associated with developmental delay in moderately preterm-born children

    NARCIS (Netherlands)

    Kerstjens, Jorien M; de Winter, Andrea F; Sollie, Krystyna M; Bocca-Tjeertes, Inger F; Potijk, Marieke R; Reijneveld, Sijmen A; Bos, Arend F

    OBJECTIVE: To estimate the association between preexisting maternal and pregnancy-related factors and developmental delay in early childhood in moderately preterm-born children. METHODS: We measured development with the Ages and Stages Questionnaire at age 43-49 months in 834 moderately preterm-born

  3. Born in Bradford, a cohort study of babies born in Bradford, and their parents: Protocol for the recruitment phase

    Directory of Open Access Journals (Sweden)

    Raynor Pauline

    2008-09-01

    Full Text Available Abstract Background Bradford, one of the most deprived cities in the United Kingdom, has a wide range of public health problems associated with socioeconomic deprivation, including an infant mortality rate almost double that for England and Wales. Infant mortality is highest for babies of Pakistani origin, who comprise almost half the babies born in Bradford. The Born in Bradford cohort study aims to examine environmental, psychological and genetic factors that impact on health and development perinatally, during childhood and subsequent adult life, and those that influence their parents' health and wellbeing. This protocol outlines methods for the recruitment phase of the study. Methods Most Bradford women attend for antenatal care and give birth at the Bradford Royal Infirmary, which has approximately 5,800 births per year. Women are eligible for recruitment if they plan to give birth here. Babies born from March 2007 are eligible to participate, recruitment is planned to continue until 2010. Fathers of babies recruited are invited to participate. Women are usually recruited when they attend for a routine oral glucose tolerance test at 26–28 weeks gestation. Recruitment of babies is at birth. Fathers are recruited whenever possible during the antenatal period, or soon after the birth. The aim is to recruit 10,000 women, their babies, and the babies' fathers. At recruitment women have blood samples taken, are interviewed to complete a semi-structured questionnaire, weighed, and have height, arm circumference and triceps skinfold measured. Umbilical cord blood is collected at birth. Within two weeks of birth babies have their head, arm and abdominal circumference measured, along with subscapular and triceps skinfold thickness. Fathers self-complete a questionnaire at recruitment, have height and weight measured, and provide a saliva sample. Participants are allocated a unique study number. NHS numbers will be used to facilitate record linkage

  4. Effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + :phosphate glasses

    CERN Document Server

    Dai Shi Xun; Wen Lei; Hu Li Li; Jiang Zhong Hon

    2003-01-01

    The effect of radiative trapping on measurement of the spectroscopic properties of Yb sup 3 sup + -doped phosphate glasses was investigated as a function of Yb sup 3 sup + concentration at different thicknesses. It was found that radiative trapping exists generally in Yb sup 3 sup + :phosphate glasses, even at low concentration. As a result, the measured lifetime of Yb sup 3 sup + in phosphate glasses is usually larger than the calculated one. The maximum discrepancies between them at high concentration are found to be <42%. The calculated lifetime should be used as a reference in determining the true value of the measured lifetime because of it being lengthened largely by radiative trapping. On the other hand, the shape of fluorescence spectrum exhibits remarkable changes due to the radiative trapping. What is more, the intensity increase of DELTA lambda sub e sub f sub f at high concentration is greater than that of low doping. The DELTA lambda sub e sub f sub f increases 36% from 53 to 72 nm with thickn...

  5. Effective dose evaluation for workers assisting new-borns in nuclear medicine procedures

    International Nuclear Information System (INIS)

    Falivene, A.; Gori, C.; Mazzocchi, S.; Targetti, S.; Zatelli, G.

    2002-01-01

    Renal scintigraphy is a very frequent nuclear medicine procedure for new-borns when deemed necessary after prenatal ultrasounds investigation. The procedure requires the physical proximity of workers to the patient, particularly during the examination of new-borns, in order to keep the young patients still. The irradiation of nurses during kidney examination of new-borns has been measured by simulating the examination procedure with an Alderson Rando phantom stuffed with thermoluminescent detectors, positioned near a radioactive source obtained with a tank filled with a 9 9mT c solution. Measurements have been carried out both with and without radiation protection devices positioned on the Rando phantom. Different organ doses have been evaluated. The aim of this analysis is to evaluate the amount of dose reduction that can be achieved by utilising lead aprons, glasses and thyroid collars

  6. A new kind of droplet space distribution measuring method

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    A new kind of droplet space distribution measuring technique was introduced mainly, and the experimental device which was designed for the measuring the space distribution and traces of the flying film droplet produced by the bubble breaking up near the free surface of the water. This experiment was designed with a kind of water-sensitivity test paper (rice paper) which could record the position and size of the colored scattering droplets precisely. The rice papers were rolled into cylinders with different diameters by using tools. The bubbles broke up exactly in the center of the cylinder, and the space distribution and the traces of the droplets would be received by analysing all the positions of the droplets produced by the same size bubble on the rice papers. (authors)

  7. Secondary beam line phase space measurement and modeling at LAMPF

    International Nuclear Information System (INIS)

    Floyd, R.; Harrison, J.; Macek, R.; Sanders, G.

    1979-01-01

    Hardware and software have been developed for precision on-line measurement and fitting of secondary beam line phase space parameters. A system consisting of three MWPC planes for measuring particle trajectories, in coincidence with a time-of-flight telescope and a range telescope for particle identification, has been interfaced to a computer. Software has been developed for on-line track reconstruction, application of experimental cuts, and fitting of two-dimensional phase space ellipses for each particle species. The measured distributions have been found to agree well with the predictions of the Monte Carlo program DECAY TURTLE. The fitted phase space ellipses are a useful input to optimization routines, such as TRANSPORT, used to search for superior tunes. Application of this system to the LAMPF Stopped Muon Channel is described

  8. Patched Skin Bilirubin Assay to Monitor Neonates Born Extremely Preterm Undergoing Phototherapy.

    Science.gov (United States)

    De Luca, Daniele; Dell'Orto, Valentina

    2017-09-01

    To verify the reliability and safety of transcutaneous bilirubin (TcB) measurements in patched skin areas in neonates born extremely preterm under phototherapy. Sixty neonates (bilirubin (TSB), lactate, pH, hemoglobin, and skin temperature were measured within 10 minutes of the TcB assay. Clinicians were blinded to TcB values, and clinical decisions about phototherapy were made with the TSB measurement only. TcB and TSB significantly were correlated (r = 0.84; P bilirubin passage. TcB overestimated TSB, and this may expose infants born preterm to unnecessary phototherapy, although it could spare approximately 65% of TSB assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The Sloan Lens ACS Survey. I. A large spectroscopically selected sample of massive early-type lens galaxies

    NARCIS (Netherlands)

    Bolton, AS; Burles, S; Koopmans, LVE; Treu, T; Moustakas, LA

    2006-01-01

    The Sloan Lens ACS (SLACS) Survey is an efficient Hubble Space Telescope (HST) Snapshot imaging survey for new galaxy-scale strong gravitational lenses. The targeted lens candidates are selected spectroscopically from the Sloan Digital Sky Survey (SDSS) database of galaxy spectra for having multiple

  10. Spectroscopic measurement of H(1S) and H sub 2 (v double prime ,J double prime ) in an H sup minus ion source plasma

    Energy Technology Data Exchange (ETDEWEB)

    Stutzin, G.C.

    1990-08-01

    Low pressure H{sub 2} discharges have been used for some time as sources of H{sup {minus}} ions. These discharges contain many different species of particles which interact with each other and with the walls of the discharge chamber. Models exist that predict the populations of the various species for given macroscopic discharge parameters. However, many of the cross sections and wall catalyzation coefficients are unknown or somewhat uncertain. Therefore, it is of interest to measure the populations of as many of these species as possible, in order to determine the validity of the models. These models predict that H{sup {minus}} is created predominantly by the two-step process of vibrational excitation of hydrogen molecules followed by dissociative attachment of slow electrons to these vibrationally-excited hydrogen molecules. Many different collisional processes must be included in the models to explain the dependence of the various populations upon macroscopic parameters. This work presents results of spectroscopic measurements of the density and translational temperature of hydrogen atoms and of specific rotationally- and vibrationally-excited states of electronic ground-state H{sub 2}, in a discharge optimized for H{sup {minus}} production, as well as conventional measurements of the various charged species within the plasma. The spectroscopic measurements are performed directly by narrowband, single-photon absorption in the vacuum ultraviolet.

  11. Polarization measurements through space-to-ground atmospheric propagation paths by using a highly polarized laser source in space.

    Science.gov (United States)

    Toyoshima, Morio; Takenaka, Hideki; Shoji, Yozo; Takayama, Yoshihisa; Koyama, Yoshisada; Kunimori, Hiroo

    2009-12-07

    The polarization characteristics of an artificial laser source in space were measured through space-to-ground atmospheric transmission paths. An existing Japanese laser communication satellite and optical ground station were used to measure Stokes parameters and the degree of polarization of the laser beam transmitted from the satellite. As a result, the polarization was preserved within an rms error of 1.6 degrees, and the degree of polarization was 99.4+/-4.4% through the space-to-ground atmosphere. These results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography worldwide in the future.

  12. Social representations of premature birth from the perspective of individuals born preterm in the 1990s.

    Science.gov (United States)

    Leavy, Pía; Violeta Prina, Martina; Martínez Cáceres, María José; Bauer, Gabriela

    2015-01-01

    Prematurity is a public health problem that calls to focus on its causes and consequences through a trans disciplinary approach. There are no studies analyzing premature birth from the perspective of individuals born preterm. To identify social representations associated with premature birth of individuals born preterm in the 1990s in Argentina. Twelve focus groups were conducted with individuals born preterm with a birth weightparents' memories and experiences, overprotection body, education, relationship with the medical practice and knowledge. The methodology used allowed to create a space for mutual recognition and reflection for participants. Prematurity is a significant element, especially in those who suffered major sequelae. Adolescents and youth give a warning on the negative effects caused by overprotective parents and reveal the possibility of redefining the challenges associated with their history of premature birth.

  13. Profile of tuberculosis among the foreign-born population in Japan, 2007–2014

    Science.gov (United States)

    Uchimura, Kazuhiro; Izumi, Kiyohiko; Ohkado, Akihiro; Ishikawa, Nobukatsu

    2016-01-01

    The proportion of foreign-born people among the newly notified tuberculosis (TB) patients has been increasing in recent years and potentially poses a new challenge to TB control in Japan. In this report, we analysed the data from the Japan TB surveillance system between 2007 and 2014 to gain an overview of the trends and characteristics of foreign-born TB patients in Japan. We found that the proportion of foreign-born TB patients was especially high among the younger age groups – 44.1% among the 20–29 years age group in 2014. The largest groups of foreign-born patients were from China and the Philippines; however, the number of those from Nepal and Viet Nam was on the rise. Students comprised the second largest professional category group for TB after regular workers, and its proportion increased over the study period. Compared to Japan-born TB patients, foreign-born patients were more likely to be diagnosed through routine medical check-ups. Treatment successes and patients still on treatment were significantly lower among foreign-born patients than their Japan-born counterparts; and transferred-out and unknown outcomes were higher. Our results indicated that distinctive subgroups within the foreign-born population in Japan, especially students and regular workers, might have a higher risk of developing TB. Measures to ensure early diagnosis and treatment adherence should be adapted to such populations. PMID:27508086

  14. Nuclear data for geophysical spectroscopic logging

    International Nuclear Information System (INIS)

    Schweitzer, J.S.; Hertzog, R.C.; Soran, P.D.

    1987-01-01

    Nuclear geochemical analysis requires the quantitative measurement of elemental concentrations of trace elements, as well as major elements in widely varying concentrations. This requirement places extreme demands on the quality of the spectroscopic measurements, data rates, and relating observed γ-ray intensities to the original elemental concentration. The relationship between γ-ray intensities and elemental concentration is critically dependent on the specific reaction cross sections and their uncertainties. The elements of highest priority for subsurface geochemical analysis are considered with respect to the importance of competing reactions and the neutron energy regions that are most significant. (author)

  15. Born-Infeld-Goldstone superfield actions for gauge-fixed D5- and D3-branes in 6d

    International Nuclear Information System (INIS)

    Ketov, Sergei V.

    1999-01-01

    The supersymmetric Born-Infeld actions describing gauge-fixed D-5- and D3-branes in ambient six-dimensional (6d) space-time are constructed in superspace. A new 6d action is the (1,0) supersymmetric extension of the 6d Born-Infeld action. It is related via dimensional reduction to another remarkable 4d action describing the N = 2 supersymmetric extension of the Born-Infeld-Nambu-Goto action with two real scalats. Both actions are the Goldstone actions associated with partial (((1)/(2))) spontaneous breaking of extended supersymmetry having 16 supercharges down to 8 supercharges. Both actions can be put into the 'non-linear sigma-model' form by using certain non-linear superfield constraints. The unbroken supersymmetry is always linearly realised in our construction

  16. Doppler Wind Lidar Measurements and Scalability to Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Global measurements of wind speed and direction from Doppler wind lidars, if available, would significantly improve forecasting of severe weather events such as...

  17. Space imaging measurement system based on fixed lens and moving detector

    Science.gov (United States)

    Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2006-08-01

    We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.

  18. Study of the variation of schistosomiasis risk in Lake Poyang in the People’s Republic of China using multiple space-borne sensors for monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Kuo-Hsin Tseng

    2014-05-01

    Full Text Available The dynamics of the Poyang Lake in Jiangxi province, People’s Republic of China has been monitored to demonstrate the association of various variables with the distribution of schistosomiasis transmission with particular reference to the annual variation of the habitats for the Oncomelania snail, the intermediate host of Schistosoma japonicum. This was studied with multiple space-borne sensors, including the ENVISAT radar altimeter (RA-2 and MODIS/Terra radiometry data products such as the 16-day enhanced vegetation index, the 8-day sun reflectance, and the derived modified normalized difference water index. The measurements of physical properties were in good accordance with previous reports based on in situ gauge data, spectroradiometry and other optical methods, which encouraged us to build a predictive model based on reported geospatial constraints to assess the limits of potential variation of the snail habitat areas. The simulated results correspond fairly well with surveys conducted by local authorities showing a correlation coefficient of 0.82 between highpotential habitat areas and local estimates in a 9-year (2002-2010 analysis. Taken together, these data indicate that spaceborne observations and in situ measurements can be integrated and used as a first step of a monitoring system for control and analysis of the potential of schistosomiasis dissemination. Since the true range and intensity of transmission in the study region remain elusive at present, a long-term survey around the lake is warranted to build a robust, parametric model.

  19. Standard deviation of scatterometer measurements from space.

    Science.gov (United States)

    Fischer, R. E.

    1972-01-01

    The standard deviation of scatterometer measurements has been derived under assumptions applicable to spaceborne scatterometers. Numerical results are presented which show that, with sufficiently long integration times, input signal-to-noise ratios below unity do not cause excessive degradation of measurement accuracy. The effects on measurement accuracy due to varying integration times and changing the ratio of signal bandwidth to IF filter-noise bandwidth are also plotted. The results of the analysis may resolve a controversy by showing that in fact statistically useful scatterometer measurements can be made from space using a 20-W transmitter, such as will be used on the S-193 experiment for Skylab-A.

  20. Educational mismatch and health status among foreign-born workers in Sweden.

    Science.gov (United States)

    Dunlavy, A C; Garcy, A M; Rostila, M

    2016-04-01

    Foreign-born workers have been shown to experience poorer working conditions than native-born workers. Yet relationships between health and educational mismatch have been largely overlooked among foreign-born workers. This study uses objective and self-reported measures of educational mismatch to compare the prevalence of educational mismatch among native (n = 2359) and foreign-born (n = 1789) workers in Sweden and to examine associations between educational mismatch and poor self-rated health. Findings from weighted multivariate logistic regression which controlled for social position and individual-level demographic characteristics suggested that over-educated foreign-born workers had greater odds ratios for poor-self rated health compared to native-born matched workers. This association was particularly evident among men (OR = 2.14, 95% CI: 1.04-4.39) and women (OR = 2.13, 95% CI: 1.12-4.03) from countries outside of Western Europe, North America, and Australia/New Zealand. Associations between under-education and poor-self rated health were also found among women from countries outside of Western Europe, North America, and Australia/New Zealand (OR = 2.02, 95% CI: 1.27-3.18). These findings suggest that educational mismatch may be an important work-related social determinant of health among foreign-born workers. Future studies are needed to examine the effects of long-term versus short-term states of educational mismatch on health and to study relationships over time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Rocket borne solar eclipse experiment to measure the temperature structure of the solar corona via lyman-α line profile observations

    International Nuclear Information System (INIS)

    Argo, H.V.

    1981-01-01

    A rocket borne experiment to measure the temperature structure of the inner solar corona via the doppler broadening of the resonance hydrogen Lyman-α (lambda1216A) radiation scattered by ambient neutral hydrogen atoms was attempted during the 16 Feb 1980 solar eclipse. Two Nike-Black Brant V sounding rockets carrying instrumented payloads were launched into the path of the advancing eclipse umbra from the San Marco satellite launch platform 3 miles off the east coast of Kenya

  2. Climate Change and Vector Borne Diseases on NASA Langley Research Center

    Science.gov (United States)

    Cole, Stuart K.; DeYoung, Russell J.; Shepanek, Marc A.; Kamel, Ahmed

    2014-01-01

    Increasing global temperature, weather patterns with above average storm intensities, and higher sea levels have been identified as phenomena associated with global climate change. As a causal system, climate change could contribute to vector borne diseases in humans. Vectors of concern originate from the vicinity of Langley Research Center include mosquitos and ticks that transmit disease that originate regionally, nationwide, or from outside the US. Recognizing changing conditions, vector borne diseases propagate under climate change conditions, and understanding the conditions in which they may exist or propagate, presents opportunities for monitoring their progress and mitigating their potential impacts through communication, continued monitoring, and adaptation. Personnel comprise a direct and fundamental support to NASA mission success, continuous and improved understanding of climatic conditions, and the resulting consequence of disease from these conditions, helps to reduce risk in terrestrial space technologies, ground operations, and space research. This research addresses conditions which are attributed to climatic conditions which promote environmental conditions conducive to the increase of disease vectors. This investigation includes evaluation of local mosquito population count and rainfall data for statistical correlation and identification of planning recommendations unique to LaRC, other NASA Centers to assess adaptation approaches, Center-level planning strategies.

  3. Measuring metallicities with Hubble space telescope/wide-field camera 3 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Teresa L.; Holtzman, Jon A. [Department of Astronomy, New Mexico State University, P.O. Box 30001, MSC 4500, Las Cruces, NM 88003-8001 (United States); Anthony-Twarog, Barbara J.; Twarog, Bruce [Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045-7582 (United States); Bond, Howard E. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Saha, Abhijit [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); Walker, Alistair, E-mail: rosst@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: bjat@ku.edu, E-mail: btwarog@ku.edu, E-mail: heb11@psu.edu, E-mail: awalker@ctio.noao.edu [Cerro Tololo Inter-American Observatory (CTIO), National Optical Astronomy Observatory, Casilla 603, La Serena (Chile)

    2014-01-01

    We quantified and calibrated the metallicity and temperature sensitivities of colors derived from nine Wide-Field Camera 3 filters on board the Hubble Space Telescope using Dartmouth isochrones and Kurucz atmosphere models. The theoretical isochrone colors were tested and calibrated against observations of five well studied galactic clusters, M92, NGC 6752, NGC 104, NGC 5927, and NGC 6791, all of which have spectroscopically determined metallicities spanning –2.30 < [Fe/H] <+0.4. We found empirical corrections to the Dartmouth isochrone grid for each of the following color-magnitude diagrams (CMDs): (F555W-F814W, F814W), (F336W-F555W, F814W), (F390M-F555W, F814W), and (F390W-F555W, F814W). Using empirical corrections, we tested the accuracy and spread of the photometric metallicities assigned from CMDs and color-color diagrams (which are necessary to break the age-metallicity degeneracy). Testing three color-color diagrams [(F336W-F555W),(F390M-F555W),(F390W-F555W), versus (F555W-F814W)], we found the colors (F390M-F555W) and (F390W-F555W) to be the best suited to measure photometric metallicities. The color (F390W-F555W) requires much less integration time, but generally produces wider metallicity distributions and, at very low metallicity, the metallicity distribution function (MDF) from (F390W-F555W) is ∼60% wider than that from (F390M-F555W). Using the calibrated isochrones, we recovered the overall cluster metallicity to within ∼0.1 dex in [Fe/H] when using CMDs (i.e., when the distance, reddening, and ages are approximately known). The measured MDF from color-color diagrams shows that this method measures metallicities of stellar clusters of unknown age and metallicity with an accuracy of ∼0.2-0.5 dex using F336W-F555W, ∼0.15-0.25 dex using F390M-F555W, and ∼0.2-0.4 dex with F390W-F555W, with the larger uncertainty pertaining to the lowest metallicity range.

