WorldWideScience

Sample records for space-based applications hydrogen

  1. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  2. Reference Concepts for a Space-Based Hydrogen-Oxygen Combustion, Turboalternator, Burst Power System

    National Research Council Canada - National Science Library

    Edenburn, Michael

    1990-01-01

    This report describes reference concepts for a hydrogen-oxygen combustion, turboalternator power system that supplies power during battle engagement to a space-based, ballistic missile defense platform...

  3. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    Henson, T.D.; Schmitt, R.L.; Sobering, T.J.; Raymond, T.D.; Stephenson, D.A.

    1994-10-01

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  4. An expert systems application to space base data processing

    Science.gov (United States)

    Babb, Stephen M.

    1988-01-01

    The advent of space vehicles with their increased data requirements are reflected in the complexity of future telemetry systems. Space based operations with its immense operating costs will shift the burden of data processing and routine analysis from the space station to the Orbital Transfer Vehicle (OTV). A research and development project is described which addresses the real time onboard data processing tasks associated with a space based vehicle, specifically focusing on an implementation of an expert system.

  5. Hydrogen energy applications

    International Nuclear Information System (INIS)

    Okken, P.A.

    1992-10-01

    For the Energy and Material consumption Scenarios (EMS), by which emission reduction of CO 2 and other greenhouse gases can be calculated, calculations are executed by means of the MARKAL model (MARket ALlocation, a process-oriented dynamic linear programming model to minimize the costs of the energy system) for the Netherlands energy economy in the period 2000-2040, using a variable CO 2 emission limit. The results of these calculations are published in a separate report (ECN-C--92-066). The use of hydrogen can play an important part in the above-mentioned period. An overview of several options to produce or use hydrogen is given and added to the MARKAL model. In this report techno-economical data and estimates were compiled for several H 2 -application options, which subsequently also are added to the MARKAL model. After a brief chapter on hydrogen and the impact on the reduction of CO 2 emission attention is paid to stationary and mobile applications. The stationary options concern the mixing of natural gas with 10% hydrogen, a 100% substitution of natural gas by hydrogen, the use of a direct steam generator (combustion of hydrogen by means of pure oxygen, followed by steam injection to produce steam), and the use of fuel cells. The mobile options concern the use of hydrogen in the transportation sector. In brief, attention is paid to a hydrogen passenger car with an Otto engine, and a hydrogen passenger car with a fuel cell, a hybrid (metal)-hydride car, a hydrogen truck, a truck with a methanol fuel cell, a hydrogen bus, an inland canal boat with a hydrogen fuel cell, and finally a hydrogen airplane. 2 figs., 15 tabs., 1 app., 26 refs

  6. A Science-Driven Performance Specification Framework for Space-Based Neutral Hydrogen Cosmology

    Science.gov (United States)

    Pober, Jonathan

    Experiments Observations of the highly-redshifted 21 cm hyperfine line of neutral hydrogen (HI) are one of the most promising probes for the future of cosmology. In principle, once the spin temperature of cosmic hydrogen decouples from the Cosmic Microwave Background at z ˜ 200, all neutral hydrogen at lower redshifts becomes visible through its hyperfine line emission. Observations at meter wavelength probe the state of HI in the intergalactic medium during the epoch of reionization, offering insight into the nature of the first stars and galaxies — a key component of NASA’s Cosmic Origins Program. By pushing observations to higher redshifts (and therefore longer wavelengths), the HI signal becomes the only measurable emission, as luminous objects have yet to form. Observations of these cosmic “dark ages” can offer unprecedented insight into the primordial spectrum of density perturbations and the very nature of inflation, answering questions at the heart of NASA’s Physics of the Cosmos Program. At these very low radio frequencies, however, the earth’s ionosphere becomes opaque — necessitating observations from space. NASA’s “Enduring Quests, Daring Visions” Astrophysics Roadmap recognized the great promise of these observations, and proposed the visionary Cosmic Dawn Mapper — an array of thousands of radio antennas on the far side of the moon — to conduct them. However, the major challenge to neutral hydrogen cosmology (at all redshifts) lies in the presence of bright foreground emission, which can dominate the HI signal by as much as eight orders of magnitude during the dark ages. The only method for extracting the cosmological signal relies on the spectral smoothness of the foregrounds; since each frequency of the HI signal probes a different redshift, the cosmological emission is essentially uncorrelated from frequency to frequency. The key challenge for designing an experiment lies in maintaining the spectral smoothness of the

  7. Large motion high cycle high speed optical fibers for space based applications.

    Energy Technology Data Exchange (ETDEWEB)

    Stromberg, Peter G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tandon, Rajan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gibson, Cory S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reedlunn, Benjamin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rasberry, Roger David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rohr, Garth David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Future remote sensing applications will require higher resolution and therefore higher data rates (up to perhaps 100 gigabits per second) while achieving lower mass and cost. A current limitation to the design space is high speed high bandwidth data does not cross movable gimbals because of cabling issues. This requires the detectors to be off gimbal. The ability to get data across the gimbal would open up efficiencies in designs where the detectors and the electronics can be placed anywhere on the system. Fiber optic cables provide light weight high speed high bandwidth connections. Current options are limited to 20,000 cycles as opposed to the 1,000,000 cycles needed for future space based applications. To extend this to the million+ regime, requires a thorough understanding of the failure mechanisms and the materials, proper selection of materials (e.g., glass and jacket material) allowable geometry changes to the cable, radiation hardness, etc.

  8. Applications of power beaming from space-based nuclear power stations

    International Nuclear Information System (INIS)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000 0 K and a liquid drop radiator to reject heat at temperatures of approx. 500 0 K. Higher RBR coolant temperatures (up to approx. 3000 0 K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel

  9. Space-based observatories providing key data for climate change applications

    Science.gov (United States)

    Lecomte, J.; Juillet, J. J.

    2016-12-01

    The Sentinel-1 & 3 mission are part of the Copernicus program, previously known as GMES (Global Monitoring for Environment and Security), whose overall objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. This European Earth Observation program is led by the European Commission and the space infrastructure is developed under the European Space Agency leadership. Many services will be developed through the Copernicus program among different thematic areas. The climate change is one of this thematic area and the Sentinel-1 & 3 satellites will provide key space-based observations in this area. The Sentinel-1 mission is based on a constellation of 2 identical satellites each one embarking C-SAR Instrument and provides capability for continuous radar mapping of the Earth with enhanced revisit frequency, coverage, timeliness and reliability for operational services and applications requiring long time series. In particular, Sentinel 1 provides all-weather, day-and-night estimates of soil moisture, wind speed and direction, sea ice, continental ice sheets and glaciers. The Sentinel-3 mission will mainly be devoted to the provision of Ocean observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. Among these data, very accurate surface temperatures and topography measurements will be provided and will constitute key indicators, once ingested in climate change models, for identifying climate drivers and expected climate impacts. The paper will briefly recall the satellite architectures, their main characteristics and performance. The inflight performance and key features of their images or data of the 3 satellites namely Sentinel 1A, 1B and 3A will be reviewed to demonstrate the quality and high scientific potential of the data as well as their

  10. On the concept of survivability, with application to spacecraft and space-based networks

    International Nuclear Information System (INIS)

    Castet, Jean-Francois; Saleh, Joseph H.

    2012-01-01

    Survivability is an important attribute and requirement for military systems. Recently, survivability has become increasingly important for public infrastructure systems as well. In this work, we bring considerations of survivability to bear on space systems. We develop a conceptual framework and quantitative analyses based on stochastic Petri nets (SPN) to characterize and compare the survivability of different space architectures. The architectures here considered are a monolith spacecraft and a space-based network. To build the stochastic Petri net models for the degradations and failures of these two architectures, we conducted statistical analyses of historical multi-state failure data of spacecraft subsystems, and we assembled these subsystems, and their SPN models, in ways to create our monolith and networked systems. Preliminary results indicate, and quantify the extent to which, a space-based network is more survivable than the monolith spacecraft with respect to on-orbit anomalies and failures. For space systems, during the design and acquisition process, different architectures are benchmarked against several metrics; we argue that if survivability is not accounted for, then the evaluation process is likely to be biased in favor of the traditional dominant design, namely the monolith spacecraft. If however in a given context, survivability is a critical requirement for a customer, the survivability framework here proposed, and the stochastic modeling capability developed, can demonstrate the extent to which a networked space architecture may better satisfy this requirement than a monolith spacecraft. These results should be of interest to operators whose space assets require high levels of survivability, especially in the light of emerging threats.

  11. A technique for generating phase-space-based Monte Carlo beamlets in radiotherapy applications

    International Nuclear Information System (INIS)

    Bush, K; Popescu, I A; Zavgorodni, S

    2008-01-01

    As radiotherapy treatment planning moves toward Monte Carlo (MC) based dose calculation methods, the MC beamlet is becoming an increasingly common optimization entity. At present, methods used to produce MC beamlets have utilized a particle source model (PSM) approach. In this work we outline the implementation of a phase-space-based approach to MC beamlet generation that is expected to provide greater accuracy in beamlet dose distributions. In this approach a standard BEAMnrc phase space is sorted and divided into beamlets with particles labeled using the inheritable particle history variable. This is achieved with the use of an efficient sorting algorithm, capable of sorting a phase space of any size into the required number of beamlets in only two passes. Sorting a phase space of five million particles can be achieved in less than 8 s on a single-core 2.2 GHz CPU. The beamlets can then be transported separately into a patient CT dataset, producing separate dose distributions (doselets). Methods for doselet normalization and conversion of dose to absolute units of Gy for use in intensity modulated radiation therapy (IMRT) plan optimization are also described. (note)

  12. Hydrogen application dynamics and networks

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E. [Air Liquide Large Industries, Champigny-sur-Marne (France)

    2010-12-30

    The Chemical Industry consumes large volumes of hydrogen as raw material for the manufacture of numerous products (e.g. polyamides and polyurethanes account for 60% of hydrogen demand). The hydrogen demand was in the recent past and will continue to be driven by the polyurethane family. China will host about 60% of new hydrogen needs over the period 2010-2015 becoming the first hydrogen market next year and reaching 25% of market share by 2015 (vs. only 4% in 2001). Air Liquide supplies large volumes of Hydrogen (and other Industrial Gases) to customers by on-site plants and through pipeline networks which offer significant benefits such as higher safety, reliability and flexibility of supply. Thanks to its long term strategy and heavy investment in large units and pipeline networks, Air Liquide is the Industrial Gas leader in most of the world class Petrochemical basins (Rotterdam, Antwerp, US Gulf Coast, Yosu, Caojing,..) (orig.)

  13. A NASA high-power space-based laser research and applications program

    Science.gov (United States)

    Deyoung, R. J.; Walberg, G. D.; Conway, E. J.; Jones, L. W.

    1983-01-01

    Applications of high power lasers are discussed which might fulfill the needs of NASA missions, and the technology characteristics of laser research programs are outlined. The status of the NASA programs or lasers, laser receivers, and laser propulsion is discussed, and recommendations are presented for a proposed expanded NASA program in these areas. Program elements that are critical are discussed in detail.

  14. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  15. Hydrogen storage technology materials and applications

    CERN Document Server

    Klebanoff, Lennie

    2012-01-01

    Zero-carbon, hydrogen-based power technology offers the most promising long-term solution for a secure and sustainable energy infrastructure. With contributions from the world's leading technical experts in the field, Hydrogen Storage Technology: Materials and Applications presents a broad yet unified account of the various materials science, physics, and engineering aspects involved in storing hydrogen gas so that it can be used to provide power. The book helps you understand advanced hydrogen storage materials and how to build systems around them. Accessible to nonscientists, the first chapt

  16. Applications of power beaming from space-based nuclear power stations. [Laser beaming to airplanes; microwave beaming to ground

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Botts, T.E.; Hertzberg, A.

    1981-01-01

    Power beaming from space-based reactor systems is examined using an advanced compact, lightweight Rotating Bed Reactor (RBR). Closed Brayton power conversion efficiencies in the range of 30 to 40% can be achieved with turbines, with reactor exit temperatures on the order of 2000/sup 0/K and a liquid drop radiator to reject heat at temperatures of approx. 500/sup 0/K. Higher RBR coolant temperatures (up to approx. 3000/sup 0/K) are possible, but gains in power conversion efficiency are minimal, due to lower expander efficiency (e.g., a MHD generator). Two power beaming applications are examined - laser beaming to airplanes and microwave beaming to fixed ground receivers. Use of the RBR greatly reduces system weight and cost, as compared to solar power sources. Payback times are a few years at present prices for power and airplane fuel.

  17. Policy for Robust Space-based Earth Science, Technology and Applications

    Science.gov (United States)

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  18. High energy, single frequency, tunable laser source operating in burst mode for space based lidar applications

    Science.gov (United States)

    Cosentino, Alberto; Mondello, Alessia; Sapia, Adalberto; D'Ottavi, Alessandro; Brotini, Mauro; Gironi, Gianna; Suetta, Enrico

    2017-11-01

    This paper describes energetic, spatial, temporal and spectral characterization measurements of the Engineering Qualification Model (EQM) of the Laser Transmitter Assembly (TXA) used in the ALADIN instrument currently under development for the ESA ADM-AEOLUS mission (EADS Astrium as prime contractor for the satellite and the instrument). The EQM is equivalent to the Flight Model, with the exception of some engineering grade components. The Laser Transmitter Assembly, based on a diode pumped tripled Nd:YAG laser, is used to generate laser pulses at a nominal wavelength of 355 nm. This laser is operated in burst mode, with a pulse repetition cycle of 100 Hz during bursts. It is capable to operate in Single Longitudinal Mode and to be tuned over 25 GHz range. An internal "network" of sensors has been implemented inside the laser architecture to allow "in flight" monitoring of transmitter. Energy in excess of 100 mJ, with a spatial beam quality factor (M2) lower than 3, a spectral linewidth less than 50 MHz with a frequency stability better than 4 MHz on short term period have been measured on the EQM. Most of the obtained results are well within the expected values and match the Instrument requirements. They constitute an important achievement, showing the absence of major critical areas in terms of performance and the capability to obtain them in a rugged and compact structure suitable for space applications. The EQM will be submitted in the near future to an Environmental test campaign.

  19. Hydrogen Production for Refuelling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hulteberg, Christian; Aagesen, Diane (Intelligent Energy, Long Beach, CA (United States))

    2009-08-15

    The aim of this work is to support the development of a high-profile demonstration of hydrogen generation technologies in a Swedish context. The overall objective of the demonstration is to deploy a reforming based hydrogen refilling station along the Swedish west coast; intermediate to the Malmoe refuelling station and planned stations in Goeteborg. In this way, the Norwegian hydrogen highway will be extended through the south of Sweden and down into Denmark. The aim of the project's first phase, where this constitutes the final report, was to demonstrate the ability to operate the IE reforming system on the E.On/SGC site-specific fuel. During the project, a preliminary system design has been developed, based on IE's proprietary reformer. The system has been operated at pressure, to ensure a stable operation of the downstream PSA; which has been operated without problems and with the expected hydrogen purity and recovery. The safe operation of the proposed and tested system was first evaluated in a preliminary risk assessment, as well as a full HazOp analysis. A thorough economic modelling has been performed on the viability of owning and operating this kind of hydrogen generation equipment. The evaluation has been performed from an on-site operation of such a unit in a refuelling context. The general conclusion from this modelling is that there are several parameters that influence the potential of an investment in a Hestia hydrogen generator. The sales price of the hydrogen is one of the major drivers of profitability. Another important factor is the throughput of the unit, more important than efficiency and utilization. Varying all of the parameters simultaneously introduce larger variations in the NPV, but 60% of the simulations are in the USD 90 000 to USD 180 000 interval. The chosen intervals for the parameters were: Hydrogen Sales Price (USD 5 - USD 7 per kg); Investment Cost (USD 70 000 - USD 130 000 per unit); Throughput (20 - 30 kg

  20. Hydrogen for automotive applications and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, U. [Adam Opel GmbH, Ruesselsheim (Germany)

    2010-12-30

    The energy storage system is of decisive importance for all types of electric vehicles, in contrast to the case of vehicles powered by a conventional fossil fuel or bio-fuel based internal combustion engine. Two major alternatives exist and need to be discussed: on the one hand, there is the possibility of electrical energy storage using batteries, whilst on the other hand there is the storage of energy in chemical form as hydrogen and the application of a fuel cell as energy converter. Considering the latter concept, hydrogen is a promising energy carrier in future energy systems. However, storage of hydrogen is a substantial challenge, especially for applications in vehicles with fuel cells that use proton-exchange membranes (PEMs). Different methods for hydrogen storage are discussed, including high-pressure and cryogenic-liquid storage, adsorptive storage on high-surface-area adsorbents, chemical storage in metal hydrides and complex hydrides, and storage in boranes. For the latter chemical solutions, reversible options and hydrolytic release of hydrogen with off-board regeneration are both possible. Reforming of liquid hydrogen-containing compounds is also a possible means of hydrogen generation. The advantages and disadvantages of the different systems are compared. (orig.)

  1. Application of Observing System Simulation Experiments (OSSEs) to determining science and user requirements for space-based missions

    Science.gov (United States)

    Atlas, R. M.

    2016-12-01

    Observing System Simulation Experiments (OSSEs) provide an effective method for evaluating the potential impact of proposed new observing systems, as well as for evaluating trade-offs in observing system design, and in developing and assessing improved methodology for assimilating new observations. As such, OSSEs can be an important tool for determining science and user requirements, and for incorporating these requirements into the planning for future missions. Detailed OSSEs have been conducted at NASA/ GSFC and NOAA/AOML in collaboration with Simpson Weather Associates and operational data assimilation centers over the last three decades. These OSSEs determined correctly the quantitative potential for several proposed satellite observing systems to improve weather analysis and prediction prior to their launch, evaluated trade-offs in orbits, coverage and accuracy for space-based wind lidars, and were used in the development of the methodology that led to the first beneficial impacts of satellite surface winds on numerical weather prediction. In this talk, the speaker will summarize the development of OSSE methodology, early and current applications of OSSEs and how OSSEs will evolve in order to enhance mission planning.

  2. New Applications for Detecting Natural Hazards Using Ground and Space-Based GNSS-Derived Ionospheric Measurements

    Science.gov (United States)

    Komjathy, A.; Butala, M.; Verkhoglyadova, O. P.; Wilson, B. D.; Iijima, B.; Akopian, V.; Mannucci, A.

    2012-12-01

    The NASA Jet Propulsion Laboratory (JPL) and University of Southern California (USC) have jointly developed the Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for various customers including NASA flight projects. JPL/USC GAIM is a physics-based 3D data assimilation model using 4DVAR and Kalman filter approaches to solve for ion and electron density states and other key ionospheric drivers. The JPL/USC GAIM technologies, now operating in real-time and post-processing modes, can routinely accept as input ground GPS TEC data from 1200+ sites including streaming and hourly GPS stations, occultation links from CHAMP, SAC-C, COSMIC and C/NOFS satellites, UV limb and nadir scans. In the presentation, first we will discuss recent advances in our assimilating ground-based GPS, C/NOFS and COSMIC occultation measurements using our GAIM system characterizing the ionosphere in 3D. We will elaborate on our improved space-based bias estimation techniques to generate high precision calibrated TEC measurements to be assimilated into GAIM. We will discuss the benefits of adding GLONASS measurements to our GIM and GAIM processing technologies. New and upcoming applications and first results will be shown for estimating very high precision TEC perturbations using real-time and post-processed GNSS observations from GEONET and IGS networks. We will demonstrate initial steps on how to integrate this GNSS ionosphere-based technology into a global tsunami warning system. Additional potential applications might include the remote sensing of ionospheric TEC perturbations generated by other natural hazards such as earthquakes and volcanic eruptions and human-made events such as nuclear tests.

  3. Nanomaterials for Hydrogen Storage Applications: A Review

    Directory of Open Access Journals (Sweden)

    Michael U. Niemann

    2008-01-01

    Full Text Available Nanomaterials have attracted great interest in recent years because of the unusual mechanical, electrical, electronic, optical, magnetic and surface properties. The high surface/volume ratio of these materials has significant implications with respect to energy storage. Both the high surface area and the opportunity for nanomaterial consolidation are key attributes of this new class of materials for hydrogen storage devices. Nanostructured systems including carbon nanotubes, nano-magnesium based hydrides, complex hydride/carbon nanocomposites, boron nitride nanotubes, TiS2/MoS2 nanotubes, alanates, polymer nanocomposites, and metal organic frameworks are considered to be potential candidates for storing large quantities of hydrogen. Recent investigations have shown that nanoscale materials may offer advantages if certain physical and chemical effects related to the nanoscale can be used efficiently. The present review focuses the application of nanostructured materials for storing atomic or molecular hydrogen. The synergistic effects of nanocrystalinity and nanocatalyst doping on the metal or complex hydrides for improving the thermodynamics and hydrogen reaction kinetics are discussed. In addition, various carbonaceous nanomaterials and novel sorbent systems (e.g. carbon nanotubes, fullerenes, nanofibers, polyaniline nanospheres and metal organic frameworks etc. and their hydrogen storage characteristics are outlined.

  4. Spark Discharge Generated Nanoparticles for Hydrogen Storage Applications

    NARCIS (Netherlands)

    Vons, V.A.

    2010-01-01

    One of the largest obstacles to the large scale application of hydrogen powered fuel cell vehicles is the absence of hydrogen storage methods suitable for application on-board of these vehicles. Metal hydrides are materials in which hydrogen is reversibly absorbed by one or more metals or

  5. Helium refrigeration system for hydrogen liquefaction applications

    Science.gov (United States)

    Nair, J. Kumar, Sr.; Menon, RS; Goyal, M.; Ansari, NA; Chakravarty, A.; Joemon, V.

    2017-02-01

    Liquid hydrogen around 20 K is used as cold moderator for generating “cold neutron beam” in nuclear research reactors. A cryogenic helium refrigeration system is the core upon which such hydrogen liquefaction applications are built. A thermodynamic process based on reversed Brayton cycle with two stage expansion using high speed cryogenic turboexpanders (TEX) along with a pair of compact high effectiveness process heat exchangers (HX), is well suited for such applications. An existing helium refrigeration system, which had earlier demonstrated a refrigeration capacity of 470 W at around 20 K, is modified based on past operational experiences and newer application requirements. Modifications include addition of a new heat exchanger to simulate cryogenic process load and two other heat exchangers for controlling the temperatures of helium streams leading out to the application system. To incorporate these changes, cryogenic piping inside the cold box is suitably modified. This paper presents process simulation, sizing of new heat exchangers as well as fabrication aspects of the modified cryogenic process piping.

  6. Cobalt Ferrite Nanocrystallites for Sustainable Hydrogen Production Application

    Directory of Open Access Journals (Sweden)

    Rajendra S. Gaikwad

    2011-01-01

    Full Text Available Cobalt ferrite, CoFe2O4, nanocrystalline films were deposited using electrostatic spray method and explored in sustainable hydrogen production application. Reflection planes in X-ray diffraction pattern confirm CoFe2O4 phase. The surface scanning microscopy photoimages reveal an agglomeration of closely-packed CoFe2O4 nanoflakes. Concentrated solar-panel, a two-step water splitting process, measurement technique was preferred for measuring the hydrogen generation rate. For about 5 hr sustainable, 440 mL/hr, hydrogen production activity was achieved, confirming the efficient use of cobalt ferrite nanocrystallites film in hydrogen production application.

  7. Configuration and technology implications of potential nuclear hydrogen system applications.

    Energy Technology Data Exchange (ETDEWEB)

    Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

    2005-11-05

    Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options

  8. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    Science.gov (United States)

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  9. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  10. Polyaniline as a material for hydrogen storage applications.

    Science.gov (United States)

    Attia, Nour F; Geckeler, Kurt E

    2013-07-12

    The main challenge of commercialization of the hydrogen economy is the lack of convenient and safe hydrogen storage materials, which can adsorb and release a significant amount of hydrogen at ambient conditions. Finding and designing suitable cost-effective materials are vital requirements to overcome the drawbacks of investigated materials. Because of its outstanding electronic, thermal, and chemical properties, the electrically conducting polyaniline (PANI) has a high potential in hydrogen storage applications. In this review, the progress in the use of different structures of conducting PANI, its nanocomposites as well as activated porous materials based on PANI as hydrogen storage materials is presented and discussed. The effect of the unique electronic properties based on the π-electron system in the backbone of these materials in view of the hydrogen uptake and the relevant mechanisms are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear reaction analysis of hydrogen in materials: Principals and applications

    International Nuclear Information System (INIS)

    Lanford, W.A.

    1991-01-01

    Analysis for hydrogen in materials is difficult by most traditional analytic methods. Because hydrogen has no Auger transitions, no X-ray transitions, does not neutron activate, and does not backscatter ions, it is invisible in analytical methods based on these effects. In addition, since hydrogen is a universal contaminant in vacuum systems, techniques based on mass spectrometry are difficult unless extreme measures are taken to reduce hydrogen backgrounds. Because of this situation, methods have been developed for analyzing for hydrogen in solid materials based on nuclear reactions between bombarding ions and hydrogen atoms (protons) in the samples. The nuclear reaction methods are now practiced at laboratories around the world. The basic principals of nuclear reaction analysis will be briefly presented. This method will be illustrated by applications to problems ranging from basic physics, to geology, to materials science, and to art history and archeology

  12. Hydrogen generator from light hydrocarbons for stationary applications

    International Nuclear Information System (INIS)

    Cipiti, F.; Recupero, Vincenzo; Pino, L.; Vita, A.; Lagana, M.

    2006-01-01

    The present article describes the activities carried out in the CNR institute, particularly the development, realization and testing of one unit of hydrogen generation to integrate with fuel-cells for residential applications [it

  13. Safety risks of hydrogen fuel for applications in transportation vehicles.

    Science.gov (United States)

    2009-04-01

    Combustion of hydrocarbon fuels in many practical applications produces pollutants that are harmful to human health and environment. Hydrogen fuel is considered to be a potential answer to the clean energy demands, especially with the advances in fue...

  14. NGNP Process Heat Applications: Hydrogen Production Accomplishments for FY2010

    Energy Technology Data Exchange (ETDEWEB)

    Charles V Park

    2011-01-01

    This report summarizes FY10 accomplishments of the Next Generation Nuclear Plant (NGNP) Engineering Process Heat Applications group in support of hydrogen production technology development. This organization is responsible for systems needed to transfer high temperature heat from a high temperature gas-cooled reactor (HTGR) reactor (being developed by the INL NGNP Project) to electric power generation and to potential industrial applications including the production of hydrogen.

  15. Safe production and application of hydrogen at Munich airport

    Energy Technology Data Exchange (ETDEWEB)

    Szamer, R.

    2005-07-01

    At Munich International Airport the world's first public filling station for liquid and gaseous hydrogen with on-site hydrogen gas production has been installed. In order to prove the safety, liability and economic feasibility of hydrogen this pilot project examined the complete sequence of hydrogen production and application: on-site production with pressurized electrolyser and steam reformer, storage and filling of gaseous and liquid hydrogen, application of hydrogen for propelling several vehicles, e.g. airport busses in day to day operation, cars, fork lifter. TUV SUD Group, one of the largest service provider for technical safety and quality, was involved in the safety evaluation of the hydrogen project from the very beginning with the following services: safety consultancy throughout all project phases, e.g. for licensing procedures, plant design and operation safety analysis of the overall plant and of subsystems (electrolyser, filling stations, storage tanks, control systems etc.) safety assessment and acceptance testing of CH2 busses, CH2 fork lifter and LH2 passenger cars inspections and tests The challenges of this complex project relating to safety will be presented in the lecture, e.g. identification of potential hazards, safety requirements for the design and operation of the hydrogen plant as wells as for the various applications. Project description The hydrogen plant (cf. Figure 1) comprises two supply paths, one for compressed gaseous hydrogen (CH2) and one for cryogenic liquid hydrogen. Gaseous hydrogen is produced via high-pressure electrolysis at an operating pressure of 3 MPa (30 bar) and/or steam reforming process. The hydrogen will be led into a compressor, compressed to 35 MPa (350 bar) and stored in high pressure cylinders with a total geometrical storage volume of 10 m. The cylinders supply the high-pressure filling stations which refuels the 3 hydrogen buses and the fork lifter. Liquid hydrogen (LH2) is delivered in tank trucks and

  16. Hydrogen as fuel carrier in PEM fuelcell for automobile applications

    Science.gov (United States)

    Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.

    2015-02-01

    The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.

  17. Hydrogen isotope separation for fusion power applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R., E-mail: robert.smith@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Whittaker, D.A.J.; Butler, B.; Hollingsworth, A.; Lawless, R.E.; Lefebvre, X.; Medley, S.A.; Parracho, A.I.; Wakeling, B. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2015-10-05

    Highlights: • Summary of the tritium plant, the Active Gas Handling System (AGHS), at JET. • Review of the Water Detritiation System (WDS) under construction. • Design of the new Material Detritiation Facility (MDF). • Review of problems in fusion related to metal/hydrogen system. - Abstract: The invited talk given at MH2014 in Salford ranged over many issues associated with hydrogen isotope separation, fusion machines and the hydrogen/metal systems found in the Joint European Torus (JET) machine located near Oxford. As this sort of talk does not lend itself well to a paper below I have attempted to highlight some of the more pertinent information. After a description of the Active Gas Handling System (AGHS) a brief summary of isotope separation systems is described followed by descriptions of three major projects currently being undertaken by the Tritium Engineering and Science Group (TESG), the upgrade to the Analytical Systems (AN-GC) at the AGH, the construction of a Water Detritiation System (WDS) and a Material Detritiation Facility (MDF). Finally, a review of some of the challenges facing fusion with respect to metal/hydrogen systems is presented.

  18. An Aerosol Extinction-to-Backscatter Ratio Database Derived from the NASA Micro-Pulse Lidar Network: Applications for Space-based Lidar Observations

    Science.gov (United States)

    Welton, Ellsworth J.; Campbell, James R.; Spinhime, James D.; Berkoff, Timothy A.; Holben, Brent; Tsay, Si-Chee; Bucholtz, Anthony

    2004-01-01

    Backscatter lidar signals are a function of both backscatter and extinction. Hence, these lidar observations alone cannot separate the two quantities. The aerosol extinction-to-backscatter ratio, S, is the key parameter required to accurately retrieve extinction and optical depth from backscatter lidar observations of aerosol layers. S is commonly defined as 4*pi divided by the product of the single scatter albedo and the phase function at 180-degree scattering angle. Values of S for different aerosol types are not well known, and are even more difficult to determine when aerosols become mixed. Here we present a new lidar-sunphotometer S database derived from Observations of the NASA Micro-Pulse Lidar Network (MPLNET). MPLNET is a growing worldwide network of eye-safe backscatter lidars co-located with sunphotometers in the NASA Aerosol Robotic Network (AERONET). Values of S for different aerosol species and geographic regions will be presented. A framework for constructing an S look-up table will be shown. Look-up tables of S are needed to calculate aerosol extinction and optical depth from space-based lidar observations in the absence of co-located AOD data. Applications for using the new S look-up table to reprocess aerosol products from NASA's Geoscience Laser Altimeter System (GLAS) will be discussed.

  19. SPACE BASED INTERCEPTOR SCALING

    Energy Technology Data Exchange (ETDEWEB)

    G. CANAVAN

    2001-02-01

    Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributed launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.

  20. Sodium Borohydride/Hydrogen Peroxide Fuel Cells For Space Application

    Science.gov (United States)

    Valdez, T. I.; Deelo, M. E.; Narayanan, S. R.

    2006-01-01

    This viewgraph presentation examines Sodium Borohydride and Hydrogen Peroxide Fuel Cells as they are applied to space applications. The topics include: 1) Motivation; 2) The Sodium Borohydride Fuel Cell; 3) Sodium Borohydride Fuel Cell Test Stands; 4) Fuel Cell Comparisons; 5) MEA Performance; 6) Anode Polarization; and 7) Electrode Analysis. The benefits of hydrogen peroxide as an oxidant and benefits of sodium borohydride as a fuel are also addressed.

  1. Validation of CFD models for hydrogen safety application

    International Nuclear Information System (INIS)

    Nikolaeva, Anna; Skibin, Alexander; Krutikov, Alexey; Golibrodo, Luka; Volkov, Vasiliy; Nechaev, Artem; Nadinskiy, Yuriy

    2015-01-01

    Most accidents involving hydrogen begin with its leakage and spreading in the air and spontaneous detonation, which is accompanied by fire or deflagration of hydrogen mixture with heat and /or shocks, which may cause harm to life and equipment. Outflow of hydrogen in a confined volume and its propagation in the volume is the worst option because of the impact of the insularity on the process of detonation. According to the safety requirements for handling hydrogen specialized systems (ventilation, sprinklers, burners etc.) are required for maintaining the hydrogen concentration less than the critical value, to eliminate the possibility of detonation and flame propagation. In this study, a simulation of helium propagation in a confined space with different methods of injection and ventilation of helium is presented, which is used as a safe replacement of hydrogen in experimental studies. Five experiments were simulated in the range from laminar to developed turbulent with different Froude numbers, which determine the regime of the helium outflow in the air. The processes of stratification and erosion of helium stratified layer were investigated. The study includes some results of OECD/NEA-PSI PANDA benchmark and some results of Gamelan project. An analysis of applicability of various turbulence models, which are used to close the system of equations of momentum transport, implemented in the commercial codes STAR CD, STAR CCM+, ANSYS CFX, was conducted for different mesh types (polyhedral and hexahedral). A comparison of computational studies results with experimental data showed a good agreement. In particular, for transition and turbulent regimes the error of the numerical results lies in the range from 5 to 15% for all turbulence models considered. This indicates applicability of the methods considered for some hydrogen safety problems. However, it should be noted that more validation research should be made to use CFD in Hydrogen safety applications with a wide

  2. GOTHIC-3D applicability to hydrogen combustion analysis

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Lee, Jin Yong; Park, Goon Cherl; Yoo, Ho Jong; Kim, Hyeong Taek; Lee, Byung Chul; Oh, Seung Jong

    2005-01-01

    Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling of large- and small-scale facilities was introduced through sensitivity studies on cell size and burn modeling parameters. Use of a turbulent burn option of the eddy dissipation concept enabled scale-free applications. Lowering the burn parameter values for the flame thickness and the burn temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default burn modeling parameters for large-scale facilities. However, the code needs further modifications of its burn modeling parameters to be applied to either small-scale facilities or extremely fast transients

  3. Hydrogen production as a promising nuclear energy application

    International Nuclear Information System (INIS)

    Vanek, V.

    2003-01-01

    Hydrogen production from nuclear is a field of application which eventually can outweigh power production by nuclear power plants. There are two feasible routes of hydrogen production. The one uses heat to obtain hydrogen from natural gas through steam reforming of methane. This is an highly energy-consuming process requiring temperatures up to 900 deg C and producing carbon dioxide as a by-product. The other method includes direct thermochemical processes to obtain hydrogen, using sulfuric acid for instance. Sulfuric acid is decomposed thermally by the reaction: H 2 SO 4 -> H 2 O = SO 2 + (1/2) O 2 , followed by the processes I 2 + SO 2 + 2H O -> 2HI + H 2 SO 4 and 2HI -> H 2 + I 2 . The use of nuclear for this purpose is currently examined in Japan and in the US. (P.A.)

  4. Effect of foliar application of salicylic acid, hydrogen peroxide

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 2. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L. AY ZUNUN-PÉREZ T GUEVARA-FIGUEROA SN ...

  5. Design tool for offgrid hydrogen refuelling systems for aerospace applications

    International Nuclear Information System (INIS)

    Troncoso, E.; Lapeña-Rey, N.; Gonzalez, M.

    2016-01-01

    Highlights: • A simulation tool for offgrid CPV-based hydrogen refuelling systems is presented. • Simulations of system configurations with specific UAS hydrogen demand scenarios. • Regarding system size & reliability the most critical components are the CPV array and batteries. • In terms of energy efficiency the most critical component is the electrolyser. - Abstract: To develop an environmentally acceptable refuelling solution for fuel cell-powered unmanned aerial systems (UASs) to operate in remote areas, hydrogen fuel must be produced on-site from renewable energy sources. This paper describes a Matlab-based simulation tool specifically developed to pre-design offgrid hydrogen refuelling systems for UAS applications. The refuelling system comprises a high concentrated PV array (CPV), an electrolyser, a hydrogen buffer tank and a diaphragm hydrogen compressor. Small composite tanks are also included for fast refuelling of the UAV platforms at any time during the year. The novel approach of selecting a CPV power source is justified on the basis of minimizing the system footprint (versus flat plat or low concentration PV), aiming for a containerized remotely deployable UAS offgrid refuelling solution. To validate the simulation tool a number of simulations were performed using experimental data from a prototype offgrid hydrogen refuelling station for UAVs developed by Boeing Research & Technology Europe. Solar irradiation data for a selected location and daily UAS hydrogen demands of between 2.8 and 15.8 Nm"3 were employed as the primary inputs, in order to calculate a recommended system sizing solution and assess the expected operation of the refuelling system across a given year. The specific energy consumption of the refuelling system obtained from the simulations is between 5.6 and 8.9 kW h_e per kg of hydrogen delivered to the UAVs, being lower for larger daily hydrogen demands. Increasing the CPV area and electrolyser size in order to supply higher

  6. Recent Progress Toward Hydrogen Medicine: Potential of Molecular Hydrogen for Preventive and Therapeutic Applications

    Science.gov (United States)

    Ohta, Shigeo

    2011-01-01

    Persistent oxidative stress is one of the major causes of most lifestyle-related diseases, cancer and the aging process. Acute oxidative stress directly causes serious damage to tissues. Despite the clinical importance of oxidative damage, antioxidants have been of limited therapeutic success. We have proposed that molecular hydrogen (H2) has potential as a “novel” antioxidant in preventive and therapeutic applications [Ohsawa et al., Nat Med. 2007: 13; 688-94]. H2 has a number of advantages as a potential antioxidant: H2 rapidly diffuses into tissues and cells, and it is mild enough neither to disturb metabolic redox reactions nor to affect reactive oxygen species (ROS) that function in cell signaling, thereby, there should be little adverse effects of consuming H2. There are several methods to ingest or consume H2, including inhaling hydrogen gas, drinking H2-dissolved water (hydrogen water), taking a hydrogen bath, injecting H2-dissolved saline (hydrogen saline), dropping hydrogen saline onto the eye, and increasing the production of intestinal H2 by bacteria. Since the publication of the first H2 paper in Nature Medicine in 2007, the biological effects of H2 have been confirmed by the publication of more than 38 diseases, physiological states and clinical tests in leading biological/medical journals, and several groups have started clinical examinations. Moreover, H2 shows not only effects against oxidative stress, but also various anti-inflammatory and anti-allergic effects. H2 regulates various gene expressions and protein-phosphorylations, though the molecular mechanisms underlying the marked effects of very small amounts of H2 remain elusive. PMID:21736547

  7. Hydrogen generation at ambient conditions: application in fuel cells.

    Science.gov (United States)

    Boddien, Albert; Loges, Björn; Junge, Henrik; Beller, Matthias

    2008-01-01

    The efficient generation of hydrogen from formic acid/amine adducts at ambient temperature is demonstrated. The highest catalytic activity (TOF up to 3630 h(-1) after 20 min) was observed in the presence of in situ generated ruthenium phosphine catalysts. Compared to the previously known methods to generate hydrogen from liquid feedstocks, the systems presented here can be operated at room temperature without the need for any high-temperature reforming processes, and the hydrogen produced can then be directly used in fuel cells. A variety of Ru precursors and phosphine ligands were investigated for the decomposition of formic acid/amine adducts. These catalytic systems are particularly interesting for the generation of H2 for new applications in portable electric devices.

  8. Plasma promoted manufacturing of hydrogen and vehicular applications

    Science.gov (United States)

    Bromberg, Leslie

    2003-10-01

    Plasmas can be used for promoting reformation of fuels. Plasma-based reformers developed at MIT use a low temperature, low power, low current electrical discharge to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The very fuel rich mixture is hard to ignite, and the plasmatron provides a volume-ignition. To minimize erosion and to simplify the power supply, a low current high voltage discharge is used, with wide area electrodes. The plasmatron fuel reformer operates at or slightly above atmospheric pressure. The plasma-based reformer technology provides the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels. These advantages enable use of hydrogen-manufacturing reformation technology in cars using available fuels, such as gasoline and diesel. This plasma-based reformer technology can provide substantial throughputs even without the use of a catalyst. The electrical power consumption of the device is minimized by design and operational characteristics (less than 500 W peak and 200 W average). The product from these plasma reactors is a hydrogen rich mixture that can be used for combustion enhancement and emissions aftertreatment in vehicular applications. By converting a small fraction of the fuel to hydrogen rich gas, in-cylinder combustion can be improved. With minor modification of the engine, use of hydrogen rich gas results in increased fuel efficiency and decreased emissions of smog producing gases. The status of plasma based reformer technology and its application to vehicles will be described.

  9. Advanced hydrogen technologies for FC applications and PGM beneficiation in SA: Presentation

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-03-01

    Full Text Available developing hydrogen storage systems for fuel cell applications, and developing applications and solutions for small- and medium-scale hydrogen production through innovative research and development to promote beneficiation of Platinum-Group Metals (PGMs)....

  10. Applications of hydrogen peroxide in electrochemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Gallegos, Alberto Armando

    1998-12-01

    It is demonstrated that hydrogen peroxide can be produced with a current efficiency of 40-70% by the cathodic reduction of oxygen at a reticulated vitreous carbon electrode in a divided flow-cell using catholytes consisting of aqueous chloride or sulphate media, pH >>{sub 2}. The supporting electrolyte does not influence either the current efficiency for H{sub 2}O{sub 2} or its rate of production. The current efficiency for H{sub 2}O{sub 2} is not a strong function of the potential and this suggests that 2e- and 4e- reduction of oxygen occurs in parallel at different sites on the carbon surface. Voltammetry experiments showed that (a) the I-E response for oxygen reduction at pH >>{sub 2} is a function of the electrode surface and/or the supporting electrolyte; (b) both H{sub 2} evolution and oxygen reduction are retarded on carbon with increasing ionic strength; (c) the presence of ferrous ions lead to the homogeneous decomposition of H{sub 2}O{sub 2} away from the cathode surface but their effectiveness as a catalyst for this decomposition depends on their speciation in solution which changes during an electrolysis. The use of a three-dimensional electrode fabricated from reticulated vitreous carbon allows Fenton`s reagent to be electroproduced at a practical rate which makes possible the removal of organics in slightly acidic aqueous media. A wide range of highly toxic organic molecules (phenol, catechol, hydroquinone, p-benzoquinone, oxalic acid, aniline, cresol and amaranth) have been oxidised in mild conditions and a significant fraction of the organic carbon is evolved as CO{sub 2}. In all cases studied the initial chemical oxygen demand (COD) was depleted to levels higher than 85%, indicating a complete mineralisation of the organic pollutants. The life-time of the reticulated vitreous carbon cathode was demonstrated to be over 1000 hours during two and a half years of experiments. During this time the cathode performance was very good, leading to

  11. Modelling and Designing Cryogenic Hydrogen Tanks for Future Aircraft Applications

    Directory of Open Access Journals (Sweden)

    Christopher Winnefeld

    2018-01-01

    Full Text Available In the near future, the challenges to reduce the economic and social dependency on fossil fuels must be faced increasingly. A sustainable and efficient energy supply based on renewable energies enables large-scale applications of electro-fuels for, e.g., the transport sector. The high gravimetric energy density makes liquefied hydrogen a reasonable candidate for energy storage in a light-weight application, such as aviation. Current aircraft structures are designed to accommodate jet fuel and gas turbines allowing a limited retrofitting only. New designs, such as the blended-wing-body, enable a more flexible integration of new storage technologies and energy converters, e.g., cryogenic hydrogen tanks and fuel cells. Against this background, a tank-design model is formulated, which considers geometrical, mechanical and thermal aspects, as well as specific mission profiles while considering a power supply by a fuel cell. This design approach enables the determination of required tank mass and storage density, respectively. A new evaluation value is defined including the vented hydrogen mass throughout the flight enabling more transparent insights on mass shares. Subsequently, a systematic approach in tank partitioning leads to associated compromises regarding the tank weight. The analysis shows that cryogenic hydrogen tanks are highly competitive with kerosene tanks in terms of overall mass, which is further improved by the use of a fuel cell.

  12. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    of CO with relatively facile H-2 activation is nearly ideal for this application. We suggest that. as nanoscale materials synthesis techniques improve, it will become feasible to reproducibly prepare NSAs with highly specified surface structures, resulting in the design and manufacture of a wide variety...... facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...... of such materials for use in fuel cells and in an ever. increasing range of catalytic applications. Furthermore, we introduce a new concept for NSA-defect sites, which could be responsible for the promotional catalytic effects of a second metal added. even in minute quantities, to a host metal catalyst....

  13. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  14. Energy storage applications of activated carbons: supercapacitors and hydrogen storage

    OpenAIRE

    Sevilla Solís, Marta; Mokaya, Robert

    2014-01-01

    Porous carbons have several advantageous properties with respect to their use in energy applications that require constrained space such as in electrode materials for supercapacitors and as solid state hydrogen stores. The attractive properties of porous carbons include, ready abundance, chemical and thermal stability, ease of processability and low framework density. Activated carbons, which are perhaps the most explored class of porous carbons, have been traditionally employed as catalyst s...

  15. Novel Electrolyzer Applications: Providing More Than Just Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Eichman, J.; Harrison, K.; Peters, M.

    2014-09-01

    Hydrogen can be used for many different applications and can be integrated into many different system architectures. One of the methods for producing the hydrogen is to use an electrolyzer. This work explores the flexibility of electrolyzers to behave as responsive loads. Experimental tests were performed for a proton exchange membrane (PEM) and an alkaline electrolyzer to assess the operational flexibility of electrolyzers to behave as responsive loads. The results are compared to the operational requirements to participate in end-user facility energy management, transmission and distribution system support, and wholesale electricity market services. Electrolyzers begin changing their electricity demand within milliseconds of a set-point change. The settling time after a set-point change is on the order of seconds. It took 6.5 minutes for the PEM unit to execute a cold start and 1 minute to turn off. In addition, a frequency disturbance correction test was performed and electrolyzers were able to accelerate the speed that the grid frequency can be restored. Electrolyzers acting as demand response devices can respond sufficiently fast and for a long enough duration to participate in all of the applications explored. Furthermore, electrolyzers can be operated to support a variety of applications while also providing hydrogen for industrial processes, transportation fuel, or heating fuel. Additionally, favorable operating properties and a variety of potential system architectures showcase the flexibility of electrolyzer systems.

  16. GOTHIC 3D applicability to fast hydrogen combustions

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Park, Goon Cherl; Lee, Byung Chul; Yoo, Ho Jong; Kim, Hyeong Taek; Oh, Seung Jong

    2004-01-01

    Under severe accidents in nuclear power plant (NPP), the hydrogen can be generated by chemical reactions and may threaten the containment integrity via hydrogen combustion. For containment analyses, three-dimensional mechanistic code, GOTHIC had to be applied near source compartments in order to predict whether highly reactive gas mixture can be formed or not under hydrogen mitigation system (HMS) working. For its applicability, this paper presents numerical calculation results of GOTHIC 3D on some hydrogen combustion experiments, which are the FLAME (Sandia National Lab.) experiments, the LSVCTF (AECL Whiteshell Lab.) experiments and the SNU-2D (Seoul National Univ.) experiments. A technical basis for the modeling of the large- and small-scale facilities was developed through sensitivity studies on cell size and combustion modeling parameters. It was found that for large-scale facilities, there were no significant differences in the results with different turbulent burn options, while for small-scale facility, the option using the eddy dissipation concept showed the faster flame propagations. The flame velocity became larger with smaller burn parameters such as the flame thickness δ f and the burn temperature limit T lim . The best estimate modeling parameters found from this study would be applied to real plant simulation of GOTHIC 3D later

  17. Evaluating a Space-Based Indicator of Surface Ozone-NO x -VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends.

    Science.gov (United States)

    Jin, Xiaomeng; Fiore, Arlene M; Murray, Lee T; Valin, Lukas C; Lamsal, Lok N; Duncan, Bryan; Boersma, K Folkert; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Tonnesen, Gail S

    2017-10-16

    Determining effective strategies for mitigating surface ozone (O 3 ) pollution requires knowledge of the relative ambient concentrations of its precursors, NO x , and VOCs. The space-based tropospheric column ratio of formaldehyde to NO 2 (FNR) has been used as an indicator to identify NO x -limited versus NO x -saturated O 3 formation regimes. Quantitative use of this indicator ratio is subject to three major uncertainties: (1) the split between NO x -limited and NO x -saturated conditions may shift in space and time, (2) the ratio of the vertically integrated column may not represent the near-surface environment, and (3) satellite products contain errors. We use the GEOS-Chem global chemical transport model to evaluate the quantitative utility of FNR observed from the Ozone Monitoring Instrument over three northern midlatitude source regions. We find that FNR in the model surface layer is a robust predictor of the simulated near-surface O 3 production regime. Extending this surface-based predictor to a column-based FNR requires accounting for differences in the HCHO and NO 2 vertical profiles. We compare four combinations of two OMI HCHO and NO 2 retrievals with modeled FNR. The spatial and temporal correlations between the modeled and satellite-derived FNR vary with the choice of NO 2 product, while the mean offset depends on the choice of HCHO product. Space-based FNR indicates that the spring transition to NO x -limited regimes has shifted at least a month earlier over major cities (e.g., New York, London, and Seoul) between 2005 and 2015. This increase in NO x sensitivity implies that NO x emission controls will improve O 3 air quality more now than it would have a decade ago.

  18. Potential application of palladium nanoparticles as selective recyclable hydrogenation catalysts

    International Nuclear Information System (INIS)

    Mukherjee, DebKumar

    2008-01-01

    The search for more efficient catalytic systems that might combine the advantages of both homogeneous (catalyst modulation) and heterogeneous (catalyst recycling) catalysis is one of the most exciting challenges of modern chemistry. More recently with the advances of nanochemistry, it has been possible to prepare soluble analogues of heterogeneous catalysts. These nanoparticles are generally stabilized against aggregation into larger particles by electrostatic or steric protection. Herein we demonstrate the use of room temperature ionic liquid for the stabilization of palladium nanoparticles that are recyclable catalysts for the hydrogenation of carbon-carbon double bonds and application of these catalysts to the selective hydrogenation of internal or terminal C=C bonds in unsaturated primary alcohols. The particles suspended in room temperature ionic liquid show no metal aggregation or loss of catalytic activity even on prolonged use

  19. Application of hydrogen isotopes and metal hydrides in future energy source

    Energy Technology Data Exchange (ETDEWEB)

    Guoqiang, Jiang [Sichuan Inst. of Materials and Technology, Chengdu, SC (China)

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China`s energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed.

  20. Application of hydrogen isotopes and metal hydrides in future energy source

    International Nuclear Information System (INIS)

    Jiang Guoqiang

    1994-12-01

    The probable application of hydrogen isotopes and metal hydrides to future energy source is reviewed. Starting from existing state of China's energy source, the importance for developing hydrogen energy and fusion energy is explained. It is suggested that the application investigation of hydrogen energy and hydrogen storage materials should be spurred and encouraged; keeping track of the development on tritium technology for fusion reactor is stressed

  1. Conception of modular hydrogen storage systems for portable applications

    International Nuclear Information System (INIS)

    Paladini, V.; Miotti, P.; Manzoni, G.; Ozebec, J.

    2003-01-01

    Hydrogen, till now the most prominent candidate as a future sustainable energy carrier, yields a gravimetric energy density three times as high as liquid hydrocarbon. Furthermore it is proven to be the most environmentally friendly fuel. Unfortunately, a few components regarding storage and tank solutions have not yet reached a technology level required for broad use. Thus, we intend to propose solutions and device concepts for both devices everyday use and space applications. This contribution assesses both state of the art of storage materials and existing technologies of power generation systems for application in portable devices. The aim of this work is to define the characteristics of a modular system, being suitable for a wide range of different devices, operating on advanced metal hydrides as the active hydrogen supply component. The concept has been studied and modelled with respect to volumes, mass and power requirements of different devices. The smallest system developed is intended to run, for example, a mobile phone. Minor tuning and straightforward scale up of this power supply module should make it suitable for general applicability in any portable device. (author)

  2. Evaluation of nickel-hydrogen battery for space application

    Science.gov (United States)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  3. Application of gas chromatography in hydrogen isotope separation

    International Nuclear Information System (INIS)

    Ye Xiaoqiu; Sang Ge; Peng Lixia; Xue Yan; Cao Wei

    2008-01-01

    The principle of gas chromatographic separation of hydrogen isotopes was briefly introduced. The main technology and their development of separating hydrogen isotopes, including elution chromatography, hydrogen-displacement chromatography, self-displacement chromatography and frontal chromatography were discussed in detail. The prospect of hydrogen isotope separation by gas chromatography was presented. (authors)

  4. Solar pumped laser and its application to hydrogen production

    International Nuclear Information System (INIS)

    Imasaki, K.; Saiki, T.; Li, D.; Motokosi, S.; Nakatsuka, M.

    2007-01-01

    Solar pumped laser has been studied. Recently, a small ceramic laser pumped by pseudo solar light shows high efficiency of more than 40% which exceeds a solar cell. Such solar pumped laser can concentrate the large area of solar energy in a focused spot of small area. This fact implies the application of such laser for clean and future renewable energy source as hydrogen. For this purpose, 100 W level laboratory solar laser HELIOS is completed using disk ceramic active mirror laser to achieve high temperature. This laser is a kind of MOPA system. Oscillator of additional small laser is used. Laser light is generated in oscillator and is amplified in ceramic disks of solar pumped. The temperature from this system is to be more than 1500 K. We will use a simple graphite cavity for laser power absorption and to get a high temperature. We are also designing a 10 MW CW laser based on this technology. This may be expected an application of solar energy for hydrogen production with total efficiency of 30%

  5. 40 CFR 415.420 - Applicability; description of the hydrogen cyanide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... hydrogen cyanide production subcategory. 415.420 Section 415.420 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Hydrogen Cyanide Production Subcategory § 415.420 Applicability; description of the hydrogen cyanide production subcategory. This subpart applies to discharges to waters of the United States...

  6. SPE (tm) regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications

    Science.gov (United States)

    Mcelroy, J. F.

