WorldWideScience

Sample records for space simulation facilities

  1. Planetary and Space Simulation Facilities PSI at DLR for Astrobiology

    Science.gov (United States)

    Rabbow, E.; Rettberg, P.; Panitz, C.; Reitz, G.

    2008-09-01

    Ground based experiments, conducted in the controlled planetary and space environment simulation facilities PSI at DLR, are used to investigate astrobiological questions and to complement the corresponding experiments in LEO, for example on free flying satellites or on space exposure platforms on the ISS. In-orbit exposure facilities can only accommodate a limited number of experiments for exposure to space parameters like high vacuum, intense radiation of galactic and solar origin and microgravity, sometimes also technically adapted to simulate extraterrestrial planetary conditions like those on Mars. Ground based experiments in carefully equipped and monitored simulation facilities allow the investigation of the effects of simulated single environmental parameters and selected combinations on a much wider variety of samples. In PSI at DLR, international science consortia performed astrobiological investigations and space experiment preparations, exposing organic compounds and a wide range of microorganisms, reaching from bacterial spores to complex microbial communities, lichens and even animals like tardigrades to simulated planetary or space environment parameters in pursuit of exobiological questions on the resistance to extreme environments and the origin and distribution of life. The Planetary and Space Simulation Facilities PSI of the Institute of Aerospace Medicine at DLR in Köln, Germany, providing high vacuum of controlled residual composition, ionizing radiation of a X-ray tube, polychromatic UV radiation in the range of 170-400 nm, VIS and IR or individual monochromatic UV wavelengths, and temperature regulation from -20°C to +80°C at the sample size individually or in selected combinations in 9 modular facilities of varying sizes are presented with selected experiments performed within.

  2. Status Report of Simulated Space Radiation Environment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-15

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety.

  3. Status Report of Simulated Space Radiation Environment Facility

    International Nuclear Information System (INIS)

    Kang, Phil Hyun; Nho, Young Chang; Jeun, Joon Pyo; Choi, Jae Hak; Lim, Youn Mook; Jung, Chan Hee; Jeon, Young Kyu

    2007-11-01

    The technology for performance testing and improvement of materials which are durable at space environment is a military related technology and veiled and securely regulated in advanced countries such as US and Russia. This core technology cannot be easily transferred to other country too. Therefore, this technology is the most fundamental and necessary research area for the successful establishment of space environment system. Since the task for evaluating the effects of space materials and components by space radiation plays important role in satellite lifetime extension and running failure percentage decrease, it is necessary to establish simulated space radiation facility and systematic testing procedure. This report has dealt with the status of the technology to enable the simulation of space environment effects, including the effect of space radiation on space materials. This information such as the fundamental knowledge of space environment and research status of various countries as to the simulation of space environment effects of space materials will be useful for the research on radiation hardiness of the materials. Furthermore, it will be helpful for developer of space material on deriving a better choice of materials, reducing the design cycle time, and improving safety

  4. Planetary and Space Simulation Facilities (PSI) at DLR

    Science.gov (United States)

    Panitz, Corinna; Rabbow, E.; Rettberg, P.; Kloss, M.; Reitz, G.; Horneck, G.

    2010-05-01

    The Planetary and Space Simulation facilities at DLR offer the possibility to expose biological and physical samples individually or integrated into space hardware to defined and controlled space conditions like ultra high vacuum, low temperature and extraterrestrial UV radiation. An x-ray facility stands for the simulation of the ionizing component at the disposal. All of the simulation facilities are required for the preparation of space experiments: - for testing of the newly developed space hardware - for investigating the effect of different space parameters on biological systems as a preparation for the flight experiment - for performing the 'Experiment Verification Tests' (EVT) for the specification of the test parameters - and 'Experiment Sequence Tests' (EST) by simulating sample assemblies, exposure to selected space parameters, and sample disassembly. To test the compatibility of the different biological and chemical systems and their adaptation to the opportunities and constraints of space conditions a profound ground support program has been developed among many others for the ESA facilities of the ongoing missions EXPOSE-R and EXPOSE-E on board of the International Space Station ISS . Several experiment verification tests EVTs and an experiment sequence test EST have been conducted in the carefully equipped and monitored planetary and space simulation facilities PSI of the Institute of Aerospace Medicine at DLR in Cologne, Germany. These ground based pre-flight studies allowed the investigation of a much wider variety of samples and the selection of the most promising organisms for the flight experiment. EXPOSE-E had been attached to the outer balcony of the European Columbus module of the ISS in February 2008 and stayed for 1,5 years in space; EXPOSE-R has been attached to the Russian Svezda module of the ISS in spring 2009 and mission duration will be approx. 1,5 years. The missions will give new insights into the survivability of terrestrial

  5. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  6. A laser particulate spectrometer for a space simulation facility

    Science.gov (United States)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.; Richmond, R. G.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate contaminants. Detection of the particulates is achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meters/second. The LPS system was designed to operate in the high-vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  7. Space Power Facility (SPF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Power Facility (SPF) houses the world's largest space environment simulation chamber, measuring 100 ft. in diameter by 122 ft. high. In this chamber, large...

  8. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  9. Space plasma simulation chamber

    International Nuclear Information System (INIS)

    1986-01-01

    Scientific results of experiments and tests of instruments performed with the Space Plasma Simulation Chamber and its facility are reviewed in the following six categories. 1. Tests of instruments on board rockets, satellites and balloons. 2. Plasma wave experiments. 3. Measurements of plasma particles. 4. Optical measurements. 5. Plasma production. 6. Space plasms simulations. This facility has been managed under Laboratory Space Plasma Comittee since 1969 and used by scientists in cooperative programs with universities and institutes all over country. A list of publications is attached. (author)

  10. Simulation of total loss of feed water in ATLAS test facility using SPACE code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minhee; Kim, Seyun [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of). Central Research Inst.

    2017-08-15

    A total loss of feedwater (TLOFW) with additional failures in ATLAS test facility was analyzed using SPACE code, which is an advanced thermal-hydraulic system analysis code developed by the Korea nuclear industry. Partial failure of the safety injection pumps (SIPs) and the pilot-operated safety relief valves (POSRVs) of pressurizer were selected as additional failures. In order to assess the capability of SPACE code, partial failure was modeled, and compared with results of OECD-ATLAS A3.1 results. Reasonably good agreement with major thermal-hydraulic parameters was obtained by analyzing the transient behavior. From the results, this indicated that SPACE code has capabilities to design extension conditions, and feed and bleed operation using POSRVs and SIPs were effective for RCS cooling capability during TLOFW.

  11. GPS Satellite Simulation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The GPS satellite simulation facility consists of a GPS satellite simulator controlled by either a Silicon Graphics Origin 2000 or PC depending upon unit under test...

  12. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    Science.gov (United States)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  13. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  14. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, Ivan, E-mail: ivan.dipiazza@enea.it [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Angelucci, Morena; Marinari, Ranieri [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy); Tarantino, Mariano [Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. ENEA Brasimone, Camugnano (Italy); Forgione, Nicola [University of Pisa, Dipartimento di Ingegneria Civile e Industriale, Pisa (Italy)

    2016-04-15

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m{sup 2}. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals

  15. Heat transfer on HLM cooled wire-spaced fuel pin bundle simulator in the NACIE-UP facility

    International Nuclear Information System (INIS)

    Di Piazza, Ivan; Angelucci, Morena; Marinari, Ranieri; Tarantino, Mariano; Forgione, Nicola

    2016-01-01

    Highlights: • Experiments with a wire-wrapped 19-pin fuel bundle cooled by LBE. • Wall and bulk temperature measurements at three axial positions. • Heat transfer and error analysis in the range of low mass flow rates and Péclet number. • Comparison of local and section-averaged Nusselt number with correlations. - Abstract: The NACIE-UP experimental facility at the ENEA Brasimone Research Centre (Italy) allowed to evaluate the heat transfer coefficient of a wire-spaced fuel bundle cooled by lead-bismuth eutectic (LBE). Lead or lead-bismuth eutectic are very attractive as coolants for the GEN-IV fast reactors due to the good thermo-physical properties and the capability to fulfil the GEN-IV goals. Nevertheless, few experimental data on heat transfer with heavy liquid metals (HLM) are available in literature. Furthermore, just a few data can be identified on the specific topic of wire-spaced fuel bundle cooled by HLM. Additional analysis on thermo-fluid dynamic behaviour of the HLM inside the subchannels of a rod bundle is necessary to support the design and safety assessment of GEN. IV/ADS reactors. In this context, a wire-spaced 19-pin fuel bundle was installed inside the NACIE-UP facility. The pin bundle is equipped with 67 thermocouples to monitor temperatures and analyse the heat transfer behaviour in different sub-channels and axial positions. The experimental campaign was part of the SEARCH FP7 EU project to support the development of the MYRRHA irradiation facility (SCK-CEN). Natural and mixed circulation flow regimes were investigated, with subchannel Reynolds number in the range Re = 1000–10,000 and heat flux in the range q″ = 50–500 kW/m"2. Local Nusselt numbers were calculated for five sub-channels in different ranks at three axial positions. Section-averaged Nusselt number was also defined and calculated. Local Nusselt data showed good consistency with some of the correlation existing in literature for heat transfer in liquid metals for

  16. Selection of a Data Acquisition and Controls System Communications and Software Architecture for Johnson Space Center's Space Environment Simulation Laboratory Thermal and Vacuum Test Facilities

    Science.gov (United States)

    Jordan, Eric A.

    2004-01-01

    Upgrade of data acquisition and controls systems software at Johnson Space Center's Space Environment Simulation Laboratory (SESL) involved the definition, evaluation and selection of a system communication architecture and software components. A brief discussion of the background of the SESL and its data acquisition and controls systems provides a context for discussion of the requirements for each selection. Further framework is provided as upgrades to these systems accomplished in the 1990s and in 2003 are compared to demonstrate the role that technological advances have had in their improvement. Both of the selections were similar in their three phases; 1) definition of requirements, 2) identification of candidate products and their evaluation and testing and 3) selection by comparison of requirement fulfillment. The candidates for the communication architecture selection embraced several different methodologies which are explained and contrasted. Requirements for this selection are presented and the selection process is described. Several candidates for the software component of the data acquisition and controls system are identified, requirements for evaluation and selection are presented, and the evaluation process is described.

  17. Space robot simulator vehicle

    Science.gov (United States)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  18. Exercise evaluation and simulation facility

    International Nuclear Information System (INIS)

    Meitzler, W.D.; Jaske, R.T.

    1983-12-01

    The Exercise Evaluation and Simulation Facility (EESF) is a mini computer based system that will serve as a tool to aid FEMA in the evaluation of radiological emergency plans and preparedness around commercial nucler power facilities. The EESF integrates the following resources: a meteorological model, dose model, evacuation model, map information, and exercise information into a single system. Thus the user may access these various resources concurrently, and on completion display the results on a color graphic display or hardcopy unit. A unique capability made possible by the integration of these models is the computation of estimated total dose to the population

  19. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  20. Experimental facilities and simulation means

    International Nuclear Information System (INIS)

    Thomas, J.B.

    2009-01-01

    This paper and its associated series of slides review the experimental facilities and the simulation means used for the development of nuclear reactors in France. These experimental facilities include installations used for the measurement and qualification of nuclear data (mainly cross-sections) like EOLE reactor and Minerve zero power reactor, installations like material testing reactors, installations dedicated to reactor safety experiments like Cabri reactor, and other installations like accelerators (Jannus accelerator, GANIL for instance) that are complementary to neutron irradiations in experimental reactors. The simulation means rely on a series of advanced computer codes: Tripoli-Apollo for neutron transport, Numodis for irradiation impact on materials, Neptune and Cathare for 2-phase fluid dynamics, Europlexus for mechanical structures, and Pleiades (with Alcyone) for nuclear fuels. (A.C.)

  1. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, Joseph; Schmidt, Gregory; Bailey, Brad; Gibbs, Kristina

    2016-10-01

    The Solar System Exploration Research Virtual Institute (SSERVI) at NASA's Ames Research Center in California's Silicon Valley was founded in 2013 to act as a virtual institute that provides interdisciplinary research centered on the goals of its supporting directorates: NASA Science Mission Directorate (SMD) and the Human Exploration & Operations Mission Directorate (HEOMD).Primary research goals of the Institute revolve around the integration of science and exploration to gain knowledge required for the future of human space exploration beyond low Earth orbit. SSERVI intends to leverage existing JSC1A regolith simulant resources into the creation of a regolith simulant testbed facility. The purpose of this testbed concept is to provide the planetary exploration community with a readily available capability to test hardware and conduct research in a large simulant environment.SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers.SSERVI provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment.The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area, including dust mitigation and safety oversight.Facility hardware and environment testing scenarios could include, Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, Surface features (i.e. grades and rocks)Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and

  2. Strategy and Space for Broadcasting Facilities

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2006-01-01

    The paper is based on results from an ongoing research project on space strategies and building values, which in-cludes a major case study of the development of facilities for the Danish Broadcasting Corporation over time. The focus is to identify, how different space strategies have been...

  3. A facility for training Space Station astronauts

    Science.gov (United States)

    Hajare, Ankur R.; Schmidt, James R.

    1992-01-01

    The Space Station Training Facility (SSTF) will be the primary facility for training the Space Station Freedom astronauts and the Space Station Control Center ground support personnel. Conceptually, the SSTF will consist of two parts: a Student Environment and an Author Environment. The Student Environment will contain trainers, instructor stations, computers and other equipment necessary for training. The Author Environment will contain the systems that will be used to manage, develop, integrate, test and verify, operate and maintain the equipment and software in the Student Environment.

  4. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    pressures and temperatures and through provision of external UV light and or electrical discharge can be used to form the well known Titan Aerosol species, which can subsequently be analysed using one of several analytical techniques (UV-Vis, FTIR and mass spectrometry). Simulated surfaces can be produced (icy surfaces down to 15K) and subjected to a variety of light and particles (electron and ion) sources. Chemical and physical changes in the surface may be explored using remote spectroscopy. Planetary Simulation chamber for low density atmospheres INTA-CAB The planetary simulation chamber-ultra-high vacuum equipment (PSC-UHV) has been designed to study planetary surfaces and low dense atmospheres, space environments or any other hypothetic environment at UHV. Total pressure ranges from 7 mbar (Martian conditions) to 5x10-9 mbar. A residual gas analyzer regulates gas compositions to ppm precision. Temperature ranges from 4K to 325K and most operations are computer controlled. Radiation levels are simulated using a deuterium UV lamp, and ionization sources. 5 KV electron and noble-gas discharge UV allows measurement of IR and UV spectra and chemical compositions are determined by mass spectroscopy. Planetary Simulation chamber for high density planetary atmospheres at INTA-CAB The facility allows experimental study of planetary environments under high pressure, and was designed to include underground, seafloor and dense atmosphere environments. Analytical capabilities include Raman spectra, physicochemical properties of materials, e.a. thermal conductivity. P-T can be controlled as independent variables to allow monitoring of the tolerance of microorganisms and the stability of materials and their phase changes. Planetary Simulation chamber for icy surfaces at INTA-CAB This chamber is being developed to the growth of ice samples to simulate the chemical and physical properties of ices found on both planetary bodies and their moons. The goal is to allow measurement of the

  5. The LAM space active optics facility

    Science.gov (United States)

    Engel, C.; Ferrari, M.; Hugot, E.; Escolle, C.; Bonnefois, A.; Bernot, M.; Bret-Dibat, T.; Carlavan, M.; Falzon, F.; Fusco, T.; Laubier, D.; Liotard, A.; Michau, V.; Mugnier, L.

    2017-11-01

    The next generation of large lightweight space telescopes will require the use of active optics systems to enhance the performance and increase the spatial resolution. Since almost 10 years now, LAM, CNES, THALES and ONERA conjugate their experience and efforts for the development of space active optics through the validation of key technological building blocks: correcting devices, metrology components and control strategies. This article presents the work done so far on active correcting mirrors and wave front sensing, as well as all the facilities implemented. The last part of this paper focuses on the merging of the MADRAS and RASCASSE test-set up. This unique combination will provide to the active optics community an automated, flexible and versatile facility able to feed and characterise space active optics components.

  6. NASA FACILITY FOR THE STUDY OF SPACE RADIATION EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, David R.

    1963-04-15

    Information on the energies andd fluxes of trapped electrons and protons in space is summarized, and the Space Radiation Effects Laboratory being constructed to simulate most of the space particulate-energy spectrum is described. A 600-Mev proton synchrocyclotron of variable energy and electron accelerators of 1 to 10 Mev will be included. The accelerator characteristics and the arrangement of the experimental and support buildings, particularly the beam facilities, are discussed; and the planned activities of the laboratory are given. (D.C.W.)

  7. Electronic Concepts Simulation Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The laboratory utilizes state-of-the-art digital models and simulations of both friendly and enemy airborne and ground-based weapon and command and control systems....

  8. Space Station Environmental Control and Life Support System Test Facility at Marshall Space Flight Center

    Science.gov (United States)

    Springer, Darlene

    1989-01-01

    Different aspects of Space Station Environmental Control and Life Support System (ECLSS) testing are currently taking place at Marshall Space Flight Center (MSFC). Unique to this testing is the variety of test areas and the fact that all are located in one building. The north high bay of building 4755, the Core Module Integration Facility (CMIF), contains the following test areas: the Subsystem Test Area, the Comparative Test Area, the Process Material Management System (PMMS), the Core Module Simulator (CMS), the End-use Equipment Facility (EEF), and the Pre-development Operational System Test (POST) Area. This paper addresses the facility that supports these test areas and briefly describes the testing in each area. Future plans for the building and Space Station module configurations will also be discussed.

  9. Space Facility for Orbital Remote Manufacturing (SPACEFORM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address NASA need in continued cost efficient International Space Station (ISS) exploration FOMS Inc. proposes to develop and deploy Space Facility for Orbital...

  10. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    Science.gov (United States)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  11. Space Infrared Telescope Facility (SIRTF) science instruments

    International Nuclear Information System (INIS)

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  12. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  13. Dusty Plasma Physics Facility for the International Space Station

    Science.gov (United States)

    Goree, John; Hahn, Inseob

    2015-09-01

    The Dusty Plasma Physics Facility (DPPF) is an instrument planned for the International Space Station (ISS). If approved by NASA, JPL will build and operate the facility, and NASA will issue calls for proposals allowing investigators outside JPL to carry out research, public education, and outreach. Microgravity conditions on the ISS will be useful for eliminating two unwanted effects of gravity: sedimentation of dust particles to the bottom of a plasma chamber, and masking weak forces such as the ion drag force that act on dust particles. The DPPF facility is expected to support multiple scientific users. It will have a modular design, with a scientific locker, or insert, that can be exchanged without removing the entire facility. The first insert will use a parallel-plate radio-frequency discharge, polymer microspheres, and high-speed video cameras. This first insert will be designed for fundamental physics experiments. Possible future inserts could be designed for other purposes, such as engineering applications, and experimental simulations of astrophysical or geophysical conditions. The design of the facility will allow remote operation from ground-based laboratories, using telescience.

  14. Space Physics Data Facility Web Services

    Science.gov (United States)

    Candey, Robert M.; Harris, Bernard T.; Chimiak, Reine A.

    2005-01-01

    The Space Physics Data Facility (SPDF) Web services provides a distributed programming interface to a portion of the SPDF software. (A general description of Web services is available at http://www.w3.org/ and in many current software-engineering texts and articles focused on distributed programming.) The SPDF Web services distributed programming interface enables additional collaboration and integration of the SPDF software system with other software systems, in furtherance of the SPDF mission to lead collaborative efforts in the collection and utilization of space physics data and mathematical models. This programming interface conforms to all applicable Web services specifications of the World Wide Web Consortium. The interface is specified by a Web Services Description Language (WSDL) file. The SPDF Web services software consists of the following components: 1) A server program for implementation of the Web services; and 2) A software developer s kit that consists of a WSDL file, a less formal description of the interface, a Java class library (which further eases development of Java-based client software), and Java source code for an example client program that illustrates the use of the interface.

  15. Nuclear power plant simulation facility evaluation methodology

    International Nuclear Information System (INIS)

    Haas, P.M.; Carter, R.J.; Laughery, K.R. Jr.

    1985-01-01

    A methodology for evaluation of nuclear power plant simulation facilities with regard to their acceptability for use in the US Nuclear Regulatory Commission (NRC) operator licensing exam is described. The evaluation is based primarily on simulator fidelity, but incorporates some aspects of direct operator/trainee performance measurement. The panel presentation and paper discuss data requirements, data collection, data analysis and criteria for conclusions regarding the fidelity evaluation, and summarize the proposed use of direct performance measurment. While field testing and refinement of the methodology are recommended, this initial effort provides a firm basis for NRC to fully develop the necessary methodology

  16. SSERVI Analog Regolith Simulant Testbed Facility

    Science.gov (United States)

    Minafra, J.; Schmidt, G. K.

    2016-12-01

    SSERVI's goals include supporting planetary researchers within NASA, other government agencies; private sector and hardware developers; competitors in focused prize design competitions; and academic sector researchers. The SSERVI Analog Regolith Simulant Testbed provides opportunities for research scientists and engineers to study the effects of regolith analog testbed research in the planetary exploration field. This capability is essential to help to understand the basic effects of continued long-term exposure to a simulated analog test environment. The current facility houses approximately eight tons of JSC-1A lunar regolith simulant in a test bin consisting of a 4 meter by 4 meter area. SSERVI provides a bridge between several groups, joining together researchers from: 1) scientific and exploration communities, 2) multiple disciplines across a wide range of planetary sciences, and 3) domestic and international communities and partnerships. This testbed provides a means of consolidating the tasks of acquisition, storage and safety mitigation in handling large quantities of regolith simulant Facility hardware and environment testing scenarios include, but are not limited to the following; Lunar surface mobility, Dust exposure and mitigation, Regolith handling and excavation, Solar-like illumination, Lunar surface compaction profile, Lofted dust, Mechanical properties of lunar regolith, and Surface features (i.e. grades and rocks) Numerous benefits vary from easy access to a controlled analog regolith simulant testbed, and planetary exploration activities at NASA Research Park, to academia and expanded commercial opportunities in California's Silicon Valley, as well as public outreach and education opportunities.

  17. Magnetic Flyer Facility Correlation and UGT Simulation

    Science.gov (United States)

    1978-05-01

    assistance in this program from the following: Southern Research Institute - Material properties and C. Pears and G. Fornaro damage data Air Force ...techniques - flyer plate loading. The program was divided into two majur parts, the Facility Correlation Study and the UGT Simulation STudy. For the...current produces a magnetic field which then produces an accelerating force on the flyer plate, itself a current carry- ing part of the circuit. The flyer

  18. Physics detector simulation facility system software description

    International Nuclear Information System (INIS)

    Allen, J.; Chang, C.; Estep, P.; Huang, J.; Liu, J.; Marquez, M.; Mestad, S.; Pan, J.; Traversat, B.

    1991-12-01

    Large and costly detectors will be constructed during the next few years to study the interactions produced by the SSC. Efficient, cost-effective designs for these detectors will require careful thought and planning. Because it is not possible to test fully a proposed design in a scaled-down version, the adequacy of a proposed design will be determined by a detailed computer model of the detectors. Physics and detector simulations will be performed on the computer model using high-powered computing system at the Physics Detector Simulation Facility (PDSF). The SSCL has particular computing requirements for high-energy physics (HEP) Monte Carlo calculations for the simulation of SSCL physics and detectors. The numerical calculations to be performed in each simulation are lengthy and detailed; they could require many more months per run on a VAX 11/780 computer and may produce several gigabytes of data per run. Consequently, a distributed computing environment of several networked high-speed computing engines is envisioned to meet these needs. These networked computers will form the basis of a centralized facility for SSCL physics and detector simulation work. Our computer planning groups have determined that the most efficient, cost-effective way to provide these high-performance computing resources at this time is with RISC-based UNIX workstations. The modeling and simulation application software that will run on the computing system is usually written by physicists in FORTRAN language and may need thousands of hours of supercomputing time. The system software is the ''glue'' which integrates the distributed workstations and allows them to be managed as a single entity. This report will address the computing strategy for the SSC

  19. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  20. Report of the committee on a commercially developed space facility

    Science.gov (United States)

    Shea, Joseph F.; Stever, H. Guyford; Cutter, W. Bowman, III; Demisch, Wolfgang H.; Fink, Daniel J.; Flax, Alexander H.; Gatos, Harry C.; Glicksman, Martin E.; Lanzerotti, Louis J.; Logsdon, John M., III

    1989-01-01

    Major facilities that could support significant microgravity research and applications activity are discussed. The ground-based facilities include drop towers, aircraft flying parabolic trajectories, and sounding rockets. Facilities that are intrinsically tied to the Space Shuttle range from Get-Away-Special canisters to Spacelab long modules. There are also orbital facilities which include recoverable capsules launched on expendable launch vehicles, free-flying spacecraft, and space stations. Some of these existing, planned, and proposed facilities are non-U.S. in origin, but potentially available to U.S. investigators. In addition, some are governmentally developed and operated whereas others are planned to be privately developed and/or operated. Tables are provided to show the facility, developer, duration, estimated gravity level, crew interaction, flight frequency, year available, power to payload, payload volume, and maximum payload mass. The potential of direct and indirect benefits of manufacturing in space are presented.

  1. Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator

    Science.gov (United States)

    Kulpa, Vygantas P.

    1987-01-01

    The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.

  2. Laboratory Facility for Simulating Solar Wind Sails

    International Nuclear Information System (INIS)

    Funaki, Ikkoh; Ueno, Kazuma; Oshio, Yuya; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-01-01

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10 19 m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  3. A low-temperature research facility for space

    International Nuclear Information System (INIS)

    Donnelly, R.J.

    1991-01-01

    The Jet Propulsion Laboratory is proposing to NASA a new initiative to construct a Low Temperature Research Facility for use in space. The facility is described, together with some details of timing and support. An advisory group has been formed which seeks to advise JPL and NASA of the capabilities required in this facility and to invite investigators to propose experiments which require the combination of low temperature and reduced gravity to be successful. (orig.)

  4. Space facilities: Meeting future needs for research, development, and operations

    Science.gov (United States)

    The National Facilities Study (NFS) represents an interagency effort to develop a comprehensive and integrated long-term plan for world-class aeronautical and space facilities that meet current and projected needs for commercial and government aerospace research and development and space operations. At the request of NASA and the DOD, the National Research Council's Committee on Space Facilities has reviewed the space related findings of the NFS. The inventory of more than 2800 facilities will be an important resource, especially if it continues to be updated and maintained as the NFS report recommends. The data in the inventory provide the basis for a much better understanding of the resources available in the national facilities infrastructure, as well as extensive information on which to base rational decisions about current and future facilities needs. The working groups have used the inventory data and other information to make a set of recommendations that include estimates of cast savings and steps for implementation. While it is natural that the NFS focused on cost reduction and consolidations, such a study is most useful to future planning if it gives equal weight to guiding the direction of future facilities needed to satisfy legitimate national aspirations. Even in the context of cost reduction through facilities closures and consolidations, the study is timid about recognizing and proposing program changes and realignments of roles and missions to capture what could be significant savings and increased effectiveness. The recommendations of the Committee on Space Facilities are driven by the clear need to be more realistic and precise both in recognizing current incentives and disincentives in the aerospace industry and in forecasting future conditions for U.S. space activities.

  5. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    Science.gov (United States)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  6. Tyura Tam Space Launch Facility, Kazakhstan, CIS

    Science.gov (United States)

    1992-01-01

    Located in Kazakhstan on the Syr Darya River, the Tyura Tam Cosmodrome has been the launch site for 72 cosmonaut crews. The landing runway of the Buran space shuttle can be seen in the left center. Further to the right, near the center is the launch site for the Soyuz. The mission control center is located 1,300 miles away near Moscow. In the lower right, is the city of Leninsk, seen as a dark region next to the river.

  7. Realising the potential of shared space in facilities management

    DEFF Research Database (Denmark)

    Brinkø, Rikke

    individuals or groups from different organisational contexts, and this PhD investigates the intricate processes con-cerning shared space in a facilities management context. The overall aim is divided in a theoretical and a practical part, with the theoretical focused on contributing with new knowledge...... of shared space, building towards a new method for efficient and sustainable facilities management operation of buildings and properties. The practical part is focused on connecting this new knowledge to practical applications and developing tools that can be used to work with shared spaces in a practice...... categories according to degree of sharing, and lists a number of characteristics of shared spaces to provide a starting point for discussing, developing and working with shared space in both academia and practice. The guide on the other hand synthesises the theoretical knowledge resulting from the study...

  8. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  9. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications

    Science.gov (United States)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray

    2012-01-01

    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  10. Remapping simulated halo catalogues in redshift space

    OpenAIRE

    Mead, Alexander; Peacock, John

    2014-01-01

    We discuss the extension to redshift space of a rescaling algorithm, designed to alter the effective cosmology of a pre-existing simulated particle distribution or catalogue of dark matter haloes. The rescaling approach was initially developed by Angulo & White and was adapted and applied to halo catalogues in real space in our previous work. This algorithm requires no information other than the initial and target cosmological parameters, and it contains no tuned parameters. It is shown here ...

  11. Maglev Facility for Simulating Variable Gravity

    Science.gov (United States)

    Liu, Yuanming; Strayer, Donald M.; Israelsson, Ulf E.

    2010-01-01

    An improved magnetic levitation apparatus ("Maglev Facility") has been built for use in experiments in which there are requirements to impose variable gravity (including zero gravity) in order to assess the effects of gravity or the absence thereof on physical and physiological processes. The apparatus is expected to be especially useful for experiments on the effects of gravity on convection, boiling, and heat transfer in fluids and for experiments on mice to gain understanding of bone loss induced in human astronauts by prolonged exposure to reduced gravity in space flight. The maglev principle employed by the apparatus is well established. Diamagnetic cryogenic fluids such as liquid helium have been magnetically levitated for studying their phase transitions and critical behaviors. Biological entities consist mostly of diamagnetic molecules (e.g., water molecules) and thus can be levitated by use of sufficiently strong magnetic fields having sufficiently strong vertical gradients. The heart of the present maglev apparatus is a vertically oriented superconducting solenoid electromagnet (see figure) that generates a static magnetic field of about 16 T with a vertical gradient sufficient for levitation of water in normal Earth gravity. The electromagnet is enclosed in a Dewar flask having a volume of 100 L that contains liquid helium to maintain superconductivity. The Dewar flask features a 66-mm-diameter warm bore, lying within the bore of the magnet, wherein experiments can be performed at room temperature. The warm bore is accessible from its top and bottom ends. The superconducting electromagnet is run in the persistent mode, in which the supercurrent and the magnetic field can be maintained for weeks with little decay, making this apparatus extremely cost and energy efficient to operate. In addition to water, this apparatus can levitate several common fluids: liquid hydrogen, liquid oxygen, methane, ammonia, sodium, and lithium, all of which are useful

  12. An environmental testing facility for Space Station Freedom power management and distribution hardware

    Science.gov (United States)

    Jackola, Arthur S.; Hartjen, Gary L.

    1992-01-01

    The plans for a new test facility, including new environmental test systems, which are presently under construction, and the major environmental Test Support Equipment (TSE) used therein are addressed. This all-new Rocketdyne facility will perform space simulation environmental tests on Power Management and Distribution (PMAD) hardware to Space Station Freedom (SSF) at the Engineering Model, Qualification Model, and Flight Model levels of fidelity. Testing will include Random Vibration in three axes - Thermal Vacuum, Thermal Cycling and Thermal Burn-in - as well as numerous electrical functional tests. The facility is designed to support a relatively high throughput of hardware under test, while maintaining the high standards required for a man-rated space program.

  13. Facility/equipment performance evaluation using microcomputer simulation analysis

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.

    1985-08-01

    A computer simulation analysis model was developed at the Pacific Northwest Laboratory to assist in assuring the adequacy of the Monitored Retrievable Storage facility design to meet the specified spent nuclear fuel throughput requirements. The microcomputer-based model was applied to the analysis of material flow, equipment capability and facility layout. The simulation analysis evaluated uncertainties concerning both facility throughput requirements and process duration times as part of the development of a comprehensive estimate of facility performance. The evaluations provided feedback into the design review task to identify areas where design modifications should be considered

  14. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  15. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  16. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  17. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  18. Navigation simulator for the Space Tug vehicle

    Science.gov (United States)

    Colburn, B. K.; Boland, J. S., III; Peters, E. G.

    1977-01-01

    A general simulation program (GSP) for state estimation of a nonlinear space vehicle flight navigation system is developed and used as a basis for evaluating the performance of a Space Tug navigation system. An explanation of the iterative guidance mode (IGM) guidance law, derivation of the dynamics, coordinate frames and state estimation routines are given in order to clarify the assumptions and approximations made. A number of simulation and analytical studies are used to demonstrate the operation of the Tug system. Included in the simulation studies are (1) initial offset vector parameter study; (2) propagation time vs accuracy; (3) measurement noise parametric study and (4) reduction in computational burden of an on-board implementable scheme. From the results of these studies, conclusions and recommendations concerning future areas of practical and theoretical work are presented.

  19. Ergonomics and simulation-based approach in improving facility layout

    Science.gov (United States)

    Abad, Jocelyn D.

    2018-02-01

    The use of the simulation-based technique in facility layout has been a choice in the industry due to its convenience and efficient generation of results. Nevertheless, the solutions generated are not capable of addressing delays due to worker's health and safety which significantly impact overall operational efficiency. It is, therefore, critical to incorporate ergonomics in facility design. In this study, workstation analysis was incorporated into Promodel simulation to improve the facility layout of a garment manufacturing. To test the effectiveness of the method, existing and improved facility designs were measured using comprehensive risk level, efficiency, and productivity. Results indicated that the improved facility layout generated a decrease in comprehensive risk level and rapid upper limb assessment score; an increase of 78% in efficiency and 194% increase in productivity compared to existing design and thus proved that the approach is effective in attaining overall facility design improvement.

  20. Nuclear space power safety and facility guidelines study

    International Nuclear Information System (INIS)

    Mehlman, W.F.

    1995-01-01

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an open-quotes Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missionsclose quotes. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system

  1. FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION

    International Nuclear Information System (INIS)

    SZALEWSKI, B.

    2005-01-01

    The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering

  2. Simulated Space Environmental Effects on Thin Film Solar Array Components

    Science.gov (United States)

    Finckenor, Miria; Carr, John; SanSoucie, Michael; Boyd, Darren; Phillips, Brandon

    2017-01-01

    The Lightweight Integrated Solar Array and Transceiver (LISA-T) experiment consists of thin-film, low mass, low volume solar panels. Given the variety of thin solar cells and cover materials and the lack of environmental protection typically afforded by thick coverglasses, a series of tests were conducted in Marshall Space Flight Center's Space Environmental Effects Facility to evaluate the performance of these materials. Candidate thin polymeric films and nitinol wires used for deployment were also exposed. Simulated space environment exposures were selected based on SSP 30425 rev. B, "Space Station Program Natural Environment Definition for Design" or AIAA Standard S-111A-2014, "Qualification and Quality Requirements for Space Solar Cells." One set of candidate materials were exposed to 5 eV atomic oxygen and concurrent vacuum ultraviolet (VUV) radiation for low Earth orbit simulation. A second set of materials were exposed to 1 MeV electrons. A third set of samples were exposed to 50, 100, 500, and 700 keV energy protons, and a fourth set were exposed to >2,000 hours of near ultraviolet (NUV) radiation. A final set was rapidly thermal cycled between -55 and +125degC. This test series provides data on enhanced power generation, particularly for small satellites with reduced mass and volume resources. Performance versus mass and cost per Watt is discussed.

  3. A dynamic simulation of the Hanford site grout facility

    International Nuclear Information System (INIS)

    Zimmerman, B.D.; Klimper, S.C.; Williamson, G.F.

    1992-01-01

    Computer-based dynamic simulation can be a powerful, low-cost tool for investigating questions concerning timing, throughput capability, and ability of engineering facilities and systems to meet established milestones. The simulation project described herein was undertaken to develop a dynamic simulation model of the Hanford site grout facility and its associated systems at the US Department of Energy's (DOE's) Hanford site in Washington State. The model allows assessment of the effects of engineering design and operation trade-offs and of variable programmatic constraints, such as regulatory review, on the ability of the grout system to meet milestones established by DOE for low-level waste disposal

  4. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  5. Thermal System Upgrade of the Space Environment Simulation Test Chamber

    Science.gov (United States)

    Desai, Ashok B.

    1997-01-01

    The paper deals with the refurbishing and upgrade of the thermal system for the existing thermal vacuum test facility, the Space Environment Simulator, at NASA's Goddard Space Flight Center. The chamber is the largest such facility at the center. This upgrade is the third phase of the long range upgrade of the chamber that has been underway for last few years. The first phase dealt with its vacuum system, the second phase involved the GHe subsystem. The paper describes the considerations of design philosophy options for the thermal system; approaches taken and methodology applied, in the evaluation of the remaining "life" in the chamber shrouds and related equipment by conducting special tests and studies; feasibility and extent of automation, using computer interfaces and Programmable Logic Controllers in the control system and finally, matching the old components to the new ones into an integrated, highly reliable and cost effective thermal system for the facility. This is a multi-year project just started and the paper deals mainly with the plans and approaches to implement the project successfully within schedule and costs.

  6. Physics and detector simulation facility Type O workstation specifications

    International Nuclear Information System (INIS)

    Chartrand, G.; Cormell, L.R.; Hahn, R.; Jacobson, D.; Johnstad, H.; Leibold, P.; Marquez, M.; Ramsey, B.; Roberts, L.; Scipioni, B.; Yost, G.P.

    1990-11-01

    This document specifies the requirements for the front-end network of workstations of a distributed computing facility. This facility will be needed to perform the physics and detector simulations for the design of Superconducting Super Collider (SSC) detectors, and other computations in support of physics and detector needs. A detailed description of the computer simulation facility is given in the overall system specification document. This document provides revised subsystem specifications for the network of monitor-less Type 0 workstations. The requirements specified in this document supersede the requirements given. In Section 2 a brief functional description of the facility and its use are provided. The list of detailed specifications (vendor requirements) is given in Section 3 and the qualifying requirements (benchmarks) are described in Section 4

  7. Plant model of KIPT neutron source facility simulator

    International Nuclear Information System (INIS)

    Cao, Yan; Wei, Thomas Y.; Grelle, Austin L.; Gohar, Yousry

    2016-01-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  8. Plant model of KIPT neutron source facility simulator

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Wei, Thomas Y. [Argonne National Lab. (ANL), Argonne, IL (United States); Grelle, Austin L. [Argonne National Lab. (ANL), Argonne, IL (United States); Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-01

    Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine are collaborating on constructing a neutron source facility at KIPT, Kharkov, Ukraine. The facility has 100-kW electron beam driving a subcritical assembly (SCA). The electron beam interacts with a natural uranium target or a tungsten target to generate neutrons, and deposits its power in the target zone. The total fission power generated in SCA is about 300 kW. Two primary cooling loops are designed to remove 100-kW and 300-kW from the target zone and the SCA, respectively. A secondary cooling system is coupled with the primary cooling system to dispose of the generated heat outside the facility buildings to the atmosphere. In addition, the electron accelerator has a low efficiency for generating the electron beam, which uses another secondary cooling loop to remove the generated heat from the accelerator primary cooling loop. One of the main functions the KIPT neutron source facility is to train young nuclear specialists; therefore, ANL has developed the KIPT Neutron Source Facility Simulator for this function. In this simulator, a Plant Control System and a Plant Protection System were developed to perform proper control and to provide automatic protection against unsafe and improper operation of the facility during the steady-state and the transient states using a facility plant model. This report focuses on describing the physics of the plant model and provides several test cases to demonstrate its capabilities. The plant facility model uses the PYTHON script language. It is consistent with the computer language of the plant control system. It is easy to integrate with the simulator without an additional interface, and it is able to simulate the transients of the cooling systems with system control variables changing on real-time.

  9. Remote handling facility and equipment used for space truss assembly

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1987-01-01

    The ACCESS truss remote handling experiments were performed at Oak Ridge National Laboratory's (ORNL's) Remote Operation and Maintenance Demonstration (ROMD) facility. The ROMD facility has been developed by the US Department of Energy's (DOE's) Consolidated Fuel Reprocessing Program to develop and demonstrate remote maintenance techniques for advanced nuclear fuel reprocessing equipment and other programs of national interest. The facility is a large-volume, high-bay area that encloses a complete, technologically advanced remote maintenance system that first began operation in FY 1982. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the DOE, the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan, and the US Navy in addition to the National Aeronautics and Space Administration. ACCESS truss remote assembly was performed in the ROMD facility using the Central Research Laboratory's (CRL) model M-2 servomanipulator. The model M-2 is a dual-arm, bilateral force-reflecting, master/slave servomanipulator which was jointly developed by CRL and ORNL and represents the state of the art in teleoperated manipulators commercially available in the United States today. The model M-2 servomanipulator incorporates a distributed, microprocessor-based digital control system and was the first successful implementation of an entirely digitally controlled servomanipulator. The system has been in operation since FY 1983. 3 refs., 2 figs

  10. X-ray crystallography facility for the international space station

    International Nuclear Information System (INIS)

    McdDonald, William T.; Lewis, Johanna L.; Smith, Craig D.; DeLucas, Lawrence J.

    1997-01-01

    Directed by NASA's Office of Space Access and Technology (OSAT), the University of Alabama at Birmingham (UAB) Center for Macromolecular Crystallography (CMC) recently completed a Design Feasibility Study for the X-ray Crystallography Facility (XCF) for the International Space Station (ISS). The XCF is a facility for growing macromolecular protein crystals; harvesting, selecting, and mounting sample crystals, and snap-freezing the samples, if necessary; performing x-ray diffraction; and downlinking the diffraction data to the ground. Knowledge of the structure of protein molecules is essential for the development of pharmaceuticals by structure-based drug design techniques. Currently, x-ray diffraction of high quality protein crystals is the only method of determining the structure of these macromolecules. High quality protein crystals have been grown in microgravity onboard the Space Shuttle Orbiter for more than 10 years, but these crystals always have been returned to Earth for x-ray diffraction. The XCF will allow crystal growth, harvesting, mounting, and x-ray diffraction onboard the ISS, maximizing diffraction data quality and timeliness. This paper presents the XCF design concept, describing key feasibility issues for the ISS application and advanced technologies and operational features which resolve those issues. The conclusion is that the XCF design is feasible and can be operational onboard the ISS by early in 2002

  11. Physics Detector Simulation Facility (PDSF) architecture/utilization

    International Nuclear Information System (INIS)

    Scipioni, B.

    1993-05-01

    The current systems architecture for the SSCL's Physics Detector Simulation Facility (PDSF) is presented. Systems analysis data is presented and discussed. In particular, these data disclose the effectiveness of utilization of the facility for meeting the needs of physics computing, especially as concerns parallel architecture and processing. Detailed design plans for the highly networked, symmetric, parallel, UNIX workstation-based facility are given and discussed in light of the design philosophy. Included are network, CPU, disk, router, concentrator, tape, user and job capacities and throughput

  12. Centrifuge Facility for the International Space Station Alpha

    Science.gov (United States)

    Johnson, Catherine C.; Hargens, Alan R.

    1994-01-01

    The Centrifuge Facility planned for the International Space Station Alpha has under-one considerable redesign over the past year, primarily because the Station is now viewed as a 10 year mission rather than a 30 year mission and because of the need to simply the design to meet budget constraints and a 2000 launch date. The basic elements of the Centrifuge Facility remain the same, i.e., a 2.5 m diameter centrifuge, a micro-g holding unit, plant and animal habitats, a glovebox and a service unit. The centrifuge will still provide the full range of artificial gravity from 0.01 a to 2 - as originally planned; however, the extractor to permit withdrawal of habitats from the centrifuge without stopping the centrifuge has been eliminated. The specimen habitats have also been simplified and are derived from other NASA programs. The Plant Research Unit being developed by the Gravitational Biology Facility will be used to house plants in the Centrifuge Facility. Although not as ambitious as the Centrifuge Facility plant habitat, it will provide much better environmental control and lighting than the current Shuttle based Plant Growth Facility. Similarly, rodents will be housed in the Advanced Animal Habitat being developed for the Shuttle program. The Centrifuge Facility and ISSA will provide the opportunity to perform repeatable, high quality science. The long duration increments available on the Station will permit multigeneration studies on both plants and animals which have not previously been possible. The Centrifuge Facility will accommodate sufficient number of specimens to permit statistically significant sampling of specimens to investigate the time course of adaptation to altered gravity environments. The centrifuge will for the first time permit investigators to use gravity itself as a tool to investigate fundamental processes, to investigate the intensity and duration of gravity to maintain normal structure and function, to separate the effects of micro-g from

  13. Laboratory simulation of erosion by space plasma

    International Nuclear Information System (INIS)

    Kristoferson, L.; Fredga, K.

    1976-04-01

    A laboratory experiment has been made where a plasma stream collides with targets made of different materials of cosmic interest. The experiment can be viewed as a process simulation of the solar wind particle interaction with solid surfaces in space, e.g. cometary dust. Special interest is given to sputtering of OH and Na. It is shown that the erosion of solid particles in interplanetary space at large heliocentric distances is most likely dominated by sputtering and by sublimation near the sun. The heliocentric distance of the limit between the two regions is determined mainly by the material properties of the eroded surface, e.g. heat of sublimation and sputtering yield, a typical distance being 0,5 a.u. It is concluded that the observations of Na in comets at large solar distances, in some cases also near the sun, is most likely to be explained by solar wind sputtering. OH emission in space could be of importance also from 'dry', water-free, matter by means of molecule sputtering. The observed OH production rates in comets are however too large to be explained in this way and are certainly the results of sublimation and dissociation of H 2 O from an icy nucleus. (Auth.)

  14. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  15. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  16. BWR Full Integral Simulation Test (FIST) program: facility description report

    International Nuclear Information System (INIS)

    Stephens, A.G.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented

  17. Evaluating and optimizing horticultural regimes in space plant growth facilities

    Science.gov (United States)

    Berkovich, Y.; Chetirkin, R.; Wheeler, R.; Sager, J.

    In designing innovative Space Plant Growth Facilities (SPGF) for long duration space f ightl various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating onboard resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding of the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M · (EBI) 2 / (V · E · T) ], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is a volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. We analyzed the efficiency of plant crops and the environmental parameters by examining the criteria for 15 salad and 12 wheat crops from the data in the ALS database at Kennedy Space Center. Some following conclusion have been established: 1. The technology involved in growing salad crops on a cylindrical type surface provides a more meaningful Q-criterion; 2. Wheat crops were less efficient than leafy greens (salad crops) when examining resource utilization; 3. By increasing light intensity of the crop the efficiency of the resource utilization could decrease. Using the existing databases and Q-criteria we have found that the criteria can be used in optimizing design and horticultural regimes in the SPGF.

  18. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  19. Siting simulation for low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Roop, R.D.; Rope, R.C.