  4. Stigma, discrimination, or symptomatology differences in self-reported mental health between US-born and Somalia-born Black Americans.

    Science.gov (United States)

    Henning-Smith, Carrie; Shippee, Tetyana P; McAlpine, Donna; Hardeman, Rachel; Farah, Farhiya

    2013-05-01

    We examined differences in self-reported mental health (SRMH) between US-born and Somalia-born Black Americans compared with White Americans. We tested how SRMH was affected by stigma toward seeing a mental health provider, discrimination in the health care setting, or symptoms of depression. Data were from a 2008 survey of adults in Minnesota and were limited to US-born and Somalia-born Black and White Americans (n = 938). Somalia-born adults were more likely to report better SRMH than either US-born Black or White Americans. They also reported lower levels of discrimination (18.6%) than US-born Black Americans (33.4%), higher levels of stigma (23.6% vs 4.7%), and lower levels of depressive symptoms (9.1% vs 31.6%). Controlling for stigma, discrimination, and symptomatology, Somalia-born Black Americans reported better SRMH than White and Black Americans (odds ratio = 4.76). Mental health programming and health care providers who focus on Black Americans' mental health might be missing important sources of heterogeneity. It is essential to consider the role of race and ethnicity, but also of nativity, in mental health policy and programming.

  5. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  6. Measuring gravitational effects on antimatter in space

    Directory of Open Access Journals (Sweden)

    Piacentino Giovanni Maria

    2017-01-01

    Full Text Available A direct measurement of the gravitational acceleration of antimatter has never been performed to date. Recently, such an experiment has been proposed, using antihydrogen with an atom interferometer and an antihydrogen confinament has been realized at CERN. In alternative we propose an experimental test of the gravitational interaction with antimatter by measuring the branching fraction of the CP violating decay of KL in space. In fact, even if the theoretical Standard Model explains the CPV with the presence of pure phase in the KMC Kobaiashi-Maskava-Cabibbo matrix, ample room is left for contributions by other interactions and forces to generate CPV in the mixing of the neutral K and B mesons. Gravitation is a good candidate and we show that at the altitude of the International Space Station, gravitational effects may change the level of CP violation such that a 5 sigma discrimination may be obtained by collecting the KL produced by the cosmic proton flux within a few years.

  7. cap alpha. -transfer reactions /sup 27/Al(/sup 6/Li, d)/sup 31/P, /sup 29/Si(/sup 6/Li, d)/sup 33/S and /sup 31/P(/sup 6/Li, d)/sup 35/Cl at 36 MeV. [Angular distributions, EFR DWBA, spectroscopic strengths

    Energy Technology Data Exchange (ETDEWEB)

    Eswaran, M A; Gove, H E; Cook, R; Sikora, B [Rochester Univ., NY (USA). Nuclear Structure Research Lab.

    1979-08-13

    The ..cap alpha..-transfer reactions /sup 27/Al(/sup 6/Li,d)/sup 31/P,/sup 29/Si(/sup 6/Li,d) /sup 33/S and /sup 31/P(Li,d)/sup 35/Cl have been studied at a /sup 6/Li energy of 36 MeV. Absolute cross sections and angular distributions have been measured and an exact finite-range distorted-wave Born approximation analysis assuming a direct cluster transfer has been used to extract from the data ..cap alpha..-particle spectroscopic strengths for levels populated in /sup 31/P, /sup 33/S and /sup 35/Cl in three reactions respectively. The results show that in the case of most of the low-lying excited states of /sup 31/P a single value of L of the transferred ..cap alpha..-particle contributes, though a multiplicity of L-values are allowed by angular momentum selection rules. It is also found that the ..cap alpha..-particle spectroscopic strength of the ground state of /sup 31/P is a factor of 2 more than the strengths of the ground states of /sup 33/S and /sup 35/Cl. The ..cap alpha..-spectroscopic strengths of ground states of these, as well as other odd-A s-d shell nuclei, are compared with the presently available shell model calculations.

  8. Language functions in preterm-born children: a systematic review and meta-analysis.

    Science.gov (United States)

    van Noort-van der Spek, Inge L; Franken, Marie-Christine J P; Weisglas-Kuperus, Nynke

    2012-04-01

    Preterm-born children (language function problems compared with term-born children. It is unknown whether these problems decrease, deteriorate, or remain stable over time. The goal of this research was to determine the developmental course of language functions in preterm-born children from 3 to 12 years of age. Computerized databases Embase, PubMed, Web of Knowledge, and PsycInfo were searched for studies published between January 1995 and March 2011 reporting language functions in preterm-born children. Outcome measures were simple language function assessed by using the Peabody Picture Vocabulary Test and complex language function assessed by using the Clinical Evaluation of Language Fundamentals. Pooled effect sizes (in terms of Cohen's d) and 95% confidence intervals (CI) for simple and complex language functions were calculated by using random-effects models. Meta-regression was conducted with mean difference of effect size as the outcome variable and assessment age as the explanatory variable. Preterm-born children scored significantly lower compared with term-born children on simple (d = -0.45 [95% CI: -0.59 to -0.30]; P language function tests, even in the absence of major disabilities and independent of social economic status. For complex language function (but not for simple language function), group differences between preterm- and term-born children increased significantly from 3 to 12 years of age (slope = -0.05; P = .03). While growing up, preterm-born children have increasing difficulties with complex language function.

  9. Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3

    Science.gov (United States)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan

    2016-09-01

    We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  10. Development of grazing incidence devices for space-borne time of flight mass spectrometry

    Science.gov (United States)

    Cadu, A.; Devoto, P.; Louarn, P.; Sauvaud, J.-A.

    2012-04-01

    Time of flight mass spectrometer is widely used to study space plasmas in planetary and solar missions. This space-borne instrument selects ions in function of their energy through an electrostatic analyzer. Particles are then post-accelerated to energies in the range of 20 keV to cross a carbon foil. At the foil exit, electrons are emitted and separated from ion beam in the time of flight section. A first detector (a Micro-Channel Plate or MCP) emits a start signal at electron arrival and a second one emits a stop signal at incident ion end of path. The time difference gives the speed of the particle and its mass can be calculated, knowing its initial energy. However, current instruments suffer from strong limitations. The post acceleration needs very high voltage power supplies which are heavy, have a high power consumption and imply technical constraints for the development. A typical instrument weighs from 5 to 6 kg, includes a 20 kV power supply, consumes a least 5 W and encounters corona effect and electrical breakdown problems. Moreover, despite the particle high energy range, scattering and straggling phenomena in the carbon foil significantly reduce the instrument overall resolution. Some methods, such as electrostatic focus lenses or reflectrons, really improve mass separation but global system efficiency remains very low because of the charge state dependence of such devices. The main purpose of our work is to replace carbon foil by grazing incidence MCP's - also known as MPO's, for Micro Pore Optics - for electron emission. Thus, incident particles would back-scatter onto the channel inner surface with an angle of a few degrees. With this solution, we can decrease dispersion sources and lower the power supplies to post accelerate ions. The result would be a lighter and simpler instrument with a substantial resolution improvement. We have first simulated MPO's behavior with TRIM and MARLOWE Monte-Carlo codes. Energy scattering and output angle computed

  11. Electrical charging characteristics of the hetero layer film for reducing water-borne paint contamination in electrostatic rotary atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y.; Imanishi, T.; Yoshida, O.; Mizuno, A. [ABB Japan, Tokyo (Japan)

    2010-07-01

    The electrostatic rotary atomizer is the most efficient of all liquid spray painting methods. Its use minimizes the waste of paint and reduces emissions of volatile organic compounds (VOCs). Water-borne painting processes which use water-soluble paint also reduce VOC emissions, but the atomizer body is easily contaminated by the paint mists. The Institute of Electrical and Electronics Engineers (IEEE) considered the causes of water-borne paint contamination and presented the experimental results of a contamination proof system in which the atomizer is surrounded by the repelling film that is charged and repels the incoming paint droplets. Among the key factors for repelling film were electrical properties, such as low capacitance and high insulation to keep high surface potential. Charging uniformity was found to be among the most important characteristic to avoid contamination. The pulse electro-acoustic (PEA) method was used to check these features using space charge measurements inside the repelling film. It was concluded that hetero layer films have more uniform charging characteristics than single layer films.

  12. A measurement concept for hot-spot BRDFs from space

    Energy Technology Data Exchange (ETDEWEB)

    Gerstl, S.A.W.

    1996-09-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  13. A measurement concept for hot-spot BRDFs from space

    Science.gov (United States)

    Gerstl, S.A.W.

    1996-01-01

    Several concepts for canopy hot-spot measurements from space have been investigated. The most promising involves active illumination and bistatic detection that would allow hot-spot angular distribution (BRDF) measurements from space in a search-light mode. The concept includes a pointable illumination source, such as a laser operating at an atmospheric window wavelength, coupled with a number of high spatial-resolution detectors that are clustered around the illumination source in space, receiving photons nearly coaxial with the reto-reflection direction. Microwave control and command among the satellite cluster would allow orienting the direction of the laser beam as well as the focusing detectors simultaneously so that the coupled system can function like a search light with almost unlimited pointing capabilities. The concept is called the Hot-Spot Search-Light (HSSL) satellite. A nominal satellite altitude of 600 km will allow hot-spot BRDF measurements out to about 18 degrees phase angle. The distributed are taking radiometric measurements of the intensity wings of the hot-spot angular distribution without the need for complex imaging detectors. The system can be operated at night for increased signal-to-noise ratio. This way the hot-spot angular signatures can be quantified and parameterized in sufficient detail to extract the biophysical information content of plant architectures.

  14. Optical constants of CH3NH3PbBr3 perovskite thin films measured by spectroscopic ellipsometry

    KAUST Repository

    Alias, Mohd Sharizal

    2016-07-14

    The lack of optical constants information for hybrid perovskite of CH3NH3PbBr3 in thin films form can delay the progress of efficient LED or laser demonstration. Here, we report on the optical constants (complex refractive index and dielectric function) of CH3NH3PbBr3 perovskite thin films using spectroscopic ellipsometry. Due to the existence of voids, the refractive index of the thin films is around 8% less than the single crystals counterpart. The energy bandgap is around 2.309 eV as obtained from photoluminescence and spectrophotometry spectra, and calculated from the SE analysis. The precise measurement of optical constants will be useful in designing optical devices using CH3NH3PbBr3 thin films.

  15. Adult psychological functioning of individuals born with craniofacial anomalies.

    Science.gov (United States)

    Sarwer, D B; Bartlett, S P; Whitaker, L A; Paige, K T; Pertschuk, M J; Wadden, T A

    1999-02-01

    This study represents an initial investigation into the adult psychological functioning of individuals born with craniofacial disfigurement. A total of 24 men and women born with a craniofacial anomaly completed paper and pencil measures of body image dissatisfaction, self-esteem, quality of life, and experiences of discrimination. An age- and gender-matched control group of 24 non-facially disfigured adults also completed the measures. As expected, craniofacially disfigured adults reported greater dissatisfaction with their facial appearance than did the control group. Craniofacially disfigured adults also reported significantly lower levels of self-esteem and quality of life. Dissatisfaction with facial appearance, self-esteem, and quality of life were related to self-ratings of physical attractiveness. More than one-third of craniofacially disfigured adults (38 percent) reported experiences of discrimination in employment or social settings. Among disfigured adults, psychological functioning was not related to number of surgeries, although the degree of residual facial deformity was related to increased dissatisfaction with facial appearance and greater experiences of discrimination. Results suggest that adults who were born with craniofacial disfigurement, as compared with non-facially disfigured adults, experience greater dissatisfaction with facial appearance and lower self-esteem and quality of life; however, these experiences do not seem to be universal.

  16. Generalized Born-Oppenheimer treatment of Jahn-Teller systems in Hilbert spaces of arbitrary dimension: theory and application to a three-state model potential.

    Science.gov (United States)

    Varandas, A J C; Sarkar, B

    2011-05-14

    Generalized Born-Oppenheimer equations including the geometrical phase effect are derived for three- and four-fold electronic manifolds in Jahn-Teller systems near the degeneracy seam. The method is readily extendable to N-fold systems of arbitrary dimension. An application is reported for a model threefold system, and the results are compared with Born-Oppenheimer (geometrical phase ignored), extended Born-Oppenheimer, and coupled three-state calculations. The theory shows unprecedented simplicity while depicting all features of more elaborated ones.

  17. Space weather monitoring with neutron monitor measurements

    Energy Technology Data Exchange (ETDEWEB)

    Steigies, Christian [Christian-Albrechts-Universitaet zu Kiel (Germany)

    2013-07-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We present different applications through which the measurements and different data products are accessible.

  18. DUST EXTINCTION FROM BALMER DECREMENTS OF STAR-FORMING GALAXIES AT 0.75 {<=} z {<=} 1.5 WITH HUBBLE SPACE TELESCOPE/WIDE-FIELD-CAMERA 3 SPECTROSCOPY FROM THE WFC3 INFRARED SPECTROSCOPIC PARALLEL SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, A.; Siana, B.; Masters, D. [Department of Physics and Astronomy, University of California Riverside, Riverside, CA 92521 (United States); Henry, A. L.; Martin, C. L. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Scarlata, C.; Bedregal, A. G. [Minnesota Institute for Astrophysics, University of Minnesota, Minneapolis, MN 55455 (United States); Malkan, M.; Ross, N. R. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095 (United States); Atek, H.; Colbert, J. W. [Spitzer Science Center, Caltech, Pasadena, CA 91125 (United States); Teplitz, H. I.; Rafelski, M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA 91125 (United States); McCarthy, P.; Hathi, N. P.; Dressler, A. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bunker, A., E-mail: albertod@ucr.edu [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom)

    2013-02-15

    Spectroscopic observations of H{alpha} and H{beta} emission lines of 128 star-forming galaxies in the redshift range 0.75 {<=} z {<=} 1.5 are presented. These data were taken with slitless spectroscopy using the G102 and G141 grisms of the Wide-Field-Camera 3 (WFC3) on board the Hubble Space Telescope as part of the WFC3 Infrared Spectroscopic Parallel survey. Interstellar dust extinction is measured from stacked spectra that cover the Balmer decrement (H{alpha}/H{beta}). We present dust extinction as a function of H{alpha} luminosity (down to 3 Multiplication-Sign 10{sup 41} erg s{sup -1}), galaxy stellar mass (reaching 4 Multiplication-Sign 10{sup 8} M {sub Sun }), and rest-frame H{alpha} equivalent width. The faintest galaxies are two times fainter in H{alpha} luminosity than galaxies previously studied at z {approx} 1.5. An evolution is observed where galaxies of the same H{alpha} luminosity have lower extinction at higher redshifts, whereas no evolution is found within our error bars with stellar mass. The lower H{alpha} luminosity galaxies in our sample are found to be consistent with no dust extinction. We find an anti-correlation of the [O III] {lambda}5007/H{alpha} flux ratio as a function of luminosity where galaxies with L {sub H{alpha}} < 5 Multiplication-Sign 10{sup 41} erg s{sup -1} are brighter in [O III] {lambda}5007 than H{alpha}. This trend is evident even after extinction correction, suggesting that the increased [O III] {lambda}5007/H{alpha} ratio in low-luminosity galaxies is likely due to lower metallicity and/or higher ionization parameters.

  19. Young adult outcomes of children born to teen mothers: effects of being born during their teen or later years.

    Science.gov (United States)

    Lipman, Ellen L; Georgiades, Katholiki; Boyle, Michael H

    2011-03-01

    Children of teen mothers exhibit adverse outcomes through adolescence. It is unclear whether these adverse outcomes extend to adulthood and apply to all of her children, or only those born when she was a teen. We examine the associations between young adult functioning and being born to a teen mother aged ≤20 years at the time of birth (current teen), and being born to a teen mother later in her life (>21 years, prior teen). The 1983 Ontario Child Health Study (OCHS) and 2001 follow-up are used, including 2,355 participants 4 to 16 years old in 1983 with 2001 data. Using multilevel modeling we assessed the association between being born to a current versus prior teen mother, relative to a nonteen mother, and 2001 outcomes, controlling for individual and family level characteristics assessed in childhood. Being born to a teen mother (versus a nonteen mother) is associated with poorer educational achievement, life satisfaction, and personal income. Accounting for time of sample children's birth in teen mothers' lives, individuals born to current and prior teen mothers showed a ~0.8-year educational deficit, relative to individuals born to nonteen mothers in fully adjusted models. Individuals born to current teen mothers reported lower life satisfaction and personal income (-$7,262). There were no significant group differences at follow-up in mental or physical health between individuals born to nonteen mothers and those born to current or prior teen mothers. Although being born to a teen mother exerts a pervasive adverse effect on educational attainment, the adverse effects on life satisfaction and personal income appear to be selective for individuals born to a current teen mother. Further research is required to understand these differential effects. Copyright © 2011 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Prostate Cancer Prognostic Factors Among Asian Patients Born in the US Compared to Those Born Abroad.

    Science.gov (United States)

    Xu, Junjun; Goodman, Michael; Jemal, Ahemdin; Fedewa, Stacey A

    2015-06-01

    US surveillance data indicate that incidence of prostate cancer differs by place of birth among Asian men. However, it is less clear if the prognostic factors for prostate cancer also differ by place of birth. The study included 7,824 Asian prostate cancer patients diagnosed between 2004 and 2009 and reported to the Surveillance Epidemiology and End Results (SEER) program. Logistic regression models were used to evaluate the relation of place of birth (foreign born vs. US born) to three outcomes: prostate specific antigen (PSA) level, Gleason score, and T classification, adjusting for age, marital status, Rural-Urban Continuum Code, and SEER registry. All outcome variables were binary using different cutoffs: ≥ 4, ≥ 10 and ≥ 20 ng/ml for PSA; ≥ 7 and ≥ 8 for Gleason score; and ≥ T2 and ≥ T3 for T classification. Elevated PSA was more common among foreign born Asian men regardless of the cut point used. In the analysis comparing foreign born versus US born patients by ethnic group, the association with PSA was most pronounced at cut point of ≥ 20 ng/ml for Chinese men (OR 1.68, 95% CI 1.02-2.75), and at cut point of ≥ 4 ng/ml for Japanese men (OR 2.73, 95% CI 1.20-6.21). A statistically significant association with Gleason score was only found for Japanese men and only for the cutoff ≥ 7 (OR 1.71, 95% CI 1.12-2.61). There was no difference in clinical T classification between foreign-born and US-born Asian men. Inclusion of cases with missing place of birth or restriction of data to those who underwent radical prostatectomy did not substantially change the results. The data suggest that foreign-born Asian prostate cancer patients may have moderately elevated PSA levels at diagnosis compared with their US born counterparts. For the other prognostic markers, the associations were less consistent and did not form a discernible pattern.

  1. SSGSS: THE SPITZER–SDSS–GALEX SPECTROSCOPIC SURVEY

    International Nuclear Information System (INIS)

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, Stéphane; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2011-01-01

    The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 μm spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.

  2. Depolarization ratio of polar stratospheric clouds in coastal Antarctica: comparison analysis between ground-based Micro Pulse Lidar and space-borne CALIOP observations

    Directory of Open Access Journals (Sweden)

    C. Córdoba-Jabonero

    2013-03-01

    Full Text Available Polar stratospheric clouds (PSCs play an important role in polar ozone depletion, since they are involved in diverse ozone destruction processes (chlorine activation, denitrification. The degree of that ozone reduction is depending on the type of PSCs, and hence on their occurrence. Therefore PSC characterization, mainly focused on PSC-type discrimination, is widely demanded. The backscattering (R and volume linear depolarization (δV ratios are the parameters usually used in lidar measurements for PSC detection and identification. In this work, an improved version of the standard NASA/Micro Pulse Lidar (MPL-4, which includes a built-in depolarization detection module, has been used for PSC observations above the coastal Antarctic Belgrano II station (Argentina, 77.9° S 34.6° W, 256 m a.s.l. since 2009. Examination of the MPL-4 δV feature as a suitable index for PSC-type discrimination is based on the analysis of the two-channel data, i.e., the parallel (p- and perpendicular (s- polarized MPL signals. This study focuses on the comparison of coincident δV-profiles as obtained from ground-based MPL-4 measurements during three Antarctic winters with those reported from the space-borne lidar CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite in the same period (83 simultaneous cases are analysed for 2009–2011 austral winter times. Three different approaches are considered for the comparison analysis between both lidar profile data sets in order to test the degree of agreement: the correlation coefficient (CC, as a measure of the relationship between both PSC vertical structures; the mean differences together with their root mean square (RMS values found between data sets; and the percentage differences (BIAS, parameter also used in profiling comparisons between CALIOP and other ground-based lidar systems. All of them are examined as a function

  3. Path space measures for Dirac and Schroedinger equations: Nonstandard analytical approach

    International Nuclear Information System (INIS)

    Nakamura, T.