    1990-01-01

    Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.

  7. Nonequilibrium thermodynamic models and applications to hydrogen plasma

    International Nuclear Information System (INIS)

    Cho, K.Y.

    1988-01-01

    A generalized multithermal equilibrium (GMTE) thermodynamic model is developed and presented with applications to hydrogen. A new chemical equilibrium equation for GMTE is obtained without the ensemble temperature concept, used by a previous MTE model. The effects of the GMTE model on the derivation and calculation of the thermodynamic, transport, and radiative properties are presented and significant differences from local thermal equilibrium (LTE) and two temperature model are discussed. When the electron translational temperature (T e ) is higher than the translational temperature of the heavy particles, the effects of hydrogen molecular species to the properties are significant at high T e compared with LTE results. The density variations of minor species are orders of magnitude with kinetic nonequilibrium at a constant electron temperature. A collisional-radiative model is also developed with the GMTE chemical equilibrium equation to study the effects of radiative transfer and the ambipolar diffusion on the population distribution of the excited atoms. The nonlocal radiative transfer effect is parameterized by an absorption factor, which is defined as a ratio of the absorbed intensity to the spontaneous emission coefficient

  8. Space based microlensing planet searches

    Directory of Open Access Journals (Sweden)

    Tisserand Patrick

    2013-04-01

    Full Text Available The discovery of extra-solar planets is arguably the most exciting development in astrophysics during the past 15 years, rivalled only by the detection of dark energy. Two projects unite the communities of exoplanet scientists and cosmologists: the proposed ESA M class mission EUCLID and the large space mission WFIRST, top ranked by the Astronomy 2010 Decadal Survey report. The later states that: “Space-based microlensing is the optimal approach to providing a true statistical census of planetary systems in the Galaxy, over a range of likely semi-major axes”. They also add: “This census, combined with that made by the Kepler mission, will determine how common Earth-like planets are over a wide range of orbital parameters”. We will present a status report of the results obtained by microlensing on exoplanets and the new objectives of the next generation of ground based wide field imager networks. We will finally discuss the fantastic prospect offered by space based microlensing at the horizon 2020–2025.

  9. Applications of Nuclear Energy to Oil Sands and Hydrogen Production

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.; Kuran, S.

    2011-01-01

    Many novel and needed applications of nuclear energy arise in today's energy-hungry, economically challenged world, and in solving tomorrow's search for a globally carbon-constrained and sustainable energy supply. Not only can nuclear power produce low cost electricity, it can provide co-generation of process heat, desalinated water, and hydrogen with negligible greenhouse gas emissions. In each of these new applications, nuclear energy is competing against, or displacing conventional and established use of natural gas or coal in thermal power plants and boilers. Therefore, there must be a compelling case, in terms of supply certainty, stability, safety, security, and acceptability. In addition, a synergistic relation must exist or be created with the existing power and energy markets, the use of windpower, and the needs for low-cost supply with negligible greenhouse gas emissions and carbon 'footprint'. The development of Canada's oil sands resource depends on a substantial energy input for extraction and upgrading. So far, this input has been supplied by natural gas, a resource that (a) is a premium fuel; (b) has constrained availability; and (c) produces significant CO 2 emissions. For the oil sands extraction process, natural gas is the current energy source used to generate the steam for in-situ heating, the power to drive the separation equipment, and the hydrogen for varying degrees of upgrading before piping. Nothwithstanding the current imbalance between supply and demand for gas within North America, the very demand of the oil sands for prodigious amounts of natural gas has itself the potential to force higher prices and create supply constraints for natural gas. Rooted in the energy equivalence of oil and gas, there is a long-established link between American gas prices whereby one bbl of oil is worth 7 GJ of natural gas. Temporary supply/demand imbalances apart, only cheap oil can maintain cheap gas. Only the improbability of cheap oil will maintain low

  10. Hydrogen.

    Science.gov (United States)

    Bockris, John O'M

    2011-11-30

    The idea of a "Hydrogen Economy" is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO₂ in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H₂ from the electrolyzer. Methanol made with CO₂ from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  11. The application of CFD to hydrogen risk analysis in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Hui; Han Xu; Chang Meng; Wang Xiaofeng; Wang Shuguo; Lu Xinhua; Wu Lin

    2013-01-01

    Status of the hydrogen risk analysis method is systemically summarized in this paper and the advantages and limits of CFD (Computational Fluid Dynamic) in hydrogen risk analysis is discussed. The international experimental programs on the CFD hydrogen risk analysis are introduced in this paper. The application of CFD to nuclear power plant (NPP) hydrogen risk analysis is introduced in detail by taking EPR and Ling'ao NPP for example. In these bases, the CFD development prospect of hydrogen risk analysis is also summarized in this paper. (authors)

  12. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  13. NQR application to the study of hydrogen dynamics in hydrogen-bonded molecular dimers

    Energy Technology Data Exchange (ETDEWEB)

    Asaji, Tetsuo, E-mail: asaji@chs.nihon-u.ac.jp [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)

    2016-12-15

    The temperature dependences of {sup 1}H NMR as well as {sup 35}Cl NQR spin-lattice relaxation times T{sub 1} were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k{sub B} and the activation energy V/ k{sub B} for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T{sub 1} on the low-temperature side of the T{sub 1} minimum. The NQR T{sub 1} measurements was revealed to be a good probe for the hydrogen transfer dynamics.

  14. Estimation of Uncertainty in Risk Assessment of Hydrogen Applications

    DEFF Research Database (Denmark)

    Markert, Frank; Krymsky, V.; Kozine, Igor

    2011-01-01

    Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations the ...... probability and the NUSAP concept to quantify uncertainties of new not fully qualified hydrogen technologies and implications to risk management.......Hydrogen technologies such as hydrogen fuelled vehicles and refuelling stations are being tested in practice in a number of projects (e.g. HyFleet-Cute and Whistler project) giving valuable information on the reliability and maintenance requirements. In order to establish refuelling stations...... the permitting authorities request qualitative and quantitative risk assessments (QRA) to show the safety and acceptability in terms of failure frequencies and respective consequences. For new technologies not all statistical data might be established or are available in good quality causing assumptions...

  15. Development of a hydrogen permeation sensor for future tritium applications

    Energy Technology Data Exchange (ETDEWEB)

    Llivina, L.; Colominas, S.; Abellà, J., E-mail: sergi.colominas@iqs.es

    2014-10-15

    Highlights: • Designing and testing of a hydrogen permeation sensor. • Palladium and α-iron have been used as a hydrogen permeation materials in the sensor. • The experiments performed using both membranes showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure. - Abstract: Tritium monitoring in lithium–lead eutectic is of great importance for the performance of liquid blankets in fusion reactors. In addition, tritium measurements will be required in order to proof tritium self-sufficiency in liquid metal breeding systems. On-line hydrogen (isotopes) sensors must be design and tested in order to accomplish these goals. In this work, an experimental set up was designed in order to test the permeation hydrogen sensors at 500 °C. This experimental set-up allowed working with controlled environments (different hydrogen partial pressures) and the temperature was measured using a thermocouple connected to a temperature controller that regulated an electrical heater. In a first set of experiments, a hydrogen sensor was constructed using an α-iron capsule as an active hydrogen area. The sensor was mounted and tested in the experimental set up. In a second set of experiments the α-iron capsule was replaced by a welded thin palladium disk in order to minimize the death volume. The experiments performed using both membranes (α-iron and palladium) showed that the operation of the sensors in the equilibrium mode required at least several hours to reach the hydrogen equilibrium pressure.

  16. Potential application of gas chromatography to the analysis of hydrogen isotopes

    International Nuclear Information System (INIS)

    Warner, D.K.; Sprague, R.E.; Bohl, D.R.

    1976-01-01

    Gas chromatography is used at Mound Laboratory for the analysis of hydrogen isotopic impurities in gas mixtures. This instrumentation was used to study the applicability of the gas chromatography technique to the determination of the major components of hydrogen isotopic gas mixtures. The results of this study, including chromatograms and precision data, are presented

  17. Hydrogen and fuel cells emerging technologies and applications

    CERN Document Server

    Sorensen (Sorensen), Bent

    2011-01-01

    A hydrogen economy, in which this one gas provides the source of all energy needs, is often touted as the long-term solution to the environmental and security problems associated with fossil fuels. However, before hydrogen can be used as fuel on a global scale we must establish cost effective means of producing, storing, and distributing the gas, develop cost efficient technologies for converting hydrogen to electricity (e.g. fuel cells), and creating the infrastructure to support all this. Sorensen is the only text available that provides up to date coverage of all these issues at a level

  18. Hydrogenated dilute nitride semiconductors theory, properties, and applications

    CERN Document Server

    Ciatto, Gianluca

    2015-01-01

    ""The electrical and optical properties of the technologically and scientifically important dilute nitride semiconductors are strongly influenced by the introduction of atomic hydrogen. This volume is an excellent summary and resource for the most recent understanding of experimental results and state-of-the-art theoretical studies of the formation, reversibility, and microscopic structure of nitrogen-hydrogen complexes in these materials. The book details how a wide variety of experimental techniques have provided a detailed understanding of the role of hydrogen. It is the premier sourc

  19. Hydrogen applications for Lambert-St. Louis International Airport

    Science.gov (United States)

    2009-01-01

    Today, major airports are facing challenges related to pollution, energy efficiency, and safety and security. Hydrogen and fuel cell technologies, regarded as one of the key energy solutions of the 21st century are more energy efficient and reliable ...

  20. IAEA Activities on Application of Nuclear Techniques in Development and Characterization of Materials for Hydrogen Economy

    International Nuclear Information System (INIS)

    Salame, P.; Zeman, A.; Mulhauser, F.

    2011-01-01

    Hydrogen and fuel cells can greatly contribute to a more sustainable less carbon-dependent global energy system. An effective and safe method for storage of hydrogen in solid materials is one of the greatest technologically challenging barriers of widespread introduction of hydrogen in global energy systems. However, aspects related to the development of effective materials for hydrogen storage and fuel cells are facing considerable technological challenges. To reach these goals, research efforts using a combination of advanced modeling, synthesis methods and characterization tools are required. Nuclear methods can play an effective role in the development and characterization of materials for hydrogen storage. Therefore, the IAEA initiated a coordinated research project to promote the application of nuclear techniques for investigation and characterization of new/improved materials relevant to hydrogen and fuel cell technologies. This paper gives an overview of the IAEA activities in this subject. (author)

  1. Growth, characterisation and electronic applications of amorphous hydrogenated carbon

    International Nuclear Information System (INIS)

    Paul, S.

    2000-11-01

    My thesis proposes solutions to a number of riddles associated with the material, hydrogenated amorphous carbon, (a-C:H). This material has lately generated interest in the electronic engineering community, owing to some remarkable properties. The characterisation of amorphous carbon films, grown by radio frequency plasma enhanced chemical vapour deposition has been reported. The coexistence of multiple phases in the same a-C:H film manifests itself in the inconsistent electrical behaviour of different parts of the film, thus rendering it difficult to predict the nature of films. For the first time, in this thesis, a reliable prediction of Schottky contact formation on a-C:H films is reported. A novel and simple development on a Scanning Electron Microscope, configured to study the electrical properties of the grown a-C:H films, has been reported. Since device performance is crucially linked to the density of states in the film, a study of the same was undertaken in my doctoral research. I present a mathematical formalism to estimate the density of states in a-C:H. The most commonly used metal, (aluminium), for contact formation on a-C:H films, has been concluded to be the least suitable. On the basis of the study presented in this thesis, copper and chromium are judged to be the best alternatives. The resilience of a-C:H/Si heterostructures under high voltages (upto 900 V) has been reported in this thesis for the first time. The performance of a-C:H grown at room temperature on GaAs, has been studied and concluded to be satisfactory on the basis of good adherence and low leakage currents. Such a structure was motivated by the applicability in Metal Insulator Semiconductor Field Effect Transistors (MISFET). (author)

  2. Workshop on Hydrogen Storage and Generation for Medium-Power and -Energy Applications

    National Research Council Canada - National Science Library

    Matthews, Michael

    1998-01-01

    This report summarizes the Workshop on Hydrogen Storage and Generation Technologies for Medium-Power and -Energy Applications which was held on April 8-10, 1997 at the Radisson Hotel Orlando Airport in Orlando, Florida...

  3. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  4. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  5. Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.

    Science.gov (United States)

    Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois

    2015-09-07

    One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Development and industrial application of catalyzer for low-temperature hydrogenation hydrolysis of Claus tail gas

    Directory of Open Access Journals (Sweden)

    Honggang Chang

    2015-10-01

    Full Text Available With the implementation of more strict national environmental protection laws, energy conservation, emission reduction and clean production will present higher requirements for sulfur recovery tail gas processing techniques and catalyzers. As for Claus tail gas, conventional hydrogenation catalyzers are gradually being replaced by low-temperature hydrogenation catalyzers. This paper concentrates on the development of technologies for low-temperature hydrogenation hydrolysis catalyzers, preparation of such catalyzers and their industrial application. In view of the specific features of SO2 hydrogenation and organic sulfur hydrolysis during low-temperature hydrogenation, a new technical process involving joint application of hydrogenation catalyzers and hydrolysis catalyzers was proposed. In addition, low-temperature hydrogenation catalyzers and low-temperature hydrolysis catalyzers suitable for low-temperature conditions were developed. Joint application of these two kinds of catalyzers may reduce the inlet temperatures in the conventional hydrogenation reactors from 280 °C to 220 °C, at the same time, hydrogenation conversion rates of SO2 can be enhanced to over 99%. To further accelerate the hydrolysis rate of organic sulfur, the catalyzers for hydrolysis of low-temperature organic sulfur were developed. In lab tests, the volume ratio of the total sulfur content in tail gas can be as low as 131 × 10−6 when these two kinds of catalyzers were used in a proportion of 5:5 in volumes. Industrial application of these catalyzers was implemented in 17 sulfur recovery tail gas processing facilities of 15 companies. As a result, Sinopec Jinling Petrochemical Company had outstanding application performances with a tail gas discharging rate lower than 77.9 mg/m3 and a total sulfur recovery of 99.97%.

  7. Heat transfer analysis of liquid piston compressor for hydrogen applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2015-01-01

    A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...

  8. Heat Analysis of Liquid piston Compressor for Hydrogen Applications

    DEFF Research Database (Denmark)

    Kermani, Nasrin Arjomand; Rokni, Masoud

    2014-01-01

    A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is develo......A new hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model...

  9. Zirconium-Based metal organic framework (Zr-MOF) material with high hydrostability for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2013-09-01

    Full Text Available Material-based solutions, such as metal organic frameworks (MOFs), continue to attract increasing attention as viable options for hydrogen storage applications. MOFs are widely regarded as promising materials for hydrogen storage due to their high...

  10. Space-Based Observation Technology

    Science.gov (United States)

    2000-10-01

    Analysis of P-band Synthetic Aperture Radar for Airborne and Spaceborne Applications 40 by A. Potsis, N. Uzunoglou, P. Frangos , R. Horn and K...P. Frangos . G. Jäger and U. Benz Image Content Dependent Compression of SAR Data 50† by U. Benz, J.V. Fischer and G. Jaeger An Embedded Fusion...Uzunoglou, ‘P. Frangos , 2R. Horn, 2K. Lumprecht ‘National Technical University of Athens. Department Of Electrical And Computer Engineering 9 Iroon

  11. A comparison of hydrogen-fueled fuel cells and combustion engines for electric utility applications

    International Nuclear Information System (INIS)

    Schoenung, S.M.

    2000-01-01

    Hydrogen-fueled systems have been proposed for a number of stationary electric generation applications including remote power generation, load management, distribution system peak shaving, and reliability or power quality enhancement. Hydrogen fueling permits clean, low pollution operation. This is particularly true for systems that use hydrogen produced from electrolysis, rather than the reforming of hydrocarbon fuels. Both fuel cells and combustion engines are suitable technologies for using hydrogen in many electric utility applications. This paper presents results from several studies performed for the U.S. Department of Energy Hydrogen Program. A comparison between the two technologies shows that, whereas fuel cells are somewhat more energy efficient, combustion engine technology is less expensive. In this paper, a comparison of the two technologies is presented, with an emphasis on distributed power and power quality applications. The special case of a combined distributed generation I hydrogen refueling station is also addressed. The comparison is made on the basis of system costs and benefits, but also includes a comparison of technology status: power ratings and response time. A discussion of pollutant emissions and pollutant control strategies is included. The results show those electric utility applications for which each technology is best suited. (author)

  12. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  13. Storage and production of hydrogen for fuel cell applications

    Science.gov (United States)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  14. Hydrogen production and purification for fuel cell applications

    Science.gov (United States)

    Chin, Soo Yin

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. Currently, production of hydrogen for fuel cells is primarily achieved via steam reforming, partial oxidation or autothermal reforming of natural gas, or steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed due to its adverse effects on the Pt-based electrocatalysts of the PEM fuel cell. Our efforts have focused on production of CO-free hydrogen via catalytic decomposition of hydrocarbons and purification of H2 via the preferential oxidation of CO. The catalytic decomposition of hydrocarbons is an attractive alternative for the production of H2. Previous studies utilizing methane have shown that this approach can indeed produce CO-free hydrogen, with filamentous carbon formed as the by-product and deposited on the catalyst. We have further extended this approach to the decomposition of ethane. In addition to hydrogen and filamentous carbon however, methane is also formed in this case as a by-product. Studies conducted at different temperatures and space velocities suggest that hydrogen is the primary product while methane is formed in a secondary step. Ni/SiO2 catalysts are active for ethane decomposition at temperatures above 500°C. Although the yield of hydrogen increases with temperature, the catalyst deactivation rate also accelerates at higher temperatures. The preferential oxidation of CO is currently used for the purification of CO-contaminated hydrogen streams due to its efficiency and simplicity. Conventional Pt catalysts used for this reaction have been shown to effectively remove CO, but have limited selectivity (i.e., substantial amounts of H 2 also react with O2). Our work focused on alternative catalytic materials, such as Ru and bimetallic Ru-based catalysts (Pt-Ru, Ru

  15. Applications of heavy-ion reactions on hydrogen isotopes

    International Nuclear Information System (INIS)

    Evers, E.J.

    1987-01-01

    This thesis describes various aspects of 'inverse' reactions between the lightest nuclides, hydrogen and deuterium, and heavy ions in the range from carbon to phosphorus. The reactions studied in this thesis always result in one light ejectile and one excited heavy nucleus. Coincidence experiments have been performed in which both the emitted light particle and the gamma radiation emitted by the excited heavy nucleus produced, are detected. Ch. 1 describes the system built for the acquisition of data obtained in such coincidence experiments. Ch. 2 describes precision measurements of nuclear lifetimes and stopping powers. Coincident Doppler shift attenuation (DSA) experiments were performed with the reaction 2 H( 31 P,pγ) 32 P at E( 31 P 7+ )=50 MeV and thin Ti 2 H targets on Au, Ag and Cu backings. Mean lifetimes of the E x =513, 1150, 1323 and 1755 levels were determined with experimental stopping powers of Forster et al. These lifetimes were used as input in further analysis of the experimental data and of an additional experiment with a target on Mg backing to determine a consistent set of stopping power data for P ions with a velocity in the range 0-8(c/137) in the four materials mentioned. Ch.'s 3 and 4 deal with narrow resonances in reactions of nitrogen and fluorine beams with hydrogen targets. In Ch. 3 a method is described for the calibration of analyzing-magnet systems of heavy-ions accelerators. Ch. 4 describes an experiment to investigate the hydrogen concentration in silicon nitride films using a resonant inverse nuclear reaction. This method turns out to be a very suitable one for determining hydrogen concentration profiles with a good depth resolution over a large depth. 69 refs.; 23 figs.; 7 tabs

  16. Effect of Exogenous Application of Hydrogen Peroxide on Drought Tolerance of Glob Amaranth (Gomphrena globosa L.

    Directory of Open Access Journals (Sweden)

    M Goldani

    2012-12-01

    Full Text Available Drought is one of the important environmental stresses that reduce the crop growth. Oxidative stress is a secondary stress due to drought and other abiotic stresses. In order to study the effect of exogenous application of hydrogen peroxide on drought tolerance of glob amaranth (Gomphrena globosa L., an experiment was conducted in greenhouse conditions. This study was designed as factorial based on completely randomized design with 3 replications. Different concentrations of hydrogen peroxide (0, 2.5 and 5 mM and three levels of irrigation intervals (after 4, 7 and 10 days were treated in this study. The results showed that foliar application of hydrogen peroxide can improve shoot and root dry weight and alleviate adverse effects of drought stress. With increasing drought stress stomatal conductance, flower number, total chlorophyll and root volume decreased significantly. So that the lowest of these characterestics was in the irrigation after 10 days. Interaction effects of drought and hydrogen peroxide in shoot dry weight was significantly different in 5% level and in electrolyte leakage, relative water content, free proline and total root length was significantly different in 1% level. In control (4 day irrigation interval with increasing hydrogen peroxide of 2.5 mM, shoot dry weight and total root length increased 20% and 91%, respectively. In control, with increasing hydrogen peroxide to 5 mM total chlorophyll was increased 30.8% compared to 0 mM hydrogen peroxide application (control. The final result showed that foliar application of hydrogen peroxide decreased the adverse effects of drought stress.

  17. Assessment of hydrogen fuel cell applications using fuzzy multiple-criteria decision making method

    International Nuclear Information System (INIS)

    Chang, Pao-Long; Hsu, Chiung-Wen; Lin, Chiu-Yue

    2012-01-01

    Highlights: ► This study uses the fuzzy MCDM method to assess hydrogen fuel cell applications. ► We evaluate seven different hydrogen fuel cell applications based on 14 criteria. ► Results show that fuel cell backup power systems should be chosen for development in Taiwan. -- Abstract: Assessment is an essential process in framing government policy. It is critical to select the appropriate targets to meet the needs of national development. This study aimed to develop an assessment model for evaluating hydrogen fuel cell applications and thus provide a screening tool for decision makers. This model operates by selecting evaluation criteria, determining criteria weights, and assessing the performance of hydrogen fuel cell applications for each criterion. The fuzzy multiple-criteria decision making method was used to select the criteria and the preferred hydrogen fuel cell products based on information collected from a group of experts. Survey questionnaires were distributed to collect opinions from experts in different fields. After the survey, the criteria weights and a ranking of alternatives were obtained. The study first defined the evaluation criteria in terms of the stakeholders, so that comprehensive influence criteria could be identified. These criteria were then classified as environmental, technological, economic, or social to indicate the purpose of each criterion in the assessment process. The selected criteria included 14 indicators, such as energy efficiency and CO 2 emissions, as well as seven hydrogen fuel cell applications, such as forklifts and backup power systems. The results show that fuel cell backup power systems rank the highest, followed by household fuel cell electric-heat composite systems. The model provides a screening tool for decision makers to select hydrogen-related applications.

  18. The Current Status of Hydrogen Storage Alloy Development for Electrochemical Applications

    Science.gov (United States)

    Young, Kwo-hsiung; Nei, Jean

    2013-01-01

    In this review article, the fundamentals of electrochemical reactions involving metal hydrides are explained, followed by a report of recent progress in hydrogen storage alloys for electrochemical applications. The status of various alloy systems, including AB5, AB2, A2B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys, for their most important electrochemical application, the nickel metal hydride battery, is summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion battery, air-metal hydride, and hybrid battery systems, also have been mentioned. PMID:28788349

  19. Nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Kyung, E-mail: leejink@deu.ac.kr [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Bae, Dong Su [Department of Advanced Materials Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Sang Pill; Hwang, Sung Guk [Department of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of); Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-11-01

    Highlights: • We have studied on the nondestructive technique application for corrosion evaluation by hydrogen charging of stainless steel. An ultrasonic test (UT) is an useful method to evaluate the mechanical properties of material. By measuring the velocity and the attenuation of ultrasonic wave propagating the hydrogen charged stainless steel, the relation of ultrasonic wave and mechanical properties of hydrogen charged 316L stainless steel was discussed. However, in order to evaluate the dynamic behavior of materials, an acoustic emission (AE) technique was applied to investigate the corrosion characteristics of hydrogen charged specimen. Acoustic emission is one of elastic waves caused by dislocation, cracks initiation and propagation within material from loading outside. The waveform of the acoustic emission is different depending on the damage mechanism of material. Lots of AE parameters such as energy, duration time, event and amplitude were used to analyze the dynamic behavior of the hydrogen charged specimen. • A conventional 316L stainless steel was used in this study, and electrochemical treat system for hydrogen charging of the specimen. ASTM (G142) type tensile specimens (diameter 6.0 mm, gage length 28.6 mm) were prepared, and sulfuric acid(H{sub 2}SO{sub 4}) and arsenic trioxide(As{sub 2}O{sub 3}) were used as the electrolyte, and potentiostat(HA 151) supplied the current to platinum wire and specimen. • Tensile strength and attenuation coefficient has a relation to some extent. Therefore, we could estimate the tensile strength and the hydrogen charging time by measuring the attenuation coefficient using ultrasonic wave nondestructively. • Acoustic emission technique was useful to evaluate the dynamic damage because AE parameters of AE event, average energy and average frequency showed various change by external loading at the specimens with and without hydrogen. - Abstract: Caused corrosion by hydrogen on stainless steel using

  20. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  1. Proceedings of a Canadian Hydrogen Association workshop in support of the transition to the hydrogen age : Greening the fleet : the status of hydrogen-powered vehicles for fleet applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Canadian Hydrogen Association (CHA) endorses hydrogen as an energy carrier and promotes the development of a supporting hydrogen infrastructure. It promotes the research, development and commercialization of innovative ways to accelerate the application of hydrogen technologies to reduce greenhouse gas emissions. The presentations at this conference described new technologies and the companies that are developing hydrogen-powered vehicles, including hybrid-electric powered vehicles for fleet application. Some international activities were also covered, including lessons learned from the California experience and European fuel cell fleets. The benefits of fuel cell hybrids were highlighted along with methods to overcome the barriers to the introduction of new vehicle fuels. A review of current and future hydrogen supply infrastructure systems was also provided. The conference featured 14 presentations, of which 2 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  2. Inductively coupled hydrogen plasma processing of AZO thin films for heterojunction solar cell applications

    International Nuclear Information System (INIS)

    Zhou, H.P.; Xu, S.; Zhao, Z.; Xiang, Y.

    2014-01-01

    Highlights: • A high-density plasma reactor of inductively coupled plasma source is used in this work. • The conductivity and transmittance can be enhanced simultaneously in the hydrogen process. • The formation of additional donors and passivation due to the hydrogen plasma processing. • The photovoltaic improvement due to the improved AZO layer and hetero-interface quality in the solar cells. - Abstract: Al-doped ZnO (AZO) thin films deposited by means of RF magnetron sputtering were processed in a low frequency inductively coupled plasma of H 2 , aiming at heterojunction (HJ) solar cell applications. A variety of characterization results show that the hydrogen plasma processing exerts a significant influence on the microstructures, electrical and optical properties of the AZO films. The incorporation of hydrogen under the optimum treatment simultaneously promoted the transmittance and conductivity due to the hydrogen associated passivation effect on the native defects and the formation of shallow donors in the films, respectively. A p-type c-Si based HJ solar cell with a front AZO contact was also treated in as-generated non-equilibrium hydrogen plasma and the photovoltaic performance of the solar cell was prominently improved. The underlying mechanism was discussed in terms of the beneficial impacts of high-density hydrogen plasma on the properties of AZO itself and the hetero-interfaces involved in the HJ structure (interface defect and energy band configuration)

  3. Hail hydrogen

    International Nuclear Information System (INIS)

    Hairston, D.

    1996-01-01

    After years of being scorned and maligned, hydrogen is finding favor in environmental and process applications. There is enormous demand for the industrial gas from petroleum refiners, who need in creasing amounts of hydrogen to remove sulfur and other contaminants from crude oil. In pulp and paper mills, hydrogen is turning up as hydrogen peroxide, displacing bleaching agents based on chlorine. Now, new technologies for making hydrogen have the industry abuzz. With better capabilities of being generated onsite at higher purity levels, recycled and reused, hydrogen is being prepped for a range of applications, from waste reduction to purification of Nylon 6 and hydrogenation of specialty chemicals. The paper discusses the strong market demand for hydrogen, easier routes being developed for hydrogen production, and the use of hydrogen in the future

  4. Universally applicable design concept of stably controlling an HTGR-hydrogen production system

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Shibata, Taiju; Nishihara, Tetsuo; Shiozawa, Shusaku

    1996-01-01

    An HTGR-hydrogen production system should be designed to have stable controllability because of a large difference in thermal dynamics between reactor and hydrogen production system and such a control design concept should be universally applicable to a variety of hydrogen production processes by the use of nuclear heat from HTGR. A transient response analysis of an HTGR-steam reforming hydrogen production system showed that a steam generator installed in a helium circuit for cooling the nuclear reactor provides stable controllability of the total system, resulting in avoiding a reactor scram. A survey of control design-related characteristics among several hydrogen production processes revealed the similarity of endothermic chemical reactions by the use of high temperature heat and that steam is required as a reactant of the endothermic reaction or for preheating a reactant. Based on these findings, a system design concept with stable controllability and universal applicability was proposed to install a steam generator as a downstream cooler of an endothermic reactor in the helium circuit of an HTGR-hydrogen production system. (author)

  5. FFM Applications to Dense and Warm Hydrogen Plasma Study

    International Nuclear Information System (INIS)

    Calisti, A.; Talin, B.; Bureyeva, L. A.; Lisitsa, V. S.; Shuvaev, D.

    2006-01-01

    A study of hydrogen lines emitted in dense and low temperature plasmas is presented. A transition from impact to quasi-static broadening for electrons is analyzed with the help of the Frequency Fluctuation Model (FFM). Electron broadening of Balmer series lines is studied for different densities and temperatures spanning a wide domain from impact to quasi-static limit. It is shown that electronic broadening makes a transition from impact to quasi-static limit depending on plasma conditions and principal quantum number. Even for the Balmer alpha line, at a density equals 1018 cm-3 and a temperature equals 1 eV, this transition occurs both in the wings and the core of the line

  6. Seismology and space-based geodesy

    Science.gov (United States)

    Tralli, David M.; Tajima, Fumiko

    1993-01-01

    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  7. Application of solar concentrators for combined production of hydrogen and electrical energy

    International Nuclear Information System (INIS)

    Kotevski, Darko

    2008-01-01

    New specific concept is application of solar dish concentrators in a process which allows solar energy to be used for splitting water in hydrogen and oxygen, with electrical energy as a byproduct. This is performed in two stages: The first stage uses highly concentrated solar energy to split CO 2 Into CO and O 2 . The second stage uses water-gas shifts reaction to cause the CO to react with water and produced hydrogen and CO 2 , Carbon dioxide is then recycled back into the system, and the waste heat is used to produce electricity in a steam turbine, Efficiency of the process is 45% , totaling 20% in chemical energy (H 2 ), and 25% electricity. This solar system is 80% more efficient than other solar technologies which make energy much cheaper. The environmentally friendly and low cost hydrogen can become a prime mover of fuel cell development especially in automotive application. (Author)

  8. Review of hydrogen pellet injection technology for plasma fueling applications

    International Nuclear Information System (INIS)

    Milora, S.L.

    1989-01-01

    In the past several years, steady progress has been made worldwide in the development of high-speed hydrogen pellet injectors for fueling magnetically confined plasmas. Several fueling systems based on the conventional pneumatic and centrifuge acceleration concepts have been put into practice on a wide variety of toroidal plasma confinement devices. Long-pulse fueling has been demonstrated in the parameter range 0.8--1.3 km/s, for pellets up to 6 mm in diameter, and at delivery rates up to 40 Hz. Conventional systems have demonstrated the technology to speeds approaching 2 km/s, and several more exotic accelerator concepts are under development to meet the more demanding requirements of the next generation of reactor-grade plasmas. These include a gas gun that can operate in tritium, the two-stage light gas gun, electrothermal guns, electromagnetic rail guns, and an electron-beam-driven thruster. Although these devices are in various stages of development, velocities of 3.8 km/s have already been achieved with two-stage light gas guns, and the prospects for attaining 5 km/s in the near future appear good

  9. Representations of space based on haptic input

    NARCIS (Netherlands)

    Zuidhoek, S.

    2005-01-01

    The present thesis focused on the representations of grasping space based on haptic input. We aimed at identifying their characteristics, and the underlying neurocognitive processes and mechanisms. To this end, we studied the systematic distortions in performance on several orientation perception

  10. Synthesis of Cr-MOF derived porous carbon for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-07-01

    Full Text Available Over the recent years, applications of porous metal-organic frameworks (MOFs) in hydrogen storage have received increasing attention in the scientific community. Conversion of organic moiety in MOFs to porous carbon, as well as the use of MOFs as a...

  11. Nanostructured Boron Nitride: From Molecular Design to Hydrogen Storage Application

    Directory of Open Access Journals (Sweden)

    Georges Moussa

    2014-07-01

    Full Text Available The spray-pyrolysis of borazine at 1400 °C under nitrogen generates boron nitride (BN nanoparticles (NPs. The as-prepared samples form elementary blocks containing slightly agglomerated NPs with sizes ranging from 55 to 120 nm, a Brunauer-Emmett-Teller (BET-specific surface area of 34.6 m2 g−1 and a helium density of 1.95 g cm−3. They are relatively stable in air below 850 °C in which only oxidation of the NP surface proceeds, whereas under nitrogen, their lower size affects their high temperature thermal behavior in the temperature range of 1450–2000 °C. Nitrogen heat-treated nanostructures have been carefully analyzed using X-ray diffraction, electron microscopy and energy-dispersive X-ray spectroscopy. The high temperature treatment (2000 °C gives hollow-cored BN-NPs that are strongly facetted, and after ball-milling, hollow core-mesoporous shell NPs displaying a BET-specific surface area of 200.5 m2·g−1 and a total pore volume of 0.287 cm3·g−1 were produced. They have been used as host material to confine, then destabilize ammonia borane (AB, thus improving its dehydrogenation properties. The as-formed AB@BN nanocomposites liberated H2 at 40 °C, and H2 is pure in the temperature range 40–80 °C, leading to a safe and practical hydrogen storage composite material.

  12. Hydrogen embrittlement: the game changing factor in the applicability of nickel alloys in oilfield technology

    Science.gov (United States)

    Sarmiento Klapper, Helmuth; Klöwer, Jutta; Gosheva, Olesya

    2017-06-01

    Precipitation hardenable (PH) nickel (Ni) alloys are often the most reliable engineering materials for demanding oilfield upstream and subsea applications especially in deep sour wells. Despite their superior corrosion resistance and mechanical properties over a broad range of temperatures, the applicability of PH Ni alloys has been questioned due to their susceptibility to hydrogen embrittlement (HE), as confirmed in documented failures of components in upstream applications. While extensive work has been done in recent years to develop testing methodologies for benchmarking PH Ni alloys in terms of their HE susceptibility, limited scientific research has been conducted to achieve improved foundational knowledge about the role of microstructural particularities in these alloys on their mechanical behaviour in environments promoting hydrogen uptake. Precipitates such as the γ', γ'' and δ-phase are well known for defining the mechanical and chemical properties of these alloys. To elucidate the effect of precipitates in the microstructure of the oil-patch PH Ni alloy 718 on its HE susceptibility, slow strain rate tests under continuous hydrogen charging were conducted on material after several different age-hardening treatments. By correlating the obtained results with those from the microstructural and fractographic characterization, it was concluded that HE susceptibility of oil-patch alloy 718 is strongly influenced by the amount and size of precipitates such as the γ' and γ'' as well as the δ-phase rather than by the strength level only. In addition, several HE mechanisms including hydrogen-enhanced decohesion and hydrogen-enhanced local plasticity were observed taking place on oil-patch alloy 718, depending upon the characteristics of these phases when present in the microstructure. This article is part of the themed issue 'The challenges of hydrogen and metals'.

  13. Modified hydrogenated PBLH copolymer synthesis with styrene for proton exchange membranes fuel cell application

    International Nuclear Information System (INIS)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Rodrigues, Maraiza F.; Groetzner, Mariana B.; Cesar-Oliveira, Maria Aparecida F.; Cantao, Mauricio P.

    2005-01-01

    Polymers used as electrolyte in fuel cells are expected to have functional groups in their structure which are responsible for proton conductivity. Since the use of hydroxylated liquid polybutadiene (PBLH) has not been mentioned in the literature as an ion exchange membrane for fuel cell application (PEMFC), and its structure can be modified for a later sulfonation, it has been studied. In this work, PBLH was modified through a hydrogenation reaction. Furthermore, hydrogenated polymeric esters were obtained by esterification and transesterification reactions (PBLH- estearate and PBLH- methacrylate). Reacting the PBLH methacrylate with styrene, it was generated a copolymer with appropriated structure for sulfonation, justifying researches for fuel cell. (author)

  14. Femtosecond Laser Ablated FBG with Composite Microstructure for Hydrogen Sensor Application

    Directory of Open Access Journals (Sweden)

    Meng Zou

    2016-12-01

    Full Text Available A composite microstructure in fiber Bragg grating (FBG with film deposition for hydrogen detection is presented. Through ablated to FBG cladding by a femtosecond laser, straight-trenches and spiral micro-pits are formed. A Pd–Ag film is sputtered on the surface of the laser processed FBG single mode fiber, and acts as hydrogen sensing transducer. The demonstrated experimental outcomes show that a composite structure produced the highest sensitivity of 26.3 pm/%H, nearly sevenfold more sensitive compared with original standard FBG. It offers great potential in engineering applications for its good structure stability and sensitivity.

  15. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    Science.gov (United States)

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  16. Hydrogen-oxygen steam generator applications for increasing the efficiency, maneuverability and reliability of power production

    Science.gov (United States)

    Schastlivtsev, A. I.; Borzenko, V. I.

    2017-11-01

    The comparative feasibility study of the energy storage technologies showed good applicability of hydrogen-oxygen steam generators (HOSG) based energy storage systems with large-scale hydrogen production. The developed scheme solutions for the use of HOSGs for thermal power (TPP) and nuclear power plants (NPP), and the feasibility analysis that have been carried out have shown that their use makes it possible to increase the maneuverability of steam turbines and provide backup power supply in the event of failure of the main steam generating equipment. The main design solutions for the integration of hydrogen-oxygen steam generators into the main power equipment of TPPs and NPPs, as well as their optimal operation modes, are considered.

  17. Application of FEM analytical method for hydrogen migration behaviour in Zirconium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, K; Ohta, H [Takasago Research and Development Center, Mitsubishi Heavy Industries Ltd, Hyogo-ken (Japan)

    1997-02-01

    It is well recognized that the hydriding behaviours of Zirconium alloys are very significant problems as a safety issues. Also, it is well known that the diffusion of hydrogen in Zirconium alloys are affected not only by concentration but also temperature gradient. But in actual component, especially heat transfer tube such as fuel rod, we can not avoid the temperature gradient in some degree. So, it is very useful to develop the computer code which can analyze the hydrogen diffusion and precipitation behaviours under temperature gradient as a function of the structure of fuel rod. For this objective, we have developed the computer code for hydrogen migration behaviour using FEM analytical methods. So, following items are presented and discussed. Analytical method and conditions; correlation between the computed and test results; application to designing studies. (author). 8 refs, 4 figs, 2 tabs.

  18. THE HYDROGEN-FUELLED INTERNAL COMBUSTION ENGINES FOR MARINE APPLICATIONS WITH A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Ibrahim S. Seddiek

    2015-03-01

    Full Text Available Modern marine power plants have been designed to improve the overall ship’s efficiency. This pushed the designers of marine machinery to search for unconventional fuels for these plants. During the previous years, diesel oil has been extensively used on-board ships. Due to the high price of light diesel oil and the environmental problems resulting from the use of heavy fuel oil, it has become necessary to search for an alternative to traditional fuels. As a result, natural gas fuel has been used on-board some types of ships, especially short-voyage cruise ships. Unfortunately, there are still some technical and logistic problems related to the use of natural gas as a fuel, especially as it is considered a non-renewable energy source. The use of hydrogen fuel on-board ships, particularly in modern power plants may contribute to overcoming the above problems. The present paper considers the possibility of the use of hydrogen fuel for marine applications and discusses different stages of hydrogen gas cycle beginning with hydrogen generation process from clean energy until using it as fuel for internal combustion engines on-board one RO/RO ship, named Taba, operating in the Mediterranean Sea. Compared to the diesel engine, the hydrogen fuelled engine is found to be lower in thermal efficiency and fuel consumption, however, some adjustments are needed.

  19. Hydrogen millennium

    International Nuclear Information System (INIS)

    Bose, T.K.; Benard, P.

    2000-05-01

    The 10th Canadian Hydrogen Conference was held at the Hilton Hotel in Quebec City from May 28 to May 31, 2000. The topics discussed included current drivers for the hydrogen economy, the international response to these drivers, new initiatives, sustainable as well as biological and hydrocarbon-derived production of hydrogen, defense applications of fuel cells, hydrogen storage on metal hydrides and carbon nanostructures, stationary power and remote application, micro-fuel cells and portable applications, marketing aspects, fuel cell modeling, materials, safety, fuel cell vehicles and residential applications. (author)

  20. Evaluation of AECL catalysts for hydrogen fuel-cell applications. Paper no. IGEC-1-073

    International Nuclear Information System (INIS)

    Li, J.; Suppiah, S.; Li, H.; Kutchcoskie, K.J.; Strikwerda, S.

    2005-01-01

    AECL has been engaged in the promotion of the nuclear-hydrogen economy, which envisions that hydrogen fuel cells will generate power using hydrogen as fuel produced by nuclear energy. Since AECL's catalysts developed for the production, upgrading and detritiation of heavy water are very similar to commercial fuel-cell catalysts, a program was initiated to evaluate AECL catalysts for fuel-cell applications. As a first step in this effort, a half-cell test facility was set up to characterize the performance of catalysts for hydrogen fuel cells. This paper outlines the results obtained from cathodic reduction of oxygen in a 0.5 M sulphuric acid solution on a rotating disc electrode at 65 o C. The performance of the catalysts was characterized using standard electrochemical methods including cyclic voltammetry, Voltammogram/Tafel plots and short-term stability plots. Several monometallic Pt and Pt-based bimetallic catalysts were tested and compared with a commercially available catalyst for fuel-cell applications. AECL's monometallic Pt catalysts showed comparable or better activities than commercial catalysts with similar Pt loading. An AECL Pt-based bimetallic catalyst has shown superior performance to a monometallic Pt catalyst with similar Pt loading. Evaluation of various catalyst formulations is ongoing on the half-cell facility at AECL. Further investigation of promising catalysts identified from half-cell test is also being carried out in single fuel cell on test stations under normal fuel-cell operating conditions. (author)

  1. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Shunsuke Uchida; Eishi Ibe; Katsumi Ohsumi

    1994-01-01

    Application of hydrogen water chemistry to moderate corrosive circumstances is a promising approach to preserve structural integrities of major components and structures in the primary cooling system of BWRs. The benefits of HWC application are usually accompanied by several disadvantages. After evaluating merits and demerits of HWC application, it is concluded that optimal amounts of hydrogen injected into the feed water can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. (authors). 1 fig., 4 refs

  2. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    International Nuclear Information System (INIS)

    Visser, D.C.; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-01-01

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  3. Application of a CFD based containment model to different large-scale hydrogen distribution experiments

    Energy Technology Data Exchange (ETDEWEB)

    Visser, D.C., E-mail: visser@nrg.eu; Siccama, N.B.; Jayaraju, S.T.; Komen, E.M.J.

    2014-10-15

    Highlights: • A CFD based model developed in ANSYS-FLUENT for simulating the distribution of hydrogen in the containment of a nuclear power plant during a severe accident is validated against four large-scale experiments. • The successive formation and mixing of a stratified gas-layer in experiments performed in the THAI and PANDA facilities are predicted well by the CFD model. • The pressure evolution and related condensation rate during different mixed convection flow conditions in the TOSQAN facility are predicted well by the CFD model. • The results give confidence in the general applicability of the CFD model and model settings. - Abstract: In the event of core degradation during a severe accident in water-cooled nuclear power plants (NPPs), large amounts of hydrogen are generated that may be released into the reactor containment. As the hydrogen mixes with the air in the containment, it can form a flammable mixture. Upon ignition it can damage relevant safety systems and put the integrity of the containment at risk. Despite the installation of mitigation measures, it has been recognized that the temporary existence of combustible or explosive gas clouds cannot be fully excluded during certain postulated accident scenarios. The distribution of hydrogen in the containment and mitigation of the risk are, therefore, important safety issues for NPPs. Complementary to lumped parameter code modelling, Computational Fluid Dynamics (CFD) modelling is needed for the detailed assessment of the hydrogen risk in the containment and for the optimal design of hydrogen mitigation systems in order to reduce this risk as far as possible. The CFD model applied by NRG makes use of the well-developed basic features of the commercial CFD package ANSYS-FLUENT. This general purpose CFD package is complemented with specific user-defined sub-models required to capture the relevant thermal-hydraulic phenomena in the containment during a severe accident as well as the effect of

  4. Conceptual design report for a Direct Hydrogen Proton Exchange Membrane Fuel Cell for transportation application

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-05

    This report presents the conceptual design for a Direct-Hydrogen-Fueled Proton Exchange Membrane (PEM) Fuel Cell System for transportation applications. The design is based on the initial selection of the Chrysler LH sedan as the target vehicle with a 50 kW (gross) PEM Fuel Cell Stack (FCS) as the primary power source, a battery-powered Load Leveling Unit (LLU) for surge power requirements, an on-board hydrogen storage subsystem containing high pressure gaseous storage, a Gas Management Subsystem (GMS) to manage the hydrogen and air supplies for the FCS, and electronic controllers to control the electrical system. The design process has been dedicated to the use of Design-to-Cost (DTC) principles. The Direct Hydrogen-Powered PEM Fuel Cell Stack Hybrid Vehicle (DPHV) system is designed to operate on the Federal Urban Driving Schedule (FUDS) and Hiway Cycles. These cycles have been used to evaluate the vehicle performance with regard to range and hydrogen usage. The major constraints for the DPHV vehicle are vehicle and battery weight, transparency of the power system and drive train to the user, equivalence of fuel and life cycle costs to conventional vehicles, and vehicle range. The energy and power requirements are derived by the capability of the DPHV system to achieve an acceleration from 0 to 60 MPH within 12 seconds, and the capability to achieve and maintain a speed of 55 MPH on a grade of seven percent. The conceptual design for the DPHV vehicle is shown in a figure. A detailed description of the Hydrogen Storage Subsystem is given in section 4. A detailed description of the FCS Subsystem and GMS is given in section 3. A detailed description of the LLU, selection of the LLU energy source, and the power controller designs is given in section 5.

  5. Hydrogen: the great debate. 'Power to Gas - how to cope with the challenge of electricity storage?; Hydrogen in energy transition: which challenges to be faced?; Hydrogen, essential today, indispensable tomorrow; Electrolytic hydrogen, a solution for energy transition?; Development of high power electrolysis systems: need and approach; Hydrogen as energy vector, Potential and stakes: a perspective; The Toyota Fuel Cell System: a new era for the automotive industry; Three key factors: production, applications to mobility, and public acceptance; Hydrogen, benevolent fairy or tempting demon

    International Nuclear Information System (INIS)

    Hauet, Jean-Pierre; Boucly, Philippe; Beeker, Etienne; Mauberger, Pascal; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Brisse, Annabelle; Gautier, Ludmila; Hercberg, Sylvain; De Volder, Marc; Gruson, Jean-Francois; Marion, Pierre; Grellier, Sebastien; Devezeaux, Jean-Guy; Mansilla, Christine; Le Net, Elisabeth; Le Duigou, Alain; Maire, Jacques

    2015-01-01

    This publication proposes a set of contributions which address various issues related to the development of the use of hydrogen as an energy source. More precisely, these contributions discuss how to face the challenge of electricity storage by using the Power-to-Gas technology, the challenges to be faced regarding the role of hydrogen in energy transition, the essential current role of hydrogen and its indispensable role for tomorrow, the possible role of electrolytic hydrogen as a solution for energy transition, the need of and the approach to a development of high power electrolysis systems, the potential and stakes of hydrogen as an energy vector, the Toyota fuel cell system as a sign for new era for automotive industry, the three main factors (production, applications to mobility, and public acceptance) for the use of hydrogen in energy transition, and the role of hydrogen perceived either as a benevolent fairy or a tempting demon

  6. Applications of nuclear reaction analysis for determining hydrogen and deuterium distribution in metals

    International Nuclear Information System (INIS)

    Altstetter, C.J.

    1981-01-01

    The use of ion beams for materials analysis has made a successful transition from the domain of the particle physicist to that of the materials scientist. The subcategory of this field, nuclear reaction analysis, is just now undergoing the transition, particularly in applications to hydrogen in materials. The materials scientist must locate the nearest accelerator, because now he will find that using it can solve mysteries that do not yield to other techniques. 9 figures

  7. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    Science.gov (United States)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  8. Space Based Infrared System High (SBIRS High)

    Science.gov (United States)

    2015-12-01

    elements (five SMGTs) for the S2E2 Mobile Ground System. ​ SBIRS Block Buy (GEO 5-6) The GEO 5-6 Tech Refresh (TR) Engineering Change Proposal was...Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-210 Space Based Infrared System High ( SBIRS High) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 23, 2016 11:24:26 UNCLASSIFIED SBIRS High December 2015 SAR March 23, 2016 11:24:26

  9. Micro-reactor for heterogeneous catalysis. Application: hydrogen production from methyl-cyclohexane; Microreacteur pour la catalyse heterogene. Application: production d'hydrogene a partir du methylcyclohexane

    Energy Technology Data Exchange (ETDEWEB)

    Roumanie, M.; Pijolat, C. [Ecole des Mines de Saint Etienne, Centre SPIN (DMICC/LPMG/URA/CNRS-D2021), 42 - Saint Etienne (France); Meille, V.; Bellefon, C. de [Centre National de la Recherche Scientifique (CNRS/CPE), Lab. de Genie des Procedes Catalytiques, 69 - Villeurbanne (France); Pouteau, P.; Delattre, C. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2004-07-01

    First developed by the pharmaceutical industry to find new drugs (combinatorial analysis), the lab on chip is also extremely interesting for the catalysis field. This major interest comes from the miniaturize size and the high surface on volume ratio which lead to improve mass and heat transfer but also the safety in regards of industrial application. The use of micro-technology and the miniaturization of various systems such as micro-fuel cell is also a current field of activity. So for the future research the production of hydrogen is a point to develop in order to supply a micro-fuel cell. The aim of this work is to study and to realize an autonomous catalytic micro-reactor for hydrogen production from methyl-cyclohexane. For this reaction of dehydrogenation, the common catalyst is platinum supported on alumina. Consequently, the general objectives of this work are: 1)to develop a micro-reactor with its heaters, sensors...2)to deposit catalysts in the micro-reactor 3)to study the catalytic conversion of this system.

  10. Evaluation tool for selection and optimisation of hydrogen demonstration projects. Application to a decentralized renewable hydrogen system

    International Nuclear Information System (INIS)

    Bracht, M.; De Groot, A.; Gregoire Padro, C.E.; Schucan, T.H.; Skolnik, E.

    1998-06-01

    As part of the International Energy Agency Hydrogen Implementing Agreement, an evaluation tool to assist in the design, operation and optimisation of hydrogen demonstration facilities is under development. Using commercially available flowsheet simulation software (ASPEN- Plus) as the integrating platform, this tool is designed to provide system developers with a comprehensive data base or library of component models and an integrating platform through which these models may be linked. By combining several energy system components a conceptual design of a integrated hydrogen energy system can be made. As a part of the tool and connected to the library are design guidelines which can help finding the optimal configuration in the design process. The component categories considered include: production, storage, transport, distribution and end use. Many component models have already been included in the initial test platform. The use of the tool will be illustrated by presenting the results of a specific sample system that has been designed and assessed with use of the tool. The system considered is a decentralized renewable hydrogen system in which the hydrogen is produced by biomass gasification or pyrolysis, the produced hydrogen is transported through a pipeline or with a tank truck. The storage options that are considered are liquid hydrogen and compressed gas. The hydrogen is dispensed through a refueling station. Several options for integration are conceivable; i.e. storage of the hydrogen can take place centrally or district heat of a gasification unit can be used to generate electricity for liquefaction, etc. With use of the tool several configurations with different components and various integration options have been examined. Both the results of the modeling effort and an assessment of the evaluation tool will be presented. 5 refs

  11. Key techniques for space-based solar pumped semiconductor lasers

    Science.gov (United States)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  12. Direct-hydrogen-fueled proton-exchange-membrane fuel cell system for transportation applications. Hydrogen vehicle safety report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-05-01

    This report reviews the safety characteristics of hydrogen as an energy carrier for a fuel cell vehicle (FCV), with emphasis on high pressure gaseous hydrogen onboard storage. The authors consider normal operation of the vehicle in addition to refueling, collisions, operation in tunnels, and storage in garages. They identify the most likely risks and failure modes leading to hazardous conditions, and provide potential countermeasures in the vehicle design to prevent or substantially reduce the consequences of each plausible failure mode. They then compare the risks of hydrogen with those of more common motor vehicle fuels including gasoline, propane, and natural gas.

  13. Composite high-pressure vessels for hydrogen storage in mobile application. Pt. 1 / Light weight composite cylinders for compressed hydrogen. Pt. 2 - custom made hydrogen storage tanks and vessels

    Energy Technology Data Exchange (ETDEWEB)

    Rasche, C. [MCS Cylinder Systems GmbH, Dinslaken (Germany)

    2000-07-01

    Recent developments on fuel cell technology demonstrated the feasibility of propelling vehicles by converting fuel directly into electricity. Fuel cells conveniently use either compressed (CGH{sub 2}) or liquid hydrogen (LH{sub 2}) or methanol as the fuel source from a tank. Mobile storage of these fuelling will become an urgent need as this technology will come into series production expected for 2010. Due to the requirements on mobile hydrogen storage and the energy losses in the hydrogen-to-application-chain, a light-weight and energetic qualities and minimise ist bulky nature. Mobile storage of hydrogen can be realised either at high pressure values (> 20 MPa) or at deep temperatures (<-253 C). CGH{sub 2}: In the last few years, the introduction of natural gas driven vehicles has seen the development of compact mobile pressurised gas tanks in principle, this storage technique is also applicable for the compressed storage of hydrogen at filling pressures of > 20 MPa. LH{sub 2} : Storing hydrogen or natural gases in general in the liquid phase is accomplished either by applying a overpressure or keeping it below the phase transition temperature at ambient pressure in super insulated devices. (orig.)