    1985-01-01

    The Mock Site Licensing Demonstration Project has developed the Low-Level Radioactive Waste Siting Simulation, a role-playing exercise designed to facilitate the process of siting and licensing disposal facilities for low-level waste (LLW). This paper describes the development, content, and usefulness of the siting simulation. The simulation can be conducted at a workshop or conference, involves 14 or more participants, and requires about eight hours to complete. The simulation consists of two sessions; in the first, participants negotiate the selection of siting criteria, and in the second, a preferred disposal site is chosen from three candidate sites. The project has sponsored two workshops (in Boston, Massachusetts and Richmond, Virginia) in which the simulation has been conducted for persons concerned with LLW management issues. It is concluded that the simulation can be valuable as a tool for disseminating information about LLW management; a vehicle that can foster communication; and a step toward consensus building and conflict resolution. The DOE National Low-Level Waste Management Program is now making the siting simulation available for use by states, regional compacts, and other organizations involved in development of LLW disposal facilities

  20. Monte Carlo simulations and dosimetric studies of an irradiation facility

    Energy Technology Data Exchange (ETDEWEB)

    Belchior, A. [Instituto Tecnologico e Nuclear, Estrada nacional no. 10, Apartado 21, 2686-953 Sacavem (Portugal)], E-mail: anabelchior@itn.pt; Botelho, M.L; Vaz, P. [Instituto Tecnologico e Nuclear, Estrada nacional no. 10, Apartado 21, 2686-953 Sacavem (Portugal)

    2007-09-21

    There is an increasing utilization of ionizing radiation for industrial applications. Additionally, the radiation technology offers a variety of advantages in areas, such as sterilization and food preservation. For these applications, dosimetric tests are of crucial importance in order to assess the dose distribution throughout the sample being irradiated. The use of Monte Carlo methods and computational tools in support of the assessment of the dose distributions in irradiation facilities can prove to be economically effective, representing savings in the utilization of dosemeters, among other benefits. One of the purposes of this study is the development of a Monte Carlo simulation, using a state-of-the-art computational tool-MCNPX-in order to determine the dose distribution inside an irradiation facility of Cobalt 60. This irradiation facility is currently in operation at the ITN campus and will feature an automation and robotics component, which will allow its remote utilization by an external user, under REEQ/996/BIO/2005 project. The detailed geometrical description of the irradiation facility has been implemented in MCNPX, which features an accurate and full simulation of the electron-photon processes involved. The validation of the simulation results obtained was performed by chemical dosimetry methods, namely a Fricke solution. The Fricke dosimeter is a standard dosimeter and is widely used in radiation processing for calibration purposes.

  1. Combined Simulated Annealing Algorithm for the Discrete Facility Location Problem

    Directory of Open Access Journals (Sweden)

    Jin Qin

    2012-01-01

    Full Text Available The combined simulated annealing (CSA algorithm was developed for the discrete facility location problem (DFLP in the paper. The method is a two-layer algorithm, in which the external subalgorithm optimizes the decision of the facility location decision while the internal subalgorithm optimizes the decision of the allocation of customer's demand under the determined location decision. The performance of the CSA is tested by 30 instances with different sizes. The computational results show that CSA works much better than the previous algorithm on DFLP and offers a new reasonable alternative solution method to it.

  2. Physics Detector Simulation Facility Phase II system software description

    International Nuclear Information System (INIS)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment

  3. Thermal-vacuum facility with in-situ mechanical loading. [for testing space construction materials

    Science.gov (United States)

    Tennyson, R. C.; Hansen, J. S.; Holzer, R. P.; Uffen, B.; Mabson, G.

    1978-01-01

    The paper describes a thermal-vacuum space simulator used to assess property changes of fiber-reinforced polymer composite systems. The facility can achieve a vacuum of approximately .0000001 torr with temperatures ranging from -200 to +300 F. Some preliminary experimental results are presented for materials subjected to thermal loading up to 200 F. The tests conducted include the evaluation of matrix modulus and strength, coefficients of thermal expansion, and fracture toughness. Though the experimental program is at an early stage, the data appear to indicate that these parameters are influenced by hard vacuum.

  4. The Hayabusa Curation Facility at Johnson Space Center

    Science.gov (United States)

    Zolensky, M.; Bastien, R.; McCann, B.; Frank, D.; Gonzalez, C.; Rodriguez, M.

    2013-01-01

    The Japan Aerospace Exploration Agency (JAXA) Hayabusa spacecraft made contact with the asteroid 25143 Itokawa and collected regolith dust from Muses Sea region of smooth terrain [1]. The spacecraft returned to Earth with more than 10,000 grains ranging in size from just over 300 µm to less than 10 µm [2, 3]. These grains represent the only collection of material returned from an asteroid by a spacecraft. As part of the joint agreement between JAXA and NASA for the mission, 10% of the Hayabusa grains are being transferred to NASA for parallel curation and allocation. In order to properly receive process and curate these samples, a new curation facility was established at Johnson Space Center (JSC). Since the Hayabusa samples within the JAXA curation facility have been stored free from exposure to terrestrial atmosphere and contamination [4], one of the goals of the new NASA curation facility was to continue this treatment. An existing lab space at JSC was transformed into a 120 sq.ft. ISO class 4 (equivalent to the original class 10 standard) clean room. Hayabusa samples are stored, observed, processed, and packaged for allocation inside a stainless steel glove box under dry N2. Construction of the clean laboratory was completed in 2012. Currently, 25 Itokawa particles are lodged in NASA's Hayabusa Lab. Special care has been taken during lab construction to remove or contain materials that may contribute contaminant particles in the same size range as the Hayabusa grains. Several witness plates of various materials are installed around the clean lab and within the glove box to permit characterization of local contaminants at regular intervals by SEM and mass spectrometry, and particle counts of the lab environment are frequently acquired. Of particular interest is anodized aluminum, which contains copious sub-mm grains of a multitude of different materials embedded in its upper surface. Unfortunately the use of anodized aluminum was necessary in the construction

  5. Nuclear facility safeguards systems modeling using discrete event simulation

    International Nuclear Information System (INIS)

    Engi, D.

    1977-01-01

    The threat of theft or dispersal of special nuclear material at a nuclear facility is treated by studying the temporal relationships between adversaries having authorized access to the facility (insiders) and safeguards system events by using a GASP IV discrete event simulation. The safeguards system events--detection, assessment, delay, communications, and neutralization--are modeled for the general insider adversary strategy which includes degradation of the safeguards system elements followed by an attempt to steal or disperse special nuclear material. The performance measure used in the analysis is the estimated probability of safeguards system success in countering the adversary based upon a predetermined set of adversary actions. An exemplary problem which includes generated results is presented for a hypothetical nuclear facility. The results illustrate representative information that could be utilized by safeguards decision-makers

  6. Observation and simulation of AGW in Space

    Science.gov (United States)

    Kunitsyn, Vyacheslav; Kholodov, Alexander; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Vorontsov, Artem

    2014-05-01

    Examples are presented of satellite observations and imaging of AGW and related phenomena in space travelling ionospheric disturbances (TID). The structure of AGW perturbations was reconstructed by satellite radio tomography (RT) based on the signals of Global Navigation Satellite Systems (GNSS). The experiments use different GNSS, both low-orbiting (Russian Tsikada and American Transit) and high-orbiting (GPS, GLONASS, Galileo, Beidou). The examples of RT imaging of TIDs and AGWs from anthropogenic sources such as ground explosions, rocket launching, heating the ionosphere by high-power radio waves are presented. In the latter case, the corresponding AGWs and TIDs were generated in response to the modulation in the power of the heating wave. The natural AGW-like wave disturbances are frequently observed in the atmosphere and ionosphere in the form of variations in density and electron concentration. These phenomena are caused by the influence of the near-space environment, atmosphere, and surface phenomena including long-period vibrations of the Earth's surface, earthquakes, explosions, temperature heating, seisches, tsunami waves, etc. Examples of experimental RT reconstructions of wave disturbances associated with the earthquakes and tsunami waves are presented, and RT images of TIDs caused by the variations in the corpuscular ionization are demonstrated. The results of numerical modeling of AGW generation by some surface and volume sources are discussed. The milli-Hertz AGWs generated by these sources induce perturbations with a typical scale of a few hundred of kilometers at the heights of the middle atmosphere and ionosphere. The numerical modeling is based on the solution of equations of geophysical hydrodynamics. The results of the numerical simulations agree with the observations. The authors acknowledge the support of the Russian Foundation for Basic Research (grants 14-05-00855 and 13-05-01122), grant of the President of Russian Federation MK-2670

  7. Deep Space Navigation and Timing Architecture and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Microcosm will develop a deep space navigation and timing architecture and associated simulation, incorporating state-of-the art radiometric, x-ray pulsar, and laser...

  8. GOTHIC code simulation of thermal stratification in POOLEX facility

    International Nuclear Information System (INIS)

    Li, H.; Kudinov, P.

    2009-07-01

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  9. GOTHIC code simulation of thermal stratification in POOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Kudinov, P. (Royal Institute of Technology (KTH) (Sweden))

    2009-07-15

    Pressure suppression pool is an important element of BWR containment. It serves as a heat sink and steam condenser to prevent containment pressure buildup during loss of coolant accident or safety relief valve opening during normal operations of a BWR. Insufficient mixing in the pool, in case of low mass flow rate of steam, can cause development of thermal stratification and reduction of pressure suppression pool capacity. For reliable prediction of mixing and stratification phenomena validation of simulation tools has to be performed. Data produced in POOLEX/PPOOLEX facility at Lappeenranta University of Technology about development of thermal stratification in a large scale model of a pressure suppression pool is used for GOTHIC lumped and distributed parameter validation. Sensitivity of GOTHIC solution to different boundary conditions and grid convergence study for 2D simulations of POOLEX STB-20 experiment are performed in the present study. CFD simulation was carried out with FLUENT code in order to get additional insights into physics of stratification phenomena. In order to support development of experimental procedures for new tests in the PPOOLEX facility lumped parameter pre-test GOTHIC simulations were performed. Simulations show that drywell and wetwell pressures can be kept within safety margins during a long transient necessary for development of thermal stratification. (au)

  10. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    Science.gov (United States)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-12-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  11. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  12. Macro Level Simulation Model Of Space Shuttle Processing

    Science.gov (United States)

    2000-01-01

    The contents include: 1) Space Shuttle Processing Simulation Model; 2) Knowledge Acquisition; 3) Simulation Input Analysis; 4) Model Applications in Current Shuttle Environment; and 5) Model Applications for Future Reusable Launch Vehicles (RLV's). This paper is presented in viewgraph form.

  13. Deep Space Storm Shelter Simulation Study

    Science.gov (United States)

    Dugan, Kathryn; Phojanamongkolkij, Nipa; Cerro, Jeffrey; Simon, Matthew

    2015-01-01

    Missions outside of Earth's magnetic field are impeded by the presence of radiation from galactic cosmic rays and solar particle events. To overcome this issue, NASA's Advanced Exploration Systems Radiation Works Storm Shelter (RadWorks) has been studying different radiation protective habitats to shield against the onset of solar particle event radiation. These habitats have the capability of protecting occupants by utilizing available materials such as food, water, brine, human waste, trash, and non-consumables to build short-term shelters. Protection comes from building a barrier with the materials that dampens the impact of the radiation on astronauts. The goal of this study is to develop a discrete event simulation, modeling a solar particle event and the building of a protective shelter. The main hallway location within a larger habitat similar to the International Space Station (ISS) is analyzed. The outputs from this model are: 1) the total area covered on the shelter by the different materials, 2) the amount of radiation the crew members receive, and 3) the amount of time for setting up the habitat during specific points in a mission given an event occurs.

  14. A Process for Comparing Dynamics of Distributed Space Systems Simulations

    Science.gov (United States)

    Cures, Edwin Z.; Jackson, Albert A.; Morris, Jeffery C.

    2009-01-01

    The paper describes a process that was developed for comparing the primary orbital dynamics behavior between space systems distributed simulations. This process is used to characterize and understand the fundamental fidelities and compatibilities of the modeling of orbital dynamics between spacecraft simulations. This is required for high-latency distributed simulations such as NASA s Integrated Mission Simulation and must be understood when reporting results from simulation executions. This paper presents 10 principal comparison tests along with their rationale and examples of the results. The Integrated Mission Simulation (IMSim) (formerly know as the Distributed Space Exploration Simulation (DSES)) is a NASA research and development project focusing on the technologies and processes that are related to the collaborative simulation of complex space systems involved in the exploration of our solar system. Currently, the NASA centers that are actively participating in the IMSim project are the Ames Research Center, the Jet Propulsion Laboratory (JPL), the Johnson Space Center (JSC), the Kennedy Space Center, the Langley Research Center and the Marshall Space Flight Center. In concept, each center participating in IMSim has its own set of simulation models and environment(s). These simulation tools are used to build the various simulation products that are used for scientific investigation, engineering analysis, system design, training, planning, operations and more. Working individually, these production simulations provide important data to various NASA projects.

  15. The Berkeley Accelerator Space Effects (BASE) Facility - A new mission for the 88-Inch Cyclotron at LBNL

    International Nuclear Information System (INIS)

    McMahan, M.A.

    2005-01-01

    In FY04, the 88-Inch Cyclotron began a new operating mode that supports a local research program in nuclear science, R and D in accelerator technology and a test facility for the National Security Space (NSS) community (the US Air Force and NRO). The NSS community (and others on a cost recovery basis) can take advantage of both the light- and heavy-ion capabilities of the cyclotron to simulate the space radiation environment. A significant portion of this work involves the testing of microcircuits for single event effects. The experimental areas within the building that are used for the radiation effects testing are now called the Berkeley Accelerator Space Effects (BASE) Facility. Improvements to the facility to provide increased reliability, quality assurance and new capabilities are underway and will be discussed. These include a 16 A MeV 'cocktail' of beams for heavy ion testing, a neutron beam, more robust dosimetry, and other upgrades

  16. CFD simulation of air discharge tests in the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  17. CFD simulation of air discharge tests in the PPOOLEX facility

    International Nuclear Information System (INIS)

    Tanskanen, V.; Puustinen, M.

    2008-07-01

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k ε-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  18. Geant4 simulation of the CERN-EU high-energy reference field (CERF) facility.

    Science.gov (United States)

    Prokopovich, D A; Reinhard, M I; Cornelius, I M; Rosenfeld, A B

    2010-09-01

    The CERN-EU high-energy reference field facility is used for testing and calibrating both active and passive radiation dosemeters for radiation protection applications in space and aviation. Through a combination of a primary particle beam, target and a suitable designed shielding configuration, the facility is able to reproduce the neutron component of the high altitude radiation field relevant to the jet aviation industry. Simulations of the facility using the GEANT4 (GEometry ANd Tracking) toolkit provide an improved understanding of the neutron particle fluence as well as the particle fluence of other radiation components present. The secondary particle fluence as a function of the primary particle fluence incident on the target and the associated dose equivalent rates were determined at the 20 designated irradiation positions available at the facility. Comparisons of the simulated results with previously published simulations obtained using the FLUKA Monte Carlo code, as well as with experimental results of the neutron fluence obtained with a Bonner sphere spectrometer, are made.

  19. A study of human behavior simulation in architectural design for healthcare facilities.

    Science.gov (United States)

    Schaumann, Davide; Pilosof, Nirit Putievsky; Date, Kartikeya; Kalay, Yehuda E

    2016-01-01

    Current tools and methods in architectural design do not allow predicting and evaluating how people will use designed environments before their actual realization. To investigate how computational simulation can help in evaluating design proposals as far as their use by people is concerned. Simulation of a medicine distribution procedure in a general hospital facility, while accounting for serendipitous social interactions made possible by the presence of different users in the same space, at the same time. The simulation shows how use patterns are influenced by the social and physical context in which actors are situated, and demonstrates the significance of the proposed method of evaluating hospital designs before construction. The system allows simulating use patterns with different degrees of complexity, and enables architects to ask new types of questions related to the interactions between people and physical settings.

  20. Start-to-end simulations of SASE FEL at the TESLA Test Facility

    International Nuclear Information System (INIS)

    Dohlus, M.; Floettmann, K.; Limberg, T.; Saldin, E.L; Schneidmiller, E.A.; Kozlov, O.S.; Yurkov, M.V.; Piot, Ph.

    2004-01-01

    VUV SASE FEL at the TESLA Test Facility (Phase 1) was successfully running and reached saturation in the wavelength range 80-120 nm. We present a posteriori start-to-end simulations of this machine. The codes Astra and elegant are used to track particle distribution from the cathode to the undulator entrance. An independent simulation of the beam dynamics in the bunch compressor is performed with the code CSRtrack. SASE FEL process is simulated with the code FAST. The simulation results are in good agreement with the measured properties of SASE FEL radiation. It is shown that the beam dynamics after the bunch compressor is mainly defined by space charge fields. FEL radiation is produced by the head of the electron bunch having a peak current of about 3 kA and a duration of 100 fs

  1. Multimegawatt space nuclear power open-cycle MHD-facility

    International Nuclear Information System (INIS)

    Pavshuk, V.A.; Panchenko, V.P.

    2008-01-01

    Paper presents the results of the efforts to calculate the characteristics, the layout and the engineering design of the open cycle space power propulsion on the basis of the high-temperature nuclear reactor for a nuclear rocket engine and the Faraday 20 MW capacity MHD-generator. The IVG-1 heterogeneous channel-vessel reactor ensuring in the course of the experiments hydrogen heating up to 3100 K, up to 5 MPa pressure at the reactor core outlet, up to 5 kg/s flowsheet, up to 220 MW thermal power served as a reactor is considered. One determined the MHD-generator basic parameters, namely: the portion of Cs dope was equal to 20%, the outlet stagnation pressure - 2 MPa, the electric conductivity - ≅30 S/m, the Mach number - ≅0.7, the magnetic field induction - 6 T, the capacity - 20 MW, the specific power removal - ∼4 MJ/kg. Paper describes the design of the MHD-facility with the working fluid momentless discharge and its basic characteristics [ru

  2. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory

    Science.gov (United States)

    Norbury, John W.; Schimmerling, Walter; Slaba, Tony C.; Azzam, Edouard I.; Badavi, Francis F.; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A.; Blattnig, Steve R.; Boothman, David A.; Borak, Thomas B.; Britten, Richard A.; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S.; Eisch, Amelia J.; Elgart, S. Robin; Goodhead, Dudley T.; Guida, Peter M.; Heilbronn, Lawrence H.; Hellweg, Christine E.; Huff, Janice L.; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I.; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A.; Norman, Ryan B.; Ottolenghi, Andrea; Patel, Zarana S.; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A.; Semones, Edward; Shay, Jerry W.; Shurshakov, Vyacheslav A.; Sihver, Lembit; Simonsen, Lisa C.; Story, Michael D.; Turker, Mitchell S.; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J.

    2017-01-01

    Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. PMID:26948012

  3. Space Science Investigation: NASA ISS Stowage Simulator

    Science.gov (United States)

    Crawford, Gary

    2017-01-01

    During this internship the opportunity was granted to work with the Integrated, Graphics, Operations and Analysis Laboratory (IGOAL) team. The main assignment was to create 12 achievement patches for the Space Station training simulator called the "NASA ISS Stowage Training Game." This project was built using previous IGOAL developed software. To accomplish this task, Adobe Photoshop and Adobe Illustrator were used to craft the badges and other elements required. Blender, a 3D modeling software, was used to make the required 3D elements. Blender was a useful tool to make things such as a CTB bag for the "No More Bob" patch which shows a gentleman kicking a CTB bag into the distance. It was also used to pose characters to the positions that was optimal for their patches as in the "Station Sanitation" patch which portrays and astronaut waving on a U.S module on a truck. Adobe Illustrator was the main piece of software for this task. It was used to craft the badges and upload them when they were completed. The style of the badges were flat, meaning that they shouldn't look three dimensional in any way, shape or form. Adobe Photoshop was used when any pictures need brightening and was where the texture for the CTB bag was made. In order for the patches to be ready for the game's next major release, they have to go under some critical reviewing, revising and re-editing to make sure the other artists and the rest of the staff are satisfied with the final products. Many patches were created and revamped to meet the flat setting and incorporate suggestions from the IGOAL team. After the three processes were completed, the badges were implemented into the game (reference fig1 for badges). After a month of designing badges, the finished products were placed into the final game build via the programmers. The art was the final piece in showcasing the latest build to the public for testing. Comments from the testers were often exceptional and the feedback on the badges were

  4. Simulation of photofission experiments at the ELI-NP facility

    International Nuclear Information System (INIS)

    Constantin, P.; Balabanski, D.L.; Cuong, P.V.

    2016-01-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  5. Simulation of the MRS receiving and handling facility

    International Nuclear Information System (INIS)

    Triplett, M.B.; Imhoff, C.H.; Hostick, C.J.

    1984-02-01

    Monitored retrievable storage (MRS) will be required to handle a large volume of spent fuel or high-level waste (HLW) in case of delays in repository deployment. The quantities of materials to be received and repackaged for storage far exceed the requirements of existing waste mangement facilities. A computer simulation model of the MRS receiving and handling (R and H) fcility has been constructed and used to evaluate design alternatives. Studies have identified processes or activities which may constrain throughput performance. In addition, the model has helped to assess design tradeoffs such as those to be made among improved process times, redundant service lines, and improved component availability. 1 reference, 5 figures

  6. Simulation of photofission experiments at the ELI-NP facility

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, P., E-mail: paul.constantin@eli-np.ro [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Balabanski, D.L. [Extreme Light Infrastructure – Nuclear Physics, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, Str. Reactorului 30, 077125 Bucharest Magurele (Romania); Cuong, P.V. [Centre of Nuclear Physics, Institute of Physics, Vietnam Academy of Science and Technology, Hanoi (Viet Nam)

    2016-04-01

    An extensive experimental program for the study of photofission will take place at the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) facility, where different actinide targets will be exposed to a brilliant gamma beam to produce fission fragments. We report on the implementation within the Geant4 simulation toolkit of the photofission process, of related background processes, and of extended ionic charge parameterization. These developments are used to evaluate the production rates of photofission fragments and their release efficiency from the actinide targets.

  7. 26th Space Simulation Conference Proceedings. Environmental Testing: The Path Forward

    Science.gov (United States)

    Packard, Edward A.

    2010-01-01

    Topics covered include: A Multifunctional Space Environment Simulation Facility for Accelerated Spacecraft Materials Testing; Exposure of Spacecraft Surface Coatings in a Simulated GEO Radiation Environment; Gravity-Offloading System for Large-Displacement Ground Testing of Spacecraft Mechanisms; Microscopic Shutters Controlled by cRIO in Sounding Rocket; Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing; Upgrade of a Thermal Vacuum Chamber for 20 Kelvin Operations; A New Approach to Improve the Uniformity of Solar Simulator; A Perfect Space Simulation Storm; A Planetary Environmental Simulator/Test Facility; Collimation Mirror Segment Refurbishment inside ESA s Large Space; Space Simulation of the CBERS 3 and 4 Satellite Thermal Model in the New Brazilian 6x8m Thermal Vacuum Chamber; The Certification of Environmental Chambers for Testing Flight Hardware; Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Wallops Flight Facility: Current and Future Test Capabilities for Suborbital and Orbital Projects; Force Limited Vibration Testing of JWST NIRSpec Instrument Using Strain Gages; Investigation of Acoustic Field Uniformity in Direct Field Acoustic Testing; Recent Developments in Direct Field Acoustic Testing; Assembly, Integration and Test Centre in Malaysia: Integration between Building Construction Works and Equipment Installation; Complex Ground Support Equipment for Satellite Thermal Vacuum Test; Effect of Charging Electron Exposure on 1064nm Transmission through Bare Sapphire Optics and SiO2 over HfO2 AR-Coated Sapphire Optics; Environmental Testing Activities and Capabilities for Turkish Space Industry; Integrated Circuit Reliability Simulation in Space Environments; Micrometeoroid Impacts and Optical Scatter in Space Environment; Overcoming Unintended Consequences of Ambient Pressure Thermal Cycling Environmental Tests; Performance and Functionality Improvements to Next Generation

  8. A novel DC Magnetron sputtering facility for space research and synchrotron radiation optics

    DEFF Research Database (Denmark)

    Hussain, A.M.; Christensen, Finn Erland; Pareschi, G.

    1998-01-01

    A new DC magnetron sputtering facility has been build up at the Danish Space Research Institute (DSRI), specially designed to enable uniform coatings of large area curved optics, such as Wolter-I mirror optics used in space telescopes and curved optics used in synchrotron radiation facilities...

  9. A Methodology for Conducting Space Utilization Studies within Department of Defense Medical Facilities

    Science.gov (United States)

    1992-07-01

    database programs, such as dBase or Microsoft Excell, to yield statistical reports that can profile the health care facility . Ladeen (1989) feels that the...service specific space status report would be beneficial to the specific service(s) under study, it would not provide sufficient data for facility -wide...change in the Master Space Plan. The revised methodology also provides a mechanism and forum for spuce management education within the facility . The

  10. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    The evaluation of space environment effects on materials and structures is a key matter to develop a proper design of long duration missions: since a large part of satellites operating in the earth orbital environment are employed for telecommunications, the development of space antennas and reflectors featured by high dimensional stability versus space environment interactions represents a major challenge for designers. The structural layout of state of the art space antennas and reflectors is very complex, since several different sensible elements and materials are employed: particular care must be placed in evaluating the actual geometrical configuration of the reflectors operating in the space environment, since very limited distortions of the designed layout can produce severe effects on the quality of the signal both received and transmitted, especially for antennas operating at high frequencies. The effects of thermal loads due to direct sunlight exposition and to earth and moon albedo can be easily taken into account employing the standard methods of structural analysis: on the other hand the thermal cycling and the exposition to the vacuum environment produce a long term damage accumulation which affects the whole structure. The typical effects of the just mentioned exposition are the outgassing of polymeric materials and the contamination of the exposed surface, which can affect sensibly the thermo-mechanical properties of the materials themselves and, therefore, the structural global response. The main aim of the present paper is to evaluate the synergistic effects of thermal cycling and of the exposition to high vacuum environment on an innovative antenna developed by Alenia Spazio S.p.a.: to this purpose, both an experimental and numerical research activity has been developed. A complete prototype of the antenna has been exposed to the space environment simulated by the SAS facility: this latter is constituted by an high vacuum chamber, equipped by

  11. Feasibility study for a computerized emergency preparedness simulation facility

    International Nuclear Information System (INIS)

    Gerhardstein, L.H.; Schroeder, J.O.; Sandusky, W.F.

    1979-11-01

    This report details the feasibility of a computerized Emergency Preparedness Simulation Facility (EPSF) for use by the Nuclear Regulatory Commission (NRC). The proposed facility would be designed to provide the NRC and other federal, state, and local government agencies with a capability to formulate, test, and evaluate the Emergency Preparedness Plans (EPP) which local and state agencies have/will establish for use during nuclear emergencies. In cases of any state emergency (including a nuclear emergency), high level state government officials will direct emergency procedures and insure that state and local emergency teams carry out tasks which have been established in their EPP. When an emergency exists, rapid mobilization of emergency teams, efficient communication, and effective coordination of individual team efforts is essential to safety, preservation of property, and overall public welfare. Current EPP evaluation procedures are qualitative in nature and while they do compare emergency drill performance with the EPP, the nature of the drills often does not provide enough realism to actual emergency conditions. Automated simulation of real emergency conditions using modern computer equipment and programming techniques will provide the NRC emergency evaluation teams a simulated environment which closely approximates conditions which would actually exist during a real emergency. In addition, the computer can be used to collect and log performance and event data which will aid the evaluation team in making assessments of the state or local area's EPP and their Emergency Preparedness Teams performance during emergency drills. Overall, a computerized EPSF can improve drill testing and evaluation efficiency, provide approximate emergency condition realism, and improve public awareness of local emergency procedures

  12. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  13. Spacing Sensitivity Analysis of HLW Intermediate Storage Facility

    International Nuclear Information System (INIS)

    Youn, Bum Soo; Lee, Kwang Ho

    2010-01-01

    Currently, South Korea's spent fuels are stored in its temporary storage within the plant. But the temporary storage is expected to be reaching saturation soon. For the effective management of spent fuel wastes, the need for intermediate storage facility is a desperate position. However, the research for the intermediate storage facility for waste has not made active so far. In addition, in case of foreign countries it is mostly treated confidentially and the information isn't easy to collect. Therefore, the purpose of this study is creating the basic thermal analysis data for the waste storage facility that will be valuable in the future

  14. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  15. The Effectiveness of Urban Green Spaces and Socio-Cultural Facilities

    Directory of Open Access Journals (Sweden)

    Mehmet Faruk Altunkasa

    2017-04-01

    Full Text Available This paper aims to develop a theoretical approach for mapping and determining the effectiveness of green spaces and socio-cultural facilities as providers of urban ecosystem services and urban services in the case of Adana, Turkey. Firstly, green spaces and socio-cultural facilities per capita have been determined and indexed for the neighbourhoods in the city. Then, a distance-based method for estimating the effectiveness of these facilities was used. The distances between the various neighbourhoods and between a given facility and the farthest threshold have been measured and these values have been used to determine the facility effectiveness change value for each neighbourhood. Then, effective values have been calculated and indexed by incorporating the green space and socio-cultural facility values and the effectiveness change values for the neighbourhoods. Finally, point-based effective green spaces and socio-cultural facilities index values have been converted to continuous surface values in a GIS (geographic information system environment in order to utilize as a base map for urban physical planning purposes. According to the outcomes of this study, the distribution of green spaces and socio-cultural facilities of the neighbourhoods are imbalanced and index values of these facilities range in between 45 and 84 out of 100.

  16. Development of space simulation / net-laboratory system

    Science.gov (United States)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  17. 38 CFR 39.21 - Space criteria for support facilities.

    Science.gov (United States)

    2010-07-01

    ... factor of 1.5 is the maximum allowed. The applicant shall, in support of the design, include the... room; (3) Kitchen unit; (4) Toilet and locker room facilities; (5) Housekeeping aide's closet; and (6...

  18. Microcomputer simulation model for facility performance assessment: a case study of nuclear spent fuel handling facility operations

    International Nuclear Information System (INIS)

    Chockie, A.D.; Hostick, C.J.; Otis, P.T.

    1985-10-01

    A microcomputer based simulation model was recently developed at the Pacific Northwest Laboratory (PNL) to assist in the evaluation of design alternatives for a proposed facility to receive, consolidate and store nuclear spent fuel from US commercial power plants. Previous performance assessments were limited to deterministic calculations and Gantt chart representations of the facility operations. To insure that the design of the facility will be adequate to meet the specified throughput requirements, the simulation model was used to analyze such factors as material flow, equipment capability and the interface between the MRS facility and the nuclear waste transportation system. The simulation analysis model was based on commercially available software and application programs designed to represent the MRS waste handling facility operations. The results of the evaluation were used by the design review team at PNL to identify areas where design modifications should be considered. 4 figs

  19. Status of the EP Simulations and Facilities for the SPL

    CERN Document Server

    Calatroni, S; Macatrao, M; Skala, A; Sosin, M; de Waele, R; Withofs, Y

    2011-01-01

    CERN is assembling a new vertical electropolishing facility in order to process several niobium cavities of beta 1 and beta 0.65 in the context of the HP-SPL R&D programme. Electrochemical simulations are being used in order to define the optimal cathode geometry to process the cavities in a vertical position. Macroscopic properties of fluid dynamics like the Reynolds number and thermodynamics linked to the power dissipated in the process are taken into account to dimension the main system components. All the materials from the different equipments must be compatible with all chemicals within the required working temperature and pressure. To provide safe operating conditions when handling chemicals or processing cavities, specific safety and protection equipment is also foreseen.

  20. Nursing home facilities in Malaysia (premise, shared facilities & individual accommodation: Space requirement): A literature review

    Science.gov (United States)

    Nordin, Nik Muhammad Faris Bin Nik; Hasbollah, Hasif Rafidee bin; Ibrahim, Mohd Asrul Hery Bin; Marican, Nor Dalila bin; Halim, Muhd Hafzal bin Abdul; Rashid, Ahmad Faezi Bin Ab.; Yasin, Nurul Hafizah Binti Mohd

    2017-10-01

    The numbers of elderly in Malaysia are increased every year. The request towards elderly care services necessitated by the Nursing Home are in demand. However, Nursing Home in Malaysia is lack of standard of facilities in order to cater the care services for the elderly. This paper intends review the minimum standard facilities for the Nursing Homes in globally. The paper also offered insights in developing standard Nursing Home facilities in Malaysia.

  1. A space simulation test chamber development for the investigation of radiometric properties of materials

    Science.gov (United States)

    Enlow, D. L.

    1972-01-01

    The design, fabrication, and preliminary utilization of a thermal vacuum space simulation facility are discussed. The facility was required to perform studies on the thermal radiation properties of materials. A test chamber was designed to provide high pumping speed, low pressure, a low photon level radiation background (via high emissivity, coated, finned cryopanels), internal heat sources for rapid warmup, and rotary and linear motion of the irradiated materials specimen. The radiation detection system consists of two wideband infrared photoconductive detectors, their cryogenic coolers, a cryogenic-cooled blackbody source, and a cryogenic-cooled optical radiation modulator.

  2. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    Energy Technology Data Exchange (ETDEWEB)

    James Werner

    2014-07-01

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  3. Direct drive: Simulations and results from the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Radha, P. B., E-mail: rbah@lle.rochester.edu; Hohenberger, M.; Edgell, D. H.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Rosenberg, M. J.; Seka, W.; Shvydky, A.; Boehly, T. R.; Collins, T. J. B.; Campbell, E. M.; Craxton, R. S.; Delettrez, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Knauer, J. P.; McCrory, R. L.; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2016-05-15

    Direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

  4. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  5. ROSA-IV Large Scale Test Facility (LSTF) system description for second simulated fuel assembly

    International Nuclear Information System (INIS)

    1990-10-01

    The ROSA-IV Program's Large Scale Test Facility (LSTF) is a test facility for integral simulation of thermal-hydraulic response of a pressurized water reactor (PWR) during small break loss-of-coolant accidents (LOCAs) and transients. In this facility, the PWR core nuclear fuel rods are simulated using electric heater rods. The simulated fuel assembly which was installed during the facility construction was replaced with a new one in 1988. The first test with this second simulated fuel assembly was conducted in December 1988. This report describes the facility configuration and characteristics as of this date (December 1988) including the new simulated fuel assembly design and the facility changes which were made during the testing with the first assembly as well as during the renewal of the simulated fuel assembly. (author)

  6. Jake Garn Mission Simulator and Training Facility, Building 5, Historical Documentation

    Science.gov (United States)

    Slovinac, Trish; Deming, Joan

    2010-01-01

    In response to President George W. Bush's announcement in January 2004 that the Space Shuttle Program (SSP) would end in 2010, the National Aeronautics and Space Administration (NASA) completed a nation-wide historical survey and evaluation of NASA-owned facilities and properties (real property assets) at all its Centers and component facilities. The buildings and structures which supported the SSP were inventoried and assessed as per the criteria of eligibility for listing in the National Register of Historic Places (NRHP) in the context of this program. This study was performed in compliance with Section 110 of the National Historic Preservation Act (NHPA) of 1966 (Public Law 89-665), as amended; the National Environmental Policy Act (NEPA) of 1969 (Public Law 91-190); Executive Order (EO) 11593: Protection and Enhancement of the Cultural Environment; EO 13287, Preserve America, and other relevant legislation. As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities at was conducted by NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, "Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas," prepared in November 2007 by NASA JSC's contractor, Archaeological Consultants, Inc. As a result of this survey, the Jake Gam Mission Simulator and Training Facility (Building 5) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 5 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 5 was still used to support the SSP as an

  7. A Simulation and Modeling Framework for Space Situational Awareness

    International Nuclear Information System (INIS)

    Olivier, S.S.

    2008-01-01

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated

  8. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    Science.gov (United States)

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  9. Description of European Space Agency (ESA) Concept Development for a Mars Sample Receiving Facility (MSRF)

    Science.gov (United States)

    Vrublevskis, J.; Berthoud, L.; Guest, M.; Smith, C.; Bennett, A.; Gaubert, F.; Schroeven-Deceuninck, H.; Duvet, L.; van Winnendael, M.

    2018-04-01

    This presentation gives an overview of the several studies conducted for the European Space Agency (ESA) since 2007, which progressively developed layouts for a potential implementation of a Mars Sample Receiving Facility (MSRF).

  10. Simulating cosmic microwave background maps in multiconnected spaces

    International Nuclear Information System (INIS)

    Riazuelo, Alain; Uzan, Jean-Philippe; Lehoucq, Roland; Weeks, Jeffrey

    2004-01-01

    This paper describes the computation of cosmic microwave background (CMB) anisotropies in a universe with multiconnected spatial sections and focuses on the implementation of the topology in standard CMB computer codes. The key ingredient is the computation of the eigenmodes of the Laplacian with boundary conditions compatible with multiconnected space topology. The correlators of the coefficients of the decomposition of the temperature fluctuation in spherical harmonics are computed and examples are given for spatially flat spaces and one family of spherical spaces, namely, the lens spaces. Under the hypothesis of Gaussian initial conditions, these correlators encode all the topological information of the CMB and suffice to simulate CMB maps

  11. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned fo...

  12. Next Generation Simulation Framework for Robotic and Human Space Missions

    Science.gov (United States)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  13. Space Nuclear Thermal Propulsion Test Facilities Subpanel. Final report

    International Nuclear Information System (INIS)

    Allen, G.C.; Warren, J.W.; Martinell, J.; Clark, J.S.; Perkins, D.

    1993-04-01

    On 20 Jul. 1989, in commemoration of the 20th anniversary of the Apollo 11 lunar landing, President George Bush proclaimed his vision for manned space exploration. He stated, 'First for the coming decade, for the 1990's, Space Station Freedom, the next critical step in our space endeavors. And next, for the new century, back to the Moon. Back to the future. And this time, back to stay. And then, a journey into tomorrow, a journey to another planet, a manned mission to Mars.' On 2 Nov. 1989, the President approved a national space policy reaffirming the long range goal of the civil space program: to 'expand human presence and activity beyond Earth orbit into the solar system.' And on 11 May 1990, he specified the goal of landing Astronauts on Mars by 2019, the 50th anniversary of man's first steps on the Moon. To safely and ever permanently venture beyond near Earth environment as charged by the President, mankind must bring to bear extensive new technologies. These include heavy lift launch capability from Earth to low-Earth orbit, automated space rendezvous and docking of large masses, zero gravity countermeasures, and closed loop life support systems. One technology enhancing, and perhaps enabling, the piloted Mars missions is nuclear propulsion, with great benefits over chemical propulsion. Asserting the potential benefits of nuclear propulsion, NASA has sponsored workshops in Nuclear Electric Propulsion and Nuclear Thermal Propulsion and has initiated a tri-agency planning process to ensure that appropriate resources are engaged to meet this exciting technical challenge. At the core of this planning process, NASA, DOE, and DOD established six Nuclear Propulsion Technical Panels in 1991 to provide groundwork for a possible tri-agency Nuclear Propulsion Program and to address the President's vision by advocating an aggressive program in nuclear propulsion. To this end the Nuclear Electric Propulsion Technology Panel has focused it energies

  14. Desdemona and a ticket to space; training for space flight in a 3g motion simulator

    NARCIS (Netherlands)

    Wouters, M.

    2014-01-01

    On October 5, 2013, Marijn Wouters and two other contestants of a nation-wide competition ‘Nederland Innoveert’ underwent a space training exercise. One by one, the trainees were pushed to their limits in the Desdemona motion simulator, an experience that mimicked the Space Expedition Corporation

  15. Monte Carlo simulation of continuous-space crystal growth

    International Nuclear Information System (INIS)

    Dodson, B.W.; Taylor, P.A.

    1986-01-01

    We describe a method, based on Monte Carlo techniques, of simulating the atomic growth of crystals without the discrete lattice space assumed by conventional Monte Carlo growth simulations. Since no lattice space is assumed, problems involving epitaxial growth, heteroepitaxy, phonon-driven mechanisms, surface reconstruction, and many other phenomena incompatible with the lattice-space approximation can be studied. Also, use of the Monte Carlo method circumvents to some extent the extreme limitations on simulated timescale inherent in crystal-growth techniques which might be proposed using molecular dynamics. The implementation of the new method is illustrated by studying the growth of strained-layer superlattice (SLS) interfaces in two-dimensional Lennard-Jones atomic systems. Despite the extreme simplicity of such systems, the qualitative features of SLS growth seen here are similar to those observed experimentally in real semiconductor systems

  16. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  17. Functional requirements for an Exercise Evaluation and Simulation Facility

    International Nuclear Information System (INIS)

    1983-04-01

    The Exercise Evaluation and Simulation Facility (EESF) is a computer-based resource that will improve FEMA's capabilities for evaluating radiological emergency plans and preparedness around commercial nuclear sites. The EESF is being designed from the perspective of the organizations involved (i.e., FEMA Regional and National, and state and local response teams) and takes into account the evolution of radiological and other emergency preparedness activities. Like radiological emergency planning, EESF will evolve to suit FEMA (National and Regional) needs and interests and will be increasingly useful as a resource for radiological emergency planning and evaluation. Table ES-1 briefly describes seven functions for which EESF is currently being designed. They are listed in the approximate order in which they will be designed, developed, and implemented. The only exception is the data base function, which will be developed parallel with the other six functions and enhanced to support these functions, as well as be a source of information on sites, plans, exercises, and evaluations

  18. Simulation of space charge effects in a synchrotron

    International Nuclear Information System (INIS)

    Machida, Shinji; Ikegami, Masanori

    1998-01-01

    We have studied space charge effects in a synchrotron with multi-particle tracking in 2-D and 3-D configuration space (4-D and 6-D phase space, respectively). First, we will describe the modelling of space charge fields in the simulation and a procedure of tracking. Several ways of presenting tracking results will be also mentioned. Secondly, it is discussed as a demonstration of the simulation study that coherent modes of a beam play a major role in beam stability and intensity limit. The incoherent tune in a resonance condition should be replaced by the coherent tune. Finally, we consider the coherent motion of a beam core as a driving force of halo formation. The mechanism is familiar in linac, and we apply it in a synchrotron

  19. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH)

    Science.gov (United States)

    Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai

    2008-06-01

    We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.

  20. A combined approach of simulation and analytic hierarchy process in assessing production facility layouts

    Science.gov (United States)

    Ramli, Razamin; Cheng, Kok-Min

    2014-07-01

    One of the important areas of concern in order to obtain a competitive level of productivity in a manufacturing system is the layout design and material transportation system (conveyor system). However, changes in customers' requirements have triggered the need to design other alternatives of the manufacturing layout for existing production floor. Hence, this paper discusses effective alternatives of the process layout specifically, the conveyor system layout. Subsequently, two alternative designs for the conveyor system were proposed with the aims to increase the production output and minimize space allocation. The first proposed layout design includes the installation of conveyor oven in the particular manufacturing room based on priority, and the second one is the one without the conveyor oven in the layout. Simulation technique was employed to design the new facility layout. Eventually, simulation experiments were conducted to understand the performance of each conveyor layout design based on operational characteristics, which include predicting the output of layouts. Utilizing the Analytic Hierarchy Process (AHP), the newly and improved layout designs were assessed before the final selection was done. As a comparison, the existing conveyor system layout was included in the assessment process. Relevant criteria involved in this layout design problem were identified as (i) usage of space of each design, (ii) operator's utilization rates, (iii) return of investment (ROI) of the layout, and (iv) output of the layout. In the final stage of AHP analysis, the overall priority of each alternative layout was obtained and thus, a selection for final use by the management was made based on the highest priority value. This efficient planning and designing of facility layout in a particular manufacturing setting is able to minimize material handling cost, minimize overall production time, minimize investment in equipment, and optimize utilization of space.

  1. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    Science.gov (United States)

    Green, M. A.; Smoot, G. F.; Golden, R. L.; Israel, M. H.; Kephart, R.; Niemann, R.; Mewalt, R. A.; Ormes, J. F.; Spillantini, P.; Widenbeck, M. E.

    1986-01-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more.

  2. ASTROMAG: A superconducting particle astrophysics magnet facility for the space station

    International Nuclear Information System (INIS)

    Green, M.A.; Smoot, G.F.; Golden, R.L.

    1986-09-01

    This paper describes a superconducting magnet system which is the heart of a particle astrophysics facility to be mounted on a portion of the proposed NASA space station. This facility will complete the studies done by the electromagnetic observatories now under development and construction by NASA. The paper outlines the selection process of the type of magnet to be used to analyze the energy and momentum of charged particles from deep space. The ASTROMAG superconducting magnet must meet all the criteria for a shuttle launch and landing, and it must meet safety standards for use in or near a manned environment such as the space station. The magnet facility must have a particle gathering aperture of at least 1 square meter steradian and the facility should be capable of resolving heavy nuclei with a total energy of 10 Tev or more. 4 refs., 3 figs

  3. Lunar materials for construction of space manufacturing facilities

    Science.gov (United States)

    Criswell, D. R.

    1977-01-01

    Development of industrial operations in deep space would be prohibitively expensive if most of the construction and expendable masses had to be transported from earth. Use of lunar materials reduces the needed investments by a factor of 15 to 20. It is shown in this paper that judicious selection of lunar materials will allow one to obtain hydrogen, nitrogen, carbon, helium and other specific elements critical to the support of life in large space habitats at relatively low costs and lower total investment even further. Necessary selection techniques and extraction schemes are outlined. In addition, tables are presented of the oxide and elemental abundances characteristic of the mare and highland regions of the moon which should be useful in evaluating what can be extracted from the lunar soils.

  4. High Level Architecture Distributed Space System Simulation for Simulation Interoperability Standards Organization Simulation Smackdown

    Science.gov (United States)

    Li, Zuqun

    2011-01-01

    Modeling and Simulation plays a very important role in mission design. It not only reduces design cost, but also prepares astronauts for their mission tasks. The SISO Smackdown is a simulation event that facilitates modeling and simulation in academia. The scenario of this year s Smackdown was to simulate a lunar base supply mission. The mission objective was to transfer Earth supply cargo to a lunar base supply depot and retrieve He-3 to take back to Earth. Federates for this scenario include the environment federate, Earth-Moon transfer vehicle, lunar shuttle, lunar rover, supply depot, mobile ISRU plant, exploratory hopper, and communication satellite. These federates were built by teams from all around the world, including teams from MIT, JSC, University of Alabama in Huntsville, University of Bordeaux from France, and University of Genoa from Italy. This paper focuses on the lunar shuttle federate, which was programmed by the USRP intern team from NASA JSC. The shuttle was responsible for provide transportation between lunar orbit and the lunar surface. The lunar shuttle federate was built using the NASA standard simulation package called Trick, and it was extended with HLA functions using TrickHLA. HLA functions of the lunar shuttle federate include sending and receiving interaction, publishing and subscribing attributes, and packing and unpacking fixed record data. The dynamics model of the lunar shuttle was modeled with three degrees of freedom, and the state propagation was obeying the law of two body dynamics. The descending trajectory of the lunar shuttle was designed by first defining a unique descending orbit in 2D space, and then defining a unique orbit in 3D space with the assumption of a non-rotating moon. Finally this assumption was taken away to define the initial position of the lunar shuttle so that it will start descending a second after it joins the execution. VPN software from SonicWall was used to connect federates with RTI during testing

  5. Enhanced operator-training simulator for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Schrader, F.D.; Swanson, C.D.