    1997-01-01

    A nonstandard path space *-measure is constructed to justify the path integral formula for the Dirac equation in two-dimensional space endash time. A standard measure as well as a standard path integral is obtained from it. We also show that, even for the Schroedinger equation, for which there is no standard measure appropriate for a path integral, there exists a nonstandard measure to define a *-path integral whose standard part agrees with the ordinary path integral as defined by a limit from time-slice approximant. copyright 1997 American Institute of Physics

  4. Estimates for Parameter Littlewood-Paley gκ⁎ Functions on Nonhomogeneous Metric Measure Spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-01-01

    Full Text Available Let (X,d,μ be a metric measure space which satisfies the geometrically doubling measure and the upper doubling measure conditions. In this paper, the authors prove that, under the assumption that the kernel of Mκ⁎ satisfies a certain Hörmander-type condition, Mκ⁎,ρ is bounded from Lebesgue spaces Lp(μ to Lebesgue spaces Lp(μ for p≥2 and is bounded from L1(μ into L1,∞(μ. As a corollary, Mκ⁎,ρ is bounded on Lp(μ for 1space H1(μ into the Lebesgue space L1(μ.

  5. Space resolved measurements of neutrons and ion emission on plasma focus

    International Nuclear Information System (INIS)

    Jaeger, U.

    1980-05-01

    This report describes space-resolved measurements of neutrons and of accelerated charged particles, emitted by a plasmafocus-device. The neutron source has been measured with one and two-dimensional paraffin collimators. The space resolution is 5 mm along the axis and the radius, with a time resolution of 10 ns. In order to make quantitative statements about the neutron yield, neutron-scattering, absorption and nuclear reactions were taken into account. Part of the neutron measurements are carried out together with time and space resolved measurements of the electron density to study possible correlations between nsub(e) and Ysub(n). The following results about the neutron measurement were obtained: The neutron emission reaches its maximum between 40 and 60 ns after the maximum compression. The emission region is limited to a well defined range of 0 50 ns it has been observed a broadening of the emission region in + z-direction. The emission profiles in lower and in higher pressure regimes are almost the same. (orig./HT) [de

  6. Structure-borne noise at hotels

    Science.gov (United States)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  7. Born : vastutustundlikud tulevikus edukad / Kerstin Born ; interv. Kristo Kiviorg

    Index Scriptorium Estoniae

    Born, Kerstin

    2007-01-01

    Vastutustundliku ettevõtluse Euroopa organisatsiooni CSR Europe'i juht Kerstin Born vastab küsimustele ettevõtete vastutustundlikkuse kohta ühiskonnas. Vt. samas: Käivitus vastutustundliku ettevõtluse indeks

  8. Spectroscopic Confirmation of a z = 6.740 Galaxy behind the Bullet Cluster

    Science.gov (United States)

    Bradač, Maruša; Vanzella, Eros; Hall, Nicholas; Treu, Tommaso; Fontana, Adriano; Gonzalez, Anthony H.; Clowe, Douglas; Zaritsky, Dennis; Stiavelli, Massimo; Clément, Benjamin

    2012-08-01

    We present the first results of our spectroscopic follow-up of 6.5 dropout behind the Bullet Cluster. We detect an emission line at λ = 9412 Å at >5σ significance using a 16 hr long exposure with FORS2 VLT. Based on the absence of flux in bluer broadband filters, the blue color of the source, and the absence of additional lines, we identify the line as Lyα at z = 6.740 ± 0.003. The integrated line flux is f = (0.7 ± 0.1 ± 0.3) × 10-17 erg-1 s-1 cm-2 (the uncertainties are due to random and flux calibration errors, respectively) making it the faintest Lyα flux detected at these redshifts. Given the magnification of μ = 3.0 ± 0.2 the intrinsic (corrected for lensing) flux is f int = (0.23 ± 0.03 ± 0.10 ± 0.02) × 10-17 erg-1 s-1 cm-2 (additional uncertainty due to magnification), which is ~2-3 times fainter than other such measurements in z ~ 7 galaxies. The intrinsic H 160W-band magnitude of the object is m^int_{H_160W}=27.57+/- 0.17, corresponding to 0.5 L* for LBGs at these redshifts. The galaxy is one of the two sub-L* LBG galaxies spectroscopically confirmed at these high redshifts (the other is also a lensed z = 7.045 galaxy), making it a valuable probe for the neutral hydrogen fraction in the early universe. Observations were carried out using the Very Large Telescope at the ESO Paranal Observatory under Program ID 088.A-0542. Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 and NNX08AD79G. These observations are associated with programs GO10200, GO10863, and GO11099.

  9. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...... role in disease patterns, it is evident that transmission potential is governed by a complex of factors, including socio-economy, health-care capacity and ecology. In Denmark, malaria and leishmaniasis are unlikely to become public health problems, whereas the potential for tick-borne illnesses may...

  10. Characterization of Orbital Debris Photometric Properties Derived from Laboratory-Based Measurements

    Science.gov (United States)

    Cowardin, Heather; Seitzer, Pat; Abercromby, Kira; Barker, Ed; Schildknecht, Thomas

    2010-01-01

    Capitalizing on optical data products and applying them to generate a more complete understanding of orbital space objects, is a key objective of NASA's Optical Measurement Program, and a primary objective for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. The data acquired in the OMC are a function of known shape, size, and material. These three physical parameters are key to understanding the orbital debris environment in more depth. For optical observations, one must rely on spectroscopic or photometric measurements to ascertain an object's material type. Determination of an object s shape using remote observations is more complicated due to the various light scattering properties each object present and is a subject that requires more study. It is much easier to look at the periodicity of the light curve and analyze its structure for rotation. In order to best simulate the orbital debris population, three main sources were used as test fragments for optical measurements: flight-ready materials, destructive hypervelocity testing (simulating on-orbit collisions) and destructive pressure testing (simulating on-orbit explosions). Laboratory optical characteristics of fragments were measured, including light curve shape, phase angle dependence, and photometric and spectroscopic color indices. These characteristics were then compared with similar optical measurements acquired from telescopic observations in order to correlate remote and laboratory properties with the intent of ascertaining the intrinsic properties of the observed orbital debris

  11. Apparatus for Measurements of Time and Space Correlation

    Science.gov (United States)

    Favre, Alexandre; Gaviglio, J; Dumas, R

    1955-01-01

    A brief review is made of improvements to an experimental apparatus for time and space correlation designed for study of turbulence. Included is a description of the control of the measurements and a few particular applications.

  12. Prevalence of Hepatitis B Surface Antigen in US-Born and Foreign-Born Asian/Pacific Islander College Students

    Science.gov (United States)

    Quang, Yen N.; Vu, Joanne; Yuk, Jihey; Li, Chin-Shang; Chen, Moon; Bowlus, Christopher L.

    2010-01-01

    The prevalence of chronic hepatitis B (HBV) among college-age US-born Asian and Pacific Islanders (A/PI) is not well known. Objectives: To compare the prevalence of hepatitis B surface antigen (HBsAg) seropositivity in US-born to A/PI-born students at a public university. Participants: Undergraduate who self-identified themselves as A/PI. Results:…

  13. Summary report on the Japan-US workshop on the assessment of spectroscopic data for temperature and density measurements

    International Nuclear Information System (INIS)

    Wiese, W.L.; Fujita, J.

    1988-03-01

    This workshop was held as a part of the US-Japan Cooperative Fusion Program 1986 at the Institute of Plasma Physics, Nagoya University, on March 18 - 20, 1987. Talks were carried out on the following plasma diagnostic subjects, giving special consideration to the situation of spectroscopic data and the needs, availability and adequacy of the data: x-ray spectroscopy, VUV and visible region spectroscopy, plasma edge spectroscopy, polarization spectroscopy, charge exchange spectroscopy, excitation rate data, and spectral radiometry and spectroscopic data tables. The program of the workshop and the abstracts of the talks are given in the first part of this summary report. On the last day of the workshop, small groups were formed, which deliberated on the situation of spectroscopic data in the various diagnostic areas, and especially focused on the further needs of the data. The summary of the findings and recommendation are given in the second part. The workshop was attended by five US and 25 Japanese scientists, and greatly benefitted from the active participation of three quests. (Kako, I.)

  14. The Asian Tropopause Aerosol Layer: Balloon-Borne Measurements, Satellite Observations and Modeling Approaches

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Natarajan, M.; Deshler, Terry; Liu, H.; Wegner, T.; Baker, N.; Gadhavi, H.; Jayaraman, A.; Pandit, A.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) can provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols associated with ASM anticyclone, in the upper troposphere and lower stratosphere (UTLS). The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instrumentation, aircraft and satellite observations, combined with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical and optical properties of aerosols in the ATAL. In particular, we show balloon-based observations from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, including in situ backscatter measurements from COBALD instruments, and some of the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous contributions to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that 80-90% of ATAL aerosols originate from south Asian sources, in contrast with some earlier studies.

  15. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  16. Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers.

    Science.gov (United States)

    Berti, Emanuele; Sesana, Alberto; Barausse, Enrico; Cardoso, Vitor; Belczynski, Krzysztof

    2016-09-02

    We estimate the potential of present and future interferometric gravitational-wave detectors to test the Kerr nature of black holes through "gravitational spectroscopy," i.e., the measurement of multiple quasinormal mode frequencies from the remnant of a black hole merger. Using population synthesis models of the formation and evolution of stellar-mass black hole binaries, we find that Voyager-class interferometers will be necessary to perform these tests. Gravitational spectroscopy in the local Universe may become routine with the Einstein Telescope, but a 40-km facility like Cosmic Explorer is necessary to go beyond z∼3. In contrast, detectors like eLISA (evolved Laser Interferometer Space Antenna) should carry out a few-or even hundreds-of these tests every year, depending on uncertainties in massive black hole formation models. Many space-based spectroscopical measurements will occur at high redshift, testing the strong gravity dynamics of Kerr black holes in domains where cosmological corrections to general relativity (if they occur in nature) must be significant.

  17. The use of a cubesat to validate technological bricks in space

    Science.gov (United States)

    Rakotonimbahy, E.; Vives, S.; Dohlen, K.; Savini, G.; Iafolla, V.

    2017-11-01

    In the framework of the FP7 program FISICA (Far Infrared Space Interferometer Critical Assessment), we are developing a cubesat platform which will be used for the validation in space of two technological bricks relevant for FIRI. The first brick is a high-precision accelerometer which could be used in a future space mission as fundamental element for the dynamic control loop of the interferometer. The second brick is a miniaturized version of an imaging multi-aperture telescope. Ultimately, such an instrument could be composed of numerous space-born mirror segments flying in precise formation on baselines of hundreds or thousands of meters, providing high-resolution glimpses of distant worlds. We are proposing to build a very first space-born demonstrator of such an instrument which will fit into the limited resources of one cubesat. In this paper, we will describe the detailed design of the cubesat hosting the two payloads.

  18. Surveillance of vector-borne pathogens under imperfect detection: lessons from Chagas disease risk (mis)measurement.

    Science.gov (United States)

    Minuzzi-Souza, Thaís Tâmara Castro; Nitz, Nadjar; Cuba, César Augusto Cuba; Hagström, Luciana; Hecht, Mariana Machado; Santana, Camila; Ribeiro, Marcelle; Vital, Tamires Emanuele; Santalucia, Marcelo; Knox, Monique; Obara, Marcos Takashi; Abad-Franch, Fernando; Gurgel-Gonçalves, Rodrigo

    2018-01-09

    Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50-75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.

  19. Space weather effects measured in atmospheric radiation on aircraft

    Science.gov (United States)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Wieman, S. R.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, L. D.; Mertens, C. J.; Xu, X.; Wiltberger, M. J.; Wiley, S.; Teets, E.; Shea, M. A.; Smart, D. F.; Jones, J. B. L.; Crowley, G.; Azeem, S. I.; Halford, A. J.

    2016-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Since 2013 Space Environment Technologies (SET) has been conducting observations of the atmospheric radiation environment at aviation altitudes using a small fleet of six instruments. The objective of this work is to improve radiation risk management in air traffic operations. Under the auspices of the Automated Radiation Measurements for Aerospace Safety (ARMAS) and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) projects our team is making dose rate measurements on multiple aircraft flying global routes. Over 174 ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the radiation environment resulting from Galactic Cosmic Rays (GCRs), Solar Energetic Protons (SEPs), and outer radiation belt energetic electrons. The real-time radiation exposure is measured as an absorbed dose rate in silicon and then computed as an ambient dose equivalent rate for reporting dose relevant to radiative-sensitive organs and tissue in units of microsieverts per hour. ARMAS total ionizing absorbed dose is captured on the aircraft, downlinked in real-time, processed on the ground into ambient dose equivalent rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users. Dose rates from flight altitudes up to 56,700 ft. are shown for flights across the planet under a variety of space weather conditions. We discuss several space weather

  20. Unequal arm space-borne gravitational wave detectors

    International Nuclear Information System (INIS)

    Larson, Shane L.; Hellings, Ronald W.; Hiscock, William A.

    2002-01-01

    Unlike ground-based interferometric gravitational wave detectors, large space-based systems will not be rigid structures. When the end stations of the laser interferometer are freely flying spacecraft, the armlengths will change due to variations in the spacecraft positions along their orbital trajectories, so the precise equality of the arms that is required in a laboratory interferometer to cancel laser phase noise is not possible. However, using a method discovered by Tinto and Armstrong, a signal can be constructed in which laser phase noise exactly cancels out, even in an unequal arm interferometer. We examine the case where the ratio of the armlengths is a variable parameter, and compute the averaged gravitational wave transfer function as a function of that parameter. Example sensitivity curve calculations are presented for the expected design parameters of the proposed LISA interferometer, comparing it to a similar instrument with one arm shortened by a factor of 100, showing how the ratio of the armlengths will affect the overall sensitivity of the instrument

  1. Global Space Weather Observational Network: Challenges and China's Contribution

    Science.gov (United States)

    Wang, C.

    2017-12-01

    To understand space weather physical processes and predict space weather accurately, global space-borne and ground-based space weather observational network, making simultaneous observations from the Sun to geo-space (magnetosphere, ionosphere and atmosphere), plays an essential role. In this talk, we will present the advances of the Chinese space weather science missions, including the ASO-S (Advanced Space-borne Solar Observatory), MIT (Magnetosphere - Ionosphere- Thermosphere Coupling Exploration), and the ESA-China joint space weather science mission SMILE (Solar wind - Magnetosphere - Ionosphere Link Explore), a new mission to image the magnetosphere. Compared to satellites, ground-based monitors are cheap, convenient, and provide continuous real-time data. We will also introduce the Chinese Meridian Project (CMP), a ground-based program fully utilizing the geographic location of the Chinese landmass to monitor the geo-space environment. CMP is just one arm of a larger program that Chinese scientists are proposing to the international community. The International Meridian Circle Program (IMCP) for space weather hopes to connect chains of ground-based monitors at the longitudinal meridians 120 deg E and 60 deg W. IMCP takes advantage of the fact that these meridians already have the most monitors of any on Earth, with monitors in Russia, Australia, Brazil, the United States, Canada, and other countries. This data will greatly enhance the ability of scientists to monitor and predict the space weather worldwide.

  2. Physics Of Eclipsing Binaries. II. Towards the Increased Model Fidelity

    OpenAIRE

    Prša, Andrej; Conroy, Kyle E.; Horvat, Martin; Pablo, Herbert; Kochoska, Angela; Bloemen, Steven; Giammarco, Joseph; Hambleton, Kelly M.; Degroote, Pieter

    2016-01-01

    The precision of photometric and spectroscopic observations has been systematically improved in the last decade, mostly thanks to space-borne photometric missions and ground-based spectrographs dedicated to finding exoplanets. The field of eclipsing binary stars strongly benefited from this development. Eclipsing binaries serve as critical tools for determining fundamental stellar properties (masses, radii, temperatures and luminosities), yet the models are not capable of reproducing observed...

  3. Results of dosimetric measurements in space missions

    Science.gov (United States)

    Reitz, G.; Beaujean, R.; Heilmann, C.; Kopp, J.; Leicher, M.; Strauch, K.

    Detector packages consisting of plastic nuclear track detectors, nuclear emulsions, and thermoluminescence detectors were exposed at different locations inside the space laboratory Spacelab and at the astronauts' body and in different sections of the MIR space station. Total dose, particle fluence rate and linear energy transfer (LET) spectra of heavy ions, number of nuclear disintegrations and fast neutron fluence rates were determined of each exposure. The dose equivalent received by the Payload specialists (PSs) were calculated from the measurements, they range from 190 muSv d^-1 to 770 muSv d^-1. Finally, a preliminary investigation of results from a particle telescope of two silicon detectors, first used in the last BIORACK mission on STS 76, is reported.

  4. Foreign-born Peers and Academic Performance.

    Science.gov (United States)

    Conger, Dylan

    2015-04-01

    The academic performance of foreign-born youth in the United States is well studied, yet little is known about whether and how foreign-born students influence their classmates. In this article, I develop a set of expectations regarding the potential consequences of immigrant integration across schools, with a distinction between the effects of sharing schools with immigrants who are designated as English language learners (ELL) and those who are not. I then use administrative data on multiple cohorts of Florida public high school students to estimate the effect of immigrant shares on immigrant and native-born students' academic performance. The identification strategy pays careful attention to the selection problem by estimating the effect of foreign-born peers from deviations in the share foreign-born across cohorts of students attending the same school in different years. The assumption underlying this approach is that students choose schools based on the composition of the entire school, not on the composition of each entering cohort. The results of the analysis, which hold under several robustness checks, indicate that foreign-born peers (both those who are ELL and those who are non-ELL) have no effect on their high school classmates' academic performance.

  5. Offending Behavior, Drug Use, and Mental Health Among Foreign-Born versus U.S. Born Latino Criminal Justice Clients.

    Science.gov (United States)

    Ibañez, Gladys E; Agudo, Michelle; Martin, Steve S; O'Connell, Daniel J; Auf, Rehab; Sheehan, Diana M

    2017-06-01

    Little is known about the offending behavior and recidivism factors of Latinos by nativity (U.S. born, foreign-born). The present study focused on Latinos in community corrections (n = 201) in Miami, Florida, and examined differences in criminal activity, drug use, and mental health by nativity. Data were collected utilizing convenience sampling between June 2014 and December 2015. The research question was: what are the offending, drug use, and mental health histories of Latinos involved in community corrections? Participants were mostly male (n = 120; 59.7%), White (n = 105; 52.2%), and Cuban (n = 97; 48.3%). U.S. born community corrections clients (n = 141) were more likely to report more lifetime and recent criminal activity; and more likely to report lifetime and recent drug use behavior than foreign-born Latinos (n = 60). No differences were found in recent mental health. Correctional healthcare should tailor services such as substance abuse treatment differently toward U.S. born and foreign-born Latinos.

  6. The Future of Carbon Monoxide Measurements from Space

    Science.gov (United States)

    Drummond, J.

    It is now over 20 years since the Measurements of Air Pollution from Space MAPS instrument made the first measurements of tropospheric carbon monoxide from the shuttle Since that time a number of instruments have flown including the Measurements Of Pollution In The Troposphere MOPITT Tropospheric Emission Spectrometer TES and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY SCIAMCHY to name only three of many Each of these instruments has a unique observing method and unique mission characteristics It is accepted that measurements of carbon monoxide provide a useful proxy of the pollution of the troposphere and contribute significantly to studies of various phenomena in the atmosphere and atmosphere-surface interactions These measurements should therefore be continued -- but in what form Technology has progresses significantly since the current generation of instruments was designed and our ability to interpret the data from such instrumentation has likewise expanded It is therefore fruitful to consider what is the best set of measurements that can be made which parameters should be emphasized and which compromised on the way to the next generation of sensors The Measurements of Air Pollution Levels in the Environment MAPLE instrument is a study financed by the Canadian Space Agency to design a next-generation instrument and since instrument spacecraft and mission are now intimately linked a consideration of the whole mission is appropriate This talk will outline some potential developments in the hardware

  7. Evaluation of multivariate calibration models transferred between spectroscopic instruments

    DEFF Research Database (Denmark)

    Eskildsen, Carl Emil Aae; Hansen, Per W.; Skov, Thomas

    2016-01-01

    In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions for the ......In a setting where multiple spectroscopic instruments are used for the same measurements it may be convenient to develop the calibration model on a single instrument and then transfer this model to the other instruments. In the ideal scenario, all instruments provide the same predictions...... for the same samples using the transferred model. However, sometimes the success of a model transfer is evaluated by comparing the transferred model predictions with the reference values. This is not optimal, as uncertainties in the reference method will impact the evaluation. This paper proposes a new method...... for calibration model transfer evaluation. The new method is based on comparing predictions from different instruments, rather than comparing predictions and reference values. A total of 75 flour samples were available for the study. All samples were measured on ten near infrared (NIR) instruments from two...

