WorldWideScience

Sample records for space science department

  1. Department of Defense Space Science and Technology Strategy 2015

    2015-01-01

    foundations for GPS; 2. The initial discovery and follow-on research on the operational impacts of solar coronal mass ejections and space experimental...based x-ray pulsar navigation and timing capability A-11 Table 4 Intelligence, Surveillance, and Reconnaissance Short Term S&T Goals

  2. Strengthening Science Departments

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  3. Report on the activities of Space Science Department in 1978/1979

    Page, D.E.; Fitton, B.; Pedersen, A.; Taylor, B.G.; Wenzel, K.-P.

    1980-09-01

    In the chapters which follow each of the four Divisions, (Cosmic Ray Div., Space Plasma Div., Astronomy Div., and High Energy Astrophysic Div.) has described its work in the sequence: 'Support given to projects', 'Support given to studies', and 'Research activities'. The effort and time devoted to each area of work is by no means proportional to the length of text appearing in each area. Any attempt to fully describe support given to a project tends to result in what is merely a diary of meetings, tests, failures, re-scheduling efforts, repair of experiments, re-tests, compromise negotiation, inter-experimenter refereeing etc., and such diaries, although instructive, seemed inappropriate in this report. Reports on projects and studies therefore in general simply describe the project and say that it was supported. It should be mentioned, however, that major efforts, outside the normal role of SSD, have gone into the IUE and Exosat projects. The scientific operations of IUE were planned and are directed from the Astronomy Division to which the visiting scientists at Villafranca report. The design and production of the Exosat payload is being managed from the High Energy Astrophysics Division and plans are now being made for the operation of the Exosat Observatory and the distribution of the data

  4. Department of Physical Sciences

    USER

    2017-05-05

    May 5, 2017 ... ... of Physical Sciences, The Open University of Tanzania, P. O. Box ... bioaccumulation and biomagnification in the food chain. This research deals with human health risk assessment of metal contamination through the .... poisoning is untreatable (Faller, 2009). ... probability of adverse health effects in.

  5. Space Sciences Focus Area

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  6. Managing the space sciences

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  7. NASA Space Life Sciences

    Hayes, Judith

    2009-01-01

    This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.

  8. Education in space science

    Philbrick, C. Russell

    2005-08-01

    The educational process for teaching space science has been examined as a topic at the 17th European Space Agency Symposium on European Rocket and Balloon, and Related Research. The approach used for an introductory course during the past 18 years at Penn State University is considered as an example. The opportunities for using space science topics to motivate the thinking and efforts of advanced undergraduate and beginning graduate students are examined. The topics covered in the introductory course are briefly described in an outline indicating the breath of the material covered. Several additional topics and assignments are included to help prepare the students for their careers. These topics include discussions on workplace ethics, project management, tools for research, presentation skills, and opportunities to participate in student projects.

  9. Space Science in Action: Space Exploration [Videotape].

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  10. International space science

    Mark, H.

    1988-01-01

    The author begins his paper by noting the range of international cooperation which has occured in science since its earliest days. The brightest minds were allowed to cross international frontiers even in the face of major wars, to work on their interests and to interact with like minded scientists in other countries. There has of course been a political side to this movement at times. The author makes the point that doing science on an international basis is extemely important but it is not a way of conducting foreign policy. Even though governments may work together on scientific efforts, it is no glue which will bind them to work together on larger political or economic issues. The reason for doing science on an international basis is that it will lead to better science, not better international relations. There are a limited number of great scientists in the world, and they must be allowed to develop their talents. He then discusses two internationl space programs which have has such collaboration, the Soviet-American Space Biology Program, and the Infrared Astronomical Satellite (IRAS). He then touches on the NASA space exploration program, and the fact that its basic objectives were laid out in the 1940's and l950's. With this laid out he argues in favor of establishment of a lunar base, one of the key elements of NASA's plan, arguing for the value of this step based upon the infrared astronomical work which could be done from a stable lunar site, away from the earth's atmosphere

  11. CERN and space science

    2009-01-01

    The connection between CERN and space is tangible this week, as former CERN Fellow and ESA astronaut Christer Fuglesang begins the second week of his mission on space shuttle flight STS-128. I had the pleasure to meet Christer back in October 2008 at an IEEE symposium in Dresden, and he asked me whether we could give him something related to CERN for his official flight kit. We thought of caps and tee-shirts, but in the end decided to give him a neutralino as a symbol of the link between particle physics and the science of the Universe. Neutralinos are theoretical particles that the LHC will be looking for, and if they exist, they’re strong candidates for the Universe’s dark matter. Christer’s neutralino is just a model, of course, escaped from the particle zoo, but what better symbol of the connectedness of science? Christer Fuglesang is not the only link CERN has with the space shuttle programme. We’ve recently learned that...

  12. Department of Defense International Space Cooperation Strategy

    2017-01-01

    Commands’ regional exercise programs fully integrate appropriate allies’ and partners’ space operations. d. In close coordination with USSTRA TCOM...partners to develop basic operational capabilities through advanced and integrated training programs to grow a sophisticated coalition space cadre. b...1-2600 "’l. ., 5 Lui/ !.Y. 4’/ ,_ , MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS CHAIRMAN OF THE JOINT CHIEFS OF STAFF UNDER SECRET

  13. Engineering science and mechanics department head named

    Nystrom, Lynn A.

    2004-01-01

    Ishwar K. Puri, professor of mechanical engineering and executive associate dean of engineering at the University of Illinois at Chicago, will become the head of Virginia Tech•À_ó»s Department of Engineering Science and Mechanics Aug. 1.

  14. 939 Department of Geology and Mineral Science

    USER

    2015-11-12

    Nov 12, 2015 ... Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria P.M.B. 1515, Ilorin, Nigeria. 2. Department of Petroleum Engineering and Geosciences, Petroleum Training Institute, P.M.B.. 20, Effurun, Delta State, Nigeria. Abstract. Hydrochemical investigation of thirty groundwater samples ...

  15. Space Sciences and Idealism

    Popov, M.

    Erwin Schrodinger suggested that " Scientific knowledge forms part of the idealistic background of human life", which exalted man from a nude and savage state to true humanity [Science and Humanism, Cambridge, 1961, p9]. Modern space sciences an space exploration are a brilliant demonstration of the validity of Schrodinger's thesis on Idealism. Moreover, Schrodingers thesis could be considered also as a basic principle for the New Educational Space Philosophical Project "TIMAEUS"."TIMAEUS" is not only an attempt to to start a new dialogue between Science, the Humanities and Religion; but also it is an origin of the cultural innovations of our so strange of globilisation. TIMAEUS, thus, can reveal Idealism as something more fundamental , more refined, more developed than is now accepted by the scientific community and the piblic. TIMAEUS has a significant cultural agenda, connected with the high orbital performance of the synthetic arts, combining a knowledge of the truly spiritual as well as the universal. In particular, classical ballet as a synthetic art can be a new and powerful perfector and re-creator of the real human, real idealistic, real complex culture in orbit. As is well known, Carlo Blasis, the most important dance theorist of the 19t h .century, made probably the first attempts to use the scientific ideas of Leonardo da Vinci and Isaac Newton for the understanding of the gravitational nature of balance and allegro in ballet. In particular Blasis's idea of the limited use of the legs in classical dance realised by the gifted pupils of Enrico Cecchetti - M.Fokine, A.Pavlova and V.Nijinsky, with thinkable purity and elegance of style. V.Nijinsky in his remarkable animation of the dance of two dimensional creatures of a Euclidean flat world (L'Apres Midi d'un Faune,1912) discovered that true classical dance has some gravitational limits. For example, Nijinsky's Faunes and Nymphs mut use running on the heels (In accordance with "Partitura" 1916); they

  16. Mixed reaction to science department proposal

    The recommendation last month by a presidential commission that a federal Department of Science and Technology be created to encompass “major civilian research and development (R&D) agencies” has elicited a mixed reaction from members of the geophysical sciences community.The Commission on Industrial Competitiveness, created by President Ronald Reagan in June 1983 to study ways to strengthen the ability of the United States to compete in a global marketplace, recommended establishment of a Cabinet-level science department “to promote national interest in and policies for research and technological innovation.” The commission, chaired by John A. Young, president of the Hewlett-Packard Company, was composed primarily of presidents and chief executive officers of major technology corporations but also included members of academia and government. Creation of a federal science and technology 'department is one of many suggestions contained in the commission's final report, Global Competition: The New Reality.

  17. USSR Space Life Sciences Digest

    Lewis, C. S. (Editor); Donnelly, K. L. (Editor)

    1980-01-01

    Research in exobiology, life sciences technology, space biology, and space medicine and physiology, primarily using data gathered on the Salyut 6 orbital space station, is reported. Methods for predicting, diagnosing, and preventing the effects of weightlessness are discussed. Psychological factors are discussed. The effects of space flight on plants and animals are reported. Bioinstrumentation advances are noted.

  18. National Space Science Data Center Master Catalog

    National Aeronautics and Space Administration — The National Space Science Data Center serves as the permanent archive for NASA space science mission data. 'Space science' means astronomy and astrophysics, solar...

  19. Leading Learning: Science Departments and the Chair

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  20. Earth Sciences Department Annual Report, 1984

    Henry, A.L.; Donohue, M.L. (eds.)

    1985-09-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory comprises nine different disciplinary and programmatic groups that provide research in the geosciences, including nuclear waste management, containment of nuclear weapons tests, seismic treaty verification, stimulation of natural gas production by unconventional means, and oil shale retorting. Each group's accomplishments in 1984 are discussed, followed by a listing of the group's publications for the year.

  1. Essays in Space Science

    Ramaty, R.; Cline, T.L.; Ormes, J.F.

    1987-06-01

    The papers presented cover a broad segment of space research and are an acknowledgement of the personal involvement of Frank McDonald in many of these efforts. The totality of the papers were chosen so as to sample the scientific areas influenced by him in a significant manner. Three broad areas are covered: particles and fields of the solar system; cosmic ray astrophysics; and gamma ray, x ray, and infrared astronomics

  2. Science Ideals and Science Careers in a University Biology Department

    Long, David E.

    2014-01-01

    In an ethnographic study set within a biology department of a public university in the United States, incongruity between the ideals and practice of science education are investigated. Against the background of religious conservative students' complaints about evolution in the curriculum, biology faculty describe their political intents for…

  3. NASA Space Science Resource Catalog

    Teays, T.

    2000-05-01

    The NASA Office of Space Science Resource Catalog provides a convenient online interface for finding space science products for use in classrooms, science museums, planetariums, and many other venues. Goals in developing this catalog are: (1) create a cataloging system for all NASA OSS education products, (2) develop a system for characterizing education products which is meaningful to a large clientele, (3) develop a mechanism for evaluating products, (4) provide a user-friendly interface to search and access the data, and (5) provide standardized metadata and interfaces to other cataloging and library systems. The first version of the catalog is being tested at the spring 2000 conventions of the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM) and will be released in summer 2000. The catalog may be viewed at the Origins Education Forum booth.

  4. Space life sciences strategic plan

    Nicogossian, Arnauld E.

    1992-01-01

    Over the last three decades the Life Sciences Program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the options to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy. The strategies detailed in this document are fully supportive of the Life Sciences Advisory Subcommittee's 'A Rationale for the Life Sciences,' and the recent Aerospace Medicine Advisory Committee report entitled 'Strategic Considerations for Support of Humans in Space and Moon/Mars Exploration Missions.' Information contained within this document is intended for internal NASA planning and is subject to policy decisions and direction, and to budgets allocated to NASA's Life Sciences Program.

  5. Space Interferometry Science Working Group

    Ridgway, Stephen T.

    1992-12-01

    Decisions taken by the astronomy and astrophysics survey committee and the interferometry panel which lead to the formation of the Space Interferometry Science Working Group (SISWG) are outlined. The SISWG was formed by the NASA astrophysics division to provide scientific and technical input from the community in planning for space interferometry and in support of an Astrometric Interferometry Mission (AIM). The AIM program hopes to measure the positions of astronomical objects with a precision of a few millionths of an arcsecond. The SISWG science and technical teams are described and the outcomes of its first meeting are given.

  6. Social Sciences and Space Exploration

    1988-01-01

    The relationship between technology and society is a subject of continuing interest, because technological change and its effects confront and challenge society. College students are especially interested in technological change, knowing that they must cope with the pervasive and escalating effect of wide-ranging technological change. The space shuttle represents a technological change. The book's role is to serve as a resource for college faculty and students who are or will be interested in the social science implications of space technology. The book is designed to provide introductory material on a variety of space social topics to help faculty and students pursue teaching, learning, and research. Space technologies, perspectives on individual disciplines (economics, history, international law, philosophy, political science, psychology, and sociology) and interdiscipline approaches are presented.

  7. Materials science experiments in space

    Gelles, S. H.; Giessen, B. C.; Glicksman, M. E.; Margrave, J. L.; Markovitz, H.; Nowick, A. S.; Verhoeven, J. D.; Witt, A. F.

    1978-01-01

    The criteria for the selection of the experimental areas and individual experiments were that the experiment or area must make a meaningful contribution to the field of material science and that the space environment was either an absolute requirement for the successful execution of the experiment or that the experiment can be more economically or more conveniently performed in space. A number of experimental areas and individual experiments were recommended for further consideration as space experiments. Areas not considered to be fruitful and others needing additional analysis in order to determine their suitability for conduct in space are also listed. Recommendations were made concerning the manner in which these materials science experiments are carried out and the related studies that should be pursued.

  8. Impact of space on science

    Elachi, Charles

    1993-01-01

    The advent of the capability to conduct space-based measurements has revolutionized the study of the Earth, the planetary system and the astrophysical universe. The resultant knowledge has yielded insights into the management of our planet's resources and provides intellectual enrichment for our civilization. New investigation techniques hold promise for extending the scope of space science to address topics in fundamental physics such as gravitational waves and certain aspects of Einstein's Theory of General Relativity.

  9. Deep Space Gateway Science Opportunities

    Quincy, C. D.; Charles, J. B.; Hamill, Doris; Sidney, S. C.

    2018-01-01

    The NASA Life Sciences Research Capabilities Team (LSRCT) has been discussing deep space research needs for the last two years. NASA's programs conducting life sciences studies - the Human Research Program, Space Biology, Astrobiology, and Planetary Protection - see the Deep Space Gateway (DSG) as affording enormous opportunities to investigate biological organisms in a unique environment that cannot be replicated in Earth-based laboratories or on Low Earth Orbit science platforms. These investigations may provide in many cases the definitive answers to risks associated with exploration and living outside Earth's protective magnetic field. Unlike Low Earth Orbit or terrestrial locations, the Gateway location will be subjected to the true deep space spectrum and influence of both galactic cosmic and solar particle radiation and thus presents an opportunity to investigate their long-term exposure effects. The question of how a community of biological organisms change over time within the harsh environment of space flight outside of the magnetic field protection can be investigated. The biological response to the absence of Earth's geomagnetic field can be studied for the first time. Will organisms change in new and unique ways under these new conditions? This may be specifically true on investigations of microbial communities. The Gateway provides a platform for microbiology experiments both inside, to improve understanding of interactions between microbes and human habitats, and outside, to improve understanding of microbe-hardware interactions exposed to the space environment.

  10. Science on a space elevator

    Laubscher, B. E. (Bryan E.); Jorgensen, A. M. (Anders M.)

    2004-01-01

    The Space Elevator (SE) represents a major paradigm shift in space access. If the SE's promise of low cost access can be realized, everything becomes economically more feasible to accomplish in space. In this paper we describe in-situ science stations mounted on a science-dedicated space elevator tether. The concept presented here involves a carbon nanotube ribbon that is constructed by an existing space elevator and then science sensors are stationed along the ribbon at differing altitudes. The finished ribbon can be moved across the earth to the position at which its scientific measurements are to be taken. The ability to station scientific, in-situ instrumentation at different altitudes for round-the-clock observations is a unique capability of the SE. The environments that the science packages sense range from the troposphere out beyond the magnetopause of the magnetosphere on the solar side of the earth. Therefore, the very end of the SE can sense the solar wind. The measurements at various points along its length include temperature, pressure, density, sampling, chemical analyses, wind speed, turbulence, free oxygen, electromagnetic radiation, cosmic rays, energetic particles and plasmas in the earth's magnetosphere and the solar wind. There exist some altitudes that are difficult to access with aircraft or balloons or rockets and so remain relatively unexplored. The space elevator solves these problems and opens these regions up to in-situ measurements. Without the need for propulsion, the SE provides a more benign and pristine environment for atmospheric measurements than available with powered aircraft. Moreover, replacing and upgrading instrumentation is expected to be very cost effective with the SE. Moving and stationing the science SE affords the opportunity to sense multiple regions of the atmosphere. The SE's geosynchronous, orbital motion through the magnetosphere, albeit nominally with Earth's magnetic field, will trace a plane

  11. Space life sciences: A status report

    1990-01-01

    The scientific research and supporting technology development conducted in the Space Life Sciences Program is described. Accomplishments of the past year are highlighted. Plans for future activities are outlined. Some specific areas of study include the following: Crew health and safety; What happens to humans in space; Gravity, life, and space; Sustenance in space; Life and planet Earth; Life in the Universe; Promoting good science and good will; Building a future for the space life sciences; and Benefits of space life sciences research.

  12. A Department of Atmospheric and Planetary Sciences at Hampton University

    Paterson, W. R.; McCormick, M. P.; Russell, J. M.; Anderson, J.; Kireev, S.; Loughman, R. P.; Smith, W. L.

    2006-12-01

    With this presentation we discuss the status of plans for a Department of Atmospheric and Planetary Sciences at Hampton University. Hampton University is a privately endowed, non-profit, non-sectarian, co-educational, and historically black university with 38 baccalaureate, 14 masters, and 4 doctoral degree programs. The graduate program in physics currently offers advanced degrees with concentration in Atmospheric Science. The 10 students now enrolled benefit substantially from the research experience and infrastructure resident in the university's Center for Atmospheric Sciences (CAS), which is celebrating its tenth anniversary. Promoting a greater diversity of participants in geosciences is an important objective for CAS. To accomplish this, we require reliable pipelines of students into the program. One such pipeline is our undergraduate minor in Space, Earth, and Atmospheric Sciences (SEAS minor). This minor concentraton of study is contributing to awareness of geosciences on the Hampton University campus, and beyond, as our students matriculate and join the workforce, or pursue higher degrees. However, the current graduate program, with its emphasis on physics, is not necessarily optimal for atmospheric scientists, and it limits our ability to recruit students who do not have a physics degree. To increase the base of candidate students, we have proposed creation of a Department of Atmospheric and Planetary Sciences, which could attract students from a broader range of academic disciplines. The revised curriculum would provide for greater concentration in atmospheric and planetary sciences, yet maintain a degree of flexibility to allow for coursework in physics or other areas to meet the needs of individual students. The department would offer the M.S. and Ph.D. degrees, and maintain the SEAS minor. The university's administration and faculty have approved our plan for this new department pending authorization by the university's board of trustees, which will

  13. Science as Content, Science as Context: Working in the Science Department

    Wildy, Helen; Wallace, John

    2004-01-01

    In this study we explored how the science department shaped the relationship between a science department head, Mr Greg, and a teacher, Ms Horton, as they grappled with their expectations of, and responsibilities for, teaching and leadership in the daily life in the department. We found that, from their life histories and their positions in the…

  14. Department of Biotechnology | Women in Science | Initiatives ...

    ... Proceedings – Mathematical Sciences · Resonance – Journal of Science ... Year: 2012 Innovative Young Biotechnologist Award ... Indian Institute of Science Education and Research, Mohali ... International Centre for Genetic Engineering and Biotechnology, New Delhi ... Institute of Microbial Technology, Chandigarh

  15. Individual and Collective Leadership in School Science Departments

    Ritchie, Stephen M.; Mackay, Gail; Rigano, Donna L.

    2006-01-01

    Given that the subject department is recognised by subject specialist teachers as the central and immediate unit of organization in secondary schools it is surprising that so little attention has been paid by researchers to the leadership dynamics within science departments. The leadership dynamics within the science departments of two…

  16. Space Science Education Resource Directory

    Christian, C. A.; Scollick, K.

    The Office of Space Science (OSS) of NASA supports educational programs as a by-product of the research it funds through missions and investigative programs. A rich suite of resources for public use is available including multimedia materials, online resources, hardcopies and other items. The OSS supported creation of a resource catalog through a group lead by individuals at STScI that ultimately will provide an easy-to-use and user-friendly search capability to access products. This paper describes the underlying architecture of that catalog, including the challenge to develop a system for characterizing education products through appropriate metadata. The system must also be meaningful to a large clientele including educators, scientists, students, and informal science educators. An additional goal was to seamlessly exchange data with existing federally supported educational systems as well as local systems. The goals, requirements, and standards for the catalog will be presented to illuminate the rationale for the implementation ultimately adopted.

  17. Space Research, Education, and Related Activities In the Space Sciences

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  18. Secondary School Science Department Chairs Leading Change

    Gaubatz, Julie A.

    2012-01-01

    Secondary school department chairs are content area specialists in their schools and are responsible for providing students with the most appropriate curricula. However, most secondary school department chairs have limited authority to institute change unilaterally (Gmelch, 1993; Hannay & Erb, 1999). To explore how these educational leaders…

  19. Science Instructional Leadership: The Role of the Department Chair

    Peacock, Jeremy S.

    2014-01-01

    With science teachers facing comprehensive curriculum reform that will shape science education for decades to come, high school department chairs represent a critical resource for instructional leadership and teacher support. While the historical literature on the department chair indicates that chairs are in prime positions to provide…

  20. Barbara Ryder to head Department of Computer Science

    Daniilidi, Christina

    2008-01-01

    Barbara G. Ryder, professor of computer science at Rutgers, The State University of New Jersey, will become the computer science department head at Virginia Tech, starting in fall 2008. She is the first woman to serve as a department head in the history of the nationally ranked College of Engineering.

  1. Space science--a fountain of exploration and discovery

    Gu Yidong

    2014-01-01

    Space science is a major part of space activities, as well as one of the most active areas in scientific exploration today. This paper gives a brief introduction regarding the main achievements in space science involving solar physics and space physics, space astronomy, moon and planetary science, space geo- science, space life science, and micro- gravity science. At the very frontier of basic research, space science should be developed to spearhead breakthroughs in China's fundamental sciences. (author)

  2. Earth and space science information systems

    Zygielbaum, A. (ed.) (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 (United States))

    1993-01-01

    These proceedings represent papers presented at the Earth and Space Science Information Systems (ESSIS) Conference. The attendees included scientists and engineers across many disciplines. New trends in information organizations were reviewed. One hundred and twenty eight papers are included in this volume, out of these two have been abstracted for the Energy Science and Technology database. The topics covered in the papers range from Earth science and technology to astronomy and space, planetary science and education. (AIP)

  3. Space life sciences: Programs and projects

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  4. Home - Virginia Department of Forensic Science

    Collecting DNA Data Bank Samples Forensic Training Forensic Science Academy Short Course Schedule Forensic gross weights, marijuana food products and search warrant cases. Click anywhere on the image to open the -screen comparison software system to perform and document the comparison. Virginia DNA Data Bank

  5. Instructional leaders for all? High school science department heads and instructional leadership across all science disciplines

    Sanborn, Stephen

    Many high school science departments are responding to changes in state standards with respect to both curricular content and instructional practices. In the typical American high school organization, the academic department head is ideally positioned to influence change in the instructional practices of teachers within the department. Even though science department heads are well situated to provide leadership during this period of transition, the literature has not addressed the question of how well science department heads believe they can provide instructional leadership for all of the teachers in their department, whether they are teaching within and outside of the head's own sub-discipline. Nor is it known how science department heads view the role of pedagogical content knowledge in teaching different science disciplines. Using an online survey comprised of 26 objective questions and one open response question, a 54-respondent sample of science department heads provided no strong consensus regarding their beliefs about the role of pedagogical content knowledge in science instruction. However, science department heads expressed a significant difference in their views about their capacity to provide instructional leadership for teachers sharing their science content area compared to teachers instructing other science content areas. Given wide-spread science education reform efforts introduced in response to the Next Generation Science Standards, these findings may serve to provide some direction for determining how to best support the work of science department heads as they strive to provide instructional leadership for the teachers in their departments.

  6. Space Life Sciences Research and Education Program

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  7. French language space science educational outreach

    Schofield, I.; Masongsong, E. V.; Connors, M. G.

    2015-12-01

    Athabasca University's AUTUMNX ground-based magnetometer array to measure and report geomagnetic conditions in eastern Canada is located in the heart of French speaking Canada. Through the course of the project, we have had the privilege to partner with schools, universities, astronomy clubs and government agencies across Quebec, all of which operate primarily in French. To acknowledge and serve the needs of our research partners, we have endeavored to produce educational and outreach (EPO) material adapted for francophone audiences with the help of UCLA's department of Earth, Planetary and Space Sciences (EPSS). Not only will this provide greater understanding and appreciation of the geospace environment unique to Quebec and surrounding regions, it strengthens our ties with our francophone, first nations (native Americans) and Inuit partners, trailblazing new paths of research collaboration and inspiring future generations of researchers.

  8. Bourdieu, Department Chairs and the Reform of Science Education

    Melville, Wayne; Hardy, Ian; Bartley, Anthony

    2011-11-01

    Using the insights of the French sociologist, Pierre Bourdieu, this article considers the role of the science department chair in the reform of school science education. Using Bourdieu's 'thinking tools' of 'field', 'habitus' and 'capital', we case study the work of two teachers who both actively pursue the teaching and learning of science as inquiry. One teacher, Dan, has been a department chair since 2000, and has actively encouraged his department to embrace science as inquiry. The other teacher, Leslie, worked for one year in Dan's department before being transferred to another school where science teaching continues to be more traditional. Our work suggests that there are three crucial considerations for chairs seeking to lead the reform of science teaching within their department. The first of these is the development of a reform-minded habitus, as this appears to be foundational to the capital that can be expended in the leadership of reform. The second is an understanding of how to wield power and position in the promotion of reform. The third is the capacity to operate simultaneously and strategically within, and across, two fields; the departmental field and the larger science education field. This involves downplaying administrative logics, and foregrounding more inquiry-focused logics as a vehicle to challenge traditional science-teaching dispositions-the latter being typically dominated by concerns about curriculum 'coverage'.

  9. Life sciences space biology project planning

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  10. Department

    USER

    2016-09-20

    Sep 20, 2016 ... Department of Biological and Environmental Sciences, Kibabii University. Abstract. This study ... Key Words: Climate Change, Regional Circulation Model, PRECIS, Bungoma County ... by different computer models is much.

  11. Environmental Science and Technology department. Annual report 1991

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. [eds.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department`s education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  12. International Space Station External Contamination Environment for Space Science Utilization

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  13. Accommodating life sciences on the Space Station

    Arno, Roger D.

    1987-01-01

    The NASA Ames Research Center Biological Research Project (BRP) is responsible for identifying and accommodating high priority life science activities, utilizing nonhuman specimens, on the Space Station and is charged to bridge the gap between the science community and the Space Station Program. This paper discusses the approaches taken by the BRP in accomodating these research objectives to constraints imposed by the Space Station System, while maintaining a user-friendly environment. Consideration is given to the particular research disciplines which are given priority, the science objectives in each of these disciplines, the functions and activities required by these objectives, the research equipment, and the equipment suits. Life sciences programs planned by the Space Station participating partners (USA, Europe, Japan, and Canada) are compared.

  14. Reinventing Emergency Department Flow via Healthcare Delivery Science.

    DeFlitch, Christopher; Geeting, Glenn; Paz, Harold L

    2015-01-01

    Healthcare system flow resulting in emergency departments (EDs) crowding is a quality and access problem. This case study examines an overcrowded academic health center ED with increasing patient volumes and limited physical space for expansion. ED capacity and efficiency improved via engineering principles application, addressing patient and staffing flows, and reinventing the delivery model. Using operational data and staff input, patient and staff flow models were created, identifying bottlenecks (points of inefficiency). A new flow model of emergency care delivery, physician-directed queuing, was developed. Expanding upon physicians in triage, providers passively evaluate all patients upon arrival, actively manage patients requiring fewer resources, and direct patients requiring complex resources to further evaluation in ED areas. Sustained over time, ED efficiency improved as measured by near elimination of "left without being seen" patients and waiting times with improvement in door to doctor, patient satisfaction, and total length of stay. All improvements were in the setting on increased patient volume and no increase in physician staffing. Our experience suggests that practical application of healthcare delivery science can be used to improve ED efficiency. © The Author(s) 2015.

  15. USSR Space Life Sciences Digest, issue 13

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor); Teeter, Ronald (Editor)

    1987-01-01

    This is the thirteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 39 papers recently published in Russian-language periodicals and bound collections, two papers delivered at an international life sciences symposium, and three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet-French symposium on Space Cytology. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 31 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, space biology, and space medicine.

  16. Space Science at Los Alamos National Laboratory

    Smith, Karl

    2017-09-01

    The Space Science and Applications group (ISR-1) in the Intelligence and Space Research (ISR) division at the Los Alamos National Laboratory lead a number of space science missions for civilian and defense-related programs. In support of these missions the group develops sensors capable of detecting nuclear emissions and measuring radiations in space including γ-ray, X-ray, charged-particle, and neutron detection. The group is involved in a number of stages of the lifetime of these sensors including mission concept and design, simulation and modeling, calibration, and data analysis. These missions support monitoring of the atmosphere and near-Earth space environment for nuclear detonations as well as monitoring of the local space environment including space-weather type events. Expertise in this area has been established over a long history of involvement with cutting-edge projects continuing back to the first space based monitoring mission Project Vela. The group's interests cut across a large range of topics including non-proliferation, space situational awareness, nuclear physics, material science, space physics, astrophysics, and planetary physics.

  17. Big Data in Space Science

    Barmby, Pauline

    2018-01-01

    It seems like “big data” is everywhere these days. In planetary science and astronomy, we’ve been dealing with large datasets for a long time. So how “big” is our data? How does it compare to the big data that a bank or an airline might have? What new tools do we need to analyze big datasets, and how can we make better use of existing tools? What kinds of science problems can we address with these? I’ll address these questions with examples including ESA’s Gaia mission, ...

  18. On teaching computer ethics within a computer science department.

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  19. The science of space-time

    Raine, D.J.; Heller, M.

    1981-01-01

    Analyzing the development of the structure of space-time from the theory of Aristotle to the present day, the present work attempts to sketch a science of relativistic mechanics. The concept of relativity is discussed in relation to the way in which space-time splits up into space and time, and in relation to Mach's principle concerning the relativity of inertia. Particular attention is given to the following topics: Aristotelian dynamics Copernican kinematics Newtonian dynamics the space-time of classical dynamics classical space-time in the presence of gravity the space-time of special relativity the space-time of general relativity solutions and problems in general relativity Mach's principle and the dynamics of space-time theories of inertial mass the integral formation of general relativity and the frontiers of relativity

  20. Space life sciences strategic plan, 1991

    1992-01-01

    Over the last three decades the life sciences program has significantly contributed to NASA's manned and unmanned exploration of space, while acquiring new knowledge in the fields of space biology and medicine. The national and international events which have led to the development and revision of NASA strategy will significantly affect the future of life sciences programs both in scope and pace. This document serves as the basis for synthesizing the option to be pursued during the next decade, based on the decisions, evolution, and guiding principles of the National Space Policy.

  1. Space and Earth Science Data Compression Workshop

    Tilton, James C. (Editor)

    1991-01-01

    The workshop explored opportunities for data compression to enhance the collection and analysis of space and Earth science data. The focus was on scientists' data requirements, as well as constraints imposed by the data collection, transmission, distribution, and archival systems. The workshop consisted of several invited papers; two described information systems for space and Earth science data, four depicted analysis scenarios for extracting information of scientific interest from data collected by Earth orbiting and deep space platforms, and a final one was a general tutorial on image data compression.

  2. WOMEN POWER IN SPACE SCIENCE

    TSC

    ❖Provides training in space field to personnel ... Work on next generation satellites to provide ... Women scientists are as good as every one else and .... service). (28%in 2002 increased to 33% in 2007). The scheme is useful for youngsters to ...

  3. Educational Outreach: The Space Science Road Show

    Cox, N. L. J.

    2002-01-01

    The poster presented will give an overview of a study towards a "Space Road Show". The topic of this show is space science. The target group is adolescents, aged 12 to 15, at Dutch high schools. The show and its accompanying experiments would be supported with suitable educational material. Science teachers at schools can decide for themselves if they want to use this material in advance, afterwards or not at all. The aims of this outreach effort are: to motivate students for space science and engineering, to help them understand the importance of (space) research, to give them a positive feeling about the possibilities offered by space and in the process give them useful knowledge on space basics. The show revolves around three main themes: applications, science and society. First the students will get some historical background on the importance of space/astronomy to civilization. Secondly they will learn more about novel uses of space. On the one hand they will learn of "Views on Earth" involving technologies like Remote Sensing (or Spying), Communication, Broadcasting, GPS and Telemedicine. On the other hand they will experience "Views on Space" illustrated by past, present and future space research missions, like the space exploration missions (Cassini/Huygens, Mars Express and Rosetta) and the astronomy missions (Soho and XMM). Meanwhile, the students will learn more about the technology of launchers and satellites needed to accomplish these space missions. Throughout the show and especially towards the end attention will be paid to the third theme "Why go to space"? Other reasons for people to get into space will be explored. An important question in this is the commercial (manned) exploration of space. Thus, the questions of benefit of space to society are integrated in the entire show. It raises some fundamental questions about the effects of space travel on our environment, poverty and other moral issues. The show attempts to connect scientific with

  4. Space development and space science together, an historic opportunity

    Metzger, P. T.

    2016-11-01

    The national space programs have an historic opportunity to help solve the global-scale economic and environmental problems of Earth while becoming more effective at science through the use of space resources. Space programs will be more cost-effective when they work to establish a supply chain in space, mining and manufacturing then replicating the assets of the supply chain so it grows to larger capacity. This has become achievable because of advances in robotics and artificial intelligence. It is roughly estimated that developing a lunar outpost that relies upon and also develops the supply chain will cost about 1/3 or less of the existing annual budgets of the national space programs. It will require a sustained commitment of several decades to complete, during which time science and exploration become increasingly effective. At the end, this space industry will capable of addressing global-scale challenges including limited resources, clean energy, economic development, and preservation of the environment. Other potential solutions, including nuclear fusion and terrestrial renewable energy sources, do not address the root problem of our limited globe and there are real questions whether they will be inadequate or too late. While industry in space likewise cannot provide perfect assurance, it is uniquely able to solve the root problem, and it gives us an important chance that we should grasp. What makes this such an historic opportunity is that the space-based solution is obtainable as a side-benefit of doing space science and exploration within their existing budgets. Thinking pragmatically, it may take some time for policymakers to agree that setting up a complete supply chain is an achievable goal, so this paper describes a strategy of incremental progress. The most crucial part of this strategy is establishing a water economy by mining on the Moon and asteroids to manufacture rocket propellant. Technologies that support a water economy will play an

  5. Environmental Science and Technology department. Annual report 1991

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H. (eds.)

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.).

  6. Environmental Science and Technology department. Annual report 1991

    Jensen, A.; Gunderson, V.; Hansen, H.; Gissel Nielsen, G.; Nielsen, O.J.; Oestergaard, H.

    1992-06-01

    Selected activities in the Environmental Science and Technology Department during 1991 are presented. The research approach in the department is predominantly experimental. The research topics emphasized are introduced and reviewed in chapters one to seven: 1. Introduction, 2. The Atmosphere, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition, 5. Geochemistry, 6. Ecology, 7. Other activities. The Department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department. Information about the department's education and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations. Further, names of the scientific and technical staff members, Ph.D. students and visiting scientists are listed. (au) (23 ills., 58 refs.)

  7. Enviromental Science and Technology Department. Annual report 1990

    Jensen, A; Helms Joergensen, J; Nielsen, O J; Nilsson, K; Aarkrog, A

    1991-03-01

    Selected activities of the Environmental Science and Technology Department during 1990 are presented. The research in the department is predominantly experimental, and the research topics emphaized are introduced and reviewed in eight chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Biology, 4. Nutrient Efficiency in Plant Production, 5. Chemistry of the Geosphere, 6. Ecology and Mineral Cycling, 7. Other Acitvities, 8. Large Facilities. The department`s contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department as well as activities within education and training. Lists of scientific and technical staff members, visiting scientists, Ph.D. students, publications, lectures and poster presentations are included in the report. (author).