    1983-01-01

    The FFTF Plant Operator Training Simulator Facility has proven to be a valuable asset throughtout the testing, startup and early operational phases of the Fast Flux Test facility. However, limitations inherent in the existing simulation facility, increased emphasis on the required quality of operator training, and an expanded scope of applications (e.g., MNI development) justify an enhanced facility. Direct use of plant operators in the development of improved reactor control room displays and other man/machine interface equipment and procedures increases the credibility of proposed techniques and reported results. The FFTF Plant Operator Training Simulator provides a key element in this development program

  6. Simulation of Martian surface-atmosphere interaction in a space-simulator: Technical considerations and feasibility

    Science.gov (United States)

    Moehlmann, D.; Kochan, H.

    1992-01-01

    The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.

  7. Conducting Research on the International Space Station using the EXPRESS Rack Facilities

    Science.gov (United States)

    Thompson, Sean W.; Lake, Robert E.

    2016-01-01

    Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.

  8. Simulator Facility for Attitude Control and Energy Storage of Spacecraft

    National Research Council Canada - National Science Library

    Tsiotras, Panagiotis

    2002-01-01

    This report concerns a designed and built experimental facility that will allow the conduction of experiments for validating advanced attitude control algorithms for spacecraft in a weightless environment...

  9. Measurements relevant to simulating subcriticality in ADS facilities with blanket

    International Nuclear Information System (INIS)

    Titarenko, Yu. E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Popkov, V.N.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The work presents the results of determining the blanket subcriticality for a zero-power heavy water reactor MAKET at the Institute for Theoretical and Experimental Physics, Moscow. The blanket is hexagonal lattice made of 36 90%-enriched 235U fuel rods spaced 173mm apart. The subcriticality was varied from ∼0.3% to 5% by adjusting the heavy water level. The subcriticality values were calibrated using the dependence of reactivity on heavy water level. The pulsed neutron source technique was used to measure the temporal dependence of neutron field at different blanket points for the calibrated subcriticality values. The subciticality values obtained in terms of the 'inverse clock' formulae using the decay constants of the measured dependences proved to differ from the calibrated subcriticalities by not more than 7% at the average. The MCNP code-aided simulations of the experiment made has given the calibrated keff values at prescribed heavy water levels and led to the neutron field decay constants at given points, which differ on the average from their experimental values by not more than 7% too. (author)

  10. Saving time in a space-efficient simulation algorithm

    NARCIS (Netherlands)

    Markovski, J.

    2011-01-01

    We present an efficient algorithm for computing the simulation preorder and equivalence for labeled transition systems. The algorithm improves an existing space-efficient algorithm and improves its time complexity by employing a variant of the stability condition and exploiting properties of the

  11. Refurbishment and Automation of the Thermal/Vacuum Facilities at the Goddard Space Flight Center

    Science.gov (United States)

    Donohue, John T.; Johnson, Chris; Ogden, Rick; Sushon, Janet

    1998-01-01

    The thermal/vacuum facilities located at the Goddard Space Flight Center (GSFC) have supported both manned and unmanned space flight since the 1960s. Of the 11 facilities, currently 10 of the systems are scheduled for refurbishment and/or replacement as part of a 5-year implementation. Expected return on investment includes the reduction in test schedules, improvements in the safety of facility operations, reduction in the complexity of a test and the reduction in personnel support required for a test. Additionally, GSFC will become a global resource renowned for expertise in thermal engineering, mechanical engineering and for the automation of thermal/vacuum facilities and thermal/vacuum tests. Automation of the thermal/vacuum facilities includes the utilization of Programmable Logic Controllers (PLCs) and the use of Supervisory Control and Data Acquisition (SCADA) systems. These components allow the computer control and automation of mechanical components such as valves and pumps. In some cases, the chamber and chamber shroud require complete replacement while others require only mechanical component retrofit or replacement. The project of refurbishment and automation began in 1996 and has resulted in the computer control of one Facility (Facility #225) and the integration of electronically controlled devices and PLCs within several other facilities. Facility 225 has been successfully controlled by PLC and SCADA for over one year. Insignificant anomalies have occurred and were resolved with minimal impact to testing and operations. The amount of work remaining to be performed will occur over the next four to five years. Fiscal year 1998 includes the complete refurbishment of one facility, computer control of the thermal systems in two facilities, implementation of SCADA and PLC systems to support multiple facilities and the implementation of a Database server to allow efficient test management and data analysis.

  12. Space Nuclear Facility test capability at the Baikal-1 and IGR sites Semipalatinsk-21, Kazakhstan

    Science.gov (United States)

    Hill, T. J.; Stanley, M. L.; Martinell, J. S.

    1993-01-01

    The International Space Technology Assessment Program was established 1/19/92 to take advantage of the availability of Russian space technology and hardware. DOE had two delegations visit CIS and assess its space nuclear power and propulsion technologies. The visit coincided with the Conference on Nuclear Power Engineering in Space Nuclear Rocket Engines at Semipalatinsk-21 (Kurchatov, Kazakhstan) on Sept. 22-25, 1992. Reactor facilities assessed in Semipalatinski-21 included the IVG-1 reactor (a nuclear furnace, which has been modified and now called IVG-1M), the RA reactor, and the Impulse Graphite Reactor (IGR), the CIS version of TREAT. Although the reactor facilities are being maintained satisfactorily, the support infrastructure appears to be degrading. The group assessment is based on two half-day tours of the Baikals-1 test facility and a brief (2 hr) tour of IGR; because of limited time and the large size of the tour group, it was impossible to obtain answers to all prepared questions. Potential benefit is that CIS fuels and facilities may permit USA to conduct a lower priced space nuclear propulsion program while achieving higher performance capability faster, and immediate access to test facilities that cannot be available in this country for 5 years. Information needs to be obtained about available data acquisition capability, accuracy, frequency response, and number of channels. Potential areas of interest with broad application in the U.S. nuclear industry are listed.

  13. Cutting Method of the CAD model of the Nuclear facility for Dismantling Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ikjune; Choi, ByungSeon; Hyun, Dongjun; Jeong, KwanSeong; Kim, GeunHo; Lee, Jonghwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Current methods for process simulation cannot simulate the cutting operation flexibly. As is, to simulate a cutting operation, user needs to prepare the result models of cutting operation based on pre-define cutting path, depth and thickness with respect to a dismantle scenario in advance. And those preparations should be built again as scenario changes. To be, user can change parameters and scenarios dynamically within a simulation configuration process so that the user saves time and efforts to simulate cutting operations. This study presents the methodology of cutting operation which can be applied to all the procedure in the simulation of dismantling of nuclear facilities. We developed the cutting simulation module for cutting operation in the dismantling of the nuclear facilities based on proposed cutting methodology. We defined the requirement of model cutting methodology based on the requirement of the dismantling of nuclear facilities. And we implemented cutting simulation module based on API of the commercial CAD system.

  14. Extremophiles survival to simulated space conditions: an astrobiology model study.

    Science.gov (United States)

    Mastascusa, V; Romano, I; Di Donato, P; Poli, A; Della Corte, V; Rotundi, A; Bussoletti, E; Quarto, M; Pugliese, M; Nicolaus, B

    2014-09-01

    In this work we investigated the ability of four extremophilic bacteria from Archaea and Bacteria domains to resist to space environment by exposing them to extreme conditions of temperature, UV radiation, desiccation coupled to low pressure generated in a Mars' conditions simulator. All the investigated extremophilic strains (namely Sulfolobus solfataricus, Haloterrigena hispanica, Thermotoga neapolitana and Geobacillus thermantarcticus) showed a good resistance to the simulation of the temperature variation in the space; on the other hand irradiation with UV at 254 nm affected only slightly the growth of H. hispanica, G. thermantarcticus and S. solfataricus; finally exposition to Mars simulated condition showed that H. hispanica and G. thermantarcticus were resistant to desiccation and low pressure.

  15. A Simulation Base Investigation of High Latency Space Systems Operations

    Science.gov (United States)

    Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael

    2017-01-01

    NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO

  16. Effluent Containment System for space thermal nuclear propulsion ground test facilities

    International Nuclear Information System (INIS)

    1995-08-01

    This report presents the research and development study work performed for the Space Reactor Power System Division of the U.S. Department of Energy on an innovative ECS that would be used during ground testing of a space nuclear thermal rocket engine. A significant portion of the ground test facilities for a space nuclear thermal propulsion engine are the effluent treatment and containment systems. The proposed ECS configuration developed recycles all engine coolant media and does not impact the environment by venting radioactive material. All coolant media, hydrogen and water, are collected, treated for removal of radioactive particulates, and recycled for use in subsequent tests until the end of the facility life. Radioactive materials removed by the treatment systems are recovered, stored for decay of short-lived isotopes, or packaged for disposal as waste. At the end of the useful life, the facility will be decontaminated and dismantled for disposal

  17. Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility

    Science.gov (United States)

    1999-01-01

    In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

  18. Tethered elevator and platforms as space station facilities: Systems studies and demonstrative experiments

    Science.gov (United States)

    1986-01-01

    Several key concepts of the science and applications tethered platforms were studied. Some conclusions reached are herein listed. Tether elevator and platform could improve the space station scientific and applicative capabilities. The space elevator presents unique characteristics as microgravity facility and as a tethered platform servicing vehicle. Pointing platforms could represent a new kind of observation facility for large class of payloads. The dynamical, control and technological complexity of these concepts advised demonstrative experiments. The on-going tethered satellite system offers the opportunity to perform such experiments. And feasibility studies are in progress.

  19. Psychosocial value of space simulation for extended spaceflight

    Science.gov (United States)

    Kanas, N.

    1997-01-01

    There have been over 60 studies of Earth-bound activities that can be viewed as simulations of manned spaceflight. These analogs have involved Antarctic and Arctic expeditions, submarines and submersible simulators, land-based simulators, and hypodynamia environments. None of these analogs has accounted for all the variables related to extended spaceflight (e.g., microgravity, long-duration, heterogeneous crews), and some of the stimulation conditions have been found to be more representative of space conditions than others. A number of psychosocial factors have emerged from the simulation literature that correspond to important issues that have been reported from space. Psychological factors include sleep disorders, alterations in time sense, transcendent experiences, demographic issues, career motivation, homesickness, and increased perceptual sensitivities. Psychiatric factors include anxiety, depression, psychosis, psychosomatic symptoms, emotional reactions related to mission stage, asthenia, and postflight personality, and marital problems. Finally, interpersonal factors include tension resulting from crew heterogeneity, decreased cohesion over time, need for privacy, and issues involving leadership roles and lines of authority. Since future space missions will usually involve heterogeneous crews working on complicated objectives over long periods of time, these features require further study. Socio-cultural factors affecting confined crews (e.g., language and dialect, cultural differences, gender biases) should be explored in order to minimize tension and sustain performance. Career motivation also needs to be examined for the purpose of improving crew cohesion and preventing subgrouping, scapegoating, and territorial behavior. Periods of monotony and reduced activity should be addressed in order to maintain morale, provide meaningful use of leisure time, and prevent negative consequences of low stimulation, such as asthenia and crew member withdrawal

  20. Interplanetary Transit Simulations Using the International Space Station

    Science.gov (United States)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  1. Space Weather Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Space Weather Computational Laboratory is a Unix and PC based modeling and simulation facility devoted to research analysis of naturally occurring electrically...

  2. A Coordinated Initialization Process for the Distributed Space Exploration Simulation

    Science.gov (United States)

    Crues, Edwin Z.; Phillips, Robert G.; Dexter, Dan; Hasan, David

    2007-01-01

    A viewgraph presentation on the federate initialization process for the Distributed Space Exploration Simulation (DSES) is described. The topics include: 1) Background: DSES; 2) Simulation requirements; 3) Nine Step Initialization; 4) Step 1: Create the Federation; 5) Step 2: Publish and Subscribe; 6) Step 3: Create Object Instances; 7) Step 4: Confirm All Federates Have Joined; 8) Step 5: Achieve initialize Synchronization Point; 9) Step 6: Update Object Instances With Initial Data; 10) Step 7: Wait for Object Reflections; 11) Step 8: Set Up Time Management; 12) Step 9: Achieve startup Synchronization Point; and 13) Conclusions

  3. Design and Implementation of a Space Environment Simulation Toolbox for Small Satellites

    DEFF Research Database (Denmark)

    Amini, Rouzbeh; Larsen, Jesper A.; Izadi-Zamanabadi, Roozbeh

    2005-01-01

    This paper presents a developed toolbox for space environment model in SIMULINK that facilitates development and design of Attitude Determination and Control Systems (ADCS) for a Low Earth Orbit (LEO) spacecraft. The toolbox includes, among others, models of orbit propagators, disturbances, Earth...... gravity field, Earth magnetic field and eclipse. The structure and facilities within the toolbox are described and exemplified using a student satellite case (AAUSAT-II). The validity of developed models is confirmed by comparing the simulation results with the realistic data obtained from the Danish...

  4. Scalable space-time adaptive simulation tools for computational electrocardiology

    OpenAIRE

    Krause, Dorian; Krause, Rolf

    2013-01-01

    This work is concerned with the development of computational tools for the solution of reaction-diffusion equations from the field of computational electrocardiology. We designed lightweight spatially and space-time adaptive schemes for large-scale parallel simulations. We propose two different adaptive schemes based on locally structured meshes, managed either via a conforming coarse tessellation or a forest of shallow trees. A crucial ingredient of our approach is a non-conforming morta...

  5. Improving primary health care facility performance in Ghana: efficiency analysis and fiscal space implications.

    Science.gov (United States)

    Novignon, Jacob; Nonvignon, Justice

    2017-06-12

    Health centers in Ghana play an important role in health care delivery especially in deprived communities. They usually serve as the first line of service and meet basic health care needs. Unfortunately, these facilities are faced with inadequate resources. While health policy makers seek to increase resources committed to primary healthcare, it is important to understand the nature of inefficiencies that exist in these facilities. Therefore, the objectives of this study are threefold; (i) estimate efficiency among primary health facilities (health centers), (ii) examine the potential fiscal space from improved efficiency and (iii) investigate the efficiency disparities in public and private facilities. Data was from the 2015 Access Bottlenecks, Cost and Equity (ABCE) project conducted by the Institute for Health Metrics and Evaluation. The Stochastic Frontier Analysis (SFA) was used to estimate efficiency of health facilities. Efficiency scores were then used to compute potential savings from improved efficiency. Outpatient visits was used as output while number of personnel, hospital beds, expenditure on other capital items and administration were used as inputs. Disparities in efficiency between public and private facilities was estimated using the Nopo matching decomposition procedure. Average efficiency score across all health centers included in the sample was estimated to be 0.51. Also, average efficiency was estimated to be about 0.65 and 0.50 for private and public facilities, respectively. Significant disparities in efficiency were identified across the various administrative regions. With regards to potential fiscal space, we found that, on average, facilities could save about GH₵11,450.70 (US$7633.80) if efficiency was improved. We also found that fiscal space from efficiency gains varies across rural/urban as well as private/public facilities, if best practices are followed. The matching decomposition showed an efficiency gap of 0.29 between private

  6. Simulated Space Environment Effects on a Candidate Solar Sail Material

    Science.gov (United States)

    Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.

    2017-01-01

    For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.

  7. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Science.gov (United States)

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  8. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    International Nuclear Information System (INIS)

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  9. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  10. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han

    2013-01-01

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility

  11. Comparison of CFD Simulations of Moderator Circulation Phenomena for a CANDU-6 Reactor and MCT Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoung Tae; Cha, Jae Eun Cha; Seo, Han [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The Korea Atomic Energy Research Institute is constructing a Moderator Circulation Test (MCT) facility to simulate thermal-hydraulic phenomena in a 1/4 scale-down moderator tank similar to that in a prototype power plant during steady state operation and accident conditions. In the present study, two numerical CFD simulations for the prototype and scaled-down moderator tanks were carried out to check whether the moderator flow and temperature patterns of both the prototype reactor and scaled-down facility are identical. Two different sets of simulations of the moderator circulation phenomena were performed for a CANDU-6 reactor and MCT facility. The results of both simulations were compared to study the effects of scaling on the moderator flow and temperature patterns. There is no significant difference in the results between the prototype and scaled-down model. It was concluded that the present scaling method is properly employed to model the real reactor in the MCT facility.

  12. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  13. Review of radiation sources, calibration facilities and simulated workplace fields

    Energy Technology Data Exchange (ETDEWEB)

    Lacoste, V., E-mail: veronique.lacoste@irsn.f [Institut de Radioprotection et de Surete Nucleaire, BP3, Bat. 159, F-13115 Saint-Paul Lez Durance (France)

    2010-12-15

    A review on radiation sources, calibration facilities and realistic fields is presented and examples are given. The main characteristics of the fields are shortly described together with their domain of applications. New emerging fields are also mentioned and the question of needs for additional calibration fields is raised.

  14. Concept of scaled test facility for simulating the PWR thermalhydraulic behaviour

    International Nuclear Information System (INIS)

    Silva Filho, E.

    1990-01-01

    This work deals with the design of a scaled test facility of a typical pressurized water reactor plant, to simulation of small break Loss-of-Coolant Accident. The computer code RELAP 5/ MOD1 has been utilized to simulate the accident and to compare the test facility behaviour with the reactor plant one. The results demonstrate similar thermal-hydraulic behaviours of the two sistema. (author)

  15. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  16. NASA Johnson Space Center Usability Testing and Analysis facility (UTAF) Overview

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.

    2005-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility performs research for NASA's HumanSystems Integration Program, under the HumanSystems Research and Technology Division. Specifically, the UTAF provides human factors support for space vehicles, including the International Space Station, the Space Shuttle, and the forthcoming Crew Exploration Vehicle. In addition, there are ongoing collaborative research efforts with external corporations and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes and requirements. This presentation will provide an overview of ongoing activities, and will address how the UTAF projects will evolve to meet new space initiatives.

  17. Optimizing grade-control drillhole spacing with conditional simulations

    Directory of Open Access Journals (Sweden)

    Adrian Martínez-Vargas

    2017-01-01

    Full Text Available This paper summarizes a method to determine the optimum spacing of grade-control drillholes drilled with reverse-circulation. The optimum drillhole spacing was defined as that one whose cost equals the cost of misclassifying ore and waste in selection mining units (SMU. The cost of misclassification of a given drillhole spacing is equal to the cost of processing waste misclassified as ore (Type I error plus the value of the ore misclassified as waste (Type II error. Type I and Type II errors were deduced by comparing true and estimated grades at SMUs, in relation to a cuttoff grade value and assuming free ore selection. True grades at SMUs and grades at drillhole samples were generated with conditional simulations. A set of estimated grades at SMU, one per each drillhole spacing, were generated with ordinary kriging. This method was used to determine the optimum drillhole spacing in a gold deposit. The results showed that the cost of misclassification is sensitive to extreme block values and tend to be overrepresented. Capping SMU’s lost values and implementing diggability constraints was recommended to improve calculations of total misclassification costs.

  18. Networked simulation for team training of Space Station astronauts, ground controllers, and scientists - A training and development environment

    Science.gov (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Bovenzi, James J.

    1991-01-01

    The purpose of this paper is to describe plans for the Space Station Training Facility (SSTF) which has been designed to meet the envisioned training needs for Space Station Freedom. To meet these needs, the SSTF will integrate networked simulators with real-world systems in five training modes: Stand-Alone, Combined, Joint-Combined, Integrated, and Joint-Integrated. This paper describes the five training modes within the context of three training scenaries. In addition, this paper describes an authoring system which will support the rapid integration of new real-world system changes in the Space Station Freedom Program.

  19. Three dimensional simulations of space charge dominated heavy ion beams with applications to inertial fusion energy

    International Nuclear Information System (INIS)

    Grote, D.P.

    1994-01-01

    Heavy ion fusion requires injection, transport and acceleration of high current beams. Detailed simulation of such beams requires fully self-consistent space charge fields and three dimensions. WARP3D, developed for this purpose, is a particle-in-cell plasma simulation code optimized to work within the framework of an accelerator's lattice of accelerating, focusing, and bending elements. The code has been used to study several test problems and for simulations and design of experiments. Two applications are drift compression experiments on the MBE-4 facility at LBL and design of the electrostatic quadrupole injector for the proposed ILSE facility. With aggressive drift compression on MBE-4, anomalous emittance growth was observed. Simulations carried out to examine possible causes showed that essentially all the emittance growth is result of external forces on the beam and not of internal beam space-charge fields. Dominant external forces are the dodecapole component of focusing fields, the image forces on the surrounding pipe and conductors, and the octopole fields that result from the structure of the quadrupole focusing elements. Goal of the design of the electrostatic quadrupole injector is to produce a beam of as low emittance as possible. The simulations show that the dominant effects that increase the emittance are the nonlinear octopole fields and the energy effect (fields in the axial direction that are off-axis). Injectors were designed that minimized the beam envelope in order to reduce the effect of the nonlinear fields. Alterations to the quadrupole structure that reduce the nonlinear fields further were examined. Comparisons were done with a scaled experiment resulted in very good agreement

  20. Exploring Psychological and Aesthetic Approaches of Bio-Retention Facilities in the Urban Open Space

    Directory of Open Access Journals (Sweden)

    Suyeon Kim

    2017-11-01

    Full Text Available Over the last decades, a number of bio-retention facilities have been installed in urban areas for flood control and green amenity purposes. As urban amenity facilities for citizens, bio-retentions have a lot potential; however, the literature on bio-retentions focused mostly on physiochemical aspects like water quality and runoffs. Hence, this paper aims to explore psychological aspects of bio-retentions such as perceptions and landscape aesthetic value for visitors. In order to achieve this purpose, the study employed on-site interviews and questionnaires in the chosen three case studies as research methodology. For the 3 different locations of bio-retention facilities, interviews and questionnaires were carried out. The surveys of 100 bio-retention users were conducted, investigating their general perceptions and landscape aesthetics of the bio-retention facilities. The paper found that only 34% of the interviewees recognised bio-detention facilities, illustrating that most visitors were not aware of such facilities and were unable to distinguish the differences between bio-retention and conventional gardens. On the other hand, the majority of interviewees strongly supported the concept and function of bio-retentions, especially those who recognised the differences in planting species with conventional urban open spaces. Such main findings also encourage further studies of seeking quantitative values by conducting a correlation analysis between the functions and aesthetics of bio-retention facilities.

  1. The Monte Carlo simulation of the Ladon photon beam facility

    International Nuclear Information System (INIS)

    Strangio, C.

    1976-01-01

    The backward compton scattering of laser light against high energy electrons has been simulated with a Monte Carlo method. The main features of the produced photon beam are reported as well as a careful description of the numerical calculation

  2. Assessment of SPACE code for multiple failure accident: 1% Cold Leg Break LOCA with HPSI failure at ATLAS Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Hyuk; Lee, Seung Wook; Kim, Kyung-Doo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Design extension conditions (DECs) is a popular key issue after the Fukushima accident. In a viewpoint of the reinforcement of the defense in depth concept, a high-risk multiple failure accident should be reconsidered. The target scenario of ATLAS A5.1 test was LSTF (Large Scale Test Facility) SB-CL-32 test, a 1% SBLOCA with total failure of high pressure safety injection (HPSI) system of emergency core cooling system (ECCS) and secondary side depressurization as the accident management (AM) action, as a counterpart test. As the needs to prepare the DEC accident because of a multiple failure of the present NPPs are emphasized, the capability of SPACE code, just like other system analysis code, is required to expand the DEC area. The objectives of this study is to validate the capability of SPACE code for a DEC scenario, which represents multiple failure accident like as a SBLOCA with HPSI fail. Therefore, the ATLAS A5.1 test scenario was chosen. As the needs to prepare the DEC accident because of a multiple failure of operating NPPs are emphasized, the capability of SPACE code is needed to expand the DEC area. So the capability of SPACE code was validated for one of a DEC scenario. The target scenario was selected as the ATLAS A5.1 test, which is a 1% SBLOCA with total failure of HPSI system of ECCS and secondary side depressurization. Through the sensitivity study on discharge coefficient of break flow, the best fit of integrated mass was found. Using the coefficient, the ATLAS A5.1 test was analyzed using the SPACE code. The major thermal hydraulic parameters such as the system pressure, temperatures were compared with the test and have a good agreement. Through the simulation, it was concluded that the SPACE code can effectively simulate one of multiple failure accidents like as SBLOCA with HPSI failure accident.

  3. Space Technology Demonstrations Using Low Cost, Short-Schedule Airborne and Range Facilities at the Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Kelly, John; Jones, Dan; Lee, James

    2013-01-01

    There is a national effort to expedite advanced space technologies on new space systems for both government and commercial applications. In order to lower risk, these technologies should be demonstrated in a relevant environment before being installed in new space systems. This presentation introduces several low cost, short schedule space technology demonstrations using airborne and range facilities available at the Dryden Flight Research Center.

  4. University of Central Florida / Deep Space Industries Asteroid Regolith Simulants

    Science.gov (United States)

    Britt, Daniel; Covey, Steven D.; Schultz, Cody

    2017-10-01

    Introduction: The University of Central Florida (UCF), in partnership with Deep Space Industries (DSI) are working under a NASA Phase 2 SBIR contract to develop and produce a family of asteroid regolith simulants for use in research, engineering, and mission operations testing. We base simulant formulas on the mineralogy, particle size, and physical characteristics of CI, CR, CM, C2, CV, and L-Chondrite meteorites. The advantage in simulating meteorites is that the vast majority of meteoritic materials are common rock forming minerals that are available in commercial quantities. While formulas are guided by the meteorites our approach is one of constrained maximization under the limitations of safety, cost, source materials, and ease of handling. In all cases our goal is to deliver a safe, high fidelity analog at moderate cost.Source Materials, Safety, and Biohazards: A critical factor in any useful simulant is to minimize handling risks for biohazards or toxicity. All the terrestrial materials proposed for these simulants were reviewed for potential toxicity. Of particular interest is the organic component of volatile rich carbonaceous chondrites which contain polycyclic aromatic hydrocarbons (PAHs), some of which are known carcinogens and mutagens. Our research suggests that we can maintain rough chemical fidelity by substituting much safer sub-bituminous coal as our organic analog. A second safety consideration is the choice of serpentine group materials. While most serpentine polymorphs are quite safe we avoid fibrous chrysotile because of its asbestos content. Terrestrial materials identified as inputs for our simulants are common rock forming minerals that are available in commercial quantities. These include olivine, pyroxene, plagioclase feldspar, smectite, serpentine, saponite, pyrite, and magnetite in amounts that are appropriate for each type. For CI's and CR’s, their olivines tend to be Fo100 which is rare on Earth. We have substituted Fo90 olivine

  5. Modeling and Simulation for Multi-Missions Space Exploration Vehicle

    Science.gov (United States)

    Chang, Max

    2011-01-01

    Asteroids and Near-Earth Objects [NEOs] are of great interest for future space missions. The Multi-Mission Space Exploration Vehicle [MMSEV] is being considered for future Near Earth Object missions and requires detailed planning and study of its Guidance, Navigation, and Control [GNC]. A possible mission of the MMSEV to a NEO would be to navigate the spacecraft to a stationary orbit with respect to the rotating asteroid and proceed to anchor into the surface of the asteroid with robotic arms. The Dynamics and Real-Time Simulation [DARTS] laboratory develops reusable models and simulations for the design and analysis of missions. In this paper, the development of guidance and anchoring models are presented together with their role in achieving mission objectives and relationships to other parts of the simulation. One important aspect of guidance is in developing methods to represent the evolution of kinematic frames related to the tasks to be achieved by the spacecraft and its robot arms. In this paper, we compare various types of mathematical interpolation methods for position and quaternion frames. Subsequent work will be on analyzing the spacecraft guidance system with different movements of the arms. With the analyzed data, the guidance system can be adjusted to minimize the errors in performing precision maneuvers.

  6. Test Facilities and Experience on Space Nuclear System Developments at the Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoi, Nikolai N.; Garin, Vladimir P.; Glushkov, Evgeny S.; Kompaniets, George V.; Kukharkin, Nikolai E.; Madeev, Vicktor G.; Papin, Vladimir K.; Polyakov, Dmitry N.; Stepennov, Boris S.; Tchuniyaev, Yevgeny I.; Tikhonov, Lev Ya.; Uksusov, Yevgeny I.

    2004-01-01

    The complexity of space fission systems and rigidity of requirement on minimization of weight and dimension characteristics along with the wish to decrease expenditures on their development demand implementation of experimental works which results shall be used in designing, safety substantiation, and licensing procedures. Experimental facilities are intended to solve the following tasks: obtainment of benchmark data for computer code validations, substantiation of design solutions when computational efforts are too expensive, quality control in a production process, and 'iron' substantiation of criticality safety design solutions for licensing and public relations. The NARCISS and ISKRA critical facilities and unique ORM facility on shielding investigations at the operating OR nuclear research reactor were created in the Kurchatov Institute to solve the mentioned tasks. The range of activities performed at these facilities within the implementation of the previous Russian nuclear power system programs is briefly described in the paper. This experience shall be analyzed in terms of methodological approach to development of future space nuclear systems (this analysis is beyond this paper). Because of the availability of these facilities for experiments, the brief description of their critical assemblies and characteristics is given in this paper

  7. Contamination Control Assessment of the World's Largest Space Environment Simulation Chamber

    Science.gov (United States)

    Snyder, Aaron; Henry, Michael W.; Grisnik, Stanley P.; Sinclair, Stephen M.

    2012-01-01

    The Space Power Facility s thermal vacuum test chamber is the largest chamber in the world capable of providing an environment for space simulation. To improve performance and meet stringent requirements of a wide customer base, significant modifications were made to the vacuum chamber. These include major changes to the vacuum system and numerous enhancements to the chamber s unique polar crane, with a goal of providing high cleanliness levels. The significance of these changes and modifications are discussed in this paper. In addition, the composition and arrangement of the pumping system and its impact on molecular back-streaming are discussed in detail. Molecular contamination measurements obtained with a TQCM and witness wafers during two recent integrated system tests of the chamber are presented and discussed. Finally, a concluding remarks section is presented.

  8. NASA Johnson Space Center Usability Testing and Analysis Facility (WAF) Overview

    Science.gov (United States)

    Whitmore, M.

    2004-01-01

    The Usability Testing and Analysis Facility (UTAF) is part of the Space Human Factors Laboratory at the NASA Johnson Space Center in Houston, Texas. The facility provides support to the Office of Biological and Physical Research, the Space Shuttle Program, the International Space Station Program, and other NASA organizations. In addition, there are ongoing collaborative research efforts with external businesses and universities. The UTAF provides human factors analysis, evaluation, and usability testing of crew interfaces for space applications. This includes computer displays and controls, workstation systems, and work environments. The UTAF has a unique mix of capabilities, with a staff experienced in both cognitive human factors and ergonomics. The current areas of focus are: human factors applications in emergency medical care and informatics; control and display technologies for electronic procedures and instructions; voice recognition in noisy environments; crew restraint design for unique microgravity workstations; and refinement of human factors processes. This presentation will provide an overview of ongoing activities, and will address how the projects will evolve to meet new space initiatives.

  9. Monte Carlo simulations for design of the KFUPM PGNAA facility

    CERN Document Server

    Naqvi, A A; Maslehuddin, M; Kidwai, S

    2003-01-01

    Monte Carlo simulations were carried out to design a 2.8 MeV neutron-based prompt gamma ray neutron activation analysis (PGNAA) setup for elemental analysis of cement samples. The elemental analysis was carried out using prompt gamma rays produced through capture of thermal neutrons in sample nuclei. The basic design of the PGNAA setup consists of a cylindrical cement sample enclosed in a cylindrical high-density polyethylene moderator placed between a neutron source and a gamma ray detector. In these simulations the predominant geometrical parameters of the PGNAA setup were optimized, including moderator size, sample size and shielding of the detector. Using the results of the simulations, an experimental PGNAA setup was then fabricated at the 350 kV Accelerator Laboratory of this University. The design calculations were checked experimentally through thermal neutron flux measurements inside the PGNAA moderator. A test prompt gamma ray spectrum of the PGNAA setup was also acquired from a Portland cement samp...

  10. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    Science.gov (United States)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  11. Ecological Safety of the Internal Space of the Cattle-Breeding Facility (Cowshed)

    Science.gov (United States)

    Potseluev, A. A.; Nazarov, I. V.; Tolstoukhova, T. N.; Kostenko, M. V.

    2018-01-01

    The article emphasizes the importance of observing the ecology of the internal airspace. The factors affecting the state of the air in the internal space of the cattle-breeding facility (cowshed) are revealed. Technical and technological solutions providing for a reduction in the airspace contamination of the livestock facility are proposed. The results of investigations of a technological operation for treating skin integuments of cows with activated water are disclosed, as well as the constructive solution of a heat and power unit that ensures a change in the hydrogen index of the treated water. The justification of the efficiency of the proposed technical and technological solutions is given.

  12. Primary loop simulation of the SP-100 space nuclear reactor

    International Nuclear Information System (INIS)

    Borges, Eduardo M.; Braz Filho, Francisco A.; Guimaraes, Lamartine N.F.

    2011-01-01

    Between 1983 and 1992 the SP-100 space nuclear reactor development project for electric power generation in a range of 100 to 1000 kWh was conducted in the USA. Several configurations were studied to satisfy different mission objectives and power systems. In this reactor the heat is generated in a compact core and refrigerated by liquid lithium, the primary loops flow are controlled by thermoelectric electromagnetic pumps (EMTE), and thermoelectric converters produce direct current energy. To define the system operation point for an operating nominal power, it is necessary the simulation of the thermal-hydraulic components of the space nuclear reactor. In this paper the BEMTE-3 computer code is used to EMTE pump design performance evaluation to a thermalhydraulic primary loop configuration, and comparison of the system operation points of SP-100 reactor to two thermal powers, with satisfactory results. (author)

  13. High Energy Ion Bombardment Simulation Facility at the University of Pittsburgh

    International Nuclear Information System (INIS)

    McGruer, J.N.; Choyke, W.J.; Doyle, N.J.; Spitznagel, J.A.

    1975-01-01

    The High Energy Ion Bombardment Simulation (HEIBS) Facility located at the University of Pittsburgh is now operational. The E-22 tandem accelerator of the Nuclear Physics Laboratory, fitted with a UNIS source, provides the heavy high energy ions. An auxiliary Van de Graaff accelerator is used for the simultaneous production of He ions. Special features of the simulation laboratory are reported

  14. SPACE code simulation of ATLAS DVI line break accident test (SB DVI 08 Test)

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Gyu [KHNP, Daejeon (Korea, Republic of)

    2012-10-15

    APR1400 has adopted new safety design features which are 4 mechanically independent DVI (Direct Vessel Injection) systems and fluidic device in the safety injection tanks (SITs). Hence, DVI line break accident has to be evaluated as one of the small break LOCA (SBLOCA) to ensure the safety of APR1400. KAERI has been performed for DVI line break test (SB DVI 08) using ATLAS (Advanced Thermal Hydraulic Test Loop for Accident Simulation) facility which is an integral effect test facility for APR1400. The test result shows that the core collapsed water level decreased before a loop seal clearance, so that a core uncover occurred. At this time, the peak cladding temperature (PCT) is rapidly increased even though the emergency core cooling (ECC) water is injected from safety injection pump (SIP). This test result is useful for supporting safety analysis using thermal hydraulic safety analysis code and increases the understanding of SBLOCA phenomena in APR1400. The SBLOCA evaluation methodology for APR1400 is now being developed using SPACE code. The object of the development of this methodology is to set up a conservative evaluation methodology in accordance with appendix K of 10 CFR 50. ATLAS SB DVI 08 test is selected for the evaluation of SBLOCA methodology using SPACE code. Before applying the conservative models and correlations, benchmark calculation of the test is performed with the best estimate models and correlations to verify SPACE code capability. This paper deals with benchmark calculations results of ATLAS SB DVI 08 test. Calculation results of the major hydraulics variables are compared with measured data. Finally, this paper carries out the SPACE code performances for simulating the integral effect test of SBLOCA.

  15. Program NAJOCSC and space charge effect simulation in C01

    International Nuclear Information System (INIS)

    Tang, J.Y.; Chabert, A.; Baron, E.

    1999-01-01

    During the beam tests of the THI project at GANIL, it was found it difficult to increase the beam power above 2 kW at CSS2 extraction. The space charge effect (abbreviated as S.C. effect) in cyclotrons is suspected to play some role in the phenomenon, especially the longitudinal S.C. one and also the coupling between longitudinal and radial motions. The injector cyclotron C01 is studied, and the role played by the S.C. effect in this cyclotron in the THI case is investigated by a simulation method. (K.A.)

  16. Simulations of space charge neutralization in a magnetized electron cooler

    Energy Technology Data Exchange (ETDEWEB)

    Gerity, James [Texas A-M; McIntyre, Peter M. [Texas A-M; Bruhwiler, David Leslie [RadiaSoft, Boulder; Hall, Christopher [RadiaSoft, Boulder; Moens, Vince Jan [Ecole Polytechnique, Lausanne; Park, Chong Shik [Fermilab; Stancari, Giulio [Fermilab

    2017-02-02

    Magnetized electron cooling at relativistic energies and Ampere scale current is essential to achieve the proposed ion luminosities in a future electron-ion collider (EIC). Neutralization of the space charge in such a cooler can significantly increase the magnetized dynamic friction and, hence, the cooling rate. The Warp framework is being used to simulate magnetized electron beam dynamics during and after the build-up of neutralizing ions, via ionization of residual gas in the cooler. The design follows previous experiments at Fermilab as a verification case. We also discuss the relevance to EIC designs.

  17. Average accelerator simulation Truebeam using phase space in IAEA format

    International Nuclear Information System (INIS)

    Santana, Emico Ferreira; Milian, Felix Mas; Paixao, Paulo Oliveira; Costa, Raranna Alves da; Velasco, Fermin Garcia

    2015-01-01

    In this paper is used a computational code of radiation transport simulation based on Monte Carlo technique, in order to model a linear accelerator of treatment by Radiotherapy. This work is the initial step of future proposals which aim to study several treatment of patient by Radiotherapy, employing computational modeling in cooperation with the institutions UESC, IPEN, UFRJ e COI. The Chosen simulation code is GATE/Geant4. The average accelerator is TrueBeam of Varian Company. The geometric modeling was based in technical manuals, and radiation sources on the phase space for photons, provided by manufacturer in the IAEA (International Atomic Energy Agency) format. The simulations were carried out in equal conditions to experimental measurements. Were studied photons beams of 6MV, with 10 per 10 cm of field, focusing on a water phantom. For validation were compared dose curves in depth, lateral profiles in different depths of the simulated results and experimental data. The final modeling of this accelerator will be used in future works involving treatments and real patients. (author)

  18. Steady-State Calculation of the ATLAS Test Facility Using the SPACE Code

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae; Choi, Ki Yong; Kim, Kyung Doo

    2011-01-01

    The Korean nuclear industry is developing a thermalhydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). Several research and industrial organizations including KAERI (Korea Atomic Energy Research Institute) are participating in the collaboration for the development of the SPACE code. One of the main tasks of KAERI is to carry out separate effect tests (SET) and integral effect tests (IET) for code verification and validation (V and V). The IET has been performed with ATLAS (Advanced Thermalhydraulic Test Loop for Accident Simulation) based on the design features of the APR1400 (Advanced Power Reactor of 1400MWe). In the present work the SPACE code input-deck for ATLAS is developed and used for simulation of the steady-state conditions of ATLAS as a preliminary work for IET V and V of the SPACE code

  19. Cryogenic implications of orbit selection of the Space Infrared Telescope Facility (SIRTF)

    International Nuclear Information System (INIS)

    Lee, J.H.; Brooke, W.F.; Maa, S.

    1986-01-01

    The Infrared Astronomical Satellite (IRAS) which completed the first all sky survey in the infrared demonstrated the tremendous advantage of space-based infrared astronomy. The ability to cool the telescope optics and focal plane to liquid helium temperatures and the absence of atmospheric disturbances which cause ''seeing'' effects resulted in the discovery of 250,000 IR sources and many interesting phenomena including dust clouds around Vega and the infrared ''cirrus'' at 100 μm. To realize the true benefit of space infrared astronomy, NASA is now studying the Space Infrared Telescope Facility, a long-life space-based observatory, to follow up on the survey results of IRAS. The choice of orbits is a critical program decision. The objective of this paper is to compare the performance of an all superfluid helium SIRTF system in the two possible orbit inclinations, polar orbit (99 0 ) and the low inclination orbit (28.5 0 )

  20. Benchmark experiments at ASTRA facility on definition of space distribution of 235U fission reaction rate

    International Nuclear Information System (INIS)

    Bobrov, A. A.; Boyarinov, V. F.; Glushkov, A. E.; Glushkov, E. S.; Kompaniets, G. V.; Moroz, N. P.; Nevinitsa, V. A.; Nosov, V. I.; Smirnov, O. N.; Fomichenko, P. A.; Zimin, A. A.

    2012-01-01

    Results of critical experiments performed at five ASTRA facility configurations modeling the high-temperature helium-cooled graphite-moderated reactors are presented. Results of experiments on definition of space distribution of 235 U fission reaction rate performed at four from these five configurations are presented more detail. Analysis of available information showed that all experiments on criticality at these five configurations are acceptable for use them as critical benchmark experiments. All experiments on definition of space distribution of 235 U fission reaction rate are acceptable for use them as physical benchmark experiments. (authors)

  1. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Science.gov (United States)

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  2. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    International Nuclear Information System (INIS)

    Bargalló, Enric; Sureda, Pere Joan; Arroyo, Jose Manuel; Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos; Mollá, Joaquín; Ibarra, Ángel

    2014-01-01

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown

  3. Availability simulation software adaptation to the IFMIF accelerator facility RAMI analyses

    Energy Technology Data Exchange (ETDEWEB)

    Bargalló, Enric, E-mail: enric.bargallo-font@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Sureda, Pere Joan [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, Jose Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain); Abal, Javier; De Blas, Alfredo; Dies, Javier; Tapia, Carlos [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, Madrid (Spain)

    2014-10-15

    Highlights: • The reason why IFMIF RAMI analyses needs a simulation is explained. • Changes, modifications and software validations done to AvailSim are described. • First IFMIF RAMI results obtained with AvailSim 2.0 are shown. • Implications of AvailSim 2.0 in IFMIF RAMI analyses are evaluated. - Abstract: Several problems were found when using generic reliability tools to perform RAMI (Reliability Availability Maintainability Inspectability) studies for the IFMIF (International Fusion Materials Irradiation Facility) accelerator. A dedicated simulation tool was necessary to model properly the complexity of the accelerator facility. AvailSim, the availability simulation software used for the International Linear Collider (ILC) became an excellent option to fulfill RAMI analyses needs. Nevertheless, this software needed to be adapted and modified to simulate the IFMIF accelerator facility in a useful way for the RAMI analyses in the current design phase. Furthermore, some improvements and new features have been added to the software. This software has become a great tool to simulate the peculiarities of the IFMIF accelerator facility allowing obtaining a realistic availability simulation. Degraded operation simulation and maintenance strategies are the main relevant features. In this paper, the necessity of this software, main modifications to improve it and its adaptation to IFMIF RAMI analysis are described. Moreover, first results obtained with AvailSim 2.0 and a comparison with previous results is shown.

  4. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    Science.gov (United States)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  5. An FPGA computing demo core for space charge simulation

    International Nuclear Information System (INIS)

    Wu, Jinyuan; Huang, Yifei

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  6. An FPGA computing demo core for space charge simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jinyuan; Huang, Yifei; /Fermilab

    2009-01-01

    In accelerator physics, space charge simulation requires large amount of computing power. In a particle system, each calculation requires time/resource consuming operations such as multiplications, divisions, and square roots. Because of the flexibility of field programmable gate arrays (FPGAs), we implemented this task with efficient use of the available computing resources and completely eliminated non-calculating operations that are indispensable in regular micro-processors (e.g. instruction fetch, instruction decoding, etc.). We designed and tested a 16-bit demo core for computing Coulomb's force in an Altera Cyclone II FPGA device. To save resources, the inverse square-root cube operation in our design is computed using a memory look-up table addressed with nine to ten most significant non-zero bits. At 200 MHz internal clock, our demo core reaches a throughput of 200 M pairs/s/core, faster than a typical 2 GHz micro-processor by about a factor of 10. Temperature and power consumption of FPGAs were also lower than those of micro-processors. Fast and convenient, FPGAs can serve as alternatives to time-consuming micro-processors for space charge simulation.

  7. Time Accurate Unsteady Pressure Loads Simulated for the Space Launch System at a Wind Tunnel Condition

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, Bil; Streett, Craig L; Glass, Christopher E.; Schuster, David M.

    2015-01-01

    Using the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics code, an unsteady, time-accurate flow field about a Space Launch System configuration was simulated at a transonic wind tunnel condition (Mach = 0.9). Delayed detached eddy simulation combined with Reynolds Averaged Naiver-Stokes and a Spallart-Almaras turbulence model were employed for the simulation. Second order accurate time evolution scheme was used to simulate the flow field, with a minimum of 0.2 seconds of simulated time to as much as 1.4 seconds. Data was collected at 480 pressure taps at locations, 139 of which matched a 3% wind tunnel model, tested in the Transonic Dynamic Tunnel (TDT) facility at NASA Langley Research Center. Comparisons between computation and experiment showed agreement within 5% in terms of location for peak RMS levels, and 20% for frequency and magnitude of power spectral densities. Grid resolution and time step sensitivity studies were performed to identify methods for improved accuracy comparisons to wind tunnel data. With limited computational resources, accurate trends for reduced vibratory loads on the vehicle were observed. Exploratory methods such as determining minimized computed errors based on CFL number and sub-iterations, as well as evaluating frequency content of the unsteady pressures and evaluation of oscillatory shock structures were used in this study to enhance computational efficiency and solution accuracy. These techniques enabled development of a set of best practices, for the evaluation of future flight vehicle designs in terms of vibratory loads.

  8. Architectural style and green spaces predict older adults' evaluations of residential facilities.

    Science.gov (United States)

    Cerina, Veronica; Fornara, Ferdinando; Manca, Sara

    2017-09-01

    The purpose of this study was to analyse the effects of residential facilities' design features on older adults' psychosocial responses. Participants ( N  = 192) were over 65-year-old residents who were randomly exposed to different experimental scenarios concerning a hypothetical residential facility for older adults, using a 3 × 2 between-subjects design (i.e. home-like vs. hotel-like vs. usual-standard architectural style; presence vs. absence of green spaces). After the experimental session, participants were asked to fill in a questionnaire that measured their attitudes towards short- and long-term relocation, anticipated residential satisfaction with the facility, and feelings of broken home attachment. The results showed (1) more positive responses to "home-like" and "hotel-like" architectural styles than the usual-standard type and (2) the positive impact of green spaces on the assessment of the facilities. These design features should thus play a role in both reducing the stressful impact of leaving home and promoting beneficial patterns, hence fostering "successful ageing".

  9. Design strategies for the International Space University's variable gravity research facility

    Science.gov (United States)

    Bailey, Sheila G.; Chiaramonte, Francis P.; Davidian, Kenneth J.