  14. Infrared Fibers for Use in Space-Based Smart Structures

    Science.gov (United States)

    Tucker, Dennis S.; Nettles, Alan T.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Infrared optical fibers are finding a number of applications including laser surgery, remote sensing, and nuclear radiation resistant links. Utilizing these fibers in space-based structures is another application, which can be exploited. Acoustic and thermal sensing are two areas in which these fibers could be utilized. In particular, fibers could be embedded in IM7/8552 toughened epoxy and incorporated into space structures both external and internal. ZBLAN optical fibers are a candidate, which have been studied extensively over the past 20 years for terrestrial applications. For the past seven years the effects of gravity on the crystallization behavior of ZBLAN optical fiber has been studied. It has been found that ZBLAN crystallization is suppressed in microgravity. This lack of crystallization leads to a fiber with better transmission characteristics than its terrestrial counterpart.

  15. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Robert M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Post, Matthew B. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Buttner, William J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rivkin, Carl H. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-06

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particular interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.

  16. Hydrogen isotope retention in beryllium for tokamak plasma-facing applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R. [Lockheed Martin Idaho Technol. Co., Idaho Falls, ID (United States). Idaho Nat. Eng. and Environ. Lab.; Causey, R.A.; Wampler, W.R.; Wilson, K.L. [Sandia National Laboratories, Livermore, CA (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Davis, J.W.; Haasz, A.A. [Institute for Aerospace Studies, University of Toronto, Toronto (Canada); Doerner, R.P. [California Univ., San Diego, La Jolla, CA (United States). Center for Magnetic Recording Research; Federici, G. [ITER JWS Garching Co-center, Garching (Germany)

    1999-06-01

    Beryllium has been used as a plasma-facing material to effect substantial improvements in plasma performance in the Joint European Torus (JET), and it is planned as a plasma-facing material for the first wall (FW) and other components of the International Thermonuclear Experimental Reactor (ITER). The interaction of hydrogenic ions, and charge-exchange neutral atoms from plasmas, with beryllium has been studied in recent years with widely varying interpretations of results. In this paper we review experimental data regarding hydrogenic atom inventories in experiments pertinent to tokamak applications and show that with some very plausible assumptions, the experimental data appear to exhibit rather predictable trends. A phenomenon observed in high ion-flux experiments is the saturation of the beryllium surface such that inventories of implanted particles become insensitive to increased flux and to continued implantation fluence. Methods for modeling retention and release of implanted hydrogen in beryllium are reviewed and an adaptation is suggested for modeling the saturation effects. The TMAP4 code used with these modifications has succeeded in simulating experimental data taken under saturation conditions where codes without this feature have not. That implementation also works well under more routine conditions where the conventional recombination-limited release model is applicable. Calculations of tritium inventory and permeation in the ITER FW during the basic performance phase (BPP) using both the conventional recombination model and the saturation effects assumptions, show a difference of several orders of magnitude in both inventory and permeation rate to the coolant. (orig.) 78 refs.

  17. Metal hydride hydrogen and heat storage systems as enabling technology for spacecraft applications

    Energy Technology Data Exchange (ETDEWEB)

    Reissner, Alexander, E-mail: reissner@fotec.at [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Pawelke, Roland H.; Hummel, Stefan; Cabelka, Dusan [FOTEC Forschungs- und Technologietransfer GmbH, Viktor Kaplan Straße 2, 2700 Wiener Neustadt (Austria); Gerger, Joachim [University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, 2700 Wiener Neustadt (Austria); Farnes, Jarle, E-mail: Jarle.farnes@prototech.no [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Vik, Arild; Wernhus, Ivar; Svendsen, Tjalve [CMR Prototech AS, Fantoftvegen 38, PO Box 6034, 5892 Bergen (Norway); Schautz, Max, E-mail: max.schautz@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands); Geneste, Xavier, E-mail: xavier.geneste@esa.int [European Space Agency, ESTEC – Keplerlaan 1, 2201 AZ Noordwijk Zh (Netherlands)

    2015-10-05

    Highlights: • A metal hydride tank concept for heat and hydrogen storage is presented. • The tank is part of a closed-loop reversible fuel cell system for space application. • For several engineering issues specific to the spacecraft application, solutions have been developed. • The effect of water contamination has been approximated for Ti-doped NaAlH{sub 4}. • A novel heat exchanger design has been realized by Selective Laser Melting. - Abstract: The next generation of telecommunication satellites will demand a platform payload performance in the range of 30+ kW within the next 10 years. At this high power output, a Regenerative Fuel Cell Systems (RFCS) offers an efficiency advantage in specific energy density over lithium ion batteries. However, a RFCS creates a substantial amount of heat (60–70 kJ per mol H{sub 2}) during fuel cell operation. This requires a thermal hardware that accounts for up to 50% of RFCS mass budget. Thus the initial advantage in specific energy density is reduced. A metal hydride tank for combined storage of heat and hydrogen in a RFCS may overcome this constraint. Being part of a consortium in an ongoing European Space Agency project, FOTEC is building a technology demonstrator for such a combined hydrogen and heat storage system.

  18. Surface roughness comparison of methacrylate and silorane-based composite resins after 40% hydrogen peroxide application

    Directory of Open Access Journals (Sweden)

    Rori Sasmita

    2018-01-01

    Full Text Available The change of the tooth colour could be restored with bleaching. The tooth bleaching will affects the surface roughness of the composite resins. Recently, the material basis for composite resins has developed, among others are methacrylate-based and silorane based composite resins. The objective of this study was to distinguish the surface roughness value of methacrylate-based composite resin and silorane based composite resins. This research was quasi-experimental. The sample used in this study were methacrylate and silorane based composite resins in discs form, with the size of 6 mm and the thickness of 3 mm, manufactured into 20 specimens and divided into 2 groups. The control group was immersed in the artificial saliva, and the treatment group was applied with 40% hydrogen peroxide. The result of the experiment analyzed using unpaired sample t-test showed significant differences in the average value of the surface roughness after the application of 40% hydrogen peroxide. The average value of methacrylate and silorane based composite resins were 2.744 μm and 3.417 μm, respectively. There was a difference in the surface roughness of methacrylate and silorane based composite resin compounds after the application of 40% hydrogen peroxide. The surface roughness value of the silorane-based composite resin was higher than the methacrylate-based.

  19. Safety-barrier diagrams as a tool for modelling safety of hydrogen applications

    DEFF Research Database (Denmark)

    Duijm, Nijs Jan; Markert, Frank

    2009-01-01

    Safety-barrier diagrams have proven to be a useful tool in documenting the safety measures taken to prevent incidents and accidents in process industry. Especially during the introduction of new hydrogen technologies or applications, as e.g. hydrogen refuelling stations, safety-barrier diagrams...... are considered a valuable supplement to other traditional risk analysis tools to support the communication with authorities and other stakeholders during the permitting process. Another advantage of safety-barrier diagrams is that they highlight the importance of functional and reliable safety barriers in any...... system and here is a direct focus on those barriers that need to be subject to safety management in terms of design and installation, operational use, inspection and monitoring, and maintenance. Safety-barrier diagrams support both quantitative and qualitative approaches. The paper will describe...

  20. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications

    International Nuclear Information System (INIS)

    Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Huebert, T.; Banach, U.

    2010-01-01

    A market survey has been performed of commercially available hydrogen safety sensors, resulting in a total sample size of 53 sensors from 21 manufacturers. The technical specifications, as provided by the manufacturer, have been collated and are displayed herein as a function of sensor working principle. These specifications comprise measuring range, response and recovery times, ambient temperature, pressure and relative humidity, power consumption and lifetime. These are then compared against known performance targets for both automotive and stationary applications in order to establish in how far current technology satisfies current requirements of sensor end users. Gaps in the performance of hydrogen sensing technologies are thus identified and areas recommended for future research and development. (author)

  1. Hydrogen systems application for development needs for horizon 2020-2025

    International Nuclear Information System (INIS)

    2011-05-01

    The current study aims at identifying the potential applications of hydrogen-based technologies in answering developing countries needs by 2020-2025. In order to do so, developing needs have been split into several categories. So do hydrogen production, storage and use technologies, as well as the energy sources used for hydrogen production (part 2). Based on some maturity data for hydrogen systems (part 3) and some cost figures (appendix), it has then become possible to identify solutions (meaning the conjunction of a raw material, hydrogen production technology, energy source, storage and distribution technology, use technology) answering a given need. The outcome of this study is that hydrogen systems can actually answer part of the development needs: This work has enabled the creation of solution sheets, twelve namely (part 4). These sheets are not exhaustive, and can efficiently be combined so as to best match a particular need, if applied to actual projects. The geographical context, as well as the raw materials and energy sources availability, are key drivers in selecting the applicable solutions. The solutions presented in the frame of this study can answer the following needs: - Multi-purpose electricity supply (as base load or back-up, from a centralized or remote production, and with various available power ranges) - Thermal supply (with heat or cold being co-produced) - Energy supply in particular cases (telecom network, portable electronic devices) - Transportation, in the particular case of captive fleets Two key contextual parameters have also greatly driven this study: - Hydrogen can benefit from a significant advantage other its competitors (generators mainly), even more when it is produced on a 'green' basis (which implies not through the currently widely spread steam methane reforming). - Using hydrogen, part of the new energy mix, can allow to be no longer dependent on oil prices, which are likely to increase by 2020-2025 to such a

  2. Ensuring safety of fuel cell applications and hydrogen refuelling. Legislation and standards; Polttokennosovellusten ja vetytankkauksen turvallisuuden varmistaminen. Saeaedoeksiae ja standardeja

    Energy Technology Data Exchange (ETDEWEB)

    Nissila, M.; Sarsama, J.

    2013-09-15

    Fuel cell technology is considered a promising alternative in terms of viable energy systems. The advantages of fuel cell systems include a good efficiency rate and the lack of harmful environmental emissions. Factors which may slow down the commercialisation of fuel cell technology, e.g. fuel cell vehicles, include the high price of hydrogen and the insufficiency of the infrastructure required for the distribution of hydrogen. A large proportion of major car manufacturers are committed to introducing fuel cell cars to the market by 2014-2016. In order to ensure a successful market introduction of fuel cell vehicles, this has to be aligned with the development of the necessary hydrogen infrastructure. In the early commercialisation stages of a new technology, it is important to give the public correct, justified and understandable information on the safety of the fuel cell applications, and also on the measures taken to ensure the safety of applications. A lack of necessary information, inaccurate perceptions and prejudices can have an adverse effect on the public acceptance of fuel cell applications. Hazards and potential accidents related to fuel cell systems are mainly associated with the flammable substances (e.g. hydrogen, methane) used as fuel, the high pressure of hydrogen, electrical hazards, and dangers concerning technical systems in general. The fuel cell applications reviewed in this publication are transport applications and stationary applications and the refuelling system of gaseous hydrogen. The publication concentrates on fuel cells using hydrogen as fuel. The publication gives an overview of how EU-legislation (mainly various directives) and Finnish legislation applies to fuel cell systems and applications, and what kind of safety requirements the legislation sets. In addition, a brief overview of safety standards concerning fuel cell systems and hydrogen refuelling is presented. (orig.)

  3. Evaluation of the Potential Environmental Impacts from Large-Scale Use and Production of Hydrogen in Energy and Transportation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wuebbles, D.J.; Dubey, M.K., Edmonds, J.; Layzell, D.; Olsen, S.; Rahn, T.; Rocket, A.; Wang, D.; Jia, W.

    2010-06-01

    The purpose of this project is to systematically identify and examine possible near and long-term ecological and environmental effects from the production of hydrogen from various energy sources based on the DOE hydrogen production strategy and the use of that hydrogen in transportation applications. This project uses state-of-the-art numerical modeling tools of the environment and energy system emissions in combination with relevant new and prior measurements and other analyses to assess the understanding of the potential ecological and environmental impacts from hydrogen market penetration. H2 technology options and market penetration scenarios will be evaluated using energy-technology-economics models as well as atmospheric trace gas projections based on the IPCC SRES scenarios including the decline in halocarbons due to the Montreal Protocol. Specifically we investigate the impact of hydrogen releases on the oxidative capacity of the atmosphere, the long-term stability of the ozone layer due to changes in hydrogen emissions, the impact of hydrogen emissions and resulting concentrations on climate, the impact on microbial ecosystems involved in hydrogen uptake, and criteria pollutants emitted from distributed and centralized hydrogen production pathways and their impacts on human health, air quality, ecosystems, and structures under different penetration scenarios

  4. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  5. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H

    2008-08-15

    This PhD thesis deals with the catalytic hydrogen production for mobile application, for example for the use in fuel cells for electric cars. Electric powered buses with fuel cells as driving system are well known, but the secure hydrogen storage in adequate amounts for long distance drive is still a topic of discussion. Methanol is an excellent hydrogen carrier. First of all it has a high H:C ratio and therefore a high energy density. Secondly the operating temperature of steam reforming of methanol is comparatively low (250 C) and there is no risk of coking since methanol has no C-C bond. Thirdly methanol is a liquid, which means that the present gasoline infrastructure can be used. For the further development of catalysts and for the construction of a reformer it is very important to characterize the catalysts very well. For the dimensioning and the control of an on-board production of hydrogen it is essential to draw accurately on the thermodynamic, chemical and kinetic data of the reaction. At the first part of this work the mesoporous Cu/ZrO{sub 2}/CeO{sub 2}-catalysts with various copper contents were characterized and their long-term stability and selectivity were investigated, and the kinetic data were determined. Carbon monoxide is generated by reforming of carbon containing material. This process is undesired since CO poisons the Pt electrode of the fuel cell. The separation of hydrogen by metal membranes is technically feasible and a high purity of hydrogen can be obtained. However, due to their high density this procedure is not favourable because of its energy loss. In this study a concept is presented, which enables an autothermal mode by application of ceramic membrane and simultaneously could help to deal with the CO problem. The search for an absolutely selective catalyst is uncertain. The production of CO can be neither chemically nor thermodynamically excluded, if carbon is present in the hydrogen carrier. Since enrichment or separation are

  6. New developments in nickel-hydrogen cell and battery design for commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, D.B.; Fox, C.L.; Miller, L.E. [Eagle-Picher Industries, Inc., Joplin, MO (United States)

    1997-12-31

    Nickel-hydrogen (NiH{sub 2}) battery systems were first developed for space applications more than 20 years ago. Currently, they are being manufactured for commercial, terrestrial applications. The battery is ideal for commercial terrestrial energy storage applications because it offers a better potential cycle life than any other battery system and is maintenance free. A selection of low-cost components, electrodes, cell designs and battery designs are being tested to determine their feasibility for commercial applications. The dependent pressure vessel (DPV) design, developed by Eagle-Picher Industries, is the newest step in the continued development and evolution of the NiH{sub 2} system. The unique feature of the DPV cell design is the prismatic electrode stack which is more efficient than the cylindrical electrode stack. The electrode stack is the electrochemically active part of the cell. It contains nickel and hydrogen electrodes interspersed with an absorbent separator. DPV cells of two sizes, 40 and 60 Ah cells, have been developed. The DPV cell offers high specific energy at a reduced cost. The advanced DPV design also offers an efficient mechanical, electrical and thermal configuration and a reduced parts count. The design promotes compact, minimum volume packaging and weight efficiency. 8 refs., 7 figs.

  7. Commercial Optimization of a 100 kg/day PEM based Hydrogen Generator For Energy and Industrial Applications

    International Nuclear Information System (INIS)

    Moulthrop, L.; Anderson, E.; Chow, O.; Friedland, R.; Maloney, T.; Schiller, M.

    2006-01-01

    Commercial hydrogen generators using PEM water electrolysis are well proven, serving industrial applications worldwide in over 50 countries. Now, market and environmental requirements are converging to demand larger on-site hydrogen generators. North American liquid H 2 shortages, increasing trucking costs, developing economies with no liquid infrastructure, utilities, and forklift fuel cell fueling applications are all working to increase market demand for commercial on-site H 2 generation. These commercial applications may be satisfied by a 100 kg H 2 /day module; this platform can be the pathway towards a 500 kg H 2 /day generator desired for small fore-court hydrogen vehicle fueling stations. This paper discusses the steps necessary and activities already underway to develop a 100 to 500 kg H 2 /day PEM hydrogen generator platform to meet commercial market cost targets and approach US DoE transportation fueling cost targets. (authors)

  8. Optimization of the photovoltaic-hydrogen supply system of a stand-alone remote-telecom application

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Guillermo; Martinez, Graciano; Galvez, Jose L.; Cuevas, Raquel; Maellas, Jesus [National Institute for Aerospace Technology (INTA), Renewable Energy Department, Ctra. Ajalvir km 4, E-28850 Torrejon de Ardoz, Madrid (Spain); Gila, Raul; Bueno, Emilio [Polytechnical School - Alcala de Henares University, Electronics Department, Campus Universitario, Ctra. De Madrid-Barcelona Km 33.600, Alcala de Henares, Madrid (Spain)

    2009-07-15

    Hydrogen is considered as the optimal carrier for the surplus energy storage from renewable resources. Although hydrogen and its application in fuel cell is considered as a high-cost energy system, some cost-efficient solutions have been found for their use in stand-alone applications, which usually depend on the variability of renewable sources that have to be oversized in order to reduce their dependence on external energy sources. This paper shows the results from the simulation of several alternatives of introducing hydrogen technologies to increase the independence of a remote-telecom application fed by photovoltaic panels. Hydrogen is obtained by electrolysis and it is used in a fuel cell when the renewable energy source is not enough to maintain the stand-alone application. TRNSYS simulation environment has been used for evaluating the proposed alternatives. The results show that the best configuration option is that considering the use of hydrogen as a way to storage the surplus of radiation and the management system can vary the number of photovoltaic panels assigned to feed the hydrogen generation, the batteries or the telecom application. (author)

  9. Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen

    International Nuclear Information System (INIS)

    Holst, Bastian; French, Martin; Redmer, Ronald

    2011-01-01

    Using Kubo's linear response theory, we derive expressions for the frequency-dependent electrical conductivity (Kubo-Greenwood formula), thermopower, and thermal conductivity in a strongly correlated electron system. These are evaluated within ab initio molecular dynamics simulations in order to study the thermoelectric transport coefficients in dense liquid hydrogen, especially near the nonmetal-to-metal transition region. We also observe significant deviations from the widely used Wiedemann-Franz law, which is strictly valid only for degenerate systems, and give an estimate for its valid scope of application toward lower densities.

  10. Synthesis of SWNT/Pt nanocomposites for their effective role in hydrogen storage applications

    Science.gov (United States)

    Sharma, Anshu; Andreas, Rossos; Nehra, S. P.

    2018-05-01

    Single Wall Carbon Nanotubes (SWNTs) decorated with platinum were synthesized for hydrogen storage applications. Platinum was deposited on the nanotubes using hexachloroplatinic acid (H2PtCl6.6H2O) as a precursor. Commercial SWNTs were also used to compare the results. The obtained SWNTs/Pt nanocomposite was characterized by various techniques such as powder X-ray diffractrometry (XRD), Raman Spectroscopy and Scanning Electron Microscopy (SEM). Furthermore, in the case of SWNTs/Pt, Pt nanoparticles are found to be uniformly dispersed and bound to the SWNTs acting like a single atom catalyst.

  11. Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-10-01

    Full Text Available 57 58 59 60 For Peer Review 1 Synthesis of templated carbons starting from clay and clay-derived zeolites for hydrogen storage applications N. M. Musyoka1*, J. Ren1, H. W. Langmi1, D. E. C. Rogers1, B. C. North1, M. Mathe1 and D. Bessarabov2... clear (filtered) extract of cloisite clay, SNC for zeolite from unfiltered cloisite clay extract and SBC for zeolite from unfiltered South African bentonite clay extract. Furfuryl alcohol (Sigma Aldrich, C5H6O2, 98%) and Ethylene gas were used...

  12. Supported Pd nanoclusters for the hydrogen mitigation application in severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Zhengfeng; Zhu, Hongzhi; Zhang, Zhi; Zheng, Zhenghua [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China); Ma, Guohua [University of Science and Technology of Southwest, Mianyang 621010 (China); Lai, Xinchun; Li, Rong; Tang, Tao; Fu, Jun [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China); Gao, Bo, E-mail: gaobo@caep.cn [China Academy of Engineering Physics, P. O. Box 919-71, Mianyang 621700 (China)

    2017-05-15

    Highlights: • Pd catalysts were prepared by electroless deposition path with no extra reduction agents. • The Pd catalysts not only have good hydrogen-oxygen recombination efficiency, but also have good stability. • The catalysts were proved to have good resistance to poisoning. • Pd catalysts could be supposed to be used for PARs in severe accidents. - Abstract: Accidents at TMI, USA and Fukushima, Japan have emphasized the need for hydrogen mitigation during nuclear plant accidental conditions, especially during severe accidents which will be no power, massive hydrogen, high temperature, long-term operation, and poisoning environment. Passive autocatalytic recombiners with catalyst sheets are the promising way to deal with the situation in severe accidents. Here we report a new kind of catalyst sheets based on stainless steel supported Pd nanoclusters prepared by electroless deposition route. The catalyst sheets were characterised for morphology and composition of surface by SEM and EDS. The catalytic activity of the catalyst sheets has been evaluated under the conditions of higher temperature, long-term operation and poisoning environments. The catalyst sheets showed high activity and good stability either operating above 500 °C for 24 h or continuous operating for 25 days. For the obtained catalyst sheets after exposed to methanal, iodine vapor and BaSO{sub 4} aerosol respectively with corresponding concentrations higher than SA conditions, the start-up time for H{sub 2}-O{sub 2} recombination reaction was less than 1 min and the catalytic efficiency was more than 90%. These results indicate the potential application of this type of catalyst sheets for hydrogen mitigation in severe accidents.

  13. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    Energy Technology Data Exchange (ETDEWEB)

    Stetson, Ned T., E-mail: ned.stetson@ee.doe.gov [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); Ordaz, Grace; Adams, Jesse; Randolph, Katie [U.S. Department of Energy, 1000 Independence Ave., SW, EE-2H, Washington, DC 20585 (United States); McWhorter, Scott [Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2013-12-15

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided.

  14. The use of application-specific performance targets and engineering considerations to guide hydrogen storage materials development

    International Nuclear Information System (INIS)

    Stetson, Ned T.; Ordaz, Grace; Adams, Jesse; Randolph, Katie; McWhorter, Scott

    2013-01-01

    Highlights: •Portable power and material handling equipment as early market technology pathways. •Engineering based system-level storage-materials requirements. •Application based targets. -- Abstract: The Hydrogen and Fuel Cells Technologies Office, carried out through the DOE Office of Energy Efficiency and Renewable Energy, maintains a broad portfolio of activities to enable the commercialization of fuel cells across a range of near, mid and long-term applications. Improved, advanced hydrogen storage technologies are seen as a critical need for successful implementation of hydrogen fuel cells in many of these applications. To guide and focus materials development efforts, the DOE develops system performance targets for the specific applications of interest, and carries out system engineering analyses to determine the system-level performance delivered when the materials are incorporated into a complete system. To meet the needs of applications, it is important to consider the system-level performance, not just the material-level properties. An overview of the DOE’s hydrogen storage efforts in developing application-specific performance targets and systems engineering to guide hydrogen storage materials identification and development is herein provided

  15. Space-based ballistic-missile defense

    International Nuclear Information System (INIS)

    Bethe, H.A.; Garwin, R.L.; Gottfried, K.; Kendall, H.W.

    1984-01-01

    This article, based on a forthcoming book by the Union for Concerned Scientists, focuses on the technical aspects of the issue of space-based ballistic-missile defense. After analysis, the authors conclude that the questionable performance of the proposed defense, the ease with which it could be overwhelmed or circumvented, and its potential as an antisatellite system would cause grievous damage to the security of the US if the Strategic Defense Initiative were to be pursued. The path toward greater security lies in quite another direction, they feel. Although research on ballistic-missile defense should continue at the traditional level of expenditure and within the constraints of the ABM Treaty, every effort should be made to negotiate a bilateral ban on the testing and use of space weapons. The authors think it is essential that such an agreement cover all altitudes, because a ban on high-altitude antisatellite weapons alone would not viable if directed energy weapons were developed for ballistic-missile defense. Further, the Star Wars program, unlikely ever to protect the entire nation against a nuclear attack, would nonetheless trigger a major expansion of the arms race

  16. Fruit quality in the peach and nectarine with application of hydrogenated cyanamide and mineral oil

    Directory of Open Access Journals (Sweden)

    Sarita Leonel

    Full Text Available This work evaluated the quality of the fruit in peach and nectarine cultivars with and without the application of hydrogenated cyanamide and mineral oil, for two production cycles (2009 and 2010. The experiment was carried out at the School of Agricultural Science of the São Paulo State University (UNESP, at Botucatu in the Brazilian state of São Paulo, located at latitude 22º51'55" S and longitude 48º26'22" E, at an altitude of 810 m. The predominant climate type is warm temperate (mesothermal with rains in the summer and dry in the winter. The following were evaluated: soluble solids, titratable acidity, pH, ratio, firmness, vitamin C and pulp yield. The use of hydrogenated cyanamide and mineral oil had no effect on the quality attributes of the fruit, except for pH, where those fruits under application of the products showed higher values. The cultivars all had a pulp yield greater than 90%, with 'Tourmaline' showing the highest yield (96 %. The levels of vitamin C varied according to the cultivars, where 'Marli' (16.9 mg 100 g-1 and 'Dourado-2' (16.5 mg 100 g-1, stood out for having the highest levels.

  17. Hydrogen energy technology development conference. From production of hydrogen to application of utilization technologies and metal hydrides, and examples; Suiso energy gijutsu kaihatsu kaigi. Suiso no seizo kara riyo gijutsu kinzoku suisokabutsu no oyo to jirei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-02-14

    The hydrogen energy technology development conference was held on February 14 to 17, 1984 in Tokyo. For hydrogen energy systems and production of hydrogen from water, 6 papers were presented for, e.g., the future of hydrogen energy, current state and future of hydrogen production processes, and current state of thermochemical hydrogen technology development. For hydrogen production, 6 papers were presented for, e.g., production of hydrogen from steel mill gas, coal and methanol. For metal hydrides and their applications, 6 papers were presented for, e.g., current state of development of hydrogen-occluding alloy materials, analysis of heat transfer in metal hydride layers modified with an organic compound and its simulation, and development of a large-size hydrogen storage system for industrial purposes. For hydrogen utilization technologies, 8 papers were presented for, e.g., combustion technologies, engines incorporating metal hydrides, safety of metal hydrides, hydrogen embrittlement of system materials, development trends of phosphate type fuel cells, and alkali and other low-temperature type fuel cells. (NEDO)

  18. Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Corbo, Pasquale; Migliardini, Fortunato; Veneri, Ottorino [Istituto Motori of Italian National Research Council, Via Marconi 8, 80125 Napoli (Italy)

    2007-08-15

    A laboratory fuel cell system based on a 20 kW H{sub 2}/air proton exchange membrane stack was designed, realized and characterized with the aim to elucidate specific concerns to be considered for both hydrogen stationary power systems and automotive applications. The overall system characterization permitted the effect of the main operative variables (temperature, pressure and stoichiometric ratio) on stack power and efficiency to be evaluated. Reactant feeding, humidification and cooling problems are discussed, evidencing in particular the roles of air compressor, fuel purge, stack temperature and humidification strategy in system management. The characterization results are analyzed in terms of H{sub 2} consumption and available power, evidencing the energy losses of the individual fuel cell system components. In particular, the data obtained on key components (stack, reactants, heat and water management devices) are used for a critical discussion about their specifications and operation characteristics as demanded by both stationary and mobile applications. (author)

  19. Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application

    International Nuclear Information System (INIS)

    Corbo, Pasquale; Migliardini, Fortunato; Veneri, Ottorino

    2007-01-01

    A laboratory fuel cell system based on a 20 kW H 2 /air proton exchange membrane stack was designed, realized and characterized with the aim to elucidate specific concerns to be considered for both hydrogen stationary power systems and automotive applications. The overall system characterization permitted the effect of the main operative variables (temperature, pressure and stoichiometric ratio) on stack power and efficiency to be evaluated. Reactant feeding, humidification and cooling problems are discussed, evidencing in particular the roles of air compressor, fuel purge, stack temperature and humidification strategy in system management. The characterization results are analyzed in terms of H 2 consumption and available power, evidencing the energy losses of the individual fuel cell system components. In particular, the data obtained on key components (stack, reactants, heat and water management devices) are used for a critical discussion about their specifications and operation characteristics as demanded by both stationary and mobile applications

  20. Non-electric applications of nuclear power: Seawater desalination, hydrogen production and other industrial applications. Proceedings of an international conference

    International Nuclear Information System (INIS)

    2009-01-01

    Today, nuclear power plants contribute about 16% to the world's electricity generation. Because electricity represents less than one third of the primary energy uses, nuclear energy provides only about 6% of total energy consumption in the world. If nuclear energy were used for purposes other than electricity generation, it could play a more significant role in global energy supply. This could have also a significant impact on global goals for reduced greenhouse gas emissions for a cleaner environment. Nuclear power is the only large-scale carbon-free energy source that, in the near and medium term, has the potential to significantly displace limited and uncertain fossil fuels. To do this, however, nuclear power must move beyond its historical role as solely a producer of electricity to other non-electric applications. These applications include seawater desalination, district heating, heat for industrial processes, and electricity and heat for hydrogen production among others. These applications have tremendous potential in ensuring future worldwide energy and water security for sustainable development. In recent years, various agencies involved in nuclear energy development programmes have carried out studies on non-electric applications of nuclear power and useful reports have been published. The IAEA launched a programme on co-generation applications in the 1990's in which a number of Member States have been and continue to be actively involved. This programme, however is primarily concerned with seawater desalination, and district and process heating, utilizing the existing reactors as a source of heat and electricity. In recent years the scope of the Agency's programme has been widened to include other more promising applications such as nuclear hydrogen production and higher temperature process heat applications. OECD/NEA (OECD Nuclear Energy Agency), EURATOM (European Atomic Energy Community) and GIF (Generation IV International Forum) have also evinced

  1. Hydrogen safety

    International Nuclear Information System (INIS)

    Frazier, W.R.

    1991-01-01

    The NASA experience with hydrogen began in the 1950s when the National Advisory Committee on Aeronautics (NACA) research on rocket fuels was inherited by the newly formed National Aeronautics and Space Administration (NASA). Initial emphasis on the use of hydrogen as a fuel for high-altitude probes, satellites, and aircraft limited the available data on hydrogen hazards to small quantities of hydrogen. NASA began to use hydrogen as the principal liquid propellant for launch vehicles and quickly determined the need for hydrogen safety documentation to support design and operational requirements. The resulting NASA approach to hydrogen safety requires a joint effort by design and safety engineering to address hydrogen hazards and develop procedures for safe operation of equipment and facilities. NASA also determined the need for rigorous training and certification programs for personnel involved with hydrogen use. NASA's current use of hydrogen is mainly for large heavy-lift vehicle propulsion, which necessitates storage of large quantities for fueling space shots and for testing. Future use will involve new applications such as thermal imaging

  2. Potential Applications of Friction Stir Welding to the Hydrogen Economy. Hydrogen Regional Infrastructure Program In Pennsylvania, Materials Task

    Energy Technology Data Exchange (ETDEWEB)

    Brendlinger, Jennifer [Concurrent Technologies Corporation, Johnstown, PA (United States)

    2009-07-17

    Friction Stir Welding (FSW) is a solid-state welding technique developed by The Welding Institute (TWI) of Cambridge, UK in the early 1990’s. The process uses a non-consumable rotating tool to develop frictional heat and plastically deform workpieces to be joined, resulting in a solid-state weld on the trailing side of the advancing tool. Since the materials to be joined are not melted, FSW results in a finer grain structure and therefore enhanced properties, relative to fusion welds. And unlike fusion welding, a relatively small number of key process parameters exist for FSW: tool rotational speed, linear weld velocity and force perpendicular to the joining surface. FSW is more energy efficient than fusion welding and can be accomplished in one or two passes, versus many more passes required of fusion welding thicker workpieces. Reduced post-weld workpiece distortion is another factor that helps to reduce the cost of FSW relative to fusion welding. Two primary areas have been identified for potential impact on the hydrogen economy: FSW of metallic pipes for hydrogen transmission and FSW of aluminum pressure vessels for hydrogen storage. Both areas have been under active development and are explored in this paper.

  3. Feasibility Studies of Vortex Flow Impact On the Proliferation of Algae in Hydrogen Production for Fuel Cell Applications

    Science.gov (United States)

    Miskon, Azizi; A/L Thanakodi, Suresh; Shiema Moh Nazar, Nazatul; Kit Chong, Marcus Wai; Sobri Takriff, Mohd; Fakir Kamarudin, Kamrul; Aziz Norzali, Abdul; Nooraya Mohd Tawil, Siti

    2016-11-01

    The instability of crude oil price in global market as well as the sensitivity towards green energy increases, more research works being carried out to find alternative energy replacing the depleting of fossil fuels. Photobiological hydrogen production system using algae is one of the promising alternative energy source. However, the yield of hydrogen utilizing the current photobioreactor (PBR) is still low for commercial application due to restricted light penetration into the deeper regions of the reactor. Therefore, this paper studies the feasibility of vortex flow impact utilizing magnetic stirring in hydrogen production for fuel cell applications. For comparison of results, a magnetic stirrer is placed under a PBR of algae to stir the algae to obtain an even distribution of sunlight to the algae while the controlled PBR of algae kept in static. The produced hydrogen level was measured using hydrogen sensor circuit and the data collected were communicated to laptop using Arduino Uno. The results showed more cell counts and hydrogen produced in the PBR under the influence of magnetic stirring compared to static PBR by an average of 8 percent in 4 days.

  4. A Space Based Solar Power Satellite System

    Science.gov (United States)

    Engel, J. M.; Polling, D.; Ustamujic, F.; Yaldiz, R.; et al.

    2002-01-01

    . Based on the expected revenues from about 300 customers, SPoTS needs a significant contribution from public funding to be commercial viable. However, even though the system might seem to be a huge investment first, it provides a unique steppingstone for future space based wireless transfer of energy to the Earth. Also the public funding is considered as an interest free loan and is due to be paid back over de lifetime period of SPoTS. These features make the SPoTS very attractive in comparison to other space projects of the same science field.

  5. Hydrogen embrittlement considerations in niobium-base alloys for application in the ITER divertor

    International Nuclear Information System (INIS)

    Peterson, D.T.; Hull, A.B.; Loomis, B.A.

    1991-01-01

    The ITER divertor will be subjected to hydrogen from aqueous corrosion by the coolant and by transfer from the plasma. Global hydrogen concentrations are one factor in assessing hydrogen embrittlement but local concentrations affected by source fluxes and thermotransport in thermal gradients are more important considerations. Global hydrogen concentrations is some corrosion- tested alloys will be presented and interpreted. The degradation of mechanical properties of Nb-base alloys due to hydrogen is a complex function of temperature, hydrogen concentration, stresses and alloy composition. The known tendencies for embrittlement and hydride formation in Nb alloys are reviewed

  6. Para-hydrogen raman laser and its application to laser induced chemistry

    International Nuclear Information System (INIS)

    Tashiro, Hideo

    1988-01-01

    The report outlines the mechanism of the para-hydrogen Raman laser as a infrared light source, and its application to laser induced chemistry. The Stoke's wave number after a Raman shift is equal to the difference between the wave number of the CO 2 laser used for excitation and the rotation Raman wave number of the hydrogen molecule. A Raman laser can serve as an infrared source. CO 2 laser oscillation beam in the range of 9∼11 micrometers is selected and the frequency of infrared beam is varied by changing the wave number of the CO 2 laser beam. A problem with the Raman laser is that the Raman scatterring gain is small due to a large wavelength. In developing equipment, a special mechanism is required to solve this problem. A Raman laser comprises a CO 2 laser for excitation and multi-pulse Raman cells. The combination of a TEA oscillator and amplifiers gives CO 2 pulses with a peak power of about several tens of MW. Many heavy metal compounds including fluorides, carbonyl compounds and other organic compounds, absorb light with wavelengths in the same range as those of the Raman laser. Such compounds can be dissociated directly by applying Raman laser beams. The laser will be helpful for separation of isotopes, etc. (Nogami, K.)

  7. High-energy-density hydrogen-halogen fuel cells for advanced military applications

    International Nuclear Information System (INIS)

    Balko, E.N.; McElroy, J.F.

    1981-01-01

    It is pointed out that hydrogen-halogen fuel cell systems are particularly suited for an employment as ground power sources for military applications. The large cell potential and reversible characteristics of the H 2 Cl 2 and H 2 Br 2 couples permit high energy storage density and efficient energy conversion. When used as flow batteries, the fluid nature of the reactants in the hydrogen-halogen systems has several advantages over power sources which involve solid phases. Very deep discharge is possible without degradation of subsequent performance, and energy storage capacity is limited only by the external reactant storage volume. Very rapid chemical recharging is possible through replenishment of the reactant supply. A number of H 2 Cl 2 and H 2 Br 2 fuel cell systems have been studied. These systems use the same solid polymer electrolyte (SPE) cell technology originally developed for H2/O2 fuel cells. The results of the investigation are illustrated with the aid of a number of graphs

  8. Hydrogen permeation in FeCrAl alloys for LWR cladding application

    Science.gov (United States)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.; Snead, Lance L.

    2015-06-01

    FeCrAl, an advanced oxidation-resistant iron-based alloy class, is a highly prevalent candidate as an accident-tolerant fuel cladding material. Compared with traditional zirconium alloy fuel cladding, increased tritium permeation through FeCrAl fuel cladding to the primary coolant is expected, raising potential safety concerns. In this study, the hydrogen permeability of several FeCrAl alloys was obtained using a static permeation test station, which was calibrated and validated using 304 stainless steel. The high hydrogen permeability of FeCrAl alloys leads to concerns with respect to potentially significant tritium release when used for fuel cladding in LWRs. The total tritium inventory inside the primary coolant of a light water reactor was quantified by applying a 1-dimensional steady state tritium diffusion model to demonstrate the dependence of tritium inventory on fuel cladding type. Furthermore, potential mitigation strategies for tritium release from FeCrAl fuel cladding were discussed and indicate the potential for application of an alumina layer on the inner clad surface to serve as a tritium barrier. More effort is required to develop a robust, economical mitigation strategy for tritium permeation in reactors using FeCrAl clad fuel assemblies.

  9. Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-02-01

    Full Text Available Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs, the application of superconducting magnetic energy storage (SMES may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs, electrical vehicle (EV stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.

  10. Design of a space-based infrared imaging interferometer

    Science.gov (United States)

    Hart, Michael; Hope, Douglas; Romeo, Robert

    2017-07-01

    Present space-based optical imaging sensors are expensive. Launch costs are dictated by weight and size, and system design must take into account the low fault tolerance of a system that cannot be readily accessed once deployed. We describe the design and first prototype of the space-based infrared imaging interferometer (SIRII) that aims to mitigate several aspects of the cost challenge. SIRII is a six-element Fizeau interferometer intended to operate in the short-wave and midwave IR spectral regions over a 6×6 mrad field of view. The volume is smaller by a factor of three than a filled-aperture telescope with equivalent resolving power. The structure and primary optics are fabricated from light-weight space-qualified carbon fiber reinforced polymer; they are easy to replicate and inexpensive. The design is intended to permit one-time alignment during assembly, with no need for further adjustment once on orbit. A three-element prototype of the SIRII imager has been constructed with a unit telescope primary mirror diameter of 165 mm and edge-to-edge baseline of 540 mm. The optics, structure, and interferometric signal processing principles draw on experience developed in ground-based astronomical applications designed to yield the highest sensitivity and resolution with cost-effective optical solutions. The initial motivation for the development of SIRII was the long-term collection of technical intelligence from geosynchronous orbit, but the scalable nature of the design will likely make it suitable for a range of IR imaging scenarios.

  11. Hydrogen peroxide oxidant fuel cell systems for ultra-portable applications

    Science.gov (United States)

    Valdez, T. I.; Narayanan, S. R.

    2001-01-01

    This paper will address the issues of using hydrogen peroxide as an oxidant fuel in a miniature DMFC system. Cell performance for DMFC based fuel cells operating on hydrogen peroxide will be presented and discussed.

  12. An electrochemical method for determining hydrogen concentrations in metals and some applications

    Science.gov (United States)

    Danford, M. D.

    1983-01-01

    An electrochemical method was developed for the determination of hydrogen in metals using the EG&G-PARC Model 350A Corrosion Measurement Console. The method was applied to hydrogen uptake, both during electrolysis and electroplating, and to studies of hydrogen elimination and the effect of heat treatment on elimination times. Results from these studies are presented.

  13. Hydrogen: it's now. Hydrogen, essential today, indispensable tomorrow. Power-to-Gas or how to meet the challenge of electricity storage. To develop hydrogen mobility. Hydrogen production modes and scope of application of the IED directive - Interview. Regulatory evolutions needed for an easier deployment of hydrogen energy technologies for a clean mobility. Support of the Community's policy to hydrogen and to fuel cells

    International Nuclear Information System (INIS)

    Mauberger, Pascal; Boucly, Philippe; Quint, Aliette; Pierre, Helene; Lucchese, Paul; Bouillon-Delporte, Valerie; Chauvet, Bertrand; Ferrari, Fabio; Boivin, Jean-Pierre

    2015-01-01

    Published by the French Association for Hydrogen and Fuel Cells (AFHYPAC), this document first outlines how hydrogen can reduce our dependence on fossil energies, how it supports the development of electric mobility to reduce CO 2 emissions by transports, how it enables a massive storage of energy as a support to renewable energies deployment and integration, and how hydrogen can be a competitiveness driver. Then two contributions address technical solutions, the first one being Power-to-Gas as a solution to energy storage (integration of renewable energies, a mean for massive storage of electricity, economic conditions making the first deployments feasible, huge social and economical benefits, necessity of creation of an adapted legal and economic framework), and the second one being the development of hydrogen-powered mobility (a major societal concern for air quality, strategies of car manufacturers in the world, necessity of a favourable framework, the situation of recharging infrastructures). Two contributions address the legal framework regarding hydrogen production modes and the scope of application of the European IED directive on industrial emissions, and the needed regulatory evolutions for an easier deployment of Hydrogen-energy technologies for a clean mobility. A last article comments the evolution of the support of European policies to hydrogen and fuel cells through R and d programs, presents the main support program (FCH JU) and its results, other European financing and support policy, and discusses perspectives, notably for possible financing mechanisms

  14. An optimum organizational structure for a large earth-orbiting multidisciplinary Space Base

    Science.gov (United States)

    Ragusa, J. M.

    1973-01-01

    The purpose of this exploratory study was to identify an optimum hypothetical organizational structure for a large earth-orbiting multidisciplinary research and applications (R&A) Space Base manned by a mixed crew of technologists. Since such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than the empirical testing of it. The essential finding of this research was that a four-level project type 'total matrix' model will optimize the efficiency and effectiveness of Space Base technologists.

  15. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    Science.gov (United States)

    Musket, R. G.

    1989-04-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation, and hydrogen embrittlement. In particular, the results of the reviewed studies are (a) uranium hydriding suppressed by implantation of oxygen and carbon, (b) hydrogen gettered in iron and nickel using implantation of titanium, (c) hydriding of titanium catalyzed by implanted palladium, (d) tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and (e) hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals.

  16. Applications of ion implantation for modifying the interactions between metals and hydrogen gas

    International Nuclear Information System (INIS)

    Musket, R.G.

    1989-01-01

    Ion implantations into metals have been shown recently to either reduce or enhance interactions with gaseous hydrogen. Published studies concerned with modifications of these interactions are reviewed and discussed in terms of the mechanisms postulated to explain the observed changes. The interactions are hydrogenation, hydrogen permeation and hydrogen embrittlement. In particular, the results of the reviewed studies are 1. uranium hydriding suppressed by implantation of oxygen and carbon, 2. hydrogen gettered in iron and nickel using implantation of titanium, 3. hydriding of titanium catalyzed by implanted palladium, 4. tritium permeation of 304L stainless steel reduced using selective oxidation of implanted aluminum, and 5. hydrogen attack of a low-alloy steel accelerated by implantation of helium. These studies revealed ion implantation to be an effective method for modifying the interactions of hydrogen gas with metals. (orig.)

  17. Recombination and dissociative recombination of H2+ and H3+ ions on surfaces with application to hydrogen negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.; Karo, A.M.

    1988-12-01

    A four-step model for recombination and dissociative recombination of H 2 + and H 3 + ions on metal surfaces is discussed. Vibrationally excited molecules, H 2 (v''), from H 3 + recombination are produced in a broad spectrum that enhances the excited level distribution. The application of this latter process to hydrogen negative ion discharges is discussed. 5 refs., 3 figs., 1 tab

  18. A more efficient way to shape metal-organic framework (MOF) powder materials for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2015-04-01

    Full Text Available operation time. This granulation approach is a more efficient way to shape MOF-type powder materials into application-specific configurations compared to the mechanical pressing method. The pellets could be conveniently packed in a small hydrogen storage...

  19. Research and application of multi-hydrogen acidizing technology of low-permeability reservoirs for increasing water injection

    Science.gov (United States)

    Ning, Mengmeng; Che, Hang; Kong, Weizhong; Wang, Peng; Liu, Bingxiao; Xu, Zhengdong; Wang, Xiaochao; Long, Changjun; Zhang, Bin; Wu, Youmei

    2017-12-01

    The physical characteristics of Xiliu 10 Block reservoir is poor, it has strong reservoir inhomogeneity between layers and high kaolinite content of the reservoir, the scaling trend of fluid is serious, causing high block injection well pressure and difficulty in achieving injection requirements. In the past acidizing process, the reaction speed with mineral is fast, the effective distance is shorter and It is also easier to lead to secondary sedimentation in conventional mud acid system. On this point, we raised multi-hydrogen acid technology, multi-hydrogen acid release hydrogen ions by multistage ionization which could react with pore blockage, fillings and skeletal effects with less secondary pollution. Multi-hydrogen acid system has advantages as moderate speed, deep penetration, clay low corrosion rate, wet water and restrains precipitation, etc. It can reach the goal of plug removal in deep stratum. The field application result shows that multi-hydrogen acid plug removal method has good effects on application in low permeability reservoir in Block Xiliu 10.

  20. Hydrogen yield from polyethylene by radiolysis and the application to dosimeter

    International Nuclear Information System (INIS)

    Seguchi, T.

    2006-01-01

    by annealing or heating treatment, so the precise experiments were conducted using UHM-PE. G(H 2 ) of PIS containing double bond is 0.7, which is around 15% of PE and EPR. H 2 yield increases linearly with dose until 30 kGy and gradually levels off from a proportional line. The starting point (30 kGy) of level off is much lower than the dose (3 MGy) estimated by hydrogen material balance in PE molecules. Hydrogen evolution means that double bonds and cross-linking are formed in PE molecules by radiolysis. The probability of double bond and cross-linking formation is estimated to be the same. The relation between hydrogen evolution and dose was analyzed using a model which the double bond formed in PE matrix by radiolysis acts to protect the radiation induced chemical reaction as a radiation stabilizer and the protection effect depends on the content of double bond. The equations and the parameters for the analysis were reported in a previous paper. The calculation indicated that one double bond reduces the hydrogen evolution in a certain volume of PE matrix, cubic of 1.6 nm radius from one double bond. The fact that a double bond reduces H 2 evolution is shown in PIS which contains one double bond per 5 carbons, and H 2 evolution is only 15% of that for poly-olefins without double bond. It had been reported that H 2 evolution from aromatic polymers which contain the conjugated double bond is very low, for example, G(H 2 ) is 0.03 for poly(ethylene-terephthalate). Also H 2 evolution from poly-olefins is reduced by mixing with a small amount of aromatic compounds. Then, the above model for the analysis of saturation phenomena in the radiolysis of polyethylene would be reasonable. The radiation energy should be transferred to vinyl groups like double bonds and conjugated double bonds and stabilized in the site, and then the chemical reactions are reduced. Application to dosimeter: UHM-PE has high viscosity above the melting temperature, and the morphology such as

  1. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2011-12-01

    Full Text Available Abstract Background The detection of hydrogen peroxide (H2O2 and nitrite ion (NO2- is of great important in various fields including clinic, food, pharmaceutical and environmental analyses. Compared with many methods that have been developed for the determination of them, the electrochemical detection method has attracted much attention. In recent years, with the development of nanotechnology, many kinds of micro/nano-scale materials have been used in the construction of electrochemical biosensors because of their unique and particular properties. Among these catalysts, copper oxide (CuO, as a well known p-type semiconductor, has gained increasing attention not only for its unique properties but also for its applications in many fields such as gas sensors, photocatalyst and electrochemistry sensors. Continuing our previous investigations on transition-metal oxide including cuprous oxide and α-Fe2O3 modified electrode, in the present paper we examine the electrochemical and electrocatalytical behavior of flower like copper oxide modified glass carbon electrodes (CuO/GCE. Results Flower like copper oxide (CuO composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-SEM and X-ray diffraction (XRD. CuO modified glass carbon electrode (CuO/GCE was fabricated and characterized electrochemically. A highly sensitive method for the rapid amperometric detection of hydrogen peroxide (H2O2 and nitrite (NO2- was reported. Conclusions Due to the large specific surface area and inner characteristic of the flower like CuO, the resulting electrode show excellent electrocatalytic reduction for H2O2 and oxidation of NO2-. Its sensitivity, low detection limit, fast response time and simplicity are satisfactory. Furthermore, this synthetic approach can also be applied for the synthesis of other inorganic oxides with improved performances and they can also be extended to

  2. Hydrogen venting characteristics of commercial carbon-composite filters and applications to TRU waste

    International Nuclear Information System (INIS)

    Callis, E.L.; Marshall, R.S.; Cappis, J.H.

    1997-04-01

    The generation of hydrogen (by radiolysis) and of other potentially flammable gases in radioactive wastes which are in contact with hydrogenous materials is a source of concern, both from transportation and on-site storage considerations. Because very little experimental data on the generation and accumulation of hydrogen was available in actual waste materials, work was initiated to experimentally determine factors affecting the concentration of hydrogen in the waste containers, such as the hydrogen generation rate, (G-values) and the rate of loss of hydrogen through packaging and commercial filter-vents, including a new design suitable for plastic bags. This report deals only with the venting aspect of the problem. Hydrogen venting characteristics of two types of commercial carbon-composite filter-vents, and two types of PVC bag closures (heat-sealed and twist-and-tape) were measured. Techniques and equipment were developed to permit measurement of the hydrogen concentration in various layers of actual transuranic (TRU) waste packages, both with and without filter-vents. A test barrel was assembled containing known configuration and amounts of TRU wastes. Measurements of the hydrogen in the headspace verified a hydrogen release model developed by Benchmark Environmental Corporation. These data were used to calculate revised wattage Emits for TRU waste packages incorporating the new bag filter-vent

  3. Graphene–Noble Metal Nano-Composites and Applications for Hydrogen Sensors

    Directory of Open Access Journals (Sweden)

    Sukumar Basu

    2017-10-01

    Full Text Available Graphene based nano-composites are relatively new materials with excellent mechanical, electrical, electronic and chemical properties for applications in the fields of electrical and electronic devices, mechanical appliances and chemical gadgets. For all these applications, the structural features associated with chemical bonding that involve other components at the interface need in-depth investigation. Metals, polymers, inorganic fibers and other components improve the properties of graphene when they form a kind of composite structure in the nano-dimensions. Intensive investigations have been carried out globally in this area of research and development. In this article, some salient features of graphene–noble metal interactions and composite formation which improve hydrogen gas sensing properties—like higher and fast response, quick recovery, cross sensitivity, repeatability and long term stability of the sensor devices—are presented. Mostly noble metals are effective for enhancing the sensing performance of the graphene–metal hybrid sensors, due to their superior catalytic activities. The experimental evidence for atomic bonding between metal nano-structures and graphene has been reported in the literature and it is theoretically verified by density functional theory (DFT. Multilayer graphene influences gas sensing performance via intercalation of metal and non-metal atoms through atomic bonding.

  4. Integration of hydrogen energy technologies in stand-alone power systems analysis of the current potential for applications

    International Nuclear Information System (INIS)

    Zoulias, E.I.; Lymberopoulos, N.; Tsoutsos, T.; Glockner, R.; Mydske, H.J.; Vosseler, I.; Gavalda, O.; Taylor, P.

    2006-01-01

    The European study entitled: 'Market Potential Analysis for Introduction of Hydrogen Energy Technology in Stand-Alone Power Systems (H-SAPS)' aimed to establish a broad understanding of the market potential for H-SAPS and provide a basis for promoting in wide scale new technological applications. The scope of the study was limited to small and medium installations, up to a few hundred kW power rating and based on RE as the primary energy source. The potential for hydrogen technology in SAPS was investigated through an assessment of the technical potential for hydrogen, the market analysis and the evaluation of external factors. The results are mostly directed towards action by governments and the research community but also industry involvement is identified. The results include targeted market research, establishment of individual cost targets, regulatory changes to facilitate alternative grid solutions, information and capacity building, focused technology research and bridging the technology gaps. (author)

  5. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ronnebro, Ewa

    2012-06-16

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  6. Suppression of hydrogenated carbon film deposition by scavenger techniques and their application to the tritium inventory control of fusion devices

    International Nuclear Information System (INIS)

    Tabares, F.L.; Tafalla, D.; Tanarro, I.; Herrero, V.J.; Islyaikin, A.; Maffiotte, C.