  8. Career Preparation and the Political Science Major: Evidence from Departments

    Collins, Todd A.; Knotts, H. Gibbs; Schiff, Jen

    2012-01-01

    We know little about the amount of career preparation offered to students in political science departments. This lack of information is particularly troubling given the state of the current job market and the growth of applied degree programs on university campuses. To address this issue, this article presents the results of a December 2010 survey…

  9. Environmental Science and Technology Department annual report 1992

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department`s contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department`s educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au).

  10. The United Nations Basic Space Science Initiative

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  11. Understanding space science under the northern lights

    Koskinen, H.

    What is space science? The answers to this question can be very variable indeed. In fact, space research is a field where science, technology, and applications are so closely tied together that it is often difficult to recognize the central role of science. However, as paradoxical as it may sound, it appears that the less-educated public often appreciates the value of space science better than highly educated policy makers and bureaucrats who tend to evaluate the importance of space activities in terms of economic and societal benefits only. In a country like Finland located below the zone, where auroras are visible during the long dark winter nights, the space is perhaps closer to the public than in countries where the visible objects are the Moon, planets and stars somewhere far away. This positive fact has been very useful, for example, in popularization of such an abstract concept as space weather. In Finland it is possible to see space weather and this rises the curiosity about the processes behind this magnificent phenomenon. Of course, also in Finland the beautiful SOHO images of the Sun and the Hubble Space Telescope pictures of the remote universe attract the attention of the large public. We also have an excellent vehicle in increasing the public understanding in the society of Finnish amateur astronomers Ursa. It is an organization for anyone interested in practically everything from visual phenomena in the air to the remote galaxies and the Big Bang. Ursa publishes a high-quality monthly magazine in Finnish and runs local amateur clubs. Last year its 80th birthday exhibition was one of the best-visited public events in Helsinki. It clearly gave a strong evidence of wide public interest in space in general and in space science in particular. Only curious people can grasp the beauty and importance of the underlying science. Thus, we should focus our public space science education and outreach primarily on waking up the curiosity of the public instead of

  12. The United Nations Basic Space Science Initiative

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  13. Environmental Science and Technology Department annual report 1994

    Jensen, A; Gissel Nielsen, G; Gundersen, V; Nielsen, O J; Oestergaard, H; Aarkrog, A [eds.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department`s contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department`s educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.).

  14. Environmental Science and Technology Department annual report 1993

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A. [eds.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au).

  15. Environmental Science and Technology Department annual report 1995

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A. [eds.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department`s contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs.

  16. Enviromental Science and Technology Department. Annual report 1990

    Jensen, A.; Helms Joergensen, J.; Nielsen, O.J.; Nilsson, K.; Aarkrog, A.

    1991-03-01

    Selected activities of the Environmental Science and Technology Department during 1990 are presented. The research in the department is predominantly experimental, and the research topics emphaized are introduced and reviewed in eight chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Biology, 4. Nutrient Efficiency in Plant Production, 5. Chemistry of the Geosphere, 6. Ecology and Mineral Cycling, 7. Other Acitvities, 8. Large Facilities. The department's contribution to national and international collaborative research programmes is presented together with information about large facilities managed and used by the department as well as activities within education and training. Lists of scientific and technical staff members, visiting scientists, Ph.D. students, publications, lectures and poster presentations are included in the report. (author)

  17. USSR Space Life Sciences Digest, issue 29

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1991-01-01

    This is the twenty-ninth issue of NASA's Space Life Sciences Digest. It is a double issue covering two issues of the Soviet Space Biology and Aerospace Medicine Journal. Issue 29 contains abstracts of 60 journal papers or book chapters published in Russian and of three Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a book on environmental hygiene and a list of papers presented at a Soviet conference on space biology and medicine are also included. The materials in this issue were identified as relevant to 28 areas of space biology and medicine. The areas are: adaptation, aviation medicine, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, digestive system, endocrinology, equipment and instrumentation, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, personnel selection, psychology, radiobiology, reproductive system, space biology and medicine, and the economics of space flight.

  18. USSR Space Life Sciences Digest, issue 14

    Hooke, Lydia Razran; Teeter, Ronald; Radtke, Mike; Rowe, Joseph

    1988-01-01

    This is the fourteenth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 32 papers recently published in Russian language periodicals and bound collections and of three new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Also included is a review of a recent Soviet conference on Space Biology and Aerospace Medicine. Current Soviet life sciences titles available in English are cited. The materials included in this issue have been identified as relevant to the following areas of aerospace medicine and space biology: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, habitability and environment effects, human performance, immunology, life support systems, mathematical modeling, metabolism, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  19. Wisconsin Earth and Space Science Education

    Bilbrough, Larry (Technical Monitor); French, George

    2003-01-01

    The Wisconsin Earth and Space Science Education project successfilly met its objectives of creating a comprehensive online portfolio of science education curricular resources and providing a professional development program to increase educator competency with Earth and Space science content and teaching pedagogy. Overall, 97% of participants stated that their experience was either good or excellent. The favorable response of participant reactions to the professional development opportunities highlights the high quality of the professional development opportunity. The enthusiasm generated for using the curricular material in classroom settings was overwhelmingly positive at 92%. This enthusiasm carried over into actual classroom implementation of resources from the curricular portfolio, with 90% using the resources between 1-6 times during the school year. The project has had a positive impact on student learning in Wisconsin. Although direct measurement of student performance is not possible in a project of this kind, nearly 75% of participating teachers stated that they saw an increase in student performance in math and science as a result of using project resources. Additionally, nearly 75% of participants saw an increase in the enthusiasm of students towards math and science. Finally, some evidence exists that the professional development academies and curricular portfolio have been effective in changing educator behavior. More than half of all participants indicated that they have used more hands-on activities as a result of the Wisconsin Earth and Space Science Education project.

  20. Department of Energy - Office of Science Early Career Research Program

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  1. Chemistry and Materials Science Department annual report, 1988--1989

    Borg, R.J.; Sugihara, T.T.; Cherniak, J.C.; Corey, C.W. [eds.

    1989-12-31

    This is the first annual report of the Chemistry & Materials Science (C&MS) Department. The principal purpose of this report is to provide a concise summary of our scientific and technical accomplishments for fiscal years 1988 and 1989. The report is also tended to become part of the archival record of the Department`s activities. We plan to publish future editions annually. The activities of the Department can be divided into three broad categories. First, C&MS staff are assigned by the matrix system to work directly in a program. These programmatic assignments typically involve short deadlines and critical time schedules. A second category is longer-term research and development in technologies important to Laboratory programs. The focus and direction of this technology-base work are generally determined by programmatic needs. Finally, the Department manages its own research program, mostly long-range in outlook and basic in orientation. These three categories are not mutually exclusive but form a continuum of technical activities. Representative examples of all three are included in this report. The principal subject matter of this report has been divided into six sections: Innovations in Analysis and Characterization, Advanced Materials, Metallurgical Science and Technology, Surfaces and Interfaces, Energetic Materials and Chemical Synthesis, and Energy-Related Research and Development.

  2. Environmental Science and Technology Department annual report 1996

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O. J.; Oestergaard, H.; Aarkrog, A. [eds.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department`s contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department`s contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs.

  3. Environmental Science and Technology Department annual report 1992

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1993-03-01

    Through basic and strategic research, the Environmental Science and Technology Department aspires to develop new ideas for industrial and agricultural production thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department in predominantly experimental. Selected department research activities during 1992 are introduced and reviewed in seven chapters: 1. Introduction. 2. The Atmospheric Environment. 3. Plant Genetics and Resistance Biology. 4. Plant Nutrition and Mineral Cycling. 5. Chemistry of the Geosphere. 6. Ecology and Mineral Cycling. 7. Other Activities. The department's contribution to national and international collaborative research programmes in presented in addition in formation about large research and development facilities used and management by the department. The department's educational and training activities are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technological staff members, visiting scientists, Post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au)

  4. New curriculum at Nuclear Science Department, National University of Malaysia

    Shahidan bin Radiman; Ismail bin Bahari

    1995-01-01

    A new undergraduate curriculum at the Department of Nuclear Science, Universiti Kebangsaan Malaysia is discussed. It includes the rational and objective of the new curriculum, course content and expectations due to a rapidly changing job market. The major change was a move to implement only on one Nuclear Science module rather than the present three modules of Radiobiology, Radiochemistry and Nuclear Physics. This will optimise not only laboratory use of facilities but also effectiveness of co-supervision. Other related aspects like industrial training and research exposures for the undergraduates are also discussed

  5. Laboratory science with space data accessing and using space-experiment data

    van Loon, Jack J W A; Zell, Martin; Beysens, Daniel

    2011-01-01

    For decades experiments conducted on space stations like MIR and the ISS have been gathering data in many fields of research in the natural sciences, medicine and engineering. The European Union-sponsored ULISSE project focused on exploring the wealth of unique experimental data provided by revealing raw and metadata from these studies via an Internet Portal. This book complements the portal. It serves as a handbook of space experiments and describes the various types of experimental infrastructure areas of research in the life and physical sciences and technology space missions that hosted scientific experiments the types and structures of the data produced and how one can access the data through ULISSE for further research. The book provides an overview of the wealth of space experiment data that can be used for additional research and will inspire academics (e.g. those looking for topics for their PhD thesis) and research departments in companies for their continued development.

  6. USSR Space Life Sciences Digest, issue 28

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

  7. Mathematics education a spectrum of work in mathematical sciences departments

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  8. Space Science Cloud: a Virtual Space Science Research Platform Based on Cloud Model

    Hu, Xiaoyan; Tong, Jizhou; Zou, Ziming

    Through independent and co-operational science missions, Strategic Pioneer Program (SPP) on Space Science, the new initiative of space science program in China which was approved by CAS and implemented by National Space Science Center (NSSC), dedicates to seek new discoveries and new breakthroughs in space science, thus deepen the understanding of universe and planet earth. In the framework of this program, in order to support the operations of space science missions and satisfy the demand of related research activities for e-Science, NSSC is developing a virtual space science research platform based on cloud model, namely the Space Science Cloud (SSC). In order to support mission demonstration, SSC integrates interactive satellite orbit design tool, satellite structure and payloads layout design tool, payload observation coverage analysis tool, etc., to help scientists analyze and verify space science mission designs. Another important function of SSC is supporting the mission operations, which runs through the space satellite data pipelines. Mission operators can acquire and process observation data, then distribute the data products to other systems or issue the data and archives with the services of SSC. In addition, SSC provides useful data, tools and models for space researchers. Several databases in the field of space science are integrated and an efficient retrieve system is developing. Common tools for data visualization, deep processing (e.g., smoothing and filtering tools), analysis (e.g., FFT analysis tool and minimum variance analysis tool) and mining (e.g., proton event correlation analysis tool) are also integrated to help the researchers to better utilize the data. The space weather models on SSC include magnetic storm forecast model, multi-station middle and upper atmospheric climate model, solar energetic particle propagation model and so on. All the services above-mentioned are based on the e-Science infrastructures of CAS e.g. cloud storage and

  9. USSR Space Life Sciences Digest, issue 7

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1986-01-01

    This is the seventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 29 papers recently published in Russian language periodicals and bound collections and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include two interviews with the Soviet Union's cosmonaut physicians and others knowledgable of the Soviet space program. The topics discussed at a Soviet conference on problems in space psychology are summarized. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 29 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space medicine.

  10. Observations on gender equality in a UK Earth Sciences department

    Imber, Jonathan; Allen, Mark; Chamberlain, Katy; Foulger, Gillian; Gregory, Emma; Hoult, Jill; Macpherson, Colin; Winship, Sarah

    2016-04-01

    The progress of women to senior positions within UK higher education institutes has been slow. Women are worst represented in science, engineering and technology disciplines, where, in 2011, only 15% of professors were female. The national position is reflected in the Department of Earth Sciences at Durham University. The Department's gender profile shows steadily increasing proportions of females from undergraduate (ca. 38%) to postgraduate (ca. 42%) to postdoctoral (ca. 45%) levels, before dropping sharply with increasing seniority to 33% (n=1), 14% (n=1), 14% (n=1) and 13% (n=2), respectively, of lecturers, senior lecturers, readers and professors. The data suggest there is no shortage of talented female postgraduates and postdoctoral researchers; however, females are not applying, not being shortlisted, or not being appointed to academic roles in the expected proportions. Analysis of applications to academic positions in the Department during the period 2010-2015 suggests that "head hunting" senior academics, in some cases driven by external factors such as the UK Research Excellence Framework, resulted in a small proportion (between 0% and 11%) of female applicants. These results can be explained by the small number of senior female Earth Scientists nationally and, probably, internationally. Junior lectureship positions attracted between 24% and 33% female applicants, with the greatest proportion of females applying where the specialism within Earth Sciences was deliberately left open. In addition to these externally advertised posts, the Department has had some success converting independent research Fellowships, held by female colleagues, into permanent academic positions (n=2 between 2010 and 2015). Data for academic promotions show there is a significant negative correlation between year of appointment to first academic position within the Department (r=0.81, n=19, pmentoring scheme for postdoctoral staff, and plan to extend the scheme to academic staff

  11. Environmental Science and Technology Department annual report 1994

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1995-02-01

    The Environmental Science and Technology Department engage in research to improve the scientific basis for new methods in industrial and agricultural production. Through basic and applied research in chemistry, biology and ecology the department aspires to develop methods and technology for the future industrial and agricultural production exerting less stress and strain on the environment. The research approach in the department is predominantly experimental. The research activities are organized in five research programmes and supported by three special facility units. In this annual report the main research activities during 1993 are introduced and reviewed in eight chapters. Chapter 1. Introduction. The five research programmes are covered in chapter 2-7: 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Mineral Cycling, 5. Trace Analysis and reduction of Pollution in the Geosphere, 6. Ecology, 7. Other Research Activities. The three special activity units in chapter 8. Special Facilities. The department's contribution to national and international collaborative research projects and programmes is presented in addition to information about large research and development facilities used and managed by the department. The department's educational and training activites are included in the annual report along with lists of publications, publications in press, lectures and poster presentations at international meetings. Names of the scientific and technical staff members, visiting scientists, post. doctoral fellows, Ph.D. students and M.Sc. students are also listed. (au) (9 tabs., 43 ills., 167 refs.)

  12. Environmental Science and Technology Department annual report 1995

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Bjergbakke, E.; Oestergaard, H.; Aarkrog, A.

    1996-03-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1995 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 40 ills., 163 refs

  13. Environmental Science and Technology Department annual report 1993

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1994-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the department is mainly experimental. Selected departmental research activities during 1993 are presented and reviewed in seven chapters: 1. Introduction, 2. The Atmospheric Environment, 3. Plant Genetics and Resistance Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Applied Geochemistry, 6. Ecology and Mineral Cycling, 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about large experimental facilities used in the department. Information about the department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc students are also listed. (au)

  14. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  15. USSR Space Life Sciences Digest, issue 11

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  16. USSR Space Life Sciences Digest, issue 2

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  17. USSR Space Life Sciences Digest, issue 3

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  18. NASA IDEAS to Improve Instruction in Astronomy and Space Science

    Malphrus, B.; Kidwell, K.

    1999-12-01

    The IDEAS to Improve Instructional Competencies in Astronomy and Space Science project is intended to develop and/or enhance teacher competencies in astronomy and space sciences of teacher participants (Grades 5-12) in Kentucky. The project is being implemented through a two-week summer workshop, a series of five follow-up meetings, and an academic year research project. The resources of Kentucky's only Radio Astronomy Observatory- the Morehead Radio Telescope (MRT), Goldstone Apple Valley Radio Telescope (GAVRT) (via remote observing using the Internet), and the Kentucky Department of Education regional service centers are combined to provide a unique educational experience. The project is designed to improve science teacher's instructional methodologies by providing pedagogical assistance, content training, involving the teachers and their students in research in radio astronomy, providing access to the facilities of the Morehead Astrophysical Observatory, and by working closely with a NASA-JOVE research astronomer. Participating teachers will ultimately produce curriculum units and research projects, the results of which will be published on the WWW. A major goal of this project is to share with teachers and ultimately students the excitement and importance of scientific research. The project represents a partnership of five agencies, each matching the commitment both financially and/or personnel. This project is funded by the NASA IDEAS initiative administered by the Space Telescope Science Institute and the National Air and Space Administration (NASA).

  19. Improving Early Career Science Teachers' Ability to Teach Space Science

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    The GEMS Space Science Sequence is a high quality, hands-on curriculum for elementary and middle schools, created by a national team of astronomers and science educators with NASA funding and support. The standards-aligned curriculum includes 24 class sessions for upper elementary grades targeting the scale and nature of Earth's, shape, motion and gravity, and 36 class sessions for middle school grades focusing on the interactions between our Sun and Earth and the nature of the solar system and beyond. These materials feature extensive teacher support materials which results in pre-test to post-test content gains for students averaging 22%. Despite the materials being highly successful, there has been a less than desired uptake by teachers in using these materials, largely due to a lack of professional development training. Responding to the need to improve the quantity and quality of space science education, a collaborative of space scientists and science educators - from the University of California, Berkeley's Lawrence Hall of Science (LHS) and Center for Science Education at the Space Sciences Laboratory (CSE@SSL), the Astronomical Society of the Pacific (ASP), the University of Wyoming, and the CAPER Center for Astronomy & Physics Education - experimented with a unique professional development model focused on helping master teachers work closely with pre-service teachers during their student teaching internship field experience. Research on the exodus of young teachers from the teaching profession clearly demonstrates that early career teachers often leave teaching because of a lack of mentoring support and classroom ready curriculum materials. The Advancing Mentor and Novice Teachers in Space Science (AMANTISS) team first identified master teachers who supervise novice, student teachers in middle school, and trained these master teachers to use the GEMS Space Science Sequence for Grades 6-8. Then, these master teachers were mentored in how to coach their

  20. Environmental Science and Technology Department annual report 1996

    Jensen, A.; Gissel Nielsen, G.; Gundersen, V.; Nielsen, O.J.; Oestergaard, H.; Aarkrog, A.

    1997-02-01

    The Environmental Science and Technology Department aspires to develop new ideas and methods for industrial and agricultural production through basic and applied research thus exerting less stress and strain on the environment. The Department endeavours to develop a competent scientific basis for future production technology and management methods in industrial and agricultural production. The research approach in the Department is mainly experimental. Selected departmental research activities during 1996 are introduced and reviewed in seven chapters: 1. Introduction, 2. Atmospheric Chemistry and Air Pollution, 3. Gene Technology and Population Biology, 4. Plant Nutrition and Nutrient Cycling, 5. Trace Analysis and Reduction of Pollution in the Geosphere, 6. Ecology, and 7. Other Activities. The Department's contribution to national and international collaborative research programmes are presented together with information about the use of its large experimental facilities. Information about the Department's contribution to education and training are included in the report along with lists of publications, publications in press, lectures and poster presentations at international meetings. The names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D students and M.Sc. students are also listed. (au) 15 tabs., 63 ills., 207 refs

  1. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.

  2. USSR Space Life Sciences Digest, issue 19

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 19th issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 47 papers published in Russian language periodicals or presented at conferences and of 5 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Reports on two conferences, one on adaptation to high altitudes, and one on space and ecology are presented. A book review of a recent work on high altitude physiology is also included. The abstracts in this issue have been identified as relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  3. Why do science in space? Researchers' Night at CERN 2017

    Nellist, Clara

    2017-01-01

    Space topic and debate "Why do science in space?" With the special presence of Matthias Maurer, European Space Agency astronaut, and Mercedes Paniccia, PhD, Senior Research Associate for space experiment AMS.

  4. Implementation of small group discussion as a teaching method in earth and space science subject

    Aryani, N. P.; Supriyadi

    2018-03-01

    In Physics Department Universitas Negeri Semarang, Earth and Space Science subject is included in the curriculum of the third year of physics education students. There are various models of teaching earth and space science subject such as textbook method, lecturer, demonstrations, study tours, problem-solving method, etc. Lectures method is the most commonly used of teaching earth and space science subject. The disadvantage of this method is the lack of two ways interaction between lecturers and students. This research used small group discussion as a teaching method in Earth and Space science. The purpose of this study is to identify the conditions under which an efficient discussion may be initiated and maintained while students are investigating properties of earth and space science subjects. The results of this research show that there is an increase in student’s understanding of earth and space science subject proven through the evaluation results. In addition, during the learning process, student’s activeness also increase.

  5. Improving science literacy and education through space life sciences

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  6. Students build glovebox at Space Science Center

    2001-01-01

    Students in the Young Astronaut Program at the Coca-Cola Space Science Center in Columbus, GA, constructed gloveboxes using the new NASA Student Glovebox Education Guide. The young astronauts used cardboard copier paper boxes as the heart of the glovebox. The paper boxes transformed into gloveboxes when the students pasted poster-pictures of an actual NASA microgravity science glovebox inside and outside of the paper boxes. The young astronauts then added holes for gloves and removable transparent top covers, which completed the construction of the gloveboxes. This image is from a digital still camera; higher resolution is not available.

  7. USSR Space Life Sciences Digest, issue 9

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  8. USSR Space Life Sciences Digest, issue 4

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  9. Science opportunities through nuclear power in space

    Harris, H.M.

    1995-01-01

    With the downsizing or outright elimination of nuclear power capability in space in progress, it is important to understand what this means to science in therms of capability cost. This paper is a survey of the scientific possibilities inherent in the potential availability of between 15 to 30 kW through electrical nuclear power in space. The approach taken has been to interview scientists involved in space-research, especially those whose results are dependent or proportional to power availability and to survey previous work in high-power spacecraft and space-based science instruments. In addition high level studies were done to gather metrics about what kind and quantity of science could be achieved throughout the entire solar system assuming the availability in the power amounts quoted above. It is concluded that: (1) Sustained high power using a 10--30 kW reactor would allow the capture of an unprecedented amount of data on planetary objects through the entire solar system. (2) High power science means high qualtiy data through higher resolution of radars, optics and the sensitivity of many types of instruments. (3) In general, high power in the range of 10--30 kW provides for an order-of-magnitude increase of resolution of synthetic aperture radars over other planetary radars. (4) High power makes possible the use of particle accelerators to probe the atomic structure of planetary surface, particularly in the dim, outer regions of the solar system. (5) High power means active cooling is possible for devices that must operate at low temperature under adverse conditions. (6) High power with electric propulsion provides the mission flexibility to vary observational viewpoints and select targets of opportunity. copyright 1995 American Institute of Physics

  10. Space life sciences perspectives for Space Station Freedom

    Young, Laurence R.

    1992-01-01

    It is now generally acknowledged that the life science discipline will be the primary beneficiary of Space Station Freedom. The unique facility will permit advances in understanding the consequences of long duration exposure to weightlessness and evaluation of the effectiveness of countermeasures. It will also provide an unprecedented opportunity for basic gravitational biology, on plants and animals as well as human subjects. The major advantages of SSF are the long duration exposure and the availability of sufficient crew to serve as subjects and operators. In order to fully benefit from the SSF, life sciences will need both sufficient crew time and communication abilities. Unlike many physical science experiments, the life science investigations are largely exploratory, and frequently bring unexpected results and opportunities for study of newly discovered phenomena. They are typically crew-time intensive, and require a high degree of specialized training to be able to react in real time to various unexpected problems or potentially exciting findings. Because of the long duration tours and the large number of experiments, it will be more difficult than with Spacelab to maintain astronaut proficiency on all experiments. This places more of a burden on adequate communication and data links to the ground, and suggests the use of AI expert system technology to assist in astronaut management of the experiment. Typical life science experiments, including those flown on Spacelab Life Sciences 1, will be described from the point of view of the demands on the astronaut. A new expert system, 'PI in a Box,' will be introduced for SLS-2, and its applicability to other SSF experiments discussed. (This paper consists on an abstract and ten viewgraphs.)

  11. USSR Space Life Sciences Digest, issue 6

    Hooke, L. R. (Editor); Radtke, M. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    This is the sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include a table of Soviet EVAs and information about English translations of Soviet materials available to readers. The topics covered in this issue have been identified as relevant to 26 areas of aerospace medicine and space biology. These areas are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, genetics, habitability and environment effects, health and medical treatment, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism., microbiology, morphology and cytology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, reproductive biology, and space medicine.

  12. USSR Space Life Sciences Digest, issue 25

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-fifth issue of NASA's Space Life Sciences Digest. It contains abstracts of 42 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 26 areas of space biology and medicine. These areas include: adaptation, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, reproductive system, and space biology and medicine.

  13. USSR Space Life Sciences Digest, issue 16

    Hooke, Lydia Razran (Editor); Teeter, Ronald (Editor); Siegel, Bette (Editor); Donaldson, P. Lynn (Editor); Leveton, Lauren B. (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the sixteenth issue of NASA's USSR Life Sciences Digest. It contains abstracts of 57 papers published in Russian language periodicals or presented at conferences and of 2 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. An additional feature is the review of a book concerned with metabolic response to the stress of space flight. The abstracts included in this issue are relevant to 33 areas of space biology and medicine. These areas are: adaptation, biological rhythms, bionics, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, exobiology, gastrointestinal system, genetics, gravitational biology, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, and space biology.

  14. USSR Space Life Sciences Digest, Issue 18

    Hooke, Lydia Razran (Editor); Donaldson, P. Lynn (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1988-01-01

    This is the 18th issue of NASA's USSR Life Sciences Digest. It contains abstracts of 50 papers published in Russian language periodicals or presented at conferences and of 8 new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. A review of a recent Aviation Medicine Handbook is also included. The abstracts in this issue have been identified as relevant to 37 areas of space biology and medicine. These areas are: adaptation, aviation medicine, biological rhythms, biospherics, body fluids, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, gravitational biology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, radiobiology, reproductive biology, space biology and medicine, and space industrialization.

  15. USSR Space Life Sciences Digest, Issue 10

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Garshnek, Victoria; Rowe, Joseph E.

    1987-01-01

    The USSR Space Life Sciences Digest contains abstracts of 37 papers recently published in Russian language periodicals and bound collections and of five new Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. Additional features include the translation of a book chapter concerning use of biological rhythms as a basis for cosmonaut selection, excerpts from the diary of a participant in a long-term isolation experiment, and a picture and description of the Mir space station. The abstracts included in this issue were identified as relevant to 25 areas of aerospace medicine and space biology. These areas are adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, group dynamics, habitability and environmental effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculosketal system, neurophysiology, nutrition, personnel selection, psychology, and radiobiology.

  16. New Space at Airbus Defence & Space to facilitate science missions

    Boithias, Helene; Benchetrit, Thierry

    2016-10-01

    In addition to Airbus legacy activities, where Airbus satellites usually enable challenging science missions such as Venus Express, Mars Express, Rosetta with an historic landing on a comet, Bepi Colombo mission to Mercury and JUICE to orbit around Jupiter moon Ganymede, Swarm studying the Earth magnetic field, Goce to measure the Earth gravitational field and Cryosat to monitor the Earth polar ice, Airbus is now developing a new approach to facilitate next generation missions.After more than 25 years of collaboration with the scientists on space missions, Airbus has demonstrated its capacity to implement highly demanding missions implying a deep understanding of the science mission requirements and their intrinsic constraints such as- a very fierce competition between the scientific communities,- the pursuit of high maturity for the science instrument in order to be selected,- the very strict institutional budget limiting the number of operational missions.As a matter of fact, the combination of these constraints may lead to the cancellation of valuable missions.Based on that and inspired by the New Space trend, Airbus is developing an highly accessible concept called HYPE.The objective of HYPE is to make access to Space much more simple, affordable and efficient.With a standardized approach, the scientist books only the capacities he needs among the resources available on-board, as the HYPE satellites can host a large range of payloads from 1kg up to 60kg.At prices significantly more affordable than those of comparable dedicated satellite, HYPE is by far a very cost-efficient way of bringing science missions to life.After the launch, the scientist enjoys a plug-and-play access to two-way communications with his instrument through a secure high-speed portal available online 24/7.Everything else is taken care of by Airbus: launch services and the associated risk, reliable power supply, setting up and operating the communication channels, respect of space law

  17. eScience and archiving for space science

    Timothy E Eastman

    2006-01-01

    Full Text Available A confluence of technologies is leading towards revolutionary new interactions between robust data sets, state-of-the-art models and simulations, high-data-rate sensors, and high-performance computing. Data and data systems are central to these new developments in various forms of eScience or grid systems. Space science missions are developing multi-spacecraft, distributed, communications- and computation-intensive, adaptive mission architectures that will further add to the data avalanche. Fortunately, Knowledge Discovery in Database (KDD tools are rapidly expanding to meet the need for more efficient information extraction and knowledge generation in this data-intensive environment. Concurrently, scientific data management is being augmented by content-based metadata and semantic services. Archiving, eScience and KDD all require a solid foundation in interoperability and systems architecture. These concepts are illustrated through examples of space science data preservation, archiving, and access, including application of the ISO-standard Open Archive Information System (OAIS architecture.

  18. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  19. Space Telescope Control System science user operations

    Dougherty, H. J.; Rossini, R.; Simcox, D.; Bennett, N.

    1984-01-01

    The Space Telescope science users will have a flexible and efficient means of accessing the capabilities provided by the ST Pointing Control System, particularly with respect to managing the overal acquisition and pointing functions. To permit user control of these system functions - such as vehicle scanning, tracking, offset pointing, high gain antenna pointing, solar array pointing and momentum management - a set of special instructions called 'constructs' is used in conjuction with command data packets. This paper discusses the user-vehicle interface and introduces typical operational scenarios.

  20. Edible Earth and Space Science Activities

    Lubowich, D.; Shupla, C.

    2014-07-01

    In this workshop we describe using Earth and Space Science demonstrations with edible ingredients to increase student interest. We show how to use chocolate, candy, cookies, popcorn, bagels, pastries, Pringles, marshmallows, whipped cream, and Starburst candy for activities such as: plate tectonics, the interior structure of the Earth and Mars, radioactivity/radioactive dating of rocks and stars, formation of the planets, lunar phases, convection, comets, black holes, curvature of space, dark energy, and the expansion of the Universe. In addition to creating an experience that will help students remember specific concepts, edible activities can be used as a formative assessment, providing students with the opportunity to create something that demonstrates their understanding of the model. The students often eat the demonstrations. These demonstrations are an effective teaching tool for all ages, and can be adapted for cultural, culinary, and ethnic differences among the students.

  1. USSR Space Life Sciences Digest, issue 21

    Hooke, Lydia Razran; Donaldson, P. Lynn; Garshnek, Victoria; Rowe, Joseph

    1989-01-01

    This is the twenty-first issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 37 papers published in Russian language periodicals or books or presented at conferences and of a Soviet monograph on animal ontogeny in weightlessness. Selected abstracts are illustrated with figures and tables from the original. A book review of a work on adaptation to stress is also included. The abstracts in this issue have been identified as relevant to 25 areas of space biology and medicine. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, enzymology, equipment and instrumentation, exobiology, gravitational biology, habitability and environmental effects, hematology, human performance, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, perception, psychology, and reproductive system.

  2. US Department of The Space Force: A Necessary Evolution

    2012-05-15

    not dismayed; I am your God. I will strengthen you, and help you, and uphold you with my right hand. Isaiah 41:10 To my wife & children...Security Space: Report to Congress of the Independent Assessment Panel on the Organization and Management of National Security Space, by A. Thomas Young...Allard Commission Chairman, A. Thomas Young, concluded, “. . . there has been ‘no adult supervision’ in national security space.” 36 This

  3. Salary, Space, and Satisfaction: An Examination of Gender Differences in the Sciences

    Darrah, Marjorie; Hougland, James; Prince, Barbara

    2014-01-01

    How can universities be more successful in recruiting and promoting the professional success of women in their science-related departments? This study examines selected pieces of the puzzle by examining actual salary and space allocations to 282 faculty members in the science, technology, engineering and mathematics (STEM) and the social and…

  4. Space Launch System for Exploration and Science

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  5. Magnetoresistive magnetometer for space science applications

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  6. A Science Cloud: OneSpaceNet

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage

  7. Hawk-Eyes on Science and in Space

    Durow, Lillie

    2017-08-01

    For more than ten years the successful and well received outreach programs, Hawk-Eyes On Science and Hawk-Eyes in Space, have brought the excitement of science demonstrations to Iowans of all ages. However, the creation of a successful, sustainable outreach program requires the coordination of many aspects. In many respects, the demonstrations and hands-on activities are of secondary importance when weighed against the problems of funding, transportation, staffing, etc. In addition to showing examples of demonstrations that we use, I will also focus on a few of the problems and some of the solutions that we have found while coordinating our long running outreach programs at the University of Iowa Department of Physics and Astronomy.

  8. Parametric cost estimation for space science missions

    Lillie, Charles F.; Thompson, Bruce E.

    2008-07-01

    Cost estimation for space science missions is critically important in budgeting for successful missions. The process requires consideration of a number of parameters, where many of the values are only known to a limited accuracy. The results of cost estimation are not perfect, but must be calculated and compared with the estimates that the government uses for budgeting purposes. Uncertainties in the input parameters result from evolving requirements for missions that are typically the "first of a kind" with "state-of-the-art" instruments and new spacecraft and payload technologies that make it difficult to base estimates on the cost histories of previous missions. Even the cost of heritage avionics is uncertain due to parts obsolescence and the resulting redesign work. Through experience and use of industry best practices developed in participation with the Aerospace Industries Association (AIA), Northrop Grumman has developed a parametric modeling approach that can provide a reasonably accurate cost range and most probable cost for future space missions. During the initial mission phases, the approach uses mass- and powerbased cost estimating relationships (CER)'s developed with historical data from previous missions. In later mission phases, when the mission requirements are better defined, these estimates are updated with vendor's bids and "bottoms- up", "grass-roots" material and labor cost estimates based on detailed schedules and assigned tasks. In this paper we describe how we develop our CER's for parametric cost estimation and how they can be applied to estimate the costs for future space science missions like those presented to the Astronomy & Astrophysics Decadal Survey Study Committees.

  9. USSR Space Life Sciences Digest, issue 8

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  10. Design of the Information Science and Systems (IS Curriculum in a Computer and Information Sciences Department

    Behrooz Seyed-Abbassi

    2004-12-01

    Full Text Available Continuous technological changes have resulted in a rapid turnover of knowledge in the computing field. The impact of these changes directly affects the computer-related curriculum offered by educational institutions and dictates that curriculum must evolve to keep pace with technology and to provide students with the skills required by businesses. At the same time, accreditations of curricula from reviewing organizations provide additional guidelines and standardization for computing science as well as information science programs. One of the areas significantly affected by these changes is the field of information systems. This paper describes the evaluation and course structure for the undergraduate information science and systems program in the Computer and Information Sciences Department at the University of North Florida. A list of the major required and elective courses as well as an overview of the challenges encountered during the revision of the curriculum is given.

  11. European Space Science Scales New Heights

    1995-06-01

    Satellites, comprising nine tonnes of hardware and sixty experiments, will be placed in orbit with a view to giving scientists a new perspective on the Sun, the Earth's magnetic environment and the universe in general. ISO, the Infrared Space Observatory, will allow astronomers to study all types of objects in the so1al. system - from nearby planets to the farthermost galaxies - with unparalleled sensitivity through the invisible, cold light of infrared radiation. Soho, the solar observatory, will be the fist satellite to continuously observe the Sun in detail, and will do so for at least two yews. The quartet of identical Cluster satellites will probe the Earth's magnetosphere in order to study the storms that can occur there which disrupt radio communications or electrical power supplies on Earth. As Roger Bonnet, Director of the European Space Agency's science programme, points out: "For the programme, this year marks the culmination often years of endeavour now drawing to a close. This shows that Europe is now taking the lead in in situ exploration of the universe". On 23 May ISO successfully completed final testing which validated the satellite's technical performance. It is currently on its way to Guiana onboard the Ariana. It will be launched from the Space Centre at Kourou by an Ariane 44P launcher in late October. On 14 June Soho will undergo similar checkouts which should give it a clean bill of health for dispatch to the Kennedy Space Center (Florida). It is scheduled for a launch on 30 October by NASA's Atlas rocket. Authorisation to dispatch the Cluster quartet to Kourou should be given in late June with a view to a launch at the end of the year on a flagship launcher: the first Ariane-5, which is set to become the most competitive launcher on the world market, Another milestone in space exploration is in the offing: the journey over the Sun's north pole by ESA's Ulysses probe begins this month and will continue through to September. During this phase

  12. Comprehensive report of aeropropulsion, space propulsion, space power, and space science applications of the Lewis Research Center

    1988-01-01

    The research activities of the Lewis Research Center for 1988 are summarized. The projects included are within basic and applied technical disciplines essential to aeropropulsion, space propulsion, space power, and space science/applications. These disciplines are materials science and technology, structural mechanics, life prediction, internal computational fluid mechanics, heat transfer, instruments and controls, and space electronics.