    1990-01-01

    A variable gravity research facility named 'Newton' was designed by 58 students from 13 countries at the International Space University's 1989 summer session at the Universite Louis Pasteur, Strasbourge, France. The project was comprehensive in scope, including a political and legal foundation for international cooperation, development and financing; technical, science and engineering issues; architectural design; plausible schedules; and operations, crew issues and maintenance. Since log-term exposure to zero gravity is known to be harmful to the human body, the main goal was to design a unique variable gravity research facility which would find a practical solution to this problem, permitting a manned mission to Mars. The facility would not duplicate other space-based facilities and would provide the flexibility for examining a number of gravity levels, including lunar and Martian gravities. Major design alternatives included a truss versus a tether based system which also involved the question of docking while spinning or despinning to dock. These design issues are described. The relative advantages or disadvantages are discussed, including comments on the necessary research and technology development required for each.

  10. Space Debris Attitude Simulation - IOTA (In-Orbit Tumbling Analysis)

    Science.gov (United States)

    Kanzler, R.; Schildknecht, T.; Lips, T.; Fritsche, B.; Silha, J.; Krag, H.

    Today, there is little knowledge on the attitude state of decommissioned intact objects in Earth orbit. Observational means have advanced in the past years, but are still limited with respect to an accurate estimate of motion vector orientations and magnitude. Especially for the preparation of Active Debris Removal (ADR) missions as planned by ESA's Clean Space initiative or contingency scenarios for ESA spacecraft like ENVISAT, such knowledge is needed. The In-Orbit Tumbling Analysis tool (IOTA) is a prototype software, currently in development within the framework of ESA's “Debris Attitude Motion Measurements and Modelling” project (ESA Contract No. 40000112447), which is led by the Astronomical Institute of the University of Bern (AIUB). The project goal is to achieve a good understanding of the attitude evolution and the considerable internal and external effects which occur. To characterize the attitude state of selected targets in LEO and GTO, multiple observation methods are combined. Optical observations are carried out by AIUB, Satellite Laser Ranging (SLR) is performed by the Space Research Institute of the Austrian Academy of Sciences (IWF) and radar measurements and signal level determination are provided by the Fraunhofer Institute for High Frequency Physics and Radar Techniques (FHR). Developed by Hyperschall Technologie Göttingen GmbH (HTG), IOTA will be a highly modular software tool to perform short- (days), medium- (months) and long-term (years) propagation of the orbit and attitude motion (six degrees-of-freedom) of spacecraft in Earth orbit. The simulation takes into account all relevant acting forces and torques, including aerodynamic drag, solar radiation pressure, gravitational influences of Earth, Sun and Moon, eddy current damping, impulse and momentum transfer from space debris or micro meteoroid impact, as well as the optional definition of particular spacecraft specific influences like tank sloshing, reaction wheel behaviour

  11. Virtual Reality Simulation of the International Space Welding Experiment

    Science.gov (United States)

    Phillips, James A.

    1996-01-01

    Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.

  12. The space station window observational research facility; a high altitude imaging laboratory

    International Nuclear Information System (INIS)

    Runco, Susan K.; Eppler, Dean B.; Scott, Karen P.

    1999-01-01

    Earth Science will be one of the major research areas to be conducted on the International Space Station. The facilities from which this research will be accomplished are currently being constructed and will be described in this paper. By April 1999, the International Space Station nadir viewing research window fabrication will be completed and ready for installation. The window will provide a 20 inch (51 cm) diameter clear aperture. The three fused silica panes, which make up the window are fabricated such that the total peak-to-valley wavefront error in transmission through the three panes over any six inch diameter aperture does not exceed λ/7 where the reference wavelength is 632.8 nm. The window will have over 90% transmission between about 400 and 750, above 50% transmission between about 310 nm and 1375 nm and 40% transmission between 1386 nm and 2000 nm. The Window Operational Research Facility (WORF) is designed to accommodate payloads using this research window. The WORF will provide access to the International Space Station utilities such as data links, temperature cooling loops and power. Emphasis has been placed on the factors which will make this facility an optimum platform for conducting Earth science research

  13. Space headache on Earth: head-down-tilted bed rest studies simulating outer-space microgravity.

    Science.gov (United States)

    van Oosterhout, W P J; Terwindt, G M; Vein, A A; Ferrari, M D

    2015-04-01

    Headache is a common symptom during space travel, both isolated and as part of space motion syndrome. Head-down-tilted bed rest (HDTBR) studies are used to simulate outer space microgravity on Earth, and allow countermeasure interventions such as artificial gravity and training protocols, aimed at restoring microgravity-induced physiological changes. The objectives of this article are to assess headache incidence and characteristics during HDTBR, and to evaluate the effects of countermeasures. In a randomized cross-over design by the European Space Agency (ESA), 22 healthy male subjects, without primary headache history, underwent three periods of -6-degree HDTBR. In two of these episodes countermeasure protocols were added, with either centrifugation or aerobic exercise training protocols. Headache occurrence and characteristics were daily assessed using a specially designed questionnaire. In total 14/22 (63.6%) subjects reported a headache during ≥1 of the three HDTBR periods, in 12/14 (85.7%) non-specific, and two of 14 (14.4%) migraine. The occurrence of headache did not differ between HDTBR with and without countermeasures: 12/22 (54.5%) subjects vs. eight of 22 (36.4%) subjects; p = 0.20; 13/109 (11.9%) headache days vs. 36/213 (16.9%) headache days; p = 0.24). During countermeasures headaches were, however, more often mild (p = 0.03) and had fewer associated symptoms (p = 0.008). Simulated microgravity during HDTBR induces headache episodes, mostly on the first day. Countermeasures are useful in reducing headache severity and associated symptoms. Reversible, microgravity-induced cephalic fluid shift may cause headache, also on Earth. HDTBR can be used to study space headache on Earth. © International Headache Society 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. A Data Management System for International Space Station Simulation Tools

    Science.gov (United States)

    Betts, Bradley J.; DelMundo, Rommel; Elcott, Sharif; McIntosh, Dawn; Niehaus, Brian; Papasin, Richard; Mah, Robert W.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Groups associated with the design, operational, and training aspects of the International Space Station make extensive use of modeling and simulation tools. Users of these tools often need to access and manipulate large quantities of data associated with the station, ranging from design documents to wiring diagrams. Retrieving and manipulating this data directly within the simulation and modeling environment can provide substantial benefit to users. An approach for providing these kinds of data management services, including a database schema and class structure, is presented. Implementation details are also provided as a data management system is integrated into the Intelligent Virtual Station, a modeling and simulation tool developed by the NASA Ames Smart Systems Research Laboratory. One use of the Intelligent Virtual Station is generating station-related training procedures in a virtual environment, The data management component allows users to quickly and easily retrieve information related to objects on the station, enhancing their ability to generate accurate procedures. Users can associate new information with objects and have that information stored in a database.

  15. Crisis Management training at nuclear facilities: Simulations in bomb threats

    International Nuclear Information System (INIS)

    Barton, L.

    1993-01-01

    Substantial enhancements to the study of the theoretical and applied foundations of crisis management have been achieved in recent years. Whereas risk managers study 'the probability that a harmful consequence of a particular event will occur during a given time,' crisis management explores unexpected, potentially negative events with short or long-term implications involving injury to life or property. In this regard, crisis management focuses on the mitigation of organizational after-shock; risk management is preventative in scope. While the risk management function of nuclear facilities has been addressed widely in the literature, comparatively little has been written that addresses the myriad, interdisciplinary challenges associated with managing organizational disarray. The issue of crisis management has assumed paramount importance in recent years due to unexpected geopolitical events (e.g., Persian Gulf War), rampant violence facing organizations (e.g., mass shootings in Killeen, Texas and several U.S. Post Offices) and an acceleration of serious crisis impacting large organizations (e.g., Three Mile Island, Chernobyl, Exxon Valdez, NASA Challenger disaster). Without question, the public is increasingly demanding that organizational managers possess a fundamental understanding of crisis management and its principal underpinnings: effective public communication regarding the event and a return to normalcy, employee and public safety and evacuation measures, and other mitigation measures will protect life and property

  16. MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS

    International Nuclear Information System (INIS)

    Olshevsky, Vyacheslav; Innocenti, Maria Elena; Cazzola, Emanuele; Lapenta, Giovanni; Deca, Jan; Divin, Andrey; Peng, Ivy Bo; Markidis, Stefano

    2016-01-01

    We present a systematic attempt to study magnetic null points and the associated magnetic energy conversion in kinetic particle-in-cell simulations of various plasma configurations. We address three-dimensional simulations performed with the semi-implicit kinetic electromagnetic code iPic3D in different setups: variations of a Harris current sheet, dipolar and quadrupolar magnetospheres interacting with the solar wind, and a relaxing turbulent configuration with multiple null points. Spiral nulls are more likely created in space plasmas: in all our simulations except lunar magnetic anomaly (LMA) and quadrupolar mini-magnetosphere the number of spiral nulls prevails over the number of radial nulls by a factor of 3–9. We show that often magnetic nulls do not indicate the regions of intensive energy dissipation. Energy dissipation events caused by topological bifurcations at radial nulls are rather rare and short-lived. The so-called X-lines formed by the radial nulls in the Harris current sheet and LMA simulations are rather stable and do not exhibit any energy dissipation. Energy dissipation is more powerful in the vicinity of spiral nulls enclosed by magnetic flux ropes with strong currents at their axes (their cross sections resemble 2D magnetic islands). These null lines reminiscent of Z-pinches efficiently dissipate magnetic energy due to secondary instabilities such as the two-stream or kinking instability, accompanied by changes in magnetic topology. Current enhancements accompanied by spiral nulls may signal magnetic energy conversion sites in the observational data

  17. Planning and managing future space facility projects. [management by objectives and group dynamics

    Science.gov (United States)

    Sieber, J. E.; Wilhelm, J. A.; Tanner, T. A.; Helmreich, R. L.; Burgenbauch, S. F.

    1979-01-01

    To learn how ground-based personnel of a space project plan and organize their work and how such planning and organizing relate to work outcomes, longitudinal study of the management and execution of the Space Lab Mission Development Test 3 (SMD 3) was performed at NASA Ames Research Center. A view of the problems likely to arise in organizations and some methods of coping with these problems are presented as well as the conclusions and recommendations that pertain strictly to SMD 3 management. Emphasis is placed on the broader context of future space facility projects and additional problems that may be anticipated. A model of management that may be used to facilitate problem solving and communication - management by objectives (MBO) is presented. Some problems of communication and emotion management that MBO does not address directly are considered. Models for promoting mature, constructive and satisfying emotional relationships among group members are discussed.

  18. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.; Ott, K.O.; Terry, W.K.

    1987-01-01

    A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented

  19. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  20. Design and Validation of Control Room Upgrades Using a Research Simulator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Boring; Vivek Agarwal; Jeffrey C. Joe; Julius J. Persensky

    2012-11-01

    Since 1981, the United States (U.S.) Nuclear Regulatory Commission (NRC) [1] requires a plant- specific simulator facility for use in training at U.S. nuclear power plants (NPPs). These training simulators are in near constant use for training and qualification of licensed NPP operators. In the early 1980s, the Halden Man-Machine Laboratory (HAMMLab) at the Halden Reactor Project (HRP) in Norway first built perhaps the most well known set of research simulators. The HRP offered a high- fidelity simulator facility in which the simulator is functionally linked to a specific plant but in which the human-machine interface (HMI) may differ from that found in the plant. As such, HAMMLab incorporated more advanced digital instrumentation and controls (I&C) than the plant, thereby giving it considerable interface flexibility that researchers took full advantage of when designing and validating different ways to upgrade NPP control rooms. Several U.S. partners—the U.S. NRC, the Electrical Power Research Institute (EPRI), Sandia National Laboratories, and Idaho National Laboratory (INL) – as well as international members of the HRP, have been working with HRP to run control room simulator studies. These studies, which use crews from Scandinavian plants, are used to determine crew behavior in a variety of normal and off-normal plant operations. The findings have ultimately been used to guide safety considerations at plants and to inform advanced HMI design—both for the regulator and in industry. Given the desire to use U.S. crews of licensed operators on a simulator of a U.S. NPP, there is a clear need for a research simulator facility in the U.S. There is no general-purpose reconfigurable research oriented control room simulator facility in the U.S. that can be used for a variety of studies, including the design and validation of control room upgrades.

  1. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  2. Cryogenic and thermal design for the Space Infrared Telescope Facility (SIRTF)

    Science.gov (United States)

    Lee, J. H.; Brooks, W. F.

    1984-01-01

    The 1-meter class cryogenically cooled Space Infrared Telescope Facility (SIRTF) planned by NASA, is scheduled for a 1992 launch. SIRTF would be deployed from the Shuttle, and placed into a sun synchronous polar orbit of 700 km. The facility has been defined for a mission with a minimum initial lifetime of one year in orbit with mission extension that could be made possible through in-orbit servicing of the superfluid helium cryogenic system, and use of a thermal control system. The superfluid dewar would use an orbital disconnect system for the tank supports, and vapor cooling of the barrel baffle. The transient analysis of the design shows that the superfluid helium tank with no active feedback comes within temperature requirements for the nominal orbital aperture heat load, quiescent instrument, and chopper conditions.

  3. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  4. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    Science.gov (United States)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  5. MCNP6 simulation of reactions of interest to FRIB, medical, and space applications

    International Nuclear Information System (INIS)

    Mashnik, Stepan G.

    2015-01-01

    The latest production-version of the Los Alamos Monte Carlo N-Particle transport code MCNP6 has been used to simulate a variety of particle-nucleus and nucleus-nucleus reactions of academic and applied interest to research subjects at the Facility for Rare Isotope Beams (FRIB), medical isotope production, space-radiation shielding, cosmic-ray propagation, and accelerator applications, including several reactions induced by radioactive isotopes, analyzing production of both stable and radioactive residual nuclei. Here, we discuss examples of validation and verification of MCNP6 by comparing with recent neutron spectra measured at the Heavy Ion Medical Accelerator in Chiba, Japan; spectra of light fragments from several reactions measured recently at GANIL, France; INFN Laboratori Nazionali del Sud, Catania, Italy; COSY of the Jülich Research Center, Germany; and cross sections of products from several reactions measured lately at GSI, Darmstadt, Germany; ITEP, Moscow, Russia; and, LANSCE, LANL, Los Alamos, U.S.A. As a rule, MCNP6 provides quite good predictions for most of the reactions we analyzed so far, allowing us to conclude that it can be used as a reliable and useful simulation tool for various applications for FRIB, medical, and space applications involving stable and radioactive isotopes. (author)

  6. Thermally Induced Vibrations of the Hubble Space Telescope's Solar Array 3 in a Test Simulated Space Environment

    Science.gov (United States)

    Early, Derrick A.; Haile, William B.; Turczyn, Mark T.; Griffin, Thomas J. (Technical Monitor)

    2001-01-01

    NASA Goddard Space Flight Center and the European Space Agency (ESA) conducted a disturbance verification test on a flight Solar Array 3 (SA3) for the Hubble Space Telescope using the ESA Large Space Simulator (LSS) in Noordwijk, the Netherlands. The LSS cyclically illuminated the SA3 to simulate orbital temperature changes in a vacuum environment. Data acquisition systems measured signals from force transducers and accelerometers resulting from thermally induced vibrations of the SAI The LSS with its seismic mass boundary provided an excellent background environment for this test. This paper discusses the analysis performed on the measured transient SA3 responses and provides a summary of the results.

  7. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    Science.gov (United States)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  8. Space Station Furnace Facility. Volume 1: Requirements definition and conceptual design study, executive summary

    Science.gov (United States)

    1992-05-01

    The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and

  9. Design and Evaluation of Wood Processing Facilities Using Object-Oriented Simulation

    Science.gov (United States)

    D. Earl Kline; Philip A. Araman

    1992-01-01

    Managers of hardwood processing facilities need timely information on which to base important decisions such as when to add costly equipment or how to improve profitability subject to time-varying demands. The overall purpose of this paper is to introduce a tool that can effectively provide such timely information. A simulation/animation modeling procedure is described...

  10. NASA Johnson Space Center's Planetary Sample Analysis and Mission Science (PSAMS) Laboratory: A National Facility for Planetary Research

    Science.gov (United States)

    Draper, D. S.

    2016-01-01

    NASA Johnson Space Center's (JSC's) Astromaterials Research and Exploration Science (ARES) Division, part of the Exploration Integration and Science Directorate, houses a unique combination of laboratories and other assets for conducting cutting edge planetary research. These facilities have been accessed for decades by outside scientists, most at no cost and on an informal basis. ARES has thus provided substantial leverage to many past and ongoing science projects at the national and international level. Here we propose to formalize that support via an ARES/JSC Plane-tary Sample Analysis and Mission Science Laboratory (PSAMS Lab). We maintain three major research capa-bilities: astromaterial sample analysis, planetary process simulation, and robotic-mission analog research. ARES scientists also support planning for eventual human ex-ploration missions, including astronaut geological training. We outline our facility's capabilities and its potential service to the community at large which, taken together with longstanding ARES experience and expertise in curation and in applied mission science, enable multi-disciplinary planetary research possible at no other institution. Comprehensive campaigns incorporating sample data, experimental constraints, and mission science data can be conducted under one roof.

  11. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    Science.gov (United States)

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  12. Simulation of hydrogen deflagration experiments in the ENACCEF facility using ASTEC code

    International Nuclear Information System (INIS)

    Povilaitis, Mantas; Urbonavicius, Egidijus; Rimkevicius, Sigitas

    2011-01-01

    During a hypothetic severe accident in the NPP involving degradation of the core of a light water reactor, hydrogen could be generated and released into the containment atmosphere posing a deflagration or even a detonation risk. In the case of deflagration, the integrity of the containment would be threatened by the increase of the containment atmosphere pressure and temperature. Other risks of containment damage due to turbulent flames exist, caused by high pressure pulses, shock waves and etc. For the simulation of such processes a reliable numerical codes are needed. Despite flame acceleration being largely studied for homogeneous hydrogen - air mixtures, there are still unresolved issues in this research area, e.g., the effect of turbulence level on flame acceleration and quenching. This paper presents simulations of hydrogen deflagration experiments in the ENACCEF facility using ASTEC code, performed in the frames of International Standard Program No. 49 and SARNET2 project. Experiments and simulations were performed with the aim of evaluating the codes' (a number of participants with various codes participated in the project) capabilities to simulate hydrogen combustion. ASTEC code is an integral lumped-parameter approach based nuclear safety analysis code. For the presented simulations, ASTEC modules CPA (containment thermohydromechanics) and FRONT (hydrogen deflagration) were used. Paper present ENACCEF test facility, its nodalisation schemes developed for the calculations, simulated experiments and simulations' results. Brief description of FRONT module is also presented. Calculations' results are compared with experimental results and analyzed. (author)

  13. Reliability Verification of DBE Environment Simulation Test Facility by using Statistics Method

    International Nuclear Information System (INIS)

    Jang, Kyung Nam; Kim, Jong Soeg; Jeong, Sun Chul; Kyung Heum

    2011-01-01

    In the nuclear power plant, all the safety-related equipment including cables under the harsh environment should perform the equipment qualification (EQ) according to the IEEE std 323. There are three types of qualification methods including type testing, operating experience and analysis. In order to environmentally qualify the safety-related equipment using type testing method, not analysis or operation experience method, the representative sample of equipment, including interfaces, should be subjected to a series of tests. Among these tests, Design Basis Events (DBE) environment simulating test is the most important test. DBE simulation test is performed in DBE simulation test chamber according to the postulated DBE conditions including specified high-energy line break (HELB), loss of coolant accident (LOCA), main steam line break (MSLB) and etc, after thermal and radiation aging. Because most DBE conditions have 100% humidity condition, in order to trace temperature and pressure of DBE condition, high temperature steam should be used. During DBE simulation test, if high temperature steam under high pressure inject to the DBE test chamber, the temperature and pressure in test chamber rapidly increase over the target temperature. Therefore, the temperature and pressure in test chamber continue fluctuating during the DBE simulation test to meet target temperature and pressure. We should ensure fairness and accuracy of test result by confirming the performance of DBE environment simulation test facility. In this paper, in order to verify reliability of DBE environment simulation test facility, statistics method is used

  14. Continuum Vlasov Simulation in Four Phase-space Dimensions

    Science.gov (United States)

    Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.

    2010-11-01

    In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).

  15. Coupling of Large Eddy Simulations with Meteorological Models to simulate Methane Leaks from Natural Gas Storage Facilities

    Science.gov (United States)

    Prasad, K.

    2017-12-01

    Atmospheric transport is usually performed with weather models, e.g., the Weather Research and Forecasting (WRF) model that employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and features comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with models like WRF. FDS has the potential to evaluate the impact of complex topography on near-field dispersion and mixing that is difficult to simulate with a mesoscale atmospheric model. A methodology has been developed to couple the FDS model with WRF mesoscale transport models. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. This approach allows the FDS model to operate as a sub-grid scale model with in a WRF simulation. To test and validate the coupled FDS - WRF model, the methane leak from the Aliso Canyon underground storage facility was simulated. Large eddy simulations were performed over the complex topography of various natural gas storage facilities including Aliso Canyon, Honor Rancho and MacDonald Island at 10 m horizontal and vertical resolution. The goal of these simulations included improving and validating transport models as well as testing leak hypotheses. Forward simulation results were compared with aircraft and tower based in-situ measurements as well as methane plumes observed using the NASA Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) and the next generation instrument AVIRIS-NG. Comparison of simulation results with measurement data demonstrate the capability of the coupled FDS-WRF models to accurately simulate the transport and dispersion of methane plumes over urban domains. Simulated integrated methane enhancements will be presented and

  16. Functional requirements for design of the Space Ultrareliable Modular Computer (SUMC) system simulator

    Science.gov (United States)

    Curran, R. T.; Hornfeck, W. A.

    1972-01-01

    The functional requirements for the design of an interpretive simulator for the space ultrareliable modular computer (SUMC) are presented. A review of applicable existing computer simulations is included along with constraints on the SUMC simulator functional design. Input requirements, output requirements, and language requirements for the simulator are discussed in terms of a SUMC configuration which may vary according to the application.

  17. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    Science.gov (United States)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  18. Darlington tritium removal facility and station upgrading plant dynamic process simulation

    International Nuclear Information System (INIS)

    Busigin, A.; Williams, G. I. D.; Wong, T. C. W.; Kulczynski, D.; Reid, A.

    2008-01-01

    Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station has been operating a Tritium Removal Facility (TRF) and a D 2 O station Upgrading Plant (SUP) since 1989. Both facilities were designed with a Distributed Control System (DCS) and programmable logic controllers (PLC) for process control. This control system was replaced with a DCS only, in 1998. A dynamic plant simulator was developed for the Darlington TRF (DTRF) and the SUP, as part of the computer control system replacement. The simulator was used to test the new software, required to eliminate the PLCs. The simulator is now used for operator training and testing of process control software changes prior to field installation. Dynamic simulation will be essential for the ITER isotope separation system, where the process is more dynamic than the relatively steady-state DTRF process. This paper describes the development and application of the DTRF and SUP dynamic simulator, its benefits, architecture, and the operational experience with the simulator. (authors)

  19. Confirmation of MRS/MPC transfer facility sizing using simulation modeling

    International Nuclear Information System (INIS)

    Houston, E.S.; Hadley, J.D.

    1994-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982, as amended, requires the Department of Energy to begin receiving spent nuclear fuel (SNF) from utilities in January 1998. A repository will not be completed in time for the scheduled receipt of SNF. A Monitored Retrievable Storage (MRS) Facility is therefore a feasible solution to bridge the gap between the 1998 date for fuel acceptance and the startup of the repository. SNF will be stored temporarily at the MRS and later retrieved from storage and shipped to the repository. To simplify fuel handling and to standardize components, the multi-purpose canister (MPC) concept was investigated. The MPC would be a sealed, metallic canister containing multiple SNF assemblies in a dry inert environment. MPCs would be placed into different overpacks for transportation, storage, and disposal at the repository. The MRS transfer facility MPC and SNF throughput requirements, assumptions, and operating concepts were used to initially determine the size of the facility and the major equipment contained within the facility. This initial estimate was based on simplified calculation techniques. The adequacy of the design configurations were then confirmed using SLAM simulation modeling software. Modeling incorporates uncertainties in task durations, the effects of equipment reliability, availability of personnel and equipment, and system breakdowns. This paper describes how the model was developed and how it is used to verify the transfer facility size. It also illustrates how problems with the facility design, operational concepts, and staffing are identified with the results of the model

  20. PWR station blackout transient simulation in the INER integral system test facility

    International Nuclear Information System (INIS)

    Liu, T.J.; Lee, C.H.; Hong, W.T.; Chang, Y.H.

    2004-01-01

    Station blackout transient (or TMLB' scenario) in a pressurized water reactor (PWR) was simulated using the INER Integral System Test Facility (IIST) which is a 1/400 volumetrically-scaled reduce-height and reduce-pressure (RHRP) simulator of a Westinghouse three-loop PWR. Long-term thermal-hydraulic responses including the secondary boil-off and the subsequent primary saturation, pressurization and core uncovery were simulated based on the assumptions of no offsite and onsite power, feedwater and operator actions. The results indicate that two-phase discharge is the major depletion mode since it covers 81.3% of the total amount of the coolant inventory loss. The primary coolant inventory has experienced significant re-distribution during a station blackout transient. The decided parameter to avoid the core overheating is not the total amount of the coolant inventory remained in the primary core cooling system but only the part of coolant left in the pressure vessel. The sequence of significant events during transient for the IIST were also compared with those of the ROSA-IV large-scale test facility (LSTF), which is a 1/48 volumetrically-scaled full-height and full-pressure (FHFP) simulator of a PWR. The comparison indicates that the sequence and timing of these events during TMLB' transient studied in the RHRP IIST facility are generally consistent with those of the FHFP LSTF. (author)

  1. A Computer Simulation to Assess the Nuclear Material Accountancy System of a MOX Fuel Fabrication Facility

    International Nuclear Information System (INIS)

    Portaix, C.G.; Binner, R.; John, H.

    2015-01-01

    SimMOX is a computer programme that simulates container histories as they pass through a MOX facility. It performs two parallel calculations: · the first quantifies the actual movements of material that might be expected to occur, given certain assumptions about, for instance, the accumulation of material and waste, and of their subsequent treatment; · the second quantifies the same movements on the basis of the operator's perception of the quantities involved; that is, they are based on assumptions about quantities contained in the containers. Separate skeletal Excel computer programmes are provided, which can be configured to generate further accountancy results based on these two parallel calculations. SimMOX is flexible in that it makes few assumptions about the order and operational performance of individual activities that might take place at each stage of the process. It is able to do this because its focus is on material flows, and not on the performance of individual processes. Similarly there are no pre-conceptions about the different types of containers that might be involved. At the macroscopic level, the simulation takes steady operation as its base case, i.e., the same quantity of material is deemed to enter and leave the simulated area, over any given period. Transient situations can then be superimposed onto this base scene, by simulating them as operational incidents. A general facility has been incorporated into SimMOX to enable the user to create an ''act of a play'' based on a number of operational incidents that have been built into the programme. By doing this a simulation can be constructed that predicts the way the facility would respond to any number of transient activities. This computer programme can help assess the nuclear material accountancy system of a MOX fuel fabrication facility; for instance the implications of applying NRTA (near real time accountancy). (author)

  2. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    effect on carbonaceous aerosols. And then the selected data observed by ADEOS-2/GLI and POLDER in 2003 are treated by using Vector form Method of Successive Order of Scattering (VMSOS) for radiative transfer simulations in the semi-infinite atmosphere [2]. Finally the obtained optical properties of the carbonaceous aerosols are investigated in comparison with the numerical model simulations of SPRINTARS. In spite of the limited case studies, it has been pointed out that NUV-channel data are effective for retrieval of the carbonaceous aerosol properties. Therefore we have to treat with this issue for not only detection of biomass burning plume but also retrieval itself. If that happens, synthetic analysis based on multi-channel and/or polarization measurements become practical, and the proposed procedure and results are available for a feasibility study of coming space missions. [1] Sano, I., Y. Okada, M. Mukai and S. Mukai, "Retrieval algorithm based on combined use of POLDER and GLI data for biomass aerosols," J. RSSJ, vol. 29, no. 1, pp. 54-59, doi:10.11440/rssj.29.54, 2009. [2] Mukai, S., M. Nakata, M. Yasumoto, I. Sano and A. Kokhanovsky, "A study of aerosol pollution episode due to agriculture biomass burning in the east-central China using satellite data," Front. Environ. Sci., vol. 3:57, doi: 10.3389/fenvs.2015.00057, 2015.

  3. Space-charge-dominated beam dynamics simulations using the massively parallel processors (MPPs) of the Cray T3D

    International Nuclear Information System (INIS)

    Liu, H.

    1996-01-01

    Computer simulations using the multi-particle code PARMELA with a three-dimensional point-by-point space charge algorithm have turned out to be very helpful in supporting injector commissioning and operations at Thomas Jefferson National Accelerator Facility (Jefferson Lab, formerly called CEBAF). However, this algorithm, which defines a typical N 2 problem in CPU time scaling, is very time-consuming when N, the number of macro-particles, is large. Therefore, it is attractive to use massively parallel processors (MPPs) to speed up the simulations. Motivated by this, the authors modified the space charge subroutine for using the MPPs of the Cray T3D. The techniques used to parallelize and optimize the code on the T3D are discussed in this paper. The performance of the code on the T3D is examined in comparison with a Parallel Vector Processing supercomputer of the Cray C90 and an HP 735/15 high-end workstation

  4. 3D space combat simulation game with artificial intelligence

    OpenAIRE

    Pernička, Václav

    2013-01-01

    The goal of this thesis is to design and implement a 3D space shooter with artifitial intelligence. This thesis includes theoretic analysis of space shooters, types of artifitial intelligence and assumptions important for developing in 3D space. The game also includes a simple artifitial intelligent player.

  5. Opportunities for Suborbital Space and Atmospheric Research Facilities on Blue Origin's New Shepard Crew Capsule

    Science.gov (United States)

    Wagner, E.; DeForest, C. E.

    2016-12-01

    With the emergence of the commercial space industry, researchers now have more options than ever for conducting research aboard space-going platforms. Blue Origin's New Shepard spacecraft offers a large-format crew capsule, capable of carrying a wide range of high-altitude and microgravity payloads above the Karman Line (100 km). With high flight rates and short approval timelines, investigators are able to use data from one flight to refine research objectives and quickly fly again, closing the loop on the scientific method and rapidly advancing technology development. Young investigators have ready access to real-world experiences in building flight hardware, and more involved missions are using this low-barrier environment to raise Technology Readiness Level of components or subsystems. This talk will introduce the standard interfaces and operations for payloads already flying within the New Shepard capsule. We will also explore opportunities for custom facilities that would allow researchers access to the space environment at altitudes between 60 and 100 km. We will discuss the unique science that can be conducted in this region, above where balloons can dwell, but below satellite orbits, including investigations in heliophysics, planetary science, and aeronomy.

  6. Production and quality assurance automation in the Goddard Space Flight Center Flight Dynamics Facility

    Science.gov (United States)

    Chapman, K. B.; Cox, C. M.; Thomas, C. W.; Cuevas, O. O.; Beckman, R. M.

    1994-01-01

    The Flight Dynamics Facility (FDF) at the NASA Goddard Space Flight Center (GSFC) generates numerous products for NASA-supported spacecraft, including the Tracking and Data Relay Satellites (TDRS's), the Hubble Space Telescope (HST), the Extreme Ultraviolet Explorer (EUVE), and the space shuttle. These products include orbit determination data, acquisition data, event scheduling data, and attitude data. In most cases, product generation involves repetitive execution of many programs. The increasing number of missions supported by the FDF has necessitated the use of automated systems to schedule, execute, and quality assure these products. This automation allows the delivery of accurate products in a timely and cost-efficient manner. To be effective, these systems must automate as many repetitive operations as possible and must be flexible enough to meet changing support requirements. The FDF Orbit Determination Task (ODT) has implemented several systems that automate product generation and quality assurance (QA). These systems include the Orbit Production Automation System (OPAS), the New Enhanced Operations Log (NEOLOG), and the Quality Assurance Automation Software (QA Tool). Implementation of these systems has resulted in a significant reduction in required manpower, elimination of shift work and most weekend support, and improved support quality, while incurring minimal development cost. This paper will present an overview of the concepts used and experiences gained from the implementation of these automation systems.

  7. Simulation of natural circulation on an integral type experimental facility, MASLWR

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Youngjong; Lim, Sungwon; Ha, Jaejoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The OSU MASLWR test facility was reconfigured to eliminate a recurring grounding problem and improve facility reliability in anticipation of conducting an IAEA International Collaborative Standard Problem (ICSP). The purpose of ICSP is to provide experimental data on flow instability phenomena under natural circulation conditions and coupled containment/reactor vessel behavior in integral-type reactors, and to evaluate system code capabilities to predict natural circulation phenomena for integral type PWR, by simulating an integrated experiment. A natural circulation in the primary side during various core powers is analyzed using TASS/SMR code for the integral type experimental facility. The calculation results show higher steady state primary flow than experiment. If it matches the initial flow with experiment, it shows lower primary flow than experiment according to the increase of power. The code predictions may be improved by applying a Reynolds number dependent form loss coefficient to accurately account for unrecoverable pressure losses.

  8. Development of moderated neutron calibration fields simulating workplaces of MOX fuel facilities

    International Nuclear Information System (INIS)

    Tsujimura, Norio; Yoshida, Tadayoshi; Takada, Chie

    2005-01-01

    It is important for the MOX fuel facilities to control neutrons produced by the spontaneous fission of plutonium isotopes and those from (α,n) reactions between 18 O and α particles emitted by 238 Pu. Neutron dose meters should be calibrated for measuring these neutrons. We have developed moderated-neutron calibration fields employing a 252 Cf neutron source and moderators mainly for the characteristics evaluation and the calibration of neutron detectors used in MOX fuel facilities. Neutron energy spectrum can be adjusted by changing the position of the 252 Cf neutron source and combining different moderators to simulate the neutron field of the MOX fuel facility. This performance is realized owing to using an existing neutron irradiation room. (K. Yoshida)

  9. A proton irradiation test facility for space research in Ankara, Turkey

    Science.gov (United States)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  10. Sensitivity analysis on the interfacial drag in SPACE code to simulate UPTF separate effect test about loop seal clearance phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sukho; Lim, Sanggyu; You, Gukjong; Park, Youngsheop [Korea Hydro and Nuclear Power Company, Ltd., Daejeon (Korea, Republic of)

    2014-05-15

    The nuclear thermal hydraulic system code known as SPACE (Safety and Performance Analysis CodE) was developed and its V and V (Verification and Validation) have been conducted using well-known SETs (Separate Effect Tests) and IETs (Integral Effect Tests). At the same time, the SBLOCA (Small Break Loss of Coolant Accident) methodology in accordance with Appendix K of 10CFR50 for the APR1400 (Advanced Power Reactor 1400) was developed and applied to regulatory body for licensing in 2013. Especially, the SBLOCA methodology developed using SPACE v2.14 code adopts inherent test matrix independent of V and V test to show its conservatism for important phenomena. In this paper, the predictability of SPACE code for UPTF (Upper Plenum Test Facility) test simulating loop seal clearance of SBLOCA important phenomena and the related sensitivity analysis are introduced.

  11. Parallel Finite Element Particle-In-Cell Code for Simulations of Space-charge Dominated Beam-Cavity Interactions

    International Nuclear Information System (INIS)

    Candel, A.; Kabel, A.; Ko, K.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.

    2007-01-01

    Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element (FE) particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order FE methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented

  12. Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Improvement of numerical simulation methods on safety assessment of the spent fuel storage facility is one of main objectives of JNES activities. For the thermal and structural analyses, the radiative heat transfer analysis code S-FOKS has been developed to reduce computing time and to avoid using large memory area. In order to simulate the specular reflection, a new model (called 'model-2') is planned to install to S-FOKS code. The theoretical values with the specular reflection in simple geometry were lead to verify S-FOKS model-2. (author)

  13. Simulation of atmosphere stratification in the HDR test facility with the CONTAIN code

    International Nuclear Information System (INIS)

    Skerlavaj, A.; Mavko, B.; Kljenak, I.

    2001-01-01

    The test E11.2 'Hydrogen distribution in loop flow geometry', which was performed in the Heissdampf Reaktor containment test facility in Germany, was simulated with the CONTAIN computer code. The predicted pressure history and thermal stratification are in relatively good agreement with the measurements. The compositional stratification within the containment was qualitatively well predicted, although the degree of the stratification in the dome area was slightly underestimated. The analysis of simulation results enabled a better understanding of the physical phenomena during the test.(author)

  14. Comparison the Results of Numerical Simulation And Experimental Results for Amirkabir Plasma Focus Facility

    Science.gov (United States)

    Goudarzi, Shervin; Amrollahi, R.; Niknam Sharak, M.

    2014-06-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  15. Comparison the results of numerical simulation and experimental results for Amirkabir plasma focus facility

    International Nuclear Information System (INIS)

    Goudarzi, Shervin; Amrollahi, R; Sharak, M Niknam

    2014-01-01

    In this paper the results of the numerical simulation for Amirkabir Mather-type Plasma Focus Facility (16 kV, 36μF and 115 nH) in several experiments with Argon as working gas at different working conditions (different discharge voltages and gas pressures) have been presented and compared with the experimental results. Two different models have been used for simulation: five-phase model of Lee and lumped parameter model of Gonzalez. It is seen that the results (optimum pressures and current signals) of the Lee model at different working conditions show better agreement than lumped parameter model with experimental values.

  16. Beam dynamics simulations in the photo-cathode RF gun for the CLIC test facility

    International Nuclear Information System (INIS)

    Marchand, P.; Rinolfi, L.

    1992-01-01

    The CERN CLIC Test Facility (CTF) uses an RF gun with a laser driven photo-cathode in order to generate electron pulses of high charge (≥10 nC) and short duration (≤20 ps). The RF gun consists of a 3 GHz 1 + 1/2 cell cavity based on the design originally proposed at BNL which minimizes the non-linearities in the transverse field. The beam dynamics in the cavity is simulated by means of the multiparticle tracking code PARMELA. The results are compared to previous simulations as well as to the first experimental data. (author). 4 refs., 4 tabs., 4 figs

  17. Beam trajectory simulation program at the National Institute of Nuclear Research Tandem Accelerator facility

    International Nuclear Information System (INIS)

    Murillo C, G.

    1996-01-01

    The main object of this thesis is to show in a clear and simple way to the people in general, the function of the Tandem Accelerator located on site the ININ facilities. For this presentation, a computer program was developed. The software written in C language in a structural form, simulates the ion production and its trajectory in a schematic and in an easy way to comprehend. According to the goals of this work, the simulation also shows details of some of the machine components like the source, the accelerator cavity, ,and the bombarding chamber. Electric and magnetic fields calculations are included for the 90 degrees bending magnet and quadrupoles. (Author)

  18. RELAP5 simulations of critical break experiments in the RD-14 test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, I-G; Cho, Y-J; Lee, S [Korea Inst. of Nuclear Safety, Taejon (Korea, Republic of)

    1996-12-31

    RELAP5/MOD3 simulations of critical break tests in the RD-14 facility, modelling a loss of coolant in a CANDU reactor, were compared to the experimental results, and to CATHENA simulations of the early stage of the test. The RELAP5/MOD3 predicted thermal hydraulic behaviour reasonably well, but some discrepancies were observed after emergency cooling injection (ECI). Pressure differences between headers govern flow through the heated sections, particularly after ECI, and there is much uncertainty in the header pressures; further work is therefore recommended. 6 refs., 3 figs.

  19. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  20. The simulation of stationary and non-stationary regime operation of heavy water production facilities

    International Nuclear Information System (INIS)

    Peculea, M.; Beca, T.; Constantinescu, D.M.; Dumitrescu, M.; Dimulescu, A.; Isbasescu, G.; Stefanescu, I.; Mihai, M.; Dogaru, C.; Marinescu, M.; Olariu, S.; Constantin, T.; Necula, A.

    1995-01-01

    This paper refers to testing procedures of the production capacity of heavy water production pilot, industrial scale plants and of heavy water reconcentration facilities. Simulation codes taking into account the mass and heat transfers inside the exchange columns were developed. These codes provided valuable insight about the isotope build-up of the installation which allowed estimating the time of reaching the stationary regime. Also transient regimes following perturbations in the operating parameters (i.e. temperature, pressure, fluid rates) of the installation were simulated and an optimal rate of routine inspections and adjustments was thus established

  1. Main steam line break accident simulation of APR1400 using the model of ATLAS facility

    Science.gov (United States)

    Ekariansyah, A. S.; Deswandri; Sunaryo, Geni R.

    2018-02-01

    A main steam line break simulation for APR1400 as an advanced design of PWR has been performed using the RELAP5 code. The simulation was conducted in a model of thermal-hydraulic test facility called as ATLAS, which represents a scaled down facility of the APR1400 design. The main steam line break event is described in a open-access safety report document, in which initial conditions and assumptionsfor the analysis were utilized in performing the simulation and analysis of the selected parameter. The objective of this work was to conduct a benchmark activities by comparing the simulation results of the CESEC-III code as a conservative approach code with the results of RELAP5 as a best-estimate code. Based on the simulation results, a general similarity in the behavior of selected parameters was observed between the two codes. However the degree of accuracy still needs further research an analysis by comparing with the other best-estimate code. Uncertainties arising from the ATLAS model should be minimized by taking into account much more specific data in developing the APR1400 model.

  2. ISRU Soil Mechanics Vacuum Facility: Soil Bin Preparation and Simulant Strength Characterization

    Science.gov (United States)

    Kleinhenz, Julie; Wilkinson, Allen

    2012-01-01

    Testing in relevant environments is key to exploration mission hardware development. This is true on both the component level (in early development) and system level (in late development stages). During ISRU missions the hardware will interface with the soil (digging, roving, etc) in a vacuum environment. A relevant test environment will therefore involve a vacuum chamber with a controlled, conditioned simulant bed. However, in earth-based granular media, such as lunar soil simulant, gases trapped within the material pore structures and water adsorbed to all particle surfaces will release when exposed to vacuum. Early vacuum testing has shown that this gas release can occur violently, which loosens and weakens the simulant, altering the consolidation state. The Vacuum Facility #13, a mid-size chamber (3.66m tall, 1.5m inner diameter) at the NASA Glenn Research Center has been modified to create a soil mechanics test facility. A 0.64m deep by 0.914m square metric ton bed of lunar simulant was placed under vacuum using a variety of pumping techniques. Both GRC-3 and LHT-3M simulant types have been used. An electric cone penetrometer was used to measure simulant strength properties at vacuum including: cohesion, friction angle, bulk density and shear modulus. Simulant disruptions, caused by off gassing, affected the strength properties, but could be mitigated by reducing pump rate. No disruptions were observed at pressures below 2.5Torr, regardless of the pump rate. However, slow off gassing of the soil lead to long test times, a full week, to reach 10-5Torr. This work highlights the need for robotic machine-simulant hardware and operations in vacuum to expeditiously perform (sub-)systems tests.

  3. Simulated physical inventory verification exercise at a mixed-oxide fuel fabrication facility

    International Nuclear Information System (INIS)

    Reilly, D.; Augustson, R.

    1985-01-01

    A physical inventory verification (PIV) was simulated at a mixed-oxide fuel fabrication facility. Safeguards inspectors from the International Atomic Energy Agency (IAEA) conducted the PIV exercise to test inspection procedures under ''realistic but relaxed'' conditions. Nondestructive assay instrumentation was used to verify the plutonium content of samples covering the range of material types from input powders to final fuel assemblies. This paper describes the activities included in the exercise and discusses the results obtained. 5 refs., 1 fig., 6 tabs

  4. Desert Cyanobacteria under simulated space and Martian conditions

    Science.gov (United States)

    Billi, D.; Ghelardini, P.; Onofri, S.; Cockell, C. S.; Rabbow, E.; Horneck, G.

    2008-09-01

    The environment in space and on planets such as Mars, can be lethal to living organisms and high levels of tolerance to desiccation, cold and radiation are needed for survival: rock-inhabiting cyanobacteria belonging to the genus Chroococcidiopsis can fulfil these requirements [1]. These cyanobacteria constantly appear in the most extreme and dry habitats on Earth, including the McMurdo Dry Valleys (Antarctica) and the Atacama Desert (Chile), which are considered the closest terrestrial analogs of two Mars environmental extremes: cold and aridity. In their natural environment, these cyanobacteria occupy the last refuges for life inside porous rocks or at the stone-soil interfaces, where they survive in a dry, dormant state for prolonged periods. How desert strains of Chroococcidiopsis can dry without dying is only partially understood, even though experimental evidences support the existence of an interplay between mechanisms to avoid (or limit) DNA damage and repair it: i) desert strains of Chroococcidiopsis mend genome fragmentation induced by ionizing radiation [2]; ii) desiccation-survivors protect their genome from complete fragmentation; iii) in the dry state they show a survival to an unattenuated Martian UV flux greater than that of Bacillus subtilis spores [3], and even though they die following atmospheric entry after having orbited the Earth for 16 days [4], they survive to simulated shock pressures up to 10 GPa [5]. Recently additional experiments were carried out at the German Aerospace Center (DLR) of Cologne (Germany) in order to identify suitable biomarkers to investigate the survival of Chroococcidiopsis cells present in lichen-dominated communities, in view of their direct and long term space exposition on the International Space Station (ISS) in the framework of the LIchens and Fungi Experiments (LIFE, EXPOSEEuTEF, ESA). Multilayers of dried cells of strains CCMEE 134 (Beacon Valley, Antarctica), and CCMEE 123 (costal desert, Chile ), shielded by

  5. A Steam Jet Plume Simulation in a Large Bulk Space with a System Code MARS

    International Nuclear Information System (INIS)

    Bae, Sung Won; Chung, Bub Dong

    2006-01-01

    From May 2002, the OECD-SETH group has launched the PANDA Project in order to provide an experimental data base for a multi-dimensional code assessment. OECD-SETH group expects the PANDA Project will meet the increasing needs for adequate experimental data for a 3D distribution of relevant variables like the temperature, velocity and steam-air concentrations that are measured with a sufficient resolution and accuracy. The scope of the PANDA Project is the mixture stratification and mixing phenomena in a large bulk space. Total of 24 test series are still being performed in PSI, Switzerland. The PANDA facility consists of 2 main large vessels and 1 connection pipe Within the large vessels, a steam injection nozzle and outlet vent are arranged for each test case. These tests are categorized into 3 modes, i.e. the high momentum, near wall plume, and free plume tests. KAERI has also participated in the SETH group since 1997 so that the multi-dimensional capability of the MARS code could be assessed and developed. Test 17, the high steam jet injection test, has already been simulated by MARS and shows promising results. Now, the test 9 and 9bis cases which use a low speed horizontal steam jet flow have been simulated and investigated

  6. Space Infrared Telescope Facility (SIRTF) - Operations concept. [decreasing development and operations cost

    Science.gov (United States)

    Miller, Richard B.

    1992-01-01

    The development and operations costs of the Space IR Telescope Facility (SIRTF) are discussed in the light of minimizing total outlays and optimizing efficiency. The development phase cannot extend into the post-launch segment which is planned to only support system verification and calibration followed by operations with a 70-percent efficiency goal. The importance of reducing the ground-support staff is demonstrated, and the value of the highly sensitive observations to the general astronomical community is described. The Failure Protection Algorithm for the SIRTF is designed for the 5-yr lifetime and the continuous venting of cryogen, and a science driven ground/operations system is described. Attention is given to balancing cost and performance, prototyping during the development phase, incremental development, the utilization of standards, and the integration of ground system/operations with flight system integration and test.