  8. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  9. New calorimeters for space experiments: physics requirements and technological challenges

    Science.gov (United States)

    Marrocchesi, Pier Simone

    2015-07-01

    Direct measurements of charged cosmic radiation with instruments in Low Earth Orbit (LEO), or flying on balloons above the atmosphere, require the identification of the incident particle, the measurement of its energy and possibly the determination of its sign-of-charge. The latter information can be provided by a magnetic spectrometer together with a measurement of momentum. However, magnetic deflection in space experiments is at present limited to values of the Maximum Detectable Rigidity (MDR) hardly exceeding a few TV. Advanced calorimetric techniques are, at present, the only way to measure charged and neutral radiation at higher energies in the multi-TeV range. Despite their mass limitation, calorimeters may achieve a large geometric factor and provide an adequate proton background rejection factor, taking advantage of a fine granularity and imaging capabilities. In this lecture, after a brief introduction on electromagnetic and hadronic calorimetry, an innovative approach to the design of a space-borne, large acceptance, homogeneous calorimeter for the detection of high energy cosmic rays will be described.

  10. The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field

    Science.gov (United States)

    Hasinger, G.; Capak, P.; Salvato, M.; Barger, A. J.; Cowie, L. L.; Faisst, A.; Hemmati, S.; Kakazu, Y.; Kartaltepe, J.; Masters, D.; Mobasher, B.; Nayyeri, H.; Sanders, D.; Scoville, N. Z.; Suh, H.; Steinhardt, C.; Yang, Fengwei

    2018-05-01

    We present a catalog of 10,718 objects in the COSMOS field, observed through multi-slit spectroscopy with the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II telescope in the wavelength range ∼5500–9800 Å. The catalog contains 6617 objects with high-quality spectra (two or more spectral features), and 1798 objects with a single spectroscopic feature confirmed by the photometric redshift. For 2024 typically faint objects, we could not obtain reliable redshifts. The objects have been selected from a variety of input catalogs based on multi-wavelength observations in the field, and thus have a diverse selection function, which enables the study of the diversity in the galaxy population. The magnitude distribution of our objects is peaked at I AB ∼ 23 and K AB ∼ 21, with a secondary peak at K AB ∼ 24. We sample a broad redshift distribution in the range 0 0.65 with chance probabilities 10 Mpc. An object-to-object comparison with a multitude of other spectroscopic samples in the same field shows that our DEIMOS sample is among the best in terms of fraction of spectroscopic failures and relative redshift accuracy. We have determined the fraction of spectroscopic blends to about 0.8% in our sample. This is likely a lower limit and at any rate well below the most pessimistic expectations. Interestingly, we find evidence for strong lensing of Lyα background emitters within the slits of 12 of our target galaxies, increasing their apparent density by about a factor of 4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Constraints on early-type galaxy structure from spectroscopically selected gravitational lenses

    Science.gov (United States)

    Bolton, Adam Stallard

    2005-11-01

    This thesis describes all aspects of a unique spectroscopic survey for strong galaxy-galaxy gravitational lenses: motivation, candidate selection, ground- based spectroscopic follow-up, Hubble Space Telescope imaging, data analysis, and results on the radial density profile of the lens galaxies. The lens candidates are selected from within the spectroscopic database of the Sloan Digital Sky Survey (SDSS) based on the appearance of two significantly different redshifts along the same line of sight, and lenses are confirmed within the candidate sample by follow-up imaging and spectroscopy. The sample of [approximate]20 early-type lenses presented in this thesis represents the largest single strong-lens galaxy sample discovered and published to date. These lenses probe the mass of the lens galaxies on scales roughly equal to one-half effective radius. We find a dynamical normalization between isothermal lens-model velocity dispersions and aperture-corrected SDSS stellar velocity dispersions of f = s lens /s stars = 0.95 +/- 0.03. By combining lens-model Einstein radii and de Vaucouleurs effective radii with stellar velocity dispersions through the Jeans equation, we find that the logarithmic slope [Special characters omitted.] of the density profile in our lens galaxies (r 0 ( [Special characters omitted.] ) is on average slightly steeper than isothermal ([Special characters omitted.] = 2) with a modest intrinsic scatter. Parameterizing the intrinsic distribution in [Special characters omitted.] as Gaussian, we find a maximum-likelihood mean of [Special characters omitted. ] and standard deviation of s[Special characters omitted.] = [Special characters omitted.] (68% confidence, for isotropic velocity-dispersion models). Our results rule out a single universal logarithmic density slope at >99.995% confidence. The success of this spectroscopic lens survey suggests that similar projects should be considered as an explicit science goal of future redshift surveys. (Copies

  12. Executive and Memory Function in Adolescents Born Very Preterm

    Science.gov (United States)

    Ment, Laura; Allan, Walter; Schneider, Karen; Vohr, Betty R.

    2011-01-01

    BACKGROUND: Many preterm children display school difficulties, which may be mediated by impairment in executive function and memory. OBJECTIVE: To evaluate executive and memory function among adolescents born preterm compared with term controls at 16 years. METHODS: A total of 337 of 437 (77%) adolescents born in 1989 to 1992 with a birth weight executive function and memory tasks. Multiple regression analyses were used to compare groups and to identify associations between selected factors and outcomes among preterm subjects. RESULTS: Adolescents born preterm, compared with term controls, showed deficits in executive function in the order of 0.4 to 0.6 SD on tasks of verbal fluency, inhibition, cognitive flexibility, planning/organization, and working memory as well as verbal and visuospatial memory. After exclusion of adolescents with neurosensory disabilities and full-scale IQ executive dysfunction, as measured with the Behavior Rating Inventory of Executive Function, on the Metacognition Index (odds ratio [OR]: 2.5 [95% confidence interval (CI): 1.2–5.1]) and the Global Executive Composite (OR: 4.2 [95% CI: 1.6–10.9]), but not on the Behavioral Regulation index (OR: 1.5 [95% CI: 0.7–3.5]). Among adolescents born preterm, severe brain injury on neonatal ultrasound and lower maternal education were the most consistent factors associated with poor outcomes. CONCLUSIONS: Even after exclusion of preterm subjects with significant disabilities, adolescents born preterm in the early 1990s were at increased risk of deficits in executive function and memory. PMID:21300680

  13. Three-dimensional prospective evaluation of tooth-borne and bone-borne surgically assisted rapid maxillary expansion

    NARCIS (Netherlands)

    Nada, R.M.; Fudalej, P.S.; Maal, T.J.J.; Berge, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.

    2012-01-01

    AIM: To three-dimensionally (3D) assess the long-term effects of tooth-borne and bone-borne surgically assisted rapid maxillary expansion (SARME). SUBJECTS AND METHODS: This prospective cohort study comprised 45 consecutive skeletally mature non-syndromic patients with transverse maxillary

  14. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    International Nuclear Information System (INIS)

    Chan, K.L.; Jiang, S.Y.N.; Ning, Z.

    2016-01-01

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R 2  > 0.999) and low detection limit (0.06 μg L −1 ) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  15. Cosmic rays in space

    International Nuclear Information System (INIS)

    Fujitaka, Kazunobu

    2005-01-01

    Cosmos is a mysterious space by which many researchers are fascinated for many years. But, going into space means that we will receive extra exposure due to existence of cosmic rays. Cosmic rays are mainly composed of highly energetic protons. It was born in the last stage of stellar life. Understanding of cosmos will certainly bring right understanding of radiation energy, or energy itself. As no one could see the very early stage of cosmic rays, there is only a speculation. But it is better to speculate something based on certain side evidences, than to give up the whole. Such attitude shall be welcomed in the space researches. Anyway, cosmic rays were born in the last explosion of a star, which is called as Super Nova. After cosmic rays are emitted from the Super Nova, it will reach to the human surroundings. To indicate its intensity, special unit of ''dose rate'' is used. When a man climbs a mountain, cosmic ray intensity surely increases. It doubles as he goes up every 1500m elevation. It was ascertained by our own measurements. Then what happens when the goes up more? At aviation altitude, where airplanes fly, the dose rate will be increased up to 100times the high mountain cases. And what is expected when he goes up further more, up to space orbit altitude? In this case, the dose rate increases up to 10times the airplane cases. Geomagnetism affects the dose rate very much. As primary cosmic ray particles are charged particles, they cannot do well with existence of the magnetic field. In effect, cosmic rays can penetrate into the polar atmosphere along geomagnetic lines of forces which stand almost vertical, but penetration of low energy cosmic rays will be banned when they intend to penetrate crossing the geomagnetic lines of forces in equatorial region. Therefore, exposure due to cosmic rays will become large in polar region, while it remains small in equatorial region. In effect, airplanes which fly over the equator. Only, we have to know that the cosmos

  16. Raman spectroscopic studies on CeVO4 at high pressures

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  17. QUANTIFYING THE BIASES OF SPECTROSCOPICALLY SELECTED GRAVITATIONAL LENSES

    International Nuclear Information System (INIS)

    Arneson, Ryan A.; Brownstein, Joel R.; Bolton, Adam S.

    2012-01-01

    Spectroscopic selection has been the most productive technique for the selection of galaxy-scale strong gravitational lens systems with known redshifts. Statistically significant samples of strong lenses provide a powerful method for measuring the mass-density parameters of the lensing population, but results can only be generalized to the parent population if the lensing selection biases are sufficiently understood. We perform controlled Monte Carlo simulations of spectroscopic lens surveys in order to quantify the bias of lenses relative to parent galaxies in velocity dispersion, mass axis ratio, and mass-density profile. For parameters typical of the SLACS and BELLS surveys, we find (1) no significant mass axis ratio detection bias of lenses relative to parent galaxies; (2) a very small detection bias toward shallow mass-density profiles, which is likely negligible compared to other sources of uncertainty in this parameter; (3) a detection bias toward smaller Einstein radius for systems drawn from parent populations with group- and cluster-scale lensing masses; and (4) a lens-modeling bias toward larger velocity dispersions for systems drawn from parent samples with sub-arcsecond mean Einstein radii. This last finding indicates that the incorporation of velocity-dispersion upper limits of non-lenses is an important ingredient for unbiased analyses of spectroscopically selected lens samples. In general, we find that the completeness of spectroscopic lens surveys in the plane of Einstein radius and mass-density profile power-law index is quite uniform, up to a sharp drop in the region of large Einstein radius and steep mass-density profile, and hence that such surveys are ideally suited to the study of massive field galaxies.

  18. Non-abelian Born-Infeld revisited

    NARCIS (Netherlands)

    Roo, M. de

    2002-01-01

    We discuss the non-abelian Born-Infeld action, including fermions, as a series in α'. We review recent work establishing the complete result to α'2, and its impact on our earlier attempts to derive the Born-Infeld action using κ-symmetry.

  19. [Climate- and vector-borne diseases

    DEFF Research Database (Denmark)

    Bygbjerg, I.C.; Schioler, K.L.; Konradsen, F.

    2009-01-01

    The predicted changes in climate have raised concerns that vector-borne diseases may emerge or expand in tempered regions. Malaria, leishmaniasis and tick-borne illnesses are discussed in terms of climate change and their endemic potential, especially in Denmark. While climate may play an important...

  20. Spectroscopic output of {sup 125}I and {sup 103}Pd low dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Usher-Moga, Jacqueline; Beach, Stephen M.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin--Madison, Madison, Wisconsin 53705 (United States); Global Physics Solutions, St. Joseph, Michigan 49085 (United States); Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2009-01-15

    The spectroscopic output of low dose rate (LDR) brachytherapy sources is dependent on the physical design and construction of the source. Characterization of the emitted photons from 12 {sup 125}I and 3 {sup 103}Pd LDR brachytherapy source models is presented. Photon spectra, both along the transverse bisector and at several polar angles, were measured in air with a high-purity reverse electrode germanium (REGe) detector. Measured spectra were corrected to in vacuo conditions via Monte Carlo and analytical methods. The tabulated and plotted spectroscopic data provide a more complete understanding of each source model's output characteristics than can be obtained with other measurement techniques. The variation in fluorescence yield of the {sup 125}I sources containing silver caused greater differences in the emitted spectra and average energies among these seed models than was observed for the {sup 103}Pd sources or the {sup 125}I sources that do not contain silver. Angular spectroscopic data further highlighted the effects of source construction unique to each model, as well as the asymmetric output of many seeds. These data demonstrate the need for the incorporation of such physically measured output characteristics in the Monte Carlo modeling process.

  1. A balloon-borne prototype for demonstrating the concept of JEM-EUSO

    Science.gov (United States)

    von Ballmoos, P.; Santangelo, A.; Adams, J. H.; Barrillon, P.; Bayer, J.; Bertaina, M.; Cafagna, F.; Casolino, M.; Dagoret, S.; Danto, P.; Distratis, G.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Evrard, J.; Gorodetzky, Ph.; Haungs, A.; Jung, A.; Kawasaki, Y.; Medina-Tanco, G.; Mot, B.; Osteria, G.; Parizot, E.; Park, I. H.; Picozza, P.; Prévôt, G.; Prieto, H.; Ricci, M.; Rodríguez Frías, M. D.; Roudil, G.; Scotti, V.; Szabelski, J.; Takizawa, Y.; Tusno, K.

    2014-05-01

    EUSO-BALLOON has been conceived as a pathfinder for JEM-EUSO, a mission concept for a space-borne wide-field telescope monitoring the Earth's nighttime atmosphere with the objective of recording the ultraviolet light from tracks initiated by ultra-high energy cosmic rays. Through a series of stratospheric balloon flights performed by the French Space Agency CNES, EUSO-BALLOON will serve as a test-bench for the key technologies of JEM-EUSO. EUSO-BALLOON shall perform an end-to-end test of all subsystems and components, and prove the global detection chain while improving our knowledge of the atmospheric and terrestrial ultraviolet background. The balloon-instrument also has the potential to detect for the first time UV-light generated by atmospheric air-shower from above, marking a milestone in the development of UHECR science, and paving the way for any future large scale, space-based ultra-high energy cosmic ray observatory.

  2. Visuospatial perception in children born preterm with no major neurological disorders.

    Science.gov (United States)

    Butcher, Phillipa R; Bouma, Anke; Stremmelaar, Elisabeth F; Bos, Arend F; Smithson, Michael; Van Braeckel, Koenraad N J A

    2012-11-01

    Many investigations have found deficits in visuospatial perception in children born preterm, however, it is not clear whether the deficits are specific to visuospatial perception or the consequences of deficits in other functional areas, which often accompany preterm birth. This study investigated whether children born preterm show a specific deficit in visuospatial perception. Fifty-six 7- to 11-year-old preterm born children (gestational age children completed four computerized tasks tapping different levels and types of visuospatial perception. Accuracy and speed of responses were recorded. Task formats were designed to reduce demands on attentional deployment. Measures of intelligence and parental education were included in the analysis. Children born preterm performed less accurately and/or less rapidly on all tasks. Their poorer performance did not reflect differences in speed-accuracy trade-off. Parental education and IQ, both significantly lower in the preterm children, contributed positively to performance on all tasks. IQ mediated the association between preterm birth and visuospatial performance on the most cognitively demanding task. Children born preterm performed more poorly than full-term controls on four visuospatial perceptual tasks. Although intelligence and parental education were also associated with performance, preterm birth contributed independently of these factors on three of four tasks. Many children born preterm are thus multiply disadvantaged on visuospatial tasks: the lower IQ scores and parental educational levels frequently found in this group increase the deficit associated with preterm birth. (c) 2012 APA, all rights reserved.

  3. Spectroscopic Measurements of the Ion Velocity Distribution at the Base of the Fast Solar Wind

    Science.gov (United States)

    Jeffrey, Natasha L. S.; Hahn, Michael; Savin, Daniel W.; Fletcher, Lyndsay

    2018-03-01

    In situ measurements of the fast solar wind reveal non-thermal distributions of electrons, protons, and minor ions extending from 0.3 au to the heliopause. The physical mechanisms responsible for these non-thermal properties and the location where these properties originate remain open questions. Here, we present spectroscopic evidence, from extreme ultraviolet spectroscopy, that the velocity distribution functions (VDFs) of minor ions are already non-Gaussian at the base of the fast solar wind in a coronal hole, at altitudes of thermal equilibrium, (b) fluid motions such as non-Gaussian turbulent fluctuations or non-uniform wave motions, or (c) some combination of both. These observations provide important empirical constraints for the source region of the fast solar wind and for the theoretical models of the different acceleration, heating, and energy deposition processes therein. To the best of our knowledge, this is the first time that the ion VDF in the fast solar wind has been probed so close to its source region. The findings are also a timely precursor to the upcoming 2018 launch of the Parker Solar Probe, which will provide the closest in situ measurements of the solar wind at approximately 0.04 au (8.5 solar radii).

  4. The BAT AGN Spectroscopic Survey (BASS) DR1-Spectral Measurements, Derived Quantities, and AGN Demographics

    Science.gov (United States)

    Koss, Michael; BASS Team

    2018-01-01

    We present the first catalog and data release of the Swift-BAT AGN Spectroscopic Survey (BASS). We analyze optical spectra of the majority of AGN (77%, 641/836) detected based on their 14-195 keV emission in the 70-month Swift BAT all-sky catalog. This includes redshift determination, absorption and emission line measurements, and black hole mass and accretion rate estimates for the majority of obscured and un-obscured AGN (74%, 473/641) with 340 measured for the first time. With ~90% of sources at z10^21.9 cm^-2. Seyfert 1.9 show a range of column densities. Compared to narrow line AGN in the SDSS, the X-ray selected AGN have a larger fraction of dusty host galaxies suggesting these types of AGN are missed in optical surveys. Using the most sensitive [OIII]/Hbeta and [NII]/Halpha emission line diagnostic, about half of the sources are classified as Seyferts, ~15% reside in dusty galaxies that lack an Hbeta detection, but for which the line upper limits imply either a Seyfert or LINER, ~15% are in galaxies with weak or no emission lines despite high quality spectra, and a few percent each are LINERS, composite galaxies, HII regions, or in known beamed AGN.

  5. The wild life of tick-borne pathogens

    OpenAIRE

    Hofmeester, Tim R.

    2016-01-01

    Diseases that are transmitted by arthropod vectors from animal hosts to humans – so called zoonotic vector-borne diseases – have increased in incidence in the last decades. In North America and Europe, tick-borne pathogens cause the majority of vector-borne diseases, including Lyme borreliosis and tick-borne encephalitis. The pathogens causing these diseases are transmitted by tick species within the Ixodes ricinus complex. These are generalist ticks that have a multi-year lifecycle with thre...

  6. PSYCHE CPMG-HSQMBC: An NMR Spectroscopic Method for Precise and Simple Measurement of Long-Range Heteronuclear Coupling Constants.

    Science.gov (United States)

    Timári, István; Szilágyi, László; Kövér, Katalin E

    2015-09-28

    Among the NMR spectroscopic parameters, long-range heteronuclear coupling constants convey invaluable information on torsion angles relevant to glycosidic linkages of carbohydrates. A broadband homonuclear decoupled PSYCHE CPMG-HSQMBC method for the precise and direct measurement of multiple-bond heteronuclear couplings is presented. The PSYCHE scheme built into the pulse sequence efficiently eliminates unwanted proton-proton splittings from the heteronuclear multiplets so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between peak maxima of pure antiphase doublets. Moreover, PSYCHE CPMG-HSQMBC can provide significant improvement in sensitivity as compared to an earlier Zangger-Sterk-based method. Applications of the proposed pulse sequence are demonstrated for the extraction of (n)J((1)H,(77)Se) and (n)J((1)H,(13)C) values, respectively, in carbohydrates; further extensions can be envisioned in any J-based structural and conformational studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectroscopic surveys of LAMOST

    International Nuclear Information System (INIS)

    Zhao Yongheng

    2015-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a new type of reflecting Schmidt telescope, has been designed and produced in China. It marks a breakthrough for large scale spectroscopic survey observation in that both large aperture and wide field of view have been achieved. LAMOST has the highest spectrum acquisition rate, and from October 2011 to June 2014 it has obtained 4.13 million spectra of celestial objects, of which 3.78 million are spectra of stars, with the stellar parameters of 2.20 million stars included. (author)

  8. Food-borne bacteremic illnesses in febrile neutropenic children

    Directory of Open Access Journals (Sweden)

    Anselm Chi-wai Lee

    2011-08-01

    Full Text Available Bacteremia following febrile neutropenia is a serious complication in children with malignancies. Preventive measures are currently targeted at antimicrobial prophylaxis, amelioration of drug-induced neutropenia, and nosocomial spread of pathogens, with little attention to community-acquired infections. A retrospective study was conducted at a pediatric oncology center during a 3-year period to identify probable cases of food-borne infections with bacteremia. Twenty-one bacteremic illnesses affecting 15 children receiving chemotherapy or hematopoietic stem cell transplantation were reviewed. Three (14% episodes were highly suspected of a food-borne origin: a 17-year-old boy with osteosarcoma contracted Sphingomonas paucimobilis septicemia after consuming nasi lemak bought from a street hawker; a 2-year-old boy with acute lymphoblastic leukemia developed Chryseobacterium meningosepticum septicemia after a sushi dinner; a 2-year-old girl was diagnosed with acute lymphoblastic leukemia and Lactobacillus bacteremia suspected to be of probiotic origin. All of them were neutropenic at the time of the infections and the bacteremias were cleared with antibiotic treatment. Food-borne sepsis may be an important, but readily preventable, cause of bloodstream infections in pediatric oncology patients, especially in tropical countries with an abundance of culinary outlets.