  13. Scientific conference at the Department of Biomedical Sciences, Russian Academy of Medical Sciences

    Rybakova, M.N.

    1997-01-01

    Review of reports at the scientific conference of the department of biomedical sciences of the Russian Academy of Medical Sciences, held in April, 1997, on the topic of Novel techniques in biomedical studied. Attention was paid to the creation and uses of rapid diagnosis instruments in micro devices, to the development of electron-photon, immuno enzyme and radionuclide techniques and their realization in automatic special equipment. Delay of native industry in creation of scientific-capacious highly efficient products, especially in the field of radiodiagnosis and instruments for laboratory studies was marked

  14. Developing an emergency department crowding dashboard: A design science approach.

    Martin, Niels; Bergs, Jochen; Eerdekens, Dorien; Depaire, Benoît; Verelst, Sandra

    2017-08-30

    As an emergency department (ED) is a complex adaptive system, the analysis of continuously gathered data is valuable to gain insight in the real-time patient flow. To support the analysis and management of ED operations, relevant data should be provided in an intuitive way. Within this context, this paper outlines the development of a dashboard which provides real-time information regarding ED crowding. The research project underlying this paper follows the principles of design science research, which involves the development and study of artifacts which aim to solve a generic problem. To determine the crowding indicators that are desired in the dashboard, a modified Delphi study is used. The dashboard is implemented using the open source Shinydashboard package in R. A dashboard is developed containing the desired crowding indicators, together with general patient flow characteristics. It is demonstrated using a dataset of a Flemish ED and fulfills the requirements which are defined a priori. The developed dashboard provides real-time information on ED crowding. This information enables ED staff to judge whether corrective actions are required in an effort to avoid the adverse effects of ED crowding. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. EDITORIAL: From reciprocal space to real space in surface science From reciprocal space to real space in surface science

    Bartels, Ludwig; Ernst, Karl-Heinz

    2012-09-01

    This issue is dedicated to Karl-Heinz Rieder on the occasion of his 70th birthday. It contains contributions written by his former students and colleagues from all over the world. Experimental techniques based on free electrons, such as photoelectron spectroscopy, electron microscopy and low energy electron diffraction (LEED), were foundational to surface science. While the first revealed the band structures of materials, the second provided nanometer scale imagery and the latter elucidated the atomic scale periodicity of surfaces. All required an (ultra-)high vacuum, and LEED illustrated impressively that adsorbates, such as carbon monoxide, hydrogen or oxygen, can markedly and periodically restructure surfaces from their bulk termination, even at pressures ten orders of magnitude or more below atmospheric. Yet these techniques were not generally able to reveal atomic scale surface defects, nor could they faithfully show adsorption of light atoms such as hydrogen. Although a complete atom, helium can also be regarded as a wave with a de Broglie wavelength that allows the study of surface atomic periodicities at a delicateness and sensitivity exceeding that of electrons-based techniques. In combination, these and other techniques generated insight into the periodicity of surfaces and their vibrational properties, yet were limited to simple and periodic surface setups. All that changed with the advent of scanning tunneling microscopy (STM) roughly 30 years ago, allowing real space access to surface defects and individual adsorbates. Applied at low temperatures, not only can STM establish a height profile of surfaces, but can also perform spectroscopy and serve as an actuator capable of rearranging individual species at atomic scale resolution. The direct and intuitive manner in which STM provided access as a spectator and as an actor to the atomic scale was foundational to today's surface science and to the development of the concepts of nanoscience in general. The

  16. Energy secretary Spencer Abraham announces department of energy 20-year science facility plan

    2003-01-01

    "In a speech at the National Press Club today, U.S. Energy Secretary Spencer Abraham outlined the Department of Energy's Office of Science 20-year science facility plan, a roadmap for future scientific facilities to support the department's basic science and research missions. The plan prioritizes new, major scientific facilities and upgrades to current facilities" (1 page).

  17. Quantum Opportunities and Challenges for Fundamental Sciences in Space

    Yu, Nan

    2012-01-01

    Space platforms offer unique environment for and measurements of quantum world and fundamental physics. Quantum technology and measurements enhance measurement capabilities in space and result in greater science returns.

  18. Gravitational biology and space life sciences: Current status and ...

    Gravitational and space biology organizations and journals. American Institute of ... of Scientific Unions (now the International Council for. Science). COSPAR ... Greek Aerospace Medical Association & Space Research. (GASMA). Provides ...

  19. Achievements and Challenges in the Science of Space Weather

    Koskinen, Hannu E. J.; Baker, Daniel N.; Balogh, André; Gombosi, Tamas; Veronig, Astrid; von Steiger, Rudolf

    2017-11-01

    In June 2016 a group of 40 space weather scientists attended the workshop on Scientific Foundations of Space Weather at the International Space Science Institute in Bern. In this lead article to the volume based on the talks and discussions during the workshop we review some of main past achievements in the field and outline some of the challenges that the science of space weather is facing today and in the future.

  20. Using Mathematics in Science: Working with Your Mathematics Department

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  1. Space science public outreach at Louisiana State University

    Guzik, T.; Babin, E.; Cooney, W.; Giammanco, J.; Hartman, D.; McNeil, R.; Slovak, M.; Stacy, J.

    Over the last seven years the Astronomy / Astrophysics group in the Department of Physics and Astronomy of Louisiana State University has developed an exten- sive Space Science education and public outreach program. This program includes the local park district (the Recreation and Park Commission for the Parish of East Baton Rouge, BREC), the local amateur astronomer group (the Baton Rouge As- tronomical Society, BRAS), the Louisiana Arts and Science Museum (LASM), and Southern University (SU, part of the largest HBCU system in the nation). Our effort has directly led to the development of the Highland Road Park Observatory (HRPO, http://www.bro.lsu.edu/hrpo) that supports student astronomy training at LSU and SU, amateur observations and a public program for adults and children, establishment of a series of teacher professional development workshops in astronomy and physics, and the "Robots for Internet Experiences (ROBIE)" project (http://www.bro.lsu.edu/) where we have several instruments (e.g. HAM radio, radio telescope, optical tele- scopes) that can be controlled over the internet by students and teachers in the class- room along with associated lessons developed by a teacher group. In addition, this year the LASM, will be opening a new planetarium / space theater in downtown Baton Rouge, Louisiana. We are currently working to bring live views of the heavens from the HRPO telescope to audiences attending planetarium shows and will be working closely with planetarium staff to develop shows that highlight LSU astronomy / space science research. During the presentation we will provide some details about our in- dividual projects, the overall structure of our program, establishing community links and some of the lessons we learned along the way. Finally, we would like to acknowl- edge NASA, Louisiana State University, the Louisiana Systemic Initiatives Program and the Louisiana Technology Innovation Fund for their support.

  2. 76 FR 56406 - Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army...

    2011-09-13

    ... DEPARTMENT OF DEFENSE Office of the Secretary Science and Technology Reinvention Laboratory Demonstration Project; Department of the Army; Army Research, Development and Engineering Command; Tank... personnel management demonstration project for eligible TARDEC employees. Within that notice the table...

  3. Science education programs and plans of the U.S. Department of Energy

    Stephens, R.E.

    1990-01-01

    The Department of Energy has historically sponsored a range of university-level science education activities including summer and semester-length research appointments at DOE National Laboratories for university faculty, undergraduate and graduate students. The Department's involvement in precollege science education has significantly expanded over the past year. This talk will summarize the status of the Department's plans for university and precollege science education initiatives developed at the Berkeley Math/Science Education Action Conference held last October at the Lawrence Hall of Science and co-chaired by Dr. Glenn Seaborg and the Secretary of Energy, Admiral James Watkins

  4. Outreach Education Modules on Space Sciences in Taiwan

    Lee, I.-Te; Tiger Liu, Jann-Yeng; Chen, Chao-Yen

    2013-04-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Meanwhile, scientific camps are given to lead students a better understanding and interesting on space science. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  5. The Department of Food Science at Aarhus University

    2014-01-01

    The Dept. of Food Science at Aarhus University is all about food and food quality. Everyone has an expertise in food whether they are focused on taste, health-promoting qualities, sustainable food production or developing new food products. At Dept. of Food Science we carry out research on a high...

  6. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  7. HISTORY OF THE DEPARTMENT OF MATERIALS SCIENCE AND MATERIALS PROCESSING

    BOLSHAKOV V. I.

    2015-11-01

    Full Text Available Department of Metal Technology was established in 1945 year. For its 70th year existence the department has passed all of the major stages of development with its alma mater and it is Dnepropetrovsk Civil Engineering Institute (DCEI, then Prydniprovs’ka State Academy of Civil Engineering and Architecture (PGASA since 1994 year.

  8. The International Space Life Sciences Strategic Planning Working Group

    White, Ronald J.; Rabin, Robert; Lujan, Barbara F.

    1993-01-01

    Throughout the 1980s, ESA and the space agencies of Canada, Germany, France, Japan, and the U.S. have pursued cooperative projects bilaterally and multilaterally to prepare for, and to respond to, opportunities in space life sciences research previously unapproachable in scale and sophistication. To cope effectively with likely future space research opportunities, broad, multilateral, coordinated strategic planning is required. Thus, life scientists from these agencies have allied to form the International Space Life Sciences Strategic Planning Working Group. This Group is formally organized under a charter that specifies the purpose of the Working Group as the development of an international strategic plan for the space life sciences, with periodic revisions as needed to keep the plan current. The plan will be policy-, not operations-oriented. The Working Group also may establish specific implementation teams to coordinate multilateral science policy in specific areas; such teams have been established for space station utilization, and for sharing of flight equipment.

  9. Space Science Reference Guide, 2nd Edition

    Dotson, Renee (Editor)

    2003-01-01

    This Edition contains the following reports: GRACE: Gravity Recovery and Climate Experiment; Impact Craters in the Solar System; 1997 Apparition of Comet Hale-Bopp Historical Comet Observations; Baby Stars in Orion Solve Solar System Mystery; The Center of the Galaxy; The First Rock in the Solar System; Fun Times with Cosmic Rays; The Gamma-Ray Burst Next Door; The Genesis Mission: An Overview; The Genesis Solar Wind Sample Return Mission; How to Build a Supermassive Black Hole; Journey to the Center of a Neutron Star; Kepler's Laws of Planetary Motion; The Kuiper Belt and Oort Cloud ; Mapping the Baby Universe; More Hidden Black Hole Dangers; A Polarized Universe; Presolar Grains of Star Dust: Astronomy Studied with Microscopes; Ring Around the Black Hole; Searching Antarctic Ice for Meteorites; The Sun; Astrobiology: The Search for Life in the Universe; Europa and Titan: Oceans in the Outer Solar System?; Rules for Identifying Ancient Life; Inspire ; Remote Sensing; What is the Electromagnetic Spectrum? What is Infrared? How was the Infrared Discovered?; Brief History of Gyroscopes ; Genesis Discovery Mission: Science Canister Processing at JSC; Genesis Solar-Wind Sample Return Mission: The Materials ; ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land; Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite ICESat: Ice, Cloud, and Land Elevation Satellite Measuring Temperature Reading; The Optical Telescope ; Space Instruments General Considerations; Damage by Impact: The Case at Meteor Crater, Arizona; Mercury Unveiled; New Data, New Ideas, and Lively Debate about Mercury; Origin of the Earth and Moon; Space Weather: The Invisible Foe; Uranus, Neptune, and the Mountains of the Moon; Dirty Ice on Mars; For a Cup of Water on Mars; Life on Mars?; The Martian Interior; Meteorites from Mars, Rocks from Canada; Organic Compounds in Martian Meteorites May be Terrestrial

  10. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  11. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Department of Defense Laboratory Civilian Science and Engineering Workforce - 2013

    2013-10-01

    Aerospace Engineering 1,995 2,207 2,166 -41 -1.9% Electrical Engineering 982 1,193 1,413 220 18.4% Chemistry 744 873 804 -69 -7.9% Operations Research...1313 Geophysics 180 Psychology 690 Industrial Hygiene 1315 Hydrology 184 Sociology 701 Veterinary Medical Science 1320 Chemistry 190 General...Engineering 1520 Mathematics 470 Soil Science 861 Aerospace Engineering 1529 Mathematical Statistician 471 Agronomy 871 Naval Architecture 1530

  13. Community Coordinated Modeling Center: A Powerful Resource in Space Science and Space Weather Education

    Chulaki, A.; Kuznetsova, M. M.; Rastaetter, L.; MacNeice, P. J.; Shim, J. S.; Pulkkinen, A. A.; Taktakishvili, A.; Mays, M. L.; Mendoza, A. M. M.; Zheng, Y.; Mullinix, R.; Collado-Vega, Y. M.; Maddox, M. M.; Pembroke, A. D.; Wiegand, C.

    2015-12-01

    Community Coordinated Modeling Center (CCMC) is a NASA affiliated interagency partnership with the primary goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research. Additionally, over the past ten years it has established itself as a global space science education resource supporting undergraduate and graduate education and research, and spreading space weather awareness worldwide. A unique combination of assets, capabilities and close ties to the scientific and educational communities enable this small group to serve as a hub for raising generations of young space scientists and engineers. CCMC resources are publicly available online, providing unprecedented global access to the largest collection of modern space science models (developed by the international research community). CCMC has revolutionized the way simulations are utilized in classrooms settings, student projects, and scientific labs and serves hundreds of educators, students and researchers every year. Another major CCMC asset is an expert space weather prototyping team primarily serving NASA's interplanetary space weather needs. Capitalizing on its unrivaled capabilities and experiences, the team provides in-depth space weather training to students and professionals worldwide, and offers an amazing opportunity for undergraduates to engage in real-time space weather monitoring, analysis, forecasting and research. In-house development of state-of-the-art space weather tools and applications provides exciting opportunities to students majoring in computer science and computer engineering fields to intern with the software engineers at the CCMC while also learning about the space weather from the NASA scientists.

  14. The challenge of achieving professionalism and respect of diversity in a UK Earth Sciences department

    Imber, Jonathan; Taylor, Michelle; Callaghan, Mark; Castiello, Gabriella; Cooper, George; Foulger, Gillian; Gregory, Emma; Herron, Louise; Hoult, Jill; Lo, Marissa; Love, Tara; Macpherson, Colin; Oakes, Janice; Phethean, Jordan; Riches, Amy

    2017-04-01

    The Department of Earth Sciences, Durham University, has a balanced gender profile at undergraduate, postgraduate and postdoctoral levels (38%, 42% and 45% females, respectively), but one of the lowest percentages, relative to the natural applicant pool, of female academic staff amongst UK geoscience departments. There are currently 9% female academic staff at Durham, compared with a median value (in November 2015) of 20% for all Russell Group geoscience departments in the UK. Despite the fact that the female staff group is relatively senior, the Department's current academic management is essentially entirely male. The Department has an informal working culture, in which academics operate an "open door" policy, and staff and students are on first name terms. This culture, open plan office space, and our fieldwork programme, allow staff and students to socialise. A positive outcome of this culture is that > 95% of final year undergraduate students deemed the staff approachable (National Student Survey 2016). Nevertheless, a survey of staff and research student attitudes revealed significant differences in the way males and females perceive our working environment. Females are less likely than males to agree with the statements that "the Department considers inappropriate language to be unacceptable" and "inappropriate images are not considered acceptable in the Department". That anyone could find "inappropriate" language and images "acceptable" is a measure of the challenge faced by the Department. Males disagree more strongly than females that they "have felt uncomfortable because of [their] gender". The Department is proactively working to improve equality and diversity. It held a series of focus group meetings, divided according to gender and job role, to understand the differences in male and female responses. Female respondents identified examples of inappropriate language (e.g. sexual stereotyping) that were directed at female, but not male, colleagues. Males

  15. Newspaper space for science (Portuguese original version

    Marta M. Kanashiro

    2006-02-01

    Full Text Available In recent years, courses, events and incentive programs for scientific journalism and the divulgation of science have proliferated in Brazil. Part of this context is “Sunday is science day, history of a supplement from the post-war years”, a book published this year that is based on the Master’s degree research of Bernardo Esteves, a journalist specialized in science.

  16. A Case Study of a School Science Department: A Site for Workplace Learning?

    Heighes, Deborah Anne

    2017-01-01

    This descriptive and illuminative case study of one science department in a successful, urban, secondary school in the south of England considers the science department as a site of workplace learning and the experience of beginning teachers in this context. Policy change in initial teacher training (ITT) has given schools a major role in the recruitment of trainees and emphasized the schools’ role in their training. Additionally, there continue to be significant challenges to recruit science...

  17. Precipitation from Space: Advancing Earth System Science

    Kucera, Paul A.; Ebert, Elizabeth E.; Turk, F. Joseph; Levizzani, Vicenzo; Kirschbaum, Dalia; Tapiador, Francisco J.; Loew, Alexander; Borsche, M.

    2012-01-01

    Of the three primary sources of spatially contiguous precipitation observations (surface networks, ground-based radar, and satellite-based radar/radiometers), only the last is a viable source over ocean and much of the Earth's land. As recently as 15 years ago, users needing quantitative detail of precipitation on anything under a monthly time scale relied upon products derived from geostationary satellite thermal infrared (IR) indices. The Special Sensor Microwave Imager (SSMI) passive microwave (PMW) imagers originated in 1987 and continue today with the SSMI sounder (SSMIS) sensor. The fortunate longevity of the joint National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) Tropical Rainfall Measuring Mission (TRMM) is providing the environmental science community a nearly unbroken data record (as of April 2012, over 14 years) of tropical and sub-tropical precipitation processes. TRMM was originally conceived in the mid-1980s as a climate mission with relatively modest goals, including monthly averaged precipitation. TRMM data were quickly exploited for model data assimilation and, beginning in 1999 with the availability of near real time data, for tropical cyclone warnings. To overcome the intermittently spaced revisit from these and other low Earth-orbiting satellites, many methods to merge PMW-based precipitation data and geostationary satellite observations have been developed, such as the TRMM Multisatellite Precipitation Product and the Climate Prediction Center (CPC) morphing method (CMORPH. The purpose of this article is not to provide a survey or assessment of these and other satellite-based precipitation datasets, which are well summarized in several recent articles. Rather, the intent is to demonstrate how the availability and continuity of satellite-based precipitation data records is transforming the ways that scientific and societal issues related to precipitation are addressed, in ways that would not be

  18. M. D. Faculty Salaries in Psychiatry and All Clinical Science Departments, 1980-2006

    Haviland, Mark G.; Dial, Thomas H.; Pincus, Harold Alan

    2009-01-01

    Objective: The authors compare trends in the salaries of physician faculty in academic departments of psychiatry with those of physician faculty in all academic clinical science departments from 1980-2006. Methods: The authors compared trend lines for psychiatry and all faculty by academic rank, including those for department chairs, by graphing…

  19. ISS External Contamination Environment for Space Science Utilization

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  20. Education and Outreach on Space Sciences and Technologies in Taiwan

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  1. New COSPAR space life sciences journal

    Laštovička, Jan; Hei, T.; Stoop, J.

    2013-01-01

    Roč. 52, č. 11 (2013), s. 1859 ISSN 0273-1177 Institutional support: RVO:68378289 Keywords : COSPAR journal Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.238, year: 2013 http://www.sciencedirect.com/science/article/pii/S0273117713006753

  2. Science and Technology of Nanostructures in the Department of Defense

    Murday, James S.

    1999-01-01

    The United States Department of Defense maintains a research and development program in nanostructures with special attention to miniaturization of information technology devices, nanostructured materials, and nanobiotechnology for detection of biological agents. This article provides a brief guide to those DoD funding officers and research scientists actively interested in nanostructures

  3. The Los Alamos Space Science Outreach (LASSO) Program

    Barker, P. L.; Skoug, R. M.; Alexander, R. J.; Thomsen, M. F.; Gary, S. P.

    2002-12-01

    The Los Alamos Space Science Outreach (LASSO) program features summer workshops in which K-14 teachers spend several weeks at LANL learning space science from Los Alamos scientists and developing methods and materials for teaching this science to their students. The program is designed to provide hands-on space science training to teachers as well as assistance in developing lesson plans for use in their classrooms. The program supports an instructional model based on education research and cognitive theory. Students and teachers engage in activities that encourage critical thinking and a constructivist approach to learning. LASSO is run through the Los Alamos Science Education Team (SET). SET personnel have many years of experience in teaching, education research, and science education programs. Their involvement ensures that the teacher workshop program is grounded in sound pedagogical methods and meets current educational standards. Lesson plans focus on current LANL satellite projects to study the solar wind and the Earth's magnetosphere. LASSO is an umbrella program for space science education activities at Los Alamos National Laboratory (LANL) that was created to enhance the science and math interests and skills of students from New Mexico and the nation. The LASSO umbrella allows maximum leveraging of EPO funding from a number of projects (and thus maximum educational benefits to both students and teachers), while providing a format for the expression of the unique science perspective of each project.

  4. New Millennium Program: Servicing Earth and Space Sciences

    Li, F.

    1999-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints.

  5. Characteristics Identified for Success by Restorative Dental Science Department Chairpersons.

    Wee, Alvin G; Weiss, Robert O; Wichman, Christopher S; Sukotjo, Cortino; Brundo, Gerald C

    2016-03-01

    The primary aim of this study was to determine the characteristics that current chairpersons in restorative dentistry, general dentistry, prosthodontics, and operative dentistry departments in U.S. dental schools feel are most relevant in contributing to their success. The secondary aim was to determine these individuals' rankings of the importance of a listed set of characteristics for them to be successful in their position. All 82 current chairs of the specified departments were invited to respond to an electronic survey. The survey first asked respondents to list the five most essential characteristics to serve as chair of a department and to rank those characteristics based on importance. Participants were next given a list of ten characteristics in the categories of management and leadership and, without being aware of the category of each individual item, asked to rank them in terms of importance for their success. A total of 39 chairpersons completed the survey (47.6% response rate; 83.3% male and 16.2% female). In section one, the respondents reported that leadership, vision, work ethic, integrity, communication, and organization were the most essential characteristics for their success. In section two, the respondents ranked the leadership characteristics as statistically more important than the management characteristics (psuccessful in their positions.

  6. 41 CFR 102-73.170 - What types of special purpose space may the Department of Agriculture lease?

    2010-07-01

    ... purpose space may the Department of Agriculture lease? 102-73.170 Section 102-73.170 Public Contracts and... § 102-73.170 What types of special purpose space may the Department of Agriculture lease? The Department of Agriculture is delegated the authority to lease the following types of special purpose space: (a...

  7. Transforming community access to space science models

    MacNeice, Peter; Hesse, Michael; Kuznetsova, Maria; Maddox, Marlo; Rastaetter, Lutz; Berrios, David; Pulkkinen, Antti

    2012-04-01

    Researching and forecasting the ever changing space environment (often referred to as space weather) and its influence on humans and their activities are model-intensive disciplines. This is true because the physical processes involved are complex, but, in contrast to terrestrial weather, the supporting observations are typically sparse. Models play a vital role in establishing a physically meaningful context for interpreting limited observations, testing theory, and producing both nowcasts and forecasts. For example, with accurate forecasting of hazardous space weather conditions, spacecraft operators can place sensitive systems in safe modes, and power utilities can protect critical network components from damage caused by large currents induced in transmission lines by geomagnetic storms.

  8. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  9. The New England Space Science Initiative in Education (NESSIE)

    Waller, W. H.; Clemens, C. M.; Sneider, C. I.

    2002-12-01

    Founded in January 2002, NESSIE is the NASA/OSS broker/facilitator for education and public outreach (E/PO) within the six-state New England region. NESSIE is charged with catalyzing and fostering collaborations among space scientists and educators within both the formal and informal education communities. NESSIE itself is a collaboration of scientists and science educators at the Museum of Science, Harvard-Smithsonian Center for Astrophysics, and Tufts University. Its primary goals are to 1) broker partnerships among space scientists and educators, 2) facilitate a wide range of educational and public outreach activities, and 3) examine and improve space science education methods. NESSIE's unique strengths reside in its prime location (the Museum of Science), its diverse mix of scientists and educators, and its dedicated board of advisors. NESSIE's role as a clearinghouse and facilitator of space science education is being realized through its interactive web site and via targeted meetings, workshops, and conferences involving scientists and educators. Special efforts are being made to reach underserved groups by tailoring programs to their particular educational needs and interests. These efforts are building on the experiences of prior and ongoing programs in space science education at the Museum of Science, the Harvard-Smithsonian Center for Astrophysics, Tufts University, and NASA.

  10. Exploring the Dialogic Space of Public Participation in Science

    Nielsen, Kristian Hvidtfelt

    of public understanding of science and scientific literacy approaches: that scientific knowledge in some sense is privileged, that understanding the science will lead to appreciative attitudes toward science and technology in general, and that controversial issues involving science and the public are rooted...... in public misconceptions of science. This paper uses the dialogic space proposed by Callon et al. to explore relationships between public and science. The dialogic space spans collective versus scientific dimensions. The collective (or public) is constituted by aggregation (opinion polls) or by composition...... (organized groups of concerned citizens), whereas scientific research is characterized as either secluded research that is performed exclusively by expert scientists or as collaborative research that involves lay people in the production and communication of knowledge....

  11. Conducting and publishing design science research : Inaugural essay of the design science department of the Journal of Operations Management

    van Aken, Joan; Chandrasekaran, Aravind; Halman, Joop

    2016-01-01

    The new Design Science department at the Journal of Operations Management invites submissions using a design science research strategy for operations management (OM) issues. The objective of this strategy is to develop knowledge that can be used in a direct and specific way to design and implement

  12. Goddard Space Flight Center: 1994 Maryland/GSFC Earth and Environmental Science Teacher Ambassador Program

    Latham, James

    1995-01-01

    The Maryland/Goddard Space Flight Center (GSFC) Earth and Environmental Science Teacher Ambassador Program was designed to enhance classroom instruction in the Earth and environmental science programs in the secondary schools of the state of Maryland. In October 1992, more than 100 school system administrators from the 24 local Maryland school systems, the Maryland State Department of Education, and the University of Maryland met with NASA GSFC scientists and education officers to propose a cooperative state-wide secondary school science teaching enhancement initiative.

  13. The Revolution in Earth and Space Science Education.

    Barstow, Daniel; Geary, Ed; Yazijian, Harvey

    2002-01-01

    Explains the changing nature of earth and space science education such as using inquiry-based teaching, how technology allows students to use satellite images in inquiry-based investigations, the consideration of earth and space as a whole system rather than a sequence of topics, and increased student participation in learning opportunities. (YDS)

  14. Measuring the Value of AI in Space Science and Exploration

    Blair, B.; Parr, J.; Diamond, B.; Pittman, B.; Rasky, D.

    2017-10-01

    FDL is tackling knowledge gaps useful to the space program by forming small teams of industrial partners, cutting-edge AI researchers and space science domain experts, and tasking them to solve problems that are important to NASA as well as humanity's future.

  15. Successfully Transitioning Science Research to Space Weather Applications

    Spann, James

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  16. Space Technology and Earth System Science

    Habib, Shahid

    2011-01-01

    Science must continue to drive the technology development. Partnering and Data Sharing among nations is very important to maximize the cost benefits of such investments Climate changes and adaptability will be a big challenge for the next several decades (1) Natural disasters frequency and locations (2) Economic and social impact can be global and (3) Water resources and management.

  17. In-Space Internet-Based Communications for Space Science Platforms Using Commercial Satellite Networks

    Kerczewski, Robert J.; Bhasin, Kul B.; Fabian, Theodore P.; Griner, James H.; Kachmar, Brian A.; Richard, Alan M.

    1999-01-01

    The continuing technological advances in satellite communications and global networking have resulted in commercial systems that now can potentially provide capabilities for communications with space-based science platforms. This reduces the need for expensive government owned communications infrastructures to support space science missions while simultaneously making available better service to the end users. An interactive, high data rate Internet type connection through commercial space communications networks would enable authorized researchers anywhere to control space-based experiments in near real time and obtain experimental results immediately. A space based communications network architecture consisting of satellite constellations connecting orbiting space science platforms to ground users can be developed to provide this service. The unresolved technical issues presented by this scenario are the subject of research at NASA's Glenn Research Center in Cleveland, Ohio. Assessment of network architectures, identification of required new or improved technologies, and investigation of data communications protocols are being performed through testbed and satellite experiments and laboratory simulations.

  18. Microgravity Science Glovebox Aboard the International Space Station

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  19. Life Sciences Research and Development Opportunities During Suborbital Space Flight

    Davis, Jeffrey R.

    2010-01-01

    Suborbital space platforms provide a unique opportunity for Space Life Sciences in the next few years. The opportunities include: physiological characterization of the first few minutes of space flight; evaluation of a wide-variety of medical conditions during periods of hyper and hypo-gravity through physiological monitoring; and evaluation of new biomedical and environmental health technologies under hyper and hypo-gravity conditions

  20. Research in space science and technology. Semiannual progress report

    Beckley, L.E.

    1977-08-01

    Progress in various space flight research programs is reported. Emphasis is placed on X-ray astronomy and interplanetary plasma physics. Topics covered include infrared astronomy, long base line interferometry, geological spectroscopy, space life science experiments, atmospheric physics, and space based materials and structures research. Analysis of galactic and extra-galactic X-ray data from the Small Astronomy Satellite (SAS-3) and HEAO-A and interplanetary plasma data for Mariner 10, Explorers 47 and 50, and Solrad is discussed

  1. The Gender and Race-Ethnicity of Faculty in Top Science and Engineering Research Departments

    Beutel, Ann M.; Nelson, Donna J.

    This study examines the gender and racial-ethnic composition of faculty in top research departments for science and engineering "S-E - disciplines. There are critical masses of at least 15% women in top research departments in biological sciences, psychology, and social sciences but not in physical sciences and engineering. Blacks and Hispanics together make up only 4.1% of the faculty in our study. Black and Hispanic females are the most poorly represented groups; together, they make up only 1% of the faculty in top S-E research departments. For most S-E disciplines, less than 15% of full professors in top research departments are women or non-Whites.

  2. Petroleum Science and Technology Institute with the TeXas Earth and Space Science (TXESS) Revolution

    Olson, H. C.; Olson, J. E.; Bryant, S. L.; Lake, L. W.; Bommer, P.; Torres-Verdin, C.; Jablonowski, C.; Willis, M.

    2009-12-01

    The TeXas Earth and Space Science (TXESS) Revolution, a professional development program for 8th- thru 12th-grade Earth Science teachers, presented a one-week Petroleum Science and Technology Institute at The University of Texas at Austin campus. The summer program was a joint effort between the Jackson School of Geosciences and the Department of Petroleum and Geosystems Engineering. The goal of the institute was to focus on the STEM components involved in the petroleum industry and to introduce teachers to the larger energy resources theme. The institute kicked off with a welcoming event and tour of a green, energy-efficient home (LEED Platinum certified) owned by one of the petroleum engineering faculty. Tours of the home included an introduction to rainwater harvesting, solar energy, sustainable building materials and other topics on energy efficiency. Classroom topics included drilling technology (including a simulator lab and an overview of the history of the technology), energy use and petroleum geology, well-logging technology and interpretation, reservoir engineering and volumetrics (including numerous labs combining chemistry and physics), risk assessment and economics, carbon capture and storage (CO2 sequestration technology) and hydraulic fracturing. A mid-week field trip included visiting the Ocean Star offshore platform in Galveston, the Weiss Energy Hall at the Houston Museum of Science and Schlumberger (to view 3-D visualization technology) in Houston. Teachers remarked that they really appreciated the focused nature of the institute and especially found the increased use of mathematics both a tool for professional growth, as well as a challenge for them to use more math in their science classes. STEM integration was an important feature of the summer institute, and teachers found the integration of science (earth sciences, geophysics), technology, engineering (petroleum, chemical and reservoir) and mathematics particularly valuable. Pre

  3. The NASA Space Life Sciences Training Program: Accomplishments Since 2013

    Rask, Jon; Gibbs, Kristina; Ray, Hami; Bridges, Desireemoi; Bailey, Brad; Smith, Jeff; Sato, Kevin; Taylor, Elizabeth

    2017-01-01

    The NASA Space Life Sciences Training Program (SLSTP) provides undergraduate students entering their junior or senior years with professional experience in space life science disciplines. This challenging ten-week summer program is held at NASA Ames Research Center. The primary goal of the program is to train the next generation of scientists and engineers, enabling NASA to meet future research and development challenges in the space life sciences. Students work closely with NASA scientists and engineers on cutting-edge research and technology development. In addition to conducting hands-on research and presenting their findings, SLSTP students attend technical lectures given by experts on a wide range of topics, tour NASA research facilities, participate in leadership and team building exercises, and complete a group project. For this presentation, we will highlight program processes, accomplishments, goals, and feedback from alumni and mentors since 2013. To date, 49 students from 41 different academic institutions, 9 staffers, and 21 mentors have participated in the program. The SLSTP is funded by Space Biology, which is part of the Space Life and Physical Sciences Research and Application division of NASA's Human Exploration and Operations Mission Directorate. The SLSTP is managed by the Space Biology Project within the Science Directorate at Ames Research Center.

  4. The Information Science Experiment System - The computer for science experiments in space

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  5. State-Space Modelling in Marine Science

    Albertsen, Christoffer Moesgaard

    State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...

  6. JPRS Report, Science & Technology, USSR: Space.

    1988-08-17

    Half-life, years Specific Heat Release W/hr Plutonium-238 87.5 0.46 Curium-244 18.4 2.8 Curium-242 0.45 120 Polonium - 210 0.38 144 Polonium - 210 ...begun train- ing a year before the flight. The prospective space travelers had to be trained to stay in a special capsule and to use nozzles for food ...conditions of extended weight- lessness. On command, the animals are given food and water, waste is removed, and day/night conditions are regulated

  7. 3rd May 2009 - Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, visiting ATLAS experimental area, LHC tunnel and CERN Control Centre with CERN Director-General R. Heuer, Collaboration Spokesperson F. Gianotti and Beams Department Head P. Collier.

    Maximilien Brice

    2009-01-01

    090506101-08: signature of the guest book and exchange of gifts; 090506109 + 46-64: Japanese Ambassador to the United Nations Office S. Kitajima, Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer, Non Member-State relations Adviser J. Ellis and ATLAS Collaboration Spokesperson F. Gianotti visiting the LHC tunnel at Point 1; 090506110-11 + 28-45: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda and his delegation visiting ATLAS experimental area with CERN Japanese users and Management; 090506112 + 86-94: Japanese Minister of State for Science and Technology Policy, Food Safety, Minister of Consumer Affairs, Minister of Space Policy S. Noda, CERN Director-General R. Heuer and Japanese users in front of an LHC superconducting magnet; sLHC Project Leader also present. 090506113-19: Arrival of Japanese Min...

  8. A Network Enabled Platform for Canadian Space Science Data

    Rankin, R.; Boteler, D. R.; Jayachandran, T. P.; Mann, I. R.; Sofko, G.; Yau, A. W.

    2008-12-01

    The internet is an example of a pervasive disruptive technology that has transformed society on a global scale. The term "cyberinfrastructure" refers to technology underpinning the collaborative aspect of large science projects and is synonymous with terms such as e-Science, intelligent infrastructure, and/or e- infrastructure. In the context of space science, a significant challenge is to exploit the internet and cyberinfrastructure to form effective virtual organizations (VOs) of scientists that have common or agreed- upon objectives. A typical VO is likely to include universities and government agencies specializing in types of instrumentation (ground and/or space based), which in deployment produce large quantities of space data. Such data is most effectively described by metadata, which if defined in a standard way, facilitates discovery and retrieval of data over the internet by intelligent interfaces and cyberinfrastructure. One recent and significant approach is SPASE, which is being developed by NASA as a data-standard for its Virtual Observatories (VxOs) programs. The space science community in Canada has recently formed a VO designed to complement the e-POP microsatellite mission, and new ground-based observatories (GBOs) that collect data over a large fraction of the Canadian land-mass. The VO includes members of the CGSM community (www.cgsm.ca), which is funded operationally by the Canadian Space Agency. It also includes the UCLA VMO team, and scientists in the NASA THEMIS mission. CANARIE (www.canarie.ca), the federal agency responsible for management, design and operation of Canada's research internet, has recently recognized the value of cyberinfrastucture through the creation of a Network-Enabled-Platforms (NEPs) program. An NEP for space science was funded by CANARIE in its first competition. When fully implemented, the Space Science NEP will consist of a front-end portal providing access to CGSM data. It will utilize an adaptation of the SPASE

  9. Visualization Techniques in Space and Atmospheric Sciences

    Szuszczewicz, E. P. (Editor); Bredekamp, Joseph H. (Editor)

    1995-01-01

    Unprecedented volumes of data will be generated by research programs that investigate the Earth as a system and the origin of the universe, which will in turn require analysis and interpretation that will lead to meaningful scientific insight. Providing a widely distributed research community with the ability to access, manipulate, analyze, and visualize these complex, multidimensional data sets depends on a wide range of computer science and technology topics. Data storage and compression, data base management, computational methods and algorithms, artificial intelligence, telecommunications, and high-resolution display are just a few of the topics addressed. A unifying theme throughout the papers with regards to advanced data handling and visualization is the need for interactivity, speed, user-friendliness, and extensibility.