  7. Lustre Distributed Name Space (DNE) Evaluation at the Oak Ridge Leadership Computing Facility (OLCF)

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, James S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Leverman, Dustin B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Hanley, Jesse A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences; Oral, Sarp [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Computational Sciences

    2016-08-22

    This document describes the Lustre Distributed Name Space (DNE) evaluation carried at the Oak Ridge Leadership Computing Facility (OLCF) between 2014 and 2015. DNE is a development project funded by the OpenSFS, to improve Lustre metadata performance and scalability. The development effort has been split into two parts, the first part (DNE P1) providing support for remote directories over remote Lustre Metadata Server (MDS) nodes and Metadata Target (MDT) devices, while the second phase (DNE P2) addressed split directories over multiple remote MDS nodes and MDT devices. The OLCF have been actively evaluating the performance, reliability, and the functionality of both DNE phases. For these tests, internal OLCF testbed were used. Results are promising and OLCF is planning on a full DNE deployment by mid-2016 timeframe on production systems.

  8. Development of automation and robotics for space via computer graphic simulation methods

    Science.gov (United States)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  9. A reference radiation facility for dosimetry at flight altitude and in space

    CERN Document Server

    Ferrari, A; Silari, Marco

    2001-01-01

    A reference facility for the intercomparison of active and passive detectors in high-energy neutron fields is available at CERN since 1993. A positive charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction are filtered by a shielding of either 80 cm of concrete or 40 cm of iron. Behind the iron shielding, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shielding, the neutron spectrum has a pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. The facility is used for a variety of investigations with active and passive neutron dosimeters. Its use for measurements related to the space programme is discussed. (21 refs).

  10. The CERN-EU radiation facility for dosimetry at flight altitude and in space

    CERN Document Server

    Ferrari, A; Silari, Marco

    2001-01-01

    A reference facility for the inter-comparison of active and passive detectors in complex high-energy neutron fields is available at CERN since 1993. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield made of either 80 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high- energy component of the radiation field at commercial flight altitudes created by cosmic rays. Recent Monte Carlo calculations are presented, performed for different beam conditions and shielding configurations in view of a possible upgrade of the facility for measurements related to the space program. (20 refs).

  11. Simulation of power maneuvering experiment of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In the present study, KINS simulation result by the MARS-KS code (KS-002 version) for the SP-3 experiment is presented in detail and conclusion on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the power maneuvering experiment of the MASLWR test facility. Steady run shows the helical coil specific heat transfer model of the code is reasonable. However, identified discrepancy of the primary mass flowrate at transient run shows code performance for pressure drop needs to be improved considering sensitivity of the flowrate to the pressure drop at natural circulation. Since 2009, IAEA has conducted a research program entitled as ICSP (International Collaborative Standard Problem) on integral PWR design to evaluate current the state of the art of thermal-hydraulic code in simulating natural circulation flow within integral type reactor. In this ICSP, experimental data obtained from MASLWR (Multi-Application Small Light Water Reactor) test facility located at Oregon state university in the US have been simulated by various thermal-hydraulic codes of each participant of the ICSP and compared among others. MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is currently being developed in Korea also adopts a helical coil steam generator, Korea Institute of Nuclear Safety (KINS) has joined this ICSP to assess the applicability of a domestic regulatory audit thermal-hydraulic code (i. e. MARS-KS code) for the SMART reactor including wall-to-fluid heat transfer model modification based on independent international experiment data. In the ICSP, two types of transient experiments have been focused and they are loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels (SP-3)

  12. Evaluation of prototype Advanced Life Support (ALS) pack for use by the Health Maintenance Facility (HMF) on Space Station Freedom (SSF)

    Science.gov (United States)

    Krupa, Debra T.; Gosbee, John; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    The purpose is to evaluate the prototype Advanced Life Support (ALS) Pack which was developed for the Health Maintenance Facility (HMF). This pack will enable the Crew Medical Officer (CMO) to have ready access to advanced life support supplies and equipment for time critical responses to any situation within the Space Station Freedom. The objectives are: (1) to evaluate the design of the pack; and (2) to collect comments for revision to the design of the pack. The in-flight test procedures and other aspects of the KC-135 parabolic test flight to simulate weightlessness are presented.

  13. Simulation of Particle Fluxes at the DESY-II Test Beam Facility

    International Nuclear Information System (INIS)

    Schuetz, Anne

    2015-05-01

    In the course of this Master's thesis ''Simulation of Particle Fluxes at the DESY-II Test Beam Facility'' the test beam generation for the DESY test beam line was studied in detail and simulated with the simulation software SLIC. SLIC uses the Geant4 toolkit for realistic Monte Carlo simulations of particles passing through detector material.After discussing the physics processes relevant for the test beam generation and the principles of the beam generation itself, the software used is introduced together with a description of the functionality of the Geant4 Monte Carlo simulation. The simulation of the test beam line follows the sequence of the test beam generation. Therefore, it starts with the simulation of the beam bunch of the synchrotron accelerator DESY-II, and proceeds step by step with the single test beam line components. An additional benefit of this thesis is the provision of particle flux and trajectory maps, which make fluxes directly visible by following the particle tracks through the simulated beam line. These maps allow us to see each of the test beam line components, because flux rates and directions change rapidly at these points. They will also guide the decision for placements of future test beam line components and measurement equipment.In the end, the beam energy and its spread, and the beam rate of the final test beam in the test beam area were studied in the simulation, so that the results can be compared to the measured beam parameters. The test beam simulation of this Master's thesis will serve as a key input for future test beam line improvements.

  14. A Path Space Extension for Robust Light Transport Simulation

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Pantaleoni, Jacopo; Jensen, Henrik Wann

    2012-01-01

    We present a new sampling space for light transport paths that makes it possible to describe Monte Carlo path integration and photon density estimation in the same framework. A key contribution of our paper is the introduction of vertex perturbations, which extends the space of paths with loosely...

  15. Phase space measurements at non-accessible point on the beam path of an accelerator facility

    International Nuclear Information System (INIS)

    Hassan, A.

    2004-01-01

    The optimization of beam lines for particles extracted from accelerator facilities requires the knowledge of beam parameters. A method for the measurement of phase space and beam intensity distribution is represented. This method depends on the setting of quadrupole lenses that allows the imaging of beam profiles at arbitrary positions along the beam path on the same multi-wire proportional chamber, where the intensity distribution can be evaluated. The necessary focusing powers for a certain imaging task are calculated in a thin lens approximation. The corresponding focusing power for thick quadrupole lenses are calculated using the PC transport program. A comparison of the calculated focusing powers for thin and thick lenses reveals deviations at the highest field strengths, due to saturation effect. The position of the beam waist in normal and angular space is directly calculated and visualized. The horizontal and vertical waist positions are found to be rather independent of the beam energy. Extensive calculation was done to study the effect of a reduced aperture on the maximum beam emittances aa x and aa y of the extracted particles. The main result shows that the maximum emittance passing through depends on the waist distant and the diameter of the reduced aperture. (orig.)

  16. Rat maintenance in the Research Animal Holding Facility during the flight of Space Lab 3

    Science.gov (United States)

    Fast, T.; Grindeland, R.; Kraft, L.; Ruder, M.; Vasques, M.

    1985-01-01

    To test the husbandry capabilities of the Research Animal Holding Facility (RAHF) during space flight, 24 male rats were flown on Spacelab 3 for 7 days. Twelve large rats (400 g, LF), 5 of which had telemetry devices implanted (IF), and 12 small rats (200 g, SF) were housed in the RAHF. Examination 3 hr after landing (R + 3) revealed the rats to be free of injury, well nourished, and stained with urine. At R + 10 the rats were lethargic and atonic with hyperemia of the extremities and well groomed except for a middorsal area stained with urine and food. Both LF and SF rats showed weight gains comparable to their IG controls; IF rats grew less than controls. Food and water consumption were similar for flight and control groups. Plasma concentrations of total protein, sodium, albumin and creatinine did not differ between flight and control groups. LF and SF rats had elevated plasma glucose, and SF rats had increased blood urea nitrogen, potassium and glutamic pyruvic transaminase. These observations indicate that rats maintained in the RAHF were healthy, well nourished and experienced minimal stress; physiological changes in the rats can thus be attributed to the effects of space flight.

  17. Detectability of molecular gas signatures on Jupiter’s moon Europa from ground and space-based facilities

    Science.gov (United States)

    Paganini, Lucas; Villanueva, Geronimo Luis; Hurford, Terry; Mandell, Avi; Roth, Lorenz; Mumma, Michael J.

    2017-10-01

    Plumes and their effluent material could provide insights into Europa’s subsurface chemistry and relevant information about the prospect that life could exist, or now exists, within the ocean. In 2016, we initiated a strong observational campaign to characterize the chemical composition of Europa’s surface and exosphere using high-resolution infrared spectroscopy. While several studies have focused on the detection of water, or its dissociation products, there could be a myriad of complex molecules released by erupting plumes. Our IR survey has provided a serendipitous search for several key molecular species, allowing a chemical characterization that can aid the investigation of physical processes underlying its surface. Since our tentative water detection, presented at the 2016 DPS meeting, we have continued the observations of Europa during 2017 covering a significant extent of the moon’s terrain and orbital position (true anomaly), accounting for over 50 hr on source. Current analyses of these data are showing spectral features that grant further investigation. In addition to analysis algorithms tailored to the examination of Europan data, we have developed simulation tools to predict the possible detection of molecular species using ground-based facilities like the Keck Observatory, NASA’s Infrared Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA). In this presentation we will discuss the detectability of key molecular species with these remote sensing facilities, as well as expected challenges and future strategies with upcoming spacecrafts such as the James Webb Space Telescope (JWST), the Large UV/Optical/Infrared Surveyor (LUVOIR), and a possible gas spectrometer onboard an orbiter.This work is supported by NASA’s Keck PI Data Award (PI L.P.) and Solar System Observation Program (PI L.P.), and by the NASA Astrobiology Institute through funding awarded to the Goddard Center for Astrobiology (PI M.J.M.).

  18. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    Science.gov (United States)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  19. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  20. Simulation of power maneuvering experiment of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ju Yeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    In this ICSP, experimental data obtained from MASLWR (Mulit-Application Small Light Water Reactor) test facility located at Oregon state university in the US have been simulated by various thermal-hydraulic codes of each participant of the ICSP and compared among others. MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is currently being developed in Korea also adopts a helical coil steam generator, Korea Institute of Nuclear Safety (KINS) has joined this ICSP to assess the applicability of a domestic regulatory audit thermal-hydraulic code (i. e. MARS-KS code) for the SMART reactor including wall-to-fluid heat transfer model modification based on independent international experiment data. In the ICSP, two types of transient experiments have been focused and they are 1) loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels. In the present study, KINS simulation result by the MARS-KS code (KS-002 version) for the SP-3 experiment is presented in detail and conclusion on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the power maneuvering experiment of the MASLWR test facility. Steady run shows the helical coil specific heat transfer model of the code is reasonable. However, identified discrepancy of the primary mass flowrate at transient run shows code performance for pressure drop needs to be improved considering sensitivity of the flowrate to the pressure drop at natural circulation.

  1. Unified Approach to Modeling and Simulation of Space Communication Networks and Systems

    Science.gov (United States)

    Barritt, Brian; Bhasin, Kul; Eddy, Wesley; Matthews, Seth

    2010-01-01

    Network simulator software tools are often used to model the behaviors and interactions of applications, protocols, packets, and data links in terrestrial communication networks. Other software tools that model the physics, orbital dynamics, and RF characteristics of space systems have matured to allow for rapid, detailed analysis of space communication links. However, the absence of a unified toolset that integrates the two modeling approaches has encumbered the systems engineers tasked with the design, architecture, and analysis of complex space communication networks and systems. This paper presents the unified approach and describes the motivation, challenges, and our solution - the customization of the network simulator to integrate with astronautical analysis software tools for high-fidelity end-to-end simulation. Keywords space; communication; systems; networking; simulation; modeling; QualNet; STK; integration; space networks

  2. Fire simulation in nuclear facilities: the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1984-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabiities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  3. Fire simulation in nuclear facilities--the FIRAC code and supporting experiments

    International Nuclear Information System (INIS)

    Burkett, M.W.; Martin, R.A.; Fenton, D.L.; Gunaji, M.V.

    1985-01-01

    The fire accident analysis computer code FIRAC was designed to estimate radioactive and nonradioactive source terms and predict fire-induced flows and thermal and material transport within the ventilation systems of nuclear fuel cycle facilities. FIRAC maintains its basic structure and features and has been expanded and modified to include the capabilities of the zone-type compartment fire model computer code FIRIN developed by Battelle Pacific Northwest Laboratory. The two codes have been coupled to provide an improved simulation of a fire-induced transient within a facility. The basic material transport capability of FIRAC has been retained and includes estimates of entrainment, convection, deposition, and filtration of material. The interrelated effects of filter plugging, heat transfer, gas dynamics, material transport, and fire and radioactive source terms also can be simulated. Also, a sample calculation has been performed to illustrate some of the capabilities of the code and how a typical facility is modeled with FIRAC. In addition to the analytical work being performed at Los Alamos, experiments are being conducted at the New Mexico State University to support the FIRAC computer code development and verification. This paper summarizes two areas of the experimental work that support the material transport capabilities of the code: the plugging of high-efficiency particulate air (HEPA) filters by combustion aerosols and the transport and deposition of smoke in ventilation system ductwork

  4. Accident simulation in a chemical process facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Hope, E.P.

    1993-01-01

    The US Department of Energy requires Westinghouse Savannah River Company to safely operate the chemical separations facilities at the Savannah River Site (SRS). As part of the safety analysis program, simulation of a proposed frame waste recovery (FWR) system is needed to determine the possible accident consequences that may affect public safety. This paper details the simulation process for the proposed frame waste recovery process and describes the analytical tools used in order to make estimates of accident consequences. Since the process in question has been operated, historical data and statistics about its operation are available. Software tools have been developed to allow analysis of the frame waste recovery system, including the generation of system specific dose conversion factors for a number of unique situations. Accident scenarios involving spilled liquid material are analyzed and account for the specific floor geometry of the facility. Confinement and filtration systems are considered. Analysis of source terms is a limiting factor which affects the entire evaluation process. In the past, facility source terms were generally constant with occasional variations from established patterns. As new site missions unfold, significant variations in source terms can be expected. The impact of these variations on the safety analysis is discussed

  5. Modeling, simulation and control for a cryogenic fluid management facility, preliminary report

    Science.gov (United States)

    Turner, Max A.; Vanbuskirk, P. D.

    1986-01-01

    The synthesis of a control system for a cryogenic fluid management facility was studied. The severe demand for reliability as well as instrumentation and control unique to the Space Station environment are prime considerations. Realizing that the effective control system depends heavily on quantitative description of the facility dynamics, a methodology for process identification and parameter estimation is postulated. A block diagram of the associated control system is also produced. Finally, an on-line adaptive control strategy is developed utilizing optimization of the velocity form control parameters (proportional gains, integration and derivative time constants) in appropriate difference equations for direct digital control. Of special concern are the communications, software and hardware supporting interaction between the ground and orbital systems. It is visualized that specialist in the OSI/ISO utilizing the Ada programming language will influence further development, testing and validation of the simplistic models presented here for adaptation to the actual flight environment.

  6. D-Side: A Facility and Workforce Planning Group Multi-criteria Decision Support System for Johnson Space Center

    Science.gov (United States)

    Tavana, Madjid

    2005-01-01

    "To understand and protect our home planet, to explore the universe and search for life, and to inspire the next generation of explorers" is NASA's mission. The Systems Management Office at Johnson Space Center (JSC) is searching for methods to effectively manage the Center's resources to meet NASA's mission. D-Side is a group multi-criteria decision support system (GMDSS) developed to support facility decisions at JSC. D-Side uses a series of sequential and structured processes to plot facilities in a three-dimensional (3-D) graph on the basis of each facility alignment with NASA's mission and goals, the extent to which other facilities are dependent on the facility, and the dollar value of capital investments that have been postponed at the facility relative to the facility replacement value. A similarity factor rank orders facilities based on their Euclidean distance from Ideal and Nadir points. These similarity factors are then used to allocate capital improvement resources across facilities. We also present a parallel model that can be used to support decisions concerning allocation of human resources investments across workforce units. Finally, we present results from a pilot study where 12 experienced facility managers from NASA used D-Side and the organization's current approach to rank order and allocate funds for capital improvement across 20 facilities. Users evaluated D-Side favorably in terms of ease of use, the quality of the decision-making process, decision quality, and overall value-added. Their evaluations of D-Side were significantly more favorable than their evaluations of the current approach. Keywords: NASA, Multi-Criteria Decision Making, Decision Support System, AHP, Euclidean Distance, 3-D Modeling, Facility Planning, Workforce Planning.

  7. Simulating Nonlinear Dynamics of Deployable Space Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  8. Capability of the RELAP5 code to simulate natural circulation behaviour in test facilities

    International Nuclear Information System (INIS)

    Mangal, Amit; Jain, Vikas; Nayak, A.K.

    2011-01-01

    In the present study, one of the extensively used best estimate code RELAP5 has been used for simulation of steady state, transient and stability behavior of natural circulation based experimental facilities, such as the High-Pressure Natural Circulation Loop (HPNCL) and the Parallel Channel Loop (PCL) installed and operating at BARC. The test data have been generated for a range of pressure, power and subcooling conditions. The computer code RELAP5/MOD3.2 was applied to predict the transient natural circulation characteristics under single-phase and two-phase conditions, thresholds of flow instability, amplitude and frequency of flow oscillations for different operating conditions of the loops. This paper presents the effect of nodalisation in prediction of natural circulation behavior in test facilities and a comparison of experimental data in with that of code predictions. The errors associated with the predictions are also characterized

  9. Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility

    Science.gov (United States)

    Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L.

    2017-12-01

    The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time) reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC) technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.

  10. IMAGE-BASED RECONSTRUCTION AND ANALYSIS OF DYNAMIC SCENES IN A LANDSLIDE SIMULATION FACILITY

    Directory of Open Access Journals (Sweden)

    M. Scaioni

    2017-12-01

    Full Text Available The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.

  11. Simulation of loss of feedwater transient of MASLWR test facility by MARS-KS code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyeop [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    MASLWR test facility is a mock-up of a passive integral type reactor equipped with helical coil steam generator. Since SMART reactor which is being current developed domestically also adopts helical coil steam generator, KINS has joined this ICSP to evaluate performance of domestic regulatory audit thermal-hydraulic code (MARS-KS code) in various respects including wall-to-fluid heat transfer model modification implemented in the code by independent international experiment database. In the ICSP, two types of transient experiments have been focused and they are loss of feedwater transient with subsequent ADS operation and long term cooling (SP-2) and normal operating conditions at different power levels (SP-3). In the present study, KINS simulation results by the MARS-KS code (KS-002 version) for the SP-2 experiment are presented in detail and conclusions on MARS-KS code performance drawn through this simulation is described. Performance of the MARS-KS code is evaluated through the simulation of the loss of feedwater transient of the MASLWR test facility. Steady state run shows helical coil specific heat transfer models implemented in the code is reasonable. However, through the transient run, it is also found that three-dimensional effect within the HPC and axial conduction effect through the HTP are not well reproduced by the code.

  12. Phase 1 Testing Results of Immobilization of WTP Effluent Management Facility Evaporator Bottoms Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, Alex D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-01-05

    simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations and use it in evaporator testing to predict the composition of the effluents from the Effluent Management Facility (EMF) evaporator to aid in planning for their disposition. The objective of this task was to test immobilization options for this evaporator bottoms aqueous stream. This document describes the method used to formulate a simulant of this EMF evaporator bottoms stream, immobilize it, and determine if the immobilized waste forms meet disposal criteria.

  13. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  14. 3D numerical simulations of a LOVA reproduction inside the new facility STARDUST-UPGRADE

    International Nuclear Information System (INIS)

    Ciparisse, J.F.; Malizia, A.; Poggi, L.A.; Gelfusa, M.; Papa, C. Del; Giovannangeli, I.; Gaudio, P.; Tieri, F.; Murari, A.

    2017-01-01

    A loss of vacuum in a vessel, containing or not dust, is the typical case study considered in the STARDUST-UPGRADE facility of the Quantum Electronics and Plasma Group of the university of Rome Tor Vergata. This kind of accident was simulated numerically, without including the presence of dust, for two mass flow rates and three different inlet ports (C, E and F). Numerical settings are explained and the results obtained in each case are shown and discussed. At the end of the work, conclusions about what seen and further foreseen developments of this research are presented.

  15. Numerical simulations of the first operational conditions of the negative ion test facility SPIDER

    International Nuclear Information System (INIS)

    Serianni, G.; Agostinetti, P.; Antoni, V.; Baltador, C.; Chitarin, G.; Marconato, N.; Pasqualotto, R.; Sartori, E.; Toigo, V.; Veltri, P.; Cavenago, M.

    2016-01-01

    In view of the realization of the negative ion beam injectors for ITER, a test facility, named SPIDER, is under construction in Padova (Italy) to study and optimize production and extraction of negative ions. The present paper is devoted to the analysis of the expected first operations of SPIDER in terms of single-beamlet and multiple-beamlet simulations of the hydrogen beam optics in various operational conditions. The effectiveness of the methods adopted to compensate for the magnetic deflection of the particles is also assessed. Indications for a sequence of the experimental activities are obtained

  16. SRTC criticality safety technical review: Nuclear criticality safety evaluation 94-02, uranium solidification facility pencil tank module spacing

    International Nuclear Information System (INIS)

    Rathbun, R.

    1994-01-01

    Review of NMP-NCS-94-0087, ''Nuclear Criticality Safety Evaluation 94-02: Uranium Solidification Facility Pencil Tank Module Spacing (U), April 18, 1994,'' was requested of the SRTC Applied Physics Group. The NCSE is a criticality assessment to show that the USF process module spacing, as given in Non-Conformance Report SHM-0045, remains safe for operation. The NCSE under review concludes that the module spacing as given in Non-Conformance Report SHM-0045 remains in a critically safe configuration for all normal and single credible abnormal conditions. After a thorough review of the NCSE, this reviewer agrees with that conclusion

  17. Private ground infrastructures for space exploration missions simulations

    Science.gov (United States)

    Souchier, Alain

    2010-06-01

    The Mars Society, a private non profit organisation devoted to promote the red planet exploration, decided to implement simulated Mars habitat in two locations on Earth: in northern Canada on the rim of a meteoritic crater (2000), in a US Utah desert, location of a past Jurassic sea (2001). These habitats have been built with large similarities to actual planned habitats for first Mars exploration missions. Participation is open to everybody either proposing experimentations or wishing only to participate as a crew member. Participants are from different organizations: Mars Society, Universities, experimenters working with NASA or ESA. The general philosophy of the work conducted is not to do an innovative scientific work on the field but to learn how the scientific work is affected or modified by the simulation conditions. Outside activities are conducted with simulated spacesuits limiting the experimenter abilities. Technology or procedures experimentations are also conducted as well as experimentations on the crew psychology and behaviour.

  18. Space Weathering Evolution on Airless Bodies - Laboratory Simulations with Olivine

    Czech Academy of Sciences Publication Activity Database

    Kohout, Tomáš; Čuda, J.; Bradley, T.; Britt, D.; Filip, J.; Tuček, J.; Malina, O.; Kašlík, J.; Šišková, K.; Zbořil, R.

    2013-01-01

    Roč. 45, č. 9 (2013), s. 25-26 ISSN 0002-7537. [Annual meeting of the Division for Planetary Sciences of the American Astronomical Society /45./. 06.10.2013-11.10.2013, Denver] Institutional support: RVO:67985831 Keywords : space weathering * asteroid * Moon * olivine Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://aas.org/files/resources/dps_abstract_book.pdf

  19. Space-Charge-Limited Emission Models for Particle Simulation

    Science.gov (United States)

    Verboncoeur, J. P.; Cartwright, K. L.; Murphy, T.

    2004-11-01

    Space-charge-limited (SCL) emission of electrons from various materials is a common method of generating the high current beams required to drive high power microwave (HPM) sources. In the SCL emission process, sufficient space charge is extracted from a surface, often of complicated geometry, to drive the electric field normal to the surface close to zero. The emitted current is highly dominated by space charge effects as well as ambient fields near the surface. In this work, we consider computational models for the macroscopic SCL emission process including application of Gauss's law and the Child-Langmuir law for space-charge-limited emission. Models are described for ideal conductors, lossy conductors, and dielectrics. Also considered is the discretization of these models, and the implications for the emission physics. Previous work on primary and dual-cell emission models [Watrous et al., Phys. Plasmas 8, 289-296 (2001)] is reexamined, and aspects of the performance, including fidelity and noise properties, are improved. Models for one-dimensional diodes are considered, as well as multidimensional emitting surfaces, which include corners and transverse fields.

  20. Performance Evaluation of the International Space Station Flow Boiling and Condensation Experiment (FBCE) Test Facility

    Science.gov (United States)

    Hasan, Mohammad; Balasubramaniam, R.; Nahra, Henry; Mackey, Jeff; Hall, Nancy; Frankenfield, Bruce; Harpster, George; May, Rochelle; Mudawar, Issam; Kharangate, Chirag R.; hide

    2016-01-01

    A ground-based experimental facility to perform flow boiling and condensation experiments is built in support of the development of the long duration Flow Boiling and Condensation Experiment (FBCE) destined for operation on board of the International Space Station (ISS) Fluid Integrated Rack (FIR). We performed tests with the condensation test module oriented horizontally and vertically. Using FC-72 as the test fluid and water as the cooling fluid, we evaluated the operational characteristics of the condensation module and generated ground based data encompassing the range of parameters of interest to the condensation experiment to be performed on the ISS. During this testing, we also evaluated the pressure drop profile across different components of the fluid subsystem, heater performance, on-orbit degassing subsystem, and the heat loss from different components. In this presentation, we discuss representative results of performance testing of the FBCE flow loop. These results will be used in the refinement of the flight system design and build-up of the FBCE which is scheduled for flight in 2019.

  1. The NASA Heliophysics Active Final Archive at the Space Physics Data Facility

    Science.gov (United States)

    McGuire, Robert E.

    2012-01-01

    The 2009 NASA Heliophysics Science Data Management Policy re-defined and extended the responsibilities of the Space Physics Data Facility (SPDF) project. Building on SPDF's established capabilities, the new policy assigned the role of active "Final Archive" for non-solar NASA Heliophysics data to SPDF. The policy also recognized and formalized the responsibilities of SPDF as a source for critical infrastructure services such as VSPO to the overall Heliophysics Data Environment (HpDE) and as a Center of Excellence for existing SPDF science-enabling services and software including CDAWeb, SSCWeb/4D Orbit Viewer, OMNIweb and CDF. We will focus this talk to the principles, strategies and planned SPDF architecture to effectively and efficiently perform these roles, with special emphasis on how SPDF will ensure the long-term preservation and ongoing online community access to all the data entrusted to SPDF. We will layout our archival philosophy and what we are advocating in our work with NASA missions both current and future, with potential providers of NASA and NASA-relevant archival data, and to make the data and metadata held by SPDF accessible to other systems and services within the overall HpOE. We will also briefly review our current services, their metrics and our current plans and priorities for their evolution.

  2. Simulant composition for the Mixed Waste Management Facility (MWMF) groundwater remediation project

    International Nuclear Information System (INIS)

    Siler, J.L.

    1992-01-01

    A project has been initiated at the request of ER to study and remediate the groundwater contamination at the Mixed Waste Management Facility (MWMF). This water contains a wide variety of both inorganics (e.g., sodium) and organics (e.g., benzene, trichloroethylene). Most compounds are present in the ppB range, and certain components (e.g., trichloroethylene, silver) are present at concentrations that exceed the primary drinking water standards (PDWS). These compounds must be reduced to acceptable levels as per RCRA and CERCLA orders. This report gives a listing of the important constituents which are to be included in a simulant to model the MWMF aquifer. This simulant will be used to evaluate the feasibility of various state of the art separation/destruction processes for remediating the aquifer

  3. Simulation analysis of photometric data for attitude estimation of unresolved space objects

    Science.gov (United States)

    Du, Xiaoping; Gou, Ruixin; Liu, Hao; Hu, Heng; Wang, Yang

    2017-10-01

    The attitude information acquisition of unresolved space objects, such as micro-nano satellites and GEO objects under the way of ground-based optical observations, is a challenge to space surveillance. In this paper, a useful method is proposed to estimate the SO attitude state according to the simulation analysis of photometric data in different attitude states. The object shape model was established and the parameters of the BRDF model were determined, then the space object photometric model was established. Furthermore, the photometric data of space objects in different states are analyzed by simulation and the regular characteristics of the photometric curves are summarized. The simulation results show that the photometric characteristics are useful for attitude inversion in a unique way. Thus, a new idea is provided for space object identification in this paper.

  4. Huff-type competitive facility location model with foresight in a discrete space

    OpenAIRE

    Milad Gorji Ashtiani; Ahmad Makui; Reza Ramezanian

    2011-01-01

    Consider a chain as leader that wants to open p new facilities in a linear market, like metro. In this market, there is a competitor, called follower. The leader and the follower have established some facilities in advance. When the leader opens p new facilities, its competitor, follower, reacts the leader’s action and opens r new facilities. The optimal locations for leader and follower are chosen among predefined potential locations. Demand is considered as demand points and is assumed inel...

  5. A Unique Outside Neutron and Gamma Ray Instrumentation Development Test Facility at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Bodnarik, J.; Evans, L.; Floyd, S.; Lim, L.; McClanahan, T.; Namkung, M.; Parsons, A.; Schweitzer, J.; Starr, R.; Trombka, J.

    2010-01-01

    An outside neutron and gamma ray instrumentation test facility has been constructed at NASA's Goddard Space Flight Center (GSFC) to evaluate conceptual designs of gamma ray and neutron systems that we intend to propose for future planetary lander and rover missions. We will describe this test facility and its current capabilities for operation of planetary in situ instrumentation, utilizing a l4 MeV pulsed neutron generator as the gamma ray excitation source with gamma ray and neutron detectors, in an open field with the ability to remotely monitor and operate experiments from a safe distance at an on-site building. The advantage of a permanent test facility with the ability to operate a neutron generator outside and the flexibility to modify testing configurations is essential for efficient testing of this type of technology. Until now, there have been no outdoor test facilities for realistically testing neutron and gamma ray instruments planned for solar system exploration

  6. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    Science.gov (United States)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  7. Language Simulations: The Blending Space for Writing and Critical Thinking

    Science.gov (United States)

    Kovalik, Doina L.; Kovalik, Ludovic M.

    2007-01-01

    This article describes a language simulation involving six distinct phases: an in-class quick response, a card game, individual research, a classroom debate, a debriefing session, and an argumentative essay. An analysis of student artifacts--quick-response writings and final essays, respectively, both addressing the definition of liberty in a…

  8. The General-Use Nodal Network Solver (GUNNS) Modeling Package for Space Vehicle Flow System Simulation

    Science.gov (United States)

    Harvey, Jason; Moore, Michael

    2013-01-01

    The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.

  9. Conceptual design and neutronics analyses of a fusion reactor blanket simulation facility

    International Nuclear Information System (INIS)

    Beller, D.E.

    1986-01-01

    A new conceptual design of a fusion reactor blanket simulation facility was developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBR), because experiments conducted in it have resulted in the discovery of deficiencies in neutronics prediction methods. With this design, discrepancies between calculation and experimental data can be fully attributed to calculation methods because design deficiencies that could affect results are insignificant. Inelastic scattering cross sections are identified as a major source of these discrepancies. The conceptual design of this FBBR analog, the fusion reactor blanket facility (FRBF), is presented. Essential features are a cylindrical geometry and a distributed, cosine-shaped line source of 14-MeV neutrons. This source can be created by sweeping a deuteron beam over an elongated titanium-tritide target. To demonstrate that the design of the FRBF will not contribute significant deviations in experimental results, neutronics analyses were performed: results of comparisons of 2-dimensional to 1-dimensional predictions are reported for two blanket compositions. Expected deviations from 1-D predictions which are due to source anisotropy and blanket asymmetry are minimal. Thus, design of the FRBF allows simple and straightforward interpretation of the experimental results, without a need for coarse 3-D calculations

  10. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observables

    International Nuclear Information System (INIS)

    Spears, Brian K.; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles; Knauer, James; Hilsabeck, Terry; Kilkenny, Joe

    2015-01-01

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding

  11. Feasibility Study of SSTO Base Heating Simulation in Pulsed-Type Facilities

    Science.gov (United States)

    Park, Chung Sik; Sharma, Surendra; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    A laboratory simulation of the base heating environment of the proposed reusable Single-Stage-To-Orbit vehicle during its ascent flight was proposed. The rocket engine produces CO2 and H2, which are the main combustible components of the exhaust effluent. The burning of these species, known as afterburning, enhances the base region gas temperature as well as the base heating. To determine the heat flux on the SSTO vehicle, current simulation focuses on the thermochemistry of the afterburning, thermophysical properties of the base region gas, and ensuing radiation from the gas. By extrapolating from the Saturn flight data, the Damkohler number for the afterburning of SSTO vehicle is estimated to be of the order of 10. The limitations on the material strengths limit the laboratory simulation of the flight Damkohler number as well as other flow parameters. A plan is presented in impulse facilities using miniature rocket engines which generate the simulated rocket plume by electric ally-heating a H2/CO2 mixture.

  12. Three-dimensional simulations of National Ignition Facility implosions: Insight into experimental observables

    Energy Technology Data Exchange (ETDEWEB)

    Spears, Brian K., E-mail: spears9@llnl.gov; Munro, David H.; Sepke, Scott; Caggiano, Joseph; Clark, Daniel; Hatarik, Robert; Kritcher, Andrea; Sayre, Daniel; Yeamans, Charles [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Knauer, James [Laboratory for Laser Energetics, 250 E. River Road, Rochester, New York 14623-1212 (United States); Hilsabeck, Terry; Kilkenny, Joe [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2015-05-15

    We simulate in 3D both the hydrodynamics and, simultaneously, the X-ray and neutron diagnostic signatures of National Ignition Facility (NIF) implosions. We apply asymmetric radiation drive to study the impact of low mode asymmetry on diagnostic observables. We examine X-ray and neutron images as well as neutron spectra for these perturbed implosions. The X-ray images show hot spot evolution on small length scales and short time scales, reflecting the incomplete stagnation seen in the simulation. The neutron images show surprising differences from the X-ray images. The neutron spectra provide additional measures of implosion asymmetry. Flow in the hot spot alters the neutron spectral peak, namely, the peak location and width. The changes in the width lead to a variation in the apparent temperature with viewing angle that signals underlying hot spot asymmetry. We compare our new expectations based on the simulated data with NIF data. We find that some recent cryogenic layered experiments show appreciable temperature anisotropy indicating residual flow in the hot spot. We also find some trends in the data that do not reflect our simulation and theoretical understanding.

  13. The Gateway Garden — A Prototype Food Production Facility for Deep Space Exploration

    Science.gov (United States)

    Fritsche, R. F.; Romeyn, M. W.; Massa, G.

    2018-02-01

    CIS-lunar space provides a unique opportunity to perform deep space microgravity crop science research while also addressing and advancing food production technologies that will be deployed on the Deep Space Transport.

  14. Navigating the Problem Space: The Medium of Simulation Games in the Teaching of History

    Science.gov (United States)

    McCall, Jeremiah

    2012-01-01

    Simulation games can play a critical role in enabling students to navigate the problem spaces of the past while simultaneously critiquing the models designers offer to represent those problem spaces. There is much to be gained through their use. This includes rich opportunities for students to engage the past as independent historians; to consider…

  15. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    Science.gov (United States)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  16. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  17. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  18. Validation of RETRAN-03 by simulating a peach bottom turbine trip and boiloff at the full integral simulation test facility

    International Nuclear Information System (INIS)

    Westacott, J.L.; Peterson, C.E.

    1992-01-01

    This paper reports that the RETRAN-03 computer code is validated by simulating two tests that were performed at the Full Integral Simulation Test (FIST) facility. The RETRAN-03 results of a turbine trip (test 4PTT1) and failure to maintain water level at decay power (test T1QUV) are compared with the FIST test data. The RETRAN-03 analysis of test 4PTT1 is compared with a previous TRAC-BWR analysis of the test. Sensitivity to various model nodalizations and RETRAN-03 slip options are studied by comparing results of test T1QUV. The predicted thermal-hydraulic responses of both tests agree well with the test data. The pressure response of test 4PTT1 and the boiloff rate for test T1QUV are accurately predicted. Core uncovery time is found to be sensitive to the upper downcomer and upper plenum nodalization. The RETRAN-03 algebraic and dynamic slip options produce similar results for test T1QUV

  19. Simulation and monitoring tools to protect disaster management facilities against earthquakes

    Science.gov (United States)

    Saito, Taiki

    2017-10-01

    The earthquakes that hit Kumamoto Prefecture in Japan on April 14 and 16, 2016 severely damaged over 180,000 houses, including over 8,000 that were completely destroyed and others that were partially damaged according to the Cabinet Office's report as of November 14, 2016 [1]. Following these earthquakes, other parts of the world have been struck by earthquakes including Italy and New Zealand as well as the central part of Tottori Prefecture in October, where the earthquake-induced collapse of buildings has led to severe damage and casualties. The earthquakes in Kumamoto Prefecture, in fact, damaged various disaster management facilities including Uto City Hall, which significantly hindered the city's evacuation and recovery operations. One of the most crucial issues in times of disaster is securing the functions of disaster management facilities such as city halls, hospitals and fire stations. To address this issue, seismic simulations are conducted on the East and the West buildings of Toyohashi City Hall using the analysis tool developed by the author, STERA_3D, with the data of the ground motion waveform prediction for the Nankai Trough earthquake provided by the Ministry of Land, Infrastructure, Transport and Tourism. As the result, it was found that the buildings have sufficient earthquake resistance. It turned out, however, that the west building is at risk for wall cracks or ceiling panel's collapse while in the east building, people would not be able to stand through the strong quakes of 7 on the seismic intensity scale and cabinets not secured to the floors or walls would fall over. Additionally, three IT strong-motion seismometers were installed in the city hall to continuously monitor vibrations. Every five minutes, the vibration data obtained by the seismometers are sent to the computers in Toyohashi University of Technology via the Internet for the analysis tools to run simulations in the cloud. If an earthquake strikes, it is able to use the results

  20. Assessment of Retrofitting Measures for a Large Historic Research Facility Using a Building Energy Simulation Model

    Directory of Open Access Journals (Sweden)

    Young Tae Chae

    2016-06-01

    Full Text Available A calibrated building simulation model was developed to assess the energy performance of a large historic research building. The complexity of space functions and operational conditions with limited availability of energy meters makes it hard to understand the end-used energy consumption in detail and to identify appropriate retrofitting options for reducing energy consumption and greenhouse gas (GHG emissions. An energy simulation model was developed to study the energy usage patterns not only at a building level, but also of the internal thermal zones, and system operations. The model was validated using site measurements of energy usage and a detailed audit of the internal load conditions, system operation, and space programs to minimize the discrepancy between the documented status and actual operational conditions. Based on the results of the calibrated model and end-used energy consumption, the study proposed potential energy conservation measures (ECMs for the building envelope, HVAC system operational methods, and system replacement. It also evaluated each ECM from the perspective of both energy and utility cost saving potentials to help retrofitting plan decision making. The study shows that the energy consumption of the building was highly dominated by the thermal requirements of laboratory spaces. Among other ECMs the demand management option of overriding the setpoint temperature is the most cost effective measure.

  1. Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization

    Science.gov (United States)

    2015-04-09

    probes for Jumbo. Both probes are produced by Trek Inc. Trek probe model 370 is capable of -3 to 3kV and has an extremely fast, 50µs/kV response to...changing surface potentials. Trek probe 341B is capable of -20 to 20kV with a 200 µs/kV response time. During our charging experiments the probe sits...unlimited. 12 REFERENCES [1] R. D. Leach and M. B. Alexander, "Failures and anomalies attributed to spacecraft charging," NASA RP-1375, Marshall Space

  2. Simulation of space charge effects and transition crossing in the Fermilab Booster

    International Nuclear Information System (INIS)

    Lucas, P.; MacLachlan, J.

    1987-03-01

    The longitudinal phase space program ESME, modified for space charge and wall impedance effects, has been used to simulate transition crossing in the Fermilab Booster. The simulations yield results in reasonable quantitative agreement with measured parameters. They further indicate that a transition jump scheme currently under construction will significantly reduce emittance growth, while attempts to alter machine impedance are less obviously beneficial. In addition to presenting results, this paper points out a serious difficulty, related to statistical fluctuations, in the space charge calculation. False indications of emittance growth can appear if care is not taken to minimize this problem

  3. Computational Simulations of the NASA Langley HyMETS Arc-Jet Facility

    Science.gov (United States)

    Brune, A. J.; Bruce, W. E., III; Glass, D. E.; Splinter, S. C.

    2017-01-01

    The Hypersonic Materials Environmental Test System (HyMETS) arc-jet facility located at the NASA Langley Research Center in Hampton, Virginia, is primarily used for the research, development, and evaluation of high-temperature thermal protection systems for hypersonic vehicles and reentry systems. In order to improve testing capabilities and knowledge of the test article environment, an effort is underway to computationally simulate the flow-field using computational fluid dynamics (CFD). A detailed three-dimensional model of the arc-jet nozzle and free-jet portion of the flow-field has been developed and compared to calibration probe Pitot pressure and stagnation-point heat flux for three test conditions at low, medium, and high enthalpy. The CFD model takes into account uniform pressure and non-uniform enthalpy profiles at the nozzle inlet as well as catalytic recombination efficiency effects at the probe surface. Comparing the CFD results and test data indicates an effectively fully-catalytic copper surface on the heat flux probe of about 10% efficiency and a 2-3 kpa pressure drop from the arc heater bore, where the pressure is measured, to the plenum section, prior to the nozzle. With these assumptions, the CFD results are well within the uncertainty of the stagnation pressure and heat flux measurements. The conditions at the nozzle exit were also compared with radial and axial velocimetry. This simulation capability will be used to evaluate various three-dimensional models that are tested in the HyMETS facility. An end-to-end aerothermal and thermal simulation of HyMETS test articles will follow this work to provide a better understanding of the test environment, test results, and to aid in test planning. Additional flow-field diagnostic measurements will also be considered to improve the modeling capability.

  4. Behavior of ionic conducting IPN actuators in simulated space conditions

    Science.gov (United States)

    Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Laurent, Elisabeth; Cadiergues, Laurent; Vidal, Frédéric

    2016-04-01

    The presentation focuses on the performances of flexible all-polymer electroactive actuators under space-hazardous environmental factors in laboratory conditions. These bending actuators are based on high molecular weight nitrile butadiene rubber (NBR), poly(ethylene oxide) (PEO) derivative and poly(3,4-ethylenedioxithiophene) (PEDOT). The electroactive PEDOT is embedded within the PEO/NBR membrane which is subsequently swollen with an ionic liquid as electrolyte. Actuators have been submitted to thermal cycling test between -25 to 60°C under vacuum (2.4 10-8 mbar) and to ionizing Gamma radiations at a level of 210 rad/h during 100 h. Actuators have been characterized before and after space environmental condition ageing. In particular, the viscoelasticity properties and mechanical resistance of the materials have been determined by dynamic mechanical analysis and tensile tests. The evolution of the actuation properties as the strain and the output force have been characterized as well. The long-term vacuuming, the freezing temperature and the Gamma radiations do not affect significantly the thermomechanical properties of conducting IPNs actuators. Only a slight decrease on actuation performances has been observed.

  5. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    International Nuclear Information System (INIS)

    Wang, Junfeng; Lu, Cong; Li, Shiqi

    2016-01-01

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  6. Simulation based assembly and alignment process ability analysis for line replaceable units of the high power solid state laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Junfeng; Lu, Cong; Li, Shiqi, E-mail: sqli@hust.edu.cn

    2016-11-15

    Highlights: • Discrete event simulation is applied to analyze the assembly and alignment process ability of LRUs in SG-III facility. • The overall assembly and alignment process of LRUs with specific characteristics is described. • An extended-directed graph is proposed to express the assembly and alignment process of LRUs. • Different scenarios have been simulated to evaluate assembling process ability of LRUs and decision making is supported to ensure the construction millstone. - Abstract: Line replaceable units (LRUs) are important components of the very large high power solid state laser facilities. The assembly and alignment process ability of LRUs will impact the construction milestone of facilities. This paper describes the use of discrete event simulation method for assembly and alignment process analysis of LRUs in such facilities. The overall assembly and alignment process for LRUs is presented based on the layout of the optics assembly laboratory and the process characteristics are analyzed. An extended-directed graph is proposed to express the assembly and alignment process of LRUs. Taking the LRUs of disk amplifier system in Shen Guang-III (SG-III) facility as the example, some process simulation models are built based on the Quest simulation platform. The constraints, such as duration, equipment, technician and part supply, are considered in the simulation models. Different simulation scenarios have been carried out to evaluate the assembling process ability of LRUs. The simulation method can provide a valuable decision making and process optimization tool for the optics assembly laboratory layout and the process working out of such facilities.

  7. Simulation and analysis of tape spring for deployed space structures

    Science.gov (United States)

    Chang, Wei; Cao, DongJing; Lian, MinLong

    2018-03-01

    The tape spring belongs to the configuration of ringent cylinder shell, and the mechanical properties of the structure are significantly affected by the change of geometrical parameters. There are few studies on the influence of geometrical parameters on the mechanical properties of the tape spring. The bending process of the single tape spring was simulated based on simulation software. The variations of critical moment, unfolding moment, and maximum strain energy in the bending process were investigated, and the effects of different radius angles of section and thickness and length on driving capability of the simple tape spring was studied by using these parameters. Results show that the driving capability and resisting disturbance capacity grow with the increase of radius angle of section in the bending process of the single tape spring. On the other hand, these capabilities decrease with increasing length of the single tape spring. In the end, the driving capability and resisting disturbance capacity grow with the increase of thickness in the bending process of the single tape spring. The research has a certain reference value for improving the kinematic accuracy and reliability of deployable structures.

  8. Rare event simulation in finite-infinite dimensional space

    International Nuclear Information System (INIS)

    Au, Siu-Kui; Patelli, Edoardo

    2016-01-01

    Modern engineering systems are becoming increasingly complex. Assessing their risk by simulation is intimately related to the efficient generation of rare failure events. Subset Simulation is an advanced Monte Carlo method for risk assessment and it has been applied in different disciplines. Pivotal to its success is the efficient generation of conditional failure samples, which is generally non-trivial. Conventionally an independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which is applicable to high dimensional problems (i.e., a large number of random variables) without suffering from ‘curse of dimension’. Experience suggests that the algorithm may perform even better for high dimensional problems. Motivated by this, for any given problem we construct an equivalent problem where each random variable is represented by an arbitrary (hence possibly infinite) number of ‘hidden’ variables. We study analytically the limiting behavior of the algorithm as the number of hidden variables increases indefinitely. This leads to a new algorithm that is more generic and offers greater flexibility and control. It coincides with an algorithm recently suggested by independent researchers, where a joint Gaussian distribution is imposed between the current sample and the candidate. The present work provides theoretical reasoning and insights into the algorithm.