    2002-01-01

    The well-known radical and ion scavenger techniques of application in amorphous hydrogenated carbon film deposition studies are investigated in relation to the mechanism of tritium and deuterium co-deposition in carbon-dominated fusion devices. A particularly successful scheme results from the injection of nitrogen into methane/hydrogen plasmas for conditions close to those prevailing in the divertor region of present fusion devices. A complete suppression of the a-C : H film deposition has been achieved for N 2 /CH 4 ratios close to one in methane (5%)/hydrogen DC plasma. The implications of these findings in the tritium retention control in future fusion reactors are addressed. (author). Letter-to-the-editor

  7. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    Science.gov (United States)

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen

  8. Optimization of a space based radiator

    International Nuclear Information System (INIS)

    Sam, Kien Fan Cesar Hung; Deng Zhongmin

    2011-01-01

    Nowadays there is an increased demand in satellite weight reduction for the reduction of costs. Thermal control system designers have to face the challenge of reducing both the weight of the system and required heater power while maintaining the components temperature within their design ranges. The main purpose of this paper is to present an optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a communications satellite payload panel was considered. Four radiator areas were defined instead of a centralized one in order to improve the heat rejection into space; the radiator's dimensions were determined considering worst hot scenario, solar fluxes, heat dissipation and the component's design temperature upper limit. Dimensions, thermal properties of the structural panel, optical properties and degradation/contamination on thermal control coatings were also considered. A thermal model was constructed for thermal analysis and two heat pipe network designs were evaluated and compared. The model that allowed better radiator efficiency was selected for parametric thermal analysis and optimization. This pursues finding the minimum size of the heat pipe network while keeping complying with thermal control requirements without increasing power consumption. - Highlights: →Heat pipe radiator optimization applied to a practical engineering design application. →The heat pipe radiator of a communications satellite panel is optimized. →A thermal model was built for parametric thermal analysis and optimization. →Optimal heat pipe network size is determined for the optimal weight solution. →The thermal compliance was verified by transient thermal analysis.

  9. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    Science.gov (United States)

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  10. Upgrading of reformate gas for different applications with focus on small-scale hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Jannasch, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden)

    2004-12-01

    Hydrogen gas or hydrogen rich gas is today used in many different applications, i.e. as fuel in fuel cells or additive in vehicle fuel (i.e. hythane) and as reagent or reducing agent in different industrial product lines. The majority of the hydrogen is produced either via electrolysis or reformation, where this work has entirely been focused on the latter alternative. The overarching aims of this project have been to demonstrate the need for reformate purification for different applications, and then, to investigate different available methods that can be used in order to enable the requested gas clean-up. The different purification methods have been examined with respect to parameters such as operating conditions (temperature, pressure), impurity tolerance, size, weight and cost. Another goal of the project has been to investigate how the reformer fuel type used influences the reformate gas quality and hence, the need for gas purification before the reformate can be fed to e.g. a low temperature polymer membrane fuel cell (PEMFC). For this reason, some experimental work has been performed. First, analysis of the reformate gas composition when natural gas, LPG, gasoline, diesel, kerosene (low and high S-concentration (i.e. JP8)) and ethanol have been processed. The reformation tests were carried out in a small scale reformer unit ({approx} 1 kW H{sub 2}) including Catator's catalyst formulations developed for the steam reforming, the water gas shift and the preferential oxidation reaction, respectively. Verification tests, with synthetic gas blends, including different potential reformate impurities, and with real reformate gas were thereafter performed with a commercial 4-cell PEMFC stack (3-5 W). Finally, some examination and also to some extent further development of Catator's existing gas purification units were made, i.e. chemical (WGS, PROX) and physical (regenerative adsorption). The Pd-alloy membrane seems to be the obvious choice of purification

  11. Synthesis of functional boron or aluminium nitride materials for energy applications (production and storage of hydrogen)

    International Nuclear Information System (INIS)

    Salameh, Chrystelle

    2014-01-01

    Porous inorganic materials are of great interest owing to their potential in energy applications. The general objective of the present thesis concerns the development of functional (carbon)nitrides for hydrogen generation and storage (material design, elaboration, properties and applications). The PDCs route, which offers a large number of opportunities in chemistry and ceramic sciences, has been applied to produce functional (carbon)nitrides materials. Firstly, we prepared porous binary systems such as AlN and BN by replicating the structure of CMK-3 and that of activated carbon. After pyrolysis and removal of the template, we demonstrated the feasibility of producing nitrides with tailored porosity. Moreover, by coupling the PDCs route with the aerogel technology, we succeeded in preparing polymer-derived AlN and BN aerogels. We assessed the potential of these porous AlN and BN materials in nano-confinement of two chemical hydrides, namely sodium alanate and ammonia borane, respectively. In both cases, the nano-confinement destabilized the network of the hydride and favored the release of H 2 at low temperature. Besides, in the case of nano-confined ammonia borane, no evolution of undesired gaseous by-products was observed, which means that pure hydrogen was produced in our conditions. Secondly, we prepared porous quaternary systems through the association of AlN/BN with Si-based ceramics. In particular, we investigated the preparation of SiAlCN with tailored porosity by using two approaches: the 'molecular building block' and 'single-source precursor' approaches. Concerning the former, we investigated the preparation of ordered meso-porous materials to be used as catalytic supports for hydrolysis of alkaline solution of sodium borohydride. We succeeded in generating high amounts of H 2 with attractive kinetics. Concerning the latter approach, the work was focused on the investigation of the chemistry of SiAlCN and SiBCN materials with a

  12. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    Directory of Open Access Journals (Sweden)

    Hannah B Vander Zanden

    2016-03-01

    Full Text Available The measurement of stable carbon (δ13C and nitrogen (δ15N isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H and oxygen (δ18O isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applications using δ2H and, to a lesser extent, δ18O values have demonstrated potential for these elements to provide novel insights in modern food web studies. We explore the advantages and challenges associated with three applications of δ2H and δ18O values in food web studies. First, large δ2H differences between aquatic and terrestrial ecosystem end members can permit the quantification of energy inputs and nutrient fluxes between these two sources, with potential applications for determining allochthonous vs. autochthonous nutrient sources in freshwater systems and relative aquatic habitat utilization by terrestrial organisms. Next, some studies have identified a relationship between δ2H values and trophic position, which suggests that this marker may serve as a trophic indicator, in addition to the more commonly used δ15N values. Finally, coupled measurements of δ2H and δ18O values are increasing as a result of reduced analytical challenges to measure both simultaneously and may provide additional ecological information over single element measurements. In some organisms, the isotopic ratios of these two elements are tightly coupled, whereas the isotopic disequilibrium in other organisms may offer insight into the diet and physiology of individuals. Although a coherent framework for interpreting δ2H and δ18O data in the context of food web studies is emerging, many fundamental uncertainties remain. We highlight directions for targeted research that

  13. Metrology for hydrogen energy applications: a project to address normative requirements

    Science.gov (United States)

    Haloua, Frédérique; Bacquart, Thomas; Arrhenius, Karine; Delobelle, Benoît; Ent, Hugo

    2018-03-01

    Hydrogen represents a clean and storable energy solution that could meet worldwide energy demands and reduce greenhouse gases emission. The joint research project (JRP) ‘Metrology for sustainable hydrogen energy applications’ addresses standardisation needs through pre- and co-normative metrology research in the fast emerging sector of hydrogen fuel that meet the requirements of the European Directive 2014/94/EU by supplementing the revision of two ISO standards that are currently too generic to enable a sustainable implementation of hydrogen. The hydrogen purity dispensed at refueling points should comply with the technical specifications of ISO 14687-2 for fuel cell electric vehicles. The rapid progress of fuel cell technology now requires revising this standard towards less constraining limits for the 13 gaseous impurities. In parallel, optimized validated analytical methods are proposed to reduce the number of analyses. The study aims also at developing and validating traceable methods to assess accurately the hydrogen mass absorbed and stored in metal hydride tanks; this is a research axis for the revision of the ISO 16111 standard to develop this safe storage technique for hydrogen. The probability of hydrogen impurity presence affecting fuel cells and analytical techniques for traceable measurements of hydrogen impurities will be assessed and new data of maximum concentrations of impurities based on degradation studies will be proposed. Novel validated methods for measuring the hydrogen mass absorbed in hydrides tanks AB, AB2 and AB5 types referenced to ISO 16111 will be determined, as the methods currently available do not provide accurate results. The outputs here will have a direct impact on the standardisation works for ISO 16111 and ISO 14687-2 revisions in the relevant working groups of ISO/TC 197 ‘Hydrogen technologies’.

  14. Optical/Infrared Signatures for Space-Based Remote Sensing

    National Research Council Canada - National Science Library

    Picard, R. H; Dewan, E. M; Winick, J. R; O'Neil, R. R

    2007-01-01

    This report describes work carried out under the Air Force Research Laboratory's basic research task in optical remote-sensing signatures, entitled Optical / Infrared Signatures for Space-Based Remote Sensing...

  15. Electrospun zeolite-templated carbon composite fibres for hydrogen storage applications

    CSIR Research Space (South Africa)

    Annamalai, Perushini

    2017-01-01

    Full Text Available -defined hierarchical pore structure. The study involved encapsulation of highly porous zeolite-templated carbon (ZTC) into electrospun fibres and testing of the resulting composites for hydrogen storage. The hydrogen storage capacity of the composite fibres was 1...

  16. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    International Nuclear Information System (INIS)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection

  17. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  18. Eye readable metal hydride based hydrogen tape sensor for health applications

    NARCIS (Netherlands)

    Ngene, P.; Radeva, T.; Westerwaal, R.; Schreuders, H.; Dam, B.

    Using the change in the intrinsic optical properties of YMg-based thin films upon exposure to hydrogen, we observe the presence of hydrogen at concentrations as low as 20 ppm just by a change in color. The eye-visible color change circumvents the use of any electronics in this device, thereby making

  19. Applications of some microscopic, diffraction and absorption techniques to the study of metal--hydrogen systems

    International Nuclear Information System (INIS)

    Pick, M.A.

    1979-01-01

    Several experimental techniques were reviewed which are used to investigate metal hydrogen systems. The first technique is metallography and optical microscopy. This is a very old technique which was found to be very powerful in the case of metal hydrogen systems. A few examples of such work are shown and the results are discussed

  20. Modulated synthesis of Cr-MOF (MIL 101) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Segakweng, T

    2014-08-01

    Full Text Available as a fuel into fuel cell technologies is only possible when safe and effective hydrogen storage systems become available. Complete usage of hydrogen is only possible if proper and effective storage systems with fast kinetics becomes available. Porous...

  1. Passivation behavior of AB{sub 5}-type hydrogen storage alloys for battery electrode application

    Energy Technology Data Exchange (ETDEWEB)

    Meli, F. [Fribourg Univ. (Switzerland). Inst. de Physique; Sakai, T. [Fribourg Univ. (Switzerland). Inst. de Physique; Zuettel, A. [Fribourg Univ. (Switzerland). Inst. de Physique; Schlapbach, L. [Fribourg Univ. (Switzerland). Inst. de Physique

    1995-04-15

    In many applications, AB{sub 5} type hydrogen storage alloys show passivation behavior, i.e. when fully discharged, metal hydride electrodes show (especially at higher temperatures) a decrease in activity and therefore a decrease in capacity at normal discharge currents for ensuing cycles. Passivation may continue to the point where activity becomes so low that the capacity is no longer accessible. Electrochemical measurements were taken of two different AB{sub 5}-type alloys, one with manganese and one without manganese (LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.4} and LaNi{sub 3.4}Co{sub 1.2}Al{sub 0.3}Mn{sub 0.1}). Both alloys showed passivation behavior after remaining in the discharged state. The alloy with manganese showed a stronger tendency to passivation which is in contradiction with earlier observations. Photoelectron spectroscopic analysis together with sputter depth profiling was used to investigate the surface composition of samples which had undergone different surface pretreatments. Surface analysis of electrodes in the passivated state shows a lower content of metallic nickel and a thicker nickel surface oxide film. We attribute the low electrochemical kinetics of the alloys after passivation to the loss of metallic nickel and/or cobalt at the electrode-electrolyte interface. ((orig.))

  2. Quantum double-well chain: Ground-state phases and applications to hydrogen-bonded materials

    International Nuclear Information System (INIS)

    Wang, X.; Campbell, D.K.; Gubernatis, J.E.

    1994-01-01

    Extrapolating the results of hybrid quantum Monte Carlo simulations to the zero temperature and infinite-chain-length limits, we calculate the ground-state phase diagram of a system of quantum particles on a chain of harmonically coupled, symmetric, quartic double-well potentials. We show that the ground state of this quantum chain depends on two parameters, formed from the ratios of the three natural energy scales in the problem. As a function of these two parameters, the quantum ground state can exhibit either broken symmetry, in which the expectation values of the particle's coordinate are all nonzero (as would be the case for a classical chain), or restored symmetry, in which the expectation values of the particle's coordinate are all zero (as would be the case for a single quantum particle). In addition to the phase diagram as a function of these two parameters, we calculate the ground-state energy, an order parameter related to the average position of the particle, and the susceptibility associated with this order parameter. Further, we present an approximate analytic estimate of the phase diagram and discuss possible physical applications of our results, emphasizing the behavior of hydrogen halides under pressure

  3. Modeling of hydrogen passivation process of silicon for solar cells applications

    International Nuclear Information System (INIS)

    Kuznicki, Z.T.; Ciach, R.; Gorley, P.M.; Voznyy, M.V.

    2001-01-01

    In this paper, results of investigation of evolution equations' system describing hydrogen passivation of silicon are presented. Using Lie group theory the classification of invariant solutions and initial system reduction to systems of ordinary differential equations (ODEs) is carried out for admissible infinitesimal operators under constant hydrogen atoms diffusivity in the sample. Possibility of analytical solution of passivation problem is shown. Analysis of system behavior taking into account diffusion and dissociation mechanisms is performed. It is ascertained that free hydrogen atoms diffusion in the sample and 'defect-hydrogen' dissociation spoil passivation. Analytical dependences obtained make it possible to predict spatial and time defect distribution under hydrogen passivation of silicon depending on experimental conditions

  4. Investigation on the production of hydrogen rich gas in a plasma converter for motorcycle applications

    International Nuclear Information System (INIS)

    Horng, R.-F.; Chang, Y.-P.; Wu, S.-C.

    2006-01-01

    A plasma fuel converter producing a hydrogen rich gas fuel has been designed and constructed. The methodology included using a high voltage electric arc generator to ionize the mixture of methane fuel and air, which was then reformed into a hydrogen rich gas. It transpired from the experiment that the higher the arc frequency, the higher was the generated hydrogen concentration, with a maximum concentration of 43 vol.% attained with an arc frequency of 200 Hz and an O/C (O 2 /CH 4 ) ratio of 0.10. The maximum hydrogen yield of 0.55 was obtained with an arc frequency of 200 Hz and an O/C ratio between 0.20 and 0.25. By fueling a four stroke motorcycle engine with the hydrogen rich gas, low emissions during the cold start idle condition can be obtained

  5. Gas Phase Fabrication of Pd-Ni Nanoparticle Arrays for Hydrogen Sensor Applications

    Directory of Open Access Journals (Sweden)

    Peng Xing

    2015-01-01

    Full Text Available Pd-Ni nanoparticles have been fabricated by gas aggregation process. The formation of Pd-Ni nano-alloys was confirmed by X-ray photoelectron spectroscopy measurements. By depositing Pd-Ni nanoparticles on the interdigital electrodes, quantum conductance-based hydrogen sensors were fabricated. The Ni content in the nanoparticle showed an obvious effect on the hydrogen response behavior corresponding to the conductance change of the nanoparticle film. Three typical response regions with different conductance-hydrogen pressure correlations were observed. It was found that the α-β phase transition region of palladium hydride moves to significant higher hydrogen pressure with the addition of nickel element, which greatly enhance the hydrogen sensing performance of the nanoparticle film.

  6. Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |

    Science.gov (United States)

    NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as

  7. Formation of hydrogen negative ions by surface and volume processes with application to negative ion sources

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1979-01-01

    During the last few decades interest in negative-hydrogen ion sources has been directed mainly toward synchrotron and other particle accelerator applications, with emphasis on high current densities delivered for short pulses. But within the last several years there has been an awareness in the magnetic fusion program of the future need for negative ions as a means for generating high energy neutral beams, beams with energies above a few hundred keV. Negative ions seem to be the only effective intermediary for efficiently producing such beams. Although methods for generating negative ion beams have relied upon synchrotron concepts, the requirements for fusion are very different: here one is interested in more moderate current densities, up to 100 m A cm -2 , but with continuous operation. Proposed source modules would accelerate of the order of 10 A of beam current and deliver several megawatts of beam power. Both H - and D - beams are being considered for application in different reactor systems. The conceptualization of negative ion sources is now in a very volatile stage. But of the great variety of proposals that have been offered to date, three general areas appear ready for development. These are: first, the double charge exchange method for converting a positive ion beam into a negative ion beam; second, electron-volume processes wherein low energy electrons interacting with molecular species lead to negative ion products via dissociative attachment or recombination; and third, generation of negative ions in surface interactions, principally via desorption and backscattering. Both our qualitative and our quantitative understanding of these processes diminishes as one proceeds from the first through the third. The physics of these three methods is considered in detail

  8. Synthesis, Characterization and Applications of Ethyl Cellulose-Based Polymeric Calcium(II) Hydrogen Phosphate Composite

    Science.gov (United States)

    Mohammad, Faruq; Arfin, Tanvir; Al-Lohedan, Hamad A.

    2018-03-01

    The present report deals with the synthesis, characterization and testing of an ethyl cellulose-calcium(II) hydrogen phosphate (EC-CaHPO4) composite, where a sol-gel synthesis method was applied for the preparation of the composite so as to test its efficacy towards the electrochemical, biological, and adsorption related applications. The physical properties of the composite were characterized by using scanning electron microscopy (SEM), ultraviolet- visible (UV-Vis) spectroscopy, and fourier transform-infrared (FTIR) spectroscopy. On testing, the mechanical properties indicated that the composite is highly stable due to the cross-linked rigid framework and the enhanced interactions offered by the EC polymer supported for its binding very effectively. In addition, the conductivity of EC-CaHPO4 is completely governed by the transport mechanism where the electrolyte concentration has preference towards the adsorption of ions and the variations in the conductivity significantly affected the material's performance. We observed an increasing order of KCl > NaCl for the conductivity when 1:1 electrolytes were applied. Further, the material was tested for its usefulness towards the purification of industrial waste waters by removing harmful metal ions from the samples collected near the Aligarh city, India where the data indicates that the material has highest affinity towards Pb2+, Cu2+, Ni2+ and Fe3+ metal ions. Finally, the biological efficiency of the material was confirmed by means of testing the antibacterial activity against two gram positive (staphylococcus aureus and Bacillus thuringiensis) and two gram negative bacteriums (Pseudomonas aeruginosa and Patoea dispersa). Thus, from the cumulative study of outcomes, it indicates that the EC-CaHPO4 composite found to serve as a potential smart biomaterial due to its efficiency in many different applications that includes the electrical conductivity, adsorption capability, and antimicrobial activity.

  9. Why advanced computing? The key to space-based operations

    Science.gov (United States)

    Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack

    2000-11-01

    The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'

  10. Hydrogen doped thin film diamond. Properties and application for electronic devices

    International Nuclear Information System (INIS)

    Looi, H.J.

    2000-01-01

    The face centered cubic allotrope of carbon, diamond, is a semiconducting material which possesses a valuable combination of extreme properties such as super-hardness, highest thermal conductivity, chemical hardness, radiation hardness, wide bandgap and others. Advances in chemical vapour deposition (CVD) technology have lead to diamond becoming available in previously unattainable forms for example over large areas and with controllable purity. This has generated much research interest towards developing the knowledge and processing technology that would be necessary to fully exploit these extreme properties. Electronic devices fabricated on oxidised boron doped polycrystalline CVD diamond (PCD) displayed very poor and inconsistent characteristic. As a result, many electronic applications of polycrystalline diamond films were confined to ultra-violet (UV) and other forms of device which relied on the high intrinsic resistivity on undoped diamond films. If commercially accessible PCD films are to advance in areas which involve sophisticated electronic applications or to compete with existing semiconductors, the need for a more reliable and fully ionised dopant is paramount. This thesis describes a unique dopant discovered within the growth surface of PCD films. This dopant is related to hydrogen which arises during the growth of diamond films. The aim of this study is to characterise and identify possible applications for this form of dopant. The mechanism for carrier generation remains unknown and based on the experimental results in this work, a model is proposed. The Hall measurements conducted on this conductive layer revealed a p-type nature with promising properties for electronic device application. A more detail study based on electrical and surface science methods were carried out to identify the stability and operating conditions for this dopant. The properties of metal-semiconductor contacts on these surfaces were investigated. The fundamental knowledge

  11. Development of technical marginal conditions for the application of hydrogen as storage for renewable energies. Short version of the final report

    International Nuclear Information System (INIS)

    1993-04-01

    Due to the present experiences gained in pilot projects and by the application of hydrogen in the industry it can be expected that an equivalent safety standard will be achieved for a manifold application of hydrogen as energy carrier as e.g. in the case of natural gas or liquid gas. A decentral generation and storage of hydrogen in detached houses is not recommended in conurbation because of necessary structural measurements and safety requirements. Small supply networks on the level of municipalities shall be erected instead. The use of hydrogen in the traffic seems to be useful in utility vehicles (e.g. buses) because the vehicle construction is more suitable for a safe integration of the tank system than in case of a car. The regulation shall be extended for a broader use of hydrogen and contain minimum requirements for the equipment and design of each application in terms of safety technology. (orig./MM) [de

  12. Hydrogen production through small capacity water electrolysis systems; Production d'hydrogene par electrolyse de l'eau. Application a des systemes de petite capacite

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Ph. [TotalFinaElf, la Defense 6, 92 - Courbevoie (France)

    2002-01-01

    Less than 1 % of the world's hydrogen is produced by electrolysis of water, in large plants mainly in connection with hydropower. For users requiring extremely pure hydrogen, electrolysis can be a convenient mean of obtaining the required hydrogen quality, where cheap electricity is available. This paper aims at presenting the latest technical developments of small capacity electrolyzers, that could fuel hydrogen cells or internal combustion engines. (author)

  13. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hydrogen behaviour in the aged low activation martensitic steel F82H for fusion reactor applications

    International Nuclear Information System (INIS)

    Benamati, G.

    1997-10-01

    A time dependent permeation method is used to measure the permeability, diffusivity and solubility of hydrogen in the low activation martensitic steel F82H aged for 2000 h under vacuum at 773 K. The measurements cover the temperature range from 373 to 723 K which includes the onset of hydrogen trapping effects on diffusivity and solubility. The results are interpreted using a trapping model. The number of trap sites and their average energies for hydrogen in the aged F82H steel are determined. These data are compared with those obtained for deuterium in F82H steel

  15. Hydrogen fuel. Uses

    International Nuclear Information System (INIS)

    Darkrim-Lamari, F.; Malbrunot, P.

    2006-01-01

    Hydrogen is a very energetic fuel which can be used in combustion to generate heat and mechanical energy or which can be used to generate electricity and heat through an electrochemical reaction with oxygen. This article deals with the energy conversion, the availability and safety problems linked with the use of hydrogen, and with the socio-economical consequences of a generalized use of hydrogen: 1 - hydrogen energy conversion: hydrogen engines, aerospace applications, fuel cells (principle, different types, domains of application); 2 - hydrogen energy availability: transport and storage (gas pipelines, liquid hydrogen, adsorbed and absorbed hydrogen in solid materials), service stations; 3 - hazards and safety: flammability, explosibility, storage and transport safety, standards and regulations; 4 - hydrogen economy; 5 - conclusion. (J.S.)

  16. Space-based societal applications—Relevance in developing countries

    Science.gov (United States)

    Bhaskaranarayana, A.; Varadarajan, C.; Hegde, V. S.

    2009-11-01

    (ISRO) is already a part of the International initiative called Satellite Aided Search and Rescue System. The programme to set up satellite-based Village Resource Centres (VRCs) across India, for providing a variety of services relevant to the rural communities, is also a unique societal application of space technology. The VRCs are envisaged as single window delivery mechanism for a variety of space-based products and services, such as tele-education; telemedicine; information on natural resources for planning and development at local level; interactive advisories on agriculture, fisheries, land and water resources management, livestock management, etc.; interactive vocational training towards alternative livelihood; e-governance; weather information; etc. This paper describes the various possibilities and potentials of Satcom and Remote Sensing technologies for societal applications. The initiatives taken by Indian Space Research Organisation in this direction are highlighted.

  17. Noether's Theorem and its Inverse of Birkhoffian System in Event Space Based on Herglotz Variational Problem

    Science.gov (United States)

    Tian, X.; Zhang, Y.

    2018-03-01

    Herglotz variational principle, in which the functional is defined by a differential equation, generalizes the classical ones defining the functional by an integral. The principle gives a variational principle description of nonconservative systems even when the Lagrangian is independent of time. This paper focuses on studying the Noether's theorem and its inverse of a Birkhoffian system in event space based on the Herglotz variational problem. Firstly, according to the Herglotz variational principle of a Birkhoffian system, the principle of a Birkhoffian system in event space is established. Secondly, its parametric equations and two basic formulae for the variation of Pfaff-Herglotz action of a Birkhoffian system in event space are obtained. Furthermore, the definition and criteria of Noether symmetry of the Birkhoffian system in event space based on the Herglotz variational problem are given. Then, according to the relationship between the Noether symmetry and conserved quantity, the Noether's theorem is derived. Under classical conditions, Noether's theorem of a Birkhoffian system in event space based on the Herglotz variational problem reduces to the classical ones. In addition, Noether's inverse theorem of the Birkhoffian system in event space based on the Herglotz variational problem is also obtained. In the end of the paper, an example is given to illustrate the application of the results.

  18. DISY. The direct synthesis of hydrogen peroxide, a bridge for innovative applications

    Energy Technology Data Exchange (ETDEWEB)

    Buzzoni, R.; Perego, C. [Eni S.p.A., Novara (Italy). Research Center for Non-Conventional Energies

    2011-07-01

    Hydrogen peroxide is largely recognized as the green oxidant of choice for future sustainable processes. The current industrial production still goes through the old anthraquinone process, a complex, two-step process suffering from a low specific productivity. Following the development of TS-1/H{sub 2}O{sub 2} based selective oxidation processes e.g. propylene epoxidation, cyclohexanone ammoximation and the new benzene direct oxidation to phenol, there has been an incentive for the development of a new technology, simpler and with better economics. DISY process, based on direct synthesis of hydrogen peroxide from hydrogen and oxygen, is highly suitable to the design of integrated selective oxidation processes as well as for production of commercial-grade high concentration aqueous hydrogen peroxide solutions. Catalyst and process development up to pilot scale are described. (orig.)

  19. Acclimation of green algae to sulfur deficiency: underlying mechanisms and application for hydrogen production.

    Science.gov (United States)

    Antal, Taras K; Krendeleva, Tatyana E; Rubin, Andrew B

    2011-01-01

    Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.

  20. Comparison of MOF-5- and Cr-MOF-derived carbons for hydrogen storage application

    CSIR Research Space (South Africa)

    Segakweng, T

    2015-11-01

    Full Text Available Nanoporous carbons which possess high surface areas and narrow pore size distributions have become one of the most important classes of porous materials with potential to be utilized for hydrogen storage. In recent times, several metal...

  1. The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yi-Ping; Fan, Yao-Ting; Pan, Chun-Mei; Hou, Hong-Wei [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Fan, Shao-Qun [Department of Chemistry, Zhengzhou University, Zhengzhou, Henan 450052 (China); Beijing Alcatel-Lucent R and D Center, Beijing, 100102 (China)

    2010-01-15

    Strategies were adopted to cost-efficiently produce cellulose-hydrogen by anaerobic fermentation in this paper. First, cellulase used for hydrolyzing cellulose was prepared by solid-state fermentation (SSF) on cheap biomass from Trichoderma viride. Several cultural conditions for cellulase production on cheap biomass such as moisture content, inoculum size and culture time were studied. And the components of solid-state medium were optimized using statistical methods to further improve cellulase capability. Second, the crude cellulase was applied to cellulose-hydrogen process directly. The maximal hydrogen yield of 122 ml/g-TVS was obtained at the substrate concentration of 20 g/L and cultured time of 53 h. The value was about 45-fold than that of raw corn stalk wastes. The hydrogen content in the biogas was 44-57%(v/v) and there was no significant methane gas observed. (author)

  2. Processing routes evaluation of severely deformed Mg-Fe alloys for hydrogen storage applications

    International Nuclear Information System (INIS)

    Antiqueira, F.J.; Leiva, D.R.; Ishikawa, T.T.; Jorge Junior, A.M.; Botta, W.J.

    2016-01-01

    MgH 2 is considered an interesting material for safe hydrogen storage in the solid state, due to its high gravimetric nominal capacity of 7,6%, and the relative low cost of magnesium. In this study, we attempted to improve the performance of the MgH 2 in the hydrogen storage. Different processing routes for Mg and Mg-Fe by severe plastic deformation were evaluated. The prepared materials were characterized by X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM). The hydrogen storage properties were evaluated by differential scanning calorimetry and the Sievert's method. The results indicate superior properties to materials catalyzed with iron, as well as a high dependence of hydrogen absorption / desorption kinetic in accordance with the microstructures obtained through the various processing routes. (author)

  3. The application of hydrogen-palladium electrode for potentiometric acid-base determinations in tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Jokić Anja B.

    2013-01-01

    Full Text Available The application of the hydrogen-palladium electrode (H2/Pd as the indicator electrode for the determination of relative acidity scale (Es, mV of tetrahydrofuran (THF and the potentiometric titrations of acids in this solvent was investigated. The relative acidity scale tetrahydrofuran was determined from the difference half-neutralization potentials of perchloric acid and tetrabutylammonium hydroxide (TBAH, which were measured by using both H2/Pd-SCE and glass-SCE electrode pairs. The experimentally obtained value of Es scale THF with a H2/Pd-SCE electrode pair was 1155 mV, and those obtained with glass-SCE electrode pair 880 mV. By using a H2/Pd indicator electrode, the individual acids (benzoic acid, palmitic acid, maleic acid, acetyl acetone, α-naphthol and two component acid mixtures (benzoic acid + α-naphthol, palmitic acid + α-naphthol, maleic acid + α-naphthol and maleic acid + ftalic acid were titrated with a standard solution of TBAH. In addition, sodium methylate and potassium hydroxide proved to be very suitable titrating agents for titrating of the individual acids and the acids in mixtures, respectively. The relative error of the determination of acids in mixture was less than 3%. The results are in agreement with those obtained by a conventional glass electrode. The advantages of H2/Pd electrode over a glass electrode in potentiometric acid-base determinations in tetrahydrofuran lie in the following: this electrode gives wider relative acidity scale THF, higher the potential jumps at the titration end-point and relatively fast response time; furthermore, it is very durable, simple to prepare and can be used in the titrations of small volumes. [Projekat Ministarstva nauke Republike Srbije, br.172051

  4. PALLADIUM DOPED TIN OXIDE BASED HYDROGEN GAS SENSORS FOR SAFETY APPLICATIONS

    International Nuclear Information System (INIS)

    Kasthurirengan, S.; Behera, Upendra; Nadig, D. S.

    2010-01-01

    Hydrogen is considered to be a hazardous gas since it forms a flammable mixture between 4 to 75% by volume in air. Hence, the safety aspects of handling hydrogen are quite important. For this, ideally, highly selective, fast response, small size, hydrogen sensors are needed. Although sensors based on different technologies may be used, thin-film sensors based on palladium (Pd) are preferred due to their compactness and fast response. They detect hydrogen by monitoring the changes to the electrical, mechanical or optical properties of the films. We report the development of Pd-doped tin-oxide based gas sensors prepared on thin ceramic substrates with screen printed platinum (Pt) contacts and integrated nicrome wire heaters. The sensors are tested for their performances using hydrogen-nitrogen gas mixtures to a maximum of 4%H 2 in N 2 . The sensors detect hydrogen and their response times are less than a few seconds. Also, the sensor performance is not altered by the presence of helium in the test gas mixtures. By the above desired performance characteristics, field trials of these sensors have been undertaken. The paper presents the details of the sensor fabrication, electronic circuits, experimental setup for evaluation and the test results.

  5. A Hydrogen Exchange Method Using Tritium and Sephadex: Its Application to Ribonuclease*

    Science.gov (United States)

    Englander, S. Walter

    2012-01-01

    A new method for measuring the hydrogen exchange of macromolecules in solution is described. The method uses tritium to trace the movement of hydrogen, and utilizes Sephadex columns to effect, in about 2 minutes, a separation between tritiated macromolecule and tritiated solvent great enough to allow the measurement of bound tritium. High sensitivity and freedom from artifact is demonstrated and the possible value of the technique for investigation of other kinds of colloid-small molecule interaction is indicated. Competition experiments involving tritium, hydrogen, and deuterium indicate the absence of any equilibrium isotope effect in the ribonuclease-hydrogen isotope system, though a secondary kinetic isotope effect is apparent when ribonuclease is largely deuterated. Ribonuclease shows four clearly distinguishable kinetic classes of exchangeable hydrogens. Evidence is marshaled to suggest the independently measurable classes II, III, and IV (in order of decreasing rate of exchange) to represent “random-chain” peptides, peptides involved in α-helix, and otherwise shielded side-chain and peptide hydrogens, respectively. PMID:14075117

  6. Application of rice rhizosphere microflora for hydrogen production from apple pomace

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Tetsuya [Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan); Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Matsumoto, Hisami [Nishihara Environment Technology Inc., Tokyo 108-0023 (Japan); Abe, Jun [AE-Bio, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657 (Japan); Morita, Shigenori [Institute for Sustainable Agro-ecosystem Services (ISAS), Graduate School of Agriculture and Life Sciences, The University of Tokyo, Nishitokyo, Tokyo 188-0002 (Japan)

    2010-07-15

    The combination of substrate materials and bacteria is an important factor affecting conversion technology for biological hydrogen production. We performed anaerobic hydrogen fermentation of apple pomace wastes using rhizosphere bacterial microflora of rice as the parent inoculum. In the vial test, the optimal condition for hydrogen fermentation was initial pH 6.0, 35 C, and 73.4 g pomace per liter of medium (equivalent to 10 g-hexose/L). In the batch experiment (pH 6.0, temperature 35 C) the hydrogen yield reached 2.3 mol-H{sub 2}/mol-hexose. The time course of biogas production and PCR-DGGE analysis suggest that Clostridium spp. decomposed degradable carbohydrates rapidly and a part of the refractory carbohydrate (e.g. pectin) gradually in the apple pomace slurry. In addition to hydrogen, volatile fatty acids (VFAs) were produced in the anaerobic fermentation of apple pomace, which can be a substrate for methane fermentation. The rice rhizosphere can be a promising source of inoculum bacteria for hydrogen fermentation in combination with plant material waste like apple pomace. (author)

  7. Questioning hydrogen

    International Nuclear Information System (INIS)

    Hammerschlag, Roel; Mazza, Patrick

    2005-01-01

    As an energy carrier, hydrogen is to be compared to electricity, the only widespread and viable alternative. When hydrogen is used to transmit renewable electricity, only 51% can reach the end user due to losses in electrolysis, hydrogen compression, and the fuel cell. In contrast, conventional electric storage technologies allow between 75% and 85% of the original electricity to be delivered. Even when hydrogen is extracted from gasified coal (with carbon sequestration) or from water cracked in high-temperature nuclear reactors, more of the primary energy reaches the end user if a conventional electric process is used instead. Hydrogen performs no better in mobile applications, where electric vehicles that are far closer to commercialization exceed fuel cell vehicles in efficiency, cost and performance. New, carbon-neutral energy can prevent twice the quantity of GHG's by displacing fossil electricity than it can by powering fuel cell vehicles. The same is true for new, natural gas energy. New energy resources should be used to displace high-GHG electric generation, not to manufacture hydrogen

  8. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    Energy Technology Data Exchange (ETDEWEB)

    Mashovets, N.S., E-mail: mashovets@rambler.ru [Khmelnickiy National University (Ukraine); Pastukh, I.M., E-mail: pastim@mail.ru [Khmelnickiy National University (Ukraine); Voloshko, S.M. [Khmelnickiy National University (Ukraine); National Technical University of Ukraine “Kyiv Polytechnic Institute” (Ukraine)

    2017-01-15

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm{sup 2}. The above material shows the promise of the technology of low

  9. Aspects of the practical application of titanium alloys after low temperature nitriding glow discharge in hydrogen- free -gas media

    International Nuclear Information System (INIS)

    Mashovets, N.S.; Pastukh, I.M.; Voloshko, S.M.

    2017-01-01

    Highlights: • Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. • Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). • The above material shows the promise of the technology of low-temperature hydrogen-nitriding by glow discharge. This greatly expands the range of practical applications of titanium alloys. - Abstract: X-ray diffraction analysis, X-ray photoelectron spectroscopy, and Electron Auger-spectroscopy investigation of phase transformation on the surface of the VT8 titanium alloy after a low temperature hydrogen-free nitriding in a glow discharge. Operational characteristics of titanium alloys defined physical-mechanical characteristics of the surface and their phase composition, which depend on the process parameters of nitriding. Surface modification of titanium alloys were carried out by low-temperature nitriding in a glow discharge in hydrogen-free environment. The main advantage of this method lies in the absence of hydrogen embrittlement and complete environmental safety process. Application of the glow discharge can not only speed up the process by the order of the diffusion surface saturation with nitrogen, but also significantly alters the kinetics of the process and quality of the nitrided layer, in particular its physio-mechanical properties and phase composition. For research purposes, the standards from an α + β alloy Ti-Al6-Cr2-Mo2,5 (VT8) were used. Research into the phase composition was performed by X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). Stratified analysis by AES was conducted by etching the surface of the samples’ argon ion beam with diameters of 1.5 mm with an energy of 3000 eV and a current density of 400 mA/cm 2 . The above material shows the promise of the technology of low

  10. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  11. Metastable hydrogen

    International Nuclear Information System (INIS)

    Dose, V.

    1982-01-01

    This paper deals with the basic physical properties of the metastable 2 2 sub(1/2) state of atomic hydrogen. Applications relying on its special properties, including measurement of the Lamb shift, production of spin-polarized protons and the measurement of molecular electric moments, are discussed. (author)

  12. Development of a two-stage light gas gun to accelerate hydrogen pellets to high speeds for plasma fueling applications

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foust, C.R.; Gouge, M.J.; Fehling, D.T.; Sparks, D.O.

    1988-01-01

    The development of a two-stage light gas gun to accelerate hydrogen isotope pellets to high speeds is under way at Oak Ridge National Laboratory. High velocities (>2 km/s) are desirable for plasma fueling applications, since the faster pellets can penetrate more deeply into large, hot plasmas and deposit atoms of fuel directly in a larger fraction of the plasma volume. In the initial configuration of the two-stage device, a 2.2-l volume (/ 3 for frozen hydrogen isotopes). However, the use of sabots to encase and protect the cryogenic pellets from the high peak pressures will probably be required to realize speeds of ∼3 km/s or greater. The experimental plan includes acceleration of hydrogen isotopes as soon as the gun geometry and operating parameters are optimized; theoretical models are being used to aid in this process. The hardware is being designed to accommodate repetitive operation, which is the objective of this research and is required for future applications. 25 refs., 6 figs., 1 tab

  13. Taking the Politics Out of Satellite and Space-Based Communications Protocols

    Science.gov (United States)

    Ivancic, William D.

    2006-01-01

    After many years of studies, experimentation, and deployment, large amounts of misinformation and misconceptions remain regarding applicability of various communications protocols for use in satellite and space-based networks. This paper attempts to remove much of the politics, misconceptions, and misinformation that have plagued spacebased communications protocol development and deployment. This paper provides a common vocabulary for communications; a general discussion of the requirements for various communication environments; an evaluation of tradeoffs between circuit and packet-switching technologies, and the pros and cons of various link, network, transport, application, and security protocols. Included is the applicability of protocol enhancing proxies to NASA, Department of Defense (DOD), and commercial space communication systems.

  14. Use of nuclear method analysis in ultrahigh vacuum. Application to the hydrogen dosage in solids

    International Nuclear Information System (INIS)

    Chartoire, M.

    1982-01-01

    It is possible to determine hydrogen by the 1 H( 15 N,αγ) 12 C nuclear reaction, in an ultra-high vacuum and with sample temperature monitoring, without reducing the detection efficiency of the γ rays emitted. This method is sensitive on the surface of the samples as well as in the core. Further, its resolution in depth on the surface is less than 50 x 10 -4 μm for elements with an atomic number above that of silicon. This surface analysis technique competes with and supplements the performance of the Auger and ESCA spectrometries. The cooling or heating of the samples in-situ from -150 0 C to +450 0 C enables an initial approach to be made to the phenomena of adsorption of the hydrogenated species on the surface of the samples. The possibility of plotting concentration profiles to depths of around a micrometer, also provides a means for studying the sorption of hydrogen in solids. The importance is brought to light of the quality of the residual vacuum and mainly of the partial steam pressure in the curves showing the change in the concentration of surface contamination hydrogen according to the quantity of incident ions. At temperatures above 300 0 C, the radiolysis and desorption phenomena of the species thus created become very significant. These were obtained only by making a study in greater depth of the validity conditions of the model used for describing the effusion of hydrogen under the analytical beam [fr

  15. Evaluating the perspectives for hydrogen energy uptake in communities: Success criteria and their application

    International Nuclear Information System (INIS)

    Shaw, Suzanne; Mazzucchelli, Paola

    2010-01-01

    In recent years, a number of initiatives have been supported in Europe in the hydrogen energy sector. Communities can play an important role in the adoption process of these emerging technologies: supporting pre-commercial deployment, building public acceptance, and promoting innovation clusters, all of which lay the foundations for more widespread and sustained technology deployment. Participation by communities is hinged on the perceived contribution of technology adoption to community socio-economic and energy related goals, such as, climate change mitigation, air quality improvement, creation of new industries and businesses, exploitation of abundant renewable resources, and meeting growing energy needs. Hydrogen uptake in communities therefore stands to benefit development of the hydrogen energy sector and the communities themselves. This paper presents a methodology for evaluating the potential for successful large-scale hydrogen and fuel cell technology adoption-beyond demonstration projects-within defined community frameworks. This methodology can be a valuable tool, for community decision-makers and industry stakeholders alike, to evaluate and identify opportunities for large-scale hydrogen technology adoption. Results of applying the methodology are presented for three community types: islands, cities and regions. The work in this paper reflects work done within the frame of the European Commission-funded 'Roads2HyCom' project, Work Package 3.

  16. National Coordination Office for Space-Based PNT

    Science.gov (United States)

    Shaw, M. E.

    2008-12-01

    In December 2004, President Bush issued the US Policy on space-based positioning, navigation, and timing (PNT), providing guidance on the management of the Global Positioning System (GPS) and other space- based PNT systems. The policy established the National Executive Committee (EXCOM) to advise and coordinate federal agencies on matters related to space-based PNT. Chaired jointly by the deputy secretaries of defense and transportation, the EXCOM includes equivalent level officials from the Departments of State, the Interior, Agriculture, Commerce, and Homeland Security, the Joint Chiefs of Staff, and the National Aeronautics and Space Administration (NASA). A National Coordination Office (NCO) supports the EXCOM through an interagency staff. Since establishing the EXCOM and NCO in 2005, the organizations have quickly grown in influence and effectiveness, leading or managing many interagency initiatives including the development of a Five-Year National Space-Based PNT Plan, the Space-Based PNT Interference Detection and Mitigation (IDM) Plan, and other strategic documents. The NCO has also facilitated interagency coordination on numerous policy issues and on external communications intended to spread a consistent, positive US message about space-based PNT. Role of the NCO - The purpose of the EXCOM is to provide top-level guidance to US agencies regarding space-based PNT infrastructure. The president established it at the deputy secretary level to ensure its strategic recommendations effect real change in agency budgets. Recognizing such high-level officials could only meet every few months, the president directed the EXCOM to establish an NCO to carry out its day-to-day business, including overseeing the implementation of EXCOM action items across the member agencies. These range from the resolution of funding issues to the assessment of strategic policy options. They also include the completion of specific tasks and documents requested by the EXCOM co

  17. Deactivation of hydrophobic catalysts for a hydrogen isotope exchange: Application of the time-on-stream theory

    International Nuclear Information System (INIS)

    Choi, Heui-Joo; Lee, Han Soo; Ahn, Do-Hee; Kim, Jeong-Guk; Kim, Wi-soo; Sohn, SoonHwan

    2005-01-01

    A recycle reactor was built for the purpose of characterizing newly developed hydrophobic catalysts for a hydrogen isotope exchange. The catalytic rate constants of two types of hydrophobic catalysts were measured at a 100% relative humidity. The catalytic rate constants were measured at 60 deg C for 28 days and both the catalysts showed very high initial catalytic rate constants. The measured deactivation profile showed that the catalytic rate constants of both the catalysts were almost identical for 28 days. The deactivation of the catalysts was modelled based upon the time-on-stream theory. The deactivation profiles of the catalysts were estimated by using the model for a period of three years. The results showed that both the catalysts had a good exchange capacity for hydrogen isotopes and they could be applicable to a tritium removal facility that will be built at the Wolsong nuclear power plants in the near future

  18. [Applications of self-renewing coatings to improved vacuum materials, hydrogen permeation barriers and sputter-resistant materials

    International Nuclear Information System (INIS)

    1985-01-01

    The phenomena of Gibbsian segregation, radiation-induced segregation and radiation-induced precipitation modify the surface composition and properties of alloys and compounds. In some cases, the change in properties is both substantial and useful, the most notable example being that of stainless steel. When surface-modifying phenomena are investigated as a class, a number of additional materials emerge as candidates for study, having potential applications in a number of technologically important areas. These materials are predicted to produce self-sustaining coatings which provide hydrogen permeation barriers, low-sticking and stimulated desorption coefficients for vacuum applications, and low-Z, sputtering-resistant surfaces for fusion applications. Several examples of each type of material are presented, along with a discussion of the experimental verification of their properties and the status of the corresponding applications development program

  19. Hydrogen Through Water Electrolysis and Biomass Gasification for Application in Fuel Cells

    Directory of Open Access Journals (Sweden)

    Y. Kirosa

    2017-03-01

    Full Text Available Hydrogen is considered to be one of the most promising green energy carrier in the energy storage and conversion scenario. Although it is abundant on Earth in the form of compounds, its occurrence in free form is extremely low. Thus, it has to be produced by reforming processes, steam reforming (SR, partial oxidation (POX and auto-thermal reforming (ATR mainly from fossil fuels for high throughput with high energy requirements, pyrolysis of biomass and electrolysis. Electrolysis is brought about by passing electric current though two electrodes to evolve water into its constituent parts, viz. hydrogen and oxygen, respectively. Hydrogen produced by non-noble metal catalysts for both anode and cathode is therefore cost-effective and can be integrated into fuel cells for direct chemical energy conversion into electrical energy electricity, thus meeting the sustainable and renewable use with low carbon footprint.

  20. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  1. Application of microscopy methods to the understanding of mechanisms involved in ilmenite reduction by hydrogen

    International Nuclear Information System (INIS)

    De Vries, M.; Grey, I.; Fitzgerald, J.

    2003-01-01

    Full text: Titania pigment is one of the major drivers of the mineral sands industry with production of over 4 million tpa in 2002 for paints, plastics, paper and ceramics applications. The main feedstock for titania pigment production is ilmenite, FeTiO 3 . It is used either directly or after it has been upgraded to a higher titania content. The major commercial upgrading processes are electro smelting (titania slag) or high temperature char reduction followed by iron removal (synthetic rutile SR). Future ilmenite upgrading processes are likely to use low temperature hydrogen reduction according to reaction, followed by aeration of the metallic iron and acid leaching to produce a high grade SR (Nicholson et al, 2000). The commercial application of such a process requires a detailed knowledge of the kinetics of reaction. FeTiO 3 + H 2 = Fe(m) + TiO 2 + H 2 O. The kinetics of ilmenite reduction has been studied at CSIRO Minerals using a specially designed thermogravimetric apparatus built around a Cahn pressurised symmetrical beam balance. The kinetics have been measured as a function of different operating parameters such as temperature, gas velocity and pressure. The parameters were set so as to minimise mass transport effects and increase chemical reaction control and to ensure the reduction kinetics are outside the gas starvation region. Small samples were used that had been sintered at close to melting point to form large grains with low unconnected porosity. High flow rates of reactant gas were also used. The application of a range of microscopy techniques to the reduced samples at various stages of reaction conversion has been critical to the development of an understanding of the reaction mechanisms. From analysis of TEM, IFESEM and optical microscopy results it appears that initially, chemical reaction is rate controlling at the surface and as the reaction proceeds topochemically inwards then diffusion mechanisms increase their control. Reaction proceeds

  2. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    Science.gov (United States)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  3. Hydrogen as Future Energy Carrier: The ENEA Point of View on Technology and Application Prospects

    Directory of Open Access Journals (Sweden)

    Marina Ronchetti

    2009-03-01

    Full Text Available Hydrogen and fuel cells should reduce costs and increase reliability and durability to compete in the energy market. A considerable long term effort is necessary for research, development and demonstration of adequate solutions; important programs in this sense are carried out in the main industrialized countries, with the involvement of many industries, research structures and stakeholders. In such framework a relevant role is played in Italy by ENEA (Italian Agency for New Technologies, Energy and Environment. In the paper the main aspects related to the possible hydrogen role in the future society are addressed, according to ENEA perspectives.

  4. CFD modelling of hydrogen stratification in enclosures: Model validation and application to PAR performance

    Energy Technology Data Exchange (ETDEWEB)

    Hoyes, J.R., E-mail: james.hoyes@hsl.gsi.gov.uk; Ivings, M.J.

    2016-12-15

    Highlights: • The ability of CFD to predict hydrogen stratification phenomena is investigated. • Contrary to expectation, simulations on tetrahedral meshes under-predict mixing. • Simulations on structured meshes give good agreement with experimental data. • CFD model used to investigate the effects of stratification on PAR performance. • Results show stratification can have a significant effect on PAR performance. - Abstract: Computational Fluid Dynamics (CFD) models are maturing into useful tools for supporting safety analyses. This paper investigates the capabilities of CFD models for predicting hydrogen stratification in a containment vessel using data from the NEA/OECD SETH2 MISTRA experiments. Further simulations are then carried out to illustrate the qualitative effects of hydrogen stratification on the performance of Passive Autocatalytic Recombiner (PAR) units. The MISTRA experiments have well-defined initial and boundary conditions which makes them well suited for use in a validation study. Results are presented for the sensitivity to mesh resolution and mesh type. Whilst the predictions are shown to be largely insensitive to the mesh resolution they are surprisingly sensitive to the mesh type. In particular, tetrahedral meshes are found to induce small unphysical convection currents that result in molecular diffusion and turbulent mixing being under-predicted. This behaviour is not unique to the CFD model used here (ANSYS CFX) and furthermore, it may affect simulations run on other non-aligned meshes (meshes that are not aligned perpendicular to gravity), including non-aligned structured meshes. Following existing best practice guidelines can help to identify potential unphysical predictions, but as an additional precaution consideration should be given to using gravity-aligned meshes for modelling stratified flows. CFD simulations of hydrogen recombination in the Becker Technologies THAI facility are presented with high and low PAR positions

  5. Application of hydrogen water chemistry to moderate corrosive circumstances around the reactor pressure vessel bottom of boiling water reactors

    International Nuclear Information System (INIS)

    Uchida, Shunsuke; Ibe, Eishi; Nakata, Kiyatomo; Fuse, Motomasa; Ohsumi, Katsumi; Takashima, Yoshie

    1995-01-01

    Many efforts to preserve the structural integrity of major piping, components, and structures in a boiling water reactor (BWR) primary cooling system have been directed toward avoiding intergranular stress corrosion cracking (IGSCC). Application of hydrogen water chemistry (HWC) to moderate corrosive circumstances is a promising approach to preserve the structural integrity during extended lifetimes of BWRs. The benefits of HWC application are (a) avoiding the occurrence of IGSCC on structural materials around the bottom of the crack growth rate, even if microcracks are present on the structural materials. Several disadvantage caused by HWC are evaluated to develop suitable countermeasures prior to HWC application. The advantages and disadvantages of HWC are quantitatively evaluated base on both BWR plant data and laboratory data shown in unclassified publications. Their trade-offs are discussed, and suitable applications of HWC are described. It is concluded that an optimal amount of Hydrogen injected into the feedwater can moderate corrosive circumstances, in the region to be preserved, without serious disadvantages. The conclusions have been drawn by combining experimental and theoretical results. Experiments in BWR plants -- e.g., direct measurements of electrochemical corrosion potential and crack growth rate at the RPV bottom -- are planned that would collect data to support the theoretical considerations

  6. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  7. Application of oxygen and hydrogen isotopes of waters in Tengchong hydrothermal systems of China

    International Nuclear Information System (INIS)

    Shen Minzi; Hou Fagao; Lin Ruifen; Ni Baoling

    1988-01-01

    This paper summarizes the results obtained for hydrothermal systems in Tengchong by using deuterium, oxygen-18 and tritium as natural tracers. On the basis of deuterium and oxygen-18 analyses of 69 thermal springs and some other meteoric, surface and underground water samples it has been confirmed that all geothermal waters are originally meteoric, but the δD of hot spring waters is often lighter than that of local surface and underground waters. It seems that the recharging water is from higher elevations and far from the thermal areas. The differences in oxygen-18 and deuterium contents between thermal springs and deep thermal waters have been calculated for single-stage steam separation from 276 deg. C to 96 deg. C. The oxygen isotope shift of deep thermal water produced by water-rock reactions is of 1.57 per mille and part of the observed oxygen isotope shift of thermal springs seems to have occurred due to subsurface boiling. The tritium content ( 18 O three subsurface processes would have been distinguished, they are subsurface boiling, mixing-subsurface boiling and subsurface boiling-mixing. The springs formed by subsurface boiling have tritium content of less than 5 TU. The tritium content of 5-10 TU is for springs formed by mixing-subsurface boiling and 10-20 TU is for subsurface boiling-mixing. The tritium content of geothermal water in Hot Sea, geothermal field seems higher than that of the Geysers U.S.A. and Wairakei N.Z. It would show that the circulation time of the thermal water in Hot Sea geothermal system is not so long, the reservoir is quite good with percolation and the recharging water is sufficiently enough. The most important applications of oxygen and hydrogen isotopes of water in geothermal study are in two ways, as tracers of water origins and as tracers of reservoir processes. This paper discussed these two aspects of Tengchong hydrothermal systems. 6 refs, 6 figs, 5 tabs

  8. Hydrogen Technologies Safety Guide

    Energy Technology Data Exchange (ETDEWEB)

    Rivkin, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burgess, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Buttner, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  9. Hydrogen-metal systems

    International Nuclear Information System (INIS)

    Wenzl, H.; Springer, T.