  10. Space Sciences Education and Outreach Project of Moscow State University

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space

  11. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  12. Space Infrared Telescope Facility (SIRTF) science instruments

    Ramos, R.; Hing, S.M.; Leidich, C.A.; Fazio, G.; Houck, J.R.

    1989-01-01

    Concepts of scientific instruments designed to perform infrared astronomical tasks such as imaging, photometry, and spectroscopy are discussed as part of the Space Infrared Telescope Facility (SIRTF) project under definition study at NASA/Ames Research Center. The instruments are: the multiband imaging photometer, the infrared array camera, and the infrared spectograph. SIRTF, a cryogenically cooled infrared telescope in the 1-meter range and wavelengths as short as 2.5 microns carrying multiple instruments with high sensitivity and low background performance, provides the capability to carry out basic astronomical investigations such as deep search for very distant protogalaxies, quasi-stellar objects, and missing mass; infrared emission from galaxies; star formation and the interstellar medium; and the composition and structure of the atmospheres of the outer planets in the solar sytem. 8 refs

  13. MARGINALIZATION OF DEPARTMENTS OF SOCIAL SCIENCES AND LANGUAGES IN SENIOR HIGH SCHOOL IN DENPASAR

    I Wayan Winaja

    2013-02-01

    Full Text Available Learning should be focused on the social and cultural development of intellectual ability, and encourage the learner’s comprehension and knowledge in order to produce intelligent and educated society. From the data collected from Public Senior High School 1 Denpasar and Dwijendra Senior High School Denpasar, it was found that the departments of social sciences and languages were seriously marginalized, indicated by the time allocated for social sciences and languages. The time allocated for Natural Sciences such as chemistry, physics, and biology averaged three hours a week. The additional ‘extra’ time allocated for Natural Sciences made the overall time allocated for them double the overall time allocated for Social Sciences such as economics, history sociology, and geography. Furthermore, the time allocated for one of them was one hour a week. The knowledge presented by the books of Natural Sciences was highly “instrumentalist-positivistic”; unlike the books of social sciences which only provided academic normative information. The modernity contained in “instrumentative positivism” was the philosophy which gave more priority to practical things and hard work with financial success as the main criterion. It was concluded that the marginalization of the departments of social sciences and languages in Public Senior High School 1 Denpasar and Dwijendra Senior High School Denpasar resulted from modernism, the culture of image, and the image that natural sciences were more advantageous than social sciences and languages.

  14. IVth Azores International Advanced School in Space Sciences

    Santos, Nuno; Monteiro, Mário

    2018-01-01

    This book presents the proceedings of the IVth Azores International Advanced School in Space Sciences entitled "Asteroseismology and Exoplanets: Listening to the Stars and Searching for New Worlds". The school addressed the topics at the forefront of scientific research being conducted in the fields of asteroseismology and exoplanetary science, two fields of modern astrophysics that share many synergies and resources. These proceedings comprise the contributions from 18 invited lecturers, including both monographic presentations and a number of hands-on tutorials.

  15. Application of nuclear-physics methods in space materials science

    Novikov, L. S.; Voronina, E. N.; Galanina, L. I.; Chirskaya, N. P.

    2017-07-01

    The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

  16. Digest of Russian Space Life Sciences, issue 33

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  17. Challenges for Transitioning Science Research to Space Weather Applications

    Spann, James

    2013-01-01

    Effectively transitioning science knowledge to useful applications relevant to space weather has become important. The effort to transition scientific knowledge to a useful application is not a research nor is it operations, but an activity that connects two. Successful transitioning must be an intentional effort with a clear goal and measureable outcome. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  18. Database architectures for Space Telescope Science Institute

    Lubow, Stephen

    1993-08-01

    At STScI nearly all large applications require database support. A general purpose architecture has been developed and is in use that relies upon an extended client-server paradigm. Processing is in general distributed across three processes, each of which generally resides on its own processor. Database queries are evaluated on one such process, called the DBMS server. The DBMS server software is provided by a database vendor. The application issues database queries and is called the application client. This client uses a set of generic DBMS application programming calls through our STDB/NET programming interface. Intermediate between the application client and the DBMS server is the STDB/NET server. This server accepts generic query requests from the application and converts them into the specific requirements of the DBMS server. In addition, it accepts query results from the DBMS server and passes them back to the application. Typically the STDB/NET server is local to the DBMS server, while the application client may be remote. The STDB/NET server provides additional capabilities such as database deadlock restart and performance monitoring. This architecture is currently in use for some major STScI applications, including the ground support system. We are currently investigating means of providing ad hoc query support to users through the above architecture. Such support is critical for providing flexible user interface capabilities. The Universal Relation advocated by Ullman, Kernighan, and others appears to be promising. In this approach, the user sees the entire database as a single table, thereby freeing the user from needing to understand the detailed schema. A software layer provides the translation between the user and detailed schema views of the database. However, many subtle issues arise in making this transformation. We are currently exploring this scheme for use in the Hubble Space Telescope user interface to the data archive system (DADS).

  19. Artistic Research on Freedom in Space and Science

    Foing, Bernard H.; Schelfhout, Ronald; Gelfand, Dmitry; Van der Heide, Edwin; Preusterink, Jolanda; Domnitch, Evelina

    ArtScience ESTEC: Space science in the arts. Since the earliest scientific preparations for extra-terrestrial travel at the beginning of the 20th century, the exploration of outer space has become a quintessential framework of the human condition and its creative manifestations. Although the artistic pursuit of space science is still in its infancy, an accelerated evolution is currently underway. Perspective: With the current state of the planet and the development of technology, humankind has the ability to look from a greater distance to the damage that has been done. This offers potential in the form of early detection and prevention of disasters. Meanwhile our aim seems to be directed away from the earth into the universe. In the Space science in the arts project I tried to encapsulate these two viewpoints that tend to avoid each other. We are still earthbound and that is our basis. A tree cannot grow tall without strong roots. Space, a promise of freedom. Line of thought: Space sounds like freedom but to actually send people out there they have to be strapped tightly on top of a giant missile to reach a habitat of interconnecting tubes with very little space. It is impossible to escape protocol with- out risking your life and the lives of astronauts have been fixed years in advance. This is the human predicament which does not apply to the telescopes and other devices used to reach far into the universe. Providing information instantly the various forms of light allow us to travel without moving. Description of the installation: The research on freedom in space and science led to the development of an installation that reflects the dualistic aspect which clings to the exploration of the universe. The installation is a model on multiple scales. You can look at the material or the feeling it evokes as well as at the constantly changing projections. The image is light. Inside this glass circle there is a broken dome placed over a dark and reflective surface on

  20. Space Culture: Innovative Cultural Approaches To Public Engagement With Astronomy, Space Science And Astronautics

    Malina, Roger F.

    2012-01-01

    In recent years a number of cultural organizations have established ongoing programs of public engagement with astronomy, space science and astronautics. Many involve elements of citizen science initiatives, artists’ residencies in scientific laboratories and agencies, art and science festivals, and social network projects as well as more traditional exhibition venues. Recognizing these programs several agencies and organizations have established mechanisms for facilitating public engagement with astronomy and space science through cultural activities. The International Astronautics Federation has established an Technical Activities Committee for the Cultural Utilization of Space. Over the past year the NSF and NEA have organized disciplinary workshops to develop recommendations relating to art-science interaction and community building efforts. Rationales for encouraging public engagement via cultural projects range from theory of creativity, innovation and invention to cultural appropriation in the context of `socially robust science’ as advocated by Helga Nowotny of the European Research Council. Public engagement with science, as opposed to science education and outreach initiatives, require different approaches. Just as organizations have employed education professionals to lead education activities, so they must employ cultural professionals if they wish to develop public engagement projects via arts and culture. One outcome of the NSF and NEA workshops has been development of a rationale for converting STEM to STEAM by including the arts in STEM methodologies, particularly for K-12 where students can access science via arts and cultural contexts. Often these require new kinds of informal education approaches that exploit locative media, gaming platforms, artists projects and citizen science. Incorporating astronomy and space science content in art and cultural projects requires new skills in `cultural translation’ and `trans-mediation’ and new kinds

  1. Space Science Investigation: NASA ISS Stowage Simulator

    Crawford, Gary

    2017-01-01

    During this internship the opportunity was granted to work with the Integrated, Graphics, Operations and Analysis Laboratory (IGOAL) team. The main assignment was to create 12 achievement patches for the Space Station training simulator called the "NASA ISS Stowage Training Game." This project was built using previous IGOAL developed software. To accomplish this task, Adobe Photoshop and Adobe Illustrator were used to craft the badges and other elements required. Blender, a 3D modeling software, was used to make the required 3D elements. Blender was a useful tool to make things such as a CTB bag for the "No More Bob" patch which shows a gentleman kicking a CTB bag into the distance. It was also used to pose characters to the positions that was optimal for their patches as in the "Station Sanitation" patch which portrays and astronaut waving on a U.S module on a truck. Adobe Illustrator was the main piece of software for this task. It was used to craft the badges and upload them when they were completed. The style of the badges were flat, meaning that they shouldn't look three dimensional in any way, shape or form. Adobe Photoshop was used when any pictures need brightening and was where the texture for the CTB bag was made. In order for the patches to be ready for the game's next major release, they have to go under some critical reviewing, revising and re-editing to make sure the other artists and the rest of the staff are satisfied with the final products. Many patches were created and revamped to meet the flat setting and incorporate suggestions from the IGOAL team. After the three processes were completed, the badges were implemented into the game (reference fig1 for badges). After a month of designing badges, the finished products were placed into the final game build via the programmers. The art was the final piece in showcasing the latest build to the public for testing. Comments from the testers were often exceptional and the feedback on the badges were

  2. Inspiring the Next Generation in Space Life Sciences

    Hayes, Judith

    2010-01-01

    Competitive summer internships in space life sciences at NASA are awarded to college students every summer. Each student is aligned with a NASA mentor and project that match his or her skills and interests, working on individual projects in ongoing research activities. The interns consist of undergraduate, graduate, and medical students in various majors and disciplines from across the United States. To augment their internship experience, students participate in the Space Life Sciences Summer Institute (SLSSI). The purpose of the Institute is to offer a unique learning environment that focuses on the current biomedical issues associated with human spaceflight; providing an introduction of the paradigms, problems, and technologies of modern spaceflight cast within the framework of life sciences. The Institute faculty includes NASA scientists, physicians, flight controllers, engineers, managers, and astronauts; and fosters a multi-disciplinary science approach to learning with a particular emphasis on stimulating experimental creativity and innovation within an operational environment. This program brings together scientists and students to discuss cutting-edge solutions to problems in space physiology, environmental health, and medicine; and provides a familiarization of the various aspects of space physiology and environments. In addition to the lecture series, behind-the-scenes tours are offered that include the Neutral Buoyancy Laboratory, Mission Control Center, space vehicle training mockups, and a hands-on demonstration of the Space Shuttle Advanced Crew Escape Suit. While the SLSSI is managed and operated at the Johnson Space Center in Texas, student interns from the other NASA centers (Glenn and Ames Research Centers, in Ohio and California) also participate through webcast distance learning capabilities.

  3. Space science in the twenty-first century: imperatives for the decades 1995 to 2015 : life sciences

    1988-01-01

    Early in 1984, NASA asked the Space Science Board to undertake a study to determine the principal scientific issues that the disciplines of space science would face during the period from about 1995 to 2015...

  4. Life Sciences Space Station planning document: A reference payload for the Life Sciences Research Facility

    1986-01-01

    The Space Station, projected for construction in the early 1990s, will be an orbiting, low-gravity, permanently manned facility providing unprecedented opportunities for scientific research. Facilities for Life Sciences research will include a pressurized research laboratory, attached payloads, and platforms which will allow investigators to perform experiments in the crucial areas of Space Medicine, Space Biology, Exobiology, Biospherics and Controlled Ecological Life Support System (CELSS). These studies are designed to determine the consequences of long-term exposure to space conditions, with particular emphasis on assuring the permanent presence of humans in space. The applied and basic research to be performed, using humans, animals, and plants, will increase our understanding of the effects of the space environment on basic life processes. Facilities being planned for remote observations from platforms and attached payloads of biologically important elements and compounds in space and on other planets (Exobiology) will permit exploration of the relationship between the evolution of life and the universe. Space-based, global scale observations of terrestrial biology (Biospherics) will provide data critical for understanding and ultimately managing changes in the Earth's ecosystem. The life sciences community is encouraged to participate in the research potential the Space Station facilities will make possible. This document provides the range and scope of typical life sciences experiments which could be performed within a pressurized laboratory module on Space Station.

  5. The state of space science in Africa | Mhlahlo | Africa Insight

    There has been an increase in the number of space science activities and facilities in Africa in the last 15 years. This increase, however, is not proportionate to the indigenous user community for these activities and facilities. In this paper, I discuss these activities and their benefits for the African region, and point out some of ...

  6. International ties. [international cooperation in the space sciences

    1980-01-01

    A historical overview of NASA's participation in international activities in space science is given. The Ariel, Alouette, Isis, and San Marco satellite programs are addressed along with sounding rocket and ground based projects. Relations and cooperation with the Soviet Union are also discussed.

  7. Sixth Annual NASA Ames Space Science and Astrobiology Jamboree

    Hollingsworth, Jeffery; Howell, Steve; Fonda, Mark; Dateo, Chris; Martinez, Christine M.

    2018-01-01

    Welcome to the Sixth Annual NASA Ames Research Center, Space Science and Astrobiology Jamboree at NASA Ames Research Center (ARC). The Space Science and Astrobiology Division consists of over 60 Civil Servants, with more than 120 Cooperative Agreement Research Scientists, Post-Doctoral Fellows, Science Support Contractors, Visiting Scientists, and many other Research Associates. Within the Division there is engagement in scientific investigations over a breadth of disciplines including Astrobiology, Astrophysics, Exobiology, Exoplanets, Planetary Systems Science, and many more. The Division's personnel support NASA spacecraft missions (current and planned), including SOFIA, K2, MSL, New Horizons, JWST, WFIRST, and others. Our top-notch science research staff is spread amongst three branches in five buildings at ARC. Naturally, it can thus be difficult to remain abreast of what fellow scientific researchers pursue actively, and then what may present and/or offer regarding inter-Branch, intra-Division future collaborative efforts. In organizing this annual jamboree, the goals are to offer a wholesome, one-venue opportunity to sense the active scientific research and spacecraft mission involvement within the Division; and to facilitate communication and collaboration amongst our research scientists. Annually, the Division honors one senior research scientist with a Pollack Lecture, and one early career research scientist with an Outstanding Early Career Space Scientist Lecture. For the Pollack Lecture, the honor is bestowed upon a senior researcher who has made significant contributions within any area of research aligned with space science and/or astrobiology. This year we are pleased to honor Linda Jahnke. With the Early Career Lecture, the honor is bestowed upon an early-career researcher who has substantially demonstrated great promise for significant contributions within space science, astrobiology, and/or, in support of spacecraft missions addressing such

  8. ESSC-ESF Position Paper: Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella

    2009-01-01

    Abstract In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December......'s exploration programme, dubbed "Emergence and co-evolution of life with its planetary environments," focusing on those targets that can ultimately be reached by humans, i.e., Mars, the Moon, and Near Earth Objects. Mars was further recognized as the focus of that programme, with Mars sample return...

  9. Topos of the cosmic space in science fiction

    Poutilo Oleg Olegovich

    2015-09-01

    Full Text Available The article examines the forms of cosmic space in science fiction, its characteristics and main trends of evolution. Cosmic space is seen as a dichotomy of “our” and “their”, though their interaction is complicated and full interiorization is impossible. The specificity of the described cosmic space is the absence of the traditional system of coordinates associated with the sides of the world. Authors have to resort to the use of “map-route”, describing the journey sequentially, from the point of view of a moving person. In this regard, in recent years there has been a tendency to reduce the role of images of cosmic space in science fiction novels. Their appearance in the works becomes a kind of stamp, a concession to the classical traditions of the genre. Once popular genres of strict science fiction or space opera inferior position to the other, recreating a far more convincing picture of the probable future of humanity - cyberpunk dystopia and post-apocalyptic fiction.

  10. Exploring the living universe: A strategy for space life sciences

    1988-01-01

    The status and goals of NASA's life sciences programs are examined. Ways and mean for attaining these goals are suggested. The report emphasizes that a stronger life sciences program is imperative if the U.S. space policy is to construct a permanently manned space station and achieve its stated goal of expanding the human presence beyond earth orbit into the solar system. The same considerations apply in regard to the other major goal of life sciences: to study the biological processes and life in the universe. A principal recommendation of the report is for NASA to expand its program of ground- and space-based research contributing to resolving questions about physiological deconditioning, radiation exposure, potential psychological difficulties, and life support requirements that may limit stay times for personnel on the Space Station and complicate missions of more extended duration. Other key recommendations call for strengthening programs of biological systems research in: controlled ecological life support systems for humans in space, earth systems central to understanding the effects on the earth's environment of both natural and human activities, and exobiology.

  11. Earth and Space Science PhD Employment Trends

    Giesler, J. L.

    2001-05-01

    A recent report by the American Geophysical Union and the American Geological Institute, "Earth and Space Science PhDs, Class of 1999" looked at employment trends of recent graduates. Demographically, our graduates are, as a population, older than those who graduated in any other physical science. While almost one-third of graduates are employed in a different subfield than that of their degree, more than 80% of Earth and space science PhDs secure initial employment in the geosciences. Graduates are finding employment in less than 6 months and the unemployment rate has dropped significantly below that of two years ago. The PhD classes of 1996, 1997, and 1998 had ~ 50% of their graduates taking postdoctoral appointments. In 1999, this declined to only 38% postdocs with an increase in permanent employment in both the education and government sectors. Perception of the job market is improving as well. Respondents are considerably happier than they were in 1996.

  12. Mathematical Model of the Public Understanding of Space Science

    Prisniakov, V.; Prisniakova, L.

    science. The boundary sectioning area of effective and unefficient modes of training and education of the population of country in space spirit is determined. The mathematical model of quality of process of education concern to an outer space exploration is reviewed separately. The coefficient of quality of education in an estimation of space event is submitted as relation Δ I' to mismatch of the universal standard of behavior with the information, which is going to the external spectator, about the applicable reacting of the considered individual Δ I''. The obtained outcomes allow to control a learning process and education of the society spirit of adherence to space ideals of mankind.

  13. 3rd Annual NASA Ames Space Science and Astrobiology Jamboree

    Dotson, Jessie

    2015-01-01

    The Space Science and Astrobiology Division at NASA Ames Research Center consists of over 50 civil servants and more than 110 contractors, co-­-ops, post-­-docs and associates. Researchers in the division are pursuing investigations in a variety of fields including exoplanets, planetary science, astrobiology and astrophysics. In addition, division personnel support a wide variety of NASA missions including (but not limited to) Kepler, SOFIA, LADEE, JWST, and New Horizons. With such a wide variety of interesting research going on, distributed among three branches in at least 5 different buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientists within the division, and to give center management and other ARC researchers and engineers an opportunity to see what scientific research and science mission work is being done in the division. We are also continuing the tradition within the Space Science and Astrobiology Division to honor one senior and one early career scientist with the Pollack Lecture and the Early Career Lecture, respectively. With the Pollack Lecture, our intent is to select a senior researcher who has made significant contributions to any area of research within the space sciences, and we are pleased to honor Dr. William Borucki this year. With the Early Career Lecture, our intent is to select a young researcher within the division who, by their published scientific papers, shows great promise for the future in any area of space science research, and we are pleased to honor Dr. Melinda Kahre this year

  14. Biological and Physical Space Research Laboratory 2002 Science Review

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  15. Enhanced science capability on the International Space Station

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system

  16. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  17. Space: the final frontier in the learning of science?

    Milne, Catherine

    2014-03-01

    In Space, relations, and the learning of science, Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research laboratory, can be structured as smart spaces to create a workflow (learning flow) so that shoptalk and shopwork can projectively organize the actions of interns even in new and unfamiliar settings. Using these findings they explore implications for the design of curriculum and learning spaces more broadly. The Forum papers of Erica Blatt and Cassie Quigley complement this analysis. Blatt expands the discussion on space as an active component of learning with an examination of teaching settings, beyond laboratory spaces, as active participants of education. Quigley examines smart spaces as authentic learning spaces while acknowledging how internship experiences all empirical elements of authentic learning including open-ended inquiry and empowerment. In this paper I synthesize these ideas and propose that a narrative structure might better support workflow, student agency and democratic decision making.

  18. Graduate performance of science education department in implementing conservation-based science teaching

    Parmin; Savitri, E. N.; Amalia, A. V.; Pratama, M. R.

    2018-04-01

    This study aims to measure the performance of graduates in implementing conservation-based science teaching. The study employed a qualitative method by collecting the self-assessment data from alumni and the performance assessment from the headmasters of schools where the graduates are currently teaching. There are nine indicators of conservation insight examined in this study. The study concluded that the 78 alumni, who have become teachers when the study was conducted, perform well in implementing conservative science lessons.

  19. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  20. Women Accuse Rutgers Political-Science Department of Bias and Hostility

    Moser, Kate

    2008-01-01

    Female faculty members and graduate students at Rutgers University in New Brunswick's political-science department feel unfairly compensated and shut out of leadership positions by their male counterparts, says an internal university report obtained by "The Chronicle." In at least one case, a woman has been afraid to complain about…

  1. NASA's astrophysics archives at the National Space Science Data Center

    Vansteenberg, M. E.

    1992-01-01

    NASA maintains an archive facility for Astronomical Science data collected from NASA's missions at the National Space Science Data Center (NSSDC) at Goddard Space Flight Center. This archive was created to insure the science data collected by NASA would be preserved and useable in the future by the science community. Through 25 years of operation there are many lessons learned, from data collection procedures, archive preservation methods, and distribution to the community. This document presents some of these more important lessons, for example: KISS (Keep It Simple, Stupid) in system development. Also addressed are some of the myths of archiving, such as 'scientists always know everything about everything', or 'it cannot possibly be that hard, after all simple data tech's do it'. There are indeed good reasons that a proper archive capability is needed by the astronomical community, the important question is how to use the existing expertise as well as the new innovative ideas to do the best job archiving this valuable science data.

  2. Space Weather Research at the National Science Foundation

    Moretto, T.

    2015-12-01

    There is growing recognition that the space environment can have substantial, deleterious, impacts on society. Consequently, research enabling specification and forecasting of hazardous space effects has become of great importance and urgency. This research requires studying the entire Sun-Earth system to understand the coupling of regions all the way from the source of disturbances in the solar atmosphere to the Earth's upper atmosphere. The traditional, region-based structure of research programs in Solar and Space physics is ill suited to fully support the change in research directions that the problem of space weather dictates. On the observational side, dense, distributed networks of observations are required to capture the full large-scale dynamics of the space environment. However, the cost of implementing these is typically prohibitive, especially for measurements in space. Thus, by necessity, the implementation of such new capabilities needs to build on creative and unconventional solutions. A particularly powerful idea is the utilization of new developments in data engineering and informatics research (big data). These new technologies make it possible to build systems that can collect and process huge amounts of noisy and inaccurate data and extract from them useful information. The shift in emphasis towards system level science for geospace also necessitates the development of large-scale and multi-scale models. The development of large-scale models capable of capturing the global dynamics of the Earth's space environment requires investment in research team efforts that go beyond what can typically be funded under the traditional grants programs. This calls for effective interdisciplinary collaboration and efficient leveraging of resources both nationally and internationally. This presentation will provide an overview of current and planned initiatives, programs, and activities at the National Science Foundation pertaining to space weathe research.

  3. Implications of the Next Generation Science Standards for Earth and Space Sciences

    Wysession, M. E.; Colson, M.; Duschl, R. A.; Huff, K.; Lopez, R. E.; Messina, P.; Speranza, P.; Matthews, T.; Childress, J.

    2012-12-01

    The Next Generation Science Standards (NGSS), due to be released in 2013, set a new direction for K-12 science education in America. These standards will put forth significant changes for Earth and space sciences. The NGSS are based upon the recommendations of the National Research Council's 2011 report "A Framework for K-12 Science Education: Practices, Cross-Cutting Concepts, and Core Ideas." The standards are being written by a large group of authors who represent many different constituencies, including 26 participating states, in a process led by Achieve, Inc. The standards encourage innovative ways to teach science at the K-12 level, including enhanced integration between the content, practices, and crosscutting ideas of science and greater assimilation among the sciences and engineering, and among the sciences, mathematics, and English language arts. The NGSS presents a greater emphasis on Earth and space sciences than in previous standards, recommending a year at both the middle and high school levels. The new standards also present a greater emphasis on areas of direct impact between humans and the Earth system, including climate change, natural hazards, resource management, and sustainability.

  4. The Africa Initiative for Planetary and Space Sciences

    Baratoux, D.; Chennaoui-Aoudjehane, H.; Gibson, R.; Lamali, A.; Reimold, W. U.; Selorm Sepah, M.; Chabou, M. C.; Habarulema, J. B.; Jessell, M.; Mogessie, A.; Benkhaldoun, Z.; Nkhonjera, E.; Mukosi, N. C.; Kaire, M.; Rochette, P.; Sickafoose, A.; Martínez-Frías, J.; Hofmann, A.; Folco, L.; Rossi, A. P.; Faye, G.; Kolenberg, K.; Tekle, K.; Belhai, D.; Elyajouri, M.; Koeberl, C.; Abdeem, M.

    2017-12-01

    Research groups in Planetary and Space Sciences (PSS) are now emerging in Africa, but remain few, scattered and underfunded. It is our conviction that the exclusion of 20% of the world's population from taking part in the fascinating discoveries about our solar system impoverishes global science. The benefits of a coordinated PSS program for Africa's youth have motivated a call for international support and investment [1] into an Africa Initiative for Planetary and Space Sciences. At the time of writing, the call has been endorsed by 230 scientists and 19 institutions or international organizations (follow the map of endorsements on https://africapss.org). More than 70 African Planetary scientists have already joined the initiative and about 150 researchers in non-African countries are ready to participate in research and in capacitity building of PSS programs in Africa. We will briefly review in this presentation the status of PSS in Africa [2] and illustrate some of the major achievements of African Planetary and Space scientists, including the search for meteorites or impact craters, the observations of exoplanets, and space weather investigations. We will then discuss a road map for its expansion, with an emphasis on the role that planetary and space scientists can play to support scientific and economic development in Africa. The initiative is conceived as a network of projects with Principal Investigators based in Africa. A Steering Committee is being constituted to coordinate these efforts and contribute to fund-raising and identification of potential private and public sponsors. The scientific strategy of each group within the network will be developed in cooperation with international experts, taking into account the local expertise, available equipment and facilities, and the priority needs to achieve well-identified scientific goals. Several founding events will be organized in 2018 in several African research centers and higher-education institutions to

  5. Operational considerations for the Space Station Life Science Glovebox

    Rasmussen, Daryl N.; Bosley, John J.; Vogelsong, Kristofer; Schnepp, Tery A.; Phillips, Robert W.

    1988-01-01

    The U.S. Laboratory (USL) module on Space Station will house a biological research facility for multidisciplinary research using living plant and animal specimens. Environmentally closed chambers isolate the specimen habitats, but specimens must be removed from these chambers during research procedures as well as while the chambers are being cleaned. An enclosed, sealed Life Science Glovebox (LSG) is the only locale in the USL where specimens can be accessed by crew members. This paper discusses the key science, engineering and operational considerations and constraints involving the LSG, such as bioisolation, accessibility, and functional versatility.

  6. Second Annual NASA Ames Space Science and Astrobiology Jamboree

    Dotson, Jessie

    2014-01-01

    The Space Science and Astrobiology Division's researchers are pursuing investigations in a variety of fields, including exoplanets, planetary science, astrobiology, and astrophysics. In addition division personnel support a wide variety of NASA missions. With a wide variety of interesting research going on, distributed among the three branches in at least 5 buildings, it can be difficult to stay abreast of what one's fellow researchers are doing. Our goal in organizing this symposium is to facilitate communication and collaboration among the scientist within the division and to give center management and other ARC researchers and Engineers an opportunity to see what scientific missions work is being done in the division.

  7. Solar and Space Physics: A Science for a Technological Society

    2013-01-01

    From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outward to a region far beyond Pluto where the Sun's influence wanes, advances during the past decade in space physics and solar physics the disciplines NASA refers to as heliophysics have yielded spectacular insights into the phenomena that affect our home in space. This report, from the National Research Council's (NRC's) Committee for a Decadal Strategy in Solar and Space Physics, is the second NRC decadal survey in heliophysics. Building on the research accomplishments realized over the past decade, the report presents a program of basic and applied research for the period 2013-2022 that will improve scientific understanding of the mechanisms that drive the Sun's activity and the fundamental physical processes underlying near-Earth plasma dynamics, determine the physical interactions of Earth's atmospheric layers in the context of the connected Sun-Earth system, and enhance greatly the capability to provide realistic and specific forecasts of Earth's space environment that will better serve the needs of society. Although the recommended program is directed primarily to NASA (Science Mission Directorate -- Heliophysics Division) and the National Science Foundation (NSF) (Directorate for Geosciences -- Atmospheric and Geospace Sciences) for action, the report also recommends actions by other federal agencies, especially the National Oceanic and Atmospheric Administration (NOAA) those parts of NOAA charged with the day-to-day (operational) forecast of space weather. In addition to the recommendations included in this summary, related recommendations are presented in the main text of the report.

  8. Health sciences libraries' subscriptions to journals: expectations of general practice departments and collection-based analysis.

    Barreau, David; Bouton, Céline; Renard, Vincent; Fournier, Jean-Pascal

    2018-04-01

    The aims of this study were to (i) assess the expectations of general practice departments regarding health sciences libraries' subscriptions to journals and (ii) describe the current general practice journal collections of health sciences libraries. A cross-sectional survey was distributed electronically to the thirty-five university general practice departments in France. General practice departments were asked to list ten journals to which they expected access via the subscriptions of their health sciences libraries. A ranked reference list of journals was then developed. Access to these journals was assessed through a survey sent to all health sciences libraries in France. Adequacy ratios (access/need) were calculated for each journal. All general practice departments completed the survey. The total reference list included 44 journals. This list was heterogeneous in terms of indexation/impact factor, language of publication, and scope (e.g., patient care, research, or medical education). Among the first 10 journals listed, La Revue Prescrire (96.6%), La Revue du Praticien-Médecine Générale (90.9%), the British Medical Journal (85.0%), Pédagogie Médicale (70.0%), Exercer (69.7%), and the Cochrane Database of Systematic Reviews (62.5%) had the highest adequacy ratios, whereas Family Practice (4.2%), the British Journal of General Practice (16.7%), Médecine (29.4%), and the European Journal of General Practice (33.3%) had the lowest adequacy ratios. General practice departments have heterogeneous expectations in terms of health sciences libraries' subscriptions to journals. It is important for librarians to understand the heterogeneity of these expectations, as well as local priorities, so that journal access meets users' needs.

  9. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  10. Center of Excellence in Space Data and Information Sciences

    Yesha, Yelena

    1999-01-01

    This report summarizes the range of computer science-related activities undertaken by CESDIS for NASA in the twelve months from July 1, 1998 through June 30, 1999. These activities address issues related to accessing, processing, and analyzing data from space observing systems through collaborative efforts with university, industry, and NASA space and Earth scientists. The sections of this report which follow, detail the activities undertaken by the members of each of the CESDIS branches. This includes contributions from university faculty members and graduate students as well as CESDIS employees. Phone numbers and e-mail addresses appear in Appendix F (CESDIS Personnel and Associates) to facilitate interactions and new collaborations.

  11. Life sciences research in space: The requirement for animal models

    Fuller, C. A.; Philips, R. W.; Ballard, R. W.

    1987-01-01

    Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.

  12. Semantic e-Science in Space Physics - A Case Study

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  13. Astronauts in Outer Space Teaching Students Science: Comparing Chinese and American Implementations of Space-to-Earth Virtual Classrooms

    An, Song A.; Zhang, Meilan; Tillman, Daniel A.; Robertson, William; Siemssen, Annette; Paez, Carlos R.

    2016-01-01

    The purpose of this study was to investigate differences between science lessons taught by Chinese astronauts in a space shuttle and those taught by American astronauts in a space shuttle, both of whom conducted experiments and demonstrations of science activities in a microgravity space environment. The study examined the instructional structure…

  14. Physical sciences research plans for the International Space Station

    Trinh, E. H.

    2003-01-01

    The restructuring of the research capabilities of the International Space Station has forced a reassessment of the Physical Sciences research plans and a re-targeting of the major scientific thrusts. The combination of already selected peer-reviewed flight investigations with the initiation of new research and technology programs will allow the maximization of the ISS scientific and technological potential. Fundamental and applied research will use a combination of ISS-based facilities, ground-based activities, and other experimental platforms to address issues impacting fundamental knowledge, industrial and medical applications on Earth, and the technology required for human space exploration. The current flight investigation research plan shows a large number of principal investigators selected to use the remaining planned research facilities. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  15. Archive of Geosample Data and Information from the University of Southern California (USC) Department of Earth Sciences

    National Oceanic and Atmospheric Administration, Department of Commerce — Metadata describing geological samples curated by Earth Sciences Department of the University of Southern California (USC) collected during the period from 1922 to...

  16. Archive of Geosample Data and Information from the Rosenstiel School of Marine and Atmospheric Science (RSMAS) Department of Marine Geosciences.

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rosenstiel School of Marine and Atmospheric Science (RSMAS) Department of Marine Geosciences made a one-time contribution of data describing geological samples...

  17. Developing and Teaching a Two-Credit Data Management Course for Graduate Students in Climate and Space Sciences

    Thielen, Joanna; Samuel, Sara M.; Carlson, Jake; Moldwin, Mark

    2017-01-01

    Engineering researchers face increasing pressure to manage, share, and preserve their data, but these subjects are not typically a part of the curricula of engineering graduate programs. To address this situation, librarians at the University of Michigan, in partnership with the Climate and Space Sciences and Engineering Department, developed a…

  18. Devices development and techniques research for space life sciences

    Zhang, A.; Liu, B.; Zheng, C.

    The development process and the status quo of the devices and techniques for space life science in China and the main research results in this field achieved by Shanghai Institute of Technical Physics SITP CAS are reviewed concisely in this paper On the base of analyzing the requirements of devices and techniques for supporting space life science experiments and researches one designment idea of developing different intelligent modules with professional function standard interface and easy to be integrated into system is put forward and the realization method of the experiment system with intelligent distributed control based on the field bus are discussed in three hierarchies Typical sensing or control function cells with certain self-determination control data management and communication abilities are designed and developed which are called Intelligent Agents Digital hardware network system which are consisted of the distributed Agents as the intelligent node is constructed with the normative opening field bus technology The multitask and real-time control application softwares are developed in the embedded RTOS circumstance which is implanted into the system hardware and space life science experiment system platform with characteristic of multitasks multi-courses professional and instant integration will be constructed

  19. Designing learning spaces for interprofessional education in the anatomical sciences.

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  20. International Space Station Research and Facilities for Life Sciences

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  1. Space Station Centrifuge: A Requirement for Life Science Research

    Smith, Arthur H.; Fuller, Charles A.; Johnson, Catherine C.; Winget, Charles M.