  9. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON

    International Nuclear Information System (INIS)

    BEEBE - WANG, J.; LUCCIO, A.U.; D IMPERIO, N.; MACHIDA, S.

    2002-01-01

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed

  10. SPACE CHARGE SIMULATION METHODS INCORPORATED IN SOME MULTI - PARTICLE TRACKING CODES AND THEIR RESULTS COMPARISON.

    Energy Technology Data Exchange (ETDEWEB)

    BEEBE - WANG,J.; LUCCIO,A.U.; D IMPERIO,N.; MACHIDA,S.

    2002-06-03

    Space charge in high intensity beams is an important issue in accelerator physics. Due to the complicity of the problems, the most effective way of investigating its effect is by computer simulations. In the resent years, many space charge simulation methods have been developed and incorporated in various 2D or 3D multi-particle-tracking codes. It has becoming necessary to benchmark these methods against each other, and against experimental results. As a part of global effort, we present our initial comparison of the space charge methods incorporated in simulation codes ORBIT++, ORBIT and SIMPSONS. In this paper, the methods included in these codes are overviewed. The simulation results are presented and compared. Finally, from this study, the advantages and disadvantages of each method are discussed.

  11. Simulation analysis of impulse characteristics of space debris irradiated by multi-pulse laser

    Science.gov (United States)

    Lin, Zhengguo; Jin, Xing; Chang, Hao; You, Xiangyu

    2018-02-01

    Cleaning space debris with laser is a hot topic in the field of space security research. Impulse characteristics are the basis of cleaning space debris with laser. In order to study the impulse characteristics of rotating irregular space debris irradiated by multi-pulse laser, the impulse calculation method of rotating space debris irradiated by multi-pulse laser is established based on the area matrix method. The calculation method of impulse and impulsive moment under multi-pulse irradiation is given. The calculation process of total impulse under multi-pulse irradiation is analyzed. With a typical non-planar space debris (cube) as example, the impulse characteristics of space debris irradiated by multi-pulse laser are simulated and analyzed. The effects of initial angular velocity, spot size and pulse frequency on impulse characteristics are investigated.

  12. Electrical behaviour of a silicone elastomer under simulated space environment

    International Nuclear Information System (INIS)

    Roggero, A; Dantras, E; Paulmier, T; Rejsek-Riba, V; Tonon, C; Dagras, S; Balcon, N; Payan, D

    2015-01-01

    The electrical behavior of a space-used silicone elastomer was characterized using surface potential decay and dynamic dielectric spectroscopy techniques. In both cases, the dielectric manifestation of the glass transition (dipole orientation) and a charge transport phenomenon were observed. An unexpected linear increase of the surface potential with temperature was observed around T g in thermally-stimulated potential decay experiments, due to molecular mobility limiting dipolar orientation in one hand, and 3D thermal expansion reducing the materials capacitance in the other hand. At higher temperatures, the charge transport process, believed to be thermally activated electron hopping with an activation energy of about 0.4 eV, was studied with and without the silica and iron oxide fillers present in the commercial material. These fillers were found to play a preponderant role in the low-frequency electrical conductivity of this silicone elastomer, probably through a Maxwell–Wagner–Sillars relaxation phenomenon. (paper)

  13. 3D Simulations of Space Charge Effects in Particle Beams

    Energy Technology Data Exchange (ETDEWEB)

    Adelmann, A

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density ({approx} 10{sup 9} protons/cm{sup 3}) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  14. Monte Carlo simulations of Microdosimetry for Space Research at FAIR

    International Nuclear Information System (INIS)

    Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Bleicher, Marcus

    2013-01-01

    The exposure to high charge and energy (HZE) particles is one of major concerns for humans during their missions in space. As radiation effects essentialy depend on charge, mass and energy of cosmic-ray particles, the radiation quality has to be investigated, e.g. by means of microdosimetry measurements on the board of a spacecraft. We benchmark the electromagnetic models of the Geant4 toolkit with microdosimetry data obtained with a walled Tissue Equivalent Proportional Counter (TEPC) with beams of HZE particles. Our MCHIT model is able to reproduce in general the response functions and microdosimetry variables for nuclear beams from He to Fe with energies of 80–400 MeV per nucleon.

  15. 3D Simulations of Space Charge Effects in Particle Beams

    International Nuclear Information System (INIS)

    Adelmann, A.

    2002-10-01

    For the first time, it is possible to calculate the complicated three-dimensional proton accelerator structures at the Paul Scherrer Institut (PSI). Under consideration are external and self effects, arising from guiding and space-charge forces. This thesis has as its theme the design, implementation and validation of a tracking program for charged particles in accelerator structures. This work form part of the discipline of Computational Science and Engineering (CSE), more specifically in computational accelerator modelling. The physical model is based on the collisionless Vlasov-Maxwell theory, justified by the low density (∼ 10 9 protons/cm 3 ) of the beam and of the residual gas. The probability of large angle scattering between the protons and the residual gas is then sufficiently low, as can be estimated by considering the mean free path and the total distance a particle travels in the accelerator structure. (author)

  16. A geophysical shock and air blast simulator at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, C. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); May, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Compton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, O. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shingleton, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kane, J. O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Holtmeier, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Loey, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mirkarimi, P. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, W. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guyton, R. L. [National Security Technologies, Livermore, CA (United States); Huffman, E. [National Security Technologies, Livermore, CA (United States)

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  17. An operator training simulator based on interactive virtual teleoperation: nuclear facilities maintenance applications

    International Nuclear Information System (INIS)

    Kim, Ki Ho; Kim, Seung Ho

    1997-01-01

    Remote manipulation in nuclear hazardous environment is very often complex and difficult to operate and requires excessively careful preparation. Remote slave manipulators for unstructured work are manually controlled by a human operator. Small errors made by the operator via the master manipulator during operation can cause the slave to be surffered from excessive forces and result in considerable damages to the slave iteself and its environment. In this paper, we present a prototype of an operator training simulator for use in nuclear facilities maintenance applications, as part of the ongoing Nuclear Robotics Development Program at Korea Atomic Energy Research Institute (KAERI). The operator training simulator provides a means by which, in virtual task simulation, the operator can try out and train for expected remote tasks that the real slave manipulator will perform in advance. The operator interacts with both the virtual slave and task environment through the real master. Virtual interaction force feedback is provided to the operator. We also describe a man-in-the loop control scheme to realize bilateral force reflection in virtual teleoperation

  18. A geophysical shock and air blast simulator at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-481, Livermore, California 94550 (United States); Guyton, R. L.; Huffman, E. [National Securities Technologies, Vasco Rd., Livermore, California 94551 (United States)

    2014-09-15

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  19. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    Science.gov (United States)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  20. On Start to End Simulation and Modeling Issues of the Megawatt Proton Beam Facility at PSI

    CERN Document Server

    Adelmann, Andreas; Fitze, Hansruedi; Geus, Roman; Humbel, Martin; Stingelin, Lukas

    2005-01-01

    At the Paul Scherrer Institut (PSI) we routinely extract a one megawatt (CW) proton beam out of our 590 MeV Ring Cyclotron. In the frame of the ongoing upgrade program, large scale simulations have been undertaken in order to provide a sound basis to assess the behaviour of very intense beams in cyclotrons. The challenges and attempts towards massive parallel three dimensional start-to- end simulations will be discussed. The used state of the art numerical tools (mapping techniques, time integration, parallel FFT and finite element based multigrid Poisson solver) and their parallel implementation will be discussed. Results will be presented in the area of: space charge dominated beam transport including neighbouring turns, eigenmode analysis to obtain accurate electromagnetic fields in large the rf cavities and higher order mode interaction between the electromagnetic fields and the particle beam. For the problems investigated so far a good agreement between theory i.e. calculations and measurements is obtain...

  1. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  2. Beam-envelope calculations of space-charge loaded beams in MeV dc ion-implantation facilities

    International Nuclear Information System (INIS)

    Urbanus, W.H.; Bannenberg, J.G.; Doorn, S.; Saris, F.W.; Koudijs, R.; Dubbelman, P.; Koelewijn, W.

    1989-01-01

    MeV dc ion accelerators are being developed that can deliver a beam current up to several hundred micro-amperes. At the low-energy part of the accelerator, the beam transport is space-charge dominated rather than emittance dominated. A system of differential equations has been derived, based on the Kapchinski-Vladimirski equations, which describe the envelope of a space-charge loaded ion beam, taking a longitudinal electrical field in an accelerating tube into account. The equations have been used to design the accelerator of a high-current 1 MV heavy-ion implantation facility. Furthermore, the design of a 2 MV accelerator is presented, which is used for analyzing techniques such as RBS and PIXE. Both facilities are based on single-ended Van de Graaff accelerators. (orig.)

  3. A feasibility study for the design of a simulated radioactive waste repository facility

    International Nuclear Information System (INIS)

    1986-10-01

    The paper contains the text and references of a feasibility study for the design of a simulated radioactive waste repository facility (final report). The work was commissioned by the Department of the Environment, United Kingdom, as part of its radioactive waste management research programme. The nature of the candidate buffer materials, the factors defining their behaviour, and the nature of a buffer material selection and testing programme, are examined. A description is given of the properties and modelling of host materials. The complex interactions between host materials, and between buffer and host materials, are discussed, along with the instrumentation requirements for measuring the interactions. Finally, the temperature field around a waste package, and modelling a host continuum with a segmental block, are both investigated. (U.K.)

  4. Containment aerosol behaviour simulation studies in the BARC nuclear aerosol test facility

    International Nuclear Information System (INIS)

    Mayya, Y.S.; Sapra, B.K.; Khan, Arshad; Sunny, Faby; Nair, R.N.; Raghunath, Radha; Tripathi, R.M.; Markandeya, S.G.; Puranik, V.D.; Ghosh, A.K.; Kushwaha, H.S.; Shreekumar, K.P.; Padmanabhan, P.V.A.; Murthy, P.S.S.; Venlataramani, N.

    2005-02-01

    A Nuclear Aerosol Test Facility (NATF) has been built and commissioned at Bhabha Atomic Research Centre to carry out simulation studies on the behaviour of aerosols released into the reactor containment under accident conditions. This report also discusses some new experimental techniques for estimation of density of metallic aggregates. The experimental studies have shown that the dynamic densities of aerosol aggregates are far lower than their material densities as expected by the well-known fractal theory of aggregates. In the context of codes, this has significant bearing in providing a mechanistic basis for the input density parameter used in estimating the aerosol evolution characteristics. The data generated under the quiescent and turbulent conditions and the information on aggregate densities are now being subjected to the validation of the aerosol behaviour codes. (author)

  5. Phase 2 testing results of immobilization of WTP effluent management facility vaporator bottoms simulant

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Cozzi, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-08

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate) from the primary off-gas system. This work examined three waste form formulations based on previous testing with related simulants: 8 wt% ordinary portland cement (OPC), 47 wt% blast furnace slag (BFS), 45 wt% fly ash (FA) known as Cast Stone formulation; 20 wt% Aquaset® II-GH and 80 wt% BFS; 20 wt% OPC and 80 wt% BFS. These tests successfully produced one waste form that set within five days (Cast Stone formulation); however the other two formulations, Aquaset® II-GH/BFS and OPC/BFS, took approximately eight and fourteen days to set, respectively.

  6. Dose rate determinations in the Portuguese Gamma Irradiation Facility: Monte Carlo simulations and measurements

    International Nuclear Information System (INIS)

    Oliveira, C.; Salgado, J.; Ferro de Carvalho, A.

    2000-01-01

    A simulation study of the Portuguese Gamma Irradiation Facility, UTR, has been carried out using the MCNP code. The work focused on the optimisation of the dose distribution inside the irradiation cell, dose calculations inside irradiated samples and dose calculations in critical points for protection purposes. Calculations were carried out at points inside and outside the irradiation cell, where different behaviour was expected (distance from the source, radiation absorption and scattering in irradiator structure and walls). The contributions from source, irradiator structure, sample material, carriers, walls, ceiling and floor to the photon spectra and air kerma at those points are reported and discussed. Air kerma measurements were also carried out using an ionisation chamber. Good agreement was found between experimental and calculated air kermas. (author)

  7. Natural circulation in a VVER reactor geometry: Experiments with the PACTEL facility and Cathare simulations

    Energy Technology Data Exchange (ETDEWEB)

    Raussi, P.; Kainulainen, S. [Lappeenranta Univ. of Technology, Lappeenranta (Finland); Kouhia, J. [VTT Energy, Lappeenranta (Finland)

    1995-09-01

    There are some 40 reactors based on the VVER design in use. Database available for computer code assessment for VVER reactors is rather limited. Experiments were conducted to study natural circulation behaviour in the PACTEL facility, a medium-scale integral test loop patterned after VVER pressurized water reactors. Flow behaviour over a range of coolant inventories was studied with a small-break experiment. In the small-break experiments, flow stagnation and system repressurization were observed when the water level in the upper plenum fell below the entrances to the hot legs. The cause was attributed to the hot leg loop seals, which are a unique feature of the VVER geometry. At low primary inventories, core cooling was achieved through the boiler-condenser mode. The experiment was simulated using French thermalhydraulic system code CATHARE.

  8. 3D flow simulation of liquid lead in the erosion test facility for ADS materials

    International Nuclear Information System (INIS)

    Muscher, Heinrich; Kieser, Martin; Weisenburger, Alfons; Mueller, Georg

    2009-01-01

    Future nuclear reactor concepts, such as GEN IV or ADS use liquid lead for neutron multiplication and coolant purposes. The design concepts assumes that the structural material is in contact with the liquid metal at temperatures up to 600 C and a flow rate of 20 m/s. Therefore a significant effect of liquid metal corrosion/erosion is expected. The paper describes the fluid dynamical simulation of the ADS erosion test facility. Earlier studies on the laminar flow modeling were completed by introduction of transient behavior and extended to 3D-models. The results for liquid lead should be transferable to LBE (lead bismuth eutectic). Further work has to include a mass transport model for modeling of the global isothermal erosion rate of the structural material dependent on time (for liquid lead and LBE).

  9. NUMERICAL FLOW AND TRANSPORT SIMULATIONS SUPPORTING THE SALTSTONE FACILITY PERFORMANCE ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G.

    2009-02-28

    The Saltstone Disposal Facility Performance Assessment (PA) is being revised to incorporate requirements of Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), and updated data and understanding of vault performance since the 1992 PA (Cook and Fowler 1992) and related Special Analyses. A hybrid approach was chosen for modeling contaminant transport from vaults and future disposal cells to exposure points. A higher resolution, largely deterministic, analysis is performed on a best-estimate Base Case scenario using the PORFLOW numerical analysis code. a few additional sensitivity cases are simulated to examine alternative scenarios and parameter settings. Stochastic analysis is performed on a simpler representation of the SDF system using the GoldSim code to estimate uncertainty and sensitivity about the Base Case. This report describes development of PORFLOW models supporting the SDF PA, and presents sample results to illustrate model behaviors and define impacts relative to key facility performance objectives. The SDF PA document, when issued, should be consulted for a comprehensive presentation of results.

  10. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Energy Technology Data Exchange (ETDEWEB)

    Remec, Igor [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States)]. E-mail: remeci@ornl.gov; Gabriel, Tony A. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Wendel, Mark W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Conner, David L. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Burgess, Thomas W. [Oak Ridge National Laboratory, Oak Ridge, P. O. Box 2008, TN 37831-6172 (United States); Ronningen, Reginald M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Blideanu, Valentin [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Bollen, Georg [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Boles, Jason L. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Reyes, Susana [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Ahle, Larry E. [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States); Stein, Werner [Lawrence Livermore National Laboratory, P. O. Box 808, L-446, Livermore, CA 94550 (United States)

    2006-06-23

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power-400 kW-will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions-and produce rare isotopes-in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u {sup 3}He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the {sup 3}He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  11. Particle and radiation simulations for the proposed rare isotope accelerator facility

    Science.gov (United States)

    Remec, Igor; Gabriel, Tony A.; Wendel, Mark W.; Conner, David L.; Burgess, Thomas W.; Ronningen, Reginald M.; Blideanu, Valentin; Bollen, Georg; Boles, Jason L.; Reyes, Susana; Ahle, Larry E.; Stein, Werner

    2006-06-01

    The Rare Isotope Accelerator (RIA) facility, planned to be built in the USA, will be capable of delivering diverse beams, from protons to uranium ions, with energies from 1 GeV to at least 400 MeV per nucleon to rare isotope-producing targets. High beam power—400 kW—will allow RIA to become the most powerful rare isotope beam facility in the world; however, it also creates challenges for the design of the isotope-production targets. This paper focuses on the isotope-separator-on-line (ISOL) target work, particularly the radiation transport aspects of the two-step fission target design. Simulations were performed with the PHITS, MCNPX, and MARS15 computer codes. A two-step ISOL target considered here consists of a mercury or tungsten primary target in which primary beam interactions release neutrons, which in turn induce fissions—and produce rare isotopes—in the secondary target filled with fissionable material. Three primary beams were considered: 1-GeV protons, 622-MeV/u deuterons, and 777-MeV/u 3He ions. The proton and deuterium beams were found to be about equivalent in terms of induced fission rates and heating rates in the target, while the 3He beam, without optimizing the target geometry, was less favorable, producing about 15% fewer fissions and about 50% higher heating rates than the proton beam at the same beam power.

  12. Naval electronic warfare simulation for effectiveness assessment and softkill programmability facility

    Science.gov (United States)

    Lançon, F.

    2011-06-01

    The Anti-ship Missile (ASM) threat to be faced by ships will become more diverse and difficult. Intelligence, rules of engagement constraints, fast reaction-time for effective softkill solution require specific tools to design Electronic Warfare (EW) systems and to integrate it onboard ship. SAGEM Company provides decoy launcher system [1] and its associated Naval Electronic Warfare Simulation tool (NEWS) to permit softkill effectiveness analysis for anti-ship missile defence. NEWS tool generates virtual environment for missile-ship engagement and counter-measure simulator over a wide spectrum: RF, IR, EO. It integrates EW Command & Control (EWC2) process which is implemented in decoy launcher system and performs Monte-Carlo batch processing to evaluate softkill effectiveness in different engagement situations. NEWS is designed to allow immediate EWC2 process integration from simulation to real decoy launcher system. By design, it allows the final operator to be able to program, test and integrate its own EWC2 module and EW library onboard, so intelligence of each user is protected and evolution of threat can be taken into account through EW library update. The objectives of NEWS tool are also to define a methodology for trial definition and trial data reduction. Growth potential would permit to design new concept for EWC2 programmability and real time effectiveness estimation in EW system. This tool can also be used for operator training purpose. This paper presents the architecture design, the softkill programmability facility concept and the flexibility for onboard integration on ship. The concept of this operationally focused simulation, which is to use only one tool for design, development, trial validation and operational use, will be demonstrated.

  13. The Current Status of the Space Station Biological Research Project: a Core Facility Enabling Multi-Generational Studies under Slectable Gravity Levels

    Science.gov (United States)

    Santos, O.

    2002-01-01

    The Space Station Biological Research Project (SSBRP) has developed a new plan which greatly reduces the development costs required to complete the facility. This new plan retains core capabilities while allowing for future growth. The most important piece of equipment required for quality biological research, the 2.5 meter diameter centrifuge capable of accommodating research specimen habitats at simulated gravity levels ranging from microgravity to 2.0 g, is being developed by NASDA, the Japanese space agency, for the SSBRP. This is scheduled for flight to the ISS in 2007. The project is also developing a multi-purpose incubator, an automated cell culture unit, and two microgravity habitat holding racks, currently scheduled for launch in 2005. In addition the Canadian Space Agency is developing for the project an insect habitat, which houses Drosophila melanogaster, and provides an internal centrifuge for 1 g controls. NASDA is also developing for the project a glovebox for the contained manipulation and analysis of biological specimens, scheduled for launch in 2006. This core facility will allow for experimentation on small plants (Arabidopsis species), nematode worms (C. elegans), fruit flies (Drosophila melanogaster), and a variety of microorganisms, bacteria, yeast, and mammalian cells. We propose a plan for early utilization which focuses on surveys of changes in gene expression and protein structure due to the space flight environment. In the future, the project is looking to continue development of a rodent habitat and a plant habitat that can be accommodated on the 2.5 meter centrifuge. By utilizing the early phases of the ISS to broadly answer what changes occur at the genetic and protein level of cells and organisms exposed to the ISS low earth orbit environment, we can generate interest for future experiments when the ISS capabilities allow for direct manipulation and intervention of experiments. The ISS continues to hold promise for high quality, long

  14. Microbiomes of the Dust Particles Collected from the International Space Station and Spacecraft Assembly Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The safety of the International Space Station (ISS) crewmembers and maintenance of ISS hardware are the primary rationale for monitoring microorganisms in this...

  15. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    Science.gov (United States)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  16. Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility

    Science.gov (United States)

    Howard, Samuel A.

    2004-01-01

    A new test rig has been developed for simulating high-speed turbomachinery shafting using Oil-Free foil air bearing technology. Foil air journal bearings are self-acting hydrodynamic bearings with a flexible inner sleeve surface using air as the lubricant. These bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. More recently, interest has been growing in applying foil bearings to aircraft gas turbine engines. They offer potential improvements in efficiency and power density, decreased maintenance costs, and other secondary benefits. The goal of applying foil air bearings to aircraft gas turbine engines prompted the fabrication of this test rig. The facility enables bearing designers to test potential bearing designs with shafts that simulate the rotating components of a target engine without the high cost of building actual flight hardware. The data collected from this rig can be used to make changes to the shaft and bearings in subsequent design iterations. The rest of this article describes the new test rig and demonstrates some of its capabilities with an initial simulated shaft system. The test rig has two support structures, each housing a foil air journal bearing. The structures are designed to accept any size foil journal bearing smaller than 63 mm (2.5 in.) in diameter. The bearing support structures are mounted to a 91- by 152-cm (3- by 5-ft) table and can be separated by as much as 122 cm (4 ft) and as little as 20 cm (8 in.) to accommodate a wide range of shaft sizes. In the initial configuration, a 9.5-cm (3.75-in.) impulse air turbine drives the test shaft. The impulse turbine, as well as virtually any number of "dummy" compressor and turbine disks, can be mounted on the shaft inboard or outboard of the bearings. This flexibility allows researchers to simulate various engine shaft configurations. The bearing support structures include a unique bearing mounting

  17. Huff-type competitive facility location model with foresight in a discrete space

    Directory of Open Access Journals (Sweden)

    Milad Gorji Ashtiani

    2011-01-01

    Full Text Available Consider a chain as leader that wants to open p new facilities in a linear market, like metro. In this market, there is a competitor, called follower. The leader and the follower have established some facilities in advance. When the leader opens p new facilities, its competitor, follower, reacts the leader’s action and opens r new facilities. The optimal locations for leader and follower are chosen among predefined potential locations. Demand is considered as demand points and is assumed inelastic. Considering huff model, demand points are probabilistically absorbed by all facilities. The leader’s objective is maximization of its market share after opening follower’s new facilities. For solving leader problem, first the follower’s problem is solved for all leader’s potential locations and the best location for leader is obtained and then, a heuristic model is proposed for leader problem when the leader and the follower want to open one new facility. Computational results show that the proposed method is efficient for large scale problems.

  18. Comparison of the MAAP4 code with the station blackout simulation in the IIST facility

    International Nuclear Information System (INIS)

    Robert E Henry; Christopher E Henry; Chan Y Paik; George M Hauser

    2005-01-01

    Full text of publication follows: The Modular Accident Analysis Program (MAAP) is an integral system model to assess challenges to the reactor core, Reactor Coolant System (RCS) and containment for accident conditions. MAAP4 is the current version used by the MAAP Users Group to assess the responses to a spectrum of accident conditions. Benchmarking of the MAAP code with integral system experiments has been a continuing effort by MAAP developers and users. Several of these have been configured into dynamic benchmarks and are included in Volume III (Benchmarking) of the MAAP4 Users Manual (EPRI, 2004). One such integral experiment is the INER integral system test (IIST) constructed at the Institute of Nuclear Energy Research in Taiwan. This experimental facility is a reduced height, reduced pressure representation of a 3-loop PWR and has been used to examine several different types of accident sequences. One of these is a station blackout simulation with loss of auxiliary feedwater at the time that the transient is initiated. This is an important integral experiment to be compared with the MAAP4 code models. A parameter file (those values representing the system design and boundary experimental conditions) has been developed for the IIST facility and an input deck has been configured to represent a station blackout sequence with instantaneous loss of auxiliary feedwater. Of importance in this benchmark is (a) the rate at which the secondary side inventory is depleted, (b) the depletion of water within the reactor pressure vessel and (c) the time at which the top of the reactor core is uncovered. Comparisons have been made with these three different intervals and there is good agreement between the timing of these events for the MAAP4 benchmark. This is important since this reference sequence represents a set of boundary conditions that is continually with subsequent analyses being perturbations on this type of accident sequence. The good agreement between MAAP4 and

  19. The Virtual Glovebox (VGX): An Immersive Simulation System for Training Astronauts to Perform Glovebox Experiments in Space

    Science.gov (United States)

    Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)

    2002-01-01

    The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.

  20. The US space station: Potential base for a spaceborne microwave facility

    Science.gov (United States)

    Mcconnell, D.

    1983-01-01

    Concepts for a U.S. space station were studied to achieve the full potential of the Space Shuttle and to provide a more permanent presence in space. The space station study is summarized in the following questions: Given a space station in orbit in the 1990's, how should it best be used to achieve science and applications objectives important at that time? To achieve those objectives, of what elements should the station be comprised and how should the elements be configured and equipped. These questions are addressed.

  1. Simulations of indirectly driven gas-filled capsules at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Weber, S. V.; Casey, D. T.; Eder, D. C.; Pino, J. E.; Smalyuk, V. A.; Remington, B. A.; Rowley, D. P.; Yeamans, C. B.; Tipton, R. E.; Barrios, M.; Benedetti, R.; Berzak Hopkins, L.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Divol, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    Gas-filled capsules imploded with indirect drive on the National Ignition Facility have been employed as symmetry surrogates for cryogenic-layered ignition capsules and to explore interfacial mix. Plastic capsules containing deuterated layers and filled with tritium gas provide a direct measure of mix of ablator into the gas fuel. Other plastic capsules have employed DT or D{sup 3}He gas fill. We present the results of two-dimensional simulations of gas-filled capsule implosions with known degradation sources represented as in modeling of inertial confinement fusion ignition designs; these are time-dependent drive asymmetry, the capsule support tent, roughness at material interfaces, and prescribed gas-ablator interface mix. Unlike the case of cryogenic-layered implosions, many observables of gas-filled implosions are in reasonable agreement with predictions of these simulations. Yields of TT and DT neutrons as well as other x-ray and nuclear diagnostics are matched for CD-layered implosions. Yields of DT-filled capsules are over-predicted by factors of 1.4–2, while D{sup 3}He capsule yields are matched, as well as other metrics for both capsule types.

  2. Large eddy simulation of Loss of Vacuum Accident in STARDUST facility

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Gaudio, Pasquale; Lupelli, Ivan; Malizia, Andrea; Porfiri, Maria Teresa; Richetta, Maria

    2013-01-01

    Highlights: ► Fusion safety, plasma material interaction. ► Numerical and experimental data comparison to analyze the consequences of Loss of Vacuum Accident that can provoke dust mobilization inside the Vacuum Vessel of the Nuclear Fusion Reactor ITER-like. -- Abstract: The development of computational fluid dynamic (CFD) models of air ingress into the vacuum vessel (VV) represents an important issue concerning the safety analysis of nuclear fusion devices, in particular in the field of dust mobilization. The present work deals with the large eddy simulations (LES) of fluid dynamic fields during a vessel filling at near vacuum conditions to support the safety study of Loss of Vacuum Accidents (LOVA) events triggered by air income. The model's results are compared to the experimental data provided by STARDUST facility at different pressurization rates (100 Pa/s, 300 Pa/s and 500 Pa/s). Simulation's results compare favorably with experimental data, demonstrating the possibility of implementing LES in large vacuum systems as tokamaks

  3. The politics of space mining - An account of a simulation game

    Science.gov (United States)

    Paikowsky, Deganit; Tzezana, Roey

    2018-01-01

    Celestial bodies like the Moon and asteroids contain materials and precious metals, which are valuable for human activity on Earth and beyond. Space mining has been mainly relegated to the realm of science fiction, and was not treated seriously by the international community. The private industry is starting to assemble towards space mining, and success on this front would have major impact on all nations. We present in this paper a review of current space mining ventures, and the international legislation, which could stand in their way - or aid them in their mission. Following that, we present the results of a role-playing simulation in which the role of several important nations was played by students of international relations. The results of the simulation are used as a basis for forecasting the potential initial responses of the nations of the world to a successful space mining operation in the future.

  4. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  5. Designing a Distributed Space Systems Simulation in Accordance with the Simulation Interoperability Standards Organization (SISO)

    Science.gov (United States)

    Cowen, Benjamin

    2011-01-01

    Simulations are essential for engineering design. These virtual realities provide characteristic data to scientists and engineers in order to understand the details and complications of the desired mission. A standard development simulation package known as Trick is used in developing a source code to model a component (federate in HLA terms). The runtime executive is integrated into an HLA based distributed simulation. TrickHLA is used to extend a Trick simulation for a federation execution, develop a source code for communication between federates, as well as foster data input and output. The project incorporates international cooperation along with team collaboration. Interactions among federates occur throughout the simulation, thereby relying on simulation interoperability. Communication through the semester went on between participants to figure out how to create this data exchange. The NASA intern team is designing a Lunar Rover federate and a Lunar Shuttle federate. The Lunar Rover federate supports transportation across the lunar surface and is essential for fostering interactions with other federates on the lunar surface (Lunar Shuttle, Lunar Base Supply Depot and Mobile ISRU Plant) as well as transporting materials to the desired locations. The Lunar Shuttle federate transports materials to and from lunar orbit. Materials that it takes to the supply depot include fuel and cargo necessary to continue moon-base operations. This project analyzes modeling and simulation technologies as well as simulation interoperability. Each team from participating universities will work on and engineer their own federate(s) to participate in the SISO Spring 2011 Workshop SIW Smackdown in Boston, Massachusetts. This paper will focus on the Lunar Rover federate.

  6. Theory and Simulation of the Physics of Space Charge Dominated Beams

    International Nuclear Information System (INIS)

    Haber, Irving

    2002-01-01

    This report describes modeling of intense electron and ion beams in the space charge dominated regime. Space charge collective modes play an important role in the transport of intense beams over long distances. These modes were first observed in particle-in-cell simulations. The work presented here is closely tied to the University of Maryland Electron Ring (UMER) experiment and has application to accelerators for heavy ion beam fusion

  7. Monte Carlo simulation of a medical linear accelerator for generation of phase spaces

    International Nuclear Information System (INIS)

    Oliveira, Alex C.H.; Santana, Marcelo G.; Lima, Fernando R.A.; Vieira, Jose W.

    2013-01-01

    Radiotherapy uses various techniques and equipment for local treatment of cancer. The equipment most often used in radiotherapy to the patient irradiation are linear accelerators (Linacs) which produce beams of X-rays in the range 5-30 MeV. Among the many algorithms developed over recent years for evaluation of dose distributions in radiotherapy planning, the algorithms based on Monte Carlo methods have proven to be very promising in terms of accuracy by providing more realistic results. The MC methods allow simulating the transport of ionizing radiation in complex configurations, such as detectors, Linacs, phantoms, etc. The MC simulations for applications in radiotherapy are divided into two parts. In the first, the simulation of the production of the radiation beam by the Linac is performed and then the phase space is generated. The phase space contains information such as energy, position, direction, etc. og millions of particles (photos, electrons, positrons). In the second part the simulation of the transport of particles (sampled phase space) in certain configurations of irradiation field is performed to assess the dose distribution in the patient (or phantom). The objective of this work is to create a computational model of a 6 MeV Linac using the MC code Geant4 for generation of phase spaces. From the phase space, information was obtained to asses beam quality (photon and electron spectra and two-dimensional distribution of energy) and analyze the physical processes involved in producing the beam. (author)

  8. DataSpaces: An Interaction and Coordination Framework for Coupled Simulation Workflows

    International Nuclear Information System (INIS)

    Docan, Ciprian; Klasky, Scott A.; Parashar, Manish

    2010-01-01

    Emerging high-performance distributed computing environments are enabling new end-to-end formulations in science and engineering that involve multiple interacting processes and data-intensive application workflows. For example, current fusion simulation efforts are exploring coupled models and codes that simultaneously simulate separate application processes, such as the core and the edge turbulence, and run on different high performance computing resources. These components need to interact, at runtime, with each other and with services for data monitoring, data analysis and visualization, and data archiving. As a result, they require efficient support for dynamic and flexible couplings and interactions, which remains a challenge. This paper presents Data-Spaces, a flexible interaction and coordination substrate that addresses this challenge. DataSpaces essentially implements a semantically specialized virtual shared space abstraction that can be associatively accessed by all components and services in the application workflow. It enables live data to be extracted from running simulation components, indexes this data online, and then allows it to be monitored, queried and accessed by other components and services via the space using semantically meaningful operators. The underlying data transport is asynchronous, low-overhead and largely memory-to-memory. The design, implementation, and experimental evaluation of DataSpaces using a coupled fusion simulation workflow is presented.

  9. Design space development for the extraction process of Danhong injection using a Monte Carlo simulation method.

    Directory of Open Access Journals (Sweden)

    Xingchu Gong

    Full Text Available A design space approach was applied to optimize the extraction process of Danhong injection. Dry matter yield and the yields of five active ingredients were selected as process critical quality attributes (CQAs. Extraction number, extraction time, and the mass ratio of water and material (W/M ratio were selected as critical process parameters (CPPs. Quadratic models between CPPs and CQAs were developed with determination coefficients higher than 0.94. Active ingredient yields and dry matter yield increased as the extraction number increased. Monte-Carlo simulation with models established using a stepwise regression method was applied to calculate the probability-based design space. Step length showed little effect on the calculation results. Higher simulation number led to results with lower dispersion. Data generated in a Monte Carlo simulation following a normal distribution led to a design space with a smaller size. An optimized calculation condition was obtained with 10,000 simulation times, 0.01 calculation step length, a significance level value of 0.35 for adding or removing terms in a stepwise regression, and a normal distribution for data generation. The design space with a probability higher than 0.95 to attain the CQA criteria was calculated and verified successfully. Normal operating ranges of 8.2-10 g/g of W/M ratio, 1.25-1.63 h of extraction time, and two extractions were recommended. The optimized calculation conditions can conveniently be used in design space development for other pharmaceutical processes.

  10. Simulation of hydraulic disturbances caused by the underground rock characterisation facility in Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Loefman, J.; Ferenc, M.

    2004-01-01

    Spent fuel from the Finnish nuclear power plants will be disposed of in a repository to be excavated in crystalline bedrock at a depth of 400-700 metres in Olkiluoto. The extensive site investigations carried out since the early 1980's will next focus on the construction of an underground rock characterisation facility (ONKALO) in 2004-2010. The open tunnel system will constitute a major hydraulic disturbance for the site's groundwater conditions for hundreds of years. Especially, inflow of groundwater into the tunnels results in a drawdown of groundwater table and upcoming of deep saline groundwater, which the present study aimed to assess by means of a 3D finite element simulation. The modelled bedrock volume, which horizontally covered the whole Olkiluoto island, was conceptually divided into hydraulic units, planar fracture zones and sparsely fractured rock between the zones, which were both separately treated as porous media. The geometry of the fracture zones was based on the geological bedrock model. Simulations showed that without engineering measures (e.g. grouting) taken to limit inflow of groundwater into the open tunnels, the hydraulic disturbances could be drastic. The tunnels draw groundwater from all directions in the bedrock. A major part of inflow comes from the well-conductive subhorizontal fracture zones intersected by the access tunnel and the shaft. The simulations show that the resulting drawdown of groundwater table may be from tens to hundreds of metres and the depressed area may extend over the area of the island. The results also indicate that the salinity of groundwater is gradually rising around and below the tunnel system, and locally concentration (TDS) may rise rather high in the vicinity of the tunnels. However, the disturbances can significantly be reduced by the grouting of rock. (orig.)

  11. Modeling and Simulation of DC Power Electronics Systems Using Harmonic State Space (HSS) Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Bak, Claus Leth

    2015-01-01

    based on the state-space averaging and generalized averaging, these also have limitations to show the same results as with the non-linear time domain simulations. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling......For the efficiency and simplicity of electric systems, the dc based power electronics systems are widely used in variety applications such as electric vehicles, ships, aircrafts and also in homes. In these systems, there could be a number of dynamic interactions between loads and other dc-dc....... Through this method, the required computation time and CPU memory for large dc power electronics systems can be reduced. Besides, the achieved results show the same results as with the non-linear time domain simulation, but with the faster simulation time which is beneficial in a large network....

  12. A Coordinated Initialization Process for the Distributed Space Exploration Simulation (DSES)

    Science.gov (United States)

    Phillips, Robert; Dexter, Dan; Hasan, David; Crues, Edwin Z.

    2007-01-01

    This document describes the federate initialization process that was developed at the NASA Johnson Space Center with the HIIA Transfer Vehicle Flight Controller Trainer (HTV FCT) simulations and refined in the Distributed Space Exploration Simulation (DSES). These simulations use the High Level Architecture (HLA) IEEE 1516 to provide the communication and coordination between the distributed parts of the simulation. The purpose of the paper is to describe a generic initialization sequence that can be used to create a federate that can: 1. Properly initialize all HLA objects, object instances, interactions, and time management 2. Check for the presence of all federates 3. Coordinate startup with other federates 4. Robustly initialize and share initial object instance data with other federates.

  13. An IBM PC-based math model for space station solar array simulation

    Science.gov (United States)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  14. Applicability of Long Duration Exposure Facility environmental effects data to the design of Space Station Freedom electrical power system

    Science.gov (United States)

    Christie, Robert J.; Lu, Cheng-Yi; Aronoff, Irene

    1992-01-01

    Data defining space environmental effects on the Long Duration Exposure Facility (LDEF) are examined in terms of the design of the electrical power system (EPS) of the Space Station Freedom (SSF). The significant effects of long-term exposure to space are identified with respect to the performance of the LDEF's materials, components, and systems. A total of 57 experiments were conducted on the LDEF yielding information regarding coatings, thermal systems, electronics, optics, and power systems. The resulting database is analyzed in terms of the specifications of the SSF EPS materials and subsystems and is found to be valuable in the design of control and protection features. Specific applications are listed for findings regarding the thermal environment, atomic oxygen, UV and ionizing radiation, debris, and contamination. The LDEF data are shown to have a considerable number of applications to the design and planning of the SSF and its EPS.

  15. Beyond "Home-Like" Design: Visitor Responses to an Immersive Creative Space in a Canadian Long-Term Care Facility.

    Science.gov (United States)

    Graham, Megan E; Fabricius, Andréa

    2017-11-01

    This study examined the benefits of expanding upon the "home-like" design by introducing an immersive creative space for residents, staff, and visitors to explore in a long-term care facility in Eastern Ontario, Canada. Data were collected through guestbook comments ( N = 93) and coded for themes according to guidelines for thematic analysis. Selected themes included visitors' enjoyment of the winter aesthetic, expressions of gratitude to the artists, time spent socializing with family and visitors in a creative milieu, and the experience of remembering in an evocative space. The results indicate that residents and visitors benefited from the experience of a creative space that was neither institutional, nor "home-like." Implications for future research are discussed.

  16. An alternative phase-space distribution to sample initial conditions for classical dynamics simulations

    International Nuclear Information System (INIS)

    Garcia-Vela, A.

    2002-01-01

    A new quantum-type phase-space distribution is proposed in order to sample initial conditions for classical trajectory simulations. The phase-space distribution is obtained as the modulus of a quantum phase-space state of the system, defined as the direct product of the coordinate and momentum representations of the quantum initial state. The distribution is tested by sampling initial conditions which reproduce the initial state of the Ar-HCl cluster prepared by ultraviolet excitation, and by simulating the photodissociation dynamics by classical trajectories. The results are compared with those of a wave packet calculation, and with a classical simulation using an initial phase-space distribution recently suggested. A better agreement is found between the classical and the quantum predictions with the present phase-space distribution, as compared with the previous one. This improvement is attributed to the fact that the phase-space distribution propagated classically in this work resembles more closely the shape of the wave packet propagated quantum mechanically

  17. Computational Modeling in Support of High Altitude Testing Facilities, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in propulsion test facility design and development by assessing risks, identifying failure modes and predicting...

  18. Computational Modeling in Support of High Altitude Testing Facilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation technology plays an important role in rocket engine test facility design and development by assessing risks, identifying failure modes and predicting...

  19. A comparative study for different shielding material composition and beam geometry applied to PET facilities: simulated transmission curves

    OpenAIRE

    Hoff, Gabriela; Costa, Paulo Roberto

    2013-01-01

    The aim of this work is to simulate transmission data for different beam geometry and material composition in order to evaluate the effect of these parameters on transmission curves. The simulations are focused on outgoing spectra for shielding barriers used in PET facilities. The behavior of the transmission was evaluated as a function of the shielding material composition and thickness using Geant4 Monte Carlo code, version 9.2 p 03.The application was benchmarked for barited mortar and com...

  20. Space charge and magnet error simulations for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Beebe-Wang, J.; Fedotov, A.V.; Wei, J.; Machida, S.

    2000-01-01

    The effects of space charge forces and magnet errors in the beam of the Spallation Neutron Source (SNS) accumulator ring are investigated. In this paper, the focus is on the emittance growth and halo/tail formation in the beam due to space charge with and without magnet errors. The beam properties of different particle distributions resulting from various injection painting schemes are investigated. Different working points in the design of SNS accumulator ring lattice are compared. The simulations in close-to-resonance condition in the presence of space charge and magnet errors are presented. (author)

  1. WENESSA, Wide Eye-Narrow Eye Space Simulation fo Situational Awareness

    Science.gov (United States)

    Albarait, O.; Payne, D. M.; LeVan, P. D.; Luu, K. K.; Spillar, E.; Freiwald, W.; Hamada, K.; Houchard, J.

    In an effort to achieve timelier indications of anomalous object behaviors in geosynchronous earth orbit, a Planning Capability Concept (PCC) for a “Wide Eye-Narrow Eye” (WE-NE) telescope network has been established. The PCC addresses the problem of providing continuous and operationally robust, layered and cost-effective, Space Situational Awareness (SSA) that is focused on monitoring deep space for anomalous behaviors. It does this by first detecting the anomalies with wide field of regard systems, and then providing reliable handovers for detailed observational follow-up by another optical asset. WENESSA will explore the added value of such a system to the existing Space Surveillance Network (SSN). The study will assess and quantify the degree to which the PCC completely fulfills, or improves or augments, these deep space knowledge deficiencies relative to current operational systems. In order to improve organic simulation capabilities, we will explore options for the federation of diverse community simulation approaches, while evaluating the efficiencies offered by a network of small and larger aperture, ground-based telescopes. Existing Space Modeling and Simulation (M&S) tools designed for evaluating WENESSA-like problems will be taken into consideration as we proceed in defining and developing the tools needed to perform this study, leading to the creation of a unified Space M&S environment for the rapid assessment of new capabilities. The primary goal of this effort is to perform a utility assessment of the WE-NE concept. The assessment will explore the mission utility of various WE-NE concepts in discovering deep space anomalies in concert with the SSN. The secondary goal is to generate an enduring modeling and simulation environment to explore the utility of future proposed concepts and supporting technologies. Ultimately, our validated simulation framework would support the inclusion of other ground- and space-based SSA assets through integrated

  2. Simulating storm surge inundation and damage potential within complex port facilities

    Science.gov (United States)

    Mawdsley, Robert; French, Jon; Fujiyama, Taku; Achutan, Kamalasudhan

    2017-04-01

    Storm surge inundation of port facilities can cause damage to critical elements of infrastructure, significantly disrupt port operations and cause downstream impacts on vital supply chains. A tidal surge in December 2013 in the North Sea partly flooded the Port of Immingham, which handles the largest volume of bulk cargo in the UK including major flows of coal and biomass for power generation. This flooding caused damage to port and rail transport infrastructure and disrupted operations for several weeks. This research aims to improve resilience to storm surges using hydrodynamic modelling coupled to an agent-based model of port operations. Using the December 2013 event to validate flood extent, depth and duration, we ran a high resolution hydrodynamic simulation using the open source Telemac 2D finite element code. The underlying Digital Elevation Model (DEM) was derived from Environment Agency LiDAR data, with ground truthing of the flood defences along the port frontage. Major infrastructure and buildings are explicitly resolved with varying degrees of permeability. Telemac2D simulations are run in parallel and take only minutes on a single 16 cpu compute node. Inundation characteristics predicted using Telemac 2D differ from a simple Geographical Information System 'bath-tub' analysis of the DEM based upon horizontal application of the maximum water level across the port topography. The hydrodynamic simulation predicts less extensive flooding and more closely matches observed flood extent. It also provides more precise depth and duration curves. Detailed spatial flood depth and duration maps were generated for a range of tide and surge scenarios coupled to mean sea-level rise projections. These inundation scenarios can then be integrated with critical asset databases and an agent-based model of port operation (MARS) that is capable of simulating storm surge disruption along wider supply chains. Port operators are able to act on information from a particular

  3. Development of BWR [boiling water reactor] and PWR [pressurized water reactor] event descriptions for nuclear facility simulator training

    International Nuclear Information System (INIS)

    Carter, R.J.; Bovell, C.R.

    1987-01-01

    A number of tools that can aid nuclear facility training developers in designing realistic simulator scenarios have been developed. This paper describes each of the tools, i.e., event lists, events-by-competencies matrices, and event descriptions, and illustrates how the tools can be used to construct scenarios

  4. Numerical simulation of electromagnetic waves in Schwarzschild space-time by finite difference time domain method and Green function method

    Science.gov (United States)

    Jia, Shouqing; La, Dongsheng; Ma, Xuelian

    2018-04-01

    The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.

  5. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    International Nuclear Information System (INIS)

    Kroc, T.K.