    1976-01-01

    A survey is given on the alloys of metal crystals with hydrogen. The system niobium-hydrogen and its properties are especially dealt with: diffusion and heat of solution of hydrogen in the host crystal, phase diagram, coherent and incoherent phase separation, application of metal-hydrogen systems in technology. Furthermore, examples from research work in IFF (Institut fuer Festkoerperforschung) of the Nuclear Research Plant, Juelich, in the field of metal-H systems are given in summary form. (GSC) [de

  10. Cyber Security Threats to Safety-Critical, Space-Based Infrastructures

    Science.gov (United States)

    Johnson, C. W.; Atencia Yepez, A.

    2012-01-01

    Space-based systems play an important role within national critical infrastructures. They are being integrated into advanced air-traffic management applications, rail signalling systems, energy distribution software etc. Unfortunately, the end users of communications, location sensing and timing applications often fail to understand that these infrastructures are vulnerable to a wide range of security threats. The following pages focus on concerns associated with potential cyber-attacks. These are important because future attacks may invalidate many of the safety assumptions that support the provision of critical space-based services. These safety assumptions are based on standard forms of hazard analysis that ignore cyber-security considerations This is a significant limitation when, for instance, security attacks can simultaneously exploit multiple vulnerabilities in a manner that would never occur without a deliberate enemy seeking to damage space based systems and ground infrastructures. We address this concern through the development of a combined safety and security risk assessment methodology. The aim is to identify attack scenarios that justify the allocation of additional design resources so that safety barriers can be strengthened to increase our resilience against security threats.

  11. On depth profiling of hydrogen and helium isotopes and its application to ion-implantation studies

    International Nuclear Information System (INIS)

    Boettiger, J.

    1979-01-01

    The thesis is divided into two parts, the first being a general review of the experimental methods for depth profiling of light isotopes, where ion beams are used. In the second part, studies of ion implantation of hydrogen and helium isotopes, applying the techniques discussed in the first part, are described. The paper summarizes recent experimental results and discusses recent developments. (Auth.)

  12. Hydrogen storage for fuel cell applications: Challenges, opportunities and prospects for metal-organic frameworks

    CSIR Research Space (South Africa)

    Langmi, Henrietta W

    2013-07-01

    Full Text Available and release, and cycle life of the materials. In the past decade, there has been growing interest in metal organic frameworks (MOFs) as hydrogen storage materials and significant progress has been made in this regard. The challenges, opportunities...

  13. Low-level hydrogen peroxide generation by unbleached cotton nonwovens: implications for wound healing applications

    Science.gov (United States)

    Greige cotton is an intact plant fiber. The cuticle and primary cell wall near the outer surface of the cotton fiber contains pectin, peroxidases, superoxide dismutase (SOD), and trace metals, which are associated with hydrogen peroxide (H2O2) generation during cotton fiber development. The compon...

  14. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  15. Numerical comparison of hydrogen-air reaction mechanisms for unsteady shockinduced combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Pradeep; Kim, Kui Soon; Oh, Se Jong; Choi, Jeong Yeol [Pusan National University, Busan (Korea, Republic of)

    2015-03-15

    An unsteady shock-induced combustion (SIC) is characterized by the regularly oscillating combustion phenomenon behind the shock wave supported by the blunt projectile flying around the speed of Chapman-Jouguet detonation wave. The SIC is the coupling phenomenon between the hypersonic flow and the chemical kinetics, but the effects of chemical kinetics have been rarely reported. We compared hydrogen-air reaction mechanisms for the shock-induced combustion to demonstrate the importance of considering the reaction mechanisms for such complex flows. Seven hydrogen-air reaction mechanisms were considered, those available publically and used in other researches. As a first step in the comparison of the hydrogen combustion, ignition delay time of hydrogen-oxygen mixtures was compared at various initial conditions. Laminar premixed flame speed was also compared with available experimental data and at high pressure conditions. In addition, half-reaction length of ZND (Zeldovich-Neumann-Doering) detonation structure accounts for the length scale in SIC phenomena. Oscillation frequency of the SIC is compared by running the time-accurate 3rd-order Navier-Stokes CFD code fully coupled with the detailed chemistry by using four levels of grid resolutions.

  16. Numerical comparison of hydrogen-air reaction mechanisms for unsteady shockinduced combustion applications

    International Nuclear Information System (INIS)

    Kumar, P. Pradeep; Kim, Kui Soon; Oh, Se Jong; Choi, Jeong Yeol

    2015-01-01

    An unsteady shock-induced combustion (SIC) is characterized by the regularly oscillating combustion phenomenon behind the shock wave supported by the blunt projectile flying around the speed of Chapman-Jouguet detonation wave. The SIC is the coupling phenomenon between the hypersonic flow and the chemical kinetics, but the effects of chemical kinetics have been rarely reported. We compared hydrogen-air reaction mechanisms for the shock-induced combustion to demonstrate the importance of considering the reaction mechanisms for such complex flows. Seven hydrogen-air reaction mechanisms were considered, those available publically and used in other researches. As a first step in the comparison of the hydrogen combustion, ignition delay time of hydrogen-oxygen mixtures was compared at various initial conditions. Laminar premixed flame speed was also compared with available experimental data and at high pressure conditions. In addition, half-reaction length of ZND (Zeldovich-Neumann-Doering) detonation structure accounts for the length scale in SIC phenomena. Oscillation frequency of the SIC is compared by running the time-accurate 3rd-order Navier-Stokes CFD code fully coupled with the detailed chemistry by using four levels of grid resolutions.

  17. Industrial applications of plasma, microwave and ultrasound techniques : nitrogen-fixation and hydrogenation reactions

    NARCIS (Netherlands)

    Hessel, V.; Cravotto, G.; Fitzpatrick, P.; Patil, B.S.; Lang, J.; Bonrath, W.

    2013-01-01

    The MAPSYN project (Microwave, Acoustic and Plasma assisted SYNtheses) aims at nitrogen-fixation reactions intensified by plasma catalysis and selective hydrogenations intensified by microwaves, possibly assisted by ultrasound. Energy efficiency is the key motif of the project and the call of the

  18. Synthesis of templated carbon from nanoclay and its zeolitic derivatives for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2014-06-01

    Full Text Available materials were thoroughly characterized using XRD, SEM, TGA, TEM, N2-BET and also tested for hydrogen storage capacity. The resulting templated carbons were found to be highly ordered and had mimicked the crystal morphology of the templating materials...

  19. Difluoroborane, a hydrogen-deuterium exchange catalyst. Application to pentaborane (9) and methylpentaborane (9)

    International Nuclear Information System (INIS)

    Kline, G.A.; Porter, R.F.

    1981-01-01

    The hydrogen exchange reaction of pentaborane with difluoroborane suggests the existence of a multicentered intermediate similar to that proposed by DeStefano and Porter for the difluoroborane-borazine exchange reaction. A similar intermediate may apply to the borane-pentaborane exchange reaction

  20. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-01-01

    Full Text Available A modulated synthesis of Zr-metal organic framework (Zr-MOF) with improved ease of handling and decreased reaction time is reported to yield highly crystalline Zr-MOF with well-defined octahedral shaped crystals for practical hydrogen storage...

  1. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Sharifan, H.R.; Banan, N.; Davari, A.

    2009-01-01

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO 2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO 2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  2. Hydrogen permeability, diffusivity, and solubility of SUS 316L stainless steel in the temperature range 400 to 800 .deg. C for fusion reactor applications

    International Nuclear Information System (INIS)

    Lee, S. K.; Kim, H. S.; Noh, S. J.; Han, J. H.

    2011-01-01

    Tritium permeation is one of the critical issues for the economy and safety of fusion power plants. As an initial step in tritium permeation research for fusion reactor applications, experiments were initiated by using hydrogen as a tritium substitute. An experimental system for hydrogen permeation and related behaviors in solid materials was designed and constructed. A continuous flow method was adopted with a capacity for high temperatures up to ∼1,000 .deg. C under ultra-high vacuums of ∼10 -7 Pa. The hydrogen permeation behavior in SUS 316L stainless steel was investigated in the temperature range from 400 .deg. C to 800 .deg. C. As a result, the permeability, diffusivity and solubility of hydrogen were determined. The results were compared with the previously existing reference data. Changes in the sample's surface morphology after the hydrogen permeation experiment are also addressed.

  3. Electrochemical Synthesis of Polypyrrole, Reduced Graphene Oxide, and Gold Nanoparticles Composite and Its Application to Hydrogen Peroxide Biosensor

    Directory of Open Access Journals (Sweden)

    Baoyan Wu

    2016-11-01

    Full Text Available Here we report a facile eco-friendly one-step electrochemical approach for the fabrication of a polypyrrole (PPy, reduced graphene oxide (RGO, and gold nanoparticles (nanoAu biocomposite on a glassy carbon electrode (GCE. The electrochemical behaviors of PPy–RGO–nanoAu and its application to electrochemical detection of hydrogen peroxide were investigated by cyclic voltammetry. Graphene oxide and pyrrole monomer were first mixed and casted on the surface of a cleaned GCE. After an electrochemical processing consisting of the electrooxidation of pyrrole monomer and simultaneous electroreduction of graphene oxide and auric ions (Au3+ in aqueous solution, a PPy–RGO–nanoAu biocomposite was synthesized on GCE. Each component of PPy–RGO–nanoAu is electroactive without non-electroactive substance. The obtained PPy–RGO–nanoAu/GCE exhibited high electrocatalytic activity toward hydrogen peroxide, which allows the detection of hydrogen peroxide at a negative potential of about −0.62 V vs. SCE. The amperometric responses of the biosensor displayed a sensitivity of 40 µA/mM, a linear range of 32 µM–2 mM, and a detection limit of 2.7 µM (signal-to-noise ratio = 3 with good stability and acceptable reproducibility and selectivity. The results clearly demonstrate the potential of the as-prepared PPy–RGO–nanoAu biocomposite for use as a highly electroactive matrix for an amperometric biosensor.

  4. Tracking Solar Type II Bursts with Space Based Radio Interferometers

    Science.gov (United States)

    Hegedus, Alexander M.; Kasper, Justin C.; Manchester, Ward B.

    2018-06-01

    The Earth’s Ionosphere limits radio measurements on its surface, blocking out any radiation below 10 MHz. Valuable insight into many astrophysical processes could be gained by having a radio interferometer in space to image the low frequency window for the first time. One application is observing type II bursts tracking solar energetic particle acceleration in Coronal Mass Ejections (CMEs). In this work we create a simulated data processing pipeline for several space based radio interferometer (SBRI) concepts and evaluate their performance in the task of localizing these type II bursts.Traditional radio astronomy software is hard coded to assume an Earth based array. To circumvent this, we manually calculate the antenna separations and insert them along with the simulated visibilities into a CASA MS file for analysis. To create the realest possible virtual input data, we take a 2-temperature MHD simulation of a CME event, superimpose realistic radio emission models from the CME-driven shock front, and propagate the signal through simulated SBRIs. We consider both probabilistic emission models derived from plasma parameters correlated with type II bursts, and analytical emission models using plasma emission wave interaction theory.One proposed SBRI is the pathfinder mission SunRISE, a 6 CubeSat interferometer to circle the Earth in a GEO graveyard orbit. We test simulated trajectories of SunRISE and image what the array recovers, comparing it to the virtual input. An interferometer on the lunar surface would be a stable alternative that avoids noise sources that affect orbiting arrays, namely the phase noise from positional uncertainty and atmospheric 10s-100s kHz noise. Using Digital Elevation Models from laser altimeter data, we test different sets of locations on the lunar surface to find near optimal configurations for tracking type II bursts far from the sun. Custom software is used to model the response of different array configurations over the lunar year

  5. Hydrogen energy

    International Nuclear Information System (INIS)

    2005-03-01

    This book consists of seven chapters, which deals with hydrogen energy with discover and using of hydrogen, Korean plan for hydrogen economy and background, manufacturing technique on hydrogen like classification and hydrogen manufacture by water splitting, hydrogen storage technique with need and method, hydrogen using technique like fuel cell, hydrogen engine, international trend on involving hydrogen economy, technical current for infrastructure such as hydrogen station and price, regulation, standard, prospect and education for hydrogen safety and system. It has an appendix on related organization with hydrogen and fuel cell.

  6. Hydrogen energy assessment

    Energy Technology Data Exchange (ETDEWEB)

    Salzano, F J; Braun, C [eds.

    1977-09-01

    The purpose of this assessment is to define the near term and long term prospects for the use of hydrogen as an energy delivery medium. Possible applications of hydrogen are defined along with the associated technologies required for implementation. A major focus in the near term is on industrial uses of hydrogen for special applications. The major source of hydrogen in the near term is expected to be from coal, with hydrogen from electric sources supplying a smaller fraction. A number of potential applications for hydrogen in the long term are identified and the level of demand estimated. The results of a cost benefit study for R and D work on coal gasification to hydrogen and electrolytic production of hydrogen are presented in order to aid in defining approximate levels of R and D funding. A considerable amount of data is presented on the cost of producing hydrogen from various energy resources. A key conclusion of the study is that in time hydrogen is likely to play a role in the energy system; however, hydrogen is not yet competitive for most applications when compared to the cost of energy from petroleum and natural gas.

  7. Why hydrogen; Pourquoi l'hydrogene?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-02-01

    The energy consumption increase and the associated environmental risks, led to develop new energy sources. The authors present the potentialities of the hydrogen in this context of energy supply safety. They detail the today market and the perspectives, the energy sources for the hydrogen production (fossils, nuclear and renewable), the hydrogen transport, storage, distribution and conversion, the application domains, the associated risks. (A.L.B.)

  8. Computational study of pristine and titanium-doped sodium alanates for hydrogen storage applications

    Science.gov (United States)

    Dathar, Gopi Krishna Phani

    The emphasis of this research is to study and elucidate the underlying mechanisms of reversible hydrogen storage in pristine and Ti-doped sodium aluminum hydrides using molecular modeling techniques. An early breakthrough in using complex metal hydrides as hydrogen storage materials is from the research on sodium alanates by Bogdanovic et al., in 1997 reporting reversible hydrogen storage is possible at moderate temperatures and pressures in transition metal doped sodium alanates. Anton reported titanium salts as the best catalysts compared to all other transition metal salts from his further research on transition metal doped sodium alanates. However, a few questions remained unanswered regarding the role of Ti in reversible hydrogen storage of sodium alanates with improved thermodynamics and kinetics of hydrogen desorption. The first question is about the position of transition metal dopants in the sodium aluminum hydride lattice. The position is investigated by identifying the possible sites for titanium dopants in NaAlH4 lattice and studying the structure and dynamics of possible compounds resulting from titanium doping in sodium alanates. The second question is the role of titanium dopants in improved thermodynamics of hydrogen desorption in Ti-doped NaAlH4. Though it is accepted in the literature that formation of TiAl alloys (Ti-Al and TiAl3) is favorable, reaction pathways are not clearly established. Furthermore, the source of aluminum for Ti-Al alloy formation is not clearly understood. The third question in this area is the role of titanium dopants in improved kinetics of hydrogen absorption and desorption in Ti-doped sodium alanates. This study is directed towards addressing the three longstanding questions in this area. Thermodynamic and kinetic pathways for hydrogen desorption in pristine NaAlH4 and formation of Ti-Al alloys in Ti-doped NaAlH 4, are elucidated to understand the underlying mechanisms of hydrogen desorption. Density functional theory

  9. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  10. Differential equation of exospheric lateral transport and its application to terrestrial hydrogen

    Science.gov (United States)

    Hodges, R. R., Jr.

    1973-01-01

    The differential equation description of exospheric lateral transport of Hodges and Johnson is reformulated to extend its utility to light gases. Accuracy of the revised equation is established by applying it to terrestrial hydrogen. The resulting global distributions for several static exobase models are shown to be essentially the same as those that have been computed by Quessette using an integral equation approach. The present theory is subsequently used to elucidate the effects of nonzero lateral flow, exobase rotation, and diurnal tidal winds on the hydrogen distribution. Finally it is shown that the differential equation of exospheric transport is analogous to a diffusion equation. Hence it is practical to consider exospheric transport as a continuation of thermospheric diffusion, a concept that alleviates the need for an artificial exobase dividing thermosphere and exosphere.

  11. Novel catalysts for hydrogen fuel cell applications:Final report (FY03-FY05).

    Energy Technology Data Exchange (ETDEWEB)

    Thornberg, Steven Michael; Coker, Eric Nicholas; Jarek, Russell L.; Steen, William Arthur

    2005-12-01

    The goal of this project was to develop novel hydrogen-oxidation electrocatalyst materials that contain reduced platinum content compared to traditional catalysts by developing flexible synthesis techniques to fabricate supported catalyst structures, and by verifying electrochemical performance in half cells and ultimately laboratory fuel cells. Synthesis methods were developed for making small, well-defined platinum clusters using zeolite hosts, ion exchange, and controlled calcination/reduction processes. Several factors influence cluster size, and clusters below 1 nm with narrow size distribution have been prepared. To enable electrochemical application, the zeolite pores were filled with electrically-conductive carbon via infiltration with carbon precursors, polymerization/cross-linking, and pyrolysis under inert conditions. The zeolite host was then removed by acid washing, to leave a Pt/C electrocatalyst possessing quasi-zeolitic porosity and Pt clusters of well-controlled size. Plotting electrochemical activity versus pyrolysis temperature typically produces a Gaussian curve, with a peak at ca. 800 C. The poorer relative performances at low and high temperature are due to low electrical conductivity of the carbon matrix, and loss of zeolitic structure combined with Pt sintering, respectively. Cluster sizes measured via adsorption-based methods were consistently larger than those observed by TEM and EXAFS, suggesting , that a fraction of the clusters were inaccessible to the fluid phase. Detailed EXAFS analysis has been performed on selected catalysts and catalyst precursors to monitor trends in cluster size evolution, as well as oxidation states of Pt. Experiments were conducted to probe the electroactive surface area of the Pt clusters. These Pt/C materials had as much as 110 m{sup 2}/g{sub pt} electroactive surface area, an almost 30% improvement over what is commercially (mfg. by ETEK) available (86 m{sup 2}/g{sub pt}). These Pt/C materials also perform

  12. Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Hua, T. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K. [Argonne National Lab. (ANL), Argonne, IL (United States); Lasher, S. [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Sinha, J. [TIAX LLC, Lexington, MA (United States)

    2009-12-01

    Technical report describing DOE's second assessment report on a third generation (Gen3) system capable of storing hydrogen at cryogenic temperatures within a pressure vessel on-board a vehicle. The report includes an overview of technical progress to date, including the potential to meet DOE onboard storage targets, as well as independent reviews of system cost and energy analyses of the technology paired with delivery costs.

  13. Application of hydrophobic Pt catalysts in hydrogen isotopes separation from nuclear effluents

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, G.; Popescu, I.; Stefanescu, I.; Retegan, T. [National Institute of Cryogenics and Isotopic Separation (Romania)

    2003-09-01

    According to reviewed references and to tests effected by authors the platinum/carbon/teflon is the most active and the most stable catalyst for removal of tritium from nuclear effluents by isotopic exchange between hydrogen and liquid water. To improve the performances of process it is recommended to use the catalyst as ordered or random mixed catalytic packing in a trickle bed reactor. (O.M.)

  14. Application of the Ursell-Mayer method in the theory of spin-polarized atomic hydrogen

    International Nuclear Information System (INIS)

    Kilic, S.; Radelja, T.

    1981-01-01

    Employing the Ursell-Mayer method and Ljolje semi-free gas model analytic relations describing ground state properties (energy, pressure, compressibility, sound velocity, radial distribution function and one-particle density matrix) of spin-polarized atomic hydrogen were derived. The expressions are valid up to density 2 10 26 atoms/m 3 . It was found out that at density of 2 10 26 atoms/m 3 the condensation of particle in momentum space is 88% (at absolute zero). (orig.)

  15. Application of polymeric foams for separation, storage and absorption of hydrogen

    Czech Academy of Sciences Publication Activity Database

    Pientka, Zbyněk; Nemestóthy, N.; Bélafi-Bakó, K.

    2009-01-01

    Roč. 241, 1-3 (2009), s. 106-110 ISSN 0011-9164. [Membrane Science and Technology Conference of Visegrad Countries PERMEA 2007 /3./. Siofok, 02.09.2007-06.09.2007] R&D Projects: GA ČR GA203/06/1207 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas separation * hydrogen * polymeric foam Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.034, year: 2009

  16. Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen generation

    International Nuclear Information System (INIS)

    Fan Meiqiang; Sun Lixian; Xu Fen

    2010-01-01

    The hydrolysis performances of two aluminum alloys are investigated as their reactivity can be controlled via the different additives. The additive of NaCl has the positive effect to improve the hydrolysis properties of the aluminum alloys with quicker hydrolysis kinetic and lower hydrolysis temperature. For examples, in 6 min of hydrolysis reaction, the Al-5 wt%Hg-5 wt%NaCl can produce 971 mL g -1 hydrogen, higher than 917 mL g -1 hydrogen from Al-10 wt%Hg alloy. The Al-In-NaCl alloy has lower hydrolysis temperature about 10 K than that of Al-In alloy. Meanwhile, the reactivity of Al alloys can be improved or reduced via the additive metals. It can be found that the additive cadmium can reduce the reactivity of Al-Hg alloy. The Al-Hg-Cd alloys can keep good stability at the moist atmosphere below 343 K and have excellent hydrolysis performance around 343-373 K. The debased reactivity of Al-Hg-Cd composite comes from the formation of CdHg 2 compounds in the milling process. But the additive Zn and Ga doped into the Al-In-NaCl alloys can quickly increase the reactivity of the alloy which can quickly react with water at room temperature and have high hydrogen yield up to the theoretic value. Therefore, it is a promising possibility that the controllable reactivity of aluminum alloys can be obtained through the different additive according to the practical request, and the Al alloys can produce pure hydrogen for the fuel cell via the hydrolysis reaction.

  17. Expanding the isotopic toolbox: Applications of hydrogen and oxygen stable isotope ratios to food web studies

    OpenAIRE

    Hannah B Vander Zanden; David X Soto; Gabriel J Bowen; Keith A Hobson; Keith A Hobson

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicat...

  18. Expanding the Isotopic Toolbox: Applications of Hydrogen and Oxygen Stable Isotope Ratios to Food Web Studies

    OpenAIRE

    Vander Zanden, Hannah B.; Soto, David X.; Bowen, Gabriel J.; Hobson, Keith A.

    2016-01-01

    The measurement of stable carbon (δ13C) and nitrogen (δ15N) isotopes in tissues of organisms has formed the foundation of isotopic food web reconstructions, as these values directly reflect assimilated diet. In contrast, stable hydrogen (δ2H) and oxygen (δ18O) isotope measurements have typically been reserved for studies of migratory origin and paleoclimate reconstruction based on systematic relationships between organismal tissue and local environmental water. Recently, innovative applicatio...

  19. Application of Hydrogen Assisted Lean Operation to Natural Gas-Fueled Reciprocating Engines (HALO)

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2006-01-01

    Two key challenges facing Natural Gas Engines used for cogeneration purposes are spark plug life and high NOx emissions. Using Hydrogen Assisted Lean Operation (HALO), these two keys issues are simultaneously addressed. HALO operation, as demonstrated in this project, allows stable engine operation to be achieved at ultra-lean (relative air/fuel ratios of 2) conditions, which virtually eliminates NOx production. NOx values of 10 ppm (0.07 g/bhp-hr NO) for 8% (LHV H2/LHV CH4) supplementation at an exhaust O2 level of 10% were demonstrated, which is a 98% NOx emissions reduction compared to the leanest unsupplemented operating condition. Spark ignition energy reduction (which will increase ignition system life) was carried out at an oxygen level of 9%, leading to a NOx emission level of 28 ppm (0.13 g/bhp-hr NO). The spark ignition energy reduction testing found that spark energy could be reduced 22% (from 151 mJ supplied to the coil) with 13% (LHV H2/LHV CH4) hydrogen supplementation, and even further reduced 27% with 17% hydrogen supplementation, with no reportable effect on NOx emissions for these conditions and with stable engine torque output. Another important result is that the combustion duration was shown to be only a function of hydrogen supplementation, not a function of ignition energy (until the ignitability limit was reached). The next logical step leading from these promising results is to see how much the spark energy reduction translates into increase in spark plug life, which may be accomplished by durability testing.

  20. Development of a novel market forecasting tool and its application to hydrogen energy production in Scotland

    International Nuclear Information System (INIS)

    Houghton, T.; Cruden, A.

    2010-01-01

    The authors propose a novel model for forecasting the deployment of hydrogen energy systems based on a company value maximisation algorithm, designed to assist governments and other industry players in decision-making and the development of appropriate policy instruments. Current cost-minimisation approaches, such as MARKAL, have limitations particularly where price arbitrage between energy streams exists. A theoretical relationship between market sector valuations and investment activity is developed and the model is subsequently applied to the Scottish hydrogen energy market. Through the utilisation of net present value, revenue and profitability based valuations, the impact of investing in hydrogen energy infrastructure projects on three key market competitors is considered. It is shown that the three methods for calculating the value impact render different results suggesting that the use of a single method to assess forecast development scenarios, whether cost or value-based methods, may be misleading and that the holistic approach proposed is more realistic. The archivable value of this paper is to demonstrate the impact that investor expectations can have on investment decisions, a facet not captured in traditional methods of forecasting. (author)

  1. Dynamics of hydrogen in hydrogenated amorphous silicon

    Indian Academy of Sciences (India)

    is mobile and can easily move through the material). Hydrogen diffuses ... The determination of the relationship of light-enhanced hydrogen motion to ... term is negligible, and using the thermodynamic relation given below f(c) = kBT .... device-applications problematic but the normal state can be recovered by a thermal an-.

  2. Oxidative and Molecular Responses in Capsicum annuum L. after Hydrogen Peroxide, Salicylic Acid and Chitosan Foliar Applications

    Science.gov (United States)

    Mejía-Teniente, Laura; de Dalia Durán-Flores, Flor; Chapa-Oliver, Angela María; Torres-Pacheco, Irineo; Cruz-Hernández, Andrés; González-Chavira, Mario M.; Ocampo-Velázquez, Rosalía V.; Guevara-González, Ramón G.

    2013-01-01

    Hydrogen peroxide (H2O2) is an important ROS molecule (Reactive oxygen species) that serves as a signal of oxidative stress and activation of signaling cascades as a result of the early response of the plant to biotic stress. This response can also be generated with the application of elicitors, stable molecules that induce the activation of transduction cascades and hormonal pathways, which trigger induced resistance to environmental stress. In this work, we evaluated the endogenous H2O2 production caused by salicylic acid (SA), chitosan (QN), and H2O2 elicitors in Capsicum annuum L. Hydrogen peroxide production after elicitation, catalase (CAT) and phenylalanine ammonia lyase (PAL) activities, as well as gene expression analysis of cat1, pal, and pathogenesis-related protein 1 (pr1) were determined. Our results displayed that 6.7 and 10 mM SA concentrations, and, 14 and 18 mM H2O2 concentrations, induced an endogenous H2O2 and gene expression. QN treatments induced the same responses in lesser proportion than the other two elicitors. Endogenous H2O2 production monitored during several days, showed results that could be an indicator for determining application opportunity uses in agriculture for maintaining plant alert systems against a stress. PMID:23676352

  3. A Space-Based Observational Strategy for Hydrogen Cosmology Using Dynamic Polarimetry and Pattern Recognition

    Science.gov (United States)

    Burns, Jack O.; Nhan, Bang; Bradley, Richard F.; Tauscher, Keith A.; Rapetti, David; Switzer, Eric

    2018-06-01

    The redshifted 21-cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies (10 polarimetry that separates the polarized foreground from the unpolarized 21-cm signal. Initial results from a ground-based prototype called the Cosmic Twilight Polarimeter will be described which tentatively reveal the presence of the expected polarization signature from the foreground. Dynamic polarimetry, when combined with sophisticated pattern recognition techniques based on training sets, machine learning, and statistical information criteria offer promise for precise extraction of the 21-cm spectrum. We describe a new SmallSat mission concept, the Dark Ages Polarimetry Pathfinder (DAPPer), that will utilize these novel approaches for extending the recent detection of a 78 MHz signal down to lower frequencies where we can uniquely probe evidence for the first stars and dark matter.

  4. Reference Concepts for a Space-Based Hydrogen-Oxygen Combustion, Turboalternator, Burst Power System

    Science.gov (United States)

    1990-07-01

    Institute of Technology 1328 Albany Street Cambridge, MA 02139 Dave Berwald Grumman Aerospace Corporation MS B20-05 Bethpage, NY 11714 F. Best... Zielinski U. S. Department of Ener*gy SAN-ACR Division 13333 Broadway Oakland, CA 94612 G. L. Zigler Science & Engineering Associates 6301

  5. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen

    International Nuclear Information System (INIS)

    Bourzeix, S.

    1995-01-01

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  6. The application of thick hydrogenated amorphous silicon layers to charged particle and x-ray detection

    International Nuclear Information System (INIS)

    Perez-Mendez, V.; Cho, G.; Fujieda, I.; Kaplan, S.N.; Qureshi, S.; Street, R.A.

    1989-04-01

    We outline the characteristics of thick hydrogenated amorphous silicon layers which are optimized for the detection of charged particles, x-rays and γ-rays. Signal amplitude as a function of the linear energy transfer of various particles are given. Noise sources generated by the detector material and by the thin film electronics - a-Si:H or polysilicon proposed for pixel position sensitive detectors readout are described, and their relative amplitudes are calculated. Temperature and neutron radiation effects on leakage currents and the corresponding noise changes are presented. 17 refs., 12 figs., 2 tabs

  7. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  8. Progresses in hydrogen production and application for establishment of low‐carbon society in Japan

    International Nuclear Information System (INIS)

    Kato, Yukitaka

    2014-01-01

    Conclusion: • H2 has high‐potential as an energy carrier for future energy system in Japan. • HTGR is reliable candidate as a primary energy source for H_2 production because of its stability and abundance of amount. • Nuclear heat usage for fuel reforming are efficient utilization way. • Fuel cell vehicle is developing as a H_2 usage market. • Hydrogen reduction of CO_2 has possibility for establishment of carbon recycling industrial systems in low‐carbon society. • Choice of rational H_2 pass is important.

  9. A new empirical potential function and its application to hydrogen bonding

    International Nuclear Information System (INIS)

    Kang, Y.K.; Jhon, M.S.

    1981-01-01

    A new potential function based on spectroscopic results for diatomic molecules is presented and applied to the hydrogen bonding systems. The potential energy of interaction is supposed to have electrostatic, polarization, dispersion, repulsion and effective charge-transfer contributions. Estimates of the effective charge-transfer quantity have been made based on the average charge of the proton donor and the acceptor atoms. For dimers such as water, methanol, acetic acid and formic acid, the vibrational stretching frequencies and dimerization energies are calculated and discussed in connection with Badger-Bauer rule. (author)

  10. Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications

    Science.gov (United States)

    Hastings, L. J.; Bryant, C. B.; Flachbart, R. H.; Holt, K. A.; Johnson, E.; Hedayat, A.; Hipp, B.; Plachta, D. W.

    2010-01-01

    Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy.

  11. Application of hydrogen energy in the tourism development strategy of the croatian islands

    Energy Technology Data Exchange (ETDEWEB)

    Vujcic, R. [Brodosplit-Institute, Split (Croatia); Josopovic, Z. [Chroatian Chamber of Economy, County Chamber Split, Split (Croatia); Matejcic, F. [The County of Split and Dalmatia, Split (Croatia)

    1998-07-01

    Croatian islands represent the most valuable resources of Croatian tourism. The recently adopted Development Strategy of the Croatian Tourism Sector contains the basic terms of reference for the formulation of a quality island tourism development concept. For such a development program it is imperative to establish new, environmentally compatible power system suitable to ensure sufficient quantities of high quality power. One of the viable possibilities to ensure sufficient quantity of quality power is a hydrogen power system based on renewable energy sources (solar and/or wind energy). 9 refs.

  12. Child–Langmuir law applicability for a cathode sheath description of glow discharge in hydrogen

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Artushenko, K P; Yegorenkov, V D

    2016-01-01

    The present paper reveals that the Child-Langmuir law version with the constant ion mobility has to be applied for the cathode sheath description of the glow discharge in hydrogen. Using the analytical model we demonstrate that even in a high electric field the constant mobility law version rather than that for the constant ion mean free path has to hold in the case of impeded charge exchange and the dominant effect of polarization forces on the ion motion through the cathode sheath. (paper)

  13. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  14. Conversion of excess wind energy into hydrogen for fuel cell applications. A system analysis within the context of the Dutch energy system

    International Nuclear Information System (INIS)

    Kraaij, G.J.; Weeda, M.

    2008-09-01

    For reduction of greenhouse gas emissions, an increased use of renewable energy sources in the electricity sector is planned. The amount of excess wind power from an increase of offshore wind power capacity is calculated for an isolated Dutch society. The excess wind power is converted into hydrogen by electrolysis and the subsequent use of the hydrogen in residential applications as well as transport applications is investigated for economic, environmental and storage aspects. At an equivalent of 8 GW offshore wind power in 2020 the wind power contributes around 20% to the electricity demand, with an excess wind power amounting to approx. 4% of the Dutch electricity consumption. Excess wind occurs during 20% of the time. Conversion of this electricity to hydrogen requires 6 GW of electrolyser capacity with an average load factor of 10%, leading to high depreciation costs of the electrolysers and subsequent high hydrogen costs. For economic as well as environmental reasons the use of hydrogen in transport applications is more beneficial than in residential applications

  15. Transient shielded liquid hydrogen containers

    International Nuclear Information System (INIS)

    Varghese, A.P.; Herring, R.H.

    1990-01-01

    The storage of hydrogen in the liquid phase has been limited in duration due to the thermal performance constraints of conventional Liquid Hydrogen containers available. Conventional Liquid Hydrogen containers lose hydrogen because of their relatively high heat leak and variations in usage pattern of hydrogen due to shutdowns. Local regulations also discourage venting of hydrogen. Long term storage of Liquid Hydrogen without product loss was usually accomplished using Liquid Nitrogen sacrificial shields. This paper reports on a new low heat leak container developed and patented that will extend the storage time of liquid hydrogen by five hundred percent. The principle of operation of the Transient Shields which makes the extraordinary performance of this container feasible is described in this paper. Also covered are the impact of this new container on present applications of hydrogen and the new opportunities afforded to Liquid hydrogen in the world hydrogen market

  16. Application of microscopy technology in thermo-catalytic methane decomposition to hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Irene Lock Sow, E-mail: irene.sowmei@gmail.com; Lock, S. S. M., E-mail: serenelock168@gmail.com; Abdullah, Bawadi, E-mail: bawadi-abdullah@petronas.com.my [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Sri Iskandar, 31750, Perak (Malaysia)

    2015-07-22

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production because it produces pure hydrogen without any CO{sub x} emissions. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both specific activity and operational lifetime have been developed. In this work, bimetallic Ni-Pd on gamma alumina support have been developed for methane cracking process by using co-precipitation and incipient wetness impregnation method. The calcined catalysts were characterized to determine their morphologies and physico-chemical properties by using Brunauer-Emmett-Teller method, Field Emission Scanning Electron Microscopy, Energy-dispersive X-ray spectroscopy and Thermogravimetric Analysis. The results suggested that that the catalyst which is prepared by the co-precipitation method exhibits homogeneous morphology, higher surface area, have uniform nickel and palladium dispersion and higher thermal stability as compared to the catalyst which is prepared by wet impregnation method. This characteristics are significant to avoid deactivation of the catalysts due to sintering and carbon deposition during methane cracking process.

  17. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    Science.gov (United States)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-06-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (commonly occurring cyanotoxins) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full scale within a maturation WSP, the final pond in a wastewater treatment plant. Hydrogen peroxide treatment at concentrations ≥ 0.1 mg H2O2 μg-1 total phytoplankton chlorophyll a led to the lysis of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial Chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the Chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  18. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    Directory of Open Access Journals (Sweden)

    D. J. Barrington

    2013-06-01

    Full Text Available Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2 for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs. The daily dynamics of cyanobacteria and microcystins (commonly occurring cyanotoxins were examined following the addition of H2O2 to wastewater within both the laboratory and at the full scale within a maturation WSP, the final pond in a wastewater treatment plant. Hydrogen peroxide treatment at concentrations ≥ 0.1 mg H2O2 μg−1 total phytoplankton chlorophyll a led to the lysis of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial Chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the Chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  19. Synthesis and hydrogenation application of Pt-Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Jin, Zhijun; Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-12-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10-x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10-x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd-Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd-Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5).

  20. Synthesis and hydrogenation application of Pt–Pd bimetallic nanocatalysts stabilized by macrocycle-modified dendrimer

    Science.gov (United States)

    Xiao, Haiyan; Zhou, Wei; Zhang, Dongqiao; Peng, Xiaohong

    2017-01-01

    Different generations of poly(propylene imine) (Gn-PPI) terminated with N-containing 15-membered triolefinic macrocycle (GnM) (n = 2, 3, 4, 5) were prepared. The bimetallic nanoparticle catalysts GnM-(Ptx/Pd10−x) (x = 0, 3, 5, 7, 10) were prepared by the synchronous ligand-exchange reaction between GnM and the complexes of Pt(PPh3)4 and Pd(PPh3)4. The structure and catalytic properties of GnM-(Ptx/Pd10−x) were characterized via Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy-dispersive spectroscopy and inductively coupled plasma atomic emission spectroscopy. The novel bimetallic Pd–Pt nanoparticle catalysts stabilized by dendrimers (DSNs) present higher catalytic activities for the hydrogenation of dimeric acid (DA) than that of nitrile butadiene rubber (NBR). It can be concluded that bimetallic Pd–Pt DSNs possess alloying and synergistic electronic effects on account of the hydrogenation degree (HD) of DA and NBR. Furthermore, the HD of DA and NBR shows a remarkable decrease with the incremental generations (n) of GnM-(Pt3/Pd7) (n = 2, 3, 4, 5). PMID:29308263

  1. Ozone and hydrogen peroxide applications for disinfection by-products control in drinking water

    International Nuclear Information System (INIS)

    Collivignarelli, C.; Sorlini, S.; Riganti, V.

    2001-01-01

    A great interest has been developed during the last years for ozone in drinking water treatments thanks to its strong oxidant and disinfectant power and for its efficiency in disinfection by-products (DBPs) precursors removal. However ozonization produces some specific DBPs, such as aldehydes and ketones; moreover, the presence of bromide in raw water engages ozone in a complex cycle in which both organic bromide and inorganic bromate are end products. In this paper the combination of hydrogen peroxide with ozone (known as peroxone process) and the ozone alone process were experimented on one surface water coming from the lake of Brugneto (Genova) in order to investigate bromate formation and trihalomethanes precursors removal during the oxidation process. The results show that the advanced peroxone process can be applied for bromate reduction (about 30-40%) with better results in comparison with the ozone alone process, while no advantages are shown for THMs precursors removal. The addition of in-line filtration step after pre-oxidation improves both bromate and THMs precursors removal, particularly with increasing hydrogen peroxide/ozone ratio in the oxidation step [it

  2. A direct recursive residue generation method: application to photoionization of hydrogen in static electric fields

    International Nuclear Information System (INIS)

    Karlsson, H.O.; Goscinski, O.

    1994-01-01

    In studies of hydrogenic systems via the recursive residue generation method (RRGM) the major bottleneck is the matrix vector product HC, between the Hamiltonian matrix H and a Lanczos vector C. For highly excited states and/or strong perturbations the size of H grows fast leading to storage problems. By making use of direct methods, i.e. avoidance of explicit construction of large Hamiltonian matrices, such problems can be overcome. Utilizing the underlying analytical properties of the Laguerre basis e -λr L k 2l+2 (2λr) a direct RRGM (D-RRGM) for the unperturbed hydrogenic Hamiltonian is derived, changing the storage needs from scaling as N 2 to 4N where N is the number of radial functions for each factorized H o (l,m) block with the possibility of parallel processing. A further computational simplification is introduced by putting the expression for the photoionization (PI) cross section in the rational form conventionally used in the representation of density of states (DOS). This allows the construction of the PI cross section directly from the tridiagonal Lanczos matrix avoiding the explicit calculation of individual eigen values and eigenvectors. (Author)

  3. The energy carrier hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The potential of hydrogen to be used as a clean fuel for the production of heat and power, as well as for the propulsion of aeroplanes and vehicles, is described, in particular for Germany. First, attention is paid to the application of hydrogen as a basic material for the (petro)chemical industry, as an indirect energy source for (petro)chemical processes, and as a direct energy source for several purposes. Than the importance of hydrogen as an energy carrier in a large-scale application of renewable energy sources is discussed. Next an overview is given of new and old hydrogen production techniques from fossil fuels, biomass, or the electrolysis of water. Energetic applications of hydrogen in the transportation sector and the production of electric power and heat are mentioned. Brief descriptions are given of techniques to store hydrogen safely. Finally attention is paid to hydrogen research in Germany. Two hydrogen projects, in which Germany participates, are briefly dealt with: the Euro-Quebec project (production of hydrogen by means of hydropower), and the HYSOLAR project (hydrogen production by means of solar energy). 18 figs., 1 tab., 7 refs

  4. Color-Space-Based Visual-MIMO for V2X Communication

    OpenAIRE

    Jai-Eun Kim; Ji-Won Kim; Youngil Park; Ki-Doo Kim

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and w...

  5. Application of hydrogen-plasma technology for property modification of silicon and producing the silicon-based structures

    International Nuclear Information System (INIS)

    Fedotov, A.K.; Mazanik, A.V.; Ul'yashin, A.G.; Dzhob, R; Farner, V.R.

    2000-01-01

    Effects of atomic hydrogen on the properties of Czochralski-grown single crystal silicon as well as polycrystalline shaped silicon have been investigated. It was established that the buried defect layers created by high-energy hydrogen or helium ion implantation act as a good getter centers for hydrogen atoms introduced in silicon in the process of hydrogen plasma hydrogenation. Atomic hydrogen was shown to be active as a catalyzer significantly enhancing the rate of thermal donors formation in p-type single crystal silicon. This effect can be used for n-p- and p-n-p-silicon based device structures producing [ru

  6. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses...... is dramatically increased once simultaneous ground- and space-based observations are conducted....

  7. Atmospheric profiles from active space-based radio measurements

    Science.gov (United States)

    Hardy, Kenneth R.; Hinson, David P.; Tyler, G. L.; Kursinski, E. R.

    1992-01-01

    The paper describes determinations of atmospheric profiles from space-based radio measurements and the retrieval methodology used, with special attention given to the measurement procedure and the characteristics of the soundings. It is speculated that reliable profiles of the terrestrial atmosphere can be obtained by the occultation technique from the surface to a height of about 60 km. With the full complement of 21 the Global Positioning System (GPS) satellites and one GPS receiver in sun synchronous polar orbit, a maximum of 42 soundings could be obtained for each complete orbit or about 670 per day, providing almost uniform global coverage.

  8. Effect of Hydrogen Concentration on the Growth of Carbon Nanotube Arrays for Gecko-Inspired Adhesive Applications

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-12-01

    Full Text Available Vertically-aligned carbon nanotubes (VACNTs have extraordinary structural and mechanical properties, and have been considered as potential candidates for creating dry adhesives inspired by adhesive structures in nature. Catalytic chemical vapor deposition is widely used to grow VACNTs; however, the influential mechanism of VACNT preparation parameters (such as H2 concentration on its adhesion property is not clear, making accurate control over the structure of VACNTs adhesive an ongoing challenge. In this article, we use electron beam-deposited SiO2/Al2O3 as a support layer, Fe as catalyst, and C2H4/H2 gas mixtures as a feed gas to prepare VACNTs, while varying the ratio of the reducing atmosphere (H2 from 0% to 35%. VACNTs synthesized at a 15% H2 concentration (5 mm × 5 mm in size can support a maximal weight of 856 g, which indicates a macroscopic shear adhesive strength of 34 N/cm2. We propose a hydrogen-concentration-dependent model for the shear adhesive performance of VACNTs. By adjusting the amount of hydrogen present during the reaction, the morphology and quality of the prepared VACNTs can be precisely controlled, which significantly influences its shear adhesive performance. These results are advantageous for the application of carbon nanotubes as dry adhesives.

  9. Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation.

    Science.gov (United States)

    Wang, Hou; Yuan, Xingzhong; Wu, Yan; Huang, Huajun; Peng, Xin; Zeng, Guangming; Zhong, Hua; Liang, Jie; Ren, Miaomiao

    2013-07-01

    Graphene, as an ideal two-dimensional material and single-atom layer of graphite, has attracted exploding interests in multidisciplinary research because of its unique structure and exceptional physicochemical properties. Especially, graphene-based materials offer a wide range of potentialities for environmental remediation and energy applications. This review shows an extensive overview of the main principles and the recent synthetic technologies about designing and fabricating various innovative graphene-based materials. Furthermore, an extensive list of graphene-based sorbents and catalysts from vast literature has been compiled. The adsorptive and catalytic properties of graphene-based materials for the removal of various pollutants and hydrogen storage/production as available in the literature are presented. Tremendous adsorption capacity, excellent catalytic performance and abundant availability are the significant factors making these materials suitable alternatives for environmental pollutant control and energy-related system, especially in terms of the removal of pollutants in water, gas cleanup and purification, and hydrogen generation and storage. Meanwhile, a brief discussion is also included on the influence of graphene materials on the environment, and its toxicological effects. Lastly, some unsolved subjects together with major challenges in this germinating area of research are highlighted and discussed. Conclusively, the expanding of graphene-based materials in the field of adsorption and catalysis science represents a viable and powerful tool, resulting in the superior improvement of environmental pollution control and energy development. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Hydrogen peroxide safety issues

    International Nuclear Information System (INIS)

    Conner, W.V.

    1993-01-01

    A literature survey was conducted to review the safety issues involved in handling hydrogen peroxide solutions. Most of the information found in the literature is not directly applicable to conditions at the Rocky Flats Plant, but one report describes experimental work conducted previously at Rocky Flats to determine decomposition reaction-rate constants for hydrogen peroxide solutions. Data from this report were used to calculate decomposition half-life times for hydrogen peroxide in solutions containing several decomposition catalysts. The information developed from this survey indicates that hydrogen peroxide will undergo both homogeneous and heterogeneous decomposition. The rate of decomposition is affected by temperature and the presence of catalytic agents. Decomposition of hydrogen peroxide is catalyzed by alkalies, strong acids, platinum group and transition metals, and dissolved salts of transition metals. Depending upon conditions, the consequence of a hydrogen peroxide decomposition can range from slow evolution of oxygen gas to a vapor, phase detonation of hydrogen peroxide vapors

  11. Hydrodehalogenation of alkyl iodides with base-mediated hydrogenation and catalytic transfer hydrogenation: application to the asymmetric synthesis of N-protected α-methylamines.

    Science.gov (United States)

    Mandal, Pijus K; Birtwistle, J Sanderson; McMurray, John S

    2014-09-05

    We report a very mild synthesis of N-protected α-methylamines from the corresponding amino acids. Carboxyl groups of amino acids are reduced to iodomethyl groups via hydroxymethyl intermediates. Reductive deiodination to methyl groups is achieved by hydrogenation or catalytic transfer hydrogenation under alkaline conditions. Basic hydrodehalogenation is selective for the iodomethyl group over hydrogenolysis-labile protecting groups, such as benzyloxycarbonyl, benzyl ester, benzyl ether, and 9-fluorenyloxymethyl, thus allowing the conversion of virtually any protected amino acid into the corresponding N-protected α-methylamine.

  12. Application of TiO_2 nanofibers, electrospinning obtained, the production of hydrogen

    International Nuclear Information System (INIS)

    Soares, L.G.; Bergmann, C.P.; Alves, A.K.

    2014-01-01

    Electrospinning is a simple, low cost which promotes the production of a large amount of nanofibers. The process of applying an electrode connected to a high voltage source, inserted into the polymer solution contained in a capillary tube. With increasing voltage, the surface of the droplet elongates to form a cone when the electrostatic forces overcome the surface tension of a spray solution on the edge of the cone is ejected. In this work, TiO_2 nanofibers obtained by electrospinning, were thermally treated at 650, 700, 750 and 800 ° C, and its photoactivity was evaluated. The technique of X-ray diffraction (XRD) was employed to determine the crystal structure and crystallite size and morphology of the fibers was analyzed by scanning electron microscopy (SEM). The results indicate that the nanofibers containing the anatase phase in larger quantities can be applied to the production of hydrogen. (author)

  13. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Sekhar, Praveen K [Los Alamos National Laboratory; Mukundan, Rangchary [Los Alamos National Laboratory; Williamson, Todd L [Los Alamos National Laboratory; Barzon, Fernando H [Los Alamos National Laboratory; Woo, Leta Y [LLNL; Glass, Robert S [LLNL

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  14. Linear and nonlinear susceptibilities from diffusion quantum Monte Carlo: application to periodic hydrogen chains.

    Science.gov (United States)

    Umari, P; Marzari, Nicola

    2009-09-07

    We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.

  15. Photodecomposition of Hg - Photo - CVD monosilane. Application to hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Aka, B.

    1989-04-01

    The construction of a Hg-photo-CVD device is discussed. The system enables the manufacturing of hydrogenous thin films of amorphous silicon from monosilane compound. The reaction mechanisms taking place in the gaseous phase and at the surface, and the optimal conditions for the amorphous silicon film growth are studied. The analysis technique is based on the measurement of the difference between the condensation points of the gaseous components of the mixture obtained from the monosilane photolysis. A kinetic simplified model is proposed. Conductivity measurements are performed and the heat treatment effects are analyzed. Trace amounts of oxygen and carbon are found in the material. No Hg traces are detected by SIMS analysis [fr

  16. Design Optimization for Interferometric Space-Based 21-cm Power Spectrum Measurements

    Science.gov (United States)

    Pober, Jonathan

    2018-06-01

    Observations of the highly-redshifted 21 cm hyperfine line of neutral hydrogen (HI) are one of the most promising probes for the future of cosmology. At redshifts z > 30, the HI signal is likely the only measurable emission, as luminous objects have yet to form. At these very low radio frequencies, however, the earth’s ionosphere becomes opaque — necessitating observations from space. The major challenge to neutral hydrogen cosmology (at all redshifts) lies in the presence of bright foreground emission, which can dominate the HI signal by as much as eight orders of magnitude at the highest redshifts. The only method for extracting the cosmological signal relies on the spectral smoothness of the foregrounds; since each frequency of the HI signal probes a different redshift, the cosmological emission is essentially uncorrelated from frequency to frequency. The key challenge for designing an experiment lies in maintaining the spectral smoothness of the foregrounds. If the frequency response of the instrument introduces spectral structure (or at least, a residual that cannot be calibrated out at the necessary precision), it quickly becomes impossible to distinguish the cosmological signal from the foregrounds. This principle has guided the design of ground-based experiments like the Precision Array for Probing the Epoch of Reionization (PAPER) and the Hydrogen Epoch of Reionization Array (HERA). However, there still exists no unifying framework for turning this design "philosophy" into a robust, quantitative set of performance metrics and specifications. In this talk, I will present updates on the efforts of my research group to translate lessons learned from ground-based experiments into a fully traceable set of mission requirements for Cosmic Dawn Mapper or other space-based 21 cm interferometer.

  17. Hydrogen gains further momentum

    International Nuclear Information System (INIS)

    Anon.

    2017-01-01

    As first industrial production projects should become a reality in the next few years, hydrogen as a source of energy will find important applications with mobility, which momentum is rapid and irresistible. Next steps will be the (large capacity) storage of hydrogen associated to power-to-gas systems and the generalization of renewable energies. This document presents 5 articles, which themes are: Description and explanation of the process of hydrogen production; Presentation of the H2V project for the construction, in Normandy, of the first operational industrial hydrogen production plant using electric power 100 pc generated by renewable energies; The conversion of electric power from renewable energies through hydrogen storage and fuel cells for buildings applications (Sylfen project); The development of a reversible fuel cell at Mines-Paris Tech University, that will be adapted to the storage of renewable electric power; Hydrogen as a lever for the development of zero-emission vehicles, from trucks to cars and bicycles

  18. Tests of gravity with future space-based experiments

    Science.gov (United States)

    Sakstein, Jeremy

    2018-03-01

    Future space-based tests of relativistic gravitation—laser ranging to Phobos, accelerometers in orbit, and optical networks surrounding Earth—will constrain the theory of gravity with unprecedented precision by testing the inverse-square law, the strong and weak equivalence principles, and the deflection and time delay of light by massive bodies. In this paper, we estimate the bounds that could be obtained on alternative gravity theories that use screening mechanisms to suppress deviations from general relativity in the Solar System: chameleon, symmetron, and Galileon models. We find that space-based tests of the parametrized post-Newtonian parameter γ will constrain chameleon and symmetron theories to new levels, and that tests of the inverse-square law using laser ranging to Phobos will provide the most stringent constraints on Galileon theories to date. We end by discussing the potential for constraining these theories using upcoming tests of the weak equivalence principle, and conclude that further theoretical modeling is required in order to fully utilize the data.

  19. Special Relativity Corrections for Space-Based Lidars

    Science.gov (United States)

    RaoGudimetla, Venkata S.; Kavaya, Michael J.

    1999-01-01

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

  20. 33-Foot-Diameter Space Station Leading to Space Base

    Science.gov (United States)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  1. Destruction of chloroanisoles by using a hydrogen peroxide activated method and its application to remove chloroanisoles from cork stoppers.

    Science.gov (United States)

    Recio, Eliseo; Alvarez-Rodríguez, María Luisa; Rumbero, Angel; Garzón, Enrique; Coque, Juan José R

    2011-12-14

    A chemical method for the efficient destruction of 2,4,6-trichloroanisole (TCA) and pentachloroanisole (PCA) in aqueous solutions by using hydrogen peroxide as an oxidant catalyzed by molybdate ions in alkaline conditions was developed. Under optimal conditions, more than 80.0% TCA and 75.8% PCA were degraded within the first 60 min of reaction. Chloroanisoles destruction was followed by a concomitant release of up to 2.9 chloride ions per TCA molecule and 4.6 chloride ions per PCA molecule, indicating an almost complete dehalogenation of chloroanisoles. This method was modified to be adapted to chloroanisoles removal from the surface of cork materials including natural cork stoppers (86.0% decrease in releasable TCA content), agglomerated corks (78.2%), and granulated cork (51.3%). This method has proved to be efficient and inexpensive with practical application in the cork industry to lower TCA levels in cork materials.