    1992-01-01

    A centrifuge with the largest diameter that can be accommodated on Space Station Freedom is required to conduct life science research in the microgravity environment of space. (This was one of the findings of a group of life scientists convened at the University of California, Davis, by Ames Research Center.) The centrifuge will be used as a research tool to understand how gravity affects biological processes; to provide an on-orbit one-g control; and to assess the efficacy of using artificial gravity to counteract the deleterious biological effect of space flight. The rationale for the recommendation and examples of using ground-based centrifugation for animal and plant acceleration studies are presented. Included are four appendixes and an extensive bibliography of hypergravity studies.

  2. Giving children space: A phenomenological exploration of student experiences in space science inquiry

    Horne, Christopher R.

    This study explores the experiences of 4th grade students in an inquiry-based space science classroom. At the heart of the study lies the essential question: What is the lived experience of children engaged in the process of space science inquiry? Through the methodology of phenomenological inquiry, the author investigates the essence of the lived experience of twenty 4th grade students as well as the reflections of two high school students looking back on their 4th grade space science experience. To open the phenomenon more deeply, the concept of space is explored as an overarching theme throughout the text. The writings of several philosophers including Martin Heidegger and Hans-Georg Gadamer are opened up to understand the existential aspects of phenomenology and the act of experiencing the classroom as a lived human experience. The methodological structure for the study is based largely on the work of Max van Manen (2003) in his seminal work, Researching Lived Experience, which describes a structure of human science research. A narrative based on classroom experiences, individual conversations, written reflections, and group discussion provides insight into the students' experiences. Their stories and thoughts reveal the themes of activity , interactivity, and "inquiractivity," each emerging as an essential element of the lived experience in the inquiry-based space science classroom. The metaphor of light brings illumination to the themes. Activity in the classroom is associated with light's constant and rapid motion throughout the Milky Way and beyond. Interactivity is seen through students' interactions just as light's reflective nature is seen through the illumination of the planets. Finally, inquiractivity is connected to questioning, the principal aspect of the inquiry-based classroom just as the sun is the essential source of light in our solar system. As the era of No Child Left Behind fades, and the next generation of science standards emerge, the

  3. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  4. The Office of Space Science and Applications strategic plan, 1990: A strategy for leadership in space through excellence in space science and applications

    1990-01-01

    A strategic plan for the U.S. space science and applications program during the next 5 to 10 years was developed and published in 1988. Based on the strategies developed by the advisory committees of both the National Academy of Science and NASA, the plan balances major, moderate, and small mission initiatives, the utilization of the Space Station Freedom, and the requirements for a vital research base. The Office of Space Science and Applications (OSSA) strategic plan is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy will yield a viable program; and check the strategy for consistency within resource constraints. The OSSA plan is revised annually. This OSSA 1990 Strategic Plan refines the 1989 Plan and represents OSSA's initial plan for fulfilling its responsibilities in two major national initiatives. The Plan is now built on interrelated, complementary strategies for the core space science and applications program, for the U.S. Global Change Research Program, and for the Space Exploration Initiative. The challenge is to make sure that the current level of activity is sustained through the end of this century and into the next. The 1990 Plan presents OSSA's strategy to do this.

  5. New Center Links Earth, Space, and Information Sciences

    Aswathanarayana, U.

    2004-05-01

    Broad-based geoscience instruction melding the Earth, space, and information technology sciences has been identified as an effective way to take advantage of the new jobs created by technological innovations in natural resources management. Based on this paradigm, the University of Hyderabad in India is developing a Centre of Earth and Space Sciences that will be linked to the university's super-computing facility. The proposed center will provide the basic science underpinnings for the Earth, space, and information technology sciences; develop new methodologies for the utilization of natural resources such as water, soils, sediments, minerals, and biota; mitigate the adverse consequences of natural hazards; and design innovative ways of incorporating scientific information into the legislative and administrative processes. For these reasons, the ethos and the innovatively designed management structure of the center would be of particular relevance to the developing countries. India holds 17% of the world's human population, and 30% of its farm animals, but only about 2% of the planet's water resources. Water will hence constitute the core concern of the center, because ecologically sustainable, socially equitable, and economically viable management of water resources of the country holds the key to the quality of life (drinking water, sanitation, and health), food security, and industrial development of the country. The center will be focused on interdisciplinary basic and pure applied research that is relevant to the practical needs of India as a developing country. These include, for example, climate prediction, since India is heavily dependent on the monsoon system, and satellite remote sensing of soil moisture, since agriculture is still a principal source of livelihood in India. The center will perform research and development in areas such as data assimilation and validation, and identification of new sensors to be mounted on the Indian meteorological

  6. Canadian space agency discipline working group for space dosimetry and radiation science

    Waker, Anthony; Waller, Edward; Lewis, Brent; Bennett, Leslie; Conroy, Thomas

    2008-01-01

    Full text: One of the great technical challenges in the human and robotic exploration of space is the deleterious effect of radiation on humans and physical systems. The magnitude of this challenge is broadly understood in terms of the sources of radiation, however, a great deal remains to be done in the development of instrumentation, suitable for the space environment, which can provide real-time monitoring of the complex radiation fields encountered in space and a quantitative measure of potential biological risk. In order to meet these research requirements collaboration is needed between experimental nuclear instrumentation scientists, theoretical scientists working on numerical modeling techniques and radiation biologists. Under the auspices of the Canadian Space Agency such a collaborative body has been established as one of a number of Discipline Working Groups. Members of the Space Dosimetry and Radiation Science working group form a collaborative network across Canada including universities, government laboratories and the industrial sector. Three central activities form the core of the Space Dosimetry and Radiation Science DWG. An instrument sub-group is engaged in the development of instruments capable of gamma ray, energetic charged particle and neutron dosimetry including the ability to provide dosimetric information in real-time. A second sub-group is focused on computer modeling of space radiation fields in order to assess the performance of conceptual designs of detectors and dosimeters or the impact of radiation on cellular and sub-cellular biological targets and a third sub-group is engaged in the study of the biological effects of space radiation and the potential of biomarkers as a method of assessing radiation impact on humans. Many working group members are active in more than one sub-group facilitating communication throughout the whole network. A summary progress-report will be given of the activities of the Discipline Working Group and the

  7. Personnel and working area monitoring at the Department of Nuclear Science, Universiti Kebangsaan Malaysia

    Amran Abd Majid; Muhamad Samudi Yasir; Che Rosli Che Mat

    1995-01-01

    Personnel (staff and student) and working area absorbed dose monitoring at the Department of Nuclear Science from 1984 until September 1993 is reported. Generally average absorbed dose received by the staff and working area were less than 0.5 and 2.0 mSv/yr respectively. The application of low activity of radioactive materials and complying the UKM (Universiti Kebangsaan Malaysia) and LPTA (AELB) - Atomic Energy Licensing Board regulations contributing to the low rate recorded. (author)

  8. DEPARTMENT OF ENERGY SOIL AND GROUNDWATER SCIENCE AND TECHNOLOGY NEEDS, PLANS AND INITIATIVES

    Aylward, B; V. ADAMS, V; G. M. CHAMBERLAIN, G; T. L. STEWART, T

    2007-12-12

    This paper presents the process used by the Department of Energy (DOE) Environmental Management (EM) Program to collect and prioritize DOE soil and groundwater site science and technology needs, develop and document strategic plans within the EM Engineering and Technology Roadmap, and establish specific program and project initiatives for inclusion in the EM Multi-Year Program Plan. The paper also presents brief summaries of the goals and objectives for the established soil and groundwater initiatives.

  9. Proposed School of Earth And Space Sciences, Hyderabad, India

    Aswathanarayana, U.

    2004-05-01

    The hallmarks of the proposed school in the University of Hyderabad, Hyderabad,India, would be synergy, inclusivity and globalism. The School will use the synergy between the earth (including oceanic and atmospheric realms), space and information sciences to bridge the digital divide, and promote knowledge-driven and job-led economic development of the country. It will endeavour to (i) provide the basic science underpinnings for Space and Information Technologies, (ii) develop new methodologies for the utilization of natural resources (water, soils, sediments, minerals, biota, etc.)in ecologically-sustainable, employment-generating and economically-viable ways, (iii) mitigate the adverse consequences of natural hazards through preparedness systems,etc. The School will undertake research in the inter-disciplinary areas of earth and space sciences (e.g. climate predictability, satellite remote sensing of soil moisture) and linking integrative science with the needs of the decision makers. It will offer a two-year M.Tech. (four semesters, devoted to Theory, Tools, Applications and Dissertation, respectively ) course in Earth and Space Sciences. The Applications will initially cover eight course clusters devoted to Water Resources Management, Agriculture, Ocean studies, Energy Resources, Urban studies, Environment, Natural Hazards and Mineral Resources Management. The School will also offer a number of highly focused short-term refresher courses / supplementary courses to enable cadres to update their knowledge and skills. The graduates of the School would be able to find employment in macro-projects, such as inter-basin water transfers, and Operational crop condition assessment over large areas, etc. as well as in micro-projects, such as rainwater harvesting, and marketing of remote sensing products to stake-holders (e.g. precision agricultural advice to the farmers, using the large bandwidth of thousands of kilometres of unlit optical fibres). As the School is highly

  10. SpacePy - a Python-based library of tools for the space sciences

    Morley, Steven K.; Welling, Daniel T.; Koller, Josef; Larsen, Brian A.; Henderson, Michael G.

    2010-01-01

    Space science deals with the bodies within the solar system and the interplanetary medium; the primary focus is on atmospheres and above - at Earth the short timescale variation in the the geomagnetic field, the Van Allen radiation belts and the deposition of energy into the upper atmosphere are key areas of investigation. SpacePy is a package for Python, targeted at the space sciences, that aims to make basic data analysis, modeling and visualization easier. It builds on the capabilities of the well-known NumPy and MatPlotLib packages. Publication quality output direct from analyses is emphasized. The SpacePy project seeks to promote accurate and open research standards by providing an open environment for code development. In the space physics community there has long been a significant reliance on proprietary languages that restrict free transfer of data and reproducibility of results. By providing a comprehensive, open-source library of widely used analysis and visualization tools in a free, modern and intuitive language, we hope that this reliance will be diminished. SpacePy includes implementations of widely used empirical models, statistical techniques used frequently in space science (e.g. superposed epoch analysis), and interfaces to advanced tools such as electron drift shell calculations for radiation belt studies. SpacePy also provides analysis and visualization tools for components of the Space Weather Modeling Framework - currently this only includes the BATS-R-US 3-D magnetohydrodynamic model and the RAM ring current model - including streamline tracing in vector fields. Further development is currently underway. External libraries, which include well-known magnetic field models, high-precision time conversions and coordinate transformations are wrapped for access from Python using SWIG and f2py. The rest of the tools have been implemented directly in Python. The provision of open-source tools to perform common tasks will provide openness in the

  11. What Makes Earth and Space Science Sexy? A Model for Developing Systemic Change in Earth and Space Systems Science Curriculum and Instruction

    Slutskin, R. L.

    2001-12-01

    Earth and Space Science may be the neglected child in the family of high school sciences. In this session, we examine the strategies that Anne Arundel County Public Schools and NASA Goddard Space Flight Center used to develop a dynamic and highly engaging program which follows the vision of the National Science Education Standards, is grounded in key concepts of NASA's Earth Science Directorate, and allows students to examine and apply the current research of NASA scientists. Find out why Earth/Space Systems Science seems to have usurped biology and has made students, principals, and teachers clamor for similar instructional practices in what is traditionally thought of as the "glamorous" course.

  12. The Effect of a State Department of Education Teacher Mentor Initiative on Science Achievement

    Pruitt, Stephen L.; Wallace, Carolyn S.

    2012-06-01

    This study investigated the effectiveness of a southern state's department of education program to improve science achievement through embedded professional development of science teachers in the lowest performing schools. The Science Mentor Program provided content and inquiry-based coaching by teacher leaders to science teachers in their own classrooms. The study analyzed the mean scale scores for the science portion of the state's high school graduation test for the years 2004 through 2007 to determine whether schools receiving the intervention scored significantly higher than comparison schools receiving no intervention. The results showed that all schools achieved significant improvement of scale scores between 2004 and 2007, but there were no significant performance differences between intervention and comparison schools, nor were there any significant differences between various subgroups in intervention and comparison schools. However, one subgroup, economically disadvantaged (ED) students, from high-level intervention schools closed the achievement gap with ED students from no-intervention schools across the period of the study. The study provides important information to guide future research on and design of large-scale professional development programs to foster inquiry-based science.

  13. Science on the Moon: The Wailing Wall of Space Exploration

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  14. An Open and Holistic Approach for Geo and Space Sciences

    Ritschel, Bernd; Seelus, Christoph; Neher, Günther; Toshihiko, Iyemori; Yatagai, Akiyo; Koyama, Yukinobu; Murayama, Yasuhiro; King, Todd; Hughes, Steve; Fung, Shing; Galkin, Ivan; Hapgood, Mike; Belehaki, Anna

    2016-04-01

    Geo and space sciences thus far have been very successful, even often an open, cross-domain and holistic approach did not play an essential role. But this situation is changing rapidly. The research focus is shifting into more complex, non-linear and multi-domain specified phenomena, such as e.g. climate change or space environment. This kind of phenomena only can be understood step by step using the holistic idea. So, what is necessary for a successful cross-domain and holistic approach in geo and space sciences? Research and science in general become more and more dependent from a rich fundus of multi-domain data sources, related context information and the use of highly advanced technologies in data processing. Such buzzword phrases as Big Data and Deep Learning are reflecting this development. Big Data also addresses the real exponential growing of data and information produced by measurements or simulations. Deep Learning technology may help to detect new patterns and relationships in data describing high sophisticated natural phenomena. And further on, we should not forget science and humanities are only two sides of the same medal in the continuing human process of knowledge discovery. The concept of Open Data or in particular the open access to scientific data is addressing the free and open availability of -at least publicly founded and generated- data. The open availability of data covers the free use, reuse and redistribution of data which have been established with the formation of World Data Centers already more than 50 years ago. So, we should not forget, the foundation for open data is the responsibility of the individual scientist up until the big science institutions and organizations for a sustainable management of data. Other challenges are discovering and collecting the appropriate data, and preferably all of them or at least the majority of the right data. Therefore a network of individual or even better institutional catalog-based and at least

  15. Without Gravity: Designing Science Equipment for the International Space Station and Beyond

    Sato, Kevin Y.

    2016-01-01

    This presentation discusses space biology research, the space flight factors needed to design hardware to conduct biological science in microgravity, and examples of NASA and commercial hardware that enable space biology study.

  16. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  17. Increasing student learning through space life sciences education

    Moreno, Nancy P.; Kyle Roberts, J.; Tharp, Barbara Z.; Denk, James P.; Cutler, Paula H.; Thomson, William A.

    2005-05-01

    Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.

  18. Next Generation Space Telescope Integrated Science Module Data System

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  19. UNH Project SMART 2017: Space Science for High School Students

    Smith, C. W.; Broad, L.; Goelzer, S.; Levergood, R.; Lugaz, N.; Moebius, E.

    2017-12-01

    Every summer for the past 26 years the University of New Hampshire (UNH) has run a month-long, residential outreach program for high school students considering careers in mathematics, science, or engineering. Space science is one of the modules. Students work directly with UNH faculty performing original work with real spacecraft data and hardware and present the results of that effort at the end of the program. This year the student research projects used data from the Messenger, STEREO, and Triana missions. In addition, the students build and fly a high-altitude balloon payload with instruments of their own construction. Students learn circuit design and construction, microcontroller programming, and core atmospheric and space science along with fundamental concepts in space physics and engineering. Our payload design has evolved significantly since the first flight of a simple rectangular box and now involves a stable descent vehicle that does not require a parachute. Our flight hardware includes an on-board flight control computer, in-flight autonomous control and data acquisition of multiple student-built instruments, and real-time camera images sent to ground. This year we developed, built and flew a successful line cutter based on GPS location information that prevents our payload from falling into the ocean while also separating the payload from the balloon remains for a cleaner descent. We will describe that new line cutter design and implementation along with the shielded Geiger counters that we flew as part of our cosmic ray air shower experiment. This is a program that can be used as a model for other schools to follow and that high schools can initiate. More information can be found at .

  20. The Perceptions of Globalization at a Public Research University Computer Science Graduate Department

    Nielsen, Selin Yildiz

    Based on a qualitative methodological approach, this study focuses on the understanding of a phenomenon called globalization in a research university computer science department. The study looks into the participants' perspectives about the department, its dynamics, culture and academic environment as related to globalization. The economic, political, academic and social/cultural aspects of the department are taken into consideration in investigating the influences of globalization. Three questions guide this inquiry: 1) How is the notion of globalization interpreted in this department? 2) How does the perception of globalization influence the department in terms of finances, academics, policies and social life And 3) How are these perceptions influence the selection of students? Globalization and neo-institutional view of legitimacy is used as theoretical lenses to conceptualize responses to these questions. The data include interviews, field notes, official and non-official documents. Interpretations of these data are compared to findings from prior research on the impact of globalization in order to clarify and validate findings. Findings show that there is disagreement in how the notion of globalization is interpreted between the doctoral students and the faculty in the department. This disagreement revealed the attitudes and interpretations of globalization in the light of the policies and procedures related to the department. How the faculty experience globalization is not consistent with the literature in this project. The literature states that globalization is a big part of higher education and it is a phenomenon that causes the changes in the goals and missions of higher education institutions (Knight, 2003, De Witt, 2005). The data revealed that globalization is not the cause for change but more of a consequence of actions that take place in achieving the goals and missions of the department.

  1. Research Progress and Prospect of GNSS Space Environment Science

    YAO Yibin

    2017-10-01

    Full Text Available Troposphere and ionosphere are two important components of the near-earth space environment. They are close to the surface of the earth and have great influence on human life. The developments of Global Navigation Satellite System (GNSS over the past several decades provide a great opportunity for the GNSS-based space environment science. This review summarizes the research progress and prospect of the GNSS-based research of the Earth's troposphere and ionosphere. On the tropospheric perspective, modeling of the key tropospheric parameters and inversion of precipitable water vapor (PWV are dominant researching fields. On the ionospheric perspective, 2D/3D ionospheric models and regional/global ionospheric monitoring are dominant researching fields.

  2. Meeting Classroom Needs: Designing Space Physics Educational Outreach for Science Education Standards

    Urquhart, M. L.; Hairston, M.

    2008-12-01

    As with all NASA missions, the Coupled Ion Neutral Dynamics Investigation (CINDI) is required to have an education and public outreach program (E/PO). Through our partnership between the University of Texas at Dallas William B. Hanson Center for Space Sciences and Department of Science/Mathematics Education, the decision was made early on to design our educational outreach around the needs of teachers. In the era of high-stakes testing and No Child Left Behind, materials that do not meet the content and process standards teachers must teach cannot be expected to be integrated into classroom instruction. Science standards, both state and National, were the fundamental drivers behind the designs of our curricular materials, professional development opportunities for teachers, our target grade levels, and even our popular informal educational resource, the "Cindi in Space" comic book. The National Science Education Standards include much more than content standards, and our E/PO program was designed with this knowledge in mind as well. In our presentation we will describe how we came to our approach for CINDI E/PO, and how we have been successful in our efforts to have CINDI materials and key concepts make the transition into middle school classrooms. We will also present on our newest materials and high school physics students and professional development for their teachers.

  3. Science on the Moon: The Wailing Wall of Space Exploration

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  4. Teaching Planetary Sciences at the Universidad del País Vasco in Spain: The Aula Espazio Gela and its Master in Space Science and Technology

    Hueso, R.; Sanchez-Lavega, A.; Pérez-Hoyos, S.

    2011-12-01

    Planetary science is a highly multidisciplinary field traditionally associated to Astronomy, Physics or Earth Sciences Departments. Spanish universities do not generally offer planetary sciences courses but some departments give courses associated to studies on Astronomy or Geology. We show a different perspective obtained at the Engeneering School at the Universidad del País Vasco in Bilbao, Spain, which offers a Master in Space Science and Technology to graduates in Engineering or Physics. Here we detail the experience acquired in two years of this master which offers several planetary science courses: Solar System Physics, Astronomy, Planetary Atmospheres & Space Weather together with more technical courses. The university also owns an urban observatory in the Engineering School which is used for practical exercises and student projects. The planetary science courses have also resulted in motivating part of the students to do their master thesis in scientific subjects in planetary sciences. Since the students have very different backgrounds their master theses have been quite different: From writing open software tools to detect bolides in video observations of Jupiter atmosphere to the photometric calibration and scientific use or their own Jupiter and Saturn images or the study of atmospheric motions of the Venus' South Polar Vortex using data from the Venus Express spacecraft. As a result of this interaction with the students some of them have been engaged to initiate Ph.D.s in planetary sciences enlarging a relative small field in Spain. Acknowledgements: The Master in Space Science and Technology is offered by the Aula Espazio Gela at the Universidad del País Vasco Engineer School in Bilbao, Spain and is funded by Diputación Foral de Bizkaia.

  5. Internal evaluation of public health department of Semnan university of medical sciences

    Behrad Pour- Mohammadi

    2011-10-01

    Full Text Available Introduction: Internal evaluation is a fundamental determinant to quality development in teachingdepartments and faculties. The purpose of this study was an internal departmental evaluation in the publichealth department of Semnan university of medical sciences (SUMS.Materials and Methods: This work was performed (during 2008-2009 in department of public health ofSUMS utilizing an accreditation model. The assessment covered 9 areas, namely: educational missions andobjectives, management and organization, educational programs, scientific board, students, educationalresources, research activities, assessment and evaluation, and graduates. Questionnaires were developed bythe scientific members of the department. After collecting the data, results were categorized according toGourman scoring scale, from unsatisfied class to very strong class, with the range of 1-5 scores.Results: The mean scores in the 9 evaluation areas were obtained and the rankings were as below:Educational programs area was in strong ranking; educational missions and objectives, scientific board,and assessment and evaluation areas were in good ranking; management and organization area was in morethan satisfied ranking; students area was in satisfied ranking; educational resources and research activitiesareas were in borderline ranking; and finally, the department was ranked as unsatisfied in the graduatesarea.Conclusions: Results showed that by achieved mean of 3.19 in whole of the evaluation areas, the publichealth department has placed in "more than satisfied" class. Although the overall status is acceptable, thereis a need to modify the weak points in the suboptimal areas to improve the educational quality in thisdepartment.

  6. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims

  7. The NASA Sounding Rocket Program and space sciences

    Gurkin, L. W.

    1992-01-01

    High altitude suborbital rockets (sounding rockets) have been extensively used for space science research in the post-World War II period; the NASA Sounding Rocket Program has been on-going since the inception of the Agency and supports all space science disciplines. In recent years, sounding rockets have been utilized to provide a low gravity environment for materials processing research, particularly in the commercial sector. Sounding rockets offer unique features as a low gravity flight platform. Quick response and low cost combine to provide more frequent spaceflight opportunities. Suborbital spacecraft design practice has achieved a high level of sophistication which optimizes the limited available flight times. High data-rate telemetry, real-time ground up-link command and down-link video data are routinely used in sounding rocket payloads. Standard, off-the-shelf, active control systems are available which limit payload body rates such that the gravitational environment remains less than 10(-4) g during the control period. Operational launch vehicles are available which can provide up to 7 minutes of experiment time for experiment weights up to 270 kg. Standard payload recovery systems allow soft impact retrieval of payloads. When launched from White Sands Missile Range, New Mexico, payloads can be retrieved and returned to the launch site within hours.

  8. Strategic plan, 1991: A strategy for leadership in space through excellence in space science and applications

    1991-01-01

    In 1988, the Office of Space Science and Applications (OSSA) developed and published a Strategic Plan for the United States' space science and applications program during the next 5 to 10 years. The Plan presented the proposed OSSA program for the next fiscal year and defined a flexible process that provides the basis for near-term decisions on the allocation of resources and the planning of future efforts. Based on the strategies that have been developed by the advisory committees both of the National Academy of Sciences and of NASA, the Plan balances major, moderate, and small mission initiatives, the utilization of Space Station Freedom, and the requirements for a vital research base. The Plan can be adjusted to accommodate varying budget levels, both those levels that provide opportunities for an expanded science and applications program, and those that constrain growth. SSA's strategic planning is constructed around five actions: establish a set of programmatic themes; establish a set of decision rules; establish a set of priorities for missions and programs within each theme; demonstrate that the strategy can yield a viable program; and check the strategy for consistency with resource constraints. The outcome of this process is a clear, coherent strategy that meets both NASA's and OSSA's goals, that assures realism in long-range planning and advanced technology development, and that provides sufficient resiliency to respond and adapt to both known and unexpected internal and external realities. The OSSA Strategic Plan is revised annually to reflect the approval of new programs, improved understanding of requirements and issues, and any major changes in the circumstances, both within NASA and external to NASA, in which OSSA initiatives are considered.

  9. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  10. Augmenting the Funding Sources for Space Science and the ASTRO-1 Space Telescope

    Morse, Jon

    2015-08-01

    The BoldlyGo Institute was formed in 2013 to augment the planned space science portfolio through philanthropically funded robotic space missions, similar to how some U.S. medical institutes and ground-based telescopes are funded. I introduce BoldlyGo's two current projects: the SCIM mission to Mars and the ASTRO-1 space telescope. In particular, ASTRO-1 is a 1.8-meter off-axis (unobscured) ultraviolet-visible space observatory to be located in a Lagrange point or heliocentric orbit with a wide-field panchromatic camera, medium- and high-resolution spectrograph, and high-contrast imaging coronagraph and/or an accompanying starshade/occulter. It is intended for the post-Hubble Space Telescope era in the 2020s, enabling unique measurements of a broad range of celestial targets, while providing vital complementary capabilities to other ground- and space-based facilities such as the JWST, ALMA, WFIRST-AFTA, LSST, TESS, Euclid, and PLATO. The ASTRO-1 architecture simultaneously wields great scientific power while being technically viable and affordable. A wide variety of scientific programs can be accomplished, addressing topics across space astronomy, astrophysics, fundamental physics, and solar system science, as well as being technologically informative to future large-aperture programs. ASTRO-1 is intended to be a new-generation research facility serving a broad national and international community, as well as a vessel for impactful public engagement. Traditional institutional partnerships and consortia, such as are common with private ground-based observatories, may play a role in the support and governance of ASTRO-1; we are currently engaging interested international organizations. In addition to our planned open guest observer program and accessible data archive, we intend to provide a mechanism whereby individual scientists can buy in to a fraction of the gauranteed observing time. Our next step in ASTRO-1 development is to form the ASTRO-1 Requirements Team

  11. Evaluation of an international doctoral educational program in space life sciences: The Helmholtz Space Life Sciences Research School (SpaceLife) in Germany

    Hellweg, C. E.; Spitta, L. F.; Kopp, K.; Schmitz, C.; Reitz, G.; Gerzer, R.

    2016-01-01

    Training young researchers in the field of space life sciences is essential to vitalize the future of spaceflight. In 2009, the DLR Institute of Aerospace Medicine established the Helmholtz Space Life Sciences Research School (SpaceLife) in cooperation with several universities, starting with 22 doctoral candidates. SpaceLife offered an intensive three-year training program for early-stage researchers from different fields (biology, biomedicine, biomedical engineering, physics, sports, nutrition, plant and space sciences). The candidates passed a multistep selection procedure with a written application, a self-presentation to a selection committee, and an interview with the prospective supervisors. The selected candidates from Germany as well as from abroad attended a curriculum taught in English. An overview of space life sciences was given in a workshop with introductory lectures on space radiation biology and dosimetry, space physiology, gravitational biology and astrobiology. The yearly Doctoral Students' Workshops were also interdisciplinary. During the first Doctoral Students' Workshop, every candidate presented his/her research topic including hypothesis and methods to be applied. The progress report was due after ∼1.5 years and a final report after ∼3 years. The candidates specialized in their subfield in advanced lectures, Journal Clubs, practical trainings, lab exchanges and elective courses. The students attended at least one transferable skills course per year, starting with a Research Skills Development course in the first year, a presentation and writing skills course in the second year, and a career and leadership course in the third year. The whole program encompassed 303 h and was complemented by active conference participation. In this paper, the six years' experience with this program is summarized in order to guide other institutions in establishment of structured Ph.D. programs in this field. The curriculum including elective courses is

  12. Materials Science Research Rack Onboard the International Space Station

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  13. South Dakota Space Grant Consortium: Balancing Indigenous Earth System and Space Science with Western/Contemporary Science

    Bolman, J.; Nall, J.

    2005-05-01

    The South Dakota Space Grant Consortium (SDSGC) was established March 1, 1991 by a NASA Capability Enhancement Grant. Since that time SDSGC has worked to provide earth system and space science education, outreach and services to all students across South Dakota. South Dakota has nine tribes and five Tribal Colleges. This has presented a tremendous opportunity to develop sustainable equitable partnerships and collaborations. SDSGC believes strongly in developing programs and activities that highlight and reinforce the balance of Indigenous science and ways of knowing with current findings in Western/Contemporary Science. This blending of science and culture creates a learning community where individuals especially students, can gain confidence and pride in their unique skills and abilities. Universities are also witnessing the accomplishments and achievements of students who are able to experience a tribal environment and then carry that experience to a college/university/workplace and significantly increase the learning achievement of all. The presentation will highlight current Tribal College and Tribal Community partnerships with the Rosebud Sioux Reservation (Sinte Gleska University), Pine Ridge Indian Reservation (Oglala Lakota College), Standing Rock Sioux Reservation (Sitting Bull College) and Cheyenne River Sioux Reservation (Si Tanka) amongst others. Programs and activities to be explained during the presentation include but not limited to: NASA Workforce Native Connections, Scientific Knowledge for Indian Learning and Leadership (SKILL), NSF "Bridges to Success" Summer Research Program, NSF "Fire Ecology" Summer Research Experience, as well as geospatial and space science programs for students and general community members. The presentation will also cover the current initiatives underway through NASA Workforce Development. These include: partnering with the Annual He Sapa Wacipi (Black Hills Pow Wow - attendance of 14,000 Natives) to host Native Space

  14. Using Space Science to Excite Hispanic Students in STEM

    Reiff, P. H.; Galindo, C.; Garcia, J.; Morris, P. A.; Allen, J. S.

    2013-05-01

    Over the past ten years, NASA and its cosponsors have held an annual "NASA Space Science Day" at the University of Texas at Brownsville. The event is held over two days, with the Friday evening program featuring a space scientist or astronaut, this year Joe Acaba, giving a public lecture (plus a free planetarium show). The Saturday event starts with a keynote speech from the same speaker. Then the students circulate among six or seven hands-on workshops, plus a scheduled trip to the "Demo room" where NASA missions show their materials, and a planetarium show in the Discovery Dome. The students, 4th through 8th graders, are drawn from schools all across south Texas, and have included students coming as far as Zapata, with a four-hour bus ride each way. Over the ten years of the program, more than 5000 students have been reached. Most of the hands-on activities are led by undergraduate student mentors. The university students (42 in 2013) received science and engineering content and mentor training on the activities at Johnson Space Center before the January event. In addition, an additional 40 local high school students helped with activities and with escorting each group of students from one activity station to the next. The program has been so successful that students have "graduated" from participant, to volunteer, and now to University student mentor. Most of the mentors go on to complete a degree in a STEM discipline, and many have gone on to graduate school. Thus the mentors not only help with the program, they are beneficiaries as well. The program is being expanded to reach other underserved communities around the US, with its first "expansion" event held in Utah in 2011.; Puerto Rican Astronaut Joe Acaba and the Discovery Dome were two of the highlights for the students.

  15. PREFACE: International Symposium on Physical Sciences in Space

    Meyer, Andreas; Egry, Ivan

    2011-12-01

    ISPS is the major international scientific forum for researchers in physics utilizing the space environment, in particular microgravity. It is intended to inspire and encourage cross-cutting discussions between different scientific communities working in the same environment. Contributions discussing results of experiments carried out on drop towers, parabolic aircraft flights, sounding rockets, unmanned recoverable capsules and, last but not least, the International Space Station ISS, are the backbone of this conference series, complemented by preparatory ground-based work, both experimentally and theoretically. The first International Symposium on Physical Sciences in Space (ISPS) sponsored by the International Microgravity Strategic Planning Group (IMSPG) took place in 2000 in Sorrento, Italy. IMSPG seeks to coordinate the planning of space for research in physical sciences by space agencies worldwide. AEB (Brazil), ASI (Italy), CNES (France), CSA (Canada), DLR (Germany), ESA (Europe), JAXA (Japan), NASA (USA), NSAU (Ukraine) and RSA (Russia) are members, and CNSA (China) and ISRO (India) are also invited to join IMSPG meetings. ISPS-4 was the fourth symposium in that series, following ISPS-2 organized by CSA in 2004 in Toronto, Canada, and ISPS-3 organized in 2007 by JAXA in Nara, Japan. ISPS-4 was jointly organized by ESA and DLR on behalf of the IMSPG and was held in Bonn from 11-15 July 2011. 230 participants from 17 different countries attended ISPS-4. Recent microgravity experiments were presented, analysed, and set in context to results from Earth bound experiments in 16 plenary and 68 topical talks. Lively discussions continued during two dedicated poster sessions and at the exhibition booths of space industry and research centers with new flight hardware on display. The oral presentations at ISPS4 were selected exclusively on the basis of scientific merit, as evidenced through the submitted abstracts. The selection was performed by the International

  16. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Austin, S. A.

    2009-12-01

    This presentation describes the transformative impact of student involvement in suborbital and Cubesat investigations under the MECSAT program umbrella at Medgar Evers College (MEC). The programs evolved from MUSPIN, a NASA program serving minority institutions. The MUSPIN program supported student internships for the MESSENGER and New Horizons missions at the Applied Physics Lab at John Hopkins University. The success of this program motivated the formation of smaller-scale programs at MEC to engage a wider group of minority students using an institutional context. The programs include an student-instrument BalloonSAT project, ozone investigations using sounding vehicles and a recently initiated Cubesat program involving other colleges in the City University of New York (CUNY). The science objectives range from investigations of atmospheric profiles, e.g. temperature, humidity, pressure, and CO2 to ozone profiles in rural and urban areas including comparisons with Aura instrument retrievals to ionospheric scintillation experiments for the Cubesat project. Through workshops and faculty collaborations, the evolving programs have mushroomed to include the development of parallel programs with faculty and students at other minority institutions both within and external to CUNY. The interdisciplinary context of these programs has stimulated student interest in Earth and Space Science and includes the use of best practices in retention and pipelining of underrepresented minority students in STEM disciplines. Through curriculum integration initiatives, secondary impacts are also observed supported by student blogs, social networking sites, etc.. The program continues to evolve including related student internships at Goddard Space Flight Center and the development of a CUNY-wide interdisciplinary team of faculty targeting research opportunities for undergraduate and graduate students in Atmospheric Science, Space Weather, Remote Sensing and Astrobiology primarily for

  17. Game Changing: NASA's Space Launch System and Science Mission Design

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  18. Prospects for Interdisciplinary Science Aboard the International Space Station

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  19. U.S. Department of the Interior South Central Climate Science Center strategic science plan, 2013--18

    Winton, Kim T.; Dalton, Melinda S.; Shipp, Allison A.

    2013-01-01

    The Department of the Interior (DOI) recognizes and embraces the unprecedented challenges of maintaining our Nation’s rich natural and cultural resources in the 21st century. The magnitude of these challenges demands that the conservation community work together to develop integrated adaptation and mitigation strategies that collectively address the impacts of climate change and other landscape-scale stressors. On September 14, 2009, DOI Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010) entitled, “Addressing the Impacts of Climate Change on America’s Water, Land, and Other Natural and Cultural Resources.” The Order establishes the foundation for two partner-based conservation science entities to address these unprecedented challenges: Climate Science Centers (CSCs and Landscape Conservation Cooperatives (LCCs). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase understanding of climate change and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. Eight CSCs have been established and are managed through the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC); each CSC works in close collaboration with their neighboring CSCs, as well as those across the Nation, to ensure the best and most efficient science is produced. The South Central CSC was established in 2012 through a cooperative agreement with the University of Oklahoma, Texas Tech University, Louisiana State University, the Chickasaw Nation, the Choctaw Nation of Oklahoma, Oklahoma State University, and NOAA’s Geophysical Fluid Dynamics Lab; hereafter termed the ”Consortium” of the South Central CSC. The Consortium has a broad expertise in the physical, biological, natural, and social sciences to address impacts of climate change on land, water, fish and wildlife, ocean, coastal, and

  20. The Hudson's Bay Company as a context for science in the Columbia Department.

    Schefke, Brian

    2008-01-01

    This article aims to elucidate and analyze the links between science, specifically natural history, and the imperialist project in what is now the northwestern United States and western Canada. Imperialism in this region found its expression through institutions such as the Hudson's Bay Company (HBC). I examine the activities of naturalists such as David Douglas and William Tolmie Fraser in the context of the fur trade in the Columbia Department. Here I show how natural history aided Britain in achieving its economic and political goals in the region. The key to this interpretation is to extend the role of the HBC as an imperial factor to encompass its role as a patron for natural history. This gives a better understanding of the ways in which imperialism--construed as mercantile, rather than military--delineated research priorities and activities of the naturalists who worked in the Columbia Department.

  1. ESA is now a major player in global space science

    1997-07-01

    * Results from the star-fixing satellite Hipparcos, released this summer to the world's astronomers, give the positions and motions of 118,000 stars a hundred times more accurately than ever before. * Every day the Infrared Space Observatory, ISO, examines 45 cosmic objects on average at many different wavelengths never observable before, giving fresh insights into cosmic history and chemistry. * Invaluable new knowledge of the Sun comes from SOHO, the Solar and Heliospheric Observatory, which is the first spacecraft able to observe the Sun's deep interior as well as its stormy surface and atmosphere. Besides these missions making present headlines, several other spacecraft are helping to fulfil ESA's scientific objectives. * 2 - * The launch in October 1997 of ESA's probe Huygens, aboard the Cassini spacecraft bound for Saturn, foreshadows a breakthrough in planetary science in 2004. That is when Huygens will carry its scientific instruments into the unique and puzzling atmosphere of Saturn's moon Titan. * Ulysses, also built in Europe, is exploring hitherto unknown regions of space, after making the first-ever visit to the Sun's polar regions in 1994-95. It will return to the Sun in 2000-2001, to observe the effects of the climax of solar activity due at that time. * The Cluster 2 mission, announced in April 1997 and to be launched in 2000, will explore the Earth's space environment far more throughly than ever before. ESA's decision to replace the four Cluster satellites lost in a launch accident in 1996 ensures that Europe will continue as the leader in solar-terrestrial research in space. * An example of the three unique 58-mirror X-ray telescopes for the XMM mission was unveiled for the press in May 1997. When it goes into orbit in 1999 XMM will make, in seconds, observations of cosmic objects that took hours with previous X-ray astronomy missions. * The Hubble Space Telescope, in which ESA is a partner, continues to deliver the sharpest pictures of the

  2. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  3. Does the Constellation Program Offer Opportunities to Achieve Space Science Goals in Space?

    Thronson, Harley A.; Lester, Daniel F.; Dissel, Adam F.; Folta, David C.; Stevens, John; Budinoff, Jason G.

    2008-01-01

    Future space science missions developed to achieve the most ambitious goals are likely to be complex, large, publicly and professionally very important, and at the limit of affordability. Consequently, it may be valuable if such missions can be upgraded, repaired, and/or deployed in space, either with robots or with astronauts. In response to a Request for Information from the US National Research Council panel on Science Opportunities Enabled by NASA's Constellation System, we developed a concept for astronaut-based in-space servicing at the Earth-Moon L1,2 locations that may be implemented by using elements of NASA's Constellation architecture. This libration point jobsite could be of great value for major heliospheric and astronomy missions operating at Earth-Sun Lagrange points. We explored five alternative servicing options that plausibly would be available within about a decade. We highlight one that we believe is both the least costly and most efficiently uses Constellation hardware that appears to be available by mid-next decade: the Ares I launch vehicle, Orion/Crew Exploration Vehicle, Centaur vehicle, and an airlock/servicing node developed for lunar surface operations. Our concept may be considered similar to the Apollo 8 mission: a valuable exercise before descent by astronauts to the lunar surface.

  4. Factors Affecting Academic Dishonesty in the Space of Social Science Education (A Case Study of Public Universities in Tehran

    Masoumeh Qarakhani

    2016-09-01

    Full Text Available Academic Dishonesty is one of the important issues in the higher education system of Iran, and reducing or preventing it requires identifying the factors which have an impact on it. The present study has analyzed the perceptions and understandings of PhD students in social science fields, who have a wider experience of scientific socialization in the process of education, with the aim of identifying the factors influencing academic dishonesty in the space of social science in Iran. The findings of this research show that the factors influencing academic dishonesty in the space of social science education can be detected at two individual and structural levels. At the structural level, sources and rules, and at the individual level, academic dishonesty among three groups of actors in educational space, i.e. professors, students and managers (heads of departments and faculties, with reference to their individual and personality characteristics, have paved the way for academic dishonesty, or have resulted in its occurrence. In the framework of a combination of actor/structure in explaining social phenomena, the factors influencing academic dishonesty and non-conformity to the norms of the ethics of science in the educational space can be reduced neither to the role of the structure nor that of the actor. Dishonesty in the ethics of science in social science education and the factors affecting them can be explained in the light of a combination of structure and actor.

  5. Promotion: Study of the Library of the department of library and information science and book

    Andreja Nagode

    2003-01-01

    Full Text Available The contribution presents basic information about academic libraries and their promotion. Librarians should have promotion knowledge since they have to promote and market their libraries. The paper presents the definition of academic libraries, their purpose, objectives and goals. Marketing and promotion in academic libraries are defined. The history of academic libraries and their promotion are described. The contribution presents results and the interpretation of the research, based on the study of users of the Library of the Department of Library and Information Science and Book studies. A new promotion plan for libraries based on the analysis of the academic library environment is introduced.

  6. The Prevalence of Pemphigus (Razi Hospital and Department of Oral Pathology, Tehran University of Medical Sciences

    Eshghyar N

    1999-12-01

    Full Text Available The aim of this retrospective statistical study was to determine the prevalcence and frequency of"nage and sex distributions of pemphigus disease. Pemphigus disease classified as autoimmune bullous"ndermatoses which is a chronic mucocutaneous disease."nThis study was performed in Razi Hospital and department of oral pathology of dental school, Tehran"nUniversity of Medical Sciences. The most frequently effected area was buccal moucosa of oral cavity. The"nmost rate of recurrence was found in oral cavity which being more common in middle age females (25-44"nyears.

  7. Calling Taikong a strategy report and study of China's future space science missions

    Wu, Ji

    2017-01-01

    This book describes the status quo of space science in China, details the scientific questions to be addressed by the Chinese space science community in 2016-2030, and proposes key strategic goals, space science programs and missions, the roadmap and implementation approaches. Further, it explores the supporting technologies needed and provides an outlook of space science beyond the year 2030. “Taikong” means “outer space” in Chinese, and space science is one of the most important areas China plans to develop in the near future. This book is authored by Ji Wu, a leader of China's space science program, together with National Space Science Center, Chinese Academy of Sciences, a leading institute responsible for planning and managing most of China’s space science missions. It also embodies the viewpoints shared by many space scientists and experts on future space science development. Through this book, general readers and researchers alike will gain essential insights into the current developments an...

  8. Examination of the Transfer of Astronomy and Space Sciences Knowledge to Daily Life

    Emrahoglu, Nuri

    2017-01-01

    In this study, it was aimed to determine the levels of the ability of science teaching fourth grade students to transfer their knowledge of astronomy and space sciences to daily life within the scope of the Astronomy and Space Sciences lesson. For this purpose, the research method was designed as the mixed method including both the quantitative…

  9. Science is Cool with NASA's "Space School Musical"

    Asplund, S.

    2011-12-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery Program collaborated with KidTribe to create "Space School Musical," an innovative approach to teaching about the solar system that combines science content with music, fun lyrics, and choreography. It's an educational "hip-hopera" that moves and grooves its way into the minds and memories of students and educators alike. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. "Space School Musical" captures students attention as it brings the solar system to life, introducing the planets, moons, asteroids and more. The musical uses many different learning styles, helping to assure retention. Offering students an engaging, creative, and interdisciplinary learning opportunity helps them remember the content and may lead them to wonder about the universe around them and even inspire children to want to learn more, to dare to consider they can be the scientists, technologists, engineers or mathematicians of tomorrow. The unique Activity Guide created that accompanies "Space School Musical" includes 36 academic, fitness, art, and life skills lessons, all based on the content in the songs. The activities are designed to be highly engaging while helping students interact with the information. Whether students absorb information best with their eyes, ears, or body, each lesson allows for their learning preferences and encourages them to interact with both the content and each other. A guide on How to Perform the Play helps instructors lead students in performing their own version of the musical. The guide has suggestions to help with casting, auditions, rehearsing, creating the set and costumes, and performing. The musical is totally flexible - the entire play can be performed or just a few selected numbers; students can sing to the karaoke versions or lip-sync to the original cast. After learning about

  10. Space Science Outreach in the Virtual World of Second Life

    Crider, Anthony W.; International Spaceflight Museum

    2006-12-01

    The on-line "game" of Second Life allows users to construct a highly detailed and customized environment. Users often pool talents and resources to construct virtual islands that focus on their common interest. One such group has built the International Spaceflight Museum, committed to constructing and displaying accurate models of rockets, spacecraft, telescopes, and planetariums. Current exhibits include a Saturn V rocket, a Viking lander on Mars, Spaceship One, the New Horizons mission to the Kuiper Belt, and a prototype of the Orion crew exploration vehicle. This museum also hosts public lectures, shuttle launch viewings, and university astronomy class projects. In this presentation, I will focus on how space science researchers and educators may take advantage of this new resource as a means to engage the public.

  11. 2017 International Conference on Space Science and Communication

    2017-05-01

    Table of Content Preface 2017 International Conference on Space Science and Communication “Space Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration & Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  12. 2017 International Conference on Space Science and Communication

    2017-01-01

    Table of Content Preface 2017 International Conference on Space Science and Communication “Space Science for Sustainability” The present volume of the Journal of Physics: Conference Series represents contributions from participants of the 2017 International Conference on Space Science and Communication (IconSpace2017) held in Kuala Lumpur, Malaysia from May 3-5, 2017. The conference was organized by Space Science Centre (ANGKASA), Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM) with a theme on “Space Science for Sustainability”. IconSpace2017 is the fifth series of conferences devoted to bringing researchers from around the world together to present and discuss their recent research results related to space science and communication, and also to provide an international platform for future research collaborations. This biennial international conference is an open forum where members in the field and others can meet in one place to discuss their current research findings. The technical program of this conference includes four keynote speakers, invited speakers, and the presentation of papers and poster. The track of the session includes Astrophysics and Astronomy, Atmospheric and Magnetospheric Sciences, Geoscience and Remote Sensing, Satellite and Communication Technology, and Interdisciplinary Space Science. Apart from the main conference, there will be a special talk on “Space Exploration and Updates” on 5 May 2017. More than 100 scientists and engineers from various academic, government, and industrial institutions in Europe, Asia, Australia, Africa, and the Americas attended the conference. The papers for this conference were selected after a rigorous review process. The papers were all evaluated by international and local reviewers and at least two reviewers were required to evaluate each paper. We should like to offer our thanks for the professionalism of the organizing committee, authors, reviewers, and volunteers deserve much

  13. Meaningful experiences in science education: Engaging the space researcher in a cultural transformation to greater science literacy

    Morrow, Cherilynn A.

    1993-01-01

    The visceral appeal of space science and exploration is a very powerful emotional connection to a very large and diverse collection of people, most of whom have little or no perspective about what it means to do science and engineering. Therein lies the potential of space for a substantially enhanced positive impact on culture through education. This essay suggests that through engaging more of the space research and development community in enabling unique and 'meaningful educational experiences' for educators and students at the pre-collegiate levels, space science and exploration can amplify its positive feedback on society and act as an important medium for cultural transformation to greater science literacy. I discuss the impact of space achievements on people and define what is meant by a 'meaningful educational experience,' all of which points to the need for educators and students to be closer to the practice of real science. I offer descriptions of two nascent science education programs associated with NASA which have the needed characteristics for providing meaningful experiences that can cultivate greater science literacy. Expansion of these efforts and others like it will be needed to have the desired impact on culture, but I suggest that the potential for the needed resources is there in the scientific research communities. A society in which more people appreciate and understand science and science methods would be especially conducive to human progress in space and on Earth.

  14. The National Space Science and Technology Center's Education and Public Outreach Program

    Cox, G. N.; Denson, R. L.

    2004-12-01

    The objective of the National Space Science and Technology Center's (NSSTC) Education and Public Outreach program (EPO) is to support K-20 education by coalescing academic, government, and business constituents awareness, implementing best business/education practices, and providing stewardship over funds and programs that promote a symbiotic relationship among these entities, specifically in the area of K-20 Science, Technology, Engineering, and Mathematics (STEM) education. NSSTC EPO Program's long-term objective is to showcase its effective community-based integrated stakeholder model in support of STEM education and to expand its influence across the Southeast region for scaling ultimately across the United States. The Education and Public Outreach program (EPO) is coordinated by a supporting arm of the NSSTC Administrative Council called the EPO Council (EPOC). The EPOC is funded through federal, state, and private grants, donations, and in-kind contributions. It is comprised of representatives of NSSTC Research Centers, both educators and scientists from the Alabama Space Science and Technology Alliance (SSTA) member institutions, the Alabama Space Grant Consortium and the NASA Marshall Space Flight Center's (MSFC) Education Office. Through its affiliation with MSFC and the SSTA - a consortium of Alabama's research universities that comprise the NSSTC, EPO fosters the education and development of the next generation of Alabama scientists and engineers by coordinating activities at the K-20 level in cooperation with the Alabama Department of Education, the Alabama Commission on Higher Education, and Alabama's businesses and industries. The EPO program's primary objective is to be Alabama's premiere organization in uniting academia, government, and private industry by way of providing its support to the State and Federal Departments of Education involved in systemic STEM education reform, workforce development, and innovative uses of technology. The NSSTC EPO

  15. Professional Ethics and Organizational Commitment Among the Education Department Staff of Tabriz University of Medical Sciences

    Ali Imani

    2017-06-01

    Full Text Available Background: Concepts such as organizational commitment and employees’ and managers’ ethics provide decision-makers and policy makers with potentially useful information which can result in increasing organizational efficiency and effectiveness. This study aimed to explore the relationship between professional ethics and organizational commitment among the staff working in the education departments of Tabriz University of Medical Sciences. Methods: This cross-sectional study was conducted in 2015. The study population consisted of all staff working as educational experts in the education departments of Tabriz University of Medical Sciences (N = 65. Data collection instruments used in this study were two standard questionnaires on professional ethics and organizational commitment. SPSS software version 21 was used to analyze the data. Results: According to the results, mean scores obtained for professional ethics and organizational commitment were (91.57± 9.13 (95% CI, 89.23-93.91 and (64.89 ± 10.37 (95% CI, 62.2367.54, respectively. A significant relationship was observed between professional ethics and organizational commitment among the educational experts working in Tabriz University of Medical Sciences (correlation coefficient = 0.405 (P = 0.001 (at 95% confidence level. Furthermore, there was a significant relationship between professional ethics and work experience (P = 0.043. The highest level of professional ethics observed was associated with those participants having a work experience of ranging from 6 to 10 years. Individuals with fulltime employment scored the highest in organizational commitment. Conclusion: Educational experts possessed a high level of professional ethics. The finding provides the grounds for promoting organizational commitment, which will lead to higher levels of organizational effectiveness.

  16. Science Outreach at NASA's Marshall Space Flight Center

    Lebo, George

    2002-07-01

    At the end of World War II Duane Deming, an internationally known economist enunciated what later came to be called "Total Quality Management" (TQM). The basic thrust of this economic theory called for companies and governments to identify their customers and to do whatever was necessary to meet their demands and to keep them satisfied. It also called for companies to compete internally. That is, they were to build products that competed with their own so that they were always improving. Unfortunately most U.S. corporations failed to heed this advice. Consequently, the Japanese who actively sought Deming's advice and instituted it in their corporate planning, built an economy that outstripped that of the U.S. for the next three to four decades. Only after U.S. corporations reorganized and fashioned joint ventures which incorporated the tenets of TQM with their Japanese competitors did they start to catch up. Other institutions such as the U.S. government and its agencies and schools face the same problem. While the power of the U.S. government is in no danger of being usurped, its agencies and schools face real problems which can be traced back to not heeding Deming's advice. For example, the public schools are facing real pressure from private schools and home school families because they are not meeting the needs of the general public, Likewise, NASA and other government agencies find themselves shortchanged in funding because they have failed to convince the general public that their missions are important. In an attempt to convince the general public that its science mission is both interesting and important, in 1998 the Science Directorate at NASA's Marshall Space Flight Center (MSFC) instituted a new outreach effort using the interact to reach the general public as well as the students. They have called it 'Science@NASA'.

  17. Interactive visualization of Earth and Space Science computations

    Hibbard, William L.; Paul, Brian E.; Santek, David A.; Dyer, Charles R.; Battaiola, Andre L.; Voidrot-Martinez, Marie-Francoise

    1994-01-01

    Computers have become essential tools for scientists simulating and observing nature. Simulations are formulated as mathematical models but are implemented as computer algorithms to simulate complex events. Observations are also analyzed and understood in terms of mathematical models, but the number of these observations usually dictates that we automate analyses with computer algorithms. In spite of their essential role, computers are also barriers to scientific understanding. Unlike hand calculations, automated computations are invisible and, because of the enormous numbers of individual operations in automated computations, the relation between an algorithm's input and output is often not intuitive. This problem is illustrated by the behavior of meteorologists responsible for forecasting weather. Even in this age of computers, many meteorologists manually plot weather observations on maps, then draw isolines of temperature, pressure, and other fields by hand (special pads of maps are printed for just this purpose). Similarly, radiologists use computers to collect medical data but are notoriously reluctant to apply image-processing algorithms to that data. To these scientists with life-and-death responsibilities, computer algorithms are black boxes that increase rather than reduce risk. The barrier between scientists and their computations can be bridged by techniques that make the internal workings of algorithms visible and that allow scientists to experiment with their computations. Here we describe two interactive systems developed at the University of Wisconsin-Madison Space Science and Engineering Center (SSEC) that provide these capabilities to Earth and space scientists.

  18. NASA FDL: Accelerating Artificial Intelligence Applications in the Space Sciences.

    Parr, J.; Navas-Moreno, M.; Dahlstrom, E. L.; Jennings, S. B.

    2017-12-01

    NASA has a long history of using Artificial Intelligence (AI) for exploration purposes, however due to the recent explosion of the Machine Learning (ML) field within AI, there are great opportunities for NASA to find expanded benefit. For over two years now, the NASA Frontier Development Lab (FDL) has been at the nexus of bright academic researchers, private sector expertise in AI/ML and NASA scientific problem solving. The FDL hypothesis of improving science results was predicated on three main ideas, faster results could be achieved through sprint methodologies, better results could be achieved through interdisciplinarity, and public-private partnerships could lower costs We present select results obtained during two summer sessions in 2016 and 2017 where the research was focused on topics in planetary defense, space resources and space weather, and utilized variational auto encoders, bayesian optimization, and deep learning techniques like deep, recurrent and residual neural networks. The FDL results demonstrate the power of bridging research disciplines and the potential that AI/ML has for supporting research goals, improving on current methodologies, enabling new discovery and doing so in accelerated timeframes.

  19. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    National Aeronautics and Space Administration — The NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to detect the...

  20. A Look at the Definition, Pedagogy, and Evaluation of Scientific Literacy within the Natural Science Departments at a Southwestern University

    Flynn, Deborah Kay

    2011-01-01

    This study focuses on the promotion of scientific literacy within the natural science departments and how faculty within these departments define, incorporate, and evaluate scientific literacy in their courses. The researcher examined data from participant interviews, observations, and archival material from courses taught by the participants. The…

  1. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  2. The Space Weather Monitor Project: Bringing Hands-on Science to Students of the Developing World for the IHY2007

    Scherrer, D. K.; Rabello-Soares, M. C.; Morrow, C.

    2006-08-01

    Stanford's Solar Center, Electrical Engineering Department, and local educators have developed inexpensive Space Weather Monitors that students around the world can use to track solar-induced changes to the Earth's ionosphere. Through the United Nations Basic Space Science Initiative (UNBSSI) and the IHY Education and Public Outreach Program, our Monitors are being deployed to 191 countries for the International Heliophysical Year, 2007. In partnership with Chabot Space and Science Center, we are designing and developing classroom and educator support materials to accompany the distribution. Materials will be culturally sensitive and will be translated into the six official languages of the United Nations (Arabic, Chinese, English, French, Russian, and Spanish). Monitors will be provided free of charge to developing nations and can be set up anywhere there is access to power.

  3. Opportunities for Space Science Education Using Current and Future Solar System Missions

    Matiella Novak, M.; Beisser, K.; Butler, L.; Turney, D.

    2010-12-01

    The Education and Public Outreach (E/PO) office in The Johns Hopkins University Applied Physics Laboratory (APL) Space Department strives to excite and inspire the next generation of explorers by creating interactive education experiences. Since 1959, APL engineers and scientists have designed, built, and launched 61 spacecraft and over 150 instruments involved in space science. With the vast array of current and future Solar System exploration missions available, endless opportunities exist for education programs to incorporate the real-world science of these missions. APL currently has numerous education and outreach programs tailored for K-12 formal and informal education, higher education, and general outreach communities. Current programs focus on Solar System exploration missions such as the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Miniature Radio Frequency (Mini-RF) Moon explorer, the Radiation Belt Storm Probes (RBSP), New Horizons mission to Pluto, and the Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite, to name a few. Education and outreach programs focusing on K-12 formal education include visits to classrooms, summer programs for middle school students, and teacher workshops. APL hosts a Girl Power event and a STEM (Science, Technology, Engineering, and Mathematics) Day each year. Education and outreach specialists hold teacher workshops throughout the year to train educators in using NASA spacecraft science in their lesson plans. High school students from around the U.S. are able to engage in NASA spacecraft science directly by participating in the Mars Exploration Student Data Teams (MESDT) and the Student Principal Investigator Programs. An effort is also made to generate excitement for future missions by focusing on what mysteries will be solved. Higher education programs are used to recruit and train the next generation of scientists and engineers. The NASA/APL Summer Internship Program offers a

  4. Department of Defense Space Program: An Executive Overview for FY 1998-2003

    1997-01-01

    .... Many occupy the full attention of dedicated experts across the space community as we look to a new century in which space products and services are increasingly integrated into our daily lives...

  5. Department of Energy Mathematical, Information, and Computational Sciences Division: High Performance Computing and Communications Program

    NONE

    1996-11-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, The DOE Program in HPCC), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW).

  6. Department of Energy: MICS (Mathematical Information, and Computational Sciences Division). High performance computing and communications program

    NONE

    1996-06-01

    This document is intended to serve two purposes. Its first purpose is that of a program status report of the considerable progress that the Department of Energy (DOE) has made since 1993, the time of the last such report (DOE/ER-0536, {open_quotes}The DOE Program in HPCC{close_quotes}), toward achieving the goals of the High Performance Computing and Communications (HPCC) Program. The second purpose is that of a summary report of the many research programs administered by the Mathematical, Information, and Computational Sciences (MICS) Division of the Office of Energy Research under the auspices of the HPCC Program and to provide, wherever relevant, easy access to pertinent information about MICS-Division activities via universal resource locators (URLs) on the World Wide Web (WWW). The information pointed to by the URL is updated frequently, and the interested reader is urged to access the WWW for the latest information.

  7. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  8. Teleradiology in neurosurgery, based on the experience of the Department of Neurosurgery, Polish Academy of Sciences

    Glowacki, M.; Czernicki, Z.; Jurkiewicz, J.; Walasek, N.; Czernicki, Z.; Jurkiewicz, J.

    2005-01-01

    The aim of the study was to analyze experience with the teleconsulting system applied at the Department of Neurosurgery, Polish Academy of Sciences (PAN) and to establish the best medical and economic conditions for teleradiological networks. The presented system is based on frame-grabbing technology and is operated by MultiView TM 2.0D (eMeD, Tech.) software. Computed tomography (CT) examinations performed in the hospitals in Ciechanow or Ostroleka are transmitted to the teleconsulting center in the Department of Neurosurgery, PAN. Regular telephone lines with a transmission speed of 56 kbps are utilized. One whole CT examination is transmitted in 5 to 7 minutes. All clinical information is reported during telephone conversation optimized by a specific questionnaire which helps improve arrangements for neurosurgical intervention and to document consultations. The usefulness of mobile phones and e mail in teleradiology was also evaluated.The period from December 1996 to April 2002 was studied. During this time, 931 transmission were performed. The most common were control examinations (26%), followed by neurotrauma (19%), spontaneous intracerebral hemorrhage (18%), neurooncology (13%), subarachnoidal hemorrhage (7%), hydrocephalus (5%), cerebral ischemia (3%), and those without any intracranial pathologies (4%). Disturbances were observed in 4% of transmissions. Seventy percent of the consulted patients were treated conservatively in remote hospitals. Thirty percent of the cases were admitted to our department, of whom 86% were operated. Mobile phones were found to be a useful tool in urgent neurosurgical consultations. Sending compressed CT images via e mail provided sufficient quality,but requires a particular technical background. The system allows for: 1) proper qualification for neurosurgical treatment, 2) fast and easy access to consultations with specialists, 3) patient follow-up (repeated consultations),4) avoidance of unnecessary transportation, and 5

  9. The Science and Technology of Future Space Missions

    Bonati, A.; Fusi, R.; Longoni, F.

    1999-12-01

    The future space missions span over a wide range of scientific objectives. After different successful scientific missions, other international cornerstone experiments are planned to study of the evolution of the universe and of the primordial stellar systems, and our solar system. Space missions for the survey of the microwave cosmic background radiation, deep-field search in the near and mid-infrared region and planetary exploration will be carried out. Several fields are open for research and development in the space business. Three major categories can be found: detector technology in different areas, electronics, and software. At LABEN, a Finmeccanica Company, we are focusing the technologies to respond to this challenging scientific demands. Particle trackers based on silicon micro-strips supported by lightweight structures (CFRP) are studied. In the X-ray field, CCD's are investigated with pixels of very small size so as to increase the spatial resolution of the focal plane detectors. High-efficiency and higly miniaturized high-voltage power supplies are developed for detectors with an increasingly large number of phototubes. Material research is underway to study material properties at extreme temperatures. Low-temperature mechanical structures are designed for cryogenic ( 20 K) detectors in order to maintain the high precision in pointing the instrument. Miniaturization of front end electronics with low power consumption and high number of signal processing channels is investigated; silicon-based microchips (ASIC's) are designed and developed using state-of-the-art technology. Miniaturized instruments to investigate the planets surface using X-Ray and Gamma-Ray scattering techniques are developed. The data obtained from the detectors have to be processed, compressed, formatted and stored before their transmission to ground. These tasks open up additional strategic areas of development such as microprocessor-based electronics for high-speed and parallel data

  10. ESSC-ESF Position Paper-Science-Driven Scenario for Space Exploration: Report from the European Space Sciences Committee (ESSC)

    Worms, Jean-Claude; Lammer, Helmut; Barucci, Antonella; Beebe, Reta; Bibring, Jean-Pierre; Blamont, Jacques; Blanc, Michel; Bonnet, Roger; Brucato, John R.; Chassefière, Eric; Coradini, Angioletta; Crawford, Ian; Ehrenfreund, Pascale; Falcke, Heino; Gerzer, Rupert; Grady, Monica; Grande, Manuel; Haerendel, Gerhard; Horneck, Gerda; Koch, Bernhard; Lobanov, Andreï; Lopez-Moreno, José J.; Marco, Robert; Norsk, Peter; Rothery, Dave; Swings, Jean-Pierre; Tropea, Cam; Ulamec, Stephan; Westall, Frances; Zarnecki, John

    2009-02-01

    In 2005 the then ESA Directorate for Human Spaceflight, Microgravity and Exploration (D-HME) commissioned a study from the European Science Foundation's (ESF) European Space Sciences Committee (ESSC) to examine the science aspects of the Aurora Programme in preparation for the December 2005 Ministerial Conference of ESA Member States, held in Berlin. A first interim report was presented to ESA at the second stakeholders meeting on 30 and 31 May 2005. A second draft report was made available at the time of the final science stakeholders meeting on 16 September 2005 in order for ESA to use its recommendations to prepare the Executive proposal to the Ministerial Conference. The final ESSC report on that activity came a few months after the Ministerial Conference (June 2006) and attempted to capture some elements of the new situation after Berlin, and in the context of the reduction in NASA's budget that was taking place at that time; e.g., the postponement sine die of the Mars Sample Return mission. At the time of this study, ESSC made it clear to ESA that the timeline imposed prior to the Berlin Conference had not allowed for a proper consultation of the relevant science community and that this should be corrected in the near future. In response to that recommendation, ESSC was asked again in the summer of 2006 to initiate a broad consultation to define a science-driven scenario for the Aurora Programme. This exercise ran between October 2006 and May 2007. ESA provided the funding for staff support, publication costs, and costs related to meetings of a Steering Group, two meetings of a larger ad hoc group (7 and 8 December 2006 and 8 February 2007), and a final scientific workshop on 15 and 16 May 2007 in Athens. As a result of these meetings a draft report was produced and examined by the Ad Hoc Group. Following their endorsement of the report and its approval by the plenary meeting of the ESSC, the draft report was externally refereed, as is now normal practice

  11. Advanced Biotelemetry Systems for Space Life Sciences: PH Telemetry

    Hines, John W.; Somps, Chris; Ricks, Robert; Kim, Lynn; Connolly, John P. (Technical Monitor)

    1995-01-01

    The SENSORS 2000! (S2K!) program at NASA's Ames Research Center is currently developing a biotelemetry system for monitoring pH and temperature in unrestrained subjects. This activity is part of a broader scope effort to provide an Advanced Biotelemetry System (ABTS) for use in future space life sciences research. Many anticipated research endeavors will require biomedical and biochemical sensors and related instrumentation to make continuous inflight measurements in a variable-gravity environment. Since crew time is limited, automated data acquisition, data processing, data storage, and subject health monitoring are required. An automated biochemical and physiological data acquisition system based on non invasive or implantable biotelemetry technology will meet these requirements. The ABTS will ultimately acquire a variety of physiological measurands including temperature, biopotentials (e.g. ECG, EEG, EMG, EOG), blood pressure, flow and dimensions, as well as chemical and biological parameters including pH. Development activities are planned in evolutionary, leveraged steps. Near-term activities include 1) development of a dual channel pH/temperature telemetry system, and 2) development of a low bandwidth, 4-channel telemetry system, that measures temperature, heart rate, pressure, and pH. This abstract describes the pH/temperature telemeter.

  12. Scientists as role models in space science outreach

    Alexander, D.

    The direct participation of scientists significantly enhances the impact of any E/PO effort. This is particularly true when the scientists come from minority or traditionally under-represented groups and, consequently, become role models for a large number of students while presenting positive counter-examples to the usual stereotypes. In this paper I will discuss the impact of scientists as role models through the successful implementation of a set of space physics games and activities, called Solar Week. Targetted at middle-school girls, the key feature of Solar Week is the "Ask a Scientist" section enabling direct interaction between participating students and volunteer scientists. All of the contributing scientists are women, serving as experts in their field and providing role models to whom the students can relate. Solar Week has completed four sessions with a total of some 140 edcuators and 12,000+ students in over 28 states and 9 countries. A major success of the Solar Week program has been the ability of the students to learn more about the scientists as people, through online biographies, and to discuss a variety of topics ranging from science, to careers and common hobbies.

  13. Postdoctoral Mentoring at the Space Telescope Science Institute

    Peeples, Molly

    2018-01-01

    The Space Telescope Science Institute (STScI) has, on average, about 30 postdoctoral researchers. This groups is funded primarily by individual grants but includes independent Fellows (Giacconi, Lasker, and Hubble Fellows) and postdocs based at neighboring Johns Hopkins University but with supervisors based at STScI. Our mentoring program aims to support the intellectual and career development of this entire group, outside of the scientific and career mentoring they receive from their direct supervisors or fellowship sponsors. Our mentoring program consists of two parts. First and foremost, each postdoc has a mentor (someone on the research staff) with whom they meet regularly. Ideally, the mentor is not someone with whom the postdoc collaborates scientifically and can therefore provide an outside, independent, fresh perspective. As different postdocs require different kinds of mentoring, we try to best pair postdocs and mentors according to the postdocs’ needs and the mentors’ backgrounds, skills, and mentoring styles. Second, we conduct several career guidance seminars and related events throughout the year. These have included proposal writing workshops, formalized practice talks, academic job application seminars, and discussion sessions on career paths outside of academia (featuring colleagues who are no longer in academia). These workshops have the added benefit of providing the postdocs with a wider support network of staff members. Finally, we have begun to conduct an annual survey of the postdocs to gauge their experience and integration at STScI, the efficacy of the mentoring program, and to collect feedback on how to improve postdoctoral life at the Institute.

  14. Miniature Photonic Spectrometers and Filters for Astrophysics and Space Science

    Veilleux, Sylvain

    This project seeks to apply our recent breakthroughs in astrophotonics - photonics applied to astronomical instrumentation - to replace the large lenses, mirrors, and gratings of conventional astronomical spectrographs with optoelectronic components borrowed from the multi-billion dollar telecommunication industry. This will reduce the mass and volume of these instruments by two to three orders of magnitudes, shorten delivery times, lower the risk, and cut the cost proportionally. Photonic instruments are also more amenable to complex light manipulation and massive multiplexing, cheaper to mass produce, easier to control, much less susceptible to vibrations and flexures, and have higher throughput. The proposed effort directly addresses one of the technology gaps identified in the 2016 Cosmic Origins Technology Report, namely the need to develop "high-performance spectral dispersion components / devices." Using private funding, we have developed photonic near-infrared (1.4 - 1.6 microns) spectrometers where the dispersing optics are replaced by miniature ( 1 cubiccentimeter) arrayed waveguide gratings imprinted using buried silicon nitride (``nanocore'') technology, the leading solution for low-loss waveguides. We have also developed highly sophisticated photonics filters using complex waveguide Bragg gratings, produced on the same platform technology as the photonic spectrometers and equally small. These prototypes have been fabricated and tested using the state-of-the-art facilities of the Maryland NanoCenter and AstroPhotonics Lab, and the results of these tests have been published in refereed publications and conference proceedings. APRA funding is now needed to develop the next generation of photonics spectrometers and filters for astrophysics and space science applications. We will (1) broaden the wavelength range to 1 - 1.7 microns, (2) increase the spectral resolving power of our photonic spectrometers from R 1500 to 3000, (3) experiment with the aspect

  15. The Structure-Agency Dialectic in Contested Science Spaces: "Do Earthworms Eat Apples?"

    Kane, Justine M.

    2015-01-01

    Focusing on a group of African American third graders who attend a high-poverty urban school, I explore the structure-agency dialectic within contested spaces situated in a dialogically oriented science classroom. Contested spaces entail the moments in which the students challenge each other's and their teacher's science ideas and, in the process,…

  16. Aerial radiological survey of the United States Department of Energy's Battelle Nuclear Science Facility, West Jefferson, Ohio, date of survey: May 1977

    Feimster, E.L.

    1979-05-01

    An aerial radiological survey to measure terrestrial gamma radiation was carried out over the United States Department of Energy's Battelle Nuclear Science Facility located in West Jefferson, Ohio. Gamma ray data were collected over a 5.5 km 2 area centered on the facility by flying east-west lines spaced 61 m apart. Processed data indicated that on-site radioactivity was primarily due to radionuclides currently being processed due to the hot lab operations. Off-site data showed the radioactivity to be due to naturally occurring background radiation consistent with variations due to geologic base terrain and land use of similar areas

  17. Space Science and the International Traffic in Arms Regulations: Summary of a Workshop

    Finarelli, Margaret G.; Alexander, Joseph K.