    2009-01-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  6. Novel simulation method of space charge effects in electron optical systems including emission of electrons

    Czech Academy of Sciences Publication Activity Database

    Zelinka, Jiří; Oral, Martin; Radlička, Tomáš

    2018-01-01

    Roč. 184, JAN (2018), s. 66-76 ISSN 0304-3991 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : space charge * self-consistent simulation * aberration polynomial * electron emission Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 2.843, year: 2016

  7. Being an "Agent Provocateur": Utilising Online Spaces for Teacher Professional Development in Virtual Simulation Games

    Science.gov (United States)

    deNoyelles, Aimee; Raider-Roth, Miriam

    2016-01-01

    This article details the results of an action research study which investigated how teachers used online learning community spaces to develop and support their teaching and learning of the Jewish Court of All Time (JCAT), a web-mediated, character-playing, simulation game that engages participants with social, historical and cultural curricula.…

  8. Using Monte Carlo Simulation To Improve Cargo Mass Estimates For International Space Station Commercial Resupply Flights

    Science.gov (United States)

    2016-12-01

    The Challenges of ISS Resupply .......................................... 23 F. THE IMPORTANCE OF MASS PROPERTIES IN SPACECRAFT AND MISSION DESIGN...Transportation System TBA trundle bearing assembly VLC verification loads cycle xv EXECUTIVE SUMMARY Resupplying the International Space Station...management priorities. This study addresses those challenges by developing Monte Carlo simulations based on over 13 years of as- flownSS resupply

  9. CONFRONTING THREE-DIMENSIONAL TIME-DEPENDENT JET SIMULATIONS WITH HUBBLE SPACE TELESCOPE OBSERVATIONS

    International Nuclear Information System (INIS)

    Staff, Jan E.; Niebergal, Brian P.; Ouyed, Rachid; Pudritz, Ralph E.; Cai, Kai

    2010-01-01

    We perform state-of-the-art, three-dimensional, time-dependent simulations of magnetized disk winds, carried out to simulation scales of 60 AU, in order to confront optical Hubble Space Telescope observations of protostellar jets. We 'observe' the optical forbidden line emission produced by shocks within our simulated jets and compare these with actual observations. Our simulations reproduce the rich structure of time-varying jets, including jet rotation far from the source, an inner (up to 400 km s -1 ) and outer (less than 100 km s -1 ) component of the jet, and jet widths of up to 20 AU in agreement with observed jets. These simulations when compared with the data are able to constrain disk wind models. In particular, models featuring a disk magnetic field with a modest radial spatial variation across the disk are favored.

  10. Shared space in a municipal sports facility The case of Lyngby Idraetsby

    DEFF Research Database (Denmark)

    Brinkø, Rikke; Nielsen, Susanne Balslev

    2015-01-01

    with planners,facilitators and users, with additional information collected via documents and observations at planning and user meetings. Findings : The project shows how shared space is relevant for the users and the project as a whole, and sheds light on key challenges regarding user involvement...... and facilitation that have to be handled when establishing a shared space. Originality/value : Shared space is receiving increasing attention, as part of the topics of the‘sharing economy’ etc. These themes illustrate trends in society, but there is little empirically material available when it comes to FM...

  11. Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station.

    Science.gov (United States)

    Kittang, A-I; Iversen, T-H; Fossum, K R; Mazars, C; Carnero-Diaz, E; Boucheron-Dubuisson, E; Le Disquet, I; Legué, V; Herranz, R; Pereda-Loth, V; Medina, F J

    2014-05-01

    Space experiments provide a unique opportunity to advance our knowledge of how plants respond to the space environment, and specifically to the absence of gravity. The European Modular Cultivation System (EMCS) has been designed as a dedicated facility to improve and standardise plant growth in the International Space Station (ISS). The EMCS is equipped with two centrifuges to perform experiments in microgravity and with variable gravity levels up to 2.0 g. Seven experiments have been performed since the EMCS was operational on the ISS. The objectives of these experiments aimed to elucidate phototropic responses (experiments TROPI-1 and -2), root gravitropic sensing (GRAVI-1), circumnutation (MULTIGEN-1), cell wall dynamics and gravity resistance (Cell wall/Resist wall), proteomic identification of signalling players (GENARA-A) and mechanism of InsP3 signalling (Plant signalling). The role of light in cell proliferation and plant development in the absence of gravity is being analysed in an on-going experiment (Seedling growth). Based on the lessons learned from the acquired experience, three preselected ISS experiments have been merged and implemented as a single project (Plant development) to study early phases of seedling development. A Topical Team initiated by European Space Agency (ESA), involving experienced scientists on Arabidopsis space research experiments, aims at establishing a coordinated, long-term scientific strategy to understand the role of gravity in Arabidopsis growth and development using already existing or planned new hardware. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  12. The daylighting dashboard - A simulation-based design analysis for daylit spaces

    Energy Technology Data Exchange (ETDEWEB)

    Reinhart, Christoph F. [Harvard University, Graduate School of Design, 48 Quincy Street, Cambridge, MA 02138 (United States); Wienold, Jan [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany)

    2011-02-15

    This paper presents a vision of how state-of-the-art computer-based analysis techniques can be effectively used during the design of daylit spaces. Following a review of recent advances in dynamic daylight computation capabilities, climate-based daylighting metrics, occupant behavior and glare analysis, a fully integrated design analysis method is introduced that simultaneously considers annual daylight availability, visual comfort and energy use: Annual daylight glare probability profiles are combined with an occupant behavior model in order to determine annual shading profiles and visual comfort conditions throughout a space. The shading profiles are then used to calculate daylight autonomy plots, energy loads, operational energy costs and green house gas emissions. The paper then shows how simulation results for a sidelit space can be visually presented to simulation non-experts using the concept of a daylighting dashboard. The paper ends with a discussion of how the daylighting dashboard could be practically implemented using technologies that are available today. (author)

  13. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A., E-mail: aliaksei.halavanau@gmail.com [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Piot, P. [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-05-21

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. This “micro-bunching instabilities” is naturally broadband and could possibly support the generation of coherent radiation over a broad region of the spectrum. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we refine these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program ELEGANT. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We finally employ the developed model to investigate the performance of a cascaded LSC amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.

  14. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    International Nuclear Information System (INIS)

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO 2 ) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO 2 pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs

  15. Monte Carlo Simulations of New 2D Ripple Filters for Particle Therapy Facilities

    DEFF Research Database (Denmark)

    Ringbæk, Toke Printz; Weber, Uli; Petersen, Jørgen B.B.

    2014-01-01

    ). At the Universitätsklinikum Gießen und Marburg, Germany, a new second generation RiFi has been developed with two-dimensional groove structures. In this work we evaluate this new RiFi design. Methods: The Monte Carlo (MC) code SHIELD-HIT12A is used to determine the RiFi- induced inhomogeneities in the dose distribution...... for various ion types, initial particle energies and distances from the RiFi to the phantom surface as well as in the depth of the phantom. The beam delivery and monitor system (BAMS) used at Marburg, the Heidelberg Ionentherapiezentrum (HIT), Universit ̈tsklinikum Heidelberg, Germany and the GSI...... Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany is modeled and simulated. To evaluate the PTV dose coverage performance of the new RiFi design, the heavy ion treatment planning system TRiP98 is used for dose optimization. SHIELD-HIT12A is used to prepare the facility-specific physical dose kernels...

  16. PUMA Version 6 Multiplatform with Facilities to be coupled with other Simulation Models

    International Nuclear Information System (INIS)

    Grant, Carlos

    2013-01-01

    PUMA is a code for nuclear reactor calculation used in all nuclear installations in Argentina for simulation of fuel management, power cycles and transient events by means of spatial kinetic diffusion theory in 3D. For the versions used up to now the WINDOWS platform was used with very good results. Nowadays PUMA must work in different operative systems, LINUX among others, and must also have facilities to be coupled with other models. For this reason this new version was reprogrammed in ADA, language oriented to a safe programming and be found in any operative system. In former versions PUMA was executed through macro instructions written in LOGO. For this version it is possible to use also PYTHON, which makes also possible the access in execution time to internal data of PUMA. The use of PYTHON allows a easy way to couple PUMA with other codes. The possibilities of this new version of PUMA are shown by means of examples of input data and process control using PYTHON and LOGO. It is discussed the implementation of this methodology in other codes to be coupled with PUMA for versions run in WINDOWS and LINUX. (author)

  17. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities

    International Nuclear Information System (INIS)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-01-01

    Purpose: A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Methods: Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. Results: An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. Conclusions: The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  18. Simulations of a phase corrector plate for the National Ignition Facility

    International Nuclear Information System (INIS)

    Williams, W. H. LLNL

    1998-01-01

    Simulations are presented on the effect of placing a static phase corrector plate in each beamline of the National Ignition Facility (NIF) to assist the adaptive optic in correcting beam phase aberrations. Results indicate such a plate could significantly improve the focal spot, reducing a 3ω, 80% spot half-angle from 21 to 8 microrad for poorer-qualtiy optics, and 17 to 7 for better optics. Such a plate appears to be within the range of current fabrication technologies. It would have an alignment requiremnt of ±0.5 mm, if placed in the front end. In NIF operation, the occasional replacement of laser slabs would slowly degrade the beam quality for a fixed corrector plate, with the spot size increasing from 8 to 15 microrad after four new slabs for poorer optics, and 7 to 12 microrad for better optics. The energy fraciton clipped on the injection pinhole (±100 microrad) would be <0.5% due to this pre-correction

  19. Monte Carlo simulation of photon buildup factors for shielding materials in diagnostic x-ray facilities.

    Science.gov (United States)

    Kharrati, Hedi; Agrebi, Amel; Karoui, Mohamed Karim

    2012-10-01

    A simulation of buildup factors for ordinary concrete, steel, lead, plate glass, lead glass, and gypsum wallboard in broad beam geometry for photons energies from 10 keV to 150 keV at 5 keV intervals is presented. Monte Carlo N-particle radiation transport computer code has been used to determine the buildup factors for the studied shielding materials. An example concretizing the use of the obtained buildup factors data in computing the broad beam transmission for tube potentials at 70, 100, 120, and 140 kVp is given. The half value layer, the tenth value layer, and the equilibrium tenth value layer are calculated from the broad beam transmission for these tube potentials. The obtained values compared with those calculated from the published data show the ability of these data to predict shielding transmission curves. Therefore, the buildup factors data can be combined with primary, scatter, and leakage x-ray spectra to provide a computationally based solution to broad beam transmission for barriers in shielding x-ray facilities.

  20. Simulation of parameters of the stationary facility "ATLAS" by means of disk EMG

    CERN Document Server

    Buyko, A M; Ivanova, G G; Gorbachev, Yu N; Kuzaev, A I; Kulagin, A A; Mokhov, V N; Pak, S V; Petrukhin, A A; Sofronov, V N; Yakubov, V B; Anderson, B G; Atchison, W L; Clark, D A; Faehl, R J; Lindemuth, I R; Reinovsky, R E; Rodríguez, G; Stokes, J L; Tabaka, L J

    2001-01-01

    Summary form only given, as follows. The paper presents the results of the Russian-American experiment (ALT-1) on simulation of the ATLAS capacitor bank energy parameters in the liner load. The capacitor bank ATLAS is being constructed in USA for high energy density physics research (A New Energy Density Physics Research Facility: ATLAS). The experiment was conducted at VNIIEF in November 1999. The experimental device consisted of helical and disk explosive magnetic generators (EMG), of electrically exploded foil opening switch (FOS) and of the liner load connected to FOS with the help of exploded closing switch. The initial parameters of the liner made of technically pure aluminum were: outer radius 40 mm, operating height -~40 mm, thickness -2 mm. In the experiment the liner was driven by the pulse of current with the amplitude 31.5 MA with a total risetime of ~4 ms. 50-gram liner' velocity, measured by the laser interferometer VISAR, was * 10 km/s. The paper gives as well some other characteristics obtaine...

  1. ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Kaplan, D. L. [University of Wisconsin-Milwaukee, Milwaukee (United States); McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M. [ARC Centre of Excellence for All-sky Astrophysics (CAASTRO), Sydney (Australia); Smith, C. [Electro Optic Systems Pty Ltd, Canberra (Australia); Zhang, K. [RMIT University, Melbourne (Australia); Barnes, D. G., E-mail: s.tingay@curtin.edu.au [Monash e-Research Centre, Monash University, Clayton (Australia); and others

    2013-10-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  2. On the Detection and Tracking of Space Debris Using the Murchison Widefield Array. I. Simulations and Test Observations Demonstrate Feasibility

    Science.gov (United States)

    Tingay, S. J.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Smith, C.; Zhang, K.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Barnes, D. G.; Bell, M.; Gaensler, B. M.; Lenc, E.; Bernardi, G.; Greenhill, L. J.; Kasper, J. C.; Bowman, J. D.; Jacobs, D.; Bunton, J. D.; deSouza, L.; Koenig, R.; Pathikulangara, J.; Stevens, J.; Cappallo, R. J.; Corey, B. E.; Kincaid, B. B.; Kratzenberg, E.; Lonsdale, C. J.; McWhirter, S. R.; Rogers, A. E. E.; Salah, J. E.; Whitney, A. R.; Deshpande, A.; Prabu, T.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Morgan, E.; Remillard, R. A.; Williams, C. L.; Hazelton, B. J.; Morales, M. F.; Johnston-Hollitt, M.; Mitchell, D. A.; Procopio, P.; Riding, J.; Webster, R. L.; Wyithe, J. S. B.; Oberoi, D.; Roshi, A.; Sault, R. J.; Williams, A.

    2013-10-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ~1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  3. ON THE DETECTION AND TRACKING OF SPACE DEBRIS USING THE MURCHISON WIDEFIELD ARRAY. I. SIMULATIONS AND TEST OBSERVATIONS DEMONSTRATE FEASIBILITY

    International Nuclear Information System (INIS)

    Tingay, S. J.; Wayth, R. B.; Hurley-Walker, N.; Kennewell, J.; Arcus, W.; Bhat, N. D. R.; Emrich, D.; Herne, D.; Kudryavtseva, N.; Lynch, M.; Ord, S. M.; Waterson, M.; Kaplan, D. L.; McKinley, B.; Briggs, F.; Bell, M.; Gaensler, B. M.; Smith, C.; Zhang, K.; Barnes, D. G.

    2013-01-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope, operating in the benign radio frequency environment of remote Western Australia. The MWA is the low-frequency precursor to the Square Kilometre Array (SKA) and is the first of three SKA precursors to be operational, supporting a varied science mission ranging from the attempted detection of the Epoch of Reionization to the monitoring of solar flares and space weather. In this paper we explore the possibility that the MWA can be used for the purposes of Space Situational Awareness (SSA). In particular we propose that the MWA can be used as an element of a passive radar facility operating in the frequency range 87.5-108 MHz (the commercial FM broadcast band). In this scenario the MWA can be considered the receiving element in a bi-static radar configuration, with FM broadcast stations serving as non-cooperative transmitters. The FM broadcasts propagate into space, are reflected off debris in Earth orbit, and are received at the MWA. The imaging capabilities of the MWA can be used to simultaneously detect multiple pieces of space debris, image their positions on the sky as a function of time, and provide tracking data that can be used to determine orbital parameters. Such a capability would be a valuable addition to Australian and global SSA assets, in terms of southern and eastern hemispheric coverage. We provide a feasibility assessment of this proposal, based on simple calculations and electromagnetic simulations, that shows that the detection of sub-meter size debris should be possible (debris radius of >0.5 m to ∼1000 km altitude). We also present a proof-of-concept set of observations that demonstrate the feasibility of the proposal, based on the detection and tracking of the International Space Station via reflected FM broadcast signals originating in southwest Western Australia. These observations broadly validate our calculations and simulations. We discuss some

  4. Surgical Space Suits Increase Particle and Microbiological Emission Rates in a Simulated Surgical Environment.

    Science.gov (United States)

    Vijaysegaran, Praveen; Knibbs, Luke D; Morawska, Lidia; Crawford, Ross W

    2018-05-01

    The role of space suits in the prevention of orthopedic prosthetic joint infection remains unclear. Recent evidence suggests that space suits may in fact contribute to increased infection rates, with bioaerosol emissions from space suits identified as a potential cause. This study aimed to compare the particle and microbiological emission rates (PER and MER) of space suits and standard surgical clothing. A comparison of emission rates between space suits and standard surgical clothing was performed in a simulated surgical environment during 5 separate experiments. Particle counts were analyzed with 2 separate particle counters capable of detecting particles between 0.1 and 20 μm. An Andersen impactor was used to sample bacteria, with culture counts performed at 24 and 48 hours. Four experiments consistently showed statistically significant increases in both PER and MER when space suits are used compared with standard surgical clothing. One experiment showed inconsistent results, with a trend toward increases in both PER and MER when space suits are used compared with standard surgical clothing. Space suits cause increased PER and MER compared with standard surgical clothing. This finding provides mechanistic evidence to support the increased prosthetic joint infection rates observed in clinical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Tests of the space gamma spectrometer prototype at the JINR experimental facility with different types of neutron generators

    Science.gov (United States)

    Litvak, M. L.; Vostrukhin, A. A.; Golovin, D. V.; Dubasov, P. V.; Zontikov, A. O.; Kozyrev, A. S.; Krylov, A. R.; Krylov, V. A.; Mitrofanov, I. G.; Mokrousov, M. I.; Repkin, A. N.; Timoshenko, G. N.; Udovichenko, K. V.; Shvetsov, V. N.

    2017-07-01

    The results of the tests of the HPGe gamma spectrometer performed with a planetary soil model and different types of pulse neutron generators are presented. All measurements have been performed at the experimental nuclear planetary science facility (Joint Institute for Nuclear Research) for the physical calibration of active gamma and neutron spectrometers. The aim of the study is to model a space experiment on determining the elemental composition of Martian planetary matter by neutron-induced gamma spectroscopy. The advantages and disadvantages of a gas-filled neutron generator in comparison with a vacuum-tube neutron generator are examined.

  6. The Marshall Space Flight Center Low-Energy Ion Facility: a preliminary report

    International Nuclear Information System (INIS)

    Biddle, A.P.; Reynolds, J.W.; Chisholm, W.L. Jr.; Hunt, R.D.

    1983-10-01

    The Low-Energy Ion Facility (LEIF) is designed for laboratory research of low-energy ion beams similar to those present in the magnetosphere. In addition, it provides the ability to develop and calibrate low-energy, less than 50 eV, plasma instrumentation over its full range of energy, mass, flux, and arrival angle. The current status of this evolving resource is described. It also provides necessary information to allow users to utilize it most efficiently

  7. Numerical simulation of a cabin ventilation subsystem in a space station oriented real-time system

    Directory of Open Access Journals (Sweden)

    Zezheng QIU

    2017-12-01

    Full Text Available An environment control and life support system (ECLSS is an important system in a space station. The ECLSS is a typical complex system, and the real-time simulation technology can help to accelerate its research process by using distributed hardware in a loop simulation system. An implicit fixed time step numerical integration method is recommended for a real-time simulation system with time-varying parameters. However, its computational efficiency is too low to satisfy the real-time data interaction, especially for the complex ECLSS system running on a PC cluster. The instability problem of an explicit method strongly limits its application in the ECLSS real-time simulation although it has a high computational efficiency. This paper proposes an improved numerical simulation method to overcome the instability problem based on the explicit Euler method. A temperature and humidity control subsystem (THCS is firstly established, and its numerical stability is analyzed by using the eigenvalue estimation theory. Furthermore, an adaptive operator is proposed to avoid the potential instability problem. The stability and accuracy of the proposed method are investigated carefully. Simulation results show that this proposed method can provide a good way for some complex time-variant systems to run their real-time simulation on a PC cluster. Keywords: Numerical integration method, Real-time simulation, Stability, THCS, Time-variant system

  8. Extraterrestrial fiberglass production using solar energy. [lunar plants or space manufacturing facilities

    Science.gov (United States)

    Ho, D.; Sobon, L. E.

    1979-01-01

    A conceptual design is presented for fiberglass production systems in both lunar and space environments. The raw material, of lunar origin, will be plagioclase concentrate, high silica content slag, and calcium oxide. Glass will be melted by solar energy. The multifurnace in the lunar plant and the spinning cylinder in the space plant are unique design features. Furnace design appears to be the most critical element in optimizing system performance. A conservative estimate of the total power generated by solar concentrators is 1880 kW; the mass of both plants is 120 tons. The systems will reproduce about 90 times their total mass in fiberglass in 1 year. A new design concept would be necessary if glass rods were produced in space.

  9. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  10. Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment system.

    Science.gov (United States)

    Liu, Z; Voelger, P; Sugimoto, N

    2000-06-20

    We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.

  11. Operational analysis and improvement of a spent nuclear fuel handling and treatment facility using discrete event simulation

    International Nuclear Information System (INIS)

    Garcia, H.E.

    2000-01-01

    Spent nuclear fuel handling and treatment often require facilities with a high level of operational complexity. Simulation models can reveal undesirable characteristics and production problems before they become readily apparent during system operations. The value of this approach is illustrated here through an operational study, using discrete event modeling techniques, to analyze the Fuel Conditioning Facility at Argonne National Laboratory and to identify enhanced nuclear waste treatment configurations. The modeling approach and results of what-if studies are discussed. An example on how to improve productivity is presented.

  12. The CERN-EU high-energy reference field (CERF) facility for dosimetry at commercial flight altitudes and in space.

    Science.gov (United States)

    Mitaroff, A; Cern, M Silari

    2002-01-01

    A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.

  13. A simulation based research on chance constrained programming in robust facility location problem

    Directory of Open Access Journals (Sweden)

    Kaijun Leng

    2017-03-01

    Full Text Available Since facility location decisions problem include long-term character and potential parameter variations, it is important to consider uncertainty in its modeling. This paper examines robust facility location problem considering supply uncertainty, in which we assume the supply of the facility in the actual operation is not equal to the supply initially established, the supply is subject to random fluctuation. The chance constraints are introduced when formulating the robust facility location model to make sure the system operate properly with a certain probability while the supply fluctuates. The chance constraints are approximated safely by using Hoeffding’s inequality and the problem is transformed to a general deterministic linear programming. Furthermore, how the facility location cost change with confidence level is investigated through a numerical example. The sensitivity analysis is conducted for important parameters of the model and we get the main factors that affect the facility location cost.

  14. Energy content of stormtime ring current from phase space mapping simulations

    International Nuclear Information System (INIS)

    Chen, M.W.; Schulz, M.; Lyons, L.R.

    1993-01-01

    The authors perform a model study to account for the increase in energy content of the trapped-particle population which occurs during the main phase of major geomagnetic storms. They consider stormtime particle transport in the equatorial region of the magnetosphere. They start with a phase space distribution of the ring current before the storm, created by a steady state transport model. They then use a previously developed guiding center particle simulation to map the stormtime ring current phase space, following Liouville's theorem. This model is able to account for the ten to twenty fold increase in energy content of magnetospheric ions during the storm

  15. Design of teletherapy facility: effect of space and occupancy on the material cost

    International Nuclear Information System (INIS)

    Dash Sharma, P.K.; Janakiraman, G.; Shirva, V.K.

    2000-01-01

    In this paper, the material cost involved by making the room spacious, orientation of the layout with regards to occupancy around the installation, for 15 MV accelerator and telecobalt facility has been worked out. Here, the cost of RCC (2.35 gm/cc), which is generally used as shielding material is only considered and not the cost of other materials, transportation and labour. This paper may be useful for users to optimise the plan so as to reduce the cost of construction

  16. Validated simulator for space debris removal with nets and other flexible tethers applications

    Science.gov (United States)

    Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil

    2016-12-01

    In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and

  17. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    Science.gov (United States)

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  18. Simulation of space radiation effects on polyimide film materials for high temperature applications. Final report

    International Nuclear Information System (INIS)

    Fogdall, L.B.; Cannaday, S.S.

    1977-11-01

    Space environment effects on candidate materials for the solar sail film are determined. Polymers, including metallized polyimides that might be suitable solar radiation receivers, were exposed to combined proton and solar electromagnetic radiation. Each test sample was weighted, to simulate the tension on the polymer when it is stretched into near-planar shape while receiving solar radiation. Exposure rates up to 16 times that expected in Earth orbit were employed, to simulate near-sun solar sailing conditions. Sample appearance, elongation, and shrinkage were monitored, noted, and documented in situ. Thermosetting polyimides showed less degradation or visual change in appearance than thermoplastics

  19. Simulation Evaluation of Controller-Managed Spacing Tools under Realistic Operational Conditions

    Science.gov (United States)

    Callantine, Todd J.; Hunt, Sarah M.; Prevot, Thomas

    2014-01-01

    Controller-Managed Spacing (CMS) tools have been developed to aid air traffic controllers in managing high volumes of arriving aircraft according to a schedule while enabling them to fly efficient descent profiles. The CMS tools are undergoing refinement in preparation for field demonstration as part of NASA's Air Traffic Management (ATM) Technology Demonstration-1 (ATD-1). System-level ATD-1 simulations have been conducted to quantify expected efficiency and capacity gains under realistic operational conditions. This paper presents simulation results with a focus on CMS-tool human factors. The results suggest experienced controllers new to the tools find them acceptable and can use them effectively in ATD-1 operations.

  20. Modeling extreme "Carrington-type" space weather events using three-dimensional global MHD simulations

    Science.gov (United States)

    Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex

    2014-06-01

    There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.

  1. The Role of Habitability Studies in Space Facility and Vehicle Design

    Science.gov (United States)

    Adams, Constance M.

    1999-01-01

    This document is a viewgraph presentation which reviews the role of the space architect in designing a space vehicle with habitability as a chief concern. Habitability is composed of the qualities of the environment or system which support the crew in working and living. All the impacts from habitability are interdependent; i.e., impacts to well-being can impact performance, safety or efficiency. After reviewing the issues relating to habitability the presentation discusses the application of these issues in two case studies. The first studies the Bio-Plex Hab chamber which includes designs of the living and working areas. The second case study is the ISS-TransHab which is being studied as a prototype for Mars transit.

  2. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  3. Simulation of space protons influence on silicon semiconductor devices using gamma-neutron irradiation

    International Nuclear Information System (INIS)

    Zhukov, Y.N.; Zinchenko, V.F.; Ulimov, V.N.

    1999-01-01

    In this study the authors focus on the problems of simulating the space proton energy spectra under laboratory gamma-neutron radiation tests of semiconductor devices (SD). A correct simulation of radiation effects implies to take into account and evaluate substantial differences in the processes of formation of primary defects in SD in space environment and under laboratory testing. These differences concern: 1) displacement defects, 2) ionization defects and 3) intensity of radiation. The study shows that: - the energy dependence of nonionizing energy loss (NIEL) is quite universal to predict the degradation of SD parameters associated to displacement defects, and - MOS devices that are sensitive to ionization defects indicated the same variation of parameters under conditions of equality of ionization density generated by protons and gamma radiations. (A.C.)

  4. Simulation of the preliminary General Electric SP-100 space reactor concept using the ATHENA computer code

    International Nuclear Information System (INIS)

    Fletcher, C.D.

    1986-01-01

    The capability to perform thermal-hydraulic analyses of a space reactor using the ATHENA computer code is demonstrated. The fast reactor, liquid-lithium coolant loops, and lithium-filled heat pipes of the preliminary General electric SP-100 design were modeled with ATHENA. Two demonstration transient calculations were performed simulating accident conditions. Calculated results are available for display using the Nuclear Plant Analyzer color graphics analysis tool in addition to traditional plots. ATHENA-calculated results appear reasonable, both for steady state full power conditions, and for the two transients. This analysis represents the first known transient thermal-hydraulic simulation using an integral space reactor system model incorporating heat pipes. 6 refs., 17 figs., 1 tab

  5. Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment

    NARCIS (Netherlands)

    Meerman, J.C.; Ramírez Ramírez, C.A.; Turkenburg, W.C.; Faaij, A.P.C.

    2011-01-01

    This article investigates technical possibilities and performances of flexible integrated gasification polygeneration (IG-PG) facilities equipped with CO2 capture for the near future. These facilities can produce electricity during peak hours, while switching to the production of chemicals during

  6. Status of CEA design and simulation studies of 200 KWe turboelectric space power system

    International Nuclear Information System (INIS)

    Carre, F.; Proust, E.; Gervaise, F.; Schwartz, J.P.; Tilliette, Z.; Vrillon, B.

    1987-01-01

    This paper presents the updated design features of the reference 200 kWe turboelectric space generator studied in France, and comments some of the alternative options to be analyzed in the near future, concerning the reactor and the conversion system in particular. Also presented the major conclusions of the simulation studies, that have been performed to analyze the overall behavior of the reference generator, during the start up and the accidental transients

  7. Free-Space Squeezing Assists Perfectly Matched Layers in Simulations on a Tight Domain

    DEFF Research Database (Denmark)

    Shyroki, Dzmitry; Ivinskaya, Aliaksandra; Lavrinenko, Andrei

    2010-01-01

    outside the object, as in simulations of eigenmodes or scattering at a wavelength comparable to or larger than the object itself. Here, we show how, in addition to applying the perfectly matched layers (PMLs), outer free space can be squeezed to avoid cutting the evanescent field tails by the PMLs...... or computational domain borders. Adding the squeeze-transform layers to the standard PMLs requires no changes to the finite-difference algorithms....

  8. A simulation model for reliability evaluation of Space Station power systems

    Science.gov (United States)

    Singh, C.; Patton, A. D.; Kumar, Mudit; Wagner, H.

    1988-01-01

    A detailed simulation model for the hybrid Space Station power system is presented which allows photovoltaic and solar dynamic power sources to be mixed in varying proportions. The model considers the dependence of reliability and storage characteristics during the sun and eclipse periods, and makes it possible to model the charging and discharging of the energy storage modules in a relatively accurate manner on a continuous basis.

  9. Computer graphics testbed to simulate and test vision systems for space applications

    Science.gov (United States)

    Cheatham, John B.

    1991-01-01

    Artificial intelligence concepts are applied to robotics. Artificial neural networks, expert systems and laser imaging techniques for autonomous space robots are being studied. A computer graphics laser range finder simulator developed by Wu has been used by Weiland and Norwood to study use of artificial neural networks for path planning and obstacle avoidance. Interest is expressed in applications of CLIPS, NETS, and Fuzzy Control. These applications are applied to robot navigation.

  10. Systematic design and three-dimensional simulation of X-ray FEL oscillator for Shanghai Coherent Light Facility

    Science.gov (United States)

    Li, Kai; Deng, Haixiao

    2018-07-01

    The Shanghai Coherent Light Facility (SCLF) is a quasi-continuous wave hard X-ray free electron laser facility, which is currently under construction. Due to the high repetition rate and high-quality electron beams, it is straightforward to consider X-ray free electron laser oscillator (XFELO) operation for the SCLF. In this paper, the main processes for XFELO design, and parameter optimization of the undulator, X-ray cavity, and electron beam are described. A three-dimensional X-ray crystal Bragg diffraction code, named BRIGHT, was introduced for the first time, which can be combined with the GENESIS and OPC codes for the numerical simulations of the XFELO. The performance of the XFELO of the SCLF is investigated and optimized by theoretical analysis and numerical simulation.

  11. A simulation-based robust biofuel facility location model for an integrated bio-energy logistics network

    Directory of Open Access Journals (Sweden)

    Jae-Dong Hong

    2014-10-01

    Full Text Available Purpose: The purpose of this paper is to propose a simulation-based robust biofuel facility location model for solving an integrated bio-energy logistics network (IBLN problem, where biomass yield is often uncertain or difficult to determine.Design/methodology/approach: The IBLN considered in this paper consists of four different facilities: farm or harvest site (HS, collection facility (CF, biorefinery (BR, and blending station (BS. Authors propose a mixed integer quadratic modeling approach to simultaneously determine the optimal CF and BR locations and corresponding biomass and bio-energy transportation plans. The authors randomly generate biomass yield of each HS and find the optimal locations of CFs and BRs for each generated biomass yield, and select the robust locations of CFs and BRs to show the effects of biomass yield uncertainty on the optimality of CF and BR locations. Case studies using data from the State of South Carolina in the United State are conducted to demonstrate the developed model’s capability to better handle the impact of uncertainty of biomass yield.Findings: The results illustrate that the robust location model for BRs and CFs works very well in terms of the total logistics costs. The proposed model would help decision-makers find the most robust locations for biorefineries and collection facilities, which usually require huge investments, and would assist potential investors in identifying the least cost or important facilities to invest in the biomass and bio-energy industry.Originality/value: An optimal biofuel facility location model is formulated for the case of deterministic biomass yield. To improve the robustness of the model for cases with probabilistic biomass yield, the model is evaluated by a simulation approach using case studies. The proposed model and robustness concept would be a very useful tool that helps potential biofuel investors minimize their investment risk.

  12. ROSA-V large scale test facility (LSTF) system description for the third and fourth simulated fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Mitsuhiro; Nakamura, Hideo; Ohtsu, Iwao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2003-03-01

    The Large Scale Test Facility (LSTF) is a full-height and 1/48 volumetrically scaled test facility of the Japan Atomic Energy Research Institute (JAERI) for system integral experiments simulating the thermal-hydraulic responses at full-pressure conditions of a 1100 MWe-class pressurized water reactor (PWR) during small break loss-of-coolant accidents (SBLOCAs) and other transients. The LSTF can also simulate well a next-generation type PWR such as the AP600 reactor. In the fifth phase of the Rig-of-Safety Assessment (ROSA-V) Program, eighty nine experiments have been conducted at the LSTF with the third simulated fuel assembly until June 2001, and five experiments have been conducted with the newly-installed fourth simulated fuel assembly until December 2002. In the ROSA-V program, various system integral experiments have been conducted to certify effectiveness of both accident management (AM) measures in beyond design basis accidents (BDBAs) and improved safety systems in the next-generation reactors. In addition, various separate-effect tests have been conducted to verify and develop computer codes and analytical models to predict non-homogeneous and multi-dimensional phenomena such as heat transfer across the steam generator U-tubes under the presence of non-condensable gases in both current and next-generation reactors. This report presents detailed information of the LSTF system with the third and fourth simulated fuel assemblies for the aid of experiment planning and analyses of experiment results. (author)

  13. Combining annual daylight simulation with photobiology data to assess the relative circadian efficacy of interior spaces

    Energy Technology Data Exchange (ETDEWEB)

    Pechacek, C.S.; Andersen, M. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Architecture, Building Technology; Lockley, S.W. [Harvard Medical School, Boston, MA (United States). Div. of Sleep Medicine, Brigham and Women' s Hospital

    2008-07-01

    This paper addressed the issue of hospital design and the role of daylight in patient health care. It presented a new approach for integrating empirical data and findings in photobiology into the performance assessment of a space, thus combining both visual and health-related criteria. Previous studies have reported significant health care outcomes in daylit environments, although the mechanism and photoreceptor systems controlling these effects remain unknown. This study focused on furthering the previous studies beyond windows to describing the characteristics of daylight that may promote human health by providing daylighting for the appropriate synchronization of circadian rhythms, and then make specific daylighting recommendations, grounded in biological findings. In particular, this study investigated the use of daylight autonomy (DA) to simulate the probabilistic and temporal potential of daylight for human health needs. Results of photobiology research were used to define threshold values for lighting, which were then used as goals for simulations. These goals included spectrum, intensity and timing of light at the human eye. The study investigated the variability of key architectural decisions in hospital room design to determine their influence on achieving the goals. The simulations showed how choices in building orientation, window size, user-window position and interior finishes affect the circadian efficacy of a space. Design decisions can improve or degrade the health potential for the space considered. While the findings in this research were specific to hospitals, the results can be applied to other building types such as office buildings and residences. 33 refs., 7 figs.

  14. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    Science.gov (United States)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  15. Effective use of plant simulators and mock-up facilities for cultivation and training of younger regulators

    International Nuclear Information System (INIS)

    Tsuruga, Keisuke

    2010-01-01

    In order to achieve effective safety regulation, the staff members of a regulatory body who are engaged in regulatory work are requested to be well familiar with the characteristics, operations and maintenances of nuclear power plants at a practical level as far as possible. Although the regulators are not always required to have the same level of skills as those of plant designers or operators, the skills of the regulatory staff are essential elements to achieve high quality of the national nuclear safety regulation. Especially understanding of fundamentals such as operations, transient behaviors, trouble responses and plant inspections is indispensable not only to practical regulatory work but also to the establishment of the trust and confidence in safety regulation. To acquire these skills, the use of facilities such as plant simulators and inspection mock-up facilities is very effective to back up classroom lectures on theories and procedures. Practical training using these facilities under the guidance of well-experienced instructors inspires motivations and enhances capabilities of younger regulators. To support the countries newly embarking on nuclear power programs, JNES will continue to cooperate with those countries in cultivating and training younger regulators, by focusing on the training by veteran instructors using full-scale plant simulators and inspection mock-up facilities to give the trainees more practical skills and knowledge difficult to obtain through classroom lectures or textbooks. (author)

  16. NASA X-Ray Observatory Completes Tests Under Harsh Simulated Space Conditions

    Science.gov (United States)

    1998-07-01

    NASA's most powerful X-ray observatory has successfully completed a month-long series of tests in the extreme heat, cold, and airless conditions it will encounter in space during its five-year mission to shed new light on some of the darkest mysteries of the universe. The Advanced X-ray Astrophysics Facility was put through the rigorous testing as it was alternately heated and cooled in a special vacuum chamber at TRW Space and Electronics Group in Redondo Beach, Calif., NASA's prime contractor for the observatory. "Successful completion of thermal vacuum testing marks a significant step in readying the observatory for launch aboard the Space Shuttle in January," said Fred Wojtalik, manager of the Observatory Projects Office at NASA's Marshall Space Flight Center in Huntsville, Ala. "The observatory is a complex, highly sophisticated, precision instrument," explained Wojtalik. "We are pleased with the outcome of the testing, and are very proud of the tremendous team of NASA and contractor technicians, engineers and scientists that came together and worked hard to meet this challenging task." Testing began in May after the observatory was raised into the 60-foot thermal vacuum chamber at TRW. Testing was completed on June 20. During the tests the Advanced X-ray Astrophysics Facility was exposed to 232 degree heat and 195 degree below zero Fahrenheit cold. During four temperature cycles, all elements of the observatory - the spacecraft, telescope, and science instruments - were checked out. Computer commands directing the observatory to perform certain functions were sent from test consoles at TRW to all Advanced X-ray Astrophysics Facility components. A team of contractor and NASA engineers and scientists monitored and evaluated the results. Commands were also sent from, and test data monitored at, the Advanced X-ray Astrophysics Facility Operations Control Center in Cambridge, Mass., as part of the test series. The observatory will be managed and controlled from

  17. Simulator of Cryogenic process and Refrigeration, and its Control in scientific -nuclear facilities with EcosimPro

    International Nuclear Information System (INIS)

    Veleiro Blanco, A. M.

    2011-01-01

    The cryogenic plants and their control in Scientific-Nuclear Facilities is complicated by the large number of variables and the wide range of variation during operation. Initially the design and control of these systems in CERN was based on stationary calculations which non yielded the expected results. Due to its complexity, the dynamic simulation is the only way to get adequate results during operational transients.

  18. Numerical Simulation and Optimization of Hole Spacing for Cement Grouting in Rocks

    Directory of Open Access Journals (Sweden)

    Ping Fu

    2013-01-01

    Full Text Available The fine fissures of V-diabase were the main stratigraphic that affected the effectiveness of foundation grout curtain in Dagang Mountain Hydropower Station. Thus, specialized in situ grouting tests were conducted to determine reasonable hole spacing and other parameters. Considering time variation of the rheological parameters of grout, variation of grouting pressure gradient, and evolution law of the fracture opening, numerical simulations were performed on the diffusion process of cement grouting in the fissures of the rock mass. The distribution of permeability after grouting was obtained on the basis of analysis results, and the grouting hole spacing was discussed based on the reliability analysis. A probability of optimization along with a finer optimization precision as 0.1 m could be adopted when compared with the accuracy of 0.5 m that is commonly used. The results could provide a useful reference for choosing reasonable grouting hole spacing in similar projects.

  19. Numerical simulation and experimental research for the natural convection in an annular space in LMFBR

    International Nuclear Information System (INIS)

    Wang Zhou; Luo Rui; Yang Xianyong; Liang Taofeng

    1999-01-01

    In a pool fast reactor, the roof structure is penetrated by a number of pumps and heat exchanger units to form some annular spaces with various sizes. The natural convection of argon gas happens in the pool sky and the small annular gaps between those components and the roof containment due to thermosiphonic effects. The natural convection is studied experimentally and numerically to predict the temperature distributions inside the annular space and its surrounding structure. Numerical simulation is performed by using LVEL turbulence model and extending computational domain to the entire pool sky. The predicted results are in fair agreement with the experimental data. In comparison with commonly used k-ε model, LVEL model has better accuracy for the turbulent flow in a gap space

  20. Space, the Final Frontier”: How Good are Agent-Based Models at Simulating Individuals and Space in Cities?

    Directory of Open Access Journals (Sweden)

    Alison Heppenstall

    2016-01-01

    Full Text Available Cities are complex systems, comprising of many interacting parts. How we simulate and understand causality in urban systems is continually evolving. Over the last decade the agent-based modeling (ABM paradigm has provided a new lens for understanding the effects of interactions of individuals and how through such interactions macro structures emerge, both in the social and physical environment of cities. However, such a paradigm has been hindered due to computational power and a lack of large fine scale datasets. Within the last few years we have witnessed a massive increase in computational processing power and storage, combined with the onset of Big Data. Today geographers find themselves in a data rich era. We now have access to a variety of data sources (e.g., social media, mobile phone data, etc. that tells us how, and when, individuals are using urban spaces. These data raise several questions: can we effectively use them to understand and model cities as complex entities? How well have ABM approaches lent themselves to simulating the dynamics of urban processes? What has been, or will be, the influence of Big Data on increasing our ability to understand and simulate cities? What is the appropriate level of spatial analysis and time frame to model urban phenomena? Within this paper we discuss these questions using several examples of ABM applied to urban geography to begin a dialogue about the utility of ABM for urban modeling. The arguments that the paper raises are applicable across the wider research environment where researchers are considering using this approach.

  1. Simulation of the Plasma Meniscus with and without Space Charge using Triode Extraction System

    International Nuclear Information System (INIS)

    Abdel Rahman, M.M.; EI-Khabeary, H.

    2007-01-01

    In this work simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. Tbe influence of acceleration voltage applied to tbe acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat concave and convex ) without space change at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. Tbe influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V a cc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V a cc = - 2000 volt applied to the acceleration electrode of. the triode extraction system has been studied

  2. Simulation of the plasma meniscus with and without space charge using triode extraction system

    International Nuclear Information System (INIS)

    Rahman, M.M.Abdel; El-Khabeary, H.

    2009-01-01

    In this work, simulation of the singly charged argon ion trajectories for a variable plasma meniscus is studied with and without space charge for the triode extraction system by using SIMION 3D (Simulation of Ion Optics in Three Dimensions) version 7 personal computer program. The influence of acceleration voltage applied to the acceleration electrode of the triode extraction system on the shape of the plasma meniscus has been determined. The plasma electrode is set at +5000 volt and the acceleration voltage applied to the acceleration electrode is varied from -5000 volt to +5000 volt. In the most of the concave and convex plasma shapes, ion beam emittance can be calculated by using separate standard deviations of positions and elevations angles. Ion beam emittance as a function of the curvature of the plasma meniscus for different plasma shapes ( flat, concave and convex ) without space charge at acceleration voltage varied from -5000 volt to +5000 volt applied to the acceleration electrode of the triode extraction system has been investigated. The influence of the extraction gap on ion beam emittance for a plasma concave shape of 3.75 mm without space charge at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been determined. Also the influence of space charge on ion beam emittance for variable plasma meniscus at acceleration voltage, V acc = -2000 volt applied to the acceleration electrode of the triode extraction system has been studied. (author)

  3. Monte Carlo simulations for the space radiation superconducting shield project (SR2S).

    Science.gov (United States)

    Vuolo, M; Giraudo, M; Musenich, R; Calvelli, V; Ambroglini, F; Burger, W J; Battiston, R

    2016-02-01

    Astronauts on deep-space long-duration missions will be exposed for long time to galactic cosmic rays (GCR) and Solar Particle Events (SPE). The exposure to space radiation could lead to both acute and late effects in the crew members and well defined countermeasures do not exist nowadays. The simplest solution given by optimized passive shielding is not able to reduce the dose deposited by GCRs below the actual dose limits, therefore other solutions, such as active shielding employing superconducting magnetic fields, are under study. In the framework of the EU FP7 SR2S Project - Space Radiation Superconducting Shield--a toroidal magnetic system based on MgB2 superconductors has been analyzed through detailed Monte Carlo simulations using Geant4 interface GRAS. Spacecraft and magnets were modeled together with a simplified mechanical structure supporting the coils. Radiation transport through magnetic fields and materials was simulated for a deep-space mission scenario, considering for the first time the effect of secondary particles produced in the passage of space radiation through the active shielding and spacecraft structures. When modeling the structures supporting the active shielding systems and the habitat, the radiation protection efficiency of the magnetic field is severely decreasing compared to the one reported in previous studies, when only the magnetic field was modeled around the crew. This is due to the large production of secondary radiation taking place in the material surrounding the habitat. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  4. Time-Accurate Unsteady Pressure Loads Simulated for the Space Launch System at Wind Tunnel Conditions

    Science.gov (United States)

    Alter, Stephen J.; Brauckmann, Gregory J.; Kleb, William L.; Glass, Christopher E.; Streett, Craig L.; Schuster, David M.

    2015-01-01

    A transonic flow field about a Space Launch System (SLS) configuration was simulated with the Fully Unstructured Three-Dimensional (FUN3D) computational fluid dynamics (CFD) code at wind tunnel conditions. Unsteady, time-accurate computations were performed using second-order Delayed Detached Eddy Simulation (DDES) for up to 1.5 physical seconds. The surface pressure time history was collected at 619 locations, 169 of which matched locations on a 2.5 percent wind tunnel model that was tested in the 11 ft. x 11 ft. test section of the NASA Ames Research Center's Unitary Plan Wind Tunnel. Comparisons between computation and experiment showed that the peak surface pressure RMS level occurs behind the forward attach hardware, and good agreement for frequency and power was obtained in this region. Computational domain, grid resolution, and time step sensitivity studies were performed. These included an investigation of pseudo-time sub-iteration convergence. Using these sensitivity studies and experimental data comparisons, a set of best practices to date have been established for FUN3D simulations for SLS launch vehicle analysis. To the author's knowledge, this is the first time DDES has been used in a systematic approach and establish simulation time needed, to analyze unsteady pressure loads on a space launch vehicle such as the NASA SLS.

  5. A simulation of the laser interferometer space antenna data stream from galactic white dwarf binaries

    International Nuclear Information System (INIS)

    Benacquista, M J; DeGoes, J; Lunder, D

    2004-01-01

    Gravitational radiation from the galactic population of white dwarf binaries is expected to produce a background signal in the laser interferometer space antenna (LISA) frequency band. At frequencies below 1 mHz, this signal is expected to be confusion limited and has been approximated as Gaussian noise. At frequencies above about 5 mHz, the signal will consist of separable individual sources. We have produced a simulation of the LISA data stream from a population of 90k galactic binaries in the frequency range between 1 and 5 mHz. This signal is compared with the simulated signal from globular cluster populations of binaries. Notable features of the simulation as well as potential data analysis schemes for extracting information are presented

  6. Exploration of DGVM Parameter Solution Space Using Simulated Annealing: Implications for Forecast Uncertainties

    Science.gov (United States)

    Wells, J. R.; Kim, J. B.