  2. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  3. Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application

    Science.gov (United States)

    An, Ha-Rim; Park, So Young; Kim, Hyeran; Lee, Che Yoon; Choi, Saehae; Lee, Soon Chang; Seo, Soonjoo; Park, Edmond Changkyun; Oh, You-Kwan; Song, Chan-Geun; Won, Jonghan; Kim, Youn Jung; Lee, Jouhahn; Lee, Hyun Uk; Lee, Young-Chul

    2016-01-01

    We report an effect involving hydrogen (H2)-plasma-treated nanoporous TiO2(H-TiO2) photocatalysts that improve photocatalytic performance under solar-light illumination. H-TiO2 photocatalysts were prepared by application of hydrogen plasma of assynthesized TiO2(a-TiO2) without annealing process. Compared with the a-TiO2, the H-TiO2 exhibited high anatase/brookite bicrystallinity and a porous structure. Our study demonstrated that H2 plasma is a simple strategy to fabricate H-TiO2 covering a large surface area that offers many active sites for the extension of the adsorption spectra from ultraviolet (UV) to visible range. Notably, the H-TiO2 showed strong ·OH free-radical generation on the TiO2 surface under both UV- and visible-light irradiation with a large responsive surface area, which enhanced photocatalytic efficiency. Under solar-light irradiation, the optimized H-TiO2 120(H2-plasma treatment time: 120 min) photocatalysts showed unprecedentedly excellent removal capability for phenol (Ph), reactive black 5(RB 5), rhodamine B (Rho B) and methylene blue (MB) — approximately four-times higher than those of the other photocatalysts (a-TiO2 and P25) — resulting in complete purification of the water. Such well-purified water (>90%) can utilize culturing of cervical cancer cells (HeLa), breast cancer cells (MCF-7), and keratinocyte cells (HaCaT) while showing minimal cytotoxicity. Significantly, H-TiO2 photocatalysts can be mass-produced and easily processed at room temperature. We believe this novel method can find important environmental and biomedical applications. PMID:27406992

  4. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    International Nuclear Information System (INIS)

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-01-01

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n + -type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force

  5. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  6. Hydrogen meter prooftesting

    International Nuclear Information System (INIS)

    McCown, J.J.; Mettler, G.W.

    1976-04-01

    Two diffusion type hydrogen meters have been tested on the Prototype Applications Loop (PAL). The ANL designed unit was used to monitor hydrogen in sodium during FFTF startup and over a wide range of hydrogen concentrations resulting from chemical additions to the sodium and cover gas. A commercially available meter was added and its performance compared with the ANL unit. Details of the test work are described

  7. The Development of Fuel Cell Technology for Electric Power Generation - From Spacecraft Applications to the Hydrogen Economy

    Science.gov (United States)

    Scott, John H.

    2005-01-01

    The fuel cell uses a catalyzed reaction between a fuel and an oxidizer to directly produce electricity. Its high theoretical efficiency and low temperature operation made it a subject of much study upon its invention ca. 1900, but its relatively high life cycle costs kept it as "solution in search of a problem" for its first half century. The first problem for which fuel cells presented a cost effective solution was, starting in the 1960's that of a power source for NASA's manned spacecraft. NASA thus invested, and continues to invest, in the development of fuel cell power plants for this application. However, starting in the mid-1990's, prospective environmental regulations have driven increased governmental and industrial interest in "green power" and the "Hydrogen Economy." This has in turn stimulated greatly increased investment in fuel cell development for a variety of terrestrial applications. This investment is bringing about notable advances in fuel cell technology, but these advances are often in directions quite different from those needed for NASA spacecraft applications. This environment thus presents both opportunities and challenges for NASA's manned space program.

  8. On detonation dynamics in hydrogen-air-steam mixtures: Theory and application to Olkiluoto reactor building

    International Nuclear Information System (INIS)

    Silde, A.; Lindholm, I.

    2000-02-01

    This report consists of the literature study of detonation dynamics in hydrogen-air-steam mixtures, and the assessment of shock pressure loads in Olkiluoto 1 and 2 reactor building under detonation conditions using the computer program DETO developed during this work at VTT. The program uses a simple 1-D approach based on the strong explosion theory, and accounts for the effects of both the primary or incident shock and the first (oblique or normal) reflected shock from a wall structure. The code results are also assessed against a Balloon experiment performed at Germany, and the classical Chapman-Jouguet detonation theory. The whole work was carried out as a part of Nordic SOS-2.3 project, dealing with severe accident analysis. The initial conditions and gas distribution of the detonation calculations are based on previous severe accident analyses by MELCOR and FLUENT codes. According to DETO calculations, the maximum peak pressure in a structure of Olkiluoto reactor building room B60-80 after normal shock reflection was about 38.7 MPa if a total of 3.15 kg hydrogen was assumed to burned in a distance of 2.0 m from the wall structure. The corresponding pressure impulse was about 9.4 kPa-s. The results were sensitive to the distance used. Comparison of the results to classical C-J theory and the Balloon experiments suggested that DETO code represented a conservative estimation for the first pressure spike under the shock reflection from a wall in Olkiluoto reactor building. Complicated 3-D phenomena of shock wave reflections and focusing, nor the propagation of combustion front behind the shock wave under detonation conditions are not modeled in the DETO code. More detailed 3-D analyses with a specific detonation code are, therefore, recommended. In spite of the code simplifications, DETO was found to be a beneficial tool for simple first-order assessments of the structure pressure loads under the first reflection of detonation shock waves. The work on assessment

  9. CEOS Contributions to Informing Energy Management and Policy Decision Making Using Space-Based Earth Observations

    Science.gov (United States)

    Eckman, Richard S.

    2009-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the "space arm" for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. I discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space-weather impacts on the power grid, and improve energy efficiency in the built environment.

  10. CEOS contributions to informing energy management and policy decision making using space-based Earth observations

    International Nuclear Information System (INIS)

    Eckman, Richard S.; Stackhouse, Paul W.

    2012-01-01

    Earth observations are playing an increasingly significant role in informing decision making in the energy sector. In renewable energy applications, space-based observations now routinely augment sparse ground-based observations used as input for renewable energy resource assessment applications. As one of the nine Group on Earth Observations (GEO) societal benefit areas, the enhancement of management and policy decision making in the energy sector is receiving attention in activities conducted by the Committee on Earth Observation Satellites (CEOS). CEOS has become the “space arm” for the implementation of the Global Earth Observation System of Systems (GEOSS) vision. It is directly supporting the space-based, near-term tasks articulated in the GEO three-year work plan. This paper describes a coordinated program of demonstration projects conducted by CEOS member agencies and partners to utilize Earth observations to enhance energy management end-user decision support systems. We discuss the importance of engagement with stakeholders and understanding their decision support needs in successfully increasing the uptake of Earth observation products for societal benefit. Several case studies are presented, demonstrating the importance of providing data sets in formats and units familiar and immediately usable by decision makers. These projects show the utility of Earth observations to enhance renewable energy resource assessment in the developing world, forecast space weather impacts on the power grid, and improve energy efficiency in the built environment.

  11. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    International Nuclear Information System (INIS)

    Moreno, M.; Delgadillo, N.; Torres, A.; Ambrosio, R.; Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W.

    2013-01-01

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E a ) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ RT ), E a and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E a , TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors

  12. Boron doping compensation of hydrogenated amorphous and polymorphous germanium thin films for infrared detection applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mmoreno@inaoep.mx [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Delgadillo, N. [Universidad Autónoma de Tlaxcala, Av. Universidad No. 1, Z. P. 90006 Tlaxcala (Mexico); Torres, A. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico); Ambrosio, R. [Technology and Engineering Institute, Ciudad Juarez University UACJ, Av. Del Charro 450N, Z. P. 32310 Chihuahua (Mexico); Rosales, P.; Kosarev, A.; Reyes-Betanzo, C.; Hidalga-Wade, J. de la; Zuniga, C.; Calleja, W. [National Institute of Astrophysics, Optics and Electronics, INAOE, P.O. Box 51 and 216, Puebla, Z. P. 72840 Puebla (Mexico)

    2013-12-02

    In this work we have studied boron doping of hydrogenated amorphous germanium a-Ge:H and polymorphous germanium (pm-Ge:H) in low regimes, in order to compensate the material from n-type (due to oxygen contamination that commonly occurs during plasma deposition) to intrinsic, and in this manner improve the properties that are important for infrared (IR) detection, as activation energy (E{sub a}) and temperature coefficient of resistance (TCR). Electrical, structural and optical characterization was performed on the films produced. Measurements of the temperature dependence of conductivity, room temperature conductivity (σ{sub RT}), E{sub a} and current–voltage characteristics under IR radiation were performed in the compensated a-Ge:H and pm-Ge:H films. Our results demonstrate that, effectively, the values of E{sub a}, TCR and IR detection are improved on the a-Ge:H/pm-Ge:H films, using boron doping in low regimes, which results of interest for infrared detectors. - Highlights: • We reported boron doping compensation of amorphous and polymorphous germanium. • The films were deposited by plasma enhanced chemical vapor deposition. • The aim is to use the films as thermo-sensing elements in un-cooled microbolometers. • Those films have advantages over boron doped a-Si:H used in commercial detectors.

  13. Design of long pulse/steady state negative hydrogen ion sources for fusion applications

    International Nuclear Information System (INIS)

    Prelec, K.

    1980-01-01

    By using parameters of ion sources when operating in a pulsed mode and without cooling (pulse length 2 . For the range of cathode power densities between 0.2 kW/cm 2 and 1 Kw/cm 2 , nucleated boiling has to be used for heat removal; below 0.2 kW/cm 2 water flow cooling suffices. Although this source should deliver 0.3 to 0.5 A of H - ions in a steady state operation and at full power, the other source, which has a magnetron geometry, is more promising. The latter incorporates two new features compared to first designs, geometrical focusing of fast, primary negative hydrogen ions from the cathode into the extraction slit, and a wider discharge gap in the back of the source. These two changes have resulted in an improvement of the power and gas efficiencies by a factor of 3 to 4 and in a reduction of the cathode power density by an order of magnitude. The source has water cooling for all the electrodes, because maximum power densities will not be higher than 0.2 kW/cm 2 . Very recently a modification of this magnetron source is being considered; it consists of plasma injection into the source from a hollow cathode discharge

  14. Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: synthesis, characterization, and catalytic application in hydrogenation of ketones.

    Science.gov (United States)

    Wang, Wan-Hui; Suna, Yuki; Himeda, Yuichiro; Muckerman, James T; Fujita, Etsuko

    2013-07-14

    A series of highly functionalized cyclopentadienyl rhodium(III) complexes, [Cp'Rh(bpy)Br](ClO4) (Cp' = substituted cyclopentadienyl), was synthesized from various multi-substituted cyclopentadienes (Cp'H). [Rh(cod)Cl]2 and Cp'H were firstly converted to [Cp'Rh(cod)] complexes, which were then treated with Br2 to give the rhodium(III) dibromides [Cp'RhBr2]2. The novel complexes [Cp'Rh(bpy)Br](ClO4) were obtained readily by the reaction of 2,2'-bipyridine with [Cp'RhBr2]2. These rhodium complexes [Cp'Rh(bpy)Br](ClO4) were fully characterized and utilized in the hydrogenation of cyclohexanone and acetophenone with generally high yields, but they did not exhibit the same reactivity trends for the two substrate ketones. The different activity of these complexes for the different substrates may be due to the influence of the substituents on the Cp' rings.

  15. A Nanomesoporous Catalyst from Modified Red Mud and Its Application for Methane Decomposition to Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Xiaoke Fang

    2016-01-01

    Full Text Available A type of nanomesoporous modified red mud (MRM catalyst was prepared and utilized for catalytic methane decomposition (CMD to produce hydrogen. The modification process significantly simplified the mineral composition of the red mud (RM; in the meantime, the physical and chemical structure of RM was changed. TEM images suggested that MRM was a kind of nanomesoporous material assembled by a number of uniformly nanoscale particles, BET results showed that the pore size distributions of MRM were ranged from 3 to 12 nm, and the specific surface area and total pore volumes of red mud improved from 8.00 m2/g and 0.08 cm3/g to 190.61 m2/g and 0.39 cm3/g, respectively. The catalytic performance of the catalysts has been tested at 800°C; the results showed that MRM exhibited much higher activity and stability than RM for CMD.

  16. Application of SR Methods for the Study of Nanocomposite Materials for Hydrogen Energy

    Science.gov (United States)

    Sadykov, V. A.; Pavlova, S. N.; Vinokurov, Z. S.; Shmakov, A. N.; Eremeev, N. F.; Fedorova, Yu. E.; Yakimchuk, E. P.; Kriventsov, V. V.; Bolotov, V. A.; Tanashev, Yu. Yu.; Sadovskaya, E. M.; Cherepanova, S. V.; Zolotarev, K. V.

    This work summarizes results of synchrotron radiation (SR) studies of the real/defect structure of nanocrystalline/nanocomposite oxide materials, which determines their functional properties in hydrogen energy field as catalysts and mixed ionic electronic conductors (cathodes and anodes of solid oxide fuel cells, oxygen separation membranes). For nanocrystalline ceria-zirconia mixed oxide prepared via modified Pechini route using ethanol solution of reagents, a high spatial uniformity of cations distribution between domains along with the oxygen sublattice deficiency revealed by full-profile Rietveld refinement of SR diffraction data provide structure disordering enhancing oxygen mobility. For PrNi0.5Co0.5O3-δ - Ce0.9Y0.1O2-δ nanocomposite extensive transfer of Pr cations into fluorite domains generates a new path of fast oxygen diffusion along chains of Pr3+ - Pr4+ cations as directly proved by analysis of the unit cell relaxation after changing pO2 in perfect agreement with data obtained by oxygen isotope heteroexchange.

  17. Band gap engineering of hydrogenated amorphous carbon thin films for solar cell application

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Dayal, Saurabh; Rauthan, C. M. S.; Panwar, O. S.; Malik, Hitendra K.

    2012-10-01

    In this work, self bias variation, nitrogen introduction and oxygen plasma (OP) treatment approaches have been used for tailoring the band gap of hydrogenated amorphous carbon (a-C:H) thin films. The band gap of a-C:H and modified a- C:H films is varied in the range from 1.25 eV to 3.45 eV, which is found to be nearly equal to the full solar spectrum (1 eV- 3.5 eV). Hence, such a-C:H and modified a-C:H films are found to be potential candidate for the development of full spectrum solar cells. Besides this, computer aided simulation with considering variable band gap a-C:H and modified a- C:H films as window layer for amorphous silicon p-i-n solar cells is also performed by AFORS-HET software and maximum efficiency as ~14 % is realized. Since a-C:H is hard material, hence a-C:H and modified a-C:H films as window layer may avoid the use of additional hard and protective coating particularly in n-i-p configuration.

  18. A DFT investigation on group 8B transition metal-doped silicon carbide nanotubes for hydrogen storage application

    Science.gov (United States)

    Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob

    2018-05-01

    The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.

  19. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  20. Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2016-10-01

    Full Text Available It is of great economic value to produce high-value PET-based MOF materials by the veritable elimination of waste PET, and provide sufficient MOF materials for hydrogen storage applications. Consequently, this work demonstrates the use of waste PET...

  1. Conceptual design of jewellery: a space-based aesthetics approach

    Directory of Open Access Journals (Sweden)

    Tzintzi Vaia

    2017-01-01

    Full Text Available Conceptual design is a field that offers various aesthetic approaches to generation of nature-based product design concepts. Essentially, Conceptual Product Design (CPD uses similarities based on the geometrical forms and functionalities. Furthermore, the CAD-based freehand sketch is a primary conceptual tool in the early stages of the design process. The proposed Conceptual Product Design concept is dealing with jewelleries that are inspired from space. Specifically, a number of galaxy features, such as galaxy shapes, wormholes and graphical representation of planet magnetic field are used as inspirations. Those space-based design ideas at a conceptual level can lead to further opportunities for research and economic success of the jewellery industry. A number of illustrative case studies are presented and new opportunities can be derived for economic success.

  2. Current problems in astrophysics needing space-based radio astronomy

    International Nuclear Information System (INIS)

    Norman, C.A.

    1987-01-01

    The potential value of space-based radio observatories and VLBI networks for studies of cosmology, AGN and starburst galaxies, the ISM and the intergalactic medium, and molecular clouds and star formation is discussed. Topics examined include distance estimates for masers in external galaxies, high-resolution 21-cm observations of distant-galaxy kinematics and morphology, searches for LF emission from the neutral ISM at redshifts higher than the QSO turnon, detection of changes in the distribution of dark matter surrounding galaxies at redshifts near 1, and observations of Galactic SNRs and filamentary structures near the Galactic center. Consideration is given to comparative studies of the ISM in the Galaxy, the Magellanic Clouds, and M 31; estimates of the molecular content of external galaxies; emssion-line studies of H 2 O masers; and kinematic investigations of bipolar flows and molecular disks. 19 references

  3. Non-Topographic Space-Based Laser Remote Sensing

    Science.gov (United States)

    Yu, Anthony W.; Abshire, James B.; Riris, Haris; Purucker, Michael; Janches, Diego; Getty, Stephanie; Krainak, Michael A.; Stephen, Mark A.; Chen, Jeffrey R.; Li, Steve X.; hide

    2016-01-01

    In the past 20+ years, NASA Goddard Space Flight Center (GSFC) has successfully developed and flown lidars for mapping of Mars, the Earth, Mercury and the Moon. As laser and electro-optics technologies expand and mature, more sophisticated instruments that once were thought to be too complicated for space are being considered and developed. We will present progress on several new, space-based laser instruments that are being developed at GSFC. These include lidars for remote sensing of carbon dioxide and methane on Earth for carbon cycle and global climate change; sodium resonance fluorescence lidar to measure environmental parameters of the middle and upper atmosphere on Earth and Mars and a wind lidar for Mars orbit; in situ laser instruments include remote and in-situ measurements of the magnetic fields; and a time-of-flight mass spectrometer to study the diversity and structure of nonvolatile organics in solid samples on missions to outer planetary satellites and small bodies.

  4. Space-Based Information Infrastructure Architecture for Broadband Services

    Science.gov (United States)

    Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.

    1996-01-01

    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.

  5. Hydrogen and fuel cells

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the hydrogen and fuel cells. It presents the hydrogen technology from the production to the distribution and storage, the issues as motor fuel and fuel cells, the challenge for vehicles applications and the Total commitments in the domain. (A.L.B.)

  6. Sensitivity studies for a space-based methane lidar mission

    Directory of Open Access Journals (Sweden)

    C. Kiemle

    2011-10-01

    Full Text Available Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol

  7. Analysing Leontiev Tube Capabilities in the Space-based Plants

    Directory of Open Access Journals (Sweden)

    N. L. Shchegolev

    2017-01-01

    Full Text Available The paper presents a review of publications dedicated to the gas-dynamic temperature stratification device (the Leontief tube and shows main factors affecting its efficiency. Describes an experimental installation, which is used to obtain data on the value of energy separation in the air to prove this device the operability.The assumption that there is an optimal relationship between the flow velocities in the subsonic and supersonic channels of the gas-dynamic temperature stratification device is experimentally confirmed.The paper conducts analysis of possible ways to raise the efficiency of power plants of various (including space basing, and shows that, currently, a mainstream of increasing efficiency of their operation is to complicate design solutions.A scheme of the closed gas-turbine space-based plant using a mixture of inert gases (helium-xenon one for operation is proposed. What differs it from the simplest variants is a lack of the cooler-radiator and integration into gas-dynamic temperature stratification device and heat compressor.Based on the equations of one-dimensional gas dynamics, it is shown that the total pressure restorability when removing heat in a thermal compressor determines operating capability of this scheme. The exploratory study of creating a heat compressor is performed, and it is shown that when operating on gases with a Prandtl number close to 1, the total pressure does not increase.The operating capability conditions of the heat compressor are operation on gases with a low value of the Prandtl number (helium-xenon mixture at high supersonic velocities and with a longitudinal pressure gradient available.It is shown that there is a region of the low values of the Prandtl number (Pr <0.3 for which, with the longitudinal pressure gradient available in the supersonic flows of a viscous gas, the total pressure can be restored.

  8. Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Rabovitser

    2009-06-30

    The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures

  9. Application of computational chemistry methods to obtain thermodynamic data for hydrogen production from liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    J. A. Sousa

    2013-03-01

    Full Text Available The objective of this study was to estimate thermodynamic data, such as standard enthalpy, entropy and Gibbs free energy changes of reaction and, consequently, chemical equilibrium constants, for a reaction system describing the hydrogen production from Liquefied Petroleum Gas (LPG. The acquisition of those properties was made using computational chemistry methods and the results were compared with experimental data reported in the literature. The reaction system of steam reforming of LPG was reported as a set of seven independent reactions involving the chemical species n-C4H10, C3H8, C2H6, C2H4, CH4, CO2, CO, H2O, H2 and solid carbon. Six computational approaches were used: Density Functional Theory (DFT employing Becke's three parameter hybrid exchange functional, and the Lee-Yang-Parr correlation functional (B3LYP using the 6-31G++(d,p basis set and the composite methods CBS-QB3, Gaussian-1 (G1, Gaussian-2 (G2, Gaussian-3 (G3 and Gaussian-4 (G4. Mole fractions of the system components were also determined between 873.15 and 1173.15 K, at 1 atm and a feed with a stoichiometric amount of water. Results showed that the hybrid functional B3LYP/6-31G++(d,p, G3 and G4 theories were the most appropriated methods to predict the properties of interest. Gaussian-3 and Gaussian-4 theories are expected to be good thermodynamic data predictors and the known efficient prediction of vibrational frequencies by B3LYP is probably the source of the good agreement found in this study. This last methodology is of special interest since it presents low computational cost, which is important when more complex molecular systems are considered.

  10. Purification of hydrogen sulfide

    International Nuclear Information System (INIS)

    Tsao, U.

    1978-01-01

    A process is described for purifying a hydrogen sulfide gas stream containing carbon dioxide, comprising (a) passing the gas stream through a bed of solid hydrated lime to form calcium hydrosulfide and calcium carbonate and (b) regenerating hydrogen sulfide from said calcium hydrosulfide by reacting the calcium hydrosulfide with additional carbon dioxide. The process is especially applicable for use in a heavy water recovery process wherein deuterium is concentrated from a feed water containing carbon dioxide by absorption and stripping using hydrogen sulfide as a circulating medium, and the hydrogen sulfide absorbs a small quantity of carbon dioxide along with deuterium in each circulation

  11. Hydrogen system (hydrogen fuels feasibility)

    International Nuclear Information System (INIS)

    Guarna, S.

    1991-07-01

    This feasibility study on the production and use of hydrogen fuels for industry and domestic purposes includes the following aspects: physical and chemical properties of hydrogen; production methods steam reforming of natural gas, hydrolysis of water; liquid and gaseous hydrogen transportation and storage (hydrogen-hydride technology); environmental impacts, safety and economics of hydrogen fuel cells for power generation and hydrogen automotive fuels; relevant international research programs

  12. Hydrogen Fueled Hybrid Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) System for Long-Haul Rail Application

    Science.gov (United States)

    Chow, Justin Jeff

    Freight movement of goods is the artery for America's economic health. Long-haul rail is the premier mode of transport on a ton-mile basis. Concerns regarding greenhouse gas and criteria pollutant emissions, however, have motivated the creation of annually increasing locomotive emissions standards. Health issues from diesel particulate matter, especially near rail yards, have also been on the rise. These factors and the potential to raise conventional diesel-electric locomotive performance warrants the investigation of using future fuels in a more efficient system for locomotive application. This research evaluates the dynamic performance of a Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) Hybrid system operating on hydrogen fuel to power a locomotive over a rail path starting from the Port of Los Angeles and ending in the City of Barstow. Physical constraints, representative locomotive operation logic, and basic design are used from a previous feasibility study and simulations are performed in the MATLAB Simulink environment. In-house controls are adapted to and expanded upon. Results indicate high fuel-to-electricity efficiencies of at least 54% compared to a conventional diesel-electric locomotive efficiency of 35%. Incorporation of properly calibrated feedback and feed-forward controls enables substantial load following of difficult transients that result from train kinematics while maintaining turbomachinery operating requirements and suppressing thermal stresses in the fuel cell stack. The power split between the SOFC and gas turbine is deduced to be a deterministic factor in the balance between capital and operational costs. Using hydrogen results in no emissions if renewable and offers a potential of 24.2% fuel energy savings for the rail industry.

  13. A comparative study of tribological characteristics of hydrogenated DLC film sliding against ceramic mating materials for helium applications

    Science.gov (United States)

    Wu, Daheng; Ren, Siming; Pu, Jibin; Lu, Zhibin; Zhang, Guangan; Wang, Liping

    2018-05-01

    The tribological behaviors of hydrogenated DLC film sliding against Al2O3, ZrO2, Si3N4 and WC mating balls have been comparatively investigated by a ball-on-disk tribometer at 150 °C under helium and air (RH = 6%) conditions. The results showed that the mating material influenced the friction and wear behavior remarkably in helium atmosphere, where the wear rates were in inversely proportional to the friction coefficients (COF) of those tribo-pairs. Compared to the tests in helium, the tribological performance of DLC film significantly improved in air. Scanning electron microscope (SEM) and Raman spectroscopy were performed to study the friction behavior and wear mechanism of the film under different conditions. It suggested that the severe abrasion was caused by the strong interaction between the tribo-pairs in helium atmosphere at 150 °C, whereas the sufficient passivation of the dangling bonds of carbon atoms at sliding interface by chemically active molecules, such as water and oxygen, dominated the ultralow friction under air condition. Meanwhile, Hertz analysis was used to further elucidate the frictional mechanism of DLC film under helium and air conditions. It showed that the coefficient of friction was consistent with the varied tendency of the contact radius, namely, higher friction coefficient corresponded to the larger contact radius, which was the same with the relationship between the wear rate and the contact pressure. All of the results made better understanding of the essential mechanism of hydrogenated DLC film sliding against different pairs, which were able to guide the further application of DLC film in the industrial fields of helium atmosphere.

  14. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    Science.gov (United States)

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  15. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2014-03-01

    Full Text Available A very simple synthetic procedure was developed for the preparation of Ni-Sn alloy catalysts that were utilised for chemoselective hydrogenation of furfural, producing furfuryl alcohol almost exclusively. The mixture of nickel nanoparticles supported on aluminium hydroxide (R-Ni/AlOH and a solution containing tin was treated under hydrothermal condition, producing the as prepared nickel-tin alloy supported on aluminium hydroxide (Ni-Sn/AlOH. H2 treatment at range of temperature of 673-873 K for 1.5 h to the as prepared Ni-Sn/AlOH produced nanoporous Ni-Sn alloy catalysts. XRD patterns and SEM images revealed that the formation of Ni-Sn alloy of Ni3Sn and Ni3Sn2 phases and the transformation of crystalline gibbsite and bayerite into amorphous alumina were clearly observed after H2 treatment at 873 K. The formation of the Ni-Sn alloy may have played a key role in the enhancement of the chemoselectivity. © 2014 BCREC UNDIP. All rights reservedReceived: 1st September 2013; Revised: 26th November 2013; Accepted: 7th December 2013[How to Cite: Rodiansono, R., Hara, T., Ichikuni, N., Shimazu, S. (2014. Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (1: 53-59. (doi:10.9767/bcrec.9.1.5529.53-59][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.1.5529.53-59

  16. Boron-Doped Diamond (BDD) Coatings Protect Underlying Silicon in Aqueous Acidic Media–Application to the Hydrogen Evolution Reaction

    International Nuclear Information System (INIS)

    Halima, A.F.; Rana, U.A.; MacFarlane, D.R.

    2014-01-01

    Abstract: Silicon has potential application as a functional semiconductor electrode in proposed solar water splitting cells. It is abundant and has excellent photovoltaic attributes, however it is extremely susceptible to corrosion, even in the dark, resulting in the formation of an electrochemically passive oxide upon interaction with aqueous media. This work investigates the potential for conductive, inert and transparent boron doped diamond (BDD) coatings to protect p-type Silicon (p-Si). The stability and electrochemical performance of p-Si and p-Si|BDD were investigated using voltammetric techniques in 1 M H 2 SO 4 , before and after long-term exposure to the acidic medium (up to 280 hours) under no applied potential bias. Unprotected Si degraded very rapidly whilst BDD was shown to protect the underlying Si, as evident from I-V curves that indicated no increased resistance across the Si-diamond interface. Furthermore, BDD supported facile proton reduction at significantly lower onset potential for the hydrogen evolution reaction (up to -500 mV vs. SCE) compared with bare Si cathode (-850 mV vs. SCE). The activity of the BDD electrode/electrolyte interface was further improved by coating with platinum catalyst particles, to produce a p-Si|BDD|Pt strucure, which reduced the HER onset to nearly zero overpotential. Tafel analysis indicated that desirable electrochemical activity and stability were achieved for p-Si|BDD|Pt, making this a promising electrode for application in water splitting cells

  17. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.).

    Science.gov (United States)

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2013-10-01

    As a gaseous molecule, hydrogen sulfide (H2S) has been recently found to be involved in plant responses to multiple abiotic stress. In this study, salt (150 and 300 mM NaCl), osmotic (15% and 30% PEG6000) and cold (4 °C) stress treatments induced accumulation of endogenous H2S level, indicating that H2S might play a role in bermudagrass responses to salt, osmotic and cold stresses. Exogenous application of H2S donor (sodium hydrosulfide, NaHS) conferred improved salt, osmotic and freezing stress tolerances in bermudagrass, which were evidenced by decreased electrolyte leakage and increased survival rate under stress conditions. Additionally, NaHS treatment alleviated the reactive oxygen species (ROS) burst and cell damage induced by abiotic stress, via modulating metabolisms of several antioxidant enzymes [catalase (CAT), peroxidase (POD) and GR (glutathione reductase)] and non-enzymatic glutathione antioxidant pool and redox state. Moreover, exogenous NaHS treatment led to accumulation of osmolytes (proline, sucrose and soluble total sugars) in stressed bermudagrass plants. Taken together, all these data indicated the protective roles of H2S in bermudagrass responses to salt, osmotic and freezing stresses, via activation of the antioxidant response and osmolyte accumulation. These findings might be applicable to grass and crop engineering to improve abiotic stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  18. EMF measurements on mixed protonic/electronic conductors for hydrogen membrane applications

    DEFF Research Database (Denmark)

    Bentzer, Henrik Karnøe; Bonanos, Nikolaos; Phair, John

    2010-01-01

    Electromotive force (EMF) measurements are often used to estimate the transport number of conducting species in ionic and mixed conductors. In this work, the applicability of the method to systems, where both protonic, oxide-ionic and electronic conduction is significant, was examined. The effect...

  19. Irregular Polyomino-Shaped Subarrays for Space-Based Active Arrays

    Directory of Open Access Journals (Sweden)

    R. J. Mailloux

    2009-01-01

    Full Text Available This paper presents new results showing the application of polyomino-based subarrays to limited field of view and wideband, wide-angle scanning. This technology can reduce the number of phase controls in arrays used for limited sector coverage or the number of time delay devices for wideband radar or communications, and so can reduce the cost of space-based active arrays. We concentrate on the wideband application. Results are presented by comparing the gain and peak sidelobe results of irregular polyomino subarray-based arrays with those of rectangular subarrays. It is shown that using irregular polyomino subarrays can result in a major decrease in sidelobes while presenting, in most cases, only a few tenths of a dB gain reduction compared to rectangular subarrays.

  20. Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results

    Science.gov (United States)

    1985-01-01

    The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.

  1. Canadian hydrogen safety program

    International Nuclear Information System (INIS)

    MacIntyre, I.; Tchouvelev, A.V.; Hay, D.R.; Wong, J.; Grant, J.; Benard, P.

    2007-01-01

    The Canadian hydrogen safety program (CHSP) is a project initiative of the Codes and Standards Working Group of the Canadian transportation fuel cell alliance (CTFCA) that represents industry, academia, government, and regulators. The Program rationale, structure and contents contribute to acceptance of the products, services and systems of the Canadian Hydrogen Industry into the Canadian hydrogen stakeholder community. It facilitates trade through fair insurance policies and rates, effective and efficient regulatory approval procedures and accommodation of the interests of the general public. The Program integrates a consistent quantitative risk assessment methodology with experimental (destructive and non-destructive) failure rates and consequence-of-release data for key hydrogen components and systems into risk assessment of commercial application scenarios. Its current and past six projects include Intelligent Virtual Hydrogen Filling Station (IVHFS), Hydrogen clearance distances, comparative quantitative risk comparison of hydrogen and compressed natural gas (CNG) refuelling options; computational fluid dynamics (CFD) modeling validation, calibration and enhancement; enhancement of frequency and probability analysis, and Consequence analysis of key component failures of hydrogen systems; and fuel cell oxidant outlet hydrogen sensor project. The Program projects are tightly linked with the content of the International Energy Agency (IEA) Task 19 Hydrogen Safety. (author)

  2. Efficient preparation of highly hydrogenated graphene and its application as a high-performance anode material for lithium ion batteries

    Science.gov (United States)

    Chen, Wufeng; Zhu, Zhiye; Li, Sirong; Chen, Chunhua; Yan, Lifeng

    2012-03-01

    A novel method has been developed to prepare hydrogenated graphene (HG) via a direct synchronized reduction and hydrogenation of graphene oxide (GO) in an aqueous suspension under 60Co gamma ray irradiation at room temperature. GO can be reduced by the aqueous electrons (eaq-) while the hydrogenation takes place due to the hydrogen radicals formed in situ under irradiation. The maximum hydrogen content of the as-prepared highly hydrogenated graphene (HHG) is found to be 5.27 wt% with H/C = 0.76. The yield of the target product is on the gram scale. The as-prepared HHG also shows high performance as an anode material for lithium ion batteries.

  3. Tritium and hydrogen behaviour at Phenix power plant. Application to development and validation of KUMAR type models

    International Nuclear Information System (INIS)

    Tibi, A.; Misraki, J.; Feron, D.

    1984-04-01

    Experimentations at Phenix reactor confirmed the fitness of the KUMAR model for predicting the behaviour of hydrogen and tritium, and thus, prevision of the tritium distribution at Super Phenix reactor: calculation of the tritium content of a regenerated secondary cold trap, behaviour of hydrogen during power operation, the primary cold trap being deliberately outage, and estimation of the tritium and hydrogen sources and permeation transfer ratios [fr

  4. Final Project Report for DOE/EERE High-Capacity and Low-Cost Hydrogen-Storage Sorbents for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hong-Cai [Texas A & M Univ., College Station, TX (United States); Liu, Di-Jia [Texas A & M Univ., College Station, TX (United States)

    2017-12-01

    This report provides a review of the objectives, progress, and milestones of the research conducted during this project on the topic of developing innovative metal-organic frameworks (MOFs) and porous organic polymers (POPs) for high-capacity and low-cost hydrogen-storage sorbents in automotive applications.1 The objectives of the proposed research were to develop new materials as next-generation hydrogen storage sorbents that meet or exceed DOE’s 2017 performance targets of gravimetric capacity of 0.055 kg H2/kgsystem and volumetric capacity of 0.040 kg H2/Lsystem at a cost of $400/kg H2 stored. Texas A&M University (TAMU) and Argonne National Laboratory (ANL) collaborated in developing low-cost and high-capacity hydrogen-storage sorbents with appropriate stability, sorption kinetics, and thermal conductivity. The research scope and methods developed to achieve the project’s goals include the following: Advanced ligand design and synthesis to construct MOF sorbents with optimal hydrogen storage capacities, low cost and high stability; Substantially improve the hydrogen uptake capacity and chemical stability of MOF-based sorbents by incorporating high valent metal ions during synthesis or through the post-synthetic metal metathesis oxidation approach; Enhance sorbent storage capacity through material engineering and characterization; Generate a better understanding of the H2-sorbent interaction through advanced characterization and simulation. Over the course of the project 5 different MOFs were developed and studied: PCN-250, PCN-12, PCN-12’, PCN-608 and PCN-609.2-3 Two different samples were submitted to the National Renewable Energy Laboratory (NREL) in order to validate their hydrogen adsorption capacity, PCN-250 and PCN-12. Neither of these samples reached the project’s Go/No-Go requirements but the data obtained did further prove the hypothesis that the presence of open metal

  5. Nanomaterials for Hydrogen Storage

    Indian Academy of Sciences (India)

    concepts transferred from the gaseous state. Separation of a ... molecular mass to that calculated by colligative methods. It is important in ... namics is vital in the design and optimization of the materials for hydrogen ... vehicular applications.

  6. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    Science.gov (United States)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  7. Ambient-temperature fabrication of microporous carbon terminated with graphene walls by sputtering process for hydrogen storage applications

    International Nuclear Information System (INIS)

    Banerjee, Arghya Narayan; Joo, Sang Woo; Min, Bong-Ki

    2013-01-01

    A very thin amorphous carbon film (10–30 nm), has been bombarded with sputtered Cr nanoparticles, resulting in inelastic collision between the nanoparticles and the nuclei of the C-atoms causing atom displacement and re-arrangement into graphene layers. The process occurs at ambient temperature. Fabrication of graphitic microporous carbon terminated with few-to-multilayer graphene walls has been verified by Raman spectroscopy and scanning transmission electron microscopy. High resolution transmission electron micrographs reveal that the formation of graphene layers is highly sensitive to the sputtering parameters. With a gradual increase in the sputtering voltage/current density/time from 3.5 kV/40 mA–cm −2 /1.0 min to 5.0 kV/70 mA–cm −2 /3.0 min the graphitic domains are found to transform from semi-graphitized layers to well-defined, highly ordered, larger-area graphene walls within the microporous network. The mechanism of this graphitic microporous carbon formation is assumed to be due to two simultaneous processes: in one hand, the sputtering plasma, containing energetic ions and sub-atomic particles, act as dry-etchant to activate the a:C film to transform it into microporous carbon, whereas on the other hand, the charged metal nanoparticle/ion bombardment under sputtering resulted in the inelastic collision between the nanoparticles/ions and the nuclei of the C atoms followed by atom displacement (and displacement cascade) and re-arrangement into ordered structure to form graphitic domains within the microporous carbon network. H 2 storage experiment of the samples depicts excellent hydrogen storage properties. This simple, cost-effective, complementary-metal-oxide-semiconductor-compatible, single-step process of metal-graphene hybrid nanomaterial formation may find interesting applications in the field of optoelectronics and biotechnology. Additionally, this method can be adopted easily for the incorporation of transition metals into graphene and

  8. Special relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Raogudimetla, V. S.

    1994-01-01

    There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the

  9. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.

  10. The problems of using a high-temperature sodium coolant in nuclear power plants for the production of hydrogen and other innovative applications

    Science.gov (United States)

    Sorokin, A. P.; Alexeev, V. V.; Kuzina, Ju. A.; Konovalov, M. A.

    2017-11-01

    The intensity of the hydrogen sources arriving from the third contour of installation in second in comparison with the hydrogen sources on NPP BN-600 increases by two - three order at using of high-temperature nuclear power plants with the sodium coolant (HT-NPP) for drawing of hydrogen and other innovative applications (gasification and a liquefaction of coal, profound oil refining, transformation of biomass to liquid fuel, in the chemical industry, metallurgy, the food-processing industry etc.). For these conditions basic new technological solutions are offered. The main condition of their implementation is raise of hydrogen concentration in the sodium coolant on two - three order in comparison with the modern NPP, in a combination to hydrogen removal from sodium and its pumping out through membranes from vanadium or niobium. The researches with use diffusive model have shown possibility to expel a casium inflow in sodium through a leakproof shell of fuel rods if vary such parameters as a material of fuel rods shell, its thickness and maintenance time at design of fuel rods for high-temperature NPP. However maintenance of high-temperature NPP in the presence of casium in sodium is inevitable at loss of leakproof of a fuel rods shell. In these conditions for minimisation of casium diffusion in structural materials it is necessary to provide deep clearing of sodium from cesium.

  11. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Jensen, Peter Østrup; Kühl, Michael

    2016-01-01

    and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light....... Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...

  12. SHI induced defects in chemically synthesized graphene oxide for hydrogen storage applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Preetam K., E-mail: preetam.nano@gmail.com; Sharma, Vinay; Rajaura, Rajveer Singh; Singh, M. [Department of Physics, University of Rajasthan, Jaipur-302004, India. (India); Srivastava, Subodh; Vijay, Y. K. [Department of Physics, University of Rajasthan, Jaipur-302004, India. (India); Department of Physics, Vivekananda Global University, Jaipur-303012, India. (India); Sharma, S. S. [Department of Physics, Govt. Women Engineering College, Ajmer-305002, India. (India)

    2016-05-06

    Graphene, due to its unique properties arising from the single carbon layer, is a potential candidate for applications in a variety of fields including sensors, photovoltaics and energy storage. The atomic structure and morphology of the carbon nanomaterials especially graphene can be tailored by energetic ionic irradiation. As graphene sheet is very stable, the surface have less reactivity as compared to the edges of the sheets. By surface modification with energetic ion-beams additional dangling bonds can be formed to enhance the surface activity of the graphene film which could be exploited in a variety of applications. In the present work, graphene oxide was synthesized by improved Hummers’ Method. The irradiation was done with Ag{sup +} ions carrying energy 100 MeV with the fluence of 3×10{sup 13}. Raman spectrum of graphene irradiated by Ag{sup +} beam shows additional disordered peaks of D´ and D+G bands. There is also a decrease in the intensity of D band. AFM images depict the increase in the surface roughness of the films. This can be attributed to the increase in the defects in the flakes and intermixing of adjacent layers by irradiation.

  13. Beamed Energy and the Economics of Space Based Solar Power

    Science.gov (United States)

    Keith Henson, H.

    2010-05-01

    For space based solar power to replace fossil fuel, it must sell for 1-2 cents per kWh. To reach this sales price requires a launch cost to GEO of ˜100/kg. Proposed to reach this cost figure at 100 tonne/hour are two stages to GEO where a Skylon-rocket-plane first stage provides five km/sec and a laser stage provides 6.64 km/sec. The combination appears to reduce the cost to GEO to under 100/kg at a materials flow rate of ˜1 million tonnes per year, enough to initially construct 200 GW per year of power satellites. An extended Pro Forma business case indicates that peak investment to profitability might be ˜65 B. Over a 25-year period, production rises to two TW per year to undercut and replace most other sources of energy. Energy on this scale solves other supply problems such as water and liquid fuels. It could even allow removal of CO2 from the air and storage of carbon as synthetic oil in empty oil fields.

  14. Isotope analysis of hydrogen and oxygen by infrared spectrometry and activation. Applications to biological media

    International Nuclear Information System (INIS)

    Botter, F.; Darras, R.; Engelmann, C.; Scaringella, M.; Basset, G.; Moreau, F.; Marsac, J.

    1977-01-01

    Two methods for the analysis of biological fluids are presented: the γ activation of blood samples in order to determine their 18 O content, and the infrared spectrometry, applied to the circulating blood, in order to evaluate the heavy water concentration. Measurements of pulmonary extravascular, water performed in rat and man, are presented. Favorable conditions for clinical research in pulmonary diseases are obtained by combining the use of a dye (as intravascular indicator) and heavy water (as a diffusible indicator) with their continuous measurement). The method has several major advantages: it is simple, inexpensive safe for the patient, accurate and allows data acquisition and data processing to be immediately performed. Other medical applications are considered [fr

  15. Relative Importance of Various Sources of Defect-Producing Hydrogen Introduced into Steel During Application of Vitreous Coatings

    Science.gov (United States)

    Moore, Dwight G; Mason, Mary A; Harrison, William N

    1953-01-01

    When porcelain enamels or vitreous-type ceramic coatings are applied to ferrous metals, there is believed to be an evolution of hydrogen gas both during and after the firing operation. At elevated temperatures rapid evolution may result in blistering while if hydrogen becomes trapped in the steel during the rapid cooling following the firing operation gas pressures may be generated at the coating-metal interface and flakes of the coating literally blown off the metal. To determine experimentally the relative importance of the principal sources of the hydrogen causing the defects, a procedure was devised in which heavy hydrogen (deuterium) was substituted in turn for regular hydrogen in each of five possible hydrogen-producing operations in the coating process. The findings of the study were as follows: (1) the principal source of the defect-producing hydrogen was the dissolved water present in the enamel frit that was incorporated into the coating. (2) the acid pickling, the milling water, the chemically combined water in the clay, and the quenching water were all minor sources of defect-producing hydrogen under the test conditions used. Confirming experiments showed that fishscaling could be eliminated by using a water-free coating.

  16. Amorphous Alloy Membranes Prepared by Melt-Spin methods for Long-Term use in Hydrogen Separation Applications

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh; Kim, Sang-Mun; Adibhatla, Anasuya; Dolan, Michael; Paglieri, Steve; Flanagan, Ted; Chien, Wen-Ming; Talekar, Anjali; Wermer, Joseph

    2013-02-28

    Amorphous Ni-based alloy membranes show great promise as inexpensive, hydrogenselective membrane materials. In this study, we developed membranes based on nonprecious Ni-Nb-Zr alloys by adjusting the alloying content and using additives. Several studies on crystallization of the amorphous ribbons, in-situ x-ray diffraction, SEM and TEM, hydrogen permeation, hydrogen solubility, hydrogen deuterium exchange, and electrochemical studies were conducted. An important part of the study was to completely eliminate Palladium coatings of the NiNbZr alloys by hydrogen heattreatment. The amorphous alloy (Ni0.6Nb0.4)80Zr20 membrane appears to be the best with high hydrogen permeability and good thermal stability.

  17. New hydrogen technologies

    International Nuclear Information System (INIS)

    1992-01-01

    This report presents an overview of the overall hydrogen system. There are separate sections for production, distribution, transport, storage; and applications of hydrogen. The most important methods for hydrogen production are steam reformation of natural gas and electrolysis of water. Of the renewable energy options, production of hydrogen by electrolysis using electricity from wind turbines or by gasification of biomass were found to be the most economic for Finland. Direct use of this electricity or the production of liquid fuels from biomass will be competing alternatives. When hydrogen is produced in the solar belt or where there is cheap hydropower it must be transported over long distances. The overall energy consumed for the transport is from 25 to 40 % of the initial available energy. Hydrogen storage can be divided into stationary and mobile types. The most economic, stationary, large scale hydrogen storage for both long and short periods is underground storage. When suitable sites are not available, then pressure vessels are the best for short period and liquid H 2 for long period. Vehicle storage of hydrogen is by either metal hydrides or liquid H 2 . Hydrogen is a very versatile energy carrier. It can be used to produce heat directly in catalytic burners without flame, to produce electricity in fuel cells with high efficiency for use in vehicles or for peak power shaving, as a fuel component with conventional fuels to reduce emissions, as a way to store energy and as a chemical reagent in reactions

  18. Disinfection of wastewater by hydrogen peroxide or peracetic acid: development of procedures for measurement of residual disinfectant and application to a physicochemically treated municipal effluent.

    Science.gov (United States)

    Wagner, Monika; Brumelis, Daina; Gehr, Ronald

    2002-01-01

    The Montreal Urban Community Wastewater Treatment Plant (MUCWTP) located in Montreal. Quebec, Canada, uses physicochemical treatment processes prior to discharging wastewater into the St. Lawrence River via an outfall tunnel of 2 hours retention time. Although chlorination facilities exist, they are not being used, and the MUCWTP is seeking alternative methods for disinfection to achieve a 2- to 3-log fecal coliform reduction. Liquid chemical disinfectants were attractive options because of their low capital costs. This led to an investigation of the feasibility of using hydrogen peroxide or peracetic acid. A method for measuring peroxycompounds (hydrogen peroxide or peracetic acid plus hydrogen peroxide) was developed using the peroxidase-based oxidation of 2,2'-azino-bis(3-ethylbenz-thiazoline-6-sulfuric acid) diammonium salt (ABTS) with hydrogen peroxide. The validity of the method was confirmed using effluent from the MUCWTP. Recovery was higher than 90% for peracetic acid levels as low as 1.0 mg/L. Quenching of hydrogen peroxide was achieved with 50-mg/L catalase; quenching of peracetic acid was achieved with 100 mg/L of sodium thiosulfate, followed by 50 mg/L of catalase. Batch disinfection tests were conducted on MUCWTP effluent. Hydrogen peroxide and peracetic acid in wastewater over time could be modeled as a second-order decay, with the decay "constant" being a function of the initial concentration of peroxycompounds. This function was the same for both hydrogen peroxide and peracetic acid, possibly indicating similar decomposition pathways in wastewater matrices. Disinfection was modeled using a modified Hom equation. Required doses of hydrogen peroxide to reach the target fecal coliform levels ranged from 106 to 285 mg/L, with the higher doses occurring when ferric chloride instead of alum was used as the coagulant. Hence, hydrogen peroxide was infeasible as a disinfectant for this application. On the other hand, the peracetic acid dose needed to

  19. Hydrogen energy systems studies

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, J.M.; Steinbugler, M.; Dennis, E. [Princeton Univ., NJ (United States)] [and others

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  20. Characterization of LaNiO3 prepared by sol–gel: Application to hydrogen evolution under visible light

    International Nuclear Information System (INIS)

    Khettab, M.; Omeiri, S.; Sellam, D.; Ladjouzi, M.A.; Trari, M.

    2012-01-01

    Highlights: ► Photoactive LaNiO 3 was prepared by sol–gel. ► LaNiO 3 exhibits n type conductivity it due to slight oxygen deficiency. ► LaNiO 3 was successfully for hydrogen evolution upon visible light. - Abstract: The semi conducting properties of LaNiO 3 , elaborated by sol–gel, have been investigated for the first time by the photocurrent technique and capacitance measurements. The oxide crystallizes in a distorted perovskite structure and the transport properties indicate degenerate conductivity with activation energy of 18 meV. The infrared spectrum allowed us to evaluate the band gap at 88 meV. The electrochemical behaviour has been studied in alkaline electrolyte (KOH, 0.5 M). The corrosion potential (−0.204 V SCE ) and the exchange current density (0.103 mA cm −2 ), determined from the semi logarithmic plot, indicate long lived oxide. The slope and the intercept to C −2 = 0 of the Mott Schottky plot, characteristic of n type behaviour, gave respectively an electron density (N D ) of 2.3 × 10 19 cm −3 and a flat band potential (V fb ) of −0.61 V SCE . The nature of the Nyquist plot, measured over a wide frequency range (10 −3 –10 5 Hz), shows the predominance of the bulk contribution. The arc is not centred on the real axis (−6.3°), an evidence of a constant phase element. The straight line at low frequencies is due to Warburg diffusion and the data are interpreted thanks to the Randles model. The absorption of light promotes electrons into LaNiO 3 –CB with a potential (−0.62 V SCE ) sufficient to reduce water (−0.50 V SCE ). As application, the oxide has been tested successfully for hydrogen evolution upon visible light with a rate evolution of 1.73 μmol min −1 (g catalyst) −1 and a quantum efficiency of 0.042% under full light (29 mW cm −2 ).

  1. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  2. Space-based Networking Technology Developments in the Interplanetary Network Directorate Information Technology Program

    Science.gov (United States)

    Clare, Loren; Clement, B.; Gao, J.; Hutcherson, J.; Jennings, E.

    2006-01-01

    Described recent development of communications protocols, services, and associated tools targeted to reduce risk, reduce cost and increase efficiency of IND infrastructure and supported mission operations. Space-based networking technologies developed were: a) Provide differentiated quality of service (QoS) that will give precedence to traffic that users have selected as having the greatest importance and/or time-criticality; b) Improve the total value of information to users through the use of QoS prioritization techniques; c) Increase operational flexibility and improve command-response turnaround; d) Enable new class of networked and collaborative science missions; e) Simplify applications interfaces to communications services; and f) Reduce risk and cost from a common object model and automated scheduling and communications protocols. Technologies are described in three general areas: communications scheduling, middleware, and protocols. Additionally developed simulation environment, which provides comprehensive, quantitative understanding of the technologies performance within overall, evolving architecture, as well as ability to refine & optimize specific components.

  3. Automated Detection of Small Bodies by Space Based Observation

    Science.gov (United States)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated

  4. Just in Time in Space or Space Based JIT

    Science.gov (United States)

    VanOrsdel, Kathleen G.

    1995-01-01

    Our satellite systems are mega-buck items. In today's cost conscious world, we need to reduce the overall costs of satellites if our space program is to survive. One way to accomplish this would be through on-orbit maintenance of parts on the orbiting craft. In order to accomplish maintenance at a low cost I advance the hypothesis of having parts and pieces (spares) waiting. Waiting in the sense of having something when you need it, or just-in-time. The JIT concept can actually be applied to space processes. Its definition has to be changed just enough to encompass the needs of space. Our space engineers tell us which parts and pieces the satellite systems might be needing once in orbit. These items are stored in space for the time of need and can be ready when they are needed -- or Space Based JIT. When a system has a problem, the repair facility is near by and through human or robotics intervention, it can be brought back into service. Through a JIT process, overall system costs could be reduced as standardization of parts is built into satellite systems to facilitate reduced numbers of parts being stored. Launch costs will be contained as fewer spare pieces need to be included in the launch vehicle and the space program will continue to thrive even in this era of reduced budgets. The concept of using an orbiting parts servicer and human or robotics maintenance/repair capabilities would extend satellite life-cycle and reduce system replacement launches. Reductions of this nature throughout the satellite program result in cost savings.

  5. Cost of space-based laser ballistic missile defense.

    Science.gov (United States)

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  6. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    Energy Technology Data Exchange (ETDEWEB)

    Kostoglou, Nikolaos, E-mail: nikolaos.kostoglou@stud.unileoben.ac.at [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Constantinides, Georgios [Research Unit for Nanostructured Materials Systems, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3036 Lemesos (Cyprus); Charalambopoulou, Georgia; Steriotis, Theodore [National Center for Scientific Research Demokritos, Agia Paraskevi Attikis, 15310 Athens (Greece); Polychronopoulou, Kyriaki [Department of Mechanical Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Li, Yuanqing; Liao, Kin [Department of Aerospace Engineering, Khalifa University of Science, Technology and Research, Abu Dhabi (United Arab Emirates); Ryzhkov, Vladislav [Nanotube Production Department, Fibrtec Incorporation, TX, 75551 Atlanta (United States); Mitterer, Christian [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben (Austria); Rebholz, Claus, E-mail: claus@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2015-12-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m{sup 2}/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H{sub 2}, CO{sub 2} and CH{sub 4} sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO{sub 2} (28–33 kJ/mol) and CH{sub 4} (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO{sub 2}/CH{sub 4} gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H{sub 2}, CO{sub 2} and CH{sub 4} adsorption up to 1 bar • CO{sub 2} over CH{sub 4} gas selectivity estimated between 45 and 95 at 273 K using the IAST model.