  9. SU-E-J-197: A Novel Optical Interstitial Fiber Spectroscopic System for Real-Time Tissue Micro-Vascular Hemodynamics Monitoring.

    Science.gov (United States)

    Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M

    2012-06-01

    To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of

  10. A comparison of efficient methods for the computation of Born gluon amplitudes

    International Nuclear Information System (INIS)

    Dinsdale, Michael; Ternick, Marko; Weinzierl, Stefan

    2006-01-01

    We compare four different methods for the numerical computation of the pure gluonic amplitudes in the Born approximation. We are in particular interested in the efficiency of the various methods as the number n of the external particles increases. In addition we investigate the numerical accuracy in critical phase space regions. The methods considered are based on (i) Berends-Giele recurrence relations, (ii) scalar diagrams, (iii) MHV vertices and (iv) BCF recursion relations

  11. Spectroscopic and electric dipole properties of Sr+Ar and SrAr systems including high excited states

    Science.gov (United States)

    Hamdi, Rafika; Abdessalem, Kawther; Dardouri, Riadh; Al-Ghamdi, Attieh A.; Oujia, Brahim; Gadéa, Florent Xavier

    2018-01-01

    The spectroscopic properties of the fundamental and several excited states of Sr+Ar and SrAr, Van der Waals systems are investigated by employing an ab initio method in a pseudo-potential approach. The potential energy curves and the spectroscopic parameters are displayed for the 1-10 2Σ+, 1-6 2Π and 1-3 2Δ electronic states of the Sr+Ar molecule and for the 1-6 1Σ+, 1-4 3Σ+, 1-3 1,3Π and 1-3 1,3Δ states of the neutral molecule SrAr. In addition, from these curves, the vibrational levels and their energy spacing are deduced for Σ+, Π and Δ symmetries. The spectra of the permanent and transition dipole moments are studied for the 1,3Σ+ states of SrAr, which are considered to be two-electron systems and 2Σ+ states of the single electron Sr+Ar ion. The spectroscopic parameters obtained for each molecular system are compared with previous theoretical and experimental works. A significant correlation revealed the accuracy of our results.

  12. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE

    International Nuclear Information System (INIS)

    Lilly, Simon J.; Maier, Christian; Carollo, Marcella; Caputi, Karina; Le Brun, Vincent; Kneib, Jean-Paul; Le Fevre, Olivier; De la Torre, Sylvain; De Ravel, Loic; Mainieri, Vincenzo; Mignoli, Marco; Zamorani, Gianni; Bardelli, Sandro; Bolzonella, Micol; Coppa, Graziano; Scodeggio, Marco; Contini, Thierry; Renzini, Alvio; Bongiorno, Angela; Cucciati, Olga

    2009-01-01

    We present spectroscopic redshifts of a large sample of galaxies with I AB -1 , independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.

  13. The k-space origins of scattering in Bi2Sr2CaCu2O8+x.

    Science.gov (United States)

    Alldredge, Jacob W; Calleja, Eduardo M; Dai, Jixia; Eisaki, H; Uchida, S; McElroy, Kyle

    2013-08-21

    We demonstrate a general, computer automated procedure that inverts the reciprocal space scattering data (q-space) that are measured by spectroscopic imaging scanning tunnelling microscopy (SI-STM) in order to determine the momentum space (k-space) scattering structure. This allows a detailed examination of the k-space origins of the quasiparticle interference (QPI) pattern in Bi2Sr2CaCu2O8+x within the theoretical constraints of the joint density of states (JDOS). Our new method allows measurement of the differences between the positive and negative energy dispersions, the gap structure and an energy dependent scattering length scale. Furthermore, it resolves the transition between the dispersive QPI and the checkerboard ([Formula: see text] excitation). We have measured the k-space scattering structure over a wide range of doping (p ∼ 0.22-0.08), including regions where the octet model is not applicable. Our technique allows the complete mapping of the k-space scattering origins of the spatial excitations in Bi2Sr2CaCu2O8+x, which allows for better comparisons between SI-STM and other experimental probes of the band structure. By applying our new technique to such a heavily studied compound, we can validate our new general approach for determining the k-space scattering origins from SI-STM data.

  14. A comparison of Hipparcos parallaxes with planetary nebulae spectroscopic distances

    NARCIS (Netherlands)

    Pottasch, [No Value; Acker, A

    1998-01-01

    The Hipparcos satellite has measured the parallax of a small sample of planetary nebulae. In this paper we consider the results for 3 planetary nebulae (PN) for which spectroscopic distances have also been determined from stellar gravities. These gravities in turn have been derived from profile

  15. Spectroscopic AC susceptibility imaging (sASI) of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ficko, Bradley W.; Nadar, Priyanka M.; Diamond, Solomon G.

    2015-01-01

    This study demonstrates a method for alternating current (AC) susceptibility imaging (ASI) of magnetic nanoparticles (mNPs) using low cost instrumentation. The ASI method uses AC magnetic susceptibility measurements to create tomographic images using an array of drive coils, compensation coils and fluxgate magnetometers. Using a spectroscopic approach in conjunction with ASI, a series of tomographic images can be created for each frequency measurement set and is termed sASI. The advantage of sASI is that mNPs can be simultaneously characterized and imaged in a biological medium. System calibration was performed by fitting the in-phase and out-of-phase susceptibility measurements of an mNP sample with a hydrodynamic diameter of 100 nm to a Brownian relaxation model (R 2 =0.96). Samples of mNPs with core diameters of 10 and 40 nm and a sample of 100 nm hydrodynamic diameter were prepared in 0.5 ml tubes. Three mNP samples were arranged in a randomized array and then scanned using sASI with six frequencies between 425 and 925 Hz. The sASI scans showed the location and quantity of the mNP samples (R 2 =0.97). Biological compatibility of the sASI method was demonstrated by scanning mNPs that were injected into a pork sausage. The mNP response in the biological medium was found to correlate with a calibration sample (R 2 =0.97, p<0.001). These results demonstrate the concept of ASI and advantages of sASI. - Highlights: • Development of an AC susceptibility imaging model. • Comparison of AC susceptibility imaging (ASI) and susceptibility magnitude imaging (SMI). • Demonstration of ASI and spectroscopic ASI (sASI) using three different magnetic nanoparticle types. • SASI scan separation of three different magnetic nanoparticles samples using 5 spectroscopic frequencies. • Demonstration of biological feasibility of sASI

  16. The wild life of tick-borne pathogens

    NARCIS (Netherlands)

    Hofmeester, Tim R.

    2016-01-01

    Diseases that are transmitted by arthropod vectors from animal hosts to humans – so called zoonotic vector-borne diseases – have increased in incidence in the last decades. In North America and Europe, tick-borne pathogens cause the majority of vector-borne diseases, including Lyme borreliosis

  17. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  18. Conceptual Design and Demonstration of Space Scale for Measuring Mass in Microgravity Environment

    Directory of Open Access Journals (Sweden)

    Youn-Kyu Kim

    2015-12-01

    Full Text Available In this study, a new idea for developing a space scale for measuring mass in a microgravity environment was proposed by using the inertial force properties of an object to measure its mass. The space scale detected the momentum change of the specimen and reference masses by using a load-cell sensor as the force transducer based on Newton’s laws of motion. In addition, the space scale calculated the specimen mass by comparing the inertial forces of the specimen and reference masses in the same acceleration field. By using this concept, a space scale with a capacity of 3 kg based on the law of momentum conservation was implemented and demonstrated under microgravity conditions onboard International Space Station (ISS with an accuracy of ±1 g. By the performance analysis on the space scale, it was verified that an instrument with a compact size could be implemented and be quickly measured with a reasonable accuracy under microgravity conditions.

  19. Methods to determine fast-ion distribution functions from multi-diagnostic measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko

    -ion diagnostic views, it is possible to infer the distribution function using a tomography approach. Several inversion methods for solving this tomography problem in velocity space are implemented and compared. It is found that the best quality it obtained when using inversion methods which penalise steep......Understanding the behaviour of fast ions in a fusion plasma is very important, since the fusion-born alpha particles are expected to be the main source of heating in a fusion power plant. Preferably, the entire fast-ion velocity-space distribution function would be measured. However, no fast...

  20. Spectroscopic observations of AG Dra

    International Nuclear Information System (INIS)

    Chang-Chun, H.

    1982-01-01

    During summer 1981, spectroscopic observations of AG Dra were performed at the Haute-Provence Observatory using the Marly spectrograph with a dispersion of 80 A mm -1 at the 120 cm telescope and using the Coude spectrograph of the 193 cm telescope with a dispersion of 40 A mm -1 . The actual outlook of the spectrum of AG Dra is very different from what it was in 1966 in the sense that only a few intense absorption lines remain, the heavy emission continuum masking the absorption spectrum, while on the 1966 plate, about 140 absorption lines have been measured. Numerous emission lines have been measured, most of them, present in 1981, could also be detected in 1966. They are due to H, HeI and HeII. (Auth.)

  1. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2

    Science.gov (United States)

    Zarrouk, Pauline; Burtin, Etienne; Gil-Marín, Héctor; Ross, Ashley J.; Tojeiro, Rita; Pâris, Isabelle; Dawson, Kyle S.; Myers, Adam D.; Percival, Will J.; Chuang, Chia-Hsun; Zhao, Gong-Bo; Bautista, Julian; Comparat, Johan; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Hou, Jiamin; Laurent, Pierre; Le Goff, Jean-Marc; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Schneider, Donald P.; Tinker, Jeremy L.; Wang, Yuting; Yèche, Christophe; Baumgarten, Falk; Brownstein, Joel R.; de la Torre, Sylvain; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; Mariappan, Vivek; Palanque-Delabrouille, Nathalie; Peacock, John; Petitjean, Patrick; Seo, Hee-Jong; Zhao, Cheng

    2018-06-01

    We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey (eBOSS). This data set includes 148 659 quasars spread over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 deg2. We use the Convolution Lagrangian Perturbation Theory approach with a Gaussian Streaming model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter haloes hosting eBOSS quasar tracers. At the effective redshift zeff = 1.52, we measure the linear growth rate of structure fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(z_eff)= 159^{+12}_{-13}(rs^fid/r_s) {{}km s}^{-1} Mpc^{-1}, and the angular diameter distance DA(z_eff)=1850^{+90}_{-115} (r_s/rs^fid) {}Mpc, where rs is the sound horizon at the end of the baryon drag epoch and rs^fid is its value in the fiducial cosmology. The quoted uncertainties include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat Λ-cold dark matter cosmology with Planck parameters, and the measurement of fσ8 extends the validity of General Relativity to higher redshifts (z > 1). This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.

  2. M-line spectroscopic, spectroscopic ellipsometric and microscopic measurements of optical waveguides fabricated by MeV-energy N{sup +} ion irradiation for telecom applications

    Energy Technology Data Exchange (ETDEWEB)

    Bányász, I., E-mail: banyasz@sunserv.kfki.hu [Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Berneschi, S. [“Enrico Fermi” Center for Study and Research, Piazza del Viminale 2, 00184 Roma (Italy); MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Fried, M.; Lohner, T. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary); Conti, G. Nunzi; Righini, G.C.; Pelli, S. [MDF-Lab, “Nello Carrara” Institute of Applied Physics, IFAC-CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Zolnai, Z. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 49, H-1525, Budapest (Hungary)

    2013-08-31

    Irradiation with N{sup +} ions of the 1.5–3.5 MeV energy range was applied to optical waveguide formation. Planar and channel waveguides have been fabricated in an Er-doped tungsten–tellurite glass, and in both types of bismuth germanate (BGO) crystals: Bi{sub 4}Ge{sub 3}O{sub 12} (eulytine) and Bi{sub 12}GeO{sub 20} (sillenite). Multi-wavelength m-line spectroscopy and spectroscopic ellipsometry were used for the characterisation of the ion beam irradiated waveguides. Planar waveguides fabricated in the Er-doped tungsten–tellurite glass using irradiation with N{sup +} ions at 3.5 MeV worked even at the 1550 nm telecommunication wavelength. 3.5 MeV N{sup +} ion irradiated planar waveguides in eulytine-type BGO worked up to 1550 nm and those in sillenite-type BGO worked up to 1330 nm. - Highlights: ► Waveguides were fabricated in glass and crystals using MeV energy N{sup +} ions. ► SRIM simulation and spectroscopic ellipsometry yielded similar waveguide structures. ► Multi-wavelength m-line spectroscopy was used to study the waveguides. ► Waveguides fabricated in an Er-doped tungsten–tellurite glass worked up to 1.5 μm. ► Waveguides in Bi{sub 12}GeO{sub 20} remained operative up to 1.5 μm.

  3. Measuring the quality of public open space using Google Earth.

    Science.gov (United States)

    Taylor, Bronwen T; Fernando, Peter; Bauman, Adrian E; Williamson, Anna; Craig, Jonathan C; Redman, Sally

    2011-02-01

    Proximity to public open space, such as parks and other green spaces, has considerable health benefits, and people have been shown to be more likely to use such space for physical activity if it is of high quality. This paper describes a new remote-assessment approach that makes use of Google Earth Pro (the free version of this program is Google Earth) to provide rapid and inexpensive measurement of the quality of public open space. The aim of the study was to assess the correlation between assessments of the quality of public open space using (1) the remote method (making use of Google Earth Pro) and (2) direct observation with a well-established measure of quality, the Public Open Space Tool (POST). Fifty parks selected from the southwest part of Sydney, Australia, were assessed in 2009 with the remote method (using Google Earth Pro), and scores were compared with those obtained from direct observation of the same parks using POST. The time taken to conduct the assessments using each method was also recorded. Raters for each method were blind to scores obtained from using the other method. Analyses were conducted in 2009. The Spearman correlation coefficient between the quality scores obtained for the 50 parks using the remote method and direct observation was 0.9 (pspaces without the need for in-person visits, dramatically reducing the time required for environmental audits of public open space. Copyright © 2011 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Space experiments with high stability clocks

    International Nuclear Information System (INIS)

    Vessot, R.F.C.

    1993-01-01

    Modern metrology depends increasingly on the accuracy and frequency stability of atomic clocks. Applications of such high-stability oscillators (or clocks) to experiments performed in space are described and estimates of the precision of these experiments are made in terms of clock performance. Methods using time-correlation to cancel localized disturbances in very long signal paths and a proposed space borne four station VLBI system are described. (TEC). 30 refs., 14 figs., 1 tab

  5. Galaxy Evolution Spectroscopic Explorer: Scientific Rationale

    Science.gov (United States)

    Heap, Sara; Ninkov, Zoran; Robberto, Massimo; Hull, Tony; Purves, Lloyd

    2016-01-01

    GESE is a mission concept consisting of a 1.5-m space telescope and UV multi-object slit spectrograph designed to help understand galaxy evolution in a critical era in the history of the universe, where the rate of star-formation stopped increasing and started to decline. To isolate and identify the various processes driving the evolution of these galaxies, GESE will obtain rest-frame far-UV spectra of 100,000 galaxies at redshifts, z approximately 1-2. To obtain such a large number of spectra, multiplexing over a wide field is an absolute necessity. A slit device such as a digital micro-mirror device (DMD) or a micro-shutter array (MSA) enables spectroscopy of a hundred or more sources in a single exposure while eliminating overlapping spectra of other sources and blocking unwanted background like zodiacal light. We find that a 1.5-m space telescope with a MSA slit device combined with a custom orbit enabling long, uninterrupted exposures (approximately 10 hr) are optimal for this spectroscopic survey. GESE will not be operating alone in this endeavor. Together with x-ray telescopes and optical/near-IR telescopes like Subaru/Prime Focus Spectrograph, GESE will detect "feedback" from young massive stars and massive black holes (AGN's), and other drivers of galaxy evolution.

  6. Spectroscopic factors measurement of the five first energy levels of lead 208 nucleus using the 208Pb(e,e'p207Tl* huge pulse transfer reaction

    International Nuclear Information System (INIS)

    Medaglia, R.

    1999-08-01

    In this work, the spectral functions and the spectroscopic factors of the first five energy levels of the lead 208 nucleus have been measured using the 208 Pb(e,e'p) 207 Tl * reaction. The aim is to characterize the effect of the nuclear environment on pulse and energy distributions of protons. In order to minimize the ejected proton-residual nucleus interactions in the final state, the measurement has been performed at 750 and 570 MeV/c pulse transfers, and thus for proton kinetic energies of 263 MeV and 161 MeV, contrarily to a previous measurement performed at 100 MeV. A kinematics with a transverse electromagnetic coupling, instead of a longitudinal one, has been used because of the important coupling dependence observed for medium nuclei. The experiment has been carried out at the NIKHEF electron accelerator and smoothing ring. The pulse distributions of the first five energy levels for a proton pulse range of 0 to 300 MeV/c have been extracted from the (e,e'p) cross sections. An integration of model-dependent distributions gives the spectroscopic factors which indicate the number of protons of each level. These data rae compared to models that include both the proton interactions in the final state and the coulomb distortions. The Pavie model reproduces well the observed distributions and the transfer dependence, while the Ohio model does not. The spectroscopic factors obtained with the Pavie model are the same for both transfers and are 20% higher as an average than the previous experiment performed at 450 MeV/c. However, they are 30% below the shell model. The uncertain estimation of the reaction mechanisms does not allow to consider this reduction as being due exclusively to nuclear structure effects. (J.S.)

  7. Work Disability Among Native-born and Foreign-born Americans: On Origins, Health, and Social Safety Nets.

    Science.gov (United States)

    Engelman, Michal; Kestenbaum, Bert M; Zuelsdorff, Megan L; Mehta, Neil K; Lauderdale, Diane S

    2017-12-01

    Public debates about both immigration policy and social safety net programs are increasingly contentious. However, little research has explored differences in health within America's diverse population of foreign-born workers, and the effect of these workers on public benefit programs is not well understood. We investigate differences in work disability by nativity and origins and describe the mix of health problems associated with receiving Social Security Disability Insurance benefits. Our analysis draws on two large national data sources-the American Community Survey and comprehensive administrative records from the Social Security Administration-to determine the prevalence and incidence of work disability between 2001 and 2010. In sharp contrast to prior research, we find that foreign-born adults are substantially less likely than native-born Americans to report work disability, to be insured for work disability benefits, and to apply for those benefits. Overall and across origins, the foreign-born also have a lower incidence of disability benefit award. Persons from Africa, Northern Europe, Canada, and parts of Asia have the lowest work disability benefit prevalence rates among the foreign-born; persons from Southern Europe, Western Europe, the former Soviet Union, and the Caribbean have the highest rates.

  8. Mutually unbiased coarse-grained measurements of two or more phase-space variables

    Science.gov (United States)

    Paul, E. C.; Walborn, S. P.; Tasca, D. S.; Rudnicki, Łukasz

    2018-05-01

    Mutual unbiasedness of the eigenstates of phase-space operators—such as position and momentum, or their standard coarse-grained versions—exists only in the limiting case of infinite squeezing. In Phys. Rev. Lett. 120, 040403 (2018), 10.1103/PhysRevLett.120.040403, it was shown that mutual unbiasedness can be recovered for periodic coarse graining of these two operators. Here we investigate mutual unbiasedness of coarse-grained measurements for more than two phase-space variables. We show that mutual unbiasedness can be recovered between periodic coarse graining of any two nonparallel phase-space operators. We illustrate these results through optics experiments, using the fractional Fourier transform to prepare and measure mutually unbiased phase-space variables. The differences between two and three mutually unbiased measurements is discussed. Our results contribute to bridging the gap between continuous and discrete quantum mechanics, and they could be useful in quantum-information protocols.

  9. Spectroscopic study of ohmically heated Tokamak discharges

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.