    2011-12-01

    Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that

  7. 6D Phase Space Measurements at the SLAC Gun Test Facility

    CERN Document Server

    Schmerge, J

    2003-01-01

    Proposed fourth generation light sources using SASE FELs to generate short pulse, coherent X-rays require demonstration of high brightness electron sources. The Gun Test Facility (GTF) at SLAC was built to test high brightness sources for the proposed Linac Coherent Light Source at SLAC. The GTF is composed of an Sband photocathode rf gun with a Cu cathode, emittance compensating solenoid, single 3 m SLAC linac section and e-beam diagnostic section with a UV drive laser system. The longitudinal emittance exiting the gun has been determined by measuring the energy spectrum downstream of the linac as a function of the linac phase. The e-beam pulse width, correlated and uncorrelated energy spread at the linac entrance have been fit to the measured energy spectra using a least square error fitting routine. The fit yields a pulse width of 2.9 ps FWHM for a 4.3 ps FWHM laser pulse width and 2% rms correlated energy spread with 0.07% rms uncorrelated energy spread. The correlated energy spread is enhanced in the lin...

  8. Development of an anthropomorfic simulator for simulation and measurements of neutron dose and flux the facility for BNCT studies

    International Nuclear Information System (INIS)

    Muniz, Rafael Oliveira Rondon

    2010-01-01

    IPEN facility for researches in BNCT (Boron Neutron Capture Therapy) uses IEA-R1 reactor's irradiation channel number 3, where there is a mixed radiation field - neutrons and gamma. The researches in progress require the radiation fields, in the position of the irradiation of sample, to have in its composition maximized thermal neutrons component and minimized, fast and epithermal neutron flux and gamma radiation. This work was developed with the objective of evaluating whether the present radiation field in the facility is suitable for BNCT researches. In order to achieve this objective, a methodology for the dosimetry of thermal neutrons and gamma radiation in mixed fields of high doses, which was not available in IPEN, was implemented in the Center of Nuclear Engineering of IPEN, by using thermoluminescent dosimeters - TLDs 400, 600 and 700. For the measurements of thermal and epithermal neutron flux, activation detectors of gold were used applying the cadmium ratio technique. A cylindrical phantom composed by acrylic discs was developed and tested in the facility and the DOT 3.5. computational code was used in order to obtain theoretical values of neutron flux and the dose along phantom. In the position corresponding to about half the length of the cylinder of the phantom, the following values were obtained: thermal neutron flux (2,52 ± 0,06).10 8 n/cm 2 s, epithermal neutron flux (6,17 ± 0,26).10 7 .10 6 n/cm 2 s, absorbed dose due to thermal neutrons (4,2 ± 1,8)Gy and (10,1 ± 1,3)Gy due to gamma radiation. The obtained values show that the fluxes of thermal and epithermal neutrons flux are appropriate for studies in BNCT, however, the dose due to gamma radiation is high, indicating that the facility should be improved. (author)

  9. Implementation of an Open-Scenario, Long-Term Space Debris Simulation Approach

    Science.gov (United States)

    Nelson, Bron; Yang Yang, Fan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Henze, Chris; Karacalioglu, Arif Goktug; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This paper provides a status update on the implementation of a flexible, long-term space debris simulation approach. The motivation is to build a tool that can assess the long-term impact of various options for debris-remediation, including the LightForce space debris collision avoidance concept that diverts objects using photon pressure [9]. State-of-the-art simulation approaches that assess the long-term development of the debris environment use either completely statistical approaches, or they rely on large time steps on the order of several days if they simulate the positions of single objects over time. They cannot be easily adapted to investigate the impact of specific collision avoidance schemes or de-orbit schemes, because the efficiency of a collision avoidance maneuver can depend on various input parameters, including ground station positions and orbital and physical parameters of the objects involved in close encounters (conjunctions). Furthermore, maneuvers take place on timescales much smaller than days. For example, LightForce only changes the orbit of a certain object (aiming to reduce the probability of collision), but it does not remove entire objects or groups of objects. In the same sense, it is also not straightforward to compare specific de-orbit methods in regard to potential collision risks during a de-orbit maneuver. To gain flexibility in assessing interactions with objects, we implement a simulation that includes every tracked space object in Low Earth Orbit (LEO) and propagates all objects with high precision and variable time-steps as small as one second. It allows the assessment of the (potential) impact of physical or orbital changes to any object. The final goal is to employ a Monte Carlo approach to assess the debris evolution during the simulation time-frame of 100 years and to compare a baseline scenario to debris remediation scenarios or other scenarios of interest. To populate the initial simulation, we use the entire space

  10. The E-3 Test Facility at Stennis Space Center: Research and Development Testing for Cryogenic and Storable Propellant Combustion Systems

    Science.gov (United States)

    Pazos, John T.; Chandler, Craig A.; Raines, Nickey G.

    2009-01-01

    This paper will provide the reader a broad overview of the current upgraded capabilities of NASA's John C. Stennis Space Center E-3 Test Facility to perform testing for rocket engine combustion systems and components using liquid and gaseous oxygen, gaseous and liquid methane, gaseous hydrogen, hydrocarbon based fuels, hydrogen peroxide, high pressure water and various inert fluids. Details of propellant system capabilities will be highlighted as well as their application to recent test programs and accomplishments. Data acquisition and control, test monitoring, systems engineering and test processes will be discussed as part of the total capability of E-3 to provide affordable alternatives for subscale to full scale testing for many different requirements in the propulsion community.

  11. A simple analytical scaling method for a scaled-down test facility simulating SB-LOCAs in a passive PWR

    International Nuclear Information System (INIS)

    Lee, Sang Il

    1992-02-01

    A Simple analytical scaling method is developed for a scaled-down test facility simulating SB-LOCAs in a passive PWR. The whole scenario of a SB-LOCA is divided into two phases on the basis of the pressure trend ; depressurization phase and pot-boiling phase. The pressure and the core mixture level are selected as the most critical parameters to be preserved between the prototype and the scaled-down model. In each phase the high important phenomena having the influence on the critical parameters are identified and the scaling parameters governing the high important phenomena are generated by the present method. To validate the model used, Marviken CFT and 336 rod bundle experiment are simulated. The models overpredict both the pressure and two phase mixture level, but it shows agreement at least qualitatively with experimental results. In order to validate whether the scaled-down model well represents the important phenomena, we simulate the nondimensional pressure response of a cold-leg 4-inch break transient for AP-600 and the scaled-down model. The results of the present method are in excellent agreement with those of AP-600. It can be concluded that the present method is suitable for scaling the test facility simulating SB-LOCAs in a passive PWR

  12. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  13. State, space relay modeling and simulation using the electromagnetic Transients Program and its transient analysis of control systems capability

    International Nuclear Information System (INIS)

    Domijan, A.D. Jr.; Emami, M.V.

    1990-01-01

    This paper reports on a simulation of a MHO distance relay developed to study the effect of its operation under various system conditions. Simulation is accomplished using a state space approach and a modeling technique using ElectroMagnetic Transient Program (Transient Analysis of Control Systems). Furthermore, simulation results are compared with those obtained in another independent study as a control, to validate the results. A data code for the practical utilization of this simulation is given

  14. Analysis of Waves in Space Plasma (WISP) near field simulation and experiment

    Science.gov (United States)

    Richie, James E.

    1992-01-01

    The WISP payload scheduler for a 1995 space transportation system (shuttle flight) will include a large power transmitter on board at a wide range of frequencies. The levels of electromagnetic interference/electromagnetic compatibility (EMI/EMC) must be addressed to insure the safety of the shuttle crew. This report is concerned with the simulation and experimental verification of EMI/EMC for the WISP payload in the shuttle cargo bay. The simulations have been carried out using the method of moments for both thin wires and patches to stimulate closed solids. Data obtained from simulation is compared with experimental results. An investigation of the accuracy of the modeling approach is also included. The report begins with a description of the WISP experiment. A description of the model used to simulate the cargo bay follows. The results of the simulation are compared to experimental data on the input impedance of the WISP antenna with the cargo bay present. A discussion of the methods used to verify the accuracy of the model is shown to illustrate appropriate methods for obtaining this information. Finally, suggestions for future work are provided.

  15. Optimal design of a composite space shield based on numerical simulations

    International Nuclear Information System (INIS)

    Son, Byung Jin; Yoo, Jeong Hoon; Lee, Min Hyung

    2015-01-01

    In this study, optimal design of a stuffed Whipple shield is proposed by using numerical simulations and new penetration criterion. The target model was selected based on the shield model used in the Columbus module of the international space station. Because experimental results can be obtained only in the low velocity region below 7 km/s, it is required to derive the Ballistic limit curve (BLC) in the high velocity region above 7 km/s by numerical simulation. AUTODYN-2D, the commercial hydro-code package, was used to simulate the nonlinear transient analysis for the hypervelocity impact. The Smoothed particle hydrodynamics (SPH) method was applied to projectile and bumper modeling to represent the debris cloud generated after the impact. Numerical simulation model and selected material properties were validated through a quantitative comparison between numerical and experimental results. A new criterion to determine whether the penetration occurs or not is proposed from kinetic energy analysis by numerical simulation in the velocity region over 7 km/s. The parameter optimization process was performed to improve the protection ability at a specific condition through the Design of experiment (DOE) method and the Response surface methodology (RSM). The performance of the proposed optimal design was numerically verified.

  16. Simulation of experiment on aerosol behaviour at severe accident conditions in the LACE experimental facility with the ASTEC CPA code

    International Nuclear Information System (INIS)

    Kljenak, I.; Mavko, B.

    2007-01-01

    The experiment LACE LA4 on thermal-hydraulics and aerosol behavior in a nuclear power plant containment, which was performed in the LACE experimental facility, was simulated with the ASTEC CPA module of the severe accident computer code ASTEC V1.2. The specific purpose of the work was to assess the capability of the module (code) to simulate thermal-hydraulic conditions and aerosol behavior in the containment of a light-water-reactor nuclear power plant at severe accident conditions. The test was simulated with boundary conditions, described in the experiment report. Results of thermal-hydraulic conditions in the test vessel, as well as dry aerosol concentrations in the test vessel atmosphere, are compared to experimental results and analyzed. (author)

  17. Simulating Coupling Complexity in Space Plasmas: First Results from a new code

    Science.gov (United States)

    Kryukov, I.; Zank, G. P.; Pogorelov, N. V.; Raeder, J.; Ciardo, G.; Florinski, V. A.; Heerikhuisen, J.; Li, G.; Petrini, F.; Shematovich, V. I.; Winske, D.; Shaikh, D.; Webb, G. M.; Yee, H. M.

    2005-12-01

    The development of codes that embrace 'coupling complexity' via the self-consistent incorporation of multiple physical scales and multiple physical processes in models has been identified by the NRC Decadal Survey in Solar and Space Physics as a crucial necessary development in simulation/modeling technology for the coming decade. The National Science Foundation, through its Information Technology Research (ITR) Program, is supporting our efforts to develop a new class of computational code for plasmas and neutral gases that integrates multiple scales and multiple physical processes and descriptions. We are developing a highly modular, parallelized, scalable code that incorporates multiple scales by synthesizing 3 simulation technologies: 1) Computational fluid dynamics (hydrodynamics or magneto-hydrodynamics-MHD) for the large-scale plasma; 2) direct Monte Carlo simulation of atoms/neutral gas, and 3) transport code solvers to model highly energetic particle distributions. We are constructing the code so that a fourth simulation technology, hybrid simulations for microscale structures and particle distributions, can be incorporated in future work, but for the present, this aspect will be addressed at a test-particle level. This synthesis we will provide a computational tool that will advance our understanding of the physics of neutral and charged gases enormously. Besides making major advances in basic plasma physics and neutral gas problems, this project will address 3 Grand Challenge space physics problems that reflect our research interests: 1) To develop a temporal global heliospheric model which includes the interaction of solar and interstellar plasma with neutral populations (hydrogen, helium, etc., and dust), test-particle kinetic pickup ion acceleration at the termination shock, anomalous cosmic ray production, interaction with galactic cosmic rays, while incorporating the time variability of the solar wind and the solar cycle. 2) To develop a coronal

  18. James Webb Space Telescope Optical Simulation Testbed: Segmented Mirror Phase Retrieval Testing

    Science.gov (United States)

    Laginja, Iva; Egron, Sylvain; Brady, Greg; Soummer, Remi; Lajoie, Charles-Philippe; Bonnefois, Aurélie; Long, Joseph; Michau, Vincent; Choquet, Elodie; Ferrari, Marc; Leboulleux, Lucie; Mazoyer, Johan; N’Diaye, Mamadou; Perrin, Marshall; Petrone, Peter; Pueyo, Laurent; Sivaramakrishnan, Anand

    2018-01-01

    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a hardware simulator designed to produce JWST-like images. A model of the JWST three mirror anastigmat is realized with three lenses in form of a Cooke Triplet, which provides JWST-like optical quality over a field equivalent to a NIRCam module, and an Iris AO segmented mirror with hexagonal elements is standing in for the JWST segmented primary. This setup successfully produces images extremely similar to NIRCam images from cryotesting in terms of the PSF morphology and sampling relative to the diffraction limit.The testbed is used for staff training of the wavefront sensing and control (WFS&C) team and for independent analysis of WFS&C scenarios of the JWST. Algorithms like geometric phase retrieval (GPR) that may be used in flight and potential upgrades to JWST WFS&C will be explored. We report on the current status of the testbed after alignment, implementation of the segmented mirror, and testing of phase retrieval techniques.This optical bench complements other work at the Makidon laboratory at the Space Telescope Science Institute, including the investigation of coronagraphy for segmented aperture telescopes. Beyond JWST we intend to use JOST for WFS&C studies for future large segmented space telescopes such as LUVOIR.

  19. Development of a space radiation Monte Carlo computer simulation based on the FLUKA and ROOT codes

    CERN Document Server

    Pinsky, L; Ferrari, A; Sala, P; Carminati, F; Brun, R

    2001-01-01

    This NASA funded project is proceeding to develop a Monte Carlo-based computer simulation of the radiation environment in space. With actual funding only initially in place at the end of May 2000, the study is still in the early stage of development. The general tasks have been identified and personnel have been selected. The code to be assembled will be based upon two major existing software packages. The radiation transport simulation will be accomplished by updating the FLUKA Monte Carlo program, and the user interface will employ the ROOT software being developed at CERN. The end-product will be a Monte Carlo-based code which will complement the existing analytic codes such as BRYNTRN/HZETRN presently used by NASA to evaluate the effects of radiation shielding in space. The planned code will possess the ability to evaluate the radiation environment for spacecraft and habitats in Earth orbit, in interplanetary space, on the lunar surface, or on a planetary surface such as Mars. Furthermore, it will be usef...

  20. Human spaceflight and space adaptations: Computational simulation of gravitational unloading on the spine

    Science.gov (United States)

    Townsend, Molly T.; Sarigul-Klijn, Nesrin

    2018-04-01

    Living in reduced gravitational environments for a prolonged duration such, as a fly by mission to Mars or an extended stay at the international space station, affects the human body - in particular, the spine. As the spine adapts to spaceflight, morphological and physiological changes cause the mechanical integrity of the spinal column to be compromised, potentially endangering internal organs, nervous health, and human body mechanical function. Therefore, a high fidelity computational model and simulation of the whole human spine was created and validated for the purpose of investigating the mechanical integrity of the spine in crew members during exploratory space missions. A spaceflight exposed spine has been developed through the adaptation of a three-dimensional nonlinear finite element model with the updated Lagrangian formulation of a healthy ground-based human spine in vivo. Simulation of the porohyperelastic response of the intervertebral disc to mechanical unloading resulted in a model capable of accurately predicting spinal swelling/lengthening, spinal motion, and internal stress distribution. The curvature of this space adaptation exposed spine model was compared to a control terrestrial-based finite element model, indicating how the shape changed. Finally, the potential of injury sites to crew members are predicted for a typical 9 day mission.

  1. Simulation of the space debris environment in LEO using a simplified approach

    Science.gov (United States)

    Kebschull, Christopher; Scheidemann, Philipp; Hesselbach, Sebastian; Radtke, Jonas; Braun, Vitali; Krag, H.; Stoll, Enrico

    2017-01-01

    Several numerical approaches exist to simulate the evolution of the space debris environment. These simulations usually rely on the propagation of a large population of objects in order to determine the collision probability for each object. Explosion and collision events are triggered randomly using a Monte-Carlo (MC) approach. So in many different scenarios different objects are fragmented and contribute to a different version of the space debris environment. The results of the single Monte-Carlo runs therefore represent the whole spectrum of possible evolutions of the space debris environment. For the comparison of different scenarios, in general the average of all MC runs together with its standard deviation is used. This method is computationally very expensive due to the propagation of thousands of objects over long timeframes and the application of the MC method. At the Institute of Space Systems (IRAS) a model capable of describing the evolution of the space debris environment has been developed and implemented. The model is based on source and sink mechanisms, where yearly launches as well as collisions and explosions are considered as sources. The natural decay and post mission disposal measures are the only sink mechanisms. This method reduces the computational costs tremendously. In order to achieve this benefit a few simplifications have been applied. The approach of the model partitions the Low Earth Orbit (LEO) region into altitude shells. Only two kinds of objects are considered, intact bodies and fragments, which are also divided into diameter bins. As an extension to a previously presented model the eccentricity has additionally been taken into account with 67 eccentricity bins. While a set of differential equations has been implemented in a generic manner, the Euler method was chosen to integrate the equations for a given time span. For this paper parameters have been derived so that the model is able to reflect the results of the numerical MC

  2. Study of optimum propellant production facilities for launch of space shuttle vehicles

    Science.gov (United States)

    Laclair, L. M.

    1970-01-01

    An integrated propellant manufacturing plant and distribution system located at Kennedy Space Center is studied. The initial planned propellant and pressurant production amounted to 160 tons/day (TPD) LH2, 10 TPD GH2, 800 TPD LO2, 400 TPD LN2, and 120 TPD GN2. This was based on a shuttle launch frequency of 104 per year. During the study, developments occurred which may lower cryogen requirements. A variety of plant and processing equipment sizes and costs are considered for redundancy and supply level considerations. Steam reforming is compared to partial oxidation as a means of generating hydrogen. Electric motors, steam turbines, and gas turbines are evaluated for driving compression equipment. Various sites on and off Government property are considered to determine tradeoffs between costs and problems directly associated with the site, product delivery and storage costs, raw material costs, and energy costs. Coproduction of other products such as deuterium, methanol, and ammonia are considered. Legal questions are discussed concerning a private company's liabilities and its rights to market commercial products under Government tax and cost shelters.

  3. Formulation and preparation of Hanford Waste Treatment Plant direct feed low activity waste Effluent Management Facility core simulant

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, Daniel J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, Charles A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL; Adamson, Duane J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL

    2016-05-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator in the Effluent Management Facility (EMF) and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would enable less integrated operation of the LAW melter and the Pretreatment Facilities. Alternate disposition would also eliminate this stream from recycling within WTP when it begins operations and would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other problems such a recycle stream present. This LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures and are problematic for the glass waste form, such as halides and sulfate. Because this stream will recycle within WTP, these components accumulate in the Melter Condensate stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfate in the recycled Condensate and is a key outcome of this work. This overall program examines the potential treatment and immobilization of this stream to enable alternative disposal. The objective of this task was to formulate and prepare a simulant of the LAW Melter

  4. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    Science.gov (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  5. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    International Nuclear Information System (INIS)

    Ahmadi, Rouhollah; Khamehchi, Ehsan

    2013-01-01

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data

  6. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com [Amirkabir University of Technology, PhD Student at Reservoir Engineering, Department of Petroleum Engineering (Iran, Islamic Republic of); Khamehchi, Ehsan [Amirkabir University of Technology, Faculty of Petroleum Engineering (Iran, Islamic Republic of)

    2013-12-15

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  7. Simulation of space-charge effects in an ungated GEM-based TPC

    Energy Technology Data Exchange (ETDEWEB)

    Böhmer, F.V., E-mail: felix.boehmer@tum.de; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-08-11

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P{sup ¯}ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm{sup −3} are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC.

  8. Simulation of space-charge effects in an ungated GEM-based TPC

    International Nuclear Information System (INIS)

    Böhmer, F.V.; Ball, M.; Dørheim, S.; Höppner, C.; Ketzer, B.; Konorov, I.; Neubert, S.; Paul, S.; Rauch, J.; Vandenbroucke, M.

    2013-01-01

    A fundamental limit to the application of Time Projection Chambers (TPCs) in high-rate experiments is the accumulation of slowly drifting ions in the active gas volume, which compromises the homogeneity of the drift field and hence the detector resolution. Conventionally, this problem is overcome by the use of ion-gating structures. This method, however, introduces large dead times and restricts trigger rates to a few hundred per second. The ion gate can be eliminated from the setup by the use of Gas Electron Multiplier (GEM) foils for gas amplification, which intrinsically suppress the backflow of ions. This makes the continuous operation of a TPC at high rates feasible. In this work, Monte Carlo simulations of the buildup of ion space charge in a GEM-based TPC and the correction of the resulting drift distortions are discussed, based on realistic numbers for the ion backflow in a triple-GEM amplification stack. A TPC in the future P ¯ ANDA experiment at FAIR serves as an example for the experimental environment. The simulations show that space charge densities up to 65 fC cm −3 are reached, leading to electron drift distortions of up to 10 mm. The application of a laser calibration system to correct these distortions is investigated. Based on full simulations of the detector physics and response, we show that it is possible to correct for the drift distortions and to maintain the good momentum resolution of the GEM-TPC

  9. The User Community and a Multi-Mission Data Project: Services, Experiences and Directions of the Space Physics Data Facility

    Science.gov (United States)

    Fung, Shing F.; Bilitza, D.; Candey, R.; Chimiak, R.; Cooper, John; Fung, Shing; Harris, B.; Johnson R.; King, J.; Kovalick, T.; hide

    2008-01-01

    From a user's perspective, the multi-mission data and orbit services of NASA's Space Physics Data Facility (SPDF) project offer a unique range of important data and services highly complementary to other services presently available or now evolving in the international heliophysics data environment. The VSP (Virtual Space Physics Observatory) service is an active portal to a wide range of distributed data sources. CDAWeb (Coordinate Data Analysis Web) enables plots, listings and file downloads for current data cross the boundaries of missions and instrument types (and now including data from THEMIS and STEREO). SSCWeb, Helioweb and our 3D Animated Orbit Viewer (TIPSOD) provide position data and query logic for most missions currently important to heliophysics science. OMNIWeb with its new extension to 1- and 5-minute resolution provides interplanetary parameters at the Earth's bow shock as a unique value-added data product. SPDF also maintains NASA's CDF (common Data Format) standard and a range of associated tools including translation services. These capabilities are all now available through webservices-based APIs as well as through our direct user interfaces. In this paper, we will demonstrate the latest data and capabilities now supported in these multi-mission services, review the lessons we continue to learn in what science users need and value in this class of services, and discuss out current thinking to the future role and appropriate focus of the SPDF effort in the evolving and increasingly distributed heliophysics data environment.

  10. Layout effects and optimization of runoff storage and filtration facilities based on SWMM simulation in a demonstration area

    Directory of Open Access Journals (Sweden)

    Wei Xing

    2016-04-01

    Full Text Available The layout effects and optimization of runoff storage and filtration facilities are crucial to the efficiency and management of the cost of runoff control, but related research is still lacking. In this study, scenarios with different layouts were simulated using the storm water management model (SWMM, to investigate the layout effects on control efficiency with different precipitations. In a rainfall event with 50 mm of precipitation in two hours, 1820 scenarios with different layouts of four facilities constructed in 16 sub-catchments were simulated, the reduction rates of internal flow presented a standard deviation of 10.9%, and the difference between the maximum and minimum reduction rates reached 59.7%. Based on weighting analysis, an integrated ranking index was obtained and used to determine the optimal layout scenarios considering different rainfall events. In the optimal scenario (storage and filtration facilities constructed in sub-catchments 14, 12, 7, and 2, the reduction rates of the total outflow reached 31.4%, 26.4%, and 14.7%, respectively, with 30, 50, and 80 mm of precipitation. The reduction rate of the internal outflow reached 95% with 50 mm of precipitation and approximately 56% with 80 mm of precipitation.

  11. Simulated Irradiation of Samples in HFIR for use as Possible Test Materials in the MPEX (Material Plasma Exposure Experiment) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Ronald James [ORNL; Rapp, Juergen [ORNL

    2014-01-01

    The importance of Plasma Material Interaction (PMI) is a major concern in fusion reactor design and analysis. The Material-Plasma Exposure eXperiment (MPEX) facility will explore PMI under fusion reactor plasma conditions. Samples with accumulated displacements per atom (DPA) damage produced by irradiations in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) will be studied in the MPEX facility. The project presented in this paper involved performing assessments of the induced radioactivity and resulting radiation fields of a variety of potential fusion reactor materials. The scientific code packages MCNP and SCALE were used to simulate irradiation of the samples in HFIR; generation and depletion of nuclides in the material and the subsequent composition, activity levels, gamma radiation fields, and resultant dose rates as a function of cooling time. These state-of-the-art simulation methods were used in addressing the challenge of the MPEX project to minimize the radioactive inventory in the preparation of the samples for inclusion in the MPEX facility.

  12. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Lazar

    2012-10-15

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  13. Characterization of the transverse phase space at the photo-injector test facility in DESY, Zeuthen site

    International Nuclear Information System (INIS)

    Staykov, Lazar

    2012-10-01

    High brightness electron beams with charge of 1 nC and low transverse emittance are necessary for the functioning of advanced light sources such as the Free-electron Laser in Hamburg (FLASH) and the European X-ray FEL (XFEL). The photo-injector test facility at DESY, Zeuthen site (PITZ) is dedicated to the optimization of such electron beams. At PITZ the electrons are produced using an RF gun cavity operated at accelerating gradients of up to 60 MV/m. The gun is equipped with a pair of solenoids for the compensation of the emittance growth due to linear space charge forces. This solenoid compensation scheme is enhanced with a properly matched TESLA type normal conducting booster cavity. The main tool for the characterization of the transverse phase space of the electron beam at PITZ is the emittance measurement system (EMSY). It employs the single slit method for the measurement of the transverse phase space distribution of the electron beam. In this thesis, the performance of the EMSY was optimized for measurement of low emittances in a wide range of photo-injector parameters including such that result in electron beams close to the XFEL specifications. First results on the characterization of the PITZ photo-injector with a gun operated at maximum accelerating gradient of 60 MV/m are presented. This includes scans of the solenoid focusing strength, the initial beam size and the booster gradient. A comparison between results obtained at lower accelerating gradients is made with emphasize on the benefit of higher accelerating gradient.

  14. Effects of repeated simulated removal activities on feral swine movements and space use

    Science.gov (United States)

    Fischer, Justin W.; McMurtry , Dan; Blass, Chad R.; Walter, W. David; Beringer, Jeff; VerCauterren, Kurt C.

    2016-01-01

    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use. We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and post-periods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas.

  15. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX

    Directory of Open Access Journals (Sweden)

    Pengcheng Yu

    2017-10-01

    Full Text Available In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6 into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase due to the decrease of the electron density. Compared to the traditional active release experiments, the laboratory scheme can be more efficient, high repetition rate and simpler measurement of the varying plasma parameter after chemical releasing. Therefore, it can effective building the bridge between the theoretical work and real space observation.

  16. The Space Operations Simulation Center (SOSC) and Closed-Loop Hardware Testing for Orion Rendezvous System Design

    Science.gov (United States)

    Milenkovic, Zoran; DSouza, Christopher; Huish, David; Bendle, John; Kibler, Angela

    2012-01-01

    The exploration goals of Orion / MPCV Project will require a mature Rendezvous, Proximity Operations and Docking (RPOD) capability. Ground testing autonomous docking with a next-generation sensor such as the Vision Navigation Sensor (VNS) is a critical step along the path of ensuring successful execution of autonomous RPOD for Orion. This paper will discuss the testing rationale, the test configuration, the test limitations and the results obtained from tests that have been performed at the Lockheed Martin Space Operations Simulation Center (SOSC) to evaluate and mature the Orion RPOD system. We will show that these tests have greatly increased the confidence in the maturity of the Orion RPOD design, reduced some of the latent risks and in doing so validated the design philosophy of the Orion RPOD system. This paper is organized as follows: first, the objectives of the test are given. Descriptions of the SOSC facility, and the Orion RPOD system and associated components follow. The details of the test configuration of the components in question are presented prior to discussing preliminary results of the tests. The paper concludes with closing comments.

  17. Validation/Uncertainty Quantification for Large Eddy Simulations of the heat flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Eddings, E.G.; Ring, T.; Thornock, J.; Draper, T.; Isaac, B.; Rezeai, D.; Toth, P.; Wu, Y.; Kelly, K.

    2014-08-01

    The objective of this task is to produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers. Validation data came from the Alstom Boiler Simulation Facility (BSF) for tangentially fired, oxy-coal operation. This task brings together experimental data collected under Alstom’s DOE project for measuring oxy-firing performance parameters in the BSF with this University of Utah project for large eddy simulation (LES) and validation/uncertainty quantification (V/UQ). The Utah work includes V/UQ with measurements in the single-burner facility where advanced strategies for O2 injection can be more easily controlled and data more easily obtained. Highlights of the work include: • Simulations of Alstom’s 15 megawatt (MW) BSF, exploring the uncertainty in thermal boundary conditions. A V/UQ analysis showed consistency between experimental results and simulation results, identifying uncertainty bounds on the quantities of interest for this system (Subtask 9.1) • A simulation study of the University of Utah’s oxy-fuel combustor (OFC) focused on heat flux (Subtask 9.2). A V/UQ analysis was used to show consistency between experimental and simulation results. • Measurement of heat flux and temperature with new optical diagnostic techniques and comparison with conventional measurements (Subtask 9.3). Various optical diagnostics systems were created to provide experimental data to the simulation team. The final configuration utilized a mid-wave infrared (MWIR) camera to measure heat flux and temperature, which was synchronized with a high-speed, visible camera to utilize two-color pyrometry to measure temperature and soot concentration. • Collection of heat flux and temperature measurements in the University of Utah’s OFC for use is subtasks 9.2 and 9.3 (Subtask 9.4). Several replicates were carried to better assess the experimental error. Experiments were specifically designed for the

  18. Frequency Domain Modeling and Simulation of DC Power Electronic Systems Using Harmonic State Space Method

    DEFF Research Database (Denmark)

    Kwon, Jun Bum; Wang, Xiongfei; Blaabjerg, Frede

    2017-01-01

    For the efficiency and simplicity of electric systems, the dc power electronic systems are widely used in a variety of applications such as electric vehicles, ships, aircraft and also in homes. In these systems, there could be a number of dynamic interactions and frequency coupling between network...... with different switching frequency or harmonics from ac-dc converters makes that harmonics and frequency coupling are both problems of ac system and challenges of dc system. This paper presents a modeling and simulation method for a large dc power electronic system by using Harmonic State Space (HSS) modeling...

  19. Design and simulation of a planar micro-optic free-space receiver

    Science.gov (United States)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  20. Solar concentrator panel and gore testing in the JPL 25-foot space simulator

    Science.gov (United States)

    Dennison, E. W.; Argoud, M. J.

    1981-01-01

    The optical imaging characteristics of parabolic solar concentrator panels (or gores) have been measured using the optical beam of the JPL 25-foot space simulator. The simulator optical beam has been characterized, and the virtual source position and size have been determined. These data were used to define the optical test geometry. The point source image size and focal length have been determined for several panels. A flux distribution of a typical solar concentrator has been estimated from these data. Aperture photographs of the panels were used to determine the magnitude and characteristics of the reflecting surface errors. This measurement technique has proven to be highly successful at determining the optical characteristics of solar concentrator panels.

  1. Effect of empty buckets on coupled bunch instability in RHIC Booster: Longitudinal phase-space simulation

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Griffin, J.E.; Khiari, F.Z.

    1988-05-01

    Excitation of large amplitude coherent dipole bunch oscillations by beam induced voltages in spurious narrow resonances are simulated using a longitudinal phase-space tracking code (ESME). Simulation of the developing instability in a high intensity proton beam driven by a spurious parasitic resonance of the rf cavities allows one to estimate the final longitudinal emittance of the beam at the end of the cycle, which puts serious limitations on the machine performance. The growth of the coupled bunch modes is significantly enhanced if a gap of missing bunches is present, which is an inherent feature of the high intensity proton machines. A strong transient excitation of the parasitic resonance by the Fourier components of the beam spectrum resulting from the presence of the gap is suggested as a possible mechanism of this enhancement. 10 refs., 4 figs., 1 tab

  2. Robotic Design Choice Overview using Co-simulation and Design Space Exploration

    DEFF Research Database (Denmark)

    Christiansen, Martin Peter; Larsen, Peter Gorm; Nyholm Jørgensen, Rasmus

    2015-01-01

    . Simulations are used to evaluate the robot model output response in relation to operational demands. An example of a load carrying challenge in relation to the feeding robot is presented and a design space is defined with candidate solutions in both the mechanical and software domains. Simulation results......Rapid robotic system development has created a demand for multi-disciplinary methods and tools to explore and compare design alternatives. In this paper, we present a collaborative modelling technique that combines discrete-event models of controller software with continuous-time models of physical...... robot components. The proposed co-modelling method utilises Vienna Development Method (VDM) and Matlab for discrete-event modelling and 20-sim for continuous-time modelling. The model-based development of a mobile robot mink feeding system is used to illustrate the collaborative modelling method...

  3. Simulation of the first step of the coupling of the PARCS/RELAP5 codes to ANGRA 2 facility

    International Nuclear Information System (INIS)

    Del Pozzo, Andrea Sanchez; Andrade, Delvonei A. de; Sabundjian, Gaiane

    2015-01-01

    Since the Three Mile Island (1979) and Chernobyl (1986) accidents, the International Agency of Energy Atomic (IAEA) has worked with the authorities of other countries that use nuclear power plants in order to guarantee the safe of those facilities. The utilities have simulated design basic accidents to verify the integrity of the nuclear power plant to these events. However, after Fukushima accident in Japan (2011), the people have felt insecure and been afraid in relation to nuclear power plants. Today, the international and national organizations, such as the International Agency of Energy Atomic (IAEA) and Comissao Nacional de Energia Nuclear (CNEN), respectively, have worked very hard to prevent some accidents and transients in nuclear power plants in order to ensure the security of the general population. In case of accidents, as the Rod Ejection Accident (REA), it is very important to do the coupling between neutronic and thermal hydraulic areas of nuclear reactors. To solve this type of problem there is the coupling between PARCS/RELAP5 codes. However, to perform this analysis it is necessary to simulate three steps. The first step is simulating the steady state of one nuclear power plant by using RELAP5 code. The second step is to run the steady state of this reactor using the coupling PARCS/RELAP5, and the final step is simulating the REA of this facility with PARCS/RELAP5 coupling. The aim of this work is to show the results of the first step of this analysis, i.e., by means of simulation the steady state of Angra 2 nuclear power plant using RELAP5 version 3.3. In this case, the modeling from the core was more detailed than in the original version developed some years ago for Angra 2. The results obtained in this work were satisfactory. (author)

  4. Simulation of the first step of the coupling of the PARCS/RELAP5 codes to ANGRA 2 facility

    Energy Technology Data Exchange (ETDEWEB)

    Del Pozzo, Andrea Sanchez; Andrade, Delvonei A. de; Sabundjian, Gaiane, E-mail: delvonei@ipen.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Since the Three Mile Island (1979) and Chernobyl (1986) accidents, the International Agency of Energy Atomic (IAEA) has worked with the authorities of other countries that use nuclear power plants in order to guarantee the safe of those facilities. The utilities have simulated design basic accidents to verify the integrity of the nuclear power plant to these events. However, after Fukushima accident in Japan (2011), the people have felt insecure and been afraid in relation to nuclear power plants. Today, the international and national organizations, such as the International Agency of Energy Atomic (IAEA) and Comissao Nacional de Energia Nuclear (CNEN), respectively, have worked very hard to prevent some accidents and transients in nuclear power plants in order to ensure the security of the general population. In case of accidents, as the Rod Ejection Accident (REA), it is very important to do the coupling between neutronic and thermal hydraulic areas of nuclear reactors. To solve this type of problem there is the coupling between PARCS/RELAP5 codes. However, to perform this analysis it is necessary to simulate three steps. The first step is simulating the steady state of one nuclear power plant by using RELAP5 code. The second step is to run the steady state of this reactor using the coupling PARCS/RELAP5, and the final step is simulating the REA of this facility with PARCS/RELAP5 coupling. The aim of this work is to show the results of the first step of this analysis, i.e., by means of simulation the steady state of Angra 2 nuclear power plant using RELAP5 version 3.3. In this case, the modeling from the core was more detailed than in the original version developed some years ago for Angra 2. The results obtained in this work were satisfactory. (author)

  5. Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes

    Science.gov (United States)

    Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.

    2015-01-01

    Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the

  6. Use of Parallel Micro-Platform for the Simulation the Space Exploration

    Science.gov (United States)

    Velasco Herrera, Victor Manuel; Velasco Herrera, Graciela; Rosano, Felipe Lara; Rodriguez Lozano, Salvador; Lucero Roldan Serrato, Karen

    The purpose of this work is to create a parallel micro-platform, that simulates the virtual movements of a space exploration in 3D. One of the innovations presented in this design consists of the application of a lever mechanism for the transmission of the movement. The development of such a robot is a challenging task very different of the industrial manipulators due to a totally different target system of requirements. This work presents the study and simulation, aided by computer, of the movement of this parallel manipulator. The development of this model has been developed using the platform of computer aided design Unigraphics, in which it was done the geometric modeled of each one of the components and end assembly (CAD), the generation of files for the computer aided manufacture (CAM) of each one of the pieces and the kinematics simulation of the system evaluating different driving schemes. We used the toolbox (MATLAB) of aerospace and create an adaptive control module to simulate the system.

  7. Effects of simulated space environmental parameters on six commercially available composite materials

    International Nuclear Information System (INIS)

    Funk, J.G.; Sykes, G.F. Jr.

    1989-04-01

    The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested

  8. Effects of incentives on psychosocial performances in simulated space-dwelling groups

    Science.gov (United States)

    Hienz, Robert D.; Brady, Joseph V.; Hursh, Steven R.; Gasior, Eric D.; Spence, Kevin R.; Emurian, Henry H.

    Prior research with individually isolated 3-person crews in a distributed, interactive, planetary exploration simulation examined the effects of communication constraints and crew configuration changes on crew performance and psychosocial self-report measures. The present report extends these findings to a model of performance maintenance that operationalizes conditions under which disruptive affective responses by crew participants might be anticipated to emerge. Experiments evaluated the effects of changes in incentive conditions on crew performance and self-report measures in simulated space-dwelling groups. Crews participated in a simulated planetary exploration mission that required identification, collection, and analysis of geologic samples. Results showed that crew performance effectiveness was unaffected by either positive or negative incentive conditions, while self-report measures were differentially affected—negative incentive conditions produced pronounced increases in negative self-report ratings and decreases in positive self-report ratings, while positive incentive conditions produced increased positive self-report ratings only. Thus, incentive conditions associated with simulated spaceflight missions can significantly affect psychosocial adaptation without compromising task performance effectiveness in trained and experienced crews.

  9. Simulation of Thermal, Neutronic and Radiation Characteristics in Spent Nuclear Fuel and Radwaste Facilities

    International Nuclear Information System (INIS)

    Poskas, P.; Bartkus, G.

    1999-01-01

    The overview of the activities in the Division of Thermo hydro-mechanics related with the assessment of thermal, neutronic and radiation characteristics in spent nuclear fuel and radwaste facilities are performed. Also some new data about radiation characteristics of the RBMK-1500 spent nuclear fuel are presented. (author)

  10. Numerical simulation of radon migration from a uranium ore storage facility

    International Nuclear Information System (INIS)

    Vasil'ev, I.A.; Politov, V.Yu.; Chernov, V.V.; Shestakov, A.A.

    2007-01-01

    Data on geologic structure and radiation environment in the vicinity of the tailings storage facility (TSF) of Kara-Balta uranium hydrometallurgical factory in Kyrgyzstan were used to design a mathematical model of radon migration from the surface of TSF. Numerical calculations have been performed to describe prevalence of radon contamination [ru

  11. Using drugs in un/safe spaces: Impact of perceived illegality on an underground supervised injecting facility in the United States.

    Science.gov (United States)

    Davidson, Peter J; Lopez, Andrea M; Kral, Alex H

    2018-03-01

    Supervised injection facilities (SIFs) are spaces where people can consume pre-obtained drugs in hygienic circumstances with trained staff in attendance to provide emergency response in the event of an overdose or other medical emergency, and to provide counselling and referral to other social and health services. Over 100 facilities with formal legal sanction exist in ten countries, and extensive research has shown they reduce overdose deaths, increase drug treatment uptake, and reduce social nuisance. No facility with formal legal sanction currently exists in the United States, however one community-based organization has successfully operated an 'underground' facility since September 2014. Twenty three qualitative interviews were conducted with people who used the underground facility, staff, and volunteers to examine the impact of the facility on peoples' lives, including the impact of lack of formal legal sanction on service provision. Participants reported that having a safe space to inject drugs had led to less injections in public spaces, greater ability to practice hygienic injecting practices, and greater protection from fatal overdose. Constructive aspects of being 'underground' included the ability to shape rules and procedures around user need rather than to meet political concerns, and the rapid deployment of the project, based on immediate need. Limitations associated with being underground included restrictions in the size and diversity of the population served by the site, and reduced ability to closely link the service to drug treatment and other health and social services. Unsanctioned supervised injection facilities can provide a rapid and user-driven response to urgent public health needs. This work draws attention to the need to ensure such services remain focused on user-defined need rather than external political concerns in jurisdictions where supervised injection facilities acquire local legal sanction. Copyright © 2017 Elsevier B.V. All

  12. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  13. Effects and mechanism on Kapton film under ozone exposure in a ground near space simulator

    Science.gov (United States)

    Wei, Qiang; Yang, Guimin; Liu, Gang; Jiang, Haifu; Zhang, Tingting

    2018-05-01

    The effect on aircraft materials in the near space environment is a key part of air-and-space integration research. Ozone and aerodynamic fluids are important organizational factors in the near space environment and both have significant influences on the performance of aircraft materials. In the present paper a simulated ozone environment was used to test polyimide material that was rotated at the approximate velocity of 150-250 m/s to form an aerodynamic fluid field. The goal was to evaluate the performance evolution of materials under a comprehensive environment of ozone molecular corrosion and aerodynamic fluids. The research results show that corrosion and sputtering by ozone molecules results in Kapton films exhibiting a rugged "carpet-like" morphology exhibits an increase in surface roughness. The morphology after ozone exposure led to higher surface roughness and an increase in surface optical diffuse reflection, which is expressed by the lower optical transmittance and the gradual transition from light orange to brown. The mass loss test, XPS, and FTIR analysis show that the molecular chains on the surface of the Kapton film are destroyed resulting in Csbnd C bond breaking to form small volatile molecules such as CO2 or CO, which are responsible for a linear increase in mass loss per unit area. The Csbnd N and Csbnd O structures exhibit weakening tendency under ozone exposure. The present paper explores the evaluation method for Kapton's adaptability under the ozone exposure test in the near space environment, and elucidates the corrosion mechanism and damage mode of the polyimide material under the combined action of ozone corrosion and the aerodynamic fluid. This work provides a methodology for studying materials in the near-space environment.

  14. Extended phase-space methods for enhanced sampling in molecular simulations: a review

    Directory of Open Access Journals (Sweden)

    Hiroshi eFujisaki

    2015-09-01

    Full Text Available Molecular Dynamics simulations are a powerful approach to study biomolecular conformational changes or protein-ligand, protein-protein and protein-DNA/RNA interactions. Straightforward applications however are often hampered by incomplete sampling, since in a typical simulated trajectory the system will spend most of its time trapped by high energy barriers in restricted regions of the configuration space. Over the years, several techniques have been designed to overcome this problem and enhance space sampling. Here, we review a class of methods that rely on the idea of extending the set of dynamical variables of the system by adding extra ones associated to functions describing the process under study. In particular, we illustrate the Temperature Accelerated Molecular Dynamics (TAMD, Logarithmic Mean Force Dynamics (LogMFD, andMultiscale Enhanced Sampling (MSES algorithms. We also discuss combinations with techniques for searching reaction paths. We show the advantages presented by this approach and how it allows to quickly sample important regions of the free energy landscape via automatic exploration.

  15. Simulation of Groundwater Flow and Migration of the Radioactive Cobalt-60 from LAMA Nuclear Facility-Iraq

    Directory of Open Access Journals (Sweden)

    Thair Sharif Khayyun

    2018-02-01

    Full Text Available This study provides a simulation of groundwater flow and advective-dispersive migration of radioactive Co-60 through an aquifer with three layers, which release or leak to groundwater from the Active Metallurgy Testing Laboratory (LAMA Nuclear Facility-Iraq due to the nuclear accident scenario. Processing Modflow for windows (PMWIN and Modular Three-Dimensional Multispecies Transport (MT3DMS Models were used for this purpose. The study area and the contaminated area were 12.7 km2 and 0.005625 km2, respectively. Water levels of the groundwater have been measured in six monitoring wells. The simulation time was assumed to have started in 2016. The PMWIN model simulated the flow for two scenarios of water level in Tigris River (average and minimum water levels. The MT3DMS model simulated 10 years of plume travel, beginning in 2016. The simulated Co-60 concentrations after five years of travel were 32.34 and 34.44 μg/m3 for the two scenarios. The maximum predicted Co-60 concentrations at the end of Year 10 were 34.86 and 37.31 μg/m3, respectively. The sensitivity analysis showed that the simulated hydraulic heads in the observation wells and the simulated plume of Co-60 were highly sensitive to changes in the effective porosity but less sensitive to changes in other parameters of the dispersion and chemical reaction processes. The time necessary to reach steady state condition was predicted to be approximately 16 years. The contaminated area was isolated by using remedial process which is represented by three fully penetrating pumping wells with a suitable flow rate (0.045 m3/s for controlling the movement of Co-60 pollutant.

  16. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J.

    2016-01-01

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While the simulations suggest that low foot performance was dominated by ablation front instability growth, especially the defect seeded by the capsule support tent, high foot implosions appear to be dominated by hohlraum flux asymmetries, although the support tent still plays a significant role. For both implosion types, the simulations show reasonable, though not perfect, agreement with the data and suggest that a reliable predictive capability is developing to guide future implosions toward ignition.

  17. Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. S.; Weber, C. R.; Milovich, J. L.; Salmonson, J. D.; Kritcher, A. L.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Hurricane, O. A.; Jones, O. S.; Marinak, M. M.; Patel, P. K.; Robey, H. F.; Sepke, S. M.; Edwards, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-05-15

    In order to achieve the several hundred Gbar stagnation pressures necessary for inertial confinement fusion ignition, implosion experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] require the compression of deuterium-tritium fuel layers by a convergence ratio as high as forty. Such high convergence implosions are subject to degradation by a range of perturbations, including the growth of small-scale defects due to hydrodynamic instabilities, as well as longer scale modulations due to radiation flux asymmetries in the enclosing hohlraum. Due to the broad range of scales involved, and also the genuinely three-dimensional (3D) character of the flow, accurately modeling NIF implosions remains at the edge of current simulation capabilities. This paper describes the current state of progress of 3D capsule-only simulations of NIF implosions aimed at accurately describing the performance of specific NIF experiments. Current simulations include the effects of hohlraum radiation asymmetries, capsule surface defects, the capsule support tent and fill tube, and use a grid resolution shown to be converged in companion two-dimensional simulations. The results of detailed simulations of low foot implosions from the National Ignition Campaign are contrasted against results for more recent high foot implosions. While