  7. Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices

    International Nuclear Information System (INIS)

    Shukur, M.F.; Kadir, M.F.Z.

    2015-01-01

    Highlights: • Cation transference number of the highest conducting starch-chitosan-NH 4 Cl-glycerol electrolyte is 0.56. • LSV has shown that the polymer electrolyte is suitable for fabrication of EDLC and proton batteries. • The fabricated EDLC has been charged and discharged for 500 cycles. • Secondary proton battery has been charged and discharged for 40 cycles. - Abstract: This paper reports the characterization of starch-chitosan blend based solid polymer electrolyte (SPE) system and its application in electrochemical double layer capacitor (EDLC) and proton batteries. All the SPEs are prepared via solution cast technique. Results from X-ray diffraction (XRD) verify the conductivity result from our previous work. Scanning electron microscopy (SEM) analysis shows the difference in the electrolyte's surface with respect to NH 4 Cl and glycerol content. From transference number measurements (TNM), transference number of ion (t ion ) of the electrolytes shows that ion is the dominant conducting species. Transference number of cation (t + ) for the highest conducting electrolyte is found to be 0.56. Linear sweep voltammetry (LSV) result confirms the suitability of the highest conducting electrolyte to be used in the fabrication of EDLC and proton batteries. The EDLC has been characterized using cyclic voltammetry (CV) and galvanostatic charge-discharge measurements. The open circuit potential (OCP) of the primary proton batteries for 48 h is lasted at (1.54 ± 0.02) V, while that of secondary proton batteries is lasted at (1.58 ± 0.01) V. The primary proton batteries have been discharged at different constant currents. The secondary proton battery has been charged and discharged for 40 cycles

  8. Nanoporous spongy graphene: Potential applications for hydrogen adsorption and selective gas separation

    International Nuclear Information System (INIS)

    Kostoglou, Nikolaos; Constantinides, Georgios; Charalambopoulou, Georgia; Steriotis, Theodore; Polychronopoulou, Kyriaki; Li, Yuanqing; Liao, Kin; Ryzhkov, Vladislav; Mitterer, Christian; Rebholz, Claus

    2015-01-01

    In the present work, a nanoporous (pore width ~ 0.7 nm) graphene-based sponge-like material with large surface area (~ 350 m"2/g) was synthesized by wet chemical reduction of graphene oxide in combination with freeze-drying. Surface morphology and elemental composition were studied by scanning and transmission electron microscopy combined with energy dispersive X-ray spectroscopy. Surface chemistry was qualitatively examined by Fourier-transform infrared spectroscopy, while the respective structure was investigated by X-ray diffraction analysis. Textural properties, including Brunauer–Emmet–Teller (BET) surface area, micropore volume and surface area as well as pore size distribution, were deduced from nitrogen gas adsorption/desorption data obtained at 77 K and up to 1 bar. Potential use of the spongy graphene for gas storage and separation applications was preliminarily assessed by low-pressure (0–1 bar) H_2, CO_2 and CH_4 sorption measurements at different temperatures (77, 273 and 298 K). The adsorption capacities for each gas were evaluated up to ~ 1 bar, the isosteric enthalpies of adsorption for CO_2 (28–33 kJ/mol) and CH_4 (30–38 kJ/mol) were calculated using the Clausius–Clapeyron equation, while the CO_2/CH_4 gas selectivity (up to 95:1) was estimated using the Ideal Adsorbed Solution Theory (IAST). - Highlights: • Nanoporous sponge produced by chemical reduction of graphene oxide and freeze-drying • Characterization performed using SEM, EDS, TEM, FT-IR, BET and XRD methods • Gas storage performance evaluated towards H_2, CO_2 and CH_4 adsorption up to 1 bar • CO_2 over CH_4 gas selectivity estimated between 45 and 95 at 273 K using the IAST model

  9. Hydrogen storage in carbon nanofibres for defence applications : the influence of growth parameters on graphitic quality and storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, M.; Mellor, I. [Morgan Materials Technology Ltd., Worcestershire (United Kingdom); Shatwell, R.A.; Prentice, C. [QinetiQ Farnborough, Hampshire (United Kingdom); Browning, D.J. [QinetiQ Haslar, Gosport, Hampshire (United Kingdom); Lakeman, J.B. [Dstl Portsdown, Cosham, Hampshire (United Kingdom); Gerrard, M.L.; Mortimer, R.J. [Loughborough Univ. of Technology, Loughborough, Leicestershire (United Kingdom). Dept. of Chemistry

    2002-07-01

    The results of a study on hydrogen storage in carbon or graphite nanofibres (GNFs) were presented. Graphite nanofibres used in hydrogen storage treatment were synthesized at 600 degrees C by passing ethylene over a series of Fe:Ni:Cu catalysts. It was shown that while hydrogen storage can occur for up to 6.5 wt per cent, this number can vary depending on the method of preparation and heat treatment. Hydrogen storage requires an effective method, such as Raman spectroscopy, for characterising the product. Transmission Electron Microscopy also helped in the optimisation of the process to produce highly graphitic nanofibres. The main role of heat treatment is to remove carbon from the surface of the GNFs, allowing access to the graphene planes. Hydrogen storage experiments were conducted at 120 bar, using a bespoke apparatus with differential pressure. A detailed error analysis was performed on the uptake measurement system. The rate of penetration by hydrogen into a layer of carbon capping graphene planes is found to be negligible. It is concluded that hydrogen adsorption will not be observed unless the layer is removed. A maximum uptake of 4.2 wt per cent was achieved, increasing to more than 6.5 wt per cent following heat treatment at 1000 degrees C. 32 refs., 3 tabs., 7 figs.

  10. Ten questions on hydrogen Jean Dhers

    International Nuclear Information System (INIS)

    2005-01-01

    The author proposes explanations and comments on the use of hydrogen in energy production. He discusses whether hydrogen can be a new energy technology within the context of a sustainable development, whether hydrogen is actually an energy vector, what would be the benefits of using hydrogen in energy applications, why it took so much time to be interested in hydrogen, when the hydrogen vector will be needed, whether we can economically produce hydrogen to meet energy needs (particularly in transports), whether hydrogen is the best suited energy vector for ground transports in the future, how to retail hydrogen for ground transports, what are the difficulties to store hydrogen for ground transport applications, and how research programs on hydrogen are linked together

  11. Application of laser fluorescence spectroscopy by two-photon excitation into atomic hydrogen density measurement in reactive plasmas

    International Nuclear Information System (INIS)

    Kajiwara, Toshinori; Takeda, Kazuyuki; Kim, Hee Je; Park, Won Zoo; Muraoka, Katsunori; Akazaki, Masanori; Okada, Tatsuo; Maeda, Mitsuo.

    1990-01-01

    Density profiles of hydrogen atoms in reactive plasmas of hydrogen and methane gases were measured, for the first time, using the laser fluorescence spectroscopy by two-photon excitation of Lyman beta transition and observation at the Balmer alpha radiation. Absolute density determinations showed atomic densities of around 3 x 10 17 m -3 , or the degree of dissociation to be 10 -4 . Densities along the axis perpendicular to the RF electrode showed peaked profiles, which were due to the balance of atomic hydrogen production by electron impact on molecules against diffusion loss to the walls. (author)

  12. Space base laser torque applied on LEO satellites of various geometries at satellite’s closest approach

    Directory of Open Access Journals (Sweden)

    N.S. Khalifa

    2013-12-01

    Full Text Available In light of using laser power in space applications, the motivation of this paper is to use a space based solar pumped laser to produce a torque on LEO satellites of various shapes. It is assumed that there is a space station that fires laser beam toward the satellite so the beam spreading due to diffraction is considered to be the dominant effect on the laser beam propagation. The laser torque is calculated at the point of closest approach between the space station and some sun synchronous low Earth orbit cubesats. The numerical application shows that space based laser torque has a significant contribution on the LEO cubesats. It has a maximum value in the order of 10−8 Nm which is comparable with the residual magnetic moment. However, it has a minimum value in the order 10−11 Nm which is comparable with the aerodynamic and gravity gradient torque. Consequently, space based laser torque can be used as an active attitude control system.

  13. Review of Current State of the Art and Key Design Issues With Potential Solutions for Liquid Hydrogen Cryogenic Storage Tank Structures for Aircraft Applications

    Science.gov (United States)

    Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.

    2006-01-01

    Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.

  14. Hydrogen highway

    International Nuclear Information System (INIS)

    Anon

    2008-01-01

    The USA Administration would like to consider the US power generating industry as a basis ensuring both the full-scale production of hydrogen and the widespread use of the hydrogen related technological processes into the economy [ru

  15. Electrochemical Hydrogen Compressor

    Energy Technology Data Exchange (ETDEWEB)

    Lipp, Ludwig [FuelCell Energy, Inc., Torrington, CT (United States)

    2016-01-21

    Conventional compressors have not been able to meet DOE targets for hydrogen refueling stations. They suffer from high capital cost, poor reliability and pose a risk of fuel contamination from lubricant oils. This project has significantly advanced the development of solid state hydrogen compressor technology for multiple applications. The project has achieved all of its major objectives. It has demonstrated capability of Electrochemical Hydrogen Compression (EHC) technology to potentially meet the DOE targets for small compressors for refueling sites. It has quantified EHC cell performance and durability, including single stage hydrogen compression from near-atmospheric pressure to 12,800 psi and operation of EHC for more than 22,000 hours. Capital cost of EHC was reduced by 60%, enabling a path to meeting the DOE cost targets for hydrogen compression, storage and delivery ($2.00-2.15/gge by 2020).

  16. Novel synthesis of Prussian blue nanoparticles and nanocomposite sol: Electro-analytical application in hydrogen peroxide sensing

    International Nuclear Information System (INIS)

    Pandey, Prem C.; Pandey, Ashish K.

    2013-01-01

    Highlights: ► Novel process for the synthesis of PBNPs sol of 15.8 nm size is reported. ► The PBNPs sol shows the electron transfer rate constant to the order of 32.1 s −1 ► The PBNPs sol has shown the functional activity for making the nanocomposite. ► The nanocomposite with tris(2,2′-bipyridyl)ruthenium shows photoluminiscent ability. ► The PBNPs and its nanocomposite (PB-Rubpy) show high sensitivity for H 2 O 2 sensing. - Abstract: This paper reports a new method for the synthesis of Prussian blue nanoparticles (PBNPs) sol of homogeneous dispersion with average particle size to the order of 15.8 nm. The new method of PBNPs sol synthesis is based on the interaction of active concentrations of 3-aminopropylalkoxysilane, cyclohexanone and single precursor potassium ferricyanide under ambient conditions. The PBNPs sol shows excellent electrochemistry with electron transfer rate constant to the order of 32.1 s −1 . The resulting PBNPs sol has been found highly stable for practical applications and shows functional activity for making nanocomposite sol with tris(2,2′-bipyridyl) ruthenium (Rubpy). The PB-Rubpy nanocomposite shows high sensitivity for H 2 O 2 electrochemical sensing to the order of 1102.0 μA mM −1 cm −2 and storage stability of the materials for more than 3 months. In addition, these nanocomposite exhibits excellent electrocatalytic property for hydrogen peroxide (H 2 O 2 ) sensing with catalytic rate constant to the order of 3.14 × 10 3 M −1 s −1 . The PB-Rubpy nanocomposite sol, apart from electrocatalytic application, shows photoluminiscent ability for many opto-electroanalytical applications. In addition to that functional property of PBNPs sol for making nanodispersion with several known nanoparticles of gold, silver, palladium along with in situ synthesis of mixed metal hexacyanoferrate have also been observed.

  17. Hydrogen atom model for nucleon and pion

    International Nuclear Information System (INIS)

    Baiquni, A.

    1976-01-01

    Discussion on Dion as double charge particle, covering that on semi classical model, proton Dionium model consequence, symmetry group in hydrogen, hydrogen atom dynamic group, and discussion on relativistic dynamic group, covering relativistic equation for hydrogen, operator extension of SO(4, 2), application of SO(4,2)O SO(4,2), and hydrogen complete equation, are given. (author)

  18. Development of the work function approach to the underpotential deposition of metals. Application to the hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Trasatti, S.

    1975-01-01

    A theory is developed for the underpotential deposition of metals. Concepts are then extended to oxygen and hydrogen adsorption. Analysis of results shows that, unlike oxygen adsorption, hydrogen adsorption in solution probably follows a different pattern with respect to the gas phase situation. The hydrogen evolution reaction is discussed in the light of the above findings and it is shown that usual concepts regarding the reactivity scale of metals towards hydrogen should be reconsidered taking into account solvent and entropy effects. The latters can account for the behaviour of sp-metals. The formers are important with transition metals. The final picture is consistent with the idea that M-H 2 O interactions are much stronger on transition than on sp-metals. (orig.) [de

  19. Modern technology electrolysis for power application. II. The impact of the energy market on the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, U [Brown Boveri AG, Baden, Switzerland; Bidard, R

    1979-01-01

    This paper considers the effects of the energy market on the use of hydrogen as a fuel and discusses various schemes of supplanting fossil fuels. Different fossil fuel substitution models in various parts of the western community result in rather different timing of market penetration needs and possibilities. This requires a consideration of the time span needed to implement different technologies in the choice of hydrogen production methods.

  20. Study of Mg-based materials to be used in a functional solid state hydrogen reservoir for vehicular applications

    Energy Technology Data Exchange (ETDEWEB)

    Maddalena, Amedeo; Petris, Milo; Palade, Petru; Sartori, Sabrina; Principi, Giovanni [Settore Materiali and CNISM, Dipartimento di Ingegneria Meccanica, Universita di Padova, via Marzolo 9, 35131 Padova (Italy); Settimo, Eliseo [Celco-Profil, via dell' Artigianato 4, 30030 Vigonovo (Venezia) (Italy); Molinas, Bernardo [Venezia Tecnologie, via delle Industrie 39, 30175 Marghera (Venezia) (Italy); Lo Russo, Sergio [Dipartimento di Fisica and CNISM, Universita di Padova, via Marzolo 8, 35131 Padova (Italy)

    2006-11-15

    Powders mixtures of nanosized MgH{sub 2} and suitable additives, obtained by high energy milling, have been studied as materials to be used in a functional solid state hydrogen reservoir. A prototype of a two stages reservoir is under development (patent pending). The hydrogen release from the main stage, with high capacity Mg-based hydrides, is primed by a primer stage containing commercial hydrides able to operate at room temperature. (author)

  1. Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor

    International Nuclear Information System (INIS)

    Hsu, H.-L.; Jehng, J.-M.

    2009-01-01

    In this study, we demonstrate the synthesis of carbon nanotubes (CNTs) on clay minerals, and the development of biosensors based on Nafion-CNT/Clay-Au and Nafion-CNT/Clay-Au-Glucose oxidase (GOD) composite films for the detection of hydrogen peroxide (H 2 O 2 ) and glucose, respectively. The CNTs are synthesized on nickel cation exchanged clay mineral platelets. From field-emission scanning electron microscope images, X-ray diffraction, Fourier transfer infrared and thermogravimetric analysis results, the clay layers are exfoliated and delaminated after the growth of CNTs on them. The mixed hybrid film of Nafion, CNT/Clay, Au particles and GOD is coated on the glassy carbon (GC) electrode to detect H 2 O 2 or glucose. This film exhibits a detection limit of 5.0 x 10 -5 M for H 2 O 2 with a sensitivity of 280 nA mM -1 . In addition, the amperometric response for glucose containing 2.0 mg mL -1 GOD in the Nafion-CNT/Clay-Au-GOD modified GC electrode exhibits a sensitivity of 620 nA mM -1 with a linear range up to 1850 μM. A higher sensitivity and shorter response time are observed with increasing GOD content in the composite matrix film. Besides, the highest sensitivity of 2032 nA mM -1 is obtained with the addition of the 10.0 mg mL -1 GOD in the composite film. Consequently, the CNT/Clay/Nafion medium can probably be a useful electrode for the development of sensors due to its high sensitivity and applicability

  2. Hydrogénations catalytiques. De la recherche de base à l'application industrielle Catalytic Hydrogenation from Basic Research to Industrial Applications

    Directory of Open Access Journals (Sweden)

    Boitiaux J. P.

    2006-11-01

    additifs ou impuretés des charges et de donner des idées claires sur la façon de modifier les supports ou les sites métalliques. Les conséquences ont été tirées de ces études et des applications industrielles ont démontré clairement l'intérêt de ces travaux. Néanmoins certains problèmes sont encore à résoudre qu'il serait nécessaire de considérer d'un point de vue encore plus fondamental en prenant en considération le mécanisme de la réaction d'hydrogénation. Early research on catalytic hydrogenation showed the specificity of different metals for different types of hydrogenation (acetylenes, olefins, aromatics, aldehydes, nitriles, etc. . This observation somewhat vaguely included the concept of the importance of the metal/substrate pair. A contradiction with the insensitive character to the structure of such reactions then appeared. Recent research on palladium catalysts of various dispersions has clearly demonstrated the influence of particle size on the hydrogenation rate of C4 acetylenes and diolefins. Such a behavior has now been confirmed by further research on platinum and rhodium. The phenomenon is due to excessive adsorption of reactants on small particles. These particles are electrodeficient and very strongly adsorb electrodonor compounds such as unsaturated hydrocarbons. The explanation has been confirmed by the additive effect caused by piperidine. Its coadsorption on the catalyst destabilizes the metal/substrate bond and increases the activity. A complete kinetic analysis has refined this interpretation by demonstrating the constancy of intrinsic activity and the relation between sensitivity to metal dispersion and a complexing of the metallic site of the type encountered on homogeneous catalysts. This fundamental research has very important consequences on the development of industrial catalysts. For each process and hence for each hydrogenation, the optimum dispersion of the metal has to be determined to obtain the highest possible

  3. Synergistic production of hydrogen using fossil fuels and nuclear energy application of nuclear-heated membrane reformer

    International Nuclear Information System (INIS)

    Hori, M.; Matsui, K.; Tashimo, M.; Yasuda, I.

    2004-01-01

    Processes and technologies to produce hydrogen synergistically by the steam reforming reaction using fossil fuels and nuclear heat are reviewed. Formulas of chemical reactions, required heats for reactions, saving of fuel consumption or reduction of carbon dioxide emission, possible processes and other prospects are examined for such fossil fuels as natural gas, petroleum and coal. The 'membrane reformer' steam reforming with recirculation of reaction products in a closed loop configuration is considered to be the most advantageous among various synergistic hydrogen production methods. Typical merits of this method are: nuclear heat supply at medium temperature below 600 deg. C, compact plant size and membrane area for hydrogen production, efficient conversion of feed fuel, appreciable reduction of carbon dioxide emission, high purity hydrogen without any additional process, and ease of separating carbon dioxide for future sequestration requirements. With all these benefits, the synergistic production of hydrogen by membrane reformer using fossil fuels and nuclear energy can be an effective solution in this century for the world which has to use. fossil fuels any way to some extent while reducing carbon dioxide emission. For both the fossil fuels industry and the nuclear industry, which are under constraint of resource, environment and economy, this production method will be a viable symbiosis strategy for the coming hydrogen economy era. (author)

  4. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  5. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  6. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  7. Hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Pahwa, P.K.; Pahwa, Gulshan Kumar

    2013-10-01

    In the future, our energy systems will need to be renewable and sustainable, efficient and cost-effective, convenient and safe. Hydrogen has been proposed as the perfect fuel for this future energy system. The availability of a reliable and cost-effective supply, safe and efficient storage, and convenient end use of hydrogen will be essential for a transition to a hydrogen economy. Research is being conducted throughout the world for the development of safe, cost-effective hydrogen production, storage, and end-use technologies that support and foster this transition. This book discusses hydrogen economy vis-a-vis sustainable development. It examines the link between development and energy, prospects of sustainable development, significance of hydrogen energy economy, and provides an authoritative and up-to-date scientific account of hydrogen generation, storage, transportation, and safety.

  8. Yb:YAG Lasers for Space Based Remote Sensing

    Science.gov (United States)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  9. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection; Etude de dispositifs electroniques en silicium amorphe hydrogene sous fort champ electrique: application a la detection nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Ilie, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees]|[Paris-11 Univ., 91 - Orsay (France)

    1996-12-31

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation. Thick p-i-n devices, capable of withstanding large electric fields (up to 10{sup 6} V/cm) with small currents (nA/cm{sup 2}), were developed. To decrease fabrication time, films were made using the `He diluted` PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the `standard model` of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an appropriate converter, neutron detection then becomes possible. (author). 137 refs.

  10. Application of cylinder symmetry to iron and titanium oxidation by oxygen or hydrogen-water vapour mixes

    International Nuclear Information System (INIS)

    Raynaud, Pierre

    1980-01-01

    This research thesis addresses the study of the oxidation reaction in the case of corrosion of iron by oxygen, hydrogen sulphide or hydrogen-water vapour mixes, and in the case of oxidation of titanium and of titanium nitride by hydrogen-water vapour mixes. It first addresses the corrosion of iron by oxygen with an experiment performed in cylinder symmetry: description of operational conditions, discussion of kinetic curves, development of a law of generation of multiple layers in cylinder symmetry, analytical exploitation of experimental results. The second part addresses the oxidation of iron by hydrogen-water vapour mixes: experimental conditions, influence of temperature on kinetics, micrographic study (oxide morphology, coating morphology, interpretation of differences with the case of plane symmetry), discussion of the influence of cylinder symmetry on oxidation kinetics. The third part addresses the oxidation of titanium by hydrogen-water vapour mixes: global kinetic evolution, reaction products and micrographic examination, morphology and texture studies, discussion of the oxidation mechanism and of cylinder symmetry [fr

  11. Synthesis of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wenqin; Yu, Beibei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wu, Huimin, E-mail: whm267@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Wang, Shengfu; Xia, Qinghua [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062 (China); Ding, Yu [College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000 (China)

    2017-01-01

    Different phases of cobalt sulfides have been fabricated by one-pot hydrothermal method. Comparing all of the prepared materials, and the results revealed that CoS was the most conductive and could accelerate electron transfer. The CoS presented tremella-like and excellent catalytic activities towards hydrogen peroxide and glucose. The sensor based on CoS performed amperometric sensing of hydrogen peroxide in a linear range between 5.00 μM and 14.82 mM. Meanwhile, sensing of glucose with double-linear range, one is between 5.00 μM and 1.10 mM, the other is between 1.20 mM and 10.20 mM. These due to the fact that more and more intermediate species absorb onto electrode surface with increasing the concentration of glucose, which limit the following glucose oxidation. Furthermore, the hydrogen peroxide and glucose sensors based on tremella-like CoS also exhibited excellent selectivity, stability, and reproducibility. Thus, the sensor showed potential utilities in hydrogen peroxide and glucose detection. - Highlights: • Tremella-like CoS was prepared by an environmentally friendly hydrothermal method. • The CoS exhibited excellent catalytic activity towards hydrogen peroxide and glucose. • The sensors based on CoS can be applied to detect real samples.

  12. Chemochromic Hydrogen Leak Detectors

    Science.gov (United States)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  13. Application of the potential-drop method to measurements of hydrogen-induced sub-critical crack growth in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Simpson, L.A.; Clarke, C.F.

    1977-10-01

    Adaptation of the potential-drop method of crack-following to the problem of hydrogen-induced sub-critical crack growth in Zr-2.5% Nb is described. Reasons for non-linearity in the calibration of crack extension against potential drop in compact tension specimens are discussed. It is shown that despite non-linearities, careful comparison of fractographic features with the potential-drop record can lead to a continuous plot of crack velocity against time or stress intensity factor. Procedures for correcting data through temperature and load changes are also described. The application of the technique to studies of the mechanism of hydrogen crack growth is illustrated with several examples. (author)

  14. Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: Application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aizhuo; Hu Weidong; Qamar, Seema; Majumdar, Ananya [Memorial Sloan-Kettering Cancer Center, Cellular Biochemistry and Biophysics Program (United States)

    2000-05-15

    In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced significantly through quenching scalar coupling mediated relaxation by using composite-pulse decoupling (CPD) or an adiabatic decoupling sequence on aliphatic, in particular alpha-carbons in {sup 13}C/{sup 15}N-labeled proteins. The CPD-HNCO experiment renders 50% sensitivity enhancement over the conventional CT-HNCO experiment performed on a 12 kDa FK506 binding protein, when a total of 266 ms of amide nitrogen-carbonyl carbon defocusing and refocusing periods is employed. This is a typical time period for the direct detection of hydrogen bonds in proteins via trans-hydrogen bond {sup 3h}J{sub NC'} couplings. The experimental data fit theoretical analysis well. The significant enhancement in sensitivity makes the experiment more applicable to larger-sized proteins without resorting to perdeuteration.

  15. High-temperature hydrogenation of pure and silver-decorated titanate nanotubes to increase their solar absorbance for photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Plodinec, Milivoj [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Gajović, Andreja, E-mail: gajovic@irb.hr [Ruđer Bošković Institute, Bijenička 54, HR-1002 Zagreb (Croatia); Jakša, Gregor; Žagar, Kristina; Čeh, Miran [Institute Jožef Stefan, Jamova 39, 1000 Ljubljana (Slovenia)

    2014-04-05

    Graphical abstract: The aim of the work is to study how annealing in a reducing atmosphere of titanate nanotubes (TiNT) and Ag decorated titanate nanotubes (TiNT@Ag) influenced on their structure, morphology, phase transitions, UV–ViS-NIR absorbance and photocatalytic activity. An increase of photocatalytic activity after a heat treatment in a reducing atmosphere was observed in the TiNT and TiNT@Ag. We found that the hydrogenated TiNT@Ag samples (TiNT@Ag-HA) had a two-times higher photodegradation impact on the caffeine than the TiNT samples, which is a consequence of the increased absorption of visible light and the synergetic effects between the silver and the TiO{sub 2} nanoparticles that increase the efficiency of the formation of electron–hole pairs and the charge transfer to the surface of the nanoparticles. -- Highlights: • Titanate nanotubes with and without Ag nanoparticles were hydrogenated at 550 °C. • TiO{sub 2} nanostructures obtained by hydrogenation have core–shell structure. • Hydrogenated samples show absorption in the visible spectral region. • Hydrogenated Ag decorated sample show stronger absorption in visible than in UV. • Photocatalytic efficiency is improved by hydrogenation and by Ag nanoparticles. -- Abstract: Titanate nanotubes (TiNTs) and silver-decorated titanate nanotubes (TiNTs@Ag) were synthesized using the hydrothermal method. In the decorated nanotubes the silver particles were obtained by the photoreduction of AgNO{sub 3} under UV light. Pure and Ag-decorated nanotubes were high-temperature heat treated at 550 °C in a hydrogen atmosphere and the “core–shell”-structured TiO{sub 2} nanoparticles were formed. For the structural characterization of all the titanate nanostructures we used conventional and analytical transmission electron microscopy (TEM) techniques, X-ray diffraction (XRD) and Raman spectroscopy. The Ag-decorated titanate nanostructures were additionally studied by X-ray photo

  16. Formation of three-dimensional nano-porous silver films and application toward electrochemical detection of hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Junpeng [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian, Xiufang, E-mail: xfbian@sdu.edu.cn [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Niu, Yuchao [Department of Materials Science and Engineering, Shandong Jianzhu University, Fengming Road, Lingang Development Zone, Jinan 250101 (China); Bai, Yanwen; Xiao, Xinxin; Yang, Chuncheng; Yang, Jianfei; Yang, Jinyue [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2013-11-15

    By using the chemically dealloying method, three-dimensional nano-porous silver films (3-D NPSFs) are fabricated into a novel sensor for detecting hydrogen peroxide. The precursor films are prepared by high vacuum magnetron co-sputtering. High-resolution transmission electron microscope (HRTEM) and scanning electron microscope (SEM) are taken to investigate the structure and the micro morphology of the precursor films and nano-porous films. We find that the precursor films are composed of glassy matrix and nanocrystallines. After dealloying, the films exhibit a combination of homogenously distributed pores and silver filaments, and exhibit an open, three dimensional bicontinuous interpenetrating ligament–channel structure. Thickness and morphology of the films can be easily controlled by the sputtering time and alloy composition of the precursor films, respectively. In addition, NPSFs show a good linear responding for the concentration of hydrogen peroxide in phosphate buffered solutions, which indicates NPSFs could be a promising electrochemical material for hydrogen peroxide detection.

  17. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft.

    Science.gov (United States)

    Yaacoubi, Slah; McKeon, Peter; Ke, Weina; Declercq, Nico F; Dahmene, Fethi

    2017-09-19

    This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW) modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  18. Application of a hydrogenation to production of the Nd sub 2 Fe sub 14 B permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeon; Park, Choong Nyeon; Choi, Dap Chun [Chonnam National Univ., Kwangju (Republic of Korea)

    1989-12-01

    Powders of bulk ingot of Nd-Fe-B permanent magnet were prepared by a combination of hydrogenation and mechanical milling. In-situ observation revealed that cracks, during hydrogenation, were initiated at the grain bounderies where Nd-rich phases existed and then propagated into the matrix Nd{sub 2}Fe{sub 14}B phase. The powders were aligned and pressed in the hydrided condition and the green compacts were sintered at 1100 deg C for 1 hr, followed by heat treatment at 600 deg C for 1 hr. The maximum value of the (BH){sub max} of 37 MGOe was obtained with the sample which was planetary ball milled for 18 min after the hydrogenation at 13 atm. This value of (BH){sub max} is comparable with that of the magnets produced by mechanical milling only. (Author).

  19. Towards an Ultrasonic Guided Wave Procedure for Health Monitoring of Composite Vessels: Application to Hydrogen-Powered Aircraft

    Directory of Open Access Journals (Sweden)

    Slah Yaacoubi

    2017-09-01

    Full Text Available This paper presents an overview and description of the approach to be used to investigate the behavior and the defect sensitivity of various ultrasonic guided wave (UGW modes propagating specifically in composite cylindrical vessels in the framework of the safety of hydrogen energy transportation such as hydrogen-powered aircrafts. These structures which consist of thick and multi-layer composites are envisioned for housing hydrogen gas at high pressures. Due to safety concerns associated with a weakened structure, structural health monitoring techniques are needed. A procedure for optimizing damage detection in these structural types is presented. It is shown that a finite element method can help identify useful experimental parameters including frequency range, excitation type, and receiver placement.

  20. High Efficiency, 100 mJ per pulse, Nd:YAG Oscillator Optimized for Space-Based Earth and Planetary Remote Sensing

    Science.gov (United States)

    Coyle, D. Barry; Stysley, Paul R.; Poulios, Demetrios; Fredrickson, Robert M.; Kay, Richard B.; Cory, Kenneth C.

    2014-01-01

    We report on a newly solid state laser transmitter, designed and packaged for Earth and planetary space-based remote sensing applications for high efficiency, low part count, high pulse energy scalability/stability, and long life. Finally, we have completed a long term operational test which surpassed 2 Billion pulses with no measured decay in pulse energy.

  1. Hydrogen Embrittlement

    Science.gov (United States)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  2. Enhanced hydrogen generation by hydrolysis of Mg doped with flower-like MoS2 for fuel cell applications

    Science.gov (United States)

    Huang, Minghong; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Shao, Huaiyu; Zhu, Min

    2017-10-01

    In this work, flower-like MoS2 spheres are synthesized via a hydrothermal method and the catalytic activity of the as-prepared and bulk MoS2 on hydrolysis of Mg is systematically investigated for the first time. The Mg-MoS2 composites are prepared by ball milling and the hydrogen generation performances of the composites are investigated in 3.5% NaCl solution. The experimental results suggest that the as-prepared MoS2 exhibits better catalytic effect on hydrolysis of Mg compared to bulk MoS2. In particular, Mg-10 wt% MoS2 (as-prepared) composite milled for 1 h shows the best hydrogen generation properties and releases 90.4% of theoretical hydrogen generation capacity within 1 min at room temperature. The excellent catalytic effect of as-prepared MoS2 may be attributed to the following aspects: three-dimensional flower-like MoS2 architectures improve its dispersibility on Mg particles; make the composite more reactive; hamper the generated Mg(OH)2 from adhering to the surface of Mg; and increase the galvanic corrosion of Mg. In addition, a hydrogen generator based on the hydrolysis reaction of Mg-0.2 wt% MoS2 composite is manufactured and it can supply a maximum hydrogen flow rate of 2.5 L/min. The findings here demonstrate the as-prepared flower-like MoS2 can be a promising catalyst for hydrogen generation from Mg.

  3. Rovibrationally Resolved Time-Dependent Collisional-Radiative Model of Molecular Hydrogen and Its Application to a Fusion Detached Plasma

    Directory of Open Access Journals (Sweden)

    Keiji Sawada

    2016-12-01

    Full Text Available A novel rovibrationally resolved collisional-radiative model of molecular hydrogen that includes 4,133 rovibrational levels for electronic states whose united atom principal quantum number is below six is developed. The rovibrational X 1 Σ g + population distribution in a SlimCS fusion demo detached divertor plasma is investigated by solving the model time dependently with an initial 300 K Boltzmann distribution. The effective reaction rate coefficients of molecular assisted recombination and of other processes in which atomic hydrogen is produced are calculated using the obtained time-dependent population distribution.

  4. An optimum organizational structure for a large earth-orbiting multidisciplinary space base. Ph.D. Thesis - Fla. State Univ., 1973

    Science.gov (United States)

    Ragusa, J. M.

    1975-01-01

    An optimum hypothetical organizational structure was studied for a large earth-orbiting, multidisciplinary research and applications space base manned by a crew of technologists. Because such a facility does not presently exist, in situ empirical testing was not possible. Study activity was, therefore, concerned with the identification of a desired organizational structural model rather than with the empirical testing of the model. The essential finding of this research was that a four-level project type total matrix model will optimize the efficiency and effectiveness of space base technologists.

  5. Preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles and their application in hydrogen peroxide detection

    International Nuclear Information System (INIS)

    Mahmoudian, M.R.; Alias, Y.; Basirun, W.J.; Ebadi, M.

    2012-01-01

    Highlights: ► Ag nanoparticles-decorated ultra thin polypyrrole nanosheets were prepared. ► Higher surface area of the polymer increased interaction between the polymer and Ag + . ► The sensitivity was estimated to be 4.477 μA mM −1 for linear segment. ► The LOD and LOQ (S/N = 3) were estimated to be 0.57 μM and 1.93 μM, respectively. - Abstract: This study examines the preparation of ultra-thin polypyrrole nanosheets decorated with Ag nanoparticles (Ag-UTPNSs) and their application in the enzyme-less detection of hydrogen peroxide (H 2 O 2 ) detection. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) results confirmed that Ag nanoparticles (NPs) were deposited onto the surface of the UTPNSs. The increase of the H 2 O 2 reduction current peak to 120 μA in the presence of the Ag-UTPNS/glassy carbon electrode (GCE) as compared to the UTPNS/GCE indicates that the sensitivity of the electrode to H 2 O 2 is significant. This observation can be explained by the larger surface area of the UTPNSs, which can increase the interactions between the polymer and the AgNO 3 solution during the deposition of the Ag NPs, and by the small size of the deposited Ag NPs, which can produce a surface area of Ag that is suitable for the reaction with H 2 O 2 . The amperometric responses show that the limit of detection, the limit of quantification (S/N = 3) and the sensitivity are estimated to be 0.57 μM, 1.93 μM and 4.477 μA mM −1 , respectively, for the linear segment. The results of the reproducibility experiments show that the use of Ag-UTPNS/GCE is feasible for the quantitative detection of certain concentration ranges of H 2 O 2 .

  6. Color Changing Hydrogen Sensors

    Science.gov (United States)

    Roberson, Luke B.; Williams, Martha; Captain, Janine E.; Mohajeri, Nahid; Raissi, Ali

    2015-01-01

    During the Space Shuttle Program, one of the most hazardous operation that occurred was the loading of liquid hydrogen (LH2) during fueling operations of the spacecraft. Due to hydrogen's low explosive limit, any amount leaked could lead to catastrophic event. Hydrogen's chemical properties make it ideal as a rocket fuel; however, the fuel is deemed unsafe for most commercial use because of the inability to easily detect the gas leaking. The increased use of hydrogen over traditional fossil fuels would reduce greenhouse gases and America's dependency on foreign oil. Therefore a technology that would improve safety at NASA and in the commercial sector while creating a new economic sector would have a huge impact to NASA's mission. The Chemochromic Detector for sensing hydrogen gas leakage is a color-changing detector that is useful in any application where it is important to know not only the presence but also the location of the hydrogen gas leak. This technology utilizes a chemochromicpigment and polymer matrix that can be molded or spun into rigid or pliable shapes useable in variable temperature environments including atmospheres of inert gas, hydrogen gas, or mixtures of gases. A change in color of the detector material indicates where gaseous hydrogen leaks are occurring. The irreversible sensor has a dramatic color change from beige to dark grey and remains dark grey after exposure. A reversible pigment changes from white to blue in the presence of hydrogen and reverts back to white in the presence of oxygen. Both versions of the sensor's pigments were comprised of a mixture of a metal oxide substrate and a hydro-chromic compound (i.e., the compound that changed color in the presence of hydrogen) and immediately notified the operator of the presence of low levels of hydrogen. The detector can be used in a variety of formats including paint, tape, caulking, injection molded parts, textiles and fabrics, composites, and films. This technology brings numerous

  7. Status of hydrogen production by nuclear power

    International Nuclear Information System (INIS)

    Chang, Jong Wa; Yoo, Kun Joong; Park, Chang Kue

    2001-07-01

    Hydrogen production methods, such as electrolysis, thermochemical method, biological method, and photochemical method, are introduced in this report. Also reviewed are current status of the development of High Temperatrue Gas Coooled Reactor, and it application for hydrogen production

  8. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    Kim, K.

    1986-01-01

    A detailed experimental study successfully demonstrates the acceleration of frozen hydrogen pellets by means of a fuseless two-stage electromagnetic railgun system. This system consists of a pneumatic hydrogen pellet injector, which freezes and pneumatically pre-accelerates (with high-pressure helium as the propellant gas) cylindrical 1.6-mm-dia by 2.15-mm-long hydrogen pellets, and a 60-cm-long, 1.6-mm-dia circular-bore electromagnetic railgun. The pellet is introduced into the railgun by means of a coupling piece, and a plasma-arc armature is created from the propellant gas by means of a very unique, fuseless, arc-initiation scheme. Railgun-accelerated hydrogen pellet velocities in excess of 1.6 km/s are achieved from pneumatically accelerated injection velocities of 800 m/s. Streak-camera and current-probe data show that the plasma-arc armature moves at a velocity proportional to the railgun current, I. Insight to this I-dependence is gained through the use of streak photography and current probes for varying bore geometries and gas pressures

  9. Hydrogen compatibility of structural materials for energy storage and transmission applications. Semiannual report for period through October 1, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, S.L. (comp.)

    1976-12-01

    Substantial support activities for Brookhaven National Laboratory (BNL) have been completed since the initiation of this program. The suitability of commercial alloys for containment of hydride-dehydride reactions have been assessed, and recommendations for materials selection based upon tensile and slow crack growth tests have been made. We have also prepared and installed in a test chamber at BNL a series of in-situ test specimens to be exposed to a cyclic iron-titanium hydride environment. Future BNL support activities will include welding/joining specification development and a post-mortem examination of the in-situ test specimens. Efforts are becoming more oriented to materials development and to the development of specifications for the use of structural steels in hydrogen environment. BNL's hydride storage program has been supported during the last six months by supplying 80 self-loaded tensile specimens for accelerated testing in an FeTiH/sub x/ test bed. A preliminary welding specification for containment of hydrogen in structural mild steels has been developed. Hydrogen permeation resistant coatings, applied by pyrolysis of silane, and by brush electroplating, have been developed. Environmentally assisted, cyclic fatigue in high-pressure hydrogen has been identified as a potential hazard to the integrity of flawed pressure vessels in materials where slow crack growth under constant load is not expected.

  10. Spectroscopic studies of europium-tetracyclines complexes and their applications in detection of hydrogen peroxide and urea peroxide

    International Nuclear Information System (INIS)

    Grasso, Andrea Nastri

    2010-01-01

    In this work were studied the spectroscopic properties of trivalent europium ion complexed with components of tetracycline family, chlorotetracycline, oxytetracycline and metacycline, in the presence of hydrogen peroxide and urea peroxide. Optical parameters were obtained such as absorption, emission, lifetime and calibration curves were constructed for luminescence spectra. Experiments were carried out with both inorganic compounds and europium-tetracyclines complexes in order to verify possible interferences. Studies for glucose determination were also described using europium-tetracyclines complexes as biosensors. Results show that europium tetracyclines complexes emit a narrow band in the visible region and, in the presence of hydrogen peroxide or urea peroxide there is a greater enhancement in their luminescence and lifetime. Thus, europium-tetracyclines complexes studied can be used as biosensors for hydrogen and urea peroxides determination as a low cost and room temperature method. An indirect method for glucose determination was studied by adding glucose oxidase enzyme in europium-tetracyclines complex in the presence of glucose promoting as product hydrogen peroxide. (author)

  11. Atmospheric Mining in the Outer Solar System: Outer Planet In-Space Bases and Moon Bases for Resource Processing

    Science.gov (United States)

    Palaszewski, Bryan

    2017-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. The propulsion and transportation requirements for all of the major moons of Uranus and Neptune are presented. Analyses of orbital transfer vehicles (OTVs), landers, factories, and the issues with in-situ resource utilization (ISRU) low gravity processing factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points. Several artificial gravity in-space base designs and orbital sites at Uranus and Neptune and the OTV requirements to support them are also addressed.

  12. Application of gamma densitometer for measurement of void fraction in liquid hydrogen moderator of HANARO cold neutron source

    International Nuclear Information System (INIS)

    Kim, Myong-Seop; Choi, Jungwoon; Sun, Gwang-Min; Lee, Kye-Hong

    2009-01-01

    The void fraction in the liquid hydrogen used for the moderator of the HANARO cold neutron source (CNS) was measured by using a gamma densitometer technique. A mock-up of the HANARO CNS facility with an electric heating system as the heat source instead of radiations was constructed. The photon transmissions through the hydrogen moderator were simulated to search for an optimum experimental condition. From the simulation, it was confirmed that Am-241 was suitable for the measurement of the void fraction in the liquid hydrogen medium. A gamma densitometer using the Am-241 gamma-ray source was designed and installed at the mock-up of the CNS. The attenuation of 59.5 keV gamma-rays from the Am-241 through the hydrogen medium was measured by using an HPGe detector. The void fraction was determined using the amount of the gamma-ray attenuation. The void fractions in the hydrogen moderator were measured for stable thermo-siphon loops with several electric heat loads applied to the moderator cell of the CNS mock-up. The longitudinal distribution of the void fraction inside the moderator cell was also determined. The void fraction measured at a heat load of 720 W had values of 8-41% depending on the height from the bottom of the moderator cell. The overall void fraction was obtained by volume-weighted averaging of its longitudinal distribution. The void fraction at the nuclear heating power expected at the normal operation condition of the HANARO CNS facility was determined to be about 20%. The large uncertainty was expected in the void fraction determination by a gamma densitometer for the liquid hydrogen medium with the void fraction less than 10%. When the void fraction of the liquid hydrogen was near 20%, the uncertainty in the void fraction determination by using a gamma densitometer became relatively small, and it was regarded as an acceptable level. The measurements for the void fraction will be very useful for the design and operation of the HANARO CNS.

  13. Evaluation of the Impact That PARs Have on the Hydrogen Risk in the Reactor Containment: Methodology and Application to PSA Level 2

    Directory of Open Access Journals (Sweden)

    Ahmed Bentaib

    2010-01-01

    Full Text Available This paper presents a methodology and its application to a Level 2 Probabilistic Safety Assessment (PSA-2, to evaluate the impact of the Passive Autocatalytic Recombiners (PARs on the hydrogen risk in the reactor containment in case of a severe accident. Among the whole set of accidental scenarios calculated in the framework of the PSA-2, nine have been selected as representative in terms of the in-vessel hydrogen production rate and in-vessel total produced hydrogen mass. Five complementary scenarios have been added as representative of the core reflooding situations. For this set of selected scenarios the evolution of the conditions in the containment (i.e., pressure, temperature, and composition during the in-vessel phase of the accident has been evaluated by means of a lumped parameter approach. The use of spray systems in the containment has also been considered as well as the presence of recombiners. Moreover, the ignition by recombiners of the flammable atmosphere has been considered.

  14. Hydrogen storage in carbon nanotubes.

    Science.gov (United States)

    Hirscher, M; Becher, M

    2003-01-01

    The article gives a comprehensive overview of hydrogen storage in carbon nanostructures, including experimental results and theoretical calculations. Soon after the discovery of carbon nanotubes in 1991, different research groups succeeded in filling carbon nanotubes with some elements, and, therefore, the question arose of filling carbon nanotubes with hydrogen by possibly using new effects such as nano-capillarity. Subsequently, very promising experiments claiming high hydrogen storage capacities in different carbon nanostructures initiated enormous research activity. Hydrogen storage capacities have been reported that exceed the benchmark for automotive application of 6.5 wt% set by the U.S. Department of Energy. However, the experimental data obtained with different methods for various carbon nanostructures show an extreme scatter. Classical calculations based on physisorption of hydrogen molecules could not explain the high storage capacities measured at ambient temperature, and, assuming chemisorption of hydrogen atoms, hydrogen release requires temperatures too high for technical applications. Up to now, only a few calculations and experiments indicate the possibility of an intermediate binding energy. Recently, serious doubt has arisen in relation to several key experiments, causing considerable controversy. Furthermore, high hydrogen storage capacities measured for carbon nanofibers did not survive cross-checking in different laboratories. Therefore, in light of today's knowledge, it is becoming less likely that at moderate pressures around room temperature carbon nanostructures can store the amount of hydrogen required for automotive applications.

  15. Hydrogen exchange

    DEFF Research Database (Denmark)

    Jensen, Pernille Foged; Rand, Kasper Dyrberg

    2016-01-01

    Hydrogen exchange (HX) monitored by mass spectrometry (MS) is a powerful analytical method for investigation of protein conformation and dynamics. HX-MS monitors isotopic exchange of hydrogen in protein backbone amides and thus serves as a sensitive method for probing protein conformation...... and dynamics along the entire protein backbone. This chapter describes the exchange of backbone amide hydrogen which is highly quenchable as it is strongly dependent on the pH and temperature. The HX rates of backbone amide hydrogen are sensitive and very useful probes of protein conformation......, as they are distributed along the polypeptide backbone and form the fundamental hydrogen-bonding networks of basic secondary structure. The effect of pressure on HX in unstructured polypeptides (poly-dl-lysine and oxidatively unfolded ribonuclease A) and native folded proteins (lysozyme and ribonuclease A) was evaluated...

  16. Effect of oxygen and hydrogen on the optical and electrical characteristics of porous silicon. Towards sensor applications

    International Nuclear Information System (INIS)

    Green, S.

    2000-02-01

    The effect of adsorbed oxygen and hydrogen gas on porous silicon has been investigated using two different techniques, viz. optical and electrical. The photoluminescence quenching by oxygen and hydrogen was found to be reversible with a response time of the order of 3000 s. Unlike any reported porous silicon gas quenching systems, both the extent and rate of quenching were found to be a function of photoluminescence wavelength. The quenching is attributed to charge transfer from the conduction band of porous silicon to the lowest unoccupied molecular orbital of oxygen and hydrogen, respectively. Surface conductance measurements (aluminium contacts) show that the principal charge transfer process is via tunnelling, with some conduction through the underlying bulk p-type silicon layer. Symmetrical current-voltage plots were obtained for this system which were attributed to pinning of the aluminium-porous silicon Fermi level at mid-gap by the high surface trap density. An approximate doubling of the aluminium electrode separation was found to reduce approximately fourfold the initial rate of increase in surface conductance on adsorption of oxygen at a pressure of 10 torr. To the best of the author's knowledge this is the first time that such an effect has been reported in a room temperature solid state gas sensor. Gas sensitivity measurements using surface contacts show a logarithmic response to the concentration of oxygen up to a pressure of 100 torr with a rapid response, of 300 s. A 39% increase in surface conductance occurs on exposure of the device to 100 torr of oxygen. The surface conductance of the device decreases by 34% on exposure to one atmosphere of hydrogen with a response time of the order 2000 s. Transverse conductance (DC) measurements show that Au/PS/p-Si/Al..Ag devices behave like a field-dependent diode. An admittance spectroscopy technique has been applied to porous silicon for the first time to calculate g 0 , the trap density at the Fermi level

  17. Mercury Atomic Frequency Standards for Space Based Navigation and Timekeeping

    Science.gov (United States)

    Tjoelker, R. L.; Burt, E. A.; Chung, S.; Hamell, R. L.; Prestage, J. D.; Tucker, B.; Cash, P.; Lutwak, R.

    2012-01-01

    A low power Mercury Atomic Frequency Standard (MAFS) has been developed and demonstrated on the path towards future space clock applications. A self contained mercury ion breadboard clock: emulating flight clock interfaces, steering a USO local oscillator, and consuming approx 40 Watts has been operating at JPL for more than a year. This complete, modular ion clock instrument demonstrates that key GNSS size, weight, and power (SWaP) requirements can be achieved while still maintaining short and long term performance demonstrated in previous ground ion clocks. The MAFS breadboard serves as a flexible platform for optimizing further space clock development and guides engineering model design trades towards fabrication of an ion clock for space flight.

  18. Many-core computing for space-based stereoscopic imaging

    Science.gov (United States)

    McCall, Paul; Torres, Gildo; LeGrand, Keith; Adjouadi, Malek; Liu, Chen; Darling, Jacob; Pernicka, Henry

    The potential benefits of using parallel computing in real-time visual-based satellite proximity operations missions are investigated. Improvements in performance and relative navigation solutions over single thread systems can be achieved through multi- and many-core computing. Stochastic relative orbit determination methods benefit from the higher measurement frequencies, allowing them to more accurately determine the associated statistical properties of the relative orbital elements. More accurate orbit determination can lead to reduced fuel consumption and extended mission capabilities and duration. Inherent to the process of stereoscopic image processing is the difficulty of loading, managing, parsing, and evaluating large amounts of data efficiently, which may result in delays or highly time consuming processes for single (or few) processor systems or platforms. In this research we utilize the Single-Chip Cloud Computer (SCC), a fully programmable 48-core experimental processor, created by Intel Labs as a platform for many-core software research, provided with a high-speed on-chip network for sharing information along with advanced power management technologies and support for message-passing. The results from utilizing the SCC platform for the stereoscopic image processing application are presented in the form of Performance, Power, Energy, and Energy-Delay-Product (EDP) metrics. Also, a comparison between the SCC results and those obtained from executing the same application on a commercial PC are presented, showing the potential benefits of utilizing the SCC in particular, and any many-core platforms in general for real-time processing of visual-based satellite proximity operations missions.

  19. Modelling of Impulsional pH Variations Using ChemFET-Based Microdevices: Application to Hydrogen Peroxide Detection

    Directory of Open Access Journals (Sweden)

    Abdou Karim Diallo

    2014-02-01

    Full Text Available This work presents the modelling of impulsional pH variations in microvolume related to water-based electrolysis and hydrogen peroxide electrochemical oxidation using an Electrochemical Field Effect Transistor (ElecFET microdevice. This ElecFET device consists of a pH-Chemical FET (pH-ChemFET with an integrated microelectrode around the dielectric gate area in order to trigger electrochemical reactions. Combining oxidation/reduction reactions on the microelectrode, water self-ionization and diffusion properties of associated chemical species, the model shows that the sensor response depends on the main influential parameters such as: (i polarization parameters on the microelectrode, i.e., voltage (Vp and time (tp; (ii distance between the gate sensitive area and the microelectrode (d; and (iii hydrogen peroxide concentration ([H2O2]. The model developed can predict the ElecFET response behaviour and creates new opportunities for H2O2-based enzymatic detection of biomolecules.

  20. Hydrogen and deuterium transport and inventory parameters through W and W-alloys for fusion reactor applications

    Science.gov (United States)

    Benamati, G.; Serra, E.; Wu, C. H.

    2000-12-01

    The aim of this work is to measure the hydrogen/deuterium transport and inventory parameters in relevant structural and/or armour materials for the International Thermonuclear Experimental Reactor (ITER) divertor such as W and W-alloys. The W-alloys: W, W + 1% La 2O 3 and W + 5% Re have been investigated. The materials were supplied from the Metallwerk Plansee GmbH (Austria). Measurements were conducted using a time-dependent permeation method over the temperature range 673-873 K with hydrogen and deuterium pressures in the range 10-100 kPa (100-1000 mbar). The samples were also characterized using optical microscopy, SEM and energy dispersive spectroscopy (EDS) in order to investigate the composition, microstructure and morphology of the surfaces and cross-sections through the samples.

  1. Application of hydrogen-doped In2O3 transparent conductive oxide to thin-film microcrystalline Si solar cells

    International Nuclear Information System (INIS)

    Koida, Takashi; Sai, Hitoshi; Kondo, Michio

    2010-01-01

    Hydrogen-doped In 2 O 3 (IO:H) films with high electron mobility and improved near-infrared (NIR) transparency have been applied as a transparent conducting oxide (TCO) electrode in substrate-type hydrogenated microcrystalline silicon (μc-Si:H) solar cells. The incorporation of IO:H, instead of conventional Sn-doped In 2 O 3 , improved the short-circuit current density (J sc ) and the resulting conversion efficiency. Optical analysis of the solar cells and TCO films revealed that the improvement in J sc is due to the improved spectral sensitivity in the visible and NIR wavelengths by reduction of absorption loss caused by free carriers in the TCO films.

  2. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling. Technical progress report

    International Nuclear Information System (INIS)

    Kim, K.K.