    1980-07-01

    Tokamak discharges interact strongly with the wall and/or the current aperture limiter producing recycling particles, which penetrate into the discharge and which can be studied spectroscopically. Working gas (hydrogen or deuterium) is usually studied observing visible Balmer lines at several toroidal locations. Absolute measurements allow to obtain both the recycling flux and the global particle confinement time. With sufficiently high resolution the isotopic plasma composition can be obtained. The impurity elements can be divided into desorbed elements (mainly oxygen) and eroded elements (metals from both walls and limiter) according to the plasma-wall interaction processes originating them. Space-and time-resolved emission in the VUV region down to about 20 A will be reviewed for ohmically-heated discharges. The time evolution can be divided into four phases, not always clearly separated in a particular discharge: a) the initial phase, lasting less than 10 ms (the so-called burn-out phase), b) the period of increasing plasma current and electron temperature, lasting typically 10 - 100 ms, c) an eventual steady state (plateau of the plasma current with almost constant density and temperature), d) the increase of the electron density up to or just below the maximum value attainable in a given device. For all these phases the results reported from different devices will be described and compared

  10. Evaluating the Economic Impact of Quality-Reducing, Seed Borne Diseases: Lessons From Karnal Bunt of Wheat

    OpenAIRE

    Brennan, John P.; Warham, Elizabeth J.; Byerlee, Derek R.; Hernandez, Julio

    1990-01-01

    Estimates of aggregate disease costs can be used for assigning research resources or to evaluate control measures. Most diseases cause production losses, but others affect quality and marketability. Seed-borne diseases also cause problems for the seed production and distribution industry. The aim in this paper is to examine issues relating to the economic impact of a quality-reducing, seed-borne disease, and to highlight differences compared to non-seed-borne diseases affecting yield only. Ec...

  11. Gene Expression Measurement Module (GEMM) - A Fully Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, Andrew; Peyvan, Kia; Karouia, Fathi; Ricco, Antonio

    2012-01-01

    The capability to measure gene expression on board spacecraft opens the door to a large number of high-value experiments on the influence of the space environment on biological systems. For example, measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, and determine the metabolic bases of microbial pathogenicity and drug resistance. These and other applications hold significant potential for discoveries in space biology, biotechnology, and medicine. Supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measurement of expression of several hundreds of microbial genes from multiple samples. The instrument will be capable of (1) lysing cell walls of bacteria sampled from cultures grown in space, (2) extracting and purifying RNA released from cells, (3) hybridizing the RNA on a microarray and (4) providing readout of the microarray signal, all in a single microfluidics cartridge. The device is suitable for deployment on nanosatellite platforms developed by NASA Ames' Small Spacecraft Division. To meet space and other technical constraints imposed by these platforms, a number of technical innovations are being implemented. The integration and end-to-end technological and biological validation of the instrument are carried out using as a model the photosynthetic bacterium Synechococcus elongatus, known for its remarkable metabolic diversity and resilience to adverse conditions. Each step in the measurement process-lysis, nucleic acid extraction, purification, and hybridization to an array-is assessed through comparison of the results obtained using the instrument with

  12. High Energy Solar Spectroscopic Imager (HESSI) Team Investigations

    Science.gov (United States)

    Emslie, A. Gordon

    1998-01-01

    This report covers activities on the above grant for the period through the end of September 1997. The work originally proposed to be performed under a three-year award was converted at that time to a two-year award for the remainder of the period, and is now funded under award NAGS-4027 through Goddard Space Flight Center. The P.I. is a co-investigator on the High Energy Solar Spectroscopic Imager (HESSI) team, selected as a Small-Class Explorer (SNMX) mission in 1997. He has also been a participant in the Space Physics Roadmap Planning Group. Our research has been strongly influenced by the NASA mission opportunities related to these activities. The report is subdivided into four sections, each dealing with a different aspect of our research within this guiding theme. Personnel involved in this research at UAH include the P.I. and graduate students Michele Montgomery and Amy Winebarger. Much of the work has been carried out in collaboration with investigators at other institutions, as detailed below. Attachment: Laser wakefield acceleration and astrophysical applications.

  13. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  14. On the differential structure of metric measure spaces and applications

    CERN Document Server

    Gigli, Nicola

    2015-01-01

    The main goals of this paper are: (i) To develop an abstract differential calculus on metric measure spaces by investigating the duality relations between differentials and gradients of Sobolev functions. This will be achieved without calling into play any sort of analysis in charts, our assumptions being: the metric space is complete and separable and the measure is Radon and non-negative. (ii) To employ these notions of calculus to provide, via integration by parts, a general definition of distributional Laplacian, thus giving a meaning to an expression like \\Delta g=\\mu, where g is a functi

  15. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [Meteorological Institute, Ludwig Maximilian University of Munich, Munich (Germany); School of Energy and Environment, City University of Hong Kong (Hong Kong); Jiang, S.Y.N. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong)

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R{sup 2} > 0.999) and low detection limit (0.06 μg L{sup −1}) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  16. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  17. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample

    Science.gov (United States)

    Scolnic, D. M.; Jones, D. O.; Rest, A.; Pan, Y. C.; Chornock, R.; Foley, R. J.; Huber, M. E.; Kessler, R.; Narayan, G.; Riess, A. G.; Rodney, S.; Berger, E.; Brout, D. J.; Challis, P. J.; Drout, M.; Finkbeiner, D.; Lunnan, R.; Kirshner, R. P.; Sanders, N. E.; Schlafly, E.; Smartt, S.; Stubbs, C. W.; Tonry, J.; Wood-Vasey, W. M.; Foley, M.; Hand, J.; Johnson, E.; Burgett, W. S.; Chambers, K. C.; Draper, P. W.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R. P.; Magnier, E. A.; Metcalfe, N.; Bresolin, F.; Gall, E.; Kotak, R.; McCrum, M.; Smith, K. W.

    2018-06-01

    We present optical light curves, redshifts, and classifications for 365 spectroscopically confirmed Type Ia supernovae (SNe Ia) discovered by the Pan-STARRS1 (PS1) Medium Deep Survey. We detail improvements to the PS1 SN photometry, astrometry, and calibration that reduce the systematic uncertainties in the PS1 SN Ia distances. We combine the subset of 279 PS1 SNe Ia (0.03 Ia from the Sloan Digital Sky Survey (SDSS), SNLS, and various low-z and Hubble Space Telescope samples to form the largest combined sample of SNe Ia, consisting of a total of 1048 SNe Ia in the range of 0.01 Ia to measure dark energy.

  18. Dysconnectivity of neurocognitive networks at rest in very-preterm born adults

    Directory of Open Access Journals (Sweden)

    Thomas P. White

    2014-01-01

    Full Text Available Advances in neonatal medicine have resulted in a larger proportion of preterm-born individuals reaching adulthood. Their increased liability to psychiatric illness and impairments of cognition and behaviour intimate lasting cerebral consequences; however, the central physiological disturbances remain unclear. Of fundamental importance to efficient brain function is the coordination and contextually-relevant recruitment of neural networks. Large-scale distributed networks emerge perinatally and increase in hierarchical complexity through development. Preterm-born individuals exhibit systematic reductions in correlation strength within these networks during infancy. Here, we investigate resting-state functional connectivity in functional magnetic resonance imaging data from 29 very-preterm (VPT-born adults and 23 term-born controls. Neurocognitive networks were identified with spatial independent component analysis conducted using the Infomax algorithm and employing Icasso procedures to enhance component robustness. Network spatial focus and spectral power were not generally significantly affected by preterm birth. By contrast, Granger-causality analysis of the time courses of network activity revealed widespread reductions in between-network connectivity in the preterm group, particularly along paths including salience-network features. The potential clinical relevance of these Granger-causal measurements was suggested by linear discriminant analysis of topological representations of connection strength, which classified individuals by group with a maximal accuracy of 86%. Functional connections from the striatal salience network to the posterior default mode network informed this classification most powerfully. In the VPT-born group it was additionally found that perinatal factors significantly moderated the relationship between executive function (which was reduced in the VPT-born as compared with the term-born group and generalised partial

  19. Probabilistic maps of the white matter tracts with known associated functions on the neonatal brain atlas: Application to evaluate longitudinal developmental trajectories in term-born and preterm-born infants.

    Science.gov (United States)

    Akazawa, Kentaro; Chang, Linda; Yamakawa, Robyn; Hayama, Sara; Buchthal, Steven; Alicata, Daniel; Andres, Tamara; Castillo, Deborrah; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2016-03-01

    Diffusion tensor imaging (DTI) has been widely used to investigate the development of the neonatal and infant brain, and deviations related to various diseases or medical conditions like preterm birth. In this study, we created a probabilistic map of fiber pathways with known associated functions, on a published neonatal multimodal atlas. The pathways-of-interest include the superficial white matter (SWM) fibers just beneath the specific cytoarchitectonically defined cortical areas, which were difficult to evaluate with existing DTI analysis methods. The Jülich cytoarchitectonic atlas was applied to define cortical areas related to specific brain functions, and the Dynamic Programming (DP) method was applied to delineate the white matter pathways traversing through the SWM. Probabilistic maps were created for pathways related to motor, somatosensory, auditory, visual, and limbic functions, as well as major white matter tracts, such as the corpus callosum, the inferior fronto-occipital fasciculus, and the middle cerebellar peduncle, by delineating these structures in eleven healthy term-born neonates. In order to characterize maturation-related changes in diffusivity measures of these pathways, the probabilistic maps were then applied to DTIs of 49 healthy infants who were longitudinally scanned at three time-points, approximately five weeks apart. First, we investigated the normal developmental pattern based on 19 term-born infants. Next, we analyzed 30 preterm-born infants to identify developmental patterns related to preterm birth. Last, we investigated the difference in diffusion measures between these groups to evaluate the effects of preterm birth on the development of these functional pathways. Term-born and preterm-born infants both demonstrated a time-dependent decrease in diffusivity, indicating postnatal maturation in these pathways, with laterality seen in the corticospinal tract and the optic radiation. The comparison between term- and preterm-born

  20. Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Y.; Liu, X.-W.; Chen, B.-Q. [South-Western Institute for Astronomy Research, Yunnan University, Kunming 650500 (China); Zhang, H.-W.; Wang, C.; Tian, Z.-J. [Department of Astronomy, Peking University, Beijing 100871 (China); Xiang, M.-S.; Li, Y.-B. [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Yuan, H.-B. [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Wang, B., E-mail: yanghuang@pku.edu.cn, E-mail: x.liu@pku.edu.cn, E-mail: zhanghw@pku.edu.cn [Key Laboratory for the Structure and Evolution of Celestial Objects, Yunnan Observatories, CAS, Kunming 650216 (China)

    2017-09-20

    We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are, respectively, a B2V-type star of ∼7 M {sub ⊙} with a Galactic rest-frame radial velocity of 502 km s{sup −1} at a Galactocentric radius of ∼21 kpc and a B7V-type star of ∼4 M {sub ⊙} with a Galactic rest-frame radial velocity of 408 km s{sup −1} at a Galactocentric radius of ∼30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraints on understanding the nature of HVSs and their ejection mechanisms.

  1. SYSTEMATIC UNCERTAINTIES IN THE SPECTROSCOPIC MEASUREMENTS OF NEUTRON STAR MASSES AND RADII FROM THERMONUCLEAR X-RAY BURSTS. III. ABSOLUTE FLUX CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal; Psaltis, Dimitrios [Department of Astronomy, University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States); Marshall, Herman [Center for Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Guainazzi, Matteo [European Space Astronomy Centre of ESA, P.O. Box 78, Villanueva de la Cañada, E-28691 Madrid (Spain); Díaz-Trigo, Maria [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany)

    2016-09-20

    Many techniques for measuring neutron star radii rely on absolute flux measurements in the X-rays. As a result, one of the fundamental uncertainties in these spectroscopic measurements arises from the absolute flux calibrations of the detectors being used. Using the stable X-ray burster, GS 1826–238, and its simultaneous observations by Chandra HETG/ACIS-S and RXTE /PCA as well as by XMM-Newton EPIC-pn and RXTE /PCA, we quantify the degree of uncertainty in the flux calibration by assessing the differences between the measured fluxes during bursts. We find that the RXTE /PCA and the Chandra gratings measurements agree with each other within their formal uncertainties, increasing our confidence in these flux measurements. In contrast, XMM-Newton EPIC-pn measures 14.0 ± 0.3% less flux than the RXTE /PCA. This is consistent with the previously reported discrepancy with the flux measurements of EPIC-pn, compared with EPIC MOS1, MOS2, and ACIS-S detectors. We also show that any intrinsic time-dependent systematic uncertainty that may exist in the calibration of the satellites has already been implicity taken into account in the neutron star radius measurements.

  2. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Ferraro, Rafael, E-mail: ferraro@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Fiorini, Franco, E-mail: franco@iafe.uba.a [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina)

    2010-08-30

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  3. Born-Infeld determinantal gravity and the taming of the conical singularity in 3-dimensional spacetime

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2010-01-01

    In the context of Born-Infeld determinantal gravity formulated in an n-dimensional spacetime with absolute parallelism, we found an exact 3-dimensional vacuum circular symmetric solution without cosmological constant consisting in a rotating spacetime with non-singular behavior. The space behaves at infinity as the conical geometry typical of 3-dimensional General Relativity without cosmological constant. However, the solution has no conical singularity because the space ends at a minimal circle that no freely falling particle can ever reach in a finite proper time. The space is curved, but no divergences happen since the curvature invariants vanish at both asymptotic limits. Remarkably, this very mechanism also forbids the existence of closed timelike curves in such a spacetime.

  4. Space traveller to see stars born 13bn years ago

    CERN Multimedia

    Radford, T

    2004-01-01

    British scientists are working on the James Webb telescope, successor to tje Hubble space telescope. A supersensitive camera called Miri - mid infrared instrument - being built by an international team, will be a key part of the European and American instrument (1 page)

  5. Gamma spectroscopic studies of the neutron-deficient g-g nucleus 74Kr by means of a neutron multiplicity measurement technique

    International Nuclear Information System (INIS)

    Roth, J.

    1981-01-01

    The g-g nucleus 74 Kr was studied by means of the reaction 58 Ni ( 19 F, p2n#betta#) 74 Kr. In order to make gamma spectroscopic studies at neutron deficient nuclei like 74 Kr a neutron multiplicity measurement technique was developed. Beside #betta# single spectra, #betta# excitation functions, #betta#-#betta# coincidences, #betta# angular distributions, and lifetime measurements by means of this technique all measurements in coincidence with up to two neutrons were taken up. From these measurement data an extended term scheme with 17 newly found excited states could be extracted. To all levels spins and parities could be assigned. From the four energetically lowest levels of the yrast cascade the mean lifetimes could be determined. A double backbending in the sequence of the yrast cascade was interpreted as crossing of the g 9/2 bands. The irregularities in the lower part of the yrast band correspond to the shape consistence picture. The results were considered in connection with the systematics of the even krypton isotopes and compared with a two-quasiparticle-plas-rotor model calculation. (HSI)

  6. Time- and Space-Resolved Spectroscopic Investigation on Pi-Conjugated Nanostructures - 2

    Science.gov (United States)

    2016-01-12

    Defocused wide-field fluorescence (DWFI) microscopy suggests that molecular heterogeneities and flexibilities clearly depend on ring size and that site... Confocal   Microscopy   Setup Wild‐field  Microscopy   Setup Femtosecond Z‐scan  experiment Setup Figure 3. Instruments of Time- and space-resolved...approved for public release. 3. Space-Resolved Laser Spectroscopy - Confocal Microscopy - Wild-field Microscopy 4. Non-Linear Spectroscopy

  7. Studies and development of a readout ASIC for pixelated CdTe detectors for space applications

    International Nuclear Information System (INIS)

    Michalowska, A.

    2013-01-01

    The work presented in this thesis is part of a project where a new instrument is developed: a camera for hard X-rays imaging spectroscopy. It is dedicated to fundamental research for observations in astrophysics, at wavelengths which can only be observed using space-borne instruments. In this domain the spectroscopic accuracy as well as the imaging details are of high importance. This work has been realized at CEA/IRFU (Institut de Recherche sur les lois Fondamentales de l'Univers), which has a long-standing and successful experience in instruments for high energy physics and space physics instrumentation. The objective of this thesis is the design of the readout electronics for a pixelated CdTe detector, suitable for a stacked assembly. The principal parameters of this integrated circuit are a very low noise for reaching a good accuracy in X-ray energy measurement, very low power consumption, a critical parameter in space-borne applications, and a small dead area for the full system combining the detector and the readout electronics. In this work I have studied the limits of these three parameters in order to optimize the circuit. In terms of the spectral resolution, two categories of noise had to be distinguished to determine the final performance. The first is the Fano noise limit, related to detector interaction statistics, which cannot be eliminated. The second is the electronic noise, also unavoidable; however it can be minimized through optimization of the detection chain. Within the detector, establishing a small pixel pitch of 300 μm reduces the input capacitance and the dark current. This limits the effects of the electronic noise. Also in order to limit the input capacitance the future camera is designed as a stacked assembly of the detector with the readout ASIC. This allows to reach extremely good input parameters seen by the readout electronics: a capacitance in range of 0.3 pF-1 pF and a dark current below 5 pA. In the frame of this thesis I have

  8. Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shoulong [School of Physics, Beijing Institute of Technology,5 South Zhongguancun Street, Beijing 100081 (China); Lü, H. [Center for Advanced Quantum Studies,Department of Physics, Beijing Normal University,19 Xinjiekouwai Street, Beijing 100875 (China); Wei, Hao [School of Physics, Beijing Institute of Technology,5 South Zhongguancun Street, Beijing 100081 (China)

    2016-07-01

    We study Einstein-Born-Infeld gravity and construct the dyonic (A)dS planar black holes in general even dimensions, that carry both the electric charge and magnetic fluxes along the planar space. In four dimensions, the solution can be constructed with also spherical and hyperbolic topologies. We study the black hole thermodynamics and obtain the first law. We also classify the singularity structure.

  9. Spectroscopic analysis of optoelectronic semiconductors

    CERN Document Server

    Jimenez, Juan

    2016-01-01

    This book deals with standard spectroscopic techniques which can be used to analyze semiconductor samples or devices, in both, bulk, micrometer and submicrometer scale. The book aims helping experimental physicists and engineers to choose the right analytical spectroscopic technique in order to get specific information about their specific demands. For this purpose, the techniques including technical details such as apparatus and probed sample region are described. More important, also the expected outcome from experiments is provided. This involves also the link to theory, that is not subject of this book, and the link to current experimental results in the literature which are presented in a review-like style. Many special spectroscopic techniques are introduced and their relationship to the standard techniques is revealed. Thus the book works also as a type of guide or reference book for people researching in optical spectroscopy of semiconductors.

  10. Microdosimetry measurements with the RME-III on the space shuttle

    International Nuclear Information System (INIS)

    Hardy, K.; Golightly, M.J.; Atwell, W.; Quam, W.

    1994-01-01

    Since December 1988 (STS-27) the USAF Armstrong Laboratory, in conjunction with the NASA Space Radiation Analysis Group, has been conducting microdosimetry measurements on selected high-altitude, high-inclination Space Shuttle mission with the RME-III. The RME-III is a portable, self-contained, active dosimeter system featuring a three-channel tissue equivalent proportional counter (TEPC) which measures particle fluence and computes dose and dose equivalent at operator selected time intervals. The total accumulated absorbed dose and dose equivalent are displayed real time, while the data and the time of the interval dose readings are stored in memory modules for later analysis. Analysis of the time-resolved data permits correlation of the radiation exposure with geographic position, altitude, and spacecraft shielding and orientation. The RME-III has flown on 15 Shuttle missions to date and measurements are in good agreement with other dosimetry measurements made on the Shuttle

  11. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    Energy Technology Data Exchange (ETDEWEB)

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Eisenstein, Daniel J. [Harvard College Observatory, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Kochanek, Christopher S. [Department of Astronomy and Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Connolly, Natalia [Department of Physics, Hamilton College, Clinton, NY 13323 (United States); Maraston, Claudia [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Seitz, Stella [University Observatory Munich, Scheinstrasse 1, 81679 Muenchen (Germany); Wake, David A. [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Wood-Vasey, W. Michael [Pittsburgh Center for Particle Physics, Astrophysics, and Cosmology (PITT-PACC), Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Brinkmann, Jon [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, Pennsylvania State University, University Park, PA 16802 (United States); Weaver, Benjamin A. [Center for Cosmology and Particle Physics, New York University, New York, NY 10003 (United States)

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  12. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Directory of Open Access Journals (Sweden)

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  13. Desired Fertility and Number of Children Born Across Time and Space.

    Science.gov (United States)

    Günther, Isabel; Harttgen, Kenneth

    2016-02-01

    Economists have often argued that high fertility rates are mainly driven by women's demand for children (and not by family planning efforts) with low levels of unwanted fertility across countries (and hence with little room for family planning efforts to reduce population growth). We study the relationship between wanted fertility and number of children born in a panel of 200 country-years controlling for country fixed effects and global time trends. In general, we find a close relationship between wanted and actual fertility, with one desired child leading to one additional birth. However, our results also indicate that in the last 20 years, the level of unwanted births has stayed at 2 across African countries but has, on average, decreased from 1 to close to 0 in other developing countries. Hence, women in African countries are less able to translate child preferences into birth outcomes than women in other developing countries, and forces other than fertility demand have been important for previous fertility declines in many developing countries. Family planning efforts only partially explain the observed temporal and spatial differences in achieving desired fertility levels.