    2008-01-01

    The United States seeks to protect its security and foreign-policy interests, in part, by actively controlling the export of goods, technologies, and services that are or may be useful for military development in other nations. "Export" is defined not simply as the sending abroad of hardware but also as the communication of related technology and know-how to foreigners in the United States and overseas. The U.S. government mechanism for controlling dual-use items--items in commerce that have potential military use is the Export Administration Regulations (EAR) administered by the Department of Commerce; items defined in law as defense articles fall under the jurisdiction of the Department of State and the International Traffic in Arms Regulations (ITAR). Because of the potential military implications of the export of defense articles, the ITAR regime imposes much greater burdens (on both the applicant and the government) than does the EAR regime during the process of applying for, and implementing the provisions of, licenses and technical-assistance agreements. Until the early 1990s export control activity related to all space satellites (commercial and scientific) was handled under ITAR. Between 1992 and 1996 the George H.W. Bush and the Clinton administrations transferred jurisdiction over the licensing of civilian communications satellites to the Commerce Department under EAR. In 1999, however, in response to broad concerns about Chinese attempts to acquire U.S. high technology, the U.S. House of Representatives convened the Select Committee on U.S. National Security and Military/Commercial Concerns with the People s Republic of China, also known as the Cox Committee. One of the many consequences of the Cox Committee's report was Congress's mandate that jurisdiction over export and licensing of satellites and related equipment and services, irrespective of military utility, be transferred from the Department of Commerce to the State Department and that such

  18. Evaluation and comparison of medical records department of Iran university of medical sciences teaching hospitals and medical records department of Kermanshah university of medical sciences teaching hospitals according to the international standards ISO 9001-2000 in 2008

    maryam ahmadi

    2010-04-01

    Conclusion: The rate of final conformity of medical records system by the criteria of the ISO 9001-2000 standards in hospitals related to Iran university of medical sciences was greater than in hospitals related to Kermanshah university of medical sciences. And total conformity rate of medical records system in Kermanshah hospitals was low. So the regulation of medical records department with ISO quality management standards can help to elevate its quality.

  19. The new space and earth science information systems at NASA's archive

    Green, J.L. (NASA, Goddard Space Flight Center, Greenbelt, MD (USA))

    1990-01-01

    The on-line interactive systems of the National Space Science Data Center (NSSDC) are examined. The worldwide computer network connections that allow access to NSSDC users are outlined. The services offered by the NSSDC new technology on-line systems are presented, including the IUE request system, ozone TOMS data, and data sets on astrophysics, atmospheric science, land sciences, and space plasma physics. Plans for future increases in the NSSDC data holdings are considered. 8 refs.

  20. Expanding Earth and Space Science through the Initiating New Science Partnerships In Rural Education (INSPIRE)

    Radencic, S.; McNeal, K. S.; Pierce, D.; Hare, D.

    2010-12-01

    The INSPIRE program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on Earth and Space science education and has partnered ten graduate students from MSU with five teachers from local, rural school districts. For the next five years the project will serve to increase inquiry and technology experiences in science and math while enhancing graduate student’s communication skills. Graduate students, from the disciplines of Geosciences, Physics, and Engineering are partnered with Chemistry, Physical Science, Physics, Geometry and Middle school science classrooms and will create engaging inquiry activities that incorporate elements of their research, and integrate various forms of technology. The generated lesson plans that are implemented in the classroom are published on the INSPIRE home page (www.gk12.msstate.edu) so that other classroom instructors can utilize this free resource. Local 7th -12th grade students will attend GIS day later this fall at MSU to increase their understanding and interest in Earth and Space sciences. Selected graduate students and teachers will visit one of four international university partners located in Poland, Australia, England, or The Bahamas to engage research abroad. Upon return they will incorporate their global experiences into their local classrooms. Planning for the project included many factors important to the success of the partnerships. The need for the program was evident in Mississippi K-12 schools based on low performance on high stakes assessments and lack of curriculum in the Earth and Space sciences. Meeting with administrators to determine what needs they would like addressed by the project and recognizing the individual differences among the schools were integral components to tailoring project goals and to meet the unique needs of each school partner. Time for training and team building of INSPIRE teachers and graduate students before the

  1. Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics

    Singh, R.; Bermudez, L. E.

    2013-12-01

    Emerging Geospatial Sharing Technologies in Earth and Space Science Informatics The Open Geospatial Consortium (OGC) mission is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. In the last years two main trends are making disruptions in geospatial applications: mobile and context sharing. People now have more and more mobile devices to support their work and personal life. Mobile devices are intermittently connected to the internet and have smaller computing capacity than a desktop computer. Based on this trend a new OGC file format standard called GeoPackage will enable greater geospatial data sharing on mobile devices. GeoPackage is perhaps best understood as the natural evolution of Shapefiles, which have been the predominant lightweight geodata sharing format for two decades. However the format is extremely limited. Four major shortcomings are that only vector points, lines, and polygons are supported; property names are constrained by the dBASE format; multiple files are required to encode a single data set; and multiple Shapefiles are required to encode multiple data sets. A more modern lingua franca for geospatial data is long overdue. GeoPackage fills this need with support for vector data, image tile matrices, and raster data. And it builds upon a database container - SQLite - that's self-contained, single-file, cross-platform, serverless, transactional, and open source. A GeoPackage, in essence, is a set of SQLite database tables whose content and layout is described in the candidate GeoPackage Implementation Specification available at https://portal.opengeospatial.org/files/?artifact_id=54838&version=1. The second trend is sharing client 'contexts'. When a user is looking into an article or a product on the web

  2. How the Demographic Composition of Academic Science and Engineering Departments Influences Workplace Culture, Faculty Experience, and Retention Risk

    Eric E. Griffith

    2018-04-01

    Full Text Available Although on average women are underrepresented in academic science, technology, engineering, and mathematics (STEM departments at universities, an underappreciated fact is that women’s representation varies widely across STEM disciplines. Past research is fairly silent on how local variations in gender composition impact faculty experiences. This study fills that gap. A survey of STEM departments at a large research university finds that women faculty in STEM are less professionally satisfied than male colleagues only if they are housed in departments where women are a small numeric minority. Gender differences in satisfaction are largest in departments with less than 25% women, smaller in departments with 25–35% women, and nonexistent in departments approaching 50% women. Gender differences in professional satisfaction in gender-unbalanced departments are mediated by women’s perception that their department’s climate is uncollegial, faculty governance is non-transparent, and gender relations are inequitable. Unfavorable department climates also predict retention risk for women in departments with few women, but not in departments closer to gender parity. Finally, faculty who find within-department mentors to be useful are more likely to have a favorable view of their department’s climate, which consequently predicts more professional satisfaction. Faculty gender and gender composition does not moderate these findings, suggesting that mentoring is equally effective for all faculty.

  3. Isoperimetric inequalities in surround system and space science

    JiaJin Wen

    2016-02-01

    Full Text Available Abstract By means of the algebraic, analysis, convex geometry, computer, and inequality theories we establish the following isoperimetric inequality in the centered 2-surround system S ( 2 { P , Γ , l } $S^{(2} \\{P,\\varGamma ,l \\}$ : ( 1 | Γ | ∮ Γ r ¯ P p 1 / p ⩽ | Γ | 4 π sin l π | Γ | [ csc l π | Γ | + cot 2 l π | Γ | ln ( tan l π | Γ | + sec l π | Γ | ] , ∀ p ⩽ − 2 . $$\\begin{aligned}& \\biggl(\\frac{1}{|\\varGamma |} \\oint_{\\varGamma }\\bar{r}_{P}^{p} \\biggr^{1/p}\\leqslant\\frac{|\\varGamma |}{4\\pi}\\sin\\frac{l\\pi}{|\\varGamma |} \\biggl[ \\csc \\frac{l\\pi}{|\\varGamma |}+\\cot^{2} \\frac{l\\pi}{|\\varGamma |} \\ln \\biggl(\\tan \\frac{l\\pi}{|\\varGamma |}+\\sec\\frac{l\\pi}{|\\varGamma |} \\biggr \\biggr], \\\\& \\quad \\forall p\\leqslant -2. \\end{aligned}$$ As an application of the inequality in space science, we obtain the best lower bounds of the mean λ-gravity norm ∥ F λ ( Γ , P ∥ ‾ $\\overline{\\Vert {\\mathbf{F}}_{\\lambda} ( \\varGamma ,P \\Vert }$ as follows: ∥ F λ ( Γ , P ∥ ‾ ≜ 1 | Γ | ∮ Γ 1 ∥ A − P ∥ λ ⩾ ( 2 π | Γ | λ , ∀ λ ⩾ 2 . $$\\overline{\\bigl\\Vert {\\mathbf{F}}_{\\lambda} ( \\varGamma ,P \\bigr\\Vert } \\triangleq\\frac{1}{|\\varGamma |} \\oint_{\\varGamma }\\frac{1}{\\|A-P\\|^{\\lambda }}\\geqslant \\biggl(\\frac{2\\pi}{|\\varGamma |} \\biggr^{\\lambda},\\quad \\forall \\lambda\\geqslant2. $$

  4. Marshall Space Flight Center Propulsion Systems Department (PSD) Knowledge Management (KM) Initiative

    Caraccioli, Paul; Varnedoe, Tom; Smith, Randy; McCarter, Mike; Wilson, Barry; Porter, Richard

    2006-01-01

    NASA Marshall Space Flight Center's Propulsion Systems Department (PSD) is four months into a fifteen month Knowledge Management (KM) initiative to support enhanced engineering decision making and analyses, faster resolution of anomalies (near-term) and effective, efficient knowledge infused engineering processes, reduced knowledge attrition, and reduced anomaly occurrences (long-term). The near-term objective of this initiative is developing a KM Pilot project, within the context of a 3-5 year KM strategy, to introduce and evaluate the use of KM within PSD. An internal NASA/MSFC PSD KM team was established early in project formulation to maintain a practitioner, user-centric focus throughout the conceptual development, planning and deployment of KM technologies and capabilities within the PSD. The PSD internal team is supported by the University of Alabama's Aging Infrastructure Systems Center of Excellence (AISCE), lntergraph Corporation, and The Knowledge Institute. The principle product of the initial four month effort has been strategic planning of PSD KNI implementation by first determining the "as is" state of KM capabilities and developing, planning and documenting the roadmap to achieve the desired "to be" state. Activities undertaken to suppoth e planning phase have included data gathering; cultural surveys, group work-sessions, interviews, documentation review, and independent research. Assessments and analyses have beon pedormed including industry benchmarking, related local and Agency initiatives, specific tools and techniques used and strategies for leveraging existing resources, people and technology to achieve common KM goals. Key findings captured in the PSD KM Strategic Plan include the system vision, purpose, stakeholders, prioritized strategic objectives mapped to the top ten practitioner needs and analysis of current resource usage. Opportunities identified from research, analyses, cultural1KM surveys and practitioner interviews include

  5. Making lemonade from lemons: a case study on loss of space at the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio.

    Tobia, Rajia C; Feldman, Jonquil D

    2010-01-01

    The setting for this case study is the Dolph Briscoe, Jr. Library, University of Texas Health Science Center at San Antonio, a health sciences campus with medical, dental, nursing, health professions, and graduate schools. During 2008-2009, major renovations to the library building were completed including office space for a faculty development department, multipurpose classrooms, a 24/7 study area, study rooms, library staff office space, and an information commons. The impetus for changes to the library building was the decreasing need to house collections in an increasingly electronic environment, the need for office space for other departments, and growth of the student body. About 40% of the library building was remodeled or repurposed, with a loss of approximately 25% of the library's original space. Campus administration proposed changes to the library building, and librarians worked with administration, architects, and construction managers to seek renovation solutions that meshed with the library's educational mission.

  6. A Methodology for Conducting Space Utilization Studies within Department of Defense Medical Facilities

    1992-07-01

    database programs, such as dBase or Microsoft Excell, to yield statistical reports that can profile the health care facility . Ladeen (1989) feels that the...service specific space status report would be beneficial to the specific service(s) under study, it would not provide sufficient data for facility -wide...change in the Master Space Plan. The revised methodology also provides a mechanism and forum for spuce management education within the facility . The

  7. Present status of tandem accelerator in Department of Science, Kyoto University

    Takahashi, Seiji; Nakamura, Masanobu; Murakami, Tetsuya; Osoi, Yu; Matsumoto, Hiroshi; Hirose, Masanori; Takimoto, Kiyohiko; Sakaguchi, Harutaka; Imai, Kenichi [Kyoto Univ. (Japan). Dept. of Physics

    1996-12-01

    The 8UDH tandem accelerator in Department of Science, Kyoto University, has been utilized for six and a half years since the start, and at present, the joint utilization in the first half of fiscal year 1996 is carried out. Also in this year, experiment is carried out by limiting terminal voltage to below 7 MV for general users. Accelerator Group is developing by placing emphasis on a nuclear physics project PIS and an interdisciplinary project AMS, subsequently to the last fiscal year. The terminal voltage and the time of operation of pellet chains in the operation from October, 1995 to July, 1996 are shown. The course of the improvement, troubles and the repair from July, 1995 to June, 1996 is reported. The countermeasures to the damage of column tension rods did not end, and the new parts will be attached in coming autumn. Two large and four small chain tension pulleys were replaced. The surfaces of nylon rods were scratched and repaired. The belts driving the SF6 gas blower have been exchanged every about 8000 hours operation. A maniford was attached to the ion source for mixing gases. As the utilization from October 1995 to March 1996, 23 subjects for 83 days were adopted, and from April to October, 1996, the subjects for 65 days were adopted. (K.I.)

  8. Evaluation of quality control in the college of medical radiological sciences, conventional x-ray department

    Babiker, Esameldeen Mohamed Tom

    2002-02-01

    Quality control in diagnostic radiography aims to ensure continuous production of diagnostic images with optimum quality, using minimum necessary dose to the patients and staff. Therefore an ineffective quality control program can lead to poor quality images that can impair diagnosis, increase operating costs and contribute to unnecessary radiation exposure to both patients and staff. Apply basic quality control program is responsibility of each x-ray facility, and to achieve maximum benefits, all levels of management and technical staff must support and participate in operating the programme. The main parameters to be monitored during the quality control programme include: dose consistency, k Vp accuracy, k Vp variations, exposure timer accuracy, besides checking image receptors, recording system and processing conditions. The aims of this project is to evaluate the quality control in the x-ray department of the college of medical radiologic sciences. The evaluation was an experimental study done by checking the operational status of the radiographic equipment, beside data collection using questionnaires regarding quality control. In the applied experiments the results show that there is a noted variation in the accuracy of k Vp, exposure timer and also in the dose consistency. The obtained results from image receptors and processing system showed noted variations too. The results of the questionnaire and direct interviewing showed other causes of quality degradation such as absence of test tools, the status of the equipment, absence of regular quality control testing, in addition to absence of an organized team to deal with quality. (Author)

  9. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  10. The CAS-NAS forum for new leaders in space science

    Smith, David H.

    The space science community is thoroughly international, with numerous nations now capable of launching scientific payloads into space either independently or in concert with others. As such, it is important for national space-science advisory groups to engage with like-minded groups in other spacefaring nations. The Space Studies Board of the US National Academy of Sciences' (NAS') National Research Council has provided scientific and technical advice to NASA for more than 50 years. Over this period, the Board has developed important multilateral and bilateral partnerships with space scientists around the world. The primary multilateral partner is COSPAR, for which the Board serves as the US national committee. The Board's primary bilateral relationship is with the European Science Foundation’s European Space Science Committee. Burgeoning Chinese space activities have resulted in several attempts in the past decade to open a dialogue between the Board and space scientists in China. On each occasion, the external political environment was not conducive to success. The most recent efforts to engage the Chinese space researchers began in 2011 and have proved particularly successful. Although NASA is currently prohibited from engaging in bilateral activities with China, the Board has established a fruitful dialogue with its counterpart in the Chinese Academy of Sciences (CAS). A joint NAS-CAS activity, the Forum for New Leaders in Space Science, has been established to provide opportunities for a highly select group of young space scientists from China and the United States to discuss their research activities in an intimate and collegial environment at meetings to be held in both nations. The presentation will describe the current state of US-China space relations, discuss the goals of the joint NAS-CAS undertaking and report on the activities at the May, 2014, Forum in Beijing and the planning for the November, 2014, Forum in Irvine, California.

  11. From the Moon: Bringing Space Science to Diverse Audiences

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.; M3 Science; E/PO Team

    2011-12-01

    NASA's Apollo missions held a place in the mindset of many Americans - we dared to go someplace where humans had never set foot, a place unknown and beyond our imaginations. These early NASA missions and discoveries resulted in an enhanced public understanding of the Moon. Now, with the human element so far removed from space exploration, students must rely on textbooks, TV's, and computers to build their understanding of our Moon. However, NASA educational materials about the Moon are stale and out-of-date. In addition, they do not effectively address 21st Century Skills, an essential for today's classrooms. Here, we present a three-part model for developing opportunities in lunar science education professional development that is replicable and sustainable and integrates NASA mission-derived data (e.g., Moon Mineralogy Mapper (M3)/Chandrayaan-1). I) With the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better explore and understand the compositional variations on the lunar surface. Data and analysis techniques from the imaging spectrometer are incorporated into the M3 Educator's Guide: Seeing the Moon in a New Light. The guide includes an array of activities and lessons to help educators and students understand how NASA is currently exploring the Moon. The guide integrates NASA maps and data into the interactive lessons, bringing the excitement of scientific exploration and discovery into the classroom. II) Utilizing the M3 Educator's Guide as well as educational activities from more current NASA lunar missions, we offer two sustained professional development opportunities for educators to explore the Moon through interactive and creative strategies. 1) Geology of the Moon, an online course offered through Montana State University's National Teacher Enhancement Network, is a 3-credit graduate course. 2) Fly Me to the Moon, offered through the College of Charleston's Office of Professional Development in Education, is a two

  12. The Department of the Interior Strategic Sciences Group and its Response to Hurricane Sandy

    Ludwig, K. A.; Machlis, G. E.; Applegate, D.

    2013-12-01

    This presentation will describe the history, mission, and current activities of the newly formed Department of the Interior (DOI) Strategic Sciences Group (SSG), with a focus on its response to Hurricane Sandy and lessons learned from using scenario building to support decision making. There have been several environmental crises of national significance in recent years, including Hurricane Katrina (2005), large-scale California wildfires (2007-2008), the Deepwater Horizon oil spill (2010), and Hurricane Sandy (2012). Such events are complex because of their impacts on the ecology, economy, and people of the affected locations. In these and other environmental disasters, the DOI has had significant responsibilities to protect people and resources and to engage in emergency response, recovery, and restoration efforts. In recognition of the increasingly critical role of strategic science in responding to such complex events, the DOI established the SSG by Secretarial Order in 2012. Its purpose is to provide the DOI with science-based assessments and interdisciplinary scenarios of environmental crises affecting Departmental resources; rapidly assemble interdisciplinary teams of scientists from government, academia, and non-governmental organizations to conduct such work; and provide results to DOI leadership as usable knowledge to support decision making. March 2013 was the SSG's first deployment since its formation. The SSG's charge was to support DOI's participation on the Hurricane Sandy Rebuilding Task Force by developing scenarios of Hurricane Sandy's environmental, economic, and social consequences in the New York/New Jersey area and potential interventions that could improve regional resilience to future major storms. Over the course of one week, the SSG Sandy team (Operational Group Sandy) identified 13 first-tier consequences and 17 interventions. The SSG briefed DOI leadership, Task Force representatives, and other policy makers in both Washington, DC and

  13. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  14. REXUS/BEXUS: launching student experiments -a step towards a stronger space science community

    Fittock, Mark; Stamminger, Andreas; Maria, Roth; Dannenberg, Kristine; Page, Helen

    The REXUS/BEXUS (Rocket/Balloon Experiments for University Students) programme pro-vides opportunities to teams of European student scientists and engineers to fly experiments on sounding rockets and high altitude balloons. This is an opportunity for students and the scientific community to benefit from encouragement and support for experiments. An important feature of the programme is that the students experience a full project life-cycle which is typically not a part of their university education and which helps to prepare them for further scientific work. They have to plan, organize, and control their project in order to develop and build up an experiment but must also work on the scientic aspects. Many of the students continue to work in the field on which they focused in the programme and can often build upon both the experience and the results from flight. Within the REXUS/BEXUS project cycle, they are encouraged to write and present papers about their experiments and results; increasing amounts of scientific output are seen from the students who participate. Not only do the students learn and develop from REXUS/BEXUS but the scientific community also reaps significant benefits. Another major benefit of the programme is the promotion that the students are able to bring to the whole space community. Not only are the public made more aware of advanced science and technical concepts but an advantage is present in the contact that the students who participate have to other university level students. Students are less restricted in their publicity and attract large public followings online as well as presenting themselves in more traditional media outlets. Many teams' creative approach to outreach is astonishing. The benefits are not only for the space science community as a whole; institutes, universities and departments can see increased interest following the support of participating students in the programme. The programme is realized under a bilateral Agency

  15. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  16. Review of State-Space Models for Fisheries Science

    Aeberhard, William H.; Flemming, Joanna Mills; Nielsen, Anders

    2018-01-01

    Fisheries science is concerned with the management and understanding of the raising and harvesting of fish. Fish stocks are assessed using biological and fisheries data with the goal of estimating either their total population or biomass. Stock assessment models also make it possible to predict how...... highlights what should be considered best practices for science-based fisheries management....

  17. Life science experiments performed in space in the ISS/Kibo facility and future research plans.

    Ohnishi, Takeo

    2016-08-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese 'Kibo' facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the 'Rad Gene' project, which utilized two human cultured lymphoblastoid cell lines containing a mutated P53 : gene (m P53 : ) and a parental wild-type P53 : gene (wt P53 : ) respectively. Four parameters were examined: (i) detecting space radiation-induced DSBs by observing γH2AX foci; (ii) observing P53 : -dependent gene expression during space flight; (iii) observing P53 : -dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type P53 : genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024. © The Author 2016. Published by Oxford University Press on behalf of The Japan Radiation Research Society and

  18. Life science experiments performed in space in the ISS/Kibo facility and future research plans

    Ohnishi, Takeo

    2016-01-01

    Over the past several years, current techniques in molecular biology have been used to perform experiments in space, focusing on the nature and effects of space radiation. In the Japanese ‘Kibo’ facility in the International Space Station (ISS), the Japan Aerospace Exploration Agency (JAXA) has performed five life science experiments since 2009, and two additional experiments are currently in progress. The first life science experiment in space was the ‘Rad Gene’ project, which utilized two human cultured lymphoblastoid cell lines containing a mutated p53 gene (mp53) and a parental wild-type p53 gene (wtp53) respectively. Four parameters were examined: (i) detecting space radiation–induced DSBs by observing γH2AX foci; (ii) observing p53-dependent gene expression during space flight; (iii) observing p53-dependent gene expression after space flight; and (iv) observing the adaptive response in the two cell lines containing the mutated and wild type p53 genes after exposure to space radiation. These observations were completed and have been reported, and this paper is a review of these experiments. In addition, recent new information from space-based experiments involving radiation biology is presented here. These experiments involve human cultured cells, silkworm eggs, mouse embryonic stem cells and mouse eggs in various experiments designed by other principal investigators in the ISS/Kibo. The progress of Japanese science groups involved in these space experiments together with JAXA are also discussed here. The Japanese Society for Biological Sciences in Space (JSBSS), the Utilization Committee of Space Environment Science (UCSES) and the Science Council of Japan (ACJ) have supported these new projects and new experimental facilities in ISS/Kibo. Currently, these organizations are proposing new experiments for the ISS through 2024

  19. Worms to astronauts: Canadian Space Agency approach to life sciences in support of exploration

    Buckley, Nicole; Johnson-Green, Perry; Lefebvre, Luc

    As the pace of human exploration of space is accelerated, the need to address the challenges of long-duration human missions becomes imperative. Working with limited resources, we must determine the most effective way to meet this challenge. A great deal of science management centres on "applied" versus "basic" research as the cornerstone of a program. We have chosen to largely ignore such a labeling of science and concentrate on quality, as determined by peer review, as the primary criterion for science selection. Space Life Sciences is a very young science and access to space continues to be difficult. Because we have few opportunities for conducting science, and space life science is very challenging, we are comfortable maintaining a very high bar for selection. In order to ensure adequate depth to our community we have elected to concentrate our efforts. Working in concert with members of the community, we have identified specific areas of focus that are chosen by their importance in space, but also according to Canada's strength in the terrestrial counterpart of the research. It is hoped that through a balanced but highly competitive program with the emphasis on quality, Canadian scientists can contribute to making space a safer, more welcoming place for our astronauts.

  20. NASA Johnson Space Center Life Sciences Data System

    Rahman, Hasan; Cardenas, Jeffery

    1994-01-01

    The Life Sciences Project Division (LSPD) at JSC, which manages human life sciences flight experiments for the NASA Life Sciences Division, augmented its Life Sciences Data System (LSDS) in support of the Spacelab Life Sciences-2 (SLS-2) mission, October 1993. The LSDS is a portable ground system supporting Shuttle, Spacelab, and Mir based life sciences experiments. The LSDS supports acquisition, processing, display, and storage of real-time experiment telemetry in a workstation environment. The system may acquire digital or analog data, storing the data in experiment packet format. Data packets from any acquisition source are archived and meta-parameters are derived through the application of mathematical and logical operators. Parameters may be displayed in text and/or graphical form, or output to analog devices. Experiment data packets may be retransmitted through the network interface and database applications may be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control and the LSDS system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability, and ease of use make the LSDS a cost-effective solution to many experiment data processing requirements. The same system is used for experiment systems functional and integration tests, flight crew training sessions and mission simulations. In addition, the system has provided the infrastructure for the development of the JSC Life Sciences Data Archive System scheduled for completion in December 1994.

  1. Redesigning Space for Interdisciplinary Connections: The Puget Sound Science Center

    DeMarais, Alyce; Narum, Jeanne L.; Wolfson, Adele J.

    2013-01-01

    Mindful design of learning spaces can provide an avenue for supporting student engagement in STEM subjects. Thoughtful planning and wide participation in the design process were key in shaping new and renovated spaces for the STEM community at the University of Puget Sound. The finished project incorporated Puget Sound's mission and goals as well…

  2. Space Station life science research facility - The vivarium/laboratory

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  3. Astrobiology in an Urban New York City High School: John Dewey High School's Space Science Academy

    Fried, B.; Dash, H. B.

    2010-04-01

    John Dewey High School's participation in NASA's MESDT and DLN projects and other partnerships provide opportunities for our diverse population, focusing particular attention to under-represented and under-served groups in the field of Space Science.

  4. Involvement of scientists in the NASA Office of Space Science education and public outreach program

    Beck-Winchatz, Bernhard

    2005-01-01

    Since the mid-1990's NASA's Office of Space Science (OSS) has embarked on an astronomy and space science education and public outreach (E/PO) program. Its goals are to share the excitement of space science discoveries with the public, and to enhance the quality of science, mathematics and technology education, particularly at the precollege level. A key feature of the OSS program is the direct involvement of space scientists. The majority of the funding for E/PO is allocated to flight missions, which spend 1%-2% of their total budget on E/PO, and to individual research grants. This paper presents an overview of the program's goals, objectives, philosophy, and infrastructure

  5. Space Life Sciences at NASA: Spaceflight Health Policy and Standards

    Davis, Jeffrey R.; House, Nancy G.

    2006-01-01

    In January 2005, the President proposed a new initiative, the Vision for Space Exploration. To accomplish the goals within the vision for space exploration, physicians and researchers at Johnson Space Center are establishing spaceflight health standards. These standards include fitness for duty criteria (FFD), permissible exposure limits (PELs), and permissible outcome limits (POLs). POLs delineate an acceptable maximum decrement or change in a physiological or behavioral parameter, as the result of exposure to the space environment. For example cardiovascular fitness for duty standards might be a measurable clinical parameter minimum that allows successful performance of all required duties. An example of a permissible exposure limit for radiation might be the quantifiable limit of exposure over a given length of time (e.g. life time radiation exposure). An example of a permissible outcome limit might be the length of microgravity exposure that would minimize bone loss. The purpose of spaceflight health standards is to promote operational and vehicle design requirements, aid in medical decision making during space missions, and guide the development of countermeasures. Standards will be based on scientific and clinical evidence including research findings, lessons learned from previous space missions, studies conducted in space analog environments, current standards of medical practices, risk management data, and expert recommendations. To focus the research community on the needs for exploration missions, NASA has developed the Bioastronautics Roadmap. The Bioastronautics Roadmap, NASA's approach to identification of risks to human space flight, revised baseline was released in February 2005. This document was reviewed by the Institute of Medicine in November 2004 and the final report was received in October 2005. The roadmap defines the most important research and operational needs that will be used to set policy, standards (define acceptable risk), and

  6. Our leadership in science and technology as provided by the national space program

    Kock, W. E.

    1972-01-01

    The contributions of science and technology to the success of the United States as a world leader are discussed. Specific instances of the manner in which science advances and new technologies resulting from space research have contributed to a higher standard of living are presented. It is concluded that the benefits of the space program are not reflected only in the material advancements, but that intangible results have also been achieved in greater incentives to improve the present culture.

  7. Regional Centres for Space Science and Technology Education Affiliated to the United Nations

    Aquino, A. J. A.; Haubold, H. J.

    2010-05-01

    Based on resolutions of the United Nations General Assembly, Regional Centres for space science and technology education were established in India, Morocco, Nigeria, Brazil and Mexico. Simultaneously, education curricula were developed for the core disciplines of remote sensing, satellite communications, satellite meteorology, and space and atmospheric science. This paper provides a brief report on the status of the operation of the Regional Centres and draws attention to their educational activities.

  8. Lunar and Planetary Science XXXV: Engaging K-12 Educators, Students, and the General Public in Space Science Exploration

    2004-01-01

    The session "Engaging K-12 Educators, Students, and the General Public in Space Science Exploration" included the following reports:Training Informal Educators Provides Leverage for Space Science Education and Public Outreach; Teacher Leaders in Research Based Science Education: K-12 Teacher Retention, Renewal, and Involvement in Professional Science; Telling the Tale of Two Deserts: Teacher Training and Utilization of a New Standards-based, Bilingual E/PO Product; Lindstrom M. M. Tobola K. W. Stocco K. Henry M. Allen J. S. McReynolds J. Porter T. T. Veile J. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes -- Update; Utilizing Mars Data in Education: Delivering Standards-based Content by Exposing Educators and Students to Authentic Scientific Opportunities and Curriculum; K. E. Little Elementary School and the Young Astronaut Robotics Program; Integrated Solar System Exploration Education and Public Outreach: Theme, Products and Activities; and Online Access to the NEAR Image Collection: A Resource for Educators and Scientists.

  9. Pushing the boundaries of cultural congruence pedagogy in science education towards a third space

    Quigley, Cassie

    2011-09-01

    This review explores Meyers and Crawford's "Teaching science as a cultural way of knowing: Merging authentic inquiry, nature of science, and multicultural strategies" by examining how they combine the use of inquiry-based science instruction with multicultural strategies. In this conversation, I point to the need of specific discourse strategies to help teachers and students create hybrid spaces to push the boundaries of cultural congruence as described in this article. These strategies include a reflective component to the explicit instruction that encourages an integration of home and science discourses. My response to this work expands on their use of multicultural strategies to push toward a congruent Third space that asks not only what happens to the students who do not participate in science, but also what happens to science when a diverse group of people does not participate?

  10. Soil Science in Space: Thinking Way Outside the Box

    Ming, D. W.

    2016-01-01

    Mars is a perfect laboratory to reconsider the future of pedology across the universe. By investigating the soils and geology through our Curiosity and further endeavors, we find ourselves able to learn about the past, present, and possibly the future. Imagine what we could learn about the early Earth if we could have explored it without vegetation and clouds in the way. The tools and techniques that are used to probe the Martian soil can teach us about exploring the soils on Earth. Although many may feel that soil science has learned all that it can about the soils on Earth, we know differently. Deciding what the most important things to know about Martian soils can help us focus on the fundamentals of soil science on Earth. Our soil science knowledge and experience on Earth can help us learn more about the angry red planet. Why is it so angry with so many fascinating secrets it can tell?

  11. Summary of Research 2001, Department of Mechanical Engineering, Graduate School of Engineering and Applied Sciences

    McNelley, Terry

    2002-01-01

    This report contains project summaries of the research projects in the Department of Mechanical Engineering A list of recent publications is also included, which consists of conference presentations...

  12. Multiverse: Increasing Diversity in Earth and Space Science Through Multicultural Education

    Peticolas, L. M.; Raftery, C. L.; Mendez, B.; Paglierani, R.; Ali, N. A.; Zevin, D.; Frappier, R.; Hauck, K.; Shackelford, R. L., III; Yan, D.; Thrall, L.

    2015-12-01

    Multiverse at the University of California, Berkeley Space Sciences Laboratory provides earth and space science educational opportunities and resources for a variety of audiences, especially for those who are underrepresented in the sciences. By way of carefully crafted space and earth science educational opportunities and resources, we seek to connect with people's sense of wonder and facilitate making personal ties to science and the learning process in order to, ultimately, bring the richness of diversity to science and make science discovery accessible for all. Our audiences include teachers, students, education and outreach professionals, and the public. We partner with NASA, the National Science Foundation, scientists, teachers, science center and museum educators, park interpreters, and others with expertise in reaching particular audiences. With these partners, we develop resources and communities of practice, offer educator workshops, and run events for the public. We will will present on our pedagogical techniques, our metrics for success, and our evaluation findings of our education and outreach projects that help us towards reaching our vision: We envision a world filled with science literate societies capable of thriving with today's technology, while maintaining a sustainable balance with the natural world; a world where people develop and sustain the ability to think critically using observation and evidence and participate authentically in scientific endeavors; a world where people see themselves and their culture within the scientific enterprise, and understand science within the context that we are all under one sky and on one Earth. Photo Caption: Multiverse Team Members at our Space Sciences Laboratory from left to right: Leitha Thrall, Daniel Zevin, Bryan Mendez, Nancy Ali, Igor Ruderman, Laura Peticolas, Ruth Paglierani, Renee Frappier, Rikki Shackelford, Claire Raftery, Karin Hauck, and Darlene Yan.

  13. Space science comes of age: Perspectives in the history of the space sciences Proceedings of the Symposium, Washington, DC, March 23, 24, 1981

    Hanle, P.A.; Chamberlain, V.D.

    1981-01-01

    The development of space science is recounted in two parts, the first written by founders and pioneers in the field who recount some of the important scientific discoveries in their areas, the second offering a preliminary view of space science by professional historians. The subjects of the first part are solar physics, rocket astronomy, the ultraviolet spectra of stars, lunar exploration and geology. James Van Allen's lecture first disclosing his discovery of the radiation belts surrounding the earth is reprinted. The second part includes the story of the development of theories about the origin of the solar system before 1960, a discussion of studies of the upper atmosphere, a concise history of space-launch vehicles, and a review of the politics and funding of the Landsat project

  14. On the use of Space Station Freedom in support of the SEI - Life science research

    Leath, K.; Volosin, J.; Cookson, S.

    1992-01-01

    The use of the Space Station Freedom (SSF) for life sciences research is evaluated from the standpoint of requirements for the Space Exploration Initiative (SEI). SEI life sciences research encompasses: (1) biological growth and development in space; (2) life support and environmental health; (3) physiological/psychological factors of extended space travel; and (4) space environmental factors. The platforms required to support useful study in these areas are listed and include ground-based facilities, permanently manned spacecraft, and the Space Shuttle. The SSF is shown to be particularly applicable to the areas of research because its facilities can permit the study of gravitational biology, life-support systems, and crew health. The SSF can serve as an experimental vehicle to derive the required knowledge needed to establish a commitment to manned Mars missions and colonization plans.

  15. Uncomfortable Departments: British Historians of Science and the Importance of Disciplinary Communities

    Fyfe, Aileen

    2015-01-01

    This paper explores issues around disciplinary belonging and academic identity. Historians of science learn to think and practise like historians in terms of research practice, but this paper shows that British historians of science do not think of themselves as belonging to the disciplinary community of historians. They may be confident that they…

  16. Pinnipedia belonging to collection of Department of Paleontology of the Science Faculty

    Perez Garcia, M.

    1998-01-01

    Pinnipedia belonging to collection of Department of Paleontology, Facultad de Ciencias, are shown. They are an astragalus and partial humerus, found the former in the coast of Departamento of San Jose and the latter in Rocha Department. The astragalus is assigned to Arctocephalus (southern fur seal) and humerus to Phocidae. (author)

  17. Images of Earth and Space: The Role of Visualization in NASA Science

    1996-01-01

    Fly through the ocean at breakneck speed. Tour the moon. Even swim safely in the boiling sun. You can do these things and more in a 17 minute virtual journey through Earth and space. The trek is by way of colorful scientific visualizations developed by the NASA/Goddard Space Flight Center's Scientific Visualization Studio and the NASA HPCC Earth and Space Science Project investigators. Various styles of electronic music and lay-level narration provide the accompaniment.