    1986-01-01

    Using a tungsten-needle arc initiator in conjunction with Paschen curves characteristics hydrogen pellets have been accelerated with a two-stage electromagnetic railgun system. This scheme produced velocities on the order of 1.6 km/s. The effects on performance of the bore size have been studied. Questions of pretriggering, misfiring, plasma-arc stalling, railgun geometry, and railgun currents have been addressed. 1 tab

  3. Techno-economic analysis of stand-alone photovoltaic/wind/battery/hydrogen systems for very small-scale applications

    Directory of Open Access Journals (Sweden)

    Stojković Saša M.

    2016-01-01

    Full Text Available The paper presents the results of a technical and economic analysis of three stand-alone hybrid power systems based on renewable energy sources which supply a specific group of low-power consumers. This particular case includes measuring sensors and obstacle lights on a meteorological mast for wind measurements requiring an uninterrupted power supply in cold climate conditions. Although these low-power (100 W measuring sensors and obstacle lights use little energy, their energy consumption is not the same as the available solar energy obtained on a daily or seasonal basis. In the paper, complementarity of renewable energy sources was analysed, as well as one of short-term lead-acid battery-based storage and seasonal, hydrogen-based (electrolyser, H2 tank, and fuel cells storage. These relatively complex power systems were proposed earlier for high-power consumers only, while this study specifically highlights the role of the hydrogen system for supplying low-power consumers. The analysis employed a numerical simulation method using the HOMER software tool. The results of the analysis suggest that solar and wind-solar systems, which involve meteorological conditions as referred to in this paper, include a relatively large number of lead-acid batteries. Additionally, the analysis suggests that the use of hydrogen power systems for supplying low power-consumers is entirely justifiable, as it significantly reduces the number of batteries (two at minimum in this particular case. It was shown that the increase in costs induced by the hydrogen system is acceptable.

  4. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    Kim, Kyekyoon.

    1987-12-01

    This paper discusses the use of a railgun accelerator to inject hydrogen pellets into a magnetic fusion reactor for refueling purposes. Specific studies in this paper include: 1.5 mm-diameter two-stage fuseless plasma-arc-driven electromagnetic railgun, construction and testing of a 3.2 mm-diameter two-stage railgun and a theoretical analysis of the behavior of a railgun plasma-arc armature inside a railgun

  5. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Raoof, Jahan-Bakhsh; Hosseini, Sayed Reza; Ojani, Reza; Mandegarzad, Sakineh

    2015-01-01

    In this work, metal-organic framework Cu_3(BTC)_2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m"2 g"−"1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 0"−"3 mAcm"−"2, respectively. - Graphical abstract: Metal organic framework-derived Cu/nanoporous carbon composite (Cu/NPC composite) was prepared by direct carbonization of MOF-199 without addition of any carbon source at 900 °C. The Cu/NPC/GCE demonstrated an excellent electrocatalytic activity towards hydrogen evolution reaction compared with bare GCE. - Highlights: • MDNPC (MOF-199 derived nanoporous carbon) is prepared by direct carbonization. • MOF-199 is utilized as a template without addition of carbon resource. • The MDNPC has a good electrocatalytic activity in hydrogen evolution reaction. • High BET surface area and hydrogen adsorption property improved catalyst activity.

  6. Cd2SiO4/Graphene nanocomposite: Ultrasonic assisted synthesis, characterization and electrochemical hydrogen storage application.

    Science.gov (United States)

    Masjedi-Arani, Maryam; Salavati-Niasari, Masoud

    2018-05-01

    For the first time, a simple and rapid sonochemical technique for preparing of pure Cd 2 SiO 4 nanostructures has been developed in presence of various surfactants of SDS, CTAB and PVP. Uniform and fine Cd 2 SiO 4 nanoparticle was synthesized using of polymeric PVP surfactant and ultrasonic irradiation. The optimized cadmium silicate nanostructures added to graphene sheets and Cd 2 SiO 4 /Graphene nanocomposite synthesized through pre-graphenization. Hydrogen storage capacity performances of Cd 2 SiO 4 nanoparticle and Cd 2 SiO 4 /Graphene nanocomposite were compared. Obtained results represent that Cd 2 SiO 4 /Graphene nanocomposites have higher hydrogen storage capacity than Cd 2 SiO 4 nanoparticles. Cd 2 SiO 4 /Graphene nanocomposites and Cd 2 SiO 4 nanoparticles show hydrogen storage capacity of 3300 and 1300 mAh/g, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Observation of paramorphic phenomenon and non-tilted orthogonal smectic phases in hydrogen bonded ferroelectric liquid crystals for photonic applications

    Science.gov (United States)

    Subhasri, P.; Venugopal, D.; Jayaprakasam, R.; Chitravel, T.; Vijayakumar, V. N.

    2018-06-01

    A new class of hydrogen bonded ferroelectric liquid crystals (HBFLC) have been designed and synthesized by intermolecular hydrogen bonds between mesogenic 4-decyloxybenzoic acid (10OBA) and non-mesogenic (R)-(+)-Methylsuccinic acid (MSA) which have been confirmed through experimental and theoretical studies. Further, Mulliken population analysis clearly reveals that the existence of hydrogen bonds, strength and dynamic properties. Textural observation and its corresponding enthalpy values are analyzed by polarizing optical microscope (POM) and differential scanning calorimetry (DSC) respectively. Paramorphic changes in Sm C* phase due to the change of refractive index, which clearly reveal that the complex could be used for filtering action in photonic devices. The transition from lone pair to π* with large stabilization energy evidently exposes the chiral phases in the present HBFLC complex. Intermolecular interaction is analyzed by using natural bond orbital (NBO) studies. The highest energy in the HOMO-LUMO shows the stable phase in the HBFLC complex. Molecular structure of the HBFLC complex possesses the monoclinic which has been evinced through x-ray analysis. The randomly oriented bunch of homogeneous molecules in Sm A* phase of the HBFLC complex is reported.

  8. Color-Space-Based Visual-MIMO for V2X Communication †

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-01-01

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance. PMID:27120603

  9. Color-Space-Based Visual-MIMO for V2X Communication

    Directory of Open Access Journals (Sweden)

    Jai-Eun Kim

    2016-04-01

    Full Text Available In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol, and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  10. Security Analysis of DTN Architecture and Bundle Protocol Specification for Space-Based Networks

    Science.gov (United States)

    Ivancic, William D.

    2009-01-01

    A Delay-Tolerant Network (DTN) Architecture (Request for Comment, RFC-4838) and Bundle Protocol Specification, RFC-5050, have been proposed for space and terrestrial networks. Additional security specifications have been provided via the Bundle Security Specification (currently a work in progress as an Internet Research Task Force internet-draft) and, for link-layer protocols applicable to Space networks, the Licklider Transport Protocol Security Extensions. This document provides a security analysis of the current DTN RFCs and proposed security related internet drafts with a focus on space-based communication networks, which is a rather restricted subset of DTN networks. Note, the original focus and motivation of DTN work was for the Interplanetary Internet . This document does not address general store-and-forward network overlays, just the current work being done by the Internet Research Task Force (IRTF) and the Consultative Committee for Space Data Systems (CCSDS) Space Internetworking Services Area (SIS) - DTN working group under the DTN and Bundle umbrellas. However, much of the analysis is relevant to general store-and-forward overlays.

  11. Color-Space-Based Visual-MIMO for V2X Communication.

    Science.gov (United States)

    Kim, Jai-Eun; Kim, Ji-Won; Park, Youngil; Kim, Ki-Doo

    2016-04-23

    In this paper, we analyze the applicability of color-space-based, color-independent visual-MIMO for V2X. We aim to achieve a visual-MIMO scheme that can maintain the original color and brightness while performing seamless communication. We consider two scenarios of GCM based visual-MIMO for V2X. One is a multipath transmission using visual-MIMO networking and the other is multi-node V2X communication. In the scenario of multipath transmission, we analyze the channel capacity numerically and we illustrate the significance of networking information such as distance, reference color (symbol), and multiplexing-diversity mode transitions. In addition, in the V2X scenario of multiple access, we may achieve the simultaneous multiple access communication without node interferences by dividing the communication area using image processing. Finally, through numerical simulation, we show the superior SER performance of the visual-MIMO scheme compared with LED-PD communication and show the numerical result of the GCM based visual-MIMO channel capacity versus distance.

  12. Storing Renewable Energy in the Hydrogen Cycle.

    Science.gov (United States)

    Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas

    2015-01-01

    An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.

  13. Object acquisition and tracking for space-based surveillance

    Science.gov (United States)

    1991-11-01

    This report presents the results of research carried out by Space Computer Corporation under the U.S. government's Small Business Innovation Research (SBIR) Program. The work was sponsored by the Strategic Defense Initiative Organization and managed by the Office of Naval Research under Contracts N00014-87-C-0801 (Phase 1) and N00014-89-C-0015 (Phase 2). The basic purpose of this research was to develop and demonstrate a new approach to the detection of, and initiation of track on, moving targets using data from a passive infrared or visual sensor. This approach differs in very significant ways from the traditional approach of dividing the required processing into time dependent, object dependent, and data dependent processing stages. In that approach individual targets are first detected in individual image frames, and the detections are then assembled into tracks. That requires that the signal to noise ratio in each image frame be sufficient for fairly reliable target detection. In contrast, our approach bases detection of targets on multiple image frames, and, accordingly, requires a smaller signal to noise ratio. It is sometimes referred to as track before detect, and can lead to a significant reduction in total system cost. For example, it can allow greater detection range for a single sensor, or it can allow the use of smaller sensor optics. Both the traditional and track before detect approaches are applicable to systems using scanning sensors, as well as those which use staring sensors.

  14. A space-based classification system for RF transients

    International Nuclear Information System (INIS)

    Moore, K.R.; Call, D.; Johnson, S.; Payne, T.; Ford, W.; Spencer, K.; Wilkerson, J.F.; Baumgart, C.

    1993-01-01

    The FORTE (Fast On-Orbit Recording of Transient Events) small satellite is scheduled for launch in mid 1995. The mission is to measure and classify VHF (30--300 MHz) electromagnetic pulses, primarily due to lightning, within a high noise environment dominated by continuous wave carriers such as TV and FM stations. The FORTE Event Classifier will use specialized hardware to implement signal processing and neural network algorithms that perform onboard classification of RF transients and carriers. Lightning events will also be characterized with optical data telemetered to the ground. A primary mission science goal is to develop a comprehensive understanding of the correlation between the optical flash and the VHF emissions from lightning. By combining FORTE measurements with ground measurements and/or active transmitters, other science issues can be addressed. Examples include the correlation of global precipitation rates with lightning flash rates and location, the effects of large scale structures within the ionosphere (such as traveling ionospheric disturbances and horizontal gradients in the total electron content) on the propagation of broad bandwidth RF signals, and various areas of lightning physics. Event classification is a key feature of the FORTE mission. Neural networks are promising candidates for this application. The authors describe the proposed FORTE Event Classifier flight system, which consists of a commercially available digital signal processing board and a custom board, and discuss work on signal processing and neural network algorithms

  15. Compressed Sensing for Space-Based High-Definition Video Technologies, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space-based imaging sensors are important for NASA's mission in both performing scientific measurements and producing literature and documentary cinema. The recent...

  16. Ultra-Low Noise Quad Photoreceiver for Space Based Laser Interferometric Gravity Wave Detection, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Gravity wave detection using space-based long-baseline laser interferometric sensors imposes stringent noise requirements on the system components, including the...

  17. 78 FR 65006 - National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting

    Science.gov (United States)

    2013-10-30

    ..., Public Law 92-463, as amended, and the President's 2004 U.S. Space-Based Positioning, Navigation, and.... ADDRESSES: The Omni Shoreham Hotel, 2500 Calvert Street NW., Washington, DC 20008. FOR FURTHER INFORMATION...

  18. 78 FR 23598 - National Space-Based Positioning, Navigation, and Timing (PNT) Advisory Board; Meeting

    Science.gov (United States)

    2013-04-19

    ..., Public Law 92-463, as amended, and the President's 2004 U.S. Space-Based Positioning, Navigation, and...: The Melrose Hotel, 2430 Pennsylvania Ave NW., Washington, DC 20037. FOR FURTHER INFORMATION CONTACT...

  19. Hydrogen Village : creating hydrogen and fuel cell communities

    International Nuclear Information System (INIS)

    Smith, G.R.

    2009-01-01

    The Hydrogen Village (H2V) is a collaborative public-private partnership administered through Hydrogen and Fuel Cells Canada and funded by the Governments of Canada and Ontario. This end user-driven, market development program accelerates the commercialization of hydrogen and fuel cell (FC) technologies throughout the Greater Toronto Area (GTA). The program targets 3 specific aspects of market development, notably deployment of near market technologies in community based stationary and mobile applications; development of a coordinated hydrogen delivery and equipment service infrastructure; and societal factors involving corporate policy and public education. This presentation focused on lessons learned through outreach programs and the deployment of solid oxide fuel cell (SOFC) heat and power generation; indoor and outdoor fuel cell back up power systems; fuel cell-powered forklifts, delivery vehicles, and utility vehicles; hydrogen internal combustion engine powered shuttle buses, sedans, parade float; hydrogen production/refueling stations in the downtown core; and temporary fuel cell power systems

  20. Hydrogen and nuclear power

    International Nuclear Information System (INIS)

    Holt, D.J.

    1976-12-01

    This study examines the influence that the market demand for hydrogen might have on the development of world nuclear capacity over the next few decades. In a nuclear economy, hydrogen appears to be the preferred energy carrier over electricity for most purposes, due to its ready substitution and usage for all energy needs, as well as its low transmission costs. The economic factors upon which any transition to hydrogen fuelling will be largely based are seen to be strongly dependent on the form of future energy demand, the energy resource base, and on the status of technology. Accordingly, the world energy economy is examined to identify the factors which might affect the future demand price structure for energy, and a survey of current estimates of world energy resources, particularly oil, gas, nuclear, and solar, is presented. Current and projected technologies for production and utilization of hydrogen are reviewed, together with rudimentary cost estimates. The relative economics are seen to favour production of hydrogen from fossil fuels far into the foreseeable future, and a clear case emerges for high temperature nuclear reactors in such process heat applications. An expanding industrial market for hydrogen, and near term uses in steelmaking and aircraft fuelling are foreseen, which would justify an important development effort towards nuclear penetration of that market. (author)

  1. 205 nm continuous-wave laser: application to the measurement of the Lamb shift in hydrogen; Laser continu a 205 nm: application a la mesure du deplacement de lamb dans l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Bourzeix, S

    1995-01-15

    The subject of this thesis is the construction of an experimental set-up, and in particular of a tunable continuous-wave laser at 205 nm, for the measurement of the ground state Lamb shift in atomic hydrogen. Chapter 1 deals with the Lamb shift from a historical point of view, and with the interest of its measurement, for metrology and test of quantum electrodynamics. Chapter 2 is devoted to the theory of the hydrogen atom. The principle of the experiment is based on the comparison of two frequencies which are in a ratio of 4: those of the two-photon transitions of 2S-6S or 2S-6D and 1S-3S. Chapter 3 describes the experimental set-up used to measure the 2S-6D transition which is excited by a titanium-sapphire laser at 820 nm. The 205 nm light required to excite the 1S-3S transition is generated by two frequency-doubling of the titanium-sapphire laser, made in non-linear crystals placed in enhancement cavities. Chapter 4 is entirely devoted to the frequency-doubling. After a recall of non-linear optics, the enhancement cavities are described in detail, as well as the results we achieved. At last chapter 5 describes the research for a signal on the 1S-3S transition: the construction of a ground state atomic beam, and the development of the detection system. This work has led to a preliminary measurement of the ground state Lamb shift in atomic hydrogen: L(1S) = 8172.850 (174) MHz whose result is in very good agreement with both the previous measurements and the most recent theoretical results. (author)

  2. Analysis of the technique Thermal Desorption Spectroscopy (TDS) and its Application for the Characterization of Metal -Hydrogen Systems

    International Nuclear Information System (INIS)

    Castro, F.J.

    2000-01-01

    We present the theoretical and experimental developments made to study the desorption of hydrogen from metallic samples by Thermal Desorption Spectroscopy (TDS). With this technique gas desorption is stimulated by the programmed heating of the sample. To perform the study we set up a newly designed equipment and develop theoretical models of the kinetic processes involved. The equipment and the models are used to analyze the desorption process in a real system. We begin by analyzing the models developed to interpret the results of the experiments. These models consider simultaneously bulk diffusion and surface reaction processes in metal-hydrogen systems with one or two thermodynamic phases. We present numerical results, computer simulations and analytical approximations of the original models. Based on these results we analyze the main features of the spectra for the different relevant kinetic processes, and determine the changes induced in them when material parameters (activation energies, geometry) or experimental parameters (heating speed, initial concentration) are modified.We present the original equipment, designed and constructed during this work to perform the TDS experiments. We describe its main characteristics, its components, its range of operation and its sensibility. We also offer an analysis of the background spectrum. We use the Pd-H system to test the equipment and the models. The samples chosen, powders, granules, foils and wires, were previously characterized to analyze their composition, their morphology and their characteristic size. We show the results of Scanning Electron Microscopy (SEM) observation, X ray diffraction (XRD) and Auger Electron Spectroscopy (AES) analysis.We then present and analyze in depth the experimental desorption spectra of the palladium powder. Based on the analysis we determine the rate limiting step for desorption and the characteristic activation energies. When the system is on the b phase (hydride) the rate

  3. Effect of foliar application of salicylic acid, hydrogen peroxide and a xyloglucan oligosaccharide on capsiate content and gene expression associatedwith capsinoids synthesis in Capsicum annuum L.

    Science.gov (United States)

    Zunun-Perez, A Y; Guevara-Figueroa, T; Jimenez-Garcia, S N; Feregrino-Perez, A A; Gautier, F; Guevara-Gonzalez, R G

    2017-06-01

    Capsinoids are non-pungent analogues of capsaicinoids in pepper (Capsicum spp). The absence of pungency, in addition to their biological activities similar to that of capsaicinoids such as anti-inflammatory, antimicrobial, and antioxidant properties, makes capsinoids an excellent option for increasing use in human and animal nutrition, as well as health and pharmaceutical industries. There are only few sources of pepper producing capsinoids, and one of them (accession 509-45-1), Capsicum annuum L., is a potential source for increasing capsinoids content using strategies as controlled elicitation during plant production in the greenhouse. In this research we evaluated the effect of weekly and one-day-before-harvest foliar applications of hydrogen peroxide, salicylic acid and a xyloglucan oligosaccharide on the concentration of capsiate in fruits of this pepper accession, as well as the gene expression of phenylalanine ammonia-lyase (pal), putative aminotransferase (pamt), capsaicin synthase (at3) and β-keto acyl synthase (kas). Results showed that the two tested concentrations of H2O2 significantly increased capsiate content and gene expression associated with capsaicinoids (pamt, at3 and kas) and the phenylpropanoids (pal) pathways. Plant yield was not affected using this induction strategy. Our results indicated that the pre-harvest and weekly application of hydrogen peroxide and xyloglucan oligosaccharide improved production of capsiate in C. annuum L.

  4. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  5. Trapping and spectroscopy of hydrogen

    International Nuclear Information System (INIS)

    Cesar, Claudio Lenz

    1997-01-01

    I review the results and techniques used by the MIT H↑ group to achieve a fractional resolution of 2 parts in 10 12 in the 1S-2S transition in hydrogen [Cesar, D. Fried, T. Killian, A. Polcyn, J. Sandberg, I.A. Yu, T. Greytak, D. Kleppner and J. Doyle, Two-photon spectroscopy of trapped atomic hydrogen, Phys. Rev. Lett. 77 (1996) 255.] With some improvements, this system should deliver 100 times higher resolution with an improved signal count rate getting us closer to an old advertised goal of a precision of 1 part in 10 18 . While these developments are very important for the proposed test of the CPT theorem through the comparison with anti-hydrogen, some of the techniques used with hydrogen are not applicable to anti-hydrogen and I discuss some difficulties and alternatives for the trapping and spectroscopy of anti-hydrogen

  6. The hydrogen issue.

    Science.gov (United States)

    Armaroli, Nicola; Balzani, Vincenzo

    2011-01-17

    Hydrogen is often proposed as the fuel of the future, but the transformation from the present fossil fuel economy to a hydrogen economy will need the solution of numerous complex scientific and technological issues, which will require several decades to be accomplished. Hydrogen is not an alternative fuel, but an energy carrier that has to be produced by using energy, starting from hydrogen-rich compounds. Production from gasoline or natural gas does not offer any advantage over the direct use of such fuels. Production from coal by gasification techniques with capture and sequestration of CO₂ could be an interim solution. Water splitting by artificial photosynthesis, photobiological methods based on algae, and high temperatures obtained by nuclear or concentrated solar power plants are promising approaches, but still far from practical applications. In the next decades, the development of the hydrogen economy will most likely rely on water electrolysis by using enormous amounts of electric power, which in its turn has to be generated. Producing electricity by burning fossil fuels, of course, cannot be a rational solution. Hydroelectric power can give but a very modest contribution. Therefore, it will be necessary to generate large amounts of electric power by nuclear energy of by renewable energies. A hydrogen economy based on nuclear electricity would imply the construction of thousands of fission reactors, thereby magnifying all the problems related to the use of nuclear energy (e.g., safe disposal of radioactive waste, nuclear proliferation, plant decommissioning, uranium shortage). In principle, wind, photovoltaic, and concentrated solar power have the potential to produce enormous amounts of electric power, but, except for wind, such technologies are too underdeveloped and expensive to tackle such a big task in a short period of time. A full development of a hydrogen economy needs also improvement in hydrogen storage, transportation and distribution

  7. Florida Hydrogen Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety

  8. The evaluation of the polarization resistance in a tubular electrode and its application to the hydrogen electrode reaction

    International Nuclear Information System (INIS)

    Montero, M.A.; Marozzi, C.A.; Chialvo, M.R. Gennero de; Chialvo, A.C.

    2007-01-01

    An alternative method for the determination of the kinetic parameters involved in the elementary steps of the reaction mechanism of the hydrogen electrode reaction is proposed. It is based on the determination of the variation of the polarization resistance in a tubular platinum electrode with a laminar flow of electrolyte as a function of the activity of protons of the electrolyte solution. A theoretical expression that relates the experimental variables and the equilibrium polarization resistance is developed, which takes into account the current distribution along the electrode surface. The results are compared with others obtained previously, contributing to the verification of the kinetic mechanism through a completely different experimental procedure

  9. Production, storage, transporation and utilization of hydrogen

    International Nuclear Information System (INIS)

    Akiba, E.

    1992-01-01

    Hydrogen is produced from water and it can be used for fuel. Water is formed again by combustion of hydrogen with oxygen in the air. Hydrogen is an ideal fuel because hydrogen itself and gases formed by the combustion of hydrogen are not greenhouse and ozone layer damaging gases. Therefore, hydrogen is the most environmental friendly fuel that we have ever had. Hydrogen gas does not naturally exist. Therefore, hydrogen must be produced from hydrogen containing compounds such as water and hydrocarbons by adding energy. At present, hydrogen is produced in large scale as a raw material for the synthesis of ammonia, methanol and other chemicals but not for fuel. In other words, hydrogen fuel has not been realized but will be actualized in the near future. In this paper hydrogen will be discussed as fuel which will be used for aircraft, space application, power generation, combustion, etc. Especially, production of hydrogen is a very important technology for achieving hydrogen energy systems. Storage, transportation and utilization of hydrogen fuel will also be discussed in this paper

  10. dimensional architectures via hydrogen bonds

    Indian Academy of Sciences (India)

    Administrator

    organization and has potential applications in the field of magnetism ... The concepts of crystal engineering ... 4. However, the utilization of hydrogen bond supramolecular syn- ... sembling the coordination networks by designing the ligands ...

  11. Biogas and Hydrogen Systems Market Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, Anelia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bush, Brian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-31

    This analysis provides an overview of the market for biogas-derived hydrogen and its use in transportation applications. It examines the current hydrogen production technologies from biogas, capacity and production, infrastructure, potential and demand, as well as key market areas. It also estimates the production cost of hydrogen from biogas and provides supply curves at a national level and at point source.

  12. Orbisphere: an immediate measurement of hydrogen

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The device presented here, has in the beginning been conceived for nuclear industries (nuclear power plants, waste processing, uranium enrichment) and can measure the concentration of dissolved hydrogen and the partial pressures of gaseous hydrogen. This hydrogen analyser has numerous applications, particularly in metal corrosion research and control, water processing, organic and mineral synthesis, in pharmaceutic industry, for gas purity control [fr

  13. Production of Hydrogen from Bio-ethanol

    International Nuclear Information System (INIS)

    Fabrice Giroudiere; Christophe Boyer; Stephane His; Robert Sanger; Kishore Doshi; Jijun Xu

    2006-01-01

    IFP and HyRadix are collaborating in the development of a new hydrogen production system from liquid feedstock such as bio-ethanol. Reducing greenhouse gas (GHG) emissions along with high hydrogen yield are the key objectives. Market application of the system will be hydrogen refueling stations as well as medium scale hydrogen consumers including the electronics, metals processing, and oils hydrogenation industries. The conversion of bio-ethanol to hydrogen will be performed within a co-developed process including an auto-thermal reformer working under pressure. The technology will produce high-purity hydrogen with ultralow CO content. The catalytic auto-thermal reforming technology combines the exothermic and endothermic reaction and leads to a highly efficient heat integration. The development strategy to reach a high hydrogen yield target with the bio-ethanol hydrogen generator is presented. (authors)

  14. Thermomechanical behavior modeling and experimental validation of polymer-wound composite multi-layers. Hydrogen storage application

    International Nuclear Information System (INIS)

    Gentilleau, Benoit

    2012-01-01

    The purpose of this research is to study the thermomechanical behavior of the constituent materials of a type IV hydrogen storage tank: a composite, ensuring the strength, is wound around the polyurethane liner that ensures sealing of the tank and thermal insulation; at the extremities, stainless steel parts are used to allow the process connection. In this type of tank, during filling, there is a significant increase in hydrogen temperature, resulting in a gradual heating of the structure and the presence of temperature gradients. The purpose of this study is primarily to characterize the behavior of such a structure when subjects to complex thermomechanical loading. Initially, mechanical and thermal characterization tests have been made over the service life range of temperature of the tank to obtain the necessary data for the realization of a thermomechanical numerical model. Then, a behavior law of the composite, easily transferable to a complex structure such as the whole tank and taking into account the non-linearity, the matrix damage, the progressive loss of shear modulus, and the thermo-dependence of the materials parameters, is developed. The tests on technological representative specimens have been performed to better understand the mechanisms that can appear in the tank and to validate the model. Finally, a numerical study of a tank was performed. The coupled influence of temperature and damage matrix on the behavior of this structure is analyzed. (author)

  15. Application of carbon and hydrogen stable isotope analyses to detect exogenous citric acid in Japanese apricot liqueur.

    Science.gov (United States)

    Akamatsu, Fumikazu; Oe, Takaaki; Hashiguchi, Tomokazu; Hisatsune, Yuri; Kawao, Takafumi; Fujii, Tsutomu

    2017-08-01

    Japanese apricot liqueur manufacturers are required to control the quality and authenticity of their liqueur products. Citric acid made from corn is the main acidulant used in commercial liqueurs. In this study, we conducted spiking experiments and carbon and hydrogen stable isotope analyses to detect exogenous citric acid used as an acidulant in Japanese apricot liqueurs. Our results showed that the δ 13 C values detected exogenous citric acid originating from C 4 plants but not from C 3 plants. The δ 2 H values of citric acid decreased as the amount of citric acid added increased, whether the citric acid originated from C 3 or C 4 plants. Commercial liqueurs with declared added acidulant provided higher δ 13 C values and lower δ 2 H values than did authentic liqueurs and commercial liqueurs with no declared added acidulant. Carbon and hydrogen stable isotope analyses are suitable as routine methods for detecting exogenous citric acid in Japanese apricot liqueur. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Computer simulation study of in-zeolites templated carbon replicas: structural and adsorption properties for hydrogen storage application

    International Nuclear Information System (INIS)

    Roussel, T.

    2007-05-01

    Hydrogen storage is the key issue to envisage this gas for instance as an energy vector in the field of transportation. Porous carbons are materials that are considered as possible candidates. We have studied well-controlled microporous carbon nano-structures, carbonaceous replicas of meso-porous ordered silica materials and zeolites. We realized numerically (using Grand Canonical Monte Carlo Simulations, GCMC) the atomic nano-structures of the carbon replication of four zeolites: AlPO 4 -5, silicalite-1, and Faujasite (FAU and EMT). The faujasite replicas allow nano-casting of a new form of carbon crystalline solid made of tetrahedrally or hexagonally interconnected single wall nano-tubes. The pore size networks are nano-metric giving these materials optimized hydrogen molecular storage capacities (for pure carbon phases). However, we demonstrate that these new carbon forms are not interesting for room temperature efficient storage compared to the void space of a classical gas cylinder. We showed that doping with an alkaline element, such as lithium, one could store the same quantities at 350 bar compared to a classical tank at 700 bar. This result is a possible route to achieve interesting performances for on-board docking systems for instance. (author)

  17. The microwave-assisted ionic liquid nanocomposite synthesis: platinum nanoparticles on graphene and the application on hydrogenation of styrene

    Science.gov (United States)

    2013-01-01

    The microwave-assisted nanocomposite synthesis of metal nanoparticles on graphene or graphite oxide was introduced in this research. With microwave assistance, the Pt nanoparticles on graphene/graphite oxide were successfully produced in the ionic liquid of 2-hydroxyethanaminium formate [HOCH2CH2NH3][HCO2]. On graphene/graphite oxide, the sizes of Pt nanoparticles were about 5 to 30 nm from transmitted electron microscopy (TEM) results. The crystalline Pt structures were examined by X-ray diffraction (XRD). Since hydrogenation of styrene is one of the important well-known chemical reactions, herein, we demonstrated then the catalytic hydrogenation capability of the Pt nanoparticles on graphene/graphite oxide for the nanocomposite to compare with that of the commercial catalysts (Pt/C and Pd/C, 10 wt.% metal catalysts on activated carbon from Strem chemicals, Inc.). The conversions with the Pt nanoparticles on graphene are >99% from styrene to ethyl benzene at 100°C and under 140 psi H2 atmosphere. However, ethyl cyclohexane could be found as a side product at 100°C and under 1,520 psi H2 atmosphere utilizing the same nanocomposite catalyst. PMID:24103100

  18. Prospects on hydrogen production for a generalized domestic, industrial and automotive, usage

    Science.gov (United States)

    Dini, D.

    Assuming the availability of advanced nuclear and solar systems as prime energy sources for electrolytic production of hydrogen, an assessment is made of high pressure electrolytic gasification, liquefaction and storage work requirements. Also, a pipeline network and associated equipment for the delivery and storage of hydrogen are considered in the context of a future replacement of all fossil fuels by hydrogen. Attention is given to space-based systems and terrestrial photovoltaics.

  19. Hydrogen sulfide measurement by headspace-gas chromatography-mass spectrometry (HS-GC-MS): application to gaseous samples and gas dissolved in muscle.

    Science.gov (United States)

    Varlet, Vincent; Giuliani, Nicole; Palmiere, Cristian; Maujean, Géraldine; Augsburger, Marc

    2015-01-01

    The aim of our study was to present a new headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable to the routine determination of hydrogen sulfide (H(2)S) concentrations in biological and gaseous samples. The primary analytical drawback of the GC/MS methods for H(2)S measurement discussed in the literature was the absence of a specific H(2)S internal standard required to perform quantification. Although a deuterated hydrogen sulfide (D(2)S) standard is currently available, this standard is not often used because this standard is expensive and is only available in the gas phase. As an alternative approach, D(2)S can be generated in situ by reacting deuterated chloride with sodium sulfide; however, this technique can lead to low recovery yield and potential isotopic fractionation. Therefore, N(2)O was chosen for use as an internal standard. This method allows precise measurements of H(2)S concentrations in biological and gaseous samples. Therefore, a full validation using accuracy profile based on the β-expectation tolerance interval is presented. Finally, this method was applied to quantify H(2)S in an actual case of H(2)S fatal intoxication. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Electrocatalytic Reduction of Hydrogen Peroxide on Palladium-Gold Codeposits on Glassy Carbon: Applications to the Design of Interference-Free Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Elena Horozova

    2011-01-01

    Full Text Available Following our previous studies on the catalytic activity electrochemically codeposited on graphite Pd-Pt electrocatalysts for hydrogen peroxide electroreduction, a series of glassy carbon electrodes were modified with Pd or (Pd+Au deposits aiming at the development of even more efficient electrocatalysts for the same process. The resulting electrodes were found to be very effective at low applied potentials (−100 and −50 mV versus Ag/AgCl, 1 M KCl. The surface topography of the electrode modified with Pd+Au mixed in proportions 90% : 10%, exhibiting optimal combination of sensitivity and linear dynamic range towards hydrogen peroxide electrochemical reduction, was studied with SEM and AFM. The applicability of the same electrode as transducer in an amperometric biosensor for glucose assay was demonstrated. At an applied potential of −50 mV, the following were determined: detection limit (S/N=3 of 6×10−6 M glucose, electrode sensitivity of 0.15 μA μM−1, and strict linearity up to concentration of 3×10−4 M.

  1. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.

    Science.gov (United States)

    Furukawa, Hiroyasu; Yaghi, Omar M

    2009-07-01

    Dihydrogen, methane, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms of seven porous covalent organic frameworks (COFs). The uptake behavior and capacity of the COFs is best described by classifying them into three groups based on their structural dimensions and corresponding pore sizes. Group 1 consists of 2D structures with 1D small pores (9 A for each of COF-1 and COF-6), group 2 includes 2D structures with large 1D pores (27, 16, and 32 A for COF-5, COF-8, and COF-10, respectively), and group 3 is comprised of 3D structures with 3D medium-sized pores (12 A for each of COF-102 and COF-103). Group 3 COFs outperform group 1 and 2 COFs, and rival the best metal-organic frameworks and other porous materials in their uptake capacities. This is exemplified by the excess gas uptake of COF-102 at 35 bar (72 mg g(-1) at 77 K for hydrogen, 187 mg g(-1) at 298 K for methane, and 1180 mg g(-1) at 298 K for carbon dioxide), which is similar to the performance of COF-103 but higher than those observed for COF-1, COF-5, COF-6, COF-8, and COF-10 (hydrogen at 77 K, 15 mg g(-1) for COF-1, 36 mg g(-1) for COF-5, 23 mg g(-1) for COF-6, 35 mg g(-1) for COF-8, and 39 mg g(-1) for COF-10; methane at 298 K, 40 mg g(-1) for COF-1, 89 mg g(-1) for COF-5, 65 mg g(-1) for COF-6, 87 mg g(-1) for COF-8, and 80 mg g(-1) for COF-10; carbon dioxide at 298 K, 210 mg g(-1) for COF-1, 779 mg g(-1) for COF-5, 298 mg g(-1) for COF-6, 598 mg g(-1) for COF-8, and 759 mg g(-1) for COF-10). These findings place COFs among the most porous and the best adsorbents for hydrogen, methane, and carbon dioxide.

  2. Looking for practical tools to achieve next-future applicability of dark fermentation to produce bio-hydrogen from organic materials in Continuously Stirred Tank Reactors.

    Science.gov (United States)

    Tenca, A; Schievano, A; Lonati, S; Malagutti, L; Oberti, R; Adani, F

    2011-09-01

    This study aimed at finding applicable tools for favouring dark fermentation application in full-scale biogas plants in the next future. Firstly, the focus was obtaining mixed microbial cultures from natural sources (soil-inocula and anaerobically digested materials), able to efficiently produce bio-hydrogen by dark fermentation. Batch reactors with proper substrate (1 gL(glucose)(-1)) and metabolites concentrations, allowed high H(2) yields (2.8 ± 0.66 mol H(2)mol(glucose)(-1)), comparable to pure microbial cultures achievements. The application of this methodology to four organic substrates, of possible interest for full-scale plants, showed promising and repeatable bio-H(2) potential (BHP=202 ± 3 NL(H2)kg(VS)(-1)) from organic fraction of municipal source-separated waste (OFMSW). Nevertheless, the fermentation in a lab-scale CSTR (nowadays the most diffused typology of biogas-plant) of a concentrated organic mixture of OFMSW (126 g(TS)L(-1)) resulted in only 30% of its BHP, showing that further improvements are still needed for future full-scale applications of dark fermentation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Hydrogen program overview

    Energy Technology Data Exchange (ETDEWEB)

    Gronich, S. [Dept. of Energy, Washington, DC (United States). Office of Utility Technologies

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  4. Driver ASIC Environmental Testing and Performance Optimization for SpaceBased Active Mirrors

    Science.gov (United States)

    Mejia Prada, Camilo

    Direct imaging of Earth-like planets requires techniques for light suppression, such as coronagraphs or nulling interferometers, in which deformable mirrors (DM) are a principal component. On ground-based systems, DMs are used to correct for turbulence in the Earth’s atmosphere in addition to static aberrations in the optics. For space-based observations, DMs are used to correct for static and quasi- static aberrations in the optical train. State-of-the-art, high-actuator count deformable mirrors suffer from external heavy and bulky electronics in which electrical connections are made through thousands of wires. We are instead developing Application Specific Integrated Circuits (ASICs) capable of direct integration with the DM in a single small package. This integrated ASIC-DM is ideal for space missions, where it offers significant reduction in mass, power and complexity, and performance compatible with high-contrast observations of exoplanets. We have successfully prototyped and tested a 32x32 format Switch-Mode (SM) ASIC which consumes only 2mW static power (total, not per-actuator). A number of constraints were imposed on key parameters of this ASIC design, including sub-picoamp levels of leakage across turned-off switches and from switch-to-substrate, control resolution of 0.04 mV, satisfactory rise/fall times, and a near-zero on-chip crosstalk over a useful range of operating temperatures. This driver ASIC technology is currently at TRL 4. This Supporting Technology proposal will further develop the ASIC technology to TRL 5 by carrying on environmental tests and further optimizing performance, with the end goal of making ASICs suitable for space-based deployment. The effort will be led by JPL, which has considerable expertise with DMs used in highcontrast imaging systems for exoplanet missions and in adaptive optic systems, and in design of DM driver electronics. Microscale, which developed the prototype of the ASICDM, will continue its development. We

  5. Possibilities of hydrogen removal

    International Nuclear Information System (INIS)

    Langer, G.; Koehling, A.; Nikodem, H.

    1982-12-01

    In the event of hypothetical severe accidents in light-water reactors, considerable amounts of hydrogen may be produced and released into the containment. Combustion of the hydrogen may jeopardize the integrity of the containment. The study reported here aimed to identify methods to mitigate the hydrogen problem. These methods should either prevent hydrogen combustion, or limit its effects. The following methods have been investigated: pre-inerting; chemical oxygen absorption; removal of oxygen by combustion; post-inerting with N 2 , CO 2 , or halon; aqueous foam; water fog; deliberate ignition; containment purging; and containment venting. The present state of the art in both nuclear and non-nuclear facilities, has been identified. The assessment of the methods was based on accident scenarios assuming significant release of hydrogen and the spectrum of requirements derived from these scenarios was used to determine the advantages and drawbacks of the various methods, assuming their application in a pressurized-water reactor of German design. (orig.) [de

  6. Preparation of Cu-Fe-Al-O nanosheets and their catalytic application in methanol steam reforming for hydrogen production

    Science.gov (United States)

    Wang, Leilei; Zhang, Fan; Miao, Dinghao; Zhang, Lei; Ren, Tiezhen; Hui, Xidong; He, Zhanbing

    2017-03-01

    Candidates of precious metal catalysts, prepared in a facile and environmental way and showing high catalytic performances at low temperatures, are always highly desired by industry. In this work, large-scale Cu-Fe-Al-O nanosheets were synthesized by facile dealloying of Al-Cu-Fe alloys in NaOH solution. The composition, microscopic morphology, and crystal structure were respectively investigated using wavelength-dispersive x-ray spectroscopy with an electron probe microanalyzer, scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. Furthermore, we found that the 2D Cu-Fe-Al-O nanosheets gave excellent catalytic performances in hydrogen production by methanol steam reforming at relatively low temperatures, e.g. 513 K.

  7. New synthesis of gold nanocorals using a diazonium compound, and their application to an electrochemiluminescent assay of hydrogen peroxide

    International Nuclear Information System (INIS)

    Xu, Min; Qi, Wenjing; Zhang, Ling; Lai, Jianping; Aziz-ur-Rehman; Majeed, Saadat; Xu, Guobao

    2014-01-01

    The reaction of hydrogen tetracholoroaurate, sodium borohydride and the diazonium compound prepared from 4-aminobenzoic acid results in the formation of gold nanocorals (Au-NCs) for the first time. Scanning electron microscopy images and transmission electron microscopy images show that the Au-NCs are composed of nanowires with a diameter of 5.3 nm. A glassy carbon electrode modified with Au-NCs is found to trigger intense electrochemiluminescence of the luminol/H 2 O 2 system at a potential of −0.13 V. The effect was exploited to determine H 2 O 2 in the 0.1 to 100 μM concentration range with a 30 nM detection limit. (author)

  8. Application of the nuclear liquid drop model to a negative hydrogen ion in the strong electric field of a laser

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Kornyushin, Y. [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)]. E-mail: yurik@vms.huji.ac.il

    2000-09-01

    The nuclear liquid drop model is applied to describe some basic properties of a negative hydrogen ion in the strong electric field of a laser. The equilibrium ionic size, energy and polarizability of the ion are calculated. Collective modes of the dipole oscillations are considered. A barrier which arises in a strong electric field is studied. The barrier vanishes at some large value of the electric field, which is defined as a critical value. The dependence of the critical field on frequency is studied. At frequencies {omega}{>=}({omega}{sub d}/2{sup 1/2}) ({omega}{sub d} is the frequency of the dipole oscillations of the electronic cloud relative to the nucleus) the barrier remains for any field. At high frequencies a 'stripping' mechanism for instability arises. At the resonant frequency a rather low amplitude of the electric field causes the 'stripping' instability. (author)

  9. Functionalization of super-aligned carbon nanotube film using hydrogen peroxide solution and its application in copper electrodeposition.

    Science.gov (United States)

    Xiong, Lunqiao; Shuai, Jing; Hou, Zecheng; Zhu, Lin; Li, Wenzhen

    2017-07-15

    In order to make super-aligned carbon nanotubes (SACNT) homogeneously spread in electrolytes, a swift and effective method was devised for surface functionalization of SACNT film by ohmic heating using hydrogen peroxide solution. Controllable generation of defects and notable graft of oxygen functional groups on the sidewall of SACNTs were induced as proven by X-ray photoelectron spectroscopy and Raman spectroscopy. Differently from the harsh wet chemical oxidation, the super-aligned morphology and structural integrity of carbon nanotubes in the SACNT film were found to be well preserved by electron microscopy analysis. The functionalized treatment can remove extraneous material contaminating SACNT film and improve its conductivity. The grafting of polar ionizable groups has been proved to effectively eliminate the agglomeration of SACNTs. When the oxidized SACNT film was used as host material for electrodeposition of copper, the composite film of well-bonded SACNTs and Cu was successfully prepared. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Characterization of 13 and 30 mum thick hydrogenated amorphous silicon diodes deposited over CMOS integrated circuits for particle detection application

    CERN Document Server

    Despeisse, M; Commichau, S C; Dissertori, G; Garrigos, A; Jarron, P; Miazza, C; Moraes, D; Shah, A; Wyrsch, N; Viertel, Gert M; 10.1016/j.nima.2003.11.022

    2004-01-01

    We present the experimental results obtained with a novel monolithic silicon pixel detector which consists in depositing a n-i-p hydrogenated amorphous silicon (a-Si:H) diode straight above the readout ASIC (this technology is called Thin Film on ASIC, TFA). The characterization has been performed on 13 and 30mum thick a-Si:H films deposited on top of an ASIC containing a linear array of high- speed low-noise transimpedance amplifiers designed in a 0.25mum CMOS technology. Experimental results presented have been obtained with a 600nm pulsed laser. The results of charge collection efficiency and charge collection speed of these structures are discussed.

  11. Hydrogen manufacturing using plasma reformers

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A.; Hochgreb, S.; O`Brien, C. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1996-10-01

    Manufacturing of hydrogen from hydrocarbon fuels is needed for a variety of applications. These applications include fuel cells used in stationary electric power production and in vehicular propulsion. Hydrogen can also be used for various combustion engine systems. There is a wide range of requirements on the capacity of the hydrogen manufacturing system, the purity of the hydrogen fuel, and capability for rapid response. The overall objectives of a hydrogen manufacturing facility are to operate with high availability at the lowest possible cost and to have minimal adverse environmental impact. Plasma technology has potential to significantly alleviate shortcomings of conventional means of manufacturing hydrogen. These shortcomings include cost and deterioration of catalysts; limitations on hydrogen production from heavy hydrocarbons; limitations on rapid response; and size and weight requirements. In addition, use of plasma technology could provide for a greater variety of operating modes; in particular the possibility of virtual elimination of CO{sub 2} production by pyrolytic operation. This mode of hydrogen production may be of increasing importance due to recent additional evidence of global warming.

  12. METHOD OF GROUP OBJECTS FORMING FOR SPACE-BASED REMOTE SENSING OF THE EARTH

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available Subject of Research. Research findings of the specific application of space-based optical-electronic and radar means for the Earth remote sensing are considered. The subject matter of the study is the current planning of objects survey on the underlying surface in order to increase the effectiveness of sensing system due to the rational use of its resources. Method. New concept of a group object, stochastic swath and stochastic length of the route is introduced. The overview of models for single, group objects and their parameters is given. The criterion for the existence of the group object based on two single objects is formulated. The method for group objects formation while current survey planning has been developed and its description is presented. The method comprises several processing stages for data about objects with the calculation of new parameters, the stochastic characteristics of space means and validates the spatial size of the object value of the stochastic swath and stochastic length of the route. The strict mathematical description of techniques for model creation of a group object based on data about a single object and onboard special complex facilities in difficult conditions of registration of spatial data is given. Main Results. The developed method is implemented on the basis of modern geographic information system in the form of a software tool layout with advanced tools of processing and analysis of spatial data in vector format. Experimental studies of the forming method for the group of objects were carried out on a different real object environment using the parameters of modern national systems of the Earth remote sensing detailed observation Canopus-B and Resurs-P. Practical Relevance. The proposed models and method are focused on practical implementation using vector spatial data models and modern geoinformation technologies. Practical value lies in the reduction in the amount of consumable resources by means of

  13. Application of the SPA in the design of a hydrogen producer plant coupled to a nuclear reactor

    International Nuclear Information System (INIS)

    Ruiz S, T.; Nelson, P. F.; Francois, J. L.; Cruz G, M. J.

    2013-10-01

    At the present time, one of the processes that is broadly investigated and that, theoretically demonstrates to be one of the most efficient for the hydrogen production, is the thermal-chemistry cycle Sulfur-Iodine (S-I) coupled to a nuclear reactor of very high temperature (VHTR). Because this chemical process of hydrogen production requires of a great inventory of toxic materials (sulphide compounds, hydriodic acid and iodine), is necessary the design of emergency systems with the purpose of protecting the facilities and the equipment s, the environment, as well as the near population. Given the impact of an accidental liberation of the process materials, as well as the proximity with the nuclear plant, is necessary that these emergency systems are the most reliable possible. This way, the results of the consequences analysis are utilized for the optimal localization of the gas sensors that activate the emergency systems, and the flows of the substances that are used for the leakage control. For all this, the use of the Safety Probabilistic Analysis methodology, as well as some standards of the nuclear industry, can be applied to the chemical installation to determine the fault sequences that can take to final states of not controlled leakage. This way, the use of methodologies of Event Tree Analysis and Fault Trees show in their results the components that but contribute in fault of such systems. In this work, is presented the evaluation of the joined models of event and fault trees and like with the obtained results, some proposals to increase the safety of the facilities are exposed. Also, the results of the evaluations of these proposals, and their impact of the probability of the not controlled fault sequences in a plant that is still in design stage are showed. (Author)

  14. The dynamics of highly excited hydrogen atoms in microwave fields: Application of the Floquet picture of quantum mechanics

    International Nuclear Information System (INIS)

    Holthaus, M.

    1990-04-01

    The study of short-time phenomena in strongly interacting quantum systems requires on the theoretical side the development of methods, which are both non-perturbative and 'dynamical', which thus regard the change of outer parameters in the slope of time. For systems with a periodic, fast and a further slow, parametric time dependence both requirements are fulfilled by the Floquet picture of quantum mechanics. This picture, which starts from the adiabatic evolution on effective quasi-energy surfaces, is presented in the first chapter of the present thesis, whereby especially the term of the adiabaticity for periodically time dependent systems is explained. In the second chapter the Floquet theory is applied to the description of microwave experiments with highly excited hydrogen atoms. Here it is shown that the Floquet picture permits to understand a manifold of experimental observations under a unified point of view. Really these microwave experiments offer an ideal possibility for the test of the Floquet picture: On the one hand there is the strength of the outer field of the same order of magnitude as that of the nuclear field, by which the highly excited electron is bound, on the other hand in the experiment an extremely precise control of amplitude, frequency, and pulse shape is possible, so that the conditions for a detailed comparison of theory and experiment are given. The insights, which model calculations yield in the dynamics of highly excited hydrogen atoms in strong alternating fields, allow a prediction of further effects, for which it is to be looked for in new experiments. In the following third chapter some further aspects of these model calculations are discussed, whereby also common properties of the dynamics of excited atoms in microwave fields and that of atoms under the influence of strong laser pulses are discussed. (orig./HSI) [de

  15. HECTR [Hydrogen Event Containment Transient Response] Version 1.5N: A modification of HECTR Version 1.5 for application to N Reactor

    International Nuclear Information System (INIS)

    Camp, A.L.; Dingman, S.E.

    1987-05-01

    This report describes HECTR Version 1.5N, which is a special version of HECTR developed specifically for application to the N Reactor. HECTR is a fast-running, lumped-parameter containment analysis computer program that is most useful for performing parametric studies. The main purpose of HECTR is to analyze nuclear reactor accidents involving the transport and combustion of hydrogen, but HECTR can also function as an experiment analysis tool and can solve a limited set of other types of containment problems. Version 1.5N is a modification of Version 1.5 and includes changes to the spray actuation logic, and models for steam vents, vacuum breakers, and building cross-vents. Thus, all of the key features of the N Reactor confinement can be modeled. HECTR is designed for flexibility and provides for user control of many important parameters, if built-in correlations and default values are not desired

  16. Space-based infrared sensors of space target imaging effect analysis

    Science.gov (United States)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  17. The hydrogen mine introduction initiative

    Energy Technology Data Exchange (ETDEWEB)

    Betournay, M.C.; Howell, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-07-01

    In an effort to address air quality concerns in underground mines, the mining industry is considering the use fuel cells instead of diesel to power mine production vehicles. The immediate issues and opportunities associated with fuel cells use include a reduction in harmful greenhouse gas emissions; reduction in ventilation operating costs; reduction in energy consumption; improved health benefits; automation; and high productivity. The objective of the hydrogen mine introduction initiative (HMII) is to develop and test the range of fundamental and needed operational technology, specifications and best practices for underground hydrogen power applications. Although proof of concept studies have shown high potential for fuel cell use, safety considerations must be addressed, including hydrogen behaviour in confined conditions. This presentation highlighted the issues to meet operational requirements, notably hydrogen production; delivery and storage; mine regulations; and hydrogen behaviour underground. tabs., figs.

  18. HUG - the Hydrogen Utility Group

    International Nuclear Information System (INIS)

    Tinkler, M.

    2006-01-01

    The Hydrogen Utility Group (HUG) was formally established in October 2005 by a group of leading electric utilities with a common interest in sharing hydrogen experiences and lessons learned. HUG's Mission Statement is: 'To accelerate utility integration of promising hydrogen energy related business applications through the coordinated efforts and actions of its members in collaboration with key stakeholders, including government agencies and utility support organizations.' In February 2006, HUG members presented a briefing to the US Senate Hydrogen and Fuel Cell Caucus in Washington, DC, outlining the significant role that the power industry should play in an emerging hydrogen economy. This presentation provides an overview of that briefing, summarizing the HUG's ongoing interests and activities

  19. The edition of a personal computer program for determining lattice constants and its application in materials for storage of hydrogen

    International Nuclear Information System (INIS)

    Chen Yongzhong; Bai Chaomao; Lang Dingmu; Zhang Youshou

    1998-01-01

    The equations for finding lattice constants of the 7 crystal systems were completely deduced using the M.U.Cohen least square method. From the deduction process it is obvious that the equation forms had nothing to do with the extrapolation functions so any of them can be used. (But in practice, cos 2 θ and cos 2 θ(1/sinθ + 1/θ) were generally performed.) After a personal computer program was finished using above mathematic model, the lattice constants of materials for storage of hydrogen ZrCo and LaNi 5-x M x (M = Mn, Al) were determined. The results showed that the program is very good for finding lattice parameters and can be used in the 7 crystal systems. The results also showed to the LaNi 5 alloy its lattice constants increase when the elements (such as Mn, Al, etc.) whose atomic radii are larger than that of Ni are substituted for Ni and when the content of the same substitutional element Al goes up. This phenomenon is in accordance with the theory

  20. Complete direct method for electron-hydrogen scattering: Application to the collinear and Temkin-Poet models

    International Nuclear Information System (INIS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2004-01-01

    We present an efficient generalization of the exterior complex scaling (ECS) method to extract discrete inelastic and ionization amplitudes for electron-impact scattering of atomic hydrogen. This fully quantal method is demonstrated over a range of energies for the collinear and Temkin-Poet models and near-threshold ionization is examined in detail for singlet and triplet scattering. Our numerical calculations for total ionization cross sections near threshold strongly support the classical threshold law of Wannier [Phys. Rev. 90, 817 (1953)] (σ∝E 1.128±0.004 ) for the L=0 singlet collinear model and the semiclassical threshold law of Peterkop [J. Phys. B 16, L587 (1983)] (σ∝E 3.37±0.02 ) for the L=0 triplet collinear model, and are consistent with the semiclassical threshold law of Macek and Ihra [Phys. Rev. A 55, 2024 (1997)] (σ∝exp[(-6.87±0.01)E -1/6 ]) for the singlet Temkin-Poet model