  14. Accessibility of green space in urban areas: an examination of various approaches to measure it

    OpenAIRE

    Zhang, Xin

    2007-01-01

    In the present research, we attempt to improve the methods used for measuring accessibility of green spaces by combining two components of accessibility-distance and demand relative to supply. Three modified approaches (Joseph and Bantock gravity model measure, the two-step floating catchment area measure and a measure based on kernel densities) will be applied for measuring accessibility to green spaces. We select parks and public open spaces (metropolitan open land) of south London as a cas...

  15. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    OpenAIRE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  16. Spectroscopic link between adsorption site occupation and local surface chemical reactivity

    DEFF Research Database (Denmark)

    Baraldi, A.; Lizzit, S.; Comelli, G.

    2004-01-01

    rules, from which adsorption sites are directly determined. Theoretical calculations rationalize the results for transition metal surfaces in terms of the energy shift of the d-band center of mass and this proves that adsorbate-induced SCL shifts provide a spectroscopic measure of local surface...

  17. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system - Introductory remarks

    Science.gov (United States)

    Anderson, H. R.; Cloutier, P. A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distributions and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on Feb. 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance.

  18. Simultaneous measurements of auroral particles and electric currents by a rocket-borne instrument system: introductory remarks

    International Nuclear Information System (INIS)

    Anderson, H.R.; Cloutier, P.A.

    1975-01-01

    A rocket-borne experiment package has been designed to obtain simultaneous in situ measurements of the pitch angle distribution and energy spectra of primary auroral particles, the flux of neutral hydrogen at auroral energies, the electric currents flowing in the vicinity of the auroral arc as determined from vector magnetic data, and the modulation of precipitating electrons in the frequency range 0.5-10 MHz. The experiment package was launched by a Nike-Tomahawk rocket from Poker Flat, Alaska, at 0722 UT on February 25, 1972, over a bright auroral band. This paper is intended to serve as an introduction to the detailed discussion of results given in the companion papers. As such it includes a brief review of the general problem, a discussion of the rocket instrumentation, a delineation of the auroral and geomagnetic conditions at the time of launch, and comments on the overall payload performance

  19. Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-10-01

    Full Text Available Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integral M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove that M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded from Lebesgue space L 1 ( μ $L^{1}(\\mu$ into the weak Lebesgue space L 1 , ∞ ( μ $L^{1,\\infty}(\\mu$ , from the Lebesgue space L ∞ ( μ $L^{\\infty}(\\mu$ into the space RBLO ( μ $\\operatorname{RBLO}(\\mu$ , and from the atomic Hardy space H 1 ( μ $H^{1}(\\mu$ into the Lebesgue space L 1 ( μ $L^{1}(\\mu$ . Moreover, the authors also get a corollary, that is, M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded on L p ( μ $L^{p}(\\mu$ with 1 < p < ∞ $1< p<\\infty$ .

  20. Velocity Curve Analysis of the Spectroscopic Binary Stars PV Pup ...

    Indian Academy of Sciences (India)

    are in good agreement with those obtained using the method of Lehmann-. Filhés. Key words. ... use their method to obtain the orbital elements of the four double-lined spectroscopic binary systems PV Pup, HD ... Observation shows that the photometric phase, φ, which is measured from the pho- tometric reference point ...

  1. New Results from the Magellan IMACS Spectroscopic Lyα Survey: NICMOS Observations of Lyα Emitters at z = 5.7

    Science.gov (United States)

    Henry, Alaina L.; Martin, Crystal L.; Dressler, Alan; McCarthy, Patrick; Sawicki, Marcin

    2010-08-01

    We present NICMOS J 110 (rest-frame 1200-2100 Å) observations of the three z = 5.7 Lyα emitters discovered in the blind multislit spectroscopic survey by Martin et al. These images confirm the presence of the two sources that were previously only seen in spectroscopic observations. The third source, which is undetected in our J 110 observations, has been detected in narrowband imaging of the Cosmic Origins Survey, so our non-detection implies a rest-frame equivalent width >146 Å (3σ). The two J 110-detected sources have more modest rest-frame equivalent widths of 30-40 Å, but all three are typical of high-redshift Lyα emitters. In addition, the J 110-detected sources have UV luminosities that are within a factor of 2 of L*UV, and sizes that appear compact (r hl~ 0farcs15) in our NIC2 images—consistent with a redshift of 5.7. We use these UV-continuum and Lyα measurements to estimate the i 775-z 850 colors of these galaxies and show that at least one and possibly all three would be missed by the i-dropout Lyman break galaxy selection. These observations help demonstrate the utility of multislit narrowband spectroscopy as a technique for finding faint emission-line galaxies. This work is based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 11183.

  2. Tethered balloon-borne aerosol measurements: seasonal and vertical variations of aerosol constituents over Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    K. Hara

    2013-09-01

    Full Text Available Tethered balloon-borne aerosol measurements were conducted at Syowa Station, Antarctica, during the 46th Japanese Antarctic expedition (2005–2006. Direct aerosol sampling was operated from near the surface to the lower free troposphere (approximately 2500 m using a balloon-borne aerosol impactor. Individual aerosol particles were analyzed using a scanning electron microscope equipped with an energy dispersive X-ray spectrometer. Seasonal and vertical features of aerosol constituents and their mixing states were investigated. Results show that sulfate particles were predominant in the boundary layer and lower free troposphere in summer, whereas sea-salt particles were predominant during winter through spring. Minerals, MgSO4, and sulfate containing K were identified as minor aerosol constituents in both boundary layer and free troposphere over Syowa Station. Although sea-salt particles were predominant during winter through spring, the relative abundance of sulfate particles increased in the boundary layer when air masses fell from the free troposphere over the Antarctic coast and continent. Sea-salt particles were modified considerably through heterogeneous reactions with SO42− CH3SO3− and their precursors during summer, and were modified slightly through heterogeneous reactions with NO3− and its precursors. During winter through spring, sea-salt modification was insignificant, particularly in the cases of high relative abundance of sea-salt particles and higher number concentrations. In August, NO3− and its precursors contributed greatly to sea-salt modification over Syowa Station. Because of the occurrence of sea-salt fractionation on sea ice, Mg-rich sea-salt particles were identified during the months of April through November. In contrast, Mg-free sea-salt particles and slightly Mg-rich sea-salt particles coexisted in the lower troposphere during summer. Thereby, Mg separation can proceed by sea-salt fractionation during summer in

  3. Study of localized photon source in space of measures

    International Nuclear Information System (INIS)

    Lisi, M.

    2010-01-01

    In this paper we study a three-dimensional photon transport problem in an interstellar cloud, with a localized photon source inside. The problem is solved indirectly, by defining the adjoint of an operator acting on an appropriate space of continuous functions. By means of sun-adjoint semi groups theory of operators in a Banach space of regular Borel measures, we prove existence and uniqueness of the solution of the problem. A possible approach to identify the localization of the photon source is finally proposed.

  4. Optical properties of metals by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Arakawa, E.T.; Inagaki, T.; Williams, M.W.

    1979-01-01

    The use of spectroscopic ellipsometry for the accurate determination of the optical properties of liquid and solid metals is discussed and illustrated with previously published data for Li and Na. New data on liquid Sn and Hg from 0.6 to 3.7 eV are presented. Liquid Sn is Drude-like. The optical properties of Hg deviate from the Drude expressions, but simultaneous measurements of reflectance and ellipsometric parameters yield consistent results with no evidence for vectorial surface effects

  5. Duality and free measures in vector spaces, the spectral theory of actions of non-locally compact groups

    OpenAIRE

    Vershik, A.

    2017-01-01

    The paper presents a general duality theory for vector measure spaces taking its origin in the author's papers written in the 1960s. The main result establishes a direct correspondence between the geometry of a measure in a vector space and the properties of the space of measurable linear functionals on this space regarded as closed subspaces of an abstract space of measurable functions. An example of useful new features of this theory is the notion of a free measure and its applications.

  6. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    Science.gov (United States)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  7. L-Band Radiometers Measuring Salinity From Space: Atmospheric Propagation Effects

    DEFF Research Database (Denmark)

    Skou, Niels; Hofman-Bang, Dorthe

    2005-01-01

    Microwave radiometers can measure sea surface salinity from space using L-band frequencies around 1.4 GHz. However, requirements to the accuracy of the measurements, in order to be satisfactory for the user, are so stringent that the influence of the intervening atmosphere cannot be neglected...

  8. Behavioural responses of two-spotted spider mites induced by predator-borne and prey-borne cues.

    Science.gov (United States)

    Gyuris, Enikő; Szép, Erna; Kontschán, Jenő; Hettyey, Attila; Tóth, Zoltán

    2017-11-01

    Applying predatory mites as biological control agents is a well established method against spider mites which are major pests worldwide. Although antipredator responses can influence the outcome of predator-prey interactions, we have limited information about what cues spider mites use to adjust their behavioural antipredator responses. We experimentally exposed two-spotted spider mites (Tetranychus urticae) to different predator-borne cues (using a specialist predator, Phytoseiulus persimilis, or a generalist predator, Amblyseius swirskii), conspecific prey-borne cues, or both, and measured locomotion and egg-laying activity. The reactions to predator species compared to each other manifested in reversed tendencies: spider mites increased their locomotion activity in the presence of P. persimilis, whereas they decreased it when exposed to A. swirskii. The strongest response was triggered by the presence of a killed conspecific: focal spider mites decreased their locomotion activity compared to the control group. Oviposition activity was not affected by either treatment. Our results point out that spider mites may change their behaviour in response to predators, and also to the presence of killed conspecifics, but these effects were not enhanced when both types of cues were present. The effect of social contacts among prey conspecifics on predator-induced behavioural defences is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  10. Helium-plasma heating with a powerful proton beam for spectroscopic applications

    International Nuclear Information System (INIS)

    Arteev, M.S.; Kuznetsov, A.A.; Sulakshin, S.S.

    1986-01-01

    In this work the authors consider an ion gun which was especially developed for producing a gas plasma and report on the details of an experiment on (ELLIGIBLE) plasma spectroscopy. The current density of the proton beam was measured in the experiments on the axis of the gas tube with the aid of a collimating current collector with the wave impedance of a 75 omega cable. The ion gun was tested in the excitation of a helium plasma. Extremely pure helium with a pressure P = (0.2-1).10 5 Pa was employed. The proton gun which was developed satifies the requirements of spectroscopic plasma experiments and makes it possible to excite a plasma of inert gases under atmospheric pressure over a length of up to 100 cm, with the plasma having high homogeneity and stability. They obtained first results of spectroscopic measurements of the electron concentration of a helium plasma and the results agree with the theoretical predictions

  11. A New Satellite System for Measuring BRDF from Space

    Science.gov (United States)

    Wiscombe, W.; Kaufman, Y.; Herman, J.

    1999-01-01

    Formation flying of satellites is at the beginning of an explosive growth curve. Spacecraft buses are shrinking to the point where we will soon be able to launch 10 micro-satellites or 100 nano-satellites on a single launch vehicle. Simultaneously, spectrometers are just beginning to be flown in space by both the U.S. and Europe. On-board programmable band aggregation will soon allow exactly the spectral bands desired to be returned to Earth. Further efforts are being devoted to radically shrink spectrometers both in size and weight. And GPS positioning and attitude determination, plus new technologies for attitude control, will allow fleets of satellites to all point at the same Earth target. All these advances, in combination, make possible for the first time the proper measurement of Bidirectional Reflectance Distribution (BRDF) form space. Previously space BDRF's were mere composites, built up over time by viewing different types of scenes at different times, then creating catalogs of BDRF functions whose use relied upon correct "scene identification" --the weak link. Formation-flying micro-satellites, carrying programmable spectrometers and precision-pointing at the same Earth target, can measure the full BDRF simultaneously, in real time. This talk will review these technological advances and discuss an actual proposed concept, based on these advances, to measure Earth-target BDRF's (clouds as well as surface) across the full solar spectrum in the 2010 timeframe. This concept is part of a larger concept called Leonardo for properly measuring the radiative forcing of Earth for climate purposes; lack of knowing of BDRF and of diurnal cycle are at present the two limiting factors preventing improved estimates of this forcing.

  12. Dual-window dual-bandwidth spectroscopic optical coherence tomography metric for qualitative scatterer size differentiation in tissues.

    Science.gov (United States)

    Tay, Benjamin Chia-Meng; Chow, Tzu-Hao; Ng, Beng-Koon; Loh, Thomas Kwok-Seng

    2012-09-01

    This study investigates the autocorrelation bandwidths of dual-window (DW) optical coherence tomography (OCT) k-space scattering profile of different-sized microspheres and their correlation to scatterer size. A dual-bandwidth spectroscopic metric defined as the ratio of the 10% to 90% autocorrelation bandwidths is found to change monotonically with microsphere size and gives the best contrast enhancement for scatterer size differentiation in the resulting spectroscopic image. A simulation model supports the experimental results and revealed a tradeoff between the smallest detectable scatterer size and the maximum scatterer size in the linear range of the dual-window dual-bandwidth (DWDB) metric, which depends on the choice of the light source optical bandwidth. Spectroscopic OCT (SOCT) images of microspheres and tonsil tissue samples based on the proposed DWDB metric showed clear differentiation between different-sized scatterers as compared to those derived from conventional short-time Fourier transform metrics. The DWDB metric significantly improves the contrast in SOCT imaging and can aid the visualization and identification of dissimilar scatterer size in a sample. Potential applications include the early detection of cell nuclear changes in tissue carcinogenesis, the monitoring of healing tendons, and cell proliferation in tissue scaffolds.

  13. Measurements of differential cross sections for the reactions 6,7Li(n,d)5,6He and 6,7Li(n,t)4,5He at 14.1 MeV

    International Nuclear Information System (INIS)

    Shirato, Shoji; Hata, Kazuhiro; Ando, Yoshiaki; Shibuya, Shinji; Shibata, Keiichi.

    1989-08-01

    A summary of our measured cross sections for the 14.1 MeV neutron-induced reactions on lithium isotopes has been presented. Our data were measured with two counter telescopes, each of which consisted of two gas proportional counters and silicon ΔE and E detectors. Measured energy spectra of deuterons and tritons from 6 Li(n,d)n 4 He and 7 Li(n,t)n 4 He, respectively, were analyzed by a simple final-state interaction theory. Measured angular distributions for these reactions as well as 6 Li(n,t) 4 He and 7 Li(n,d) 6 He were analyzed by exact finite-range distorted wave Born approximation (EFR-DWBA) calculations. Spectroscopic factors extracted from the EFR-DWBA analyses have been compared with theoretical predictions. (author)

  14. A device for automated phase space measurement of ion beams

    International Nuclear Information System (INIS)

    Lukas, J.; Priller, A.; Steier, P.

    2007-01-01

    Equipment for automated phase-space measurements was developed at the VERA Lab. The measurement of the beam's intensity distribution, as well as its relative position with respect to the reference orbit is performed at two locations along the beam line. The device basically consists of moveable slits and a beam profile monitor, which are both coordinated and controlled by an embedded controller. The operating system of the controller is based on Linux with real-time extension. It controls the movement of the slits and records the data synchronized to the movement of the beam profile monitor. The data is sent via TCP/IP to the data acquisition system of VERA where visualization takes place. The duration of one phase space measurement is less than 10 s, which allows for using the device during routine beam tuning

  15. A car-borne highly sensitive near-IR diode-laser methane detector

    International Nuclear Information System (INIS)

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-01-01

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-μm laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO 2 , HF, NO 2 , H 2 O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  16. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    Energy Technology Data Exchange (ETDEWEB)

    Bottollier-Depois, J.F. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de la Sante de l`Homme et de Dosimetrie; Siegrist, M. [Centre National d`Etudes Spatiales (CNES), 31 - Toulouse (France); Duvivier, E.; Almarcha, B. [STEEL Technologies, Mazeres sur Salat (France); Dachev, T.P.; Semkova, J.V. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Central Lab. of Solar Energy and New Energy Sources; Petrov, V.M.; Bengin, V.; Koslova, S.B. [Institute of Biomedical Problems, Moscow (Russian Federation)

    1995-12-31

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs.

  17. Tissue equivalent detector measurements on Mir space station. Comparison with other data

    International Nuclear Information System (INIS)

    Bottollier-Depois, J.F.; Duvivier, E.; Almarcha, B.; Dachev, T.P.; Semkova, J.V.

    1995-01-01

    The measurement of the dose received by the cosmonauts, due to cosmic radiations, during a space mission is an important parameter to estimate the radiological risk. Tissue equivalent measurements of radiation environment inside the MIR space station were performed continuously since July 1992. Interesting results about radiation measurements show (a) the South Atlantic Anomaly (SAA) crossing, (c) the increase of radiation near the poles and (d) the effects of solar eruptions. These data are compared with solid state detector (SSD) and other tissue equivalent proportional counter (TEPC) results. (authors). 4 refs., 7 figs

  18. Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5-2.3 μm region

    International Nuclear Information System (INIS)

    Lamouroux, J.; Tran, H.; Laraia, A.L.; Gamache, R.R.; Rothman, L.S.; Gordon, I.E.; Hartmann, J.-M.

    2010-01-01

    In a previous series of papers, a model for the calculation of CO 2 -air absorption coefficients taking line-mixing into account and the corresponding database/software package were described and widely tested. In this study, we present an update of this package, based on the 2008 version of HITRAN, the latest currently available. The spectroscopic data for the seven most-abundant isotopologues are taken from HITRAN. When the HITRAN data are not complete up to J''=70, the data files are augmented with spectroscopic parameters from the CDSD-296 database and the high-temperature CDSD-1000 if necessary. Previously missing spectroscopic parameters, the air-induced pressure shifts and CO 2 line broadening coefficients with H 2 O, have been added. The quality of this new database is demonstrated by comparisons of calculated absorptions and measurements using CO 2 high-pressure laboratory spectra in the 1.5-2.3 μm region. The influence of the imperfections and inaccuracies of the spectroscopic parameters from the 2000 version of HITRAN is clearly shown as a big improvement of the residuals is observed by using the new database. The very good agreements between calculated and measured absorption coefficients confirm the necessity of the update presented here and further demonstrate the importance of line-mixing effects, especially for the high pressures investigated here. The application of the updated database/software package to atmospheric spectra should result in an increased accuracy in the retrieval of CO 2 atmospheric amounts. This opens improved perspectives for the space-borne detection of carbon dioxide sources and sinks.

  19. Possible impact of rising sea levels on vector-borne infectious diseases

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2011-01-01

    Full Text Available Abstract Background Vector-borne infectious diseases are a significant cause of human and animal mortality and morbidity. Modeling studies predict that changes in climate that accompany global warming will alter the transmission risk of many vector-borne infectious diseases in different parts of the world. Global warming will also raise sea levels, which will lead to an increase in saline and brackish water bodies in coastal areas. The potential impact of rising sea levels, as opposed to climate change, on the prevalence of vector-borne infectious diseases has hitherto been unrecognised. Presentation of the hypothesis Mosquito species possessing salinity-tolerant larvae and pupae, and capable of transmitting arboviruses and parasites are found in many parts of the world. An expansion of brackish and saline water bodies in coastal areas, associated with rising sea levels, can increase densities of salinity-tolerant vector mosquitoes and lead to the adaptation of freshwater vectors to breed in brackish and saline waters. The breeding of non-mosquito vectors may also be influenced by salinity changes in coastal habitats. Higher vector densities can increase transmission of vector-borne infectious diseases in coastal localities, which can then spread to other areas. Testing the hypothesis The demonstration of increases in vector populations and disease prevalence that is related to an expansion of brackish/saline water bodies in coastal areas will provide the necessary supportive evidence. However the implementation of specific vector and disease control measures to counter the threat will confound the expected findings. Implications of the hypothesis Rising sea levels can act synergistically with climate change and then interact in a complex manner with other environmental and socio-economic factors to generate a greater potential for the transmission of vector-borne infectious diseases. The resulting health impacts are likely to be particularly

  20. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  1. Mortality differences between the foreign-born and locally-born population in France (2004-2007).