  18. Comparative Science and Space Weather Around the Heliosphere

    Grande, Manuel; Andre, Nicolas; COSPAR/ILWS Roadmap Team

    2016-10-01

    Space weather refers to the variable state of the coupled space environment related to changing conditions on the Sun and in the terrestrial atmosphere. The presentation will focus on the critical missing knowledge or observables needed to significantly advance our modelling and forecasting capabilities throughout the solar system putting these in perspective to the recommendations in the recent COSPAR/ILWS roadmap. The COSPAR/ILWS RoadMap focuses on high-priority challenges in key areas of research leading to a better understanding of the space environment and a demonstrable improvement in the provision of timely, reliable information pertinent to effects on civilian space- and ground-based systems, for all stakeholders around the world. The RoadMap prioritizes those advances that can be made on short, intermediate and decadal time scales, identifying gaps and opportunities from a predominantly, but not exclusively, geocentric perspective. While discussion of space weather effects has so far largely been concerned to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an extreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. One initiative is that under Horizon 2020, Europlanet RI will set up a Europlanet Planetary Space Weather Service (PSWS). PSWS will make five entirely new `toolkits' accessible to the research community and to industrial partners planning for space missions: - a General planetary space weather toolkit; Mars (in support of the ESA ExoMars missions to be launched

  19. Compatibility of the Space Station Freedom life sciences research centrifuge with microgravity requirements

    Hasha, Martin D.

    1990-01-01

    NASA is developing a Life Sciences Centrifuge Facility for Space Station Freedom. In includes a 2.5-meter artificial gravity Bioresearch Centrifuge (BC), which is perhaps the most critical single element in the life sciences space research program. It rotates continuously at precise selectable rates, and utilizes advanced reliable technologies to reduce vibrations. Three disturbance types are analyzed using a current Space Station Freedom dynamic model in the 0.0 to 5.0 Hz range: sinusoidal, random, and transient. Results show that with proper selection of proven design techniques, BC vibrations are compatible with requirements.

  20. Life science research objectives and representative experiments for the space station

    Johnson, Catherine C. (Editor); Arno, Roger D. (Editor); Mains, Richard (Editor)

    1989-01-01

    A workshop was convened to develop hypothetical experiments to be used as a baseline for space station designer and equipment specifiers to ensure responsiveness to the users, the life science community. Sixty-five intra- and extramural scientists were asked to describe scientific rationales, science objectives, and give brief representative experiment descriptions compatible with expected space station accommodations, capabilities, and performance envelopes. Experiment descriptions include hypothesis, subject types, approach, equipment requirements, and space station support requirements. The 171 experiments are divided into 14 disciplines.

  1. The "Next Generation Science Standards" and the Earth and Space Sciences

    Wysession, Michael E.

    2013-01-01

    The "Next Generation Science Standards" ("NGSS"), due to be released this spring, represents a revolutionary step toward establishing modern, national K-12 science education standards. Based on the recommendations of the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting…

  2. Decolonizing Science and Science Education in a Postcolonial Space (Trinidad, a Developing Caribbean Nation, Illustrates

    Laila N. Boisselle

    2016-03-01

    Full Text Available The article addresses how remnant or transformed colonialist structures continue to shape science and science education, and how that impact might be mitigated within a postcolonial environment in favor of the development of the particular community being addressed. Though cognizant of, and resistant to, the ongoing colonial impact globally and nationally (and any attempts at subjugation, imperialism, and marginalization, this article is not about anticolonial science. Indeed, it is realized that the postcolonial state of science and science education is not simply defined, and may exist as a mix of the scientific practices of the colonizer and the colonized. The discussion occurs through a generic postcolonial lens and is organized into two main sections. First, the discussion of the postcolonial lens is eased through a consideration of globalization which is held here as the new colonialism. The article then uses this lens to interrogate conceptions of science and science education, and to suggest that the mainstream, standard account of what science is seems to represent a globalized- or arguably a Western, modern, secular-conception of science. This standard account of science can act as a gatekeeper to the indigenous ways of being, knowing, and doing of postcolonial populations. The article goes on to suggest that as a postcolonial response, decolonizing science and science education might be possible through practices that are primarily contextually respectful and responsive. That is, localization is suggested as one possible antidote to the deleterious effects of globalization. Trinidad, a postcolonial developing Caribbean nation, is used as illustration.

  3. Capturing citation activity in three health sciences departments: a comparison study of Scopus and Web of Science.

    Sarkozy, Alexandra; Slyman, Alison; Wu, Wendy

    2015-01-01

    Scopus and Web of Science are the two major citation databases that collect and disseminate bibliometric statistics about research articles, journals, institutions, and individual authors. Liaison librarians are now regularly called upon to utilize these databases to assist faculty in finding citation activity on their published works for tenure and promotion, grant applications, and more. But questions about the accuracy, scope, and coverage of these tools deserve closer scrutiny. Discrepancies in citation capture led to a systematic study on how Scopus and Web of Science compared in a real-life situation encountered by liaisons: comparing three different disciplines at a medical school and nursing program. How many articles would each database retrieve for each faculty member using the author-searching tools provided? How many cited references for each faculty member would each tool generate? Results demonstrated troubling differences in publication and citation activity capture between Scopus and Web of Science. Implications for librarians are discussed.

  4. Possibility of using sources of vacuum ultraviolet irradiation to solve problems of space material science

    Verkhoutseva, E. T.; Yaremenko, E. I.

    1974-01-01

    An urgent problem in space materials science is simulating the interaction of vacuum ultraviolet (VUV) of solar emission with solids in space conditions, that is, producing a light source with a distribution that approximates the distribution of solar energy. Information is presented on the distribution of the energy flux of VUV of solar radiation. Requirements that must be satisfied by the VUV source used for space materials science are formulated, and a critical evaluation is given of the possibilities of using existing sources for space materials science. From this evaluation it was established that none of the sources of VUV satisfies the specific requirements imposed on the simulator of solar radiation. A solution to the problem was found to be in the development of a new type of source based on exciting a supersonic gas jet flowing into vacuum with a sense electron beam. A description of this gas-jet source, along with its spectral and operation characteristics, is presented.

  5. Morphological Control: A Design Principal for Applications in Space Science

    Füchslin, R. M.; Dumont, E.; Flumini, D.; Fuchs, H. U.; Hauser, H.; Jaeger, C.; Scheidegger, S.; Schönenberger-Deuel, J.; Lichtensteiger, L.; Luchsinger, R.; Weyland, M.

    Designing robots for applications in space flight requires a different prioritization of design criteria than for systems operating on Earth. In this article, we argue that the field of soft robotics offers novel approaches meeting the specific requirements of space flight. We present one especially promising construction principle, so called Tensairity, in some detail. Tensairity, as the name suggests, takes ideas from Tensegrity, but uses inflatable structures instead of cables and struts. Soft robots pose substantial challenges with respect to control. One way to meet these challenges is given by the concept of morphological computation and control. Morphological computation can be loosely defined as the exploitation of the shape, material properties, and dynamics of a physical system to improve the efficiency of computation and to deal with systems for which it is difficult to construct a virtual representation using a kinematic model. We discuss fundamental aspects of morphological control and their relevance for space flight. Besides low weight, small consumption of space in the inactive state and advantageous properties with respect to intrinsic safety and energy consumption, we discuss how the blurring of the discrimination of hard- and software leads to control strategies that require only very little and very simple electronic circuitry (which is beneficial in an environment with high irradiation). Finally, we present a research strategy that bundles activities in space flight with research and development in medicine, especially for support systems for an aging population, that are faced with similar morphological computing challenges to astronauts. Such a combination meets the demands for research that is not only effective, but also efficient with respect to economic resources.

  6. LEMDist: e-learning and e-science work space

    Cruz Gurman, J.; Hernandez Duarte, M.; Garza Rivera, J.; Arjona Raoman, J. L.

    2007-01-01

    LEMDist is an implementation for remote access to laboratory equipment in a grid environment. The actual functionality for these applications includes the remote data acquisition from real laboratory equipment in the grid environment. The access has been implemented for instruments with standard serial or USB interface. Experiments for Basic Chemistry and Food Engineering will be presented. The instruments are reached via authentication and authorization grid services and a interface grid device commands. Other services had been implemented for Food Engineering; they include a modeling process for freezing times of meat calculation and texture analysis from frozen meat images. Taking advantage of Grid infrastructure and experimental laboratory equipment the design model based on a categorical approach had been driven to build a technological platform to support different pedagogical approach in natural science teaching and e-science applications, implementing other services. (Author)

  7. LEMDist: e-learning and e-science work space

    Cruz Gurman, J.; Hernandez Duarte, M.; Garza Rivera, J.; Arjona Raoman, J. L.

    2007-07-01

    LEMDist is an implementation for remote access to laboratory equipment in a grid environment. The actual functionality for these applications includes the remote data acquisition from real laboratory equipment in the grid environment. The access has been implemented for instruments with standard serial or USB interface. Experiments for Basic Chemistry and Food Engineering will be presented. The instruments are reached via authentication and authorization grid services and a interface grid device commands. Other services had been implemented for Food Engineering; they include a modeling process for freezing times of meat calculation and texture analysis from frozen meat images. Taking advantage of Grid infrastructure and experimental laboratory equipment the design model based on a categorical approach had been driven to build a technological platform to support different pedagogical approach in natural science teaching and e-science applications, implementing other services. (Author)

  8. THE HISTORY OF SCIENCE IN THE INTERACTIVE SPACE OF CBME

    D.F.B Ovigli

    2007-05-01

    Full Text Available Considering that since the 1980’s it has a paradigm change, strengtheningthe perception of Science as a human construction and not as "natural truth", newapproaches of teaching emphasizes the importance of the History of Science inthe educational process, also recommended by the Brazilian PCNs. In thiscontext, it is presented the conclusion of the elaboration and evaluation of anillustrated historical panel that is in permanent exposition in the Interactive Spaceof Biotechnology of the CBME. It presents 25 pictures, inserted in a timeline thatselects important events related to cell biology, microbiology and immunology. Thetimeline is initiated in century XVI, with the microbial theory of the illnesses;spontaneous generation and the experiments of Needham and Spallanzani alsoare commented, as well as the production of the first vaccine. Koch, in centuryXIX, is remembered with its postulates and the discovery of some illnessescausative agents. Brazilians’ researchers - Adolfo Lutz, Oswaldo Cruz, Vital Braziland Carlos Chagas – and institutes are presented too. The panel revealed itself asan important source of information, awakening the interest of the visitors for thesubject. The idea was based on presenting Science as a human knowledgeadventure, emphasizing the scientific process in the construction of theknowledge, based on procedures, needs and different interests and values.

  9. A new chapter in doctoral candidate training: The Helmholtz Space Life Sciences Research School (SpaceLife)

    Hellweg, C. E.; Gerzer, R.; Reitz, G.

    2011-05-01

    In the field of space life sciences, the demand of an interdisciplinary and specific training of young researchers is high due to the complex interaction of medical, biological, physical, technical and other questions. The Helmholtz Space Life Sciences Research School (SpaceLife) offers an excellent interdisciplinary training for doctoral students from different fields (biology, biochemistry, biotechnology, physics, psychology, nutrition or sports sciences and related fields) and any country. SpaceLife is coordinated by the Institute of Aerospace Medicine at the German Aerospace Center (DLR) in Cologne. The German Universities in Kiel, Bonn, Aachen, Regensburg, Magdeburg and Berlin, and the German Sports University (DSHS) in Cologne are members of SpaceLife. The Universities of Erlangen-Nürnberg, Frankfurt, Hohenheim, and the Beihang University in Beijing are associated partners. In each generation, up to 25 students can participate in the three-year program. Students learn to develop integrated concepts to solve health issues in human spaceflight and in related disease patterns on Earth, and to further explore the requirements for life in extreme environments, enabling a better understanding of the ecosystem Earth and the search for life on other planets in unmanned and manned missions. The doctoral candidates are coached by two specialist supervisors from DLR and the partner university, and a mentor. All students attend lectures in different subfields of space life sciences to attain an overview of the field: radiation and gravitational biology, astrobiology and space physiology, including psychological aspects of short and long term space missions. Seminars, advanced lectures, laboratory courses and stays at labs at the partner institutions or abroad are offered as elective course and will provide in-depth knowledge of the chosen subfield or allow to appropriate innovative methods. In Journal Clubs of the participating working groups, doctoral students learn

  10. Professional development in person: identity and the construction of teaching within a high school science department

    Deneroff, Victoria

    2016-06-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development focused on inquiry science teaching. I use a social practice theory lens to analyze my own stories as well as Marie's. I make the case that science teaching is best understood as mediated by socially-constructed identities rather than as the end-product of knowledge and beliefs. The cognitive paradigm for understanding teachers' professional learning fails to consistently produce transformations of teaching practice. In order to design professional development with science teachers that is generative of new knowledge, and is self-sustaining, we must understand how to build knowledge of how to problematize identities and consciously use social practice theory.

  11. Effect of science laboratory centrifuge of space station environment

    Searby, Nancy

    1990-01-01

    It is argued that it is essential to have a centrifuge operating during manned space station operations. Background information and a rationale for the research centrifuge are given. It is argued that we must provide a controlled acceleration environment for comparison with microgravity studies. The lack of control groups in previous studies throws into question whether the obseved effects were the result of microgravity or not. The centrifuge could be used to provide a 1-g environment to supply specimens free of launch effects for long-term studies. With the centrifuge, the specimens could be immediately transferred to microgravity without undergoing gradual acclimation. Also, the effects of artificial gravity on humans could be investigated. It is also argued that the presence of the centrifuge on the space station will not cause undo vibrations or other disturbing effects.

  12. Crowd-Sourced Radio Science at Marshall Space Flight Center

    Fry, C. D.; McTernan, J. K.; Suggs, R. M.; Rawlins, L.; Krause, L. H.; Gallagher, D. L.; Adams, M. L.

    2018-01-01

    August 21, 2017 provided a unique opportunity to investigate the effects of the total solar eclipse on high frequency (HF) radio propagation and ionospheric variability. In Marshall Space Flight Center's partnership with the US Space and Rocket Center (USSRC) and Austin Peay State University (APSU), we engaged citizen scientists and students in an investigation of the effects of an eclipse on the mid-latitude ionosphere. Activities included fieldwork and station-based data collection of HF Amateur Radio frequency bands and VLF radio waves before, during, and after the eclipse to build a continuous record of changing propagation conditions as the moon's shadow marched across the United States. Post-eclipse radio propagation analysis provided insights into ionospheric variability due to the eclipse.

  13. Development of a Large-Format Science-Grade CMOS Active Pixel Sensor, for Extreme Ultra Violet Spectroscopy and Imaging in Space Science

    Waltham, N. R; Prydderch, M; Mapson-Menard, H; Morrissey, Q; Turchetta, R; Pool, P; Harris, A

    2005-01-01

    We describe our programme to develop a large-format science-grade CMOS active pixel sensor for future space science missions, and in particular an extreme ultra-violet spectrograph for solar physics...

  14. 9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

    Maximilien Brice

    2012-01-01

    9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

  15. Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

    Maximilien Brice

    2007-01-01

    Dr Phil Mjwara Director General, Department of Science and Technology (DST) Ministry of Science and Technology Republic of South Africa visit the Alice experiment introduce by Prof. Jurgen Schukraft, spokeperson for Alice.

  16. Distributing learning over time: the spacing effect in children's acquisition and generalization of science concepts.

    Vlach, Haley A; Sandhofer, Catherine M

    2012-01-01

    The spacing effect describes the robust finding that long-term learning is promoted when learning events are spaced out in time rather than presented in immediate succession. Studies of the spacing effect have focused on memory processes rather than for other types of learning, such as the acquisition and generalization of new concepts. In this study, early elementary school children (5- to 7-year-olds; N = 36) were presented with science lessons on 1 of 3 schedules: massed, clumped, and spaced. The results revealed that spacing lessons out in time resulted in higher generalization performance for both simple and complex concepts. Spaced learning schedules promote several types of learning, strengthening the implications of the spacing effect for educational practices and curriculum. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  17. A Space Operations Network Alternative: Using Globally Connected Research and Education Networks for Space-Based Science Operations

    Bradford, Robert N.

    2006-01-01

    Earth based networking in support of various space agency projects has been based on leased service/circuits which has a high associated cost. This cost is almost always taken from the science side resulting in less science. This is a proposal to use Research and Education Networks (RENs) worldwide to support space flight operations in general and space-based science operations in particular. The RENs were developed to support scientific and educational endeavors. They do not provide support for general Internet traffic. The connectivity and performance of the research and education networks is superb. The connectivity at Layer 3 (IP) virtually encompasses the globe. Most third world countries and all developed countries have their own research and education networks, which are connected globally. Performance of the RENs especially in the developed countries is exceptional. Bandwidth capacity currently exists and future expansion promises that this capacity will continue. REN performance statistics has always exceeded minimum requirements for spaceflight support. Research and Education networks are more loosely managed than a corporate network but are highly managed when compared to the commodity Internet. Management of RENs on an international level is accomplished by the International Network Operations Center at Indiana University at Indianapolis. With few exceptions, each regional and national REN has its own network ops center. The acceptable use policies (AUP), although differing by country, allows any scientific program or project the use of their networks. Once in compliance with the first RENs AUP, all others will accept that specific traffic including regional and transoceanic networks. RENs can support spaceflight related scientific programs and projects. Getting the science to the researcher is obviously key to any scientific project. RENs provide a pathway to virtually any college or university in the world, as well as many governmental institutes and

  18. Locating a space of criticality as new scholars in science education

    Burke, Lydia E. Carol-Ann; Bazzul, Jesse

    2017-09-01

    As newcomers in the field of science education research we discuss our perspectives on critical scholarship in the academy. Using the metalogue approach we explore our perceptions of science education, our experiences of the barriers to critical science education research, our analyses of why these barriers exist, and imaginings about how these barriers could be removed. In this paper, metalogue provides us with a way to retain our individual voices, thoughts and ideas, yet challenge our pre-conceived notions about finding a critical space in science education. Through an interaction with each other's thoughts and past experiences we outline some aspects of the field of science education as we see it; for example, we discuss why the field may be seen as rigid as well as the contexts that surround possibilities for interdisciplinary, critical, social justice research. We conclude that a larger, multi-vocal discussion is necessary to locate the possibilities for critical, social justice oriented science education.

  19. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  20. Questioning the Fidelity of the "Next Generation Science Standards" for Astronomy and Space Sciences Education

    Slater, Stephanie J.; Slater, Timothy F.

    2015-01-01

    Although the Next Generation Science Standards (NGSS) are not federally mandated national standards or performance expectations for K-12 schools in the United States, they stand poised to become a de facto national science and education policy, as state governments, publishers of curriculum materials, and assessment providers across the country…

  1. The "Next Generation Science Standards" and the Earth and Space Sciences

    Wysession, Michael E.

    2013-01-01

    In this article, Michael E. Wysession comments on the "Next Generation Science Standards" (NGSS), which are based on the recommendations of the National Research Council and represent a revolutionary step toward establishing modern, national K-12 science education standards. The NGSS involves significant changes from traditional…

  2. [Earth and Space Sciences Project Services for NASA HPCC

    Merkey, Phillip

    2002-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  3. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  4. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  5. The Humans in Space Art Program - Engaging the Mind, and the Heart, in Science

    McPhee, J. C.

    2017-12-01

    How can we do a better job communicating about space, science and technology, getting more people engaged, understanding the impact that future space exploration will have on their lives, and thinking about how they can contribute? Humans naturally express their visions and interests through various forms of artistic expression because art is inherently capable of expressing not only the "what and how" but also the "why" of ideas. Offering opportunities that integrate space, science and technology with art allows more people to learn about space, relay their visions of the future, and discuss why exploration and research are important. The Humans in Space Art Program, managed by the nonprofit SciArt Exchange, offers a science-integrated-with-art opportunity. Through international online competitions, we invite participants to share their visions of the future using visual, literary, musical and video art. We then use their artwork in multi-media displays and live performances online, locally worldwide, and in space to engage listeners and viewers. The Program has three projects, targeting different types of participants: the Youth Competition (ages 10-18), the Challenge (college and early career) and Celebrity Artist-Fed Engagement (CAFÉ: professional artists). To date, the Program has received 3400 artworks from over 52 countries and displayed the artwork in 110 multi-media events worldwide, on the International Space Station and bounced off the Moon. 100,000's have thus viewed artwork considering topics such as: why we explore; where and how we will go and when; and what we will do when we arrive. The Humans in Space Art Program is a flexible public engagement model applicable to multiple settings, including classrooms, art and entertainment events, and scientific conferences. It provides a system to accessibly inspire all ages about space, science and technology, making them hungry to learn more and to take a personal role.

  6. Solar-Terrestrial and Astronomical Research Network (STAR-Network) - A Meaningful Practice of New Cyberinfrastructure on Space Science

    Hu, X.; Zou, Z.

    2017-12-01

    For the next decades, comprehensive big data application environment is the dominant direction of cyberinfrastructure development on space science. To make the concept of such BIG cyberinfrastructure (e.g. Digital Space) a reality, these aspects of capability should be focused on and integrated, which includes science data system, digital space engine, big data application (tools and models) and the IT infrastructure. In the past few years, CAS Chinese Space Science Data Center (CSSDC) has made a helpful attempt in this direction. A cloud-enabled virtual research platform on space science, called Solar-Terrestrial and Astronomical Research Network (STAR-Network), has been developed to serve the full lifecycle of space science missions and research activities. It integrated a wide range of disciplinary and interdisciplinary resources, to provide science-problem-oriented data retrieval and query service, collaborative mission demonstration service, mission operation supporting service, space weather computing and Analysis service and other self-help service. This platform is supported by persistent infrastructure, including cloud storage, cloud computing, supercomputing and so on. Different variety of resource are interconnected: the science data can be displayed on the browser by visualization tools, the data analysis tools and physical models can be drived by the applicable science data, the computing results can be saved on the cloud, for example. So far, STAR-Network has served a series of space science mission in China, involving Strategic Pioneer Program on Space Science (this program has invested some space science satellite as DAMPE, HXMT, QUESS, and more satellite will be launched around 2020) and Meridian Space Weather Monitor Project. Scientists have obtained some new findings by using the science data from these missions with STAR-Network's contribution. We are confident that STAR-Network is an exciting practice of new cyberinfrastructure architecture on

  7. Department-Level Representations: A New Approach to the Study of Science Teacher Cognition

    Hutner, Todd L.; Markman, Arthur B.

    2016-01-01

    Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…

  8. Professional Development in Person: Identity and the Construction of Teaching within a High School Science Department

    Deneroff, Victoria

    2016-01-01

    This is a narrative inquiry into the role of professional development in the construction of teaching practice by an exemplary urban high school science teacher. I collected data during 3 years of ethnographic participant observation in Marie Gonzalez's classroom. Marie told stories about her experiences in ten years of professional development…

  9. Atmospheric and Geophysical Sciences Division, Physics Department program report, FY 1977

    Knox, J.B.; Orphan, R.C.

    1977-12-01

    Progress is reported on the development of a number of mathematical models for the simulation and computer analysis of a variety of environmental conditions. Regional, local, and global models for the environmental transport of chemical and radioactive effluents at surface and stratospheric levels are described. A list is included of publications in the atmospheric sciences during the time covered by this report

  10. The Power of Partnerships: Exploring the Relationship between Campus Career Centers and Political Science Departments

    Despeaux, J. Michael; Knotts, H. Gibbs; Schiff, Jennifer S.

    2014-01-01

    Given the growing emphasis on career preparation in higher education, career centers play important roles on today's college campuses. The literature has focused on the reasons students use career services, but it has not addressed the vital linkage between career centers and academic departments. Using a survey of 279 political science…

  11. Managing between science and industrie: An historical analysis of the Philips Research and Development Department's management

    Boersma, F.K.

    2007-01-01

    Purpose This paper seeks to deal with the history of Research and Development (R&D) management. It takes the history of the R&D Department of the Royal Philips Electronics of The Netherlands as an example to unravel the dynamics behind industrial R&D management. Designomethodologyoapproach This

  12. Life into Space: Space Life Sciences Experiments, Ames Research Center, Kennedy Space Center, 1991-1998, Including Profiles of 1996-1998 Experiments

    Souza, Kenneth (Editor); Etheridge, Guy (Editor); Callahan, Paul X. (Editor)

    2000-01-01

    We have now conducted space life sciences research for more than four decades. The continuing interest in studying the way living systems function in space derives from two main benefits of that research. First, in order for humans to engage in long-term space travel, we must understand and develop measures to counteract the most detrimental effects of space flight on biological systems. Problems in returning to the conditions of Earth must be kept to a manageable level. Second, increasing our understanding of how organisms function in the absence of gravity gives us new understanding of fundamental biological processes. This information can be used to improve human health and the quality of life on Earth.

  13. U.S. Materials Science on the International Space Station: Status and Plans

    Chiaramonte, Francis P.; Kelton, Kenneth F.; Matson, Douglas M.; Poirier, David R.; Trivedi, Rohit K.; Su, Ching-Hua; Volz, Martin P.; Voorhees, Peter W.

    2010-01-01

    This viewgraph presentation reviews the current status and NASA plans for materials science on the International Space Station. The contents include: 1) Investigations Launched in 2009; 2) DECLIC in an EXPRESS rack; 3) Dynamical Selection of Three-Dimensional Interface Patterns in Directional Solidification (DSIP); 4) Materials Science Research Rack (MSRR); 5) Materials Science Laboratory; 6) Comparison of Structure and Segregation in Alloys Directionally Solidified in Terrestrial and Microgravity Environments (MICAST/CETSOL); 7) Coarsening in Solid Liquid Mixtures 2 Reflight (CSLM 2R); 8) Crystal Growth Investigations; 9) Levitator Investigations; 10) Quasi Crystalline Undercooled Alloys for Space Investigation (QUASI); 11) The Role of Convection and Growth Competition in Phase Selection in Microgravity (LODESTARS); 12) Planned Additional Investigations; 13) SETA; 14) METCOMP; and 15) Materials Science NRA.

  14. Starguides plus a world-wide directory of organizations in astronomy and related space sciences

    Heck, André

    2004-01-01

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, en...

  15. Report on Computing and Networking in the Space Science Laboratory by the SSL Computer Committee

    Gallagher, D. L. (Editor)

    1993-01-01

    The Space Science Laboratory (SSL) at Marshall Space Flight Center is a multiprogram facility. Scientific research is conducted in four discipline areas: earth science and applications, solar-terrestrial physics, astrophysics, and microgravity science and applications. Representatives from each of these discipline areas participate in a Laboratory computer requirements committee, which developed this document. The purpose is to establish and discuss Laboratory objectives for computing and networking in support of science. The purpose is also to lay the foundation for a collective, multiprogram approach to providing these services. Special recognition is given to the importance of the national and international efforts of our research communities toward the development of interoperable, network-based computer applications.

  16. An overview of the United States government's space and science policy-making process

    CERN. Geneva

    2008-01-01

    A brief overview of the basic elements of the US space and science policy-making apparatus will be presented, focussing on insights into the interactions among the principal organizations, policy-making bodies and individual participants and their respective impact on policy outcomes. Several specific examples will be provided to illustrate the points made, and in the conclusion there will be some observations on current events in the US that may shape the outcome for the near-term future of US space and science policy in several areas.

  17. Life Sciences Research Facility automation requirements and concepts for the Space Station

    Rasmussen, Daryl N.

    1986-01-01

    An evaluation is made of the methods and preliminary results of a study on prospects for the automation of the NASA Space Station's Life Sciences Research Facility. In order to remain within current Space Station resource allocations, approximately 85 percent of planned life science experiment tasks must be automated; these tasks encompass specimen care and feeding, cage and instrument cleaning, data acquisition and control, sample analysis, waste management, instrument calibration, materials inventory and management, and janitorial work. Task automation will free crews for specimen manipulation, tissue sampling, data interpretation and communication with ground controllers, and experiment management.

  18. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  19. Very high temperature chemistry: Science justification for containerless experimentation in space

    Hofmeister, William H.; Nordine, Paul

    1990-01-01

    A summary is presented of the justification for application of containerless processing in space to high temperature science. Low earth orbit offers a gravitational environment that allows samples to be positioned in an experimental apparatus by very small forces. Well controlled experiments become possible on reactive materials at high temperatures in a reasonably quiescent state and without container contamination. This provides an opportunity to advance the science of high temperature chemistry that can only be realized with a commitment by NASA to provide advanced facilities for in-space containerless study of materials at very high temperature.

  20. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  1. Proceedings of The Twentieth International Symposium on Space Technology and Science. Volume 2

    NONE

    1996-10-31

    The 20th international symposium on space technology and science was held in Nagaragawa city, Gifu prefecture on May 19-25, 1996, and 401 papers were made public. Out of those, 112 papers were summed up as Volume 2 following the previous Volume 1. As to space transportation, the paper included reports titled as follows: Conceptual study of H-IIA rocket (upgraded H-II rocket); Test flight of the launch vehicle; International cooperation in space transportation; etc. Concerning microgravity science, Recent advances in microgravity research; Use of microgravity environment to investigate the effect of magnetic field on flame shape; etc. Relating to satellite communications and broadcasting, `Project GENESYS`: CRL`s R and D project for realizing high data rate satellite communications networks; The Astrolink {sup TM/SM} system; etc. Besides, the paper contained reports on the following fields: lunar and planetary missions and utilization, space science and balloons, earth observations, life science and human presence, international cooperation and space environment, etc

  2. Organizing space: Dutch space science between astronomy, industry and the government

    Baneke, D.M.

    2016-01-01

    This paper analyzes how scientists, private companies and the government in the Netherlands cooperated in the creation of the new field of space research. It examines especially the role of Philips Electronics and Fokker Aircraft, and the consequences of their different structure and corporate

  3. Sadhana | Indian Academy of Sciences

    Author Affiliations. A Salih1 S Ghosh Moulic2. Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Thiruvananthapuram 695 022; Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur 721 302 ...

  4. Science Students Creating Hybrid Spaces when Engaging in an Expo Investigation Project

    Ramnarain, Umesh; de Beer, Josef

    2013-02-01

    In this paper, we report on the experiences of three 9th-grade South African students (13-14 years) in doing open science investigation projects for a science expo. A particular focus of this study was the manner in which these students merge the world of school science with their social world to create a hybrid space by appropriating knowledge and resources of the school and home. Within this hybrid space they experienced a deeper, more meaningful and authentic engagement in science practical work. This hybrid space redefined the landscape of the science learning experience for these students, as they could derive the twofold benefit of appropriating support when necessary and at the same time maintain their autonomy over the investigation. For South Africa and quite probably other countries; these findings serve as a guideline as to how opportunities can be created for students to do open science investigations, against prevailing school factors such as large classes, a lack of physical resources, the lack of time for practical work and the demands of syllabus coverage.

  5. Program report for FY 1980. Atmospheric and Geophysical Sciences Division of the Physics Department

    Knox, J.B.; Orphan, R.C.

    1981-02-01

    The FY 1980 research program conducted by the Atmospheric and Geophysical Sciences Division and supporting segments at Lawrence Livermore National Laboratory is reviewed briefly. The work is divided into five research themes: advanced modeling, regional modeling and assessments, CO 2 and climate research, stratospheric research, and special projects. Specific projects are described, and significant findings of the work are indicated. Unique numerical modeling capabilities in use and under development are described

  6. Department of Energy: some aspects of basic research in the chemical sciences

    1979-01-01

    The basic research needs pertinent to DOE's specific mission are identified in the fields of combustion science, coal chemistry, reprocessing of reactor fuel and the disposal of radioactive waste, and analytical chemistry. Aspects of these fields which do not need DOE support are also identified in some cases. In addition recommendations are made on review procedures and funding, use of DOE laboratories by university and other extramural chemists, isotope availability, and critically evaluated data

  7. High Altitude Balloons as a Platform for Space Radiation Belt Science

    Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)

    2011-12-01

    The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana

  8. Technical progress report to the Department of Energy on the Solid State Sciences Committee (SSSC)

    1995-01-01

    The Solid State Sciences Committee (SSSC) of the National Research Council (NRC) is charged with monitoring the health of the field of materials science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special forums are among the mechanisms used by the SSSC to meet its charge. This progress report presents a review of SSSC activities from May 1, 1992 through April 30, 1993. The details of prior activities are discussed in earlier reports. During the above period, the SSSC has continued to track and participate, when requested, in the development of a Federal initiative on advanced materials and processing. Specifically, the SSSC is presently planning the 1993 SSSC Forum (to be cosponsored with the National Materials Advisory Board (NMAB) and the Washington Materials Forum (WNM)). The thrust will be to highlight the Federal Advanced Materials and Processing Program (AMPP). In keeping with its charge to identify and highlight specific areas for scientific and technological opportunities, the SSSC continued to oversee the conduct of a study on biomolecular materials. Preliminary plans also have been developed for studies on neutron scattering science, on ultrasmall devices, and on molecular routes to materials

  9. Professionality of Junior High School (SMP) Science Teacher in Preparing Instructional Design of Earth and Space Sciences (IPBA)

    Marlina, L.; Liliasari; Tjasyono, B.; Hendayana, S.

    2017-02-01

    The teacher is one important factor in the provision of education in schools. Therefore, improving the quality of education means we need to enhance the quality and the professionalism of teachers. We offer a solution through education and training of junior high school science teachers in developing the instructional design of Earth and Space Sciences (IPBA). IPBA is part of the science subjects which is given to students from elementary school to college. This research is a preliminary study of junior high school science teacher professionalism in creating instructional design IPBA. Mixed method design is used to design the research. Preliminary studies conducted on junior high school science teacher in one MGMPs in South Sumatera, and the respondent are 18 teachers from 13 schools. The educational background of science teachers who teach IPBA not only from physical education but also biology and agriculture. The result of preliminary study showed that the ratio of teachers who teach IPBA are 56% from physic education, 39% from biology, and 5% from agriculture. The subjects of IPBA that considered difficult by teachers are the distribution of sun, moon, and satellite motion; specific processes in lithosphere and atmosphere; and the correlation between lithosphere and atmosphere with the environment. The teachers also face difficulty in preparing media, choosing the right methods in teaching IPBA.

  10. Education for hydraulics and pnuematics in Department of Computer Science, Faculty of Information Sciences, Hiroshima City University; Hiroshima shiritsudaigaku ni okeru yukuatsu kyoiku

    Sano, M. [Hiroshima City University, Hiroshima (Japan)

    2000-03-15

    Described herein is education of hydraulics and pneumatics in Hiroshima City University. Department of Computer Science is responsible for the education, covering a wide educational range from basics of information processing methodology to application of mathematical procedures. This university provides no subject directly related to hydraulics and pneumatics, which, however, can be studied by the courses of control engineering or modern control theories. These themes are taken up for graduation theses for bachelors and masters; 2 for dynamic characteristics of pneumatic cylinders, and one for pneumatic circuit simulation. Images of the terms hydraulics and pneumatics are outdated for students of information-related departments. Hydraulics and pneumatics are being forced to rapidly change, like other branches of science, and it may be time to make a drastic change from hardware to software, because their developments have been excessively oriented to hardware. It is needless to say that they are based on hardware, but it may be worthy of drastically changing these branches of science by establishing virtual fluid power systems. It is also proposed to introduce the modern multi-media techniques into the education of hydraulics and pneumatics. (NEDO)

  11. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    National Aeronautics and Space Administration — The Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to...

  12. [A NASA / University Joint Venture in Space Science

    Wold, Donald C.

    1996-01-01

    MILAGRO is a water-Cherenkov detector for observing cosmic gamma rays over a broad energy range of 100 GeV to 100 TeV. MILAGRO will be the first detector that has sensitivity overlapping both air-Cherenkov and air-shower detectors. With this detector scientists in the collaboration will study previously observed celestial sources at their known emission energies, extend these observations into a new energy regime, and search for new sources at unexplored energies. The diffuse gamma-radiation component in our galaxy, which originates from interactions of cosmic rays with interstellar gas and photons, provides important information about the density, distribution, and spectrum of the cosmic rays that pervade the interstellar medium. Events in the Compton Gamma Ray Observatory (GRO) are being observed up to about 30 GeV, differing by slightly more than order of magnitude from the low energy threshold of MILAGRO. By looking in coincidence at sources, correlated observations will greatly extend the astrophysics potential of MILAGRO and NASA's GRO. A survey of cosmic-ray observatories is being prepared for scientists and others to provide a resource and reference which describes high energy cosmic-ray research activities around the world. This summary presents information about each research group, such as names of principal investigators, number of persons in the collaboration, energy range, sensitivity, angular resolution, and surface area of detector. Similarly, a survey of gamma-ray telescopes is being prepared to provide a resource and reference which describes gamma-ray telescopes for investigating galactic diffuse gamma-ray flux currently observed in the GeV energy range, but is expected to extend into the TeV range. Two undergraduate students