    Science.gov (United States)

    Boulogne, Roxane; Jougla, Eric; Breem, Yves; Kunst, Anton E; Rey, Grégoire

    2012-04-01

    In contrast to the situation in many European countries, the mortality of immigrants in France has been little studied. The main reasons for the lack of studies are based on ethical and ideological considerations. The objective of this study is to explore mortality by country of birth in Metropolitan (i.e. 'mainland') France. Complete mortality data were used to study the relative risks of mortality of the foreign- and locally-born populations by gender, age and cause of death for the period 2004-2007 in Metropolitan France. Analyses were conducted by countries of birth grouped into geographic areas and by the Human Development Index (HDI). The differentials in mortality between foreign-born and locally-born populations were not homogeneous. The figures varied by age (higher foreign-born mortality for the young; lower mortality for migrants aged 15-64 years), gender (female migrants more frequently had higher relative mortality than men migrants), country of birth (Eastern European-born migrants had higher mortality, while those born in Morocco, Central Asia, 'other Asian countries' and America had lower mortality) and cause of death (migrant mortality was higher overall for deaths caused by infectious diseases and diabetes, and lower for violent death and neoplasm). Moreover, mortality relative risks for male, violent deaths and cancer were positively associated with country-of-birth HDI, while female mortality and infectious disease mortality were negatively associated with country-of-birth HDI. Some important caveats have to be considered because the study did not control for individuals socioeconomic position in France, or length of residence in the host country. A strong healthy migrant effect was suggested and its intensity varies with age and gender (which may reflect different reasons for migration). For some specific causes of death, a lifestyle effect seems to explain mortality differentials. The associations between HDI and mortality show that mortality

  2. Multispectral image enhancement processing for microsat-borne imager

    Science.gov (United States)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  3. OUTCOMES OF TICK-BORNE ENCEPHALITIS IN THE TOMSK REGION

    Directory of Open Access Journals (Sweden)

    T. S. Pinegina

    2013-01-01

    Full Text Available The results of the study outcomes of tick-borne encephalitis in adults in the Tomsk Region. Patients conducted a comprehensive clinical and laboratory examination. Revealed the prevalence of autonomic disorders in individuals who have had at different periods of tick-borne encephalitis, which is regarded as the effects of tick-borne infection. Residual effects of tick-borne encephalitis occurs mainly in the form of light paresis after suffering a focal forms. Among the chronic (progredient forms of tick-borne encephalitis often formed hyperkinetic options. Most of the study revealed the presence of precipitating factors that could have an influence on the outcome. Fundamental diffe rences in all-clinical and immunological analyses at patients with various outcomes of tick-borne encephalitis it wasn't noted. KEY WORDS: tick-borne encephalitis, Tomsk Region, the outcomes.

  4. X-ray polarimetry with the Polarization Spectroscopic Telescope Array (PolSTAR)

    DEFF Research Database (Denmark)

    Krawczynski, Henric S.; Stern, Daniel; Harrison, Fiona A.

    2016-01-01

    This paper describes the Polarization Spectroscopic Telescope Array (PolSTAR), a mission proposed to NASA's 2014 Small Explorer (SMEX) announcement of opportunity. PolSTAR measures the linear polarization of 3-50 keV (requirement; goal: 2.5-70 keV) X-rays probing the behavior of matter,radiation ...

  5. Air travel and vector-borne disease movement.

    Science.gov (United States)

    Tatem, A J; Huang, Z; Das, A; Qi, Q; Roth, J; Qiu, Y

    2012-12-01

    Recent decades have seen substantial expansions in the global air travel network and rapid increases in traffic volumes. The effects of this are well studied in terms of the spread of directly transmitted infections, but the role of air travel in the movement of vector-borne diseases is less well understood. Increasingly however, wider reaching surveillance for vector-borne diseases and our improving abilities to map the distributions of vectors and the diseases they carry, are providing opportunities to better our understanding of the impact of increasing air travel. Here we examine global trends in the continued expansion of air transport and its impact upon epidemiology. Novel malaria and chikungunya examples are presented, detailing how geospatial data in combination with information on air traffic can be used to predict the risks of vector-borne disease importation and establishment. Finally, we describe the development of an online tool, the Vector-Borne Disease Airline Importation Risk (VBD-Air) tool, which brings together spatial data on air traffic and vector-borne disease distributions to quantify the seasonally changing risks for importation to non-endemic regions. Such a framework provides the first steps towards an ultimate goal of adaptive management based on near real time flight data and vector-borne disease surveillance.

  6. Green functions and scattering amplitudes in many-dimensional space

    International Nuclear Information System (INIS)

    Fabre de la Ripelle, M.

    1993-01-01

    Methods for solving scattering are studied in many-dimensional space. Green function and scattering amplitudes are given in terms of the required asymptotic behaviour of the wave function. The Born approximation and the optical theorem are derived in many-dimensional space. Phase-shift analyses are performed for hypercentral potentials and for non-hypercentral potentials by use of the hyperspherical adiabatic approximation. (author)

  7. Elliptic equations with measure data in Orlicz spaces

    Directory of Open Access Journals (Sweden)

    Ge Dong

    2008-05-01

    Full Text Available This article shows the existence of solutions to the nonlinear elliptic problem $A(u=f$ in Orlicz-Sobolev spaces with a measure valued right-hand side, where $A(u=-mathop{ m div}a(x,u, abla u$ is a Leray-Lions operator defined on a subset of $W_{0}^{1}L_{M}(Omega$, with general $M$.

  8. Modified Eddington-inspired-Born-Infeld Gravity with a Trace Term

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Che-Yu [National Taiwan University, Department of Physics, Taipei (China); LeCosPA, National Taiwan University, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); Bouhmadi-Lopez, Mariam [Universidade da Beira Interior, Departamento de Fisica, Covilha (Portugal); Centro de Matematica e Aplicacoes da Universidade da Beira Interior (CMA-UBI), Covilha (Portugal); University of the Basque Country UPV/EHU, Department of Theoretical Physics, P.O. Box 644, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain); Chen, Pisin [National Taiwan University, Department of Physics, Taipei (China); LeCosPA, National Taiwan University, Taipei (China); National Taiwan University, Graduate Institute of Astrophysics, Taipei (China); Stanford University, SLAC National Accelerator Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Stanford, CA (United States)

    2016-01-15

    In this paper, a modified Eddington-inspired-Born-Infeld (EiBI) theory with a pure trace term g{sub μν}R being added to the determinantal action is analysed from a cosmological point of view. It corresponds to the most general action constructed from a rank two tensor that contains up to first order terms in curvature. This term can equally be seen as a conformal factor multiplying the metric g{sub μν}. This very interesting type of amendment has not been considered within the Palatini formalism despite the large amount of works on the Born-Infeld-inspired theory of gravity. This model can provide smooth bouncing solutions which were not allowed in the EiBI model for the same EiBI coupling. Most interestingly, for a radiation filled universe there are some regions of the parameter space that can naturally lead to a de Sitter inflationary stage without the need of any exotic matter field. Finally, in this model we discover a new type of cosmic ''quasi-sudden'' singularity, where the cosmic time derivative of the Hubble rate becomes very large but finite at a finite cosmic time. (orig.)

  9. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  10. Development of laser atomic spectroscopic technology

    International Nuclear Information System (INIS)

    Lee, Jong Min; Ohr, Young Gie; Cha, Hyung Ki

    1990-06-01

    Some preliminary results on the resonant ionization spectroscopy for Na and Pb atoms are presents both in theory and in experiment. A single color multiphoton ionization process is theoretically analysed in detail, for the resonant and non-resonant cases, and several parameters determining the overall ionization rate are summarized. In particular, the AC stark shift, the line width and the non-linear coefficient of ionization rate are recalculated using the perturbation theory in resolvent approach. On the other hand, the fundamental equipments for spectroscopic experiments have been designed and manufactured, which include a Nd:YAG laser, a GIM-type dye laser, a vacuum system ionization cells, a heat pipe oven, and an ion current measuring system. The characteristics of the above equipments have also been examined. Using the spectroscopic data available, several ionization schemes are considered and the relative merits for ionization have been discussed. Moreover, the effects due to the buffer gas pressure, laser intensity, vapor density and electrode voltage have been investigated in detail. The experiments will be extended to multi-color processes with several resonances, and the ultimate goal is to develop a ultrasensitive analytical method for pollutive heavy metal atoms using the resonant ionization spectroscopy. (author)

  11. Infrared Spectroscopic Imaging: The Next Generation

    Science.gov (United States)

    Bhargava, Rohit

    2013-01-01

    Infrared (IR) spectroscopic imaging seemingly matured as a technology in the mid-2000s, with commercially successful instrumentation and reports in numerous applications. Recent developments, however, have transformed our understanding of the recorded data, provided capability for new instrumentation, and greatly enhanced the ability to extract more useful information in less time. These developments are summarized here in three broad areas— data recording, interpretation of recorded data, and information extraction—and their critical review is employed to project emerging trends. Overall, the convergence of selected components from hardware, theory, algorithms, and applications is one trend. Instead of similar, general-purpose instrumentation, another trend is likely to be diverse and application-targeted designs of instrumentation driven by emerging component technologies. The recent renaissance in both fundamental science and instrumentation will likely spur investigations at the confluence of conventional spectroscopic analyses and optical physics for improved data interpretation. While chemometrics has dominated data processing, a trend will likely lie in the development of signal processing algorithms to optimally extract spectral and spatial information prior to conventional chemometric analyses. Finally, the sum of these recent advances is likely to provide unprecedented capability in measurement and scientific insight, which will present new opportunities for the applied spectroscopist. PMID:23031693

  12. Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1990-01-01

    A three-year research program for the development of novel XUV spectroscopic diagnostics for magnetically confined fusion plasmas is proposed. The new diagnostic system will use layered synthetic microstructures (LSM) coated, flat and curved surfaces as dispersive elements in spectrometers and narrow band XUV filter arrays. In the framework of the proposed program we will develop impurity monitors for poloidal and toroidal resolved measurements on PBX-M and Alcator C-Mod, imaging XUV spectrometers for electron density and temperature fluctuation measurements in the hot plasma core in TEXT or other similar tokamaks and plasma imaging devices in soft x-ray light for impurity behavior studies during RF heating on Phaedrus T and carbon pellet ablation in Alcator C-Mod. Recent results related to use of multilayer in XUV plasma spectroscopy are presented. We also discuss the latest results reviewed to q o and local poloidal field measurements using Zeeman polarimetry

  13. Method and apparatus for dual-spaced fast/epithermal neutron porosity measurements

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.

    1986-01-01

    A method is described for determining the porosity of earth formations in the vicinity of a well borehole, comprising: (a) irradiating the earth formations in the vicinity of the well borehole with a continuous chemical type source of fast neutrons, (b) detecting the fast neutron population at a first shorter spaced distance from the neutron source in the borehole and generating signals representative thereof, (c) detecting the epithermal neutron population at a second space distance from the neutron source in the borehole and generating signals representative thereof, the second spaced distance being greater than the first spaced distance from the neutron source, (d) forming a ratio of the signals representing the fast and epithermal neutron populations to derive a measurement signal functionally related to the porosity of the earth formations in the vicinity of the borehole, and (e) calibrating the measurement signal according to a predetermined functional relationship to derive a porosity signal quantitatively representative of the porosity of the earth formations in the vicinity of the borehole

  14. Developmental Research in Space: Predicting Adult Neurobehavioral Phenotypes via Metabolomic Imaging

    Science.gov (United States)

    Schorn, Julia M.; Moyer, Eric L.; Lowe, Moniece M.; Morgan, Jonathan; Tulbert, Christina D.; Olson, John; Olson, John; Horita, David A.; Kleven, Gale A.

    2017-01-01

    As human habitation and eventual colonization of space becomes an inevitable reality, there is a necessity to understand how organisms develop over the life span in the space environment. Microgravity, altered CO2, radiation and psychological stress are some of the key factors that could affect mammalian reproduction and development in space, however there is a paucity of information on this topic. Here we combine early (neonatal) in vivo spectroscopic imaging with an adult emotionality assay following a common obstetric complication (prenatal asphyxia) likely to occur during gestation in space. The neural metabolome is sensitive to alteration by degenerative changes and developmental disorders, thus we hypothesized that that early neonatal neurometabolite profiles can predict adult response to novelty. Late gestation fetal rats were exposed to moderate asphyxia by occluding the blood supply feeding one of the rats pair uterine horns for 15min. Blood supply to the opposite horn was not occluded (within-litter cesarean control). Further comparisons were made with vaginal (natural) birth controls. In one-week old neonates, we measured neurometabolites in three brain areas (i.e., striatum, prefrontal cortex, and hippocampus). Adult perinatally-asphyxiated offspring exhibited greater anxiety-like behavioral phenotypes (as measured the composite neurobehavioral assay involving open field activity, responses to novel object, quantification of fecal droppings, and resident-intruder tests of social behavior). Further, early neurometabolite profiles predicted adult responses. Non-invasive MRS screening of mammalian offspring is likely to advance ground-based space analogue studies informing mammalian reproduction in space, and achieving high-priority.

  15. Measuring redshift-space distortions using photometric surveys

    OpenAIRE

    Ross, Ashley; Percival, Will; Crocce, M.; Cabre, A.; Gaztanaga, E.

    2011-01-01

    We outline how redshift-space distortions (RSD) can be measured from the angular correlation function w({\\theta}), of galaxies selected from photometric surveys. The natural degeneracy between RSD and galaxy bias can be minimized by comparing results from bins with top-hat galaxy selection in redshift, and bins based on the radial position of galaxy pair centres. This comparison can also be used to test the accuracy of the photometric redshifts. The presence of RSD will be clearly detectable ...

  16. NASA's Optical Measurement Program 2014

    Science.gov (United States)

    Cowardin, H.; Lederer, S.; Stansbery, G.; Seitzer, P.; Buckalew, B.; Abercromby, K.; Barker, E.

    2014-01-01

    The Optical Measurements Group (OMG) within the NASA Orbital Debris Program Office (ODPO) addresses U.S. National Space Policy goals by monitoring and characterizing debris. Since 2001, the OMG has used the Michigan Orbital Debris Survey Telescope (MODEST) at Cerro Tololo Inter-American Observatory (CTIO) in Chile for general orbital debris survey. The 0.6-m Schmidt MODEST provides calibrated astronomical data of GEO targets, both catalogued and uncatalogued debris, with excellent image quality. The data are utilized by the ODPO modeling group and are included in the Orbital Debris Engineering Model (ORDEM) v. 3.0. MODEST and the CTIO/SMARTS (Small and Moderate Aperture Research Telescope System) 0.9 m both acquire filter photometric data, as well as synchronously observing targets in selected optical filters. This information provides data used in material composition studies as well as longer orbital arc data on the same target, without time delay or bias from a rotating, tumbling, or spinning target. NASA, in collaboration with the University of Michigan, began using the twin 6.5-m Magellan telescopes at Las Campanas Observatory in Chile for deep imaging (Baade) and spectroscopic data (Clay) in 2011. Through the data acquired on Baade, debris have been detected that are 3 magnitudes fainter than detections with MODEST, while the data from Clay provide better resolved information used in material characterization analyses via selected bandpasses. To better characterize and model optical data, the Optical Measurements Center (OMC) at NASA/JSC has been in operation since 2005, resulting in a database of comparison laboratory data. The OMC is designed to emulate illumination conditions in space using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. Lastly, the OMG is building the Meter Class Autonomous Telescope (MCAT) at Ascension Island. The 1.3-m telescope is designed to observe GEO and LEO targets, using a

  17. Velocity Segregation and Systematic Biases In Velocity Dispersion Estimates with the SPT-GMOS Spectroscopic Survey

    Science.gov (United States)

    Bayliss, Matthew. B.; Zengo, Kyle; Ruel, Jonathan; Benson, Bradford A.; Bleem, Lindsey E.; Bocquet, Sebastian; Bulbul, Esra; Brodwin, Mark; Capasso, Raffaella; Chiu, I.-non; McDonald, Michael; Rapetti, David; Saro, Alex; Stalder, Brian; Stark, Antony A.; Strazzullo, Veronica; Stubbs, Christopher W.; Zenteno, Alfredo

    2017-03-01

    The velocity distribution of galaxies in clusters is not universal; rather, galaxies are segregated according to their spectral type and relative luminosity. We examine the velocity distributions of different populations of galaxies within 89 Sunyaev Zel’dovich (SZ) selected galaxy clusters spanning 0.28GMOS spectroscopic survey, supplemented by additional published spectroscopy, resulting in a final spectroscopic sample of 4148 galaxy spectra—2868 cluster members. The velocity dispersion of star-forming cluster galaxies is 17 ± 4% greater than that of passive cluster galaxies, and the velocity dispersion of bright (m< {m}* -0.5) cluster galaxies is 11 ± 4% lower than the velocity dispersion of our total member population. We find good agreement with simulations regarding the shape of the relationship between the measured velocity dispersion and the fraction of passive versus star-forming galaxies used to measure it, but we find a small offset between this relationship as measured in data and simulations, which suggests that our dispersions are systematically low by as much as 3% relative to simulations. We argue that this offset could be interpreted as a measurement of the effective velocity bias that describes the ratio of our observed velocity dispersions and the intrinsic velocity dispersion of dark matter particles in a published simulation result. Measuring velocity bias in this way suggests that large spectroscopic surveys can improve dispersion-based mass-observable scaling relations for cosmology even in the face of velocity biases, by quantifying and ultimately calibrating them out.

  18. Near infrared spectroscopic (NIRS) analysis of grapes and red-wines

    International Nuclear Information System (INIS)

    Guggenbichler, W.

    2003-04-01

    In this work vine varieties of the genus Vitis as well as grape-must and fully developed wines were examined by Near Infrared Spectroscopy (NIRS). The spectra were obtained by methods of transflection and transmission measurements. It was shown, that spectra of different varieties of grapes and red-wines can be combined in clusters by means of NIR spectroscopy and subsequent principle components analysis (PCA). In addition to this, it was possible to identify blends of two different varieties of wines as such and to determine the ratio of mixture. In several varieties of grape-must these NIR spectroscopic measurements further allowed a quantitative determination of important parameters concerning the quality of grapes, such as: sugar, total acidity, tartaric acid, malic acid, and pH-value. The content of polyphenols in grapes was also analyzed by this method. The total parameter for polyphenols in grapes is a helpful indicator for the optimal harvest time and the quality of grapes. All quantitative calculations were made by the method of partial least square regression (PLS). As these spectroscopic measurements require minimal sample preparations and due to the fact that measurements can be accomplished and results obtained within a few seconds, this method turned out to be a promising option in order to classify wines and to quantify relevant ingredients in grapes. (author)

  19. Space Flight Experiments to Measure Polymer Erosion and Contamination on Spacecraft

    Science.gov (United States)

    Lillis, Maura C.; Youngstrom, Erica E.; Marx, Laura M.; Hammerstrom, Anne M.; Finefrock, Katherine D.; Youngstrom, Christiane A.; Kaminski, Carolyn; Fine, Elizabeth S.; Hunt, Patricia K.; deGroh, Kim K.

    2002-01-01

    Atomic oxygen erosion and silicone contamination are serious issues that could damage or destroy spacecraft components after orbiting for an extended period of time, such as on a space station or satellite. An experiment, the Polymer Erosion And Contamination Experiment (PEACE) will be conducted to study the effects of atomic oxygen (AO) erosion and silicone contamination, and it will provide information and contribute to a solution for these problems. PEACE will fly 43 different polymer materials that will be analyzed for AO erosion effects through two techniques: mass loss measurement and recession depth measurement. Pinhole cameras will provide information about the arrival direction of AO, and silicone contamination pinhole cameras will identify the source of silicone contamination on a spacecraft. All experimental hardware will be passively exposed to AO for up to two weeks in the actual space environment when it flies in the bay of a space shuttle. A second set of the PEACE Polymers is being exposed to the space environment for erosion yield determination as part of a second experiment, Materials International Space Station Experiment (MISSE). MISSE is a collaboration between several federal agencies and aerospace companies. During a space walk on August 16, 2001, MISSE was attached to the outside of the International Space Station (ISS) during an extravehicular activity (EVA), where it began its exposure to AO for approximately 1.5 years. The PEACE polymers, therefore, will be analyzed after both short-term and long-term AO exposures for a more complete study of AO effects.

  20. Using geographical information systems to explore disparities in preterm birth rates among foreign-born and U.S.-born Black mothers.

    Science.gov (United States)

    Bloch, Joan Rosen

    2011-01-01

    To examine spatial patterns of neighborhood contextual factors of stress with preterm birth (PTB) and nativity (foreign-born and U.S.-born) among Black mothers. Descriptive geographic-spatial research. Births to Philadelphia residents during 2003-2005 in the context of Philadelphia residential neighborhoods (N = 350) were studied. All data were aggregated to neighborhood levels (census tracts). Maps were created to assess geographic-spatial patterns. A geographic information system (GIS) database was created that imported geo-coded data on births, crime (assaults with guns and domestic abuse), poverty, race, and nativity (foreign-born vs. U.S.-born). Clear visual patterns of "bad" neighborhoods emerged and were significantly associated with higher prevalence of PTB for foreign-born Black and U.S.-born Black mothers (p < .0001). This study demonstrated how GIS visually clarified important spatial patterns of adverse living conditions and PTB prevalence. Nurses can use GIS to better understand living environments of mothers and their families and to target interventions in geographical areas with the greatest service needs. Further research on individual and contextual factors is warranted to address the observed health disparities among the heterogeneous groups of foreign-born Black mothers. Despite limitations of aggregate data, it is clear that where mothers live matters. This has important implications for nursing practice and policy. © 2011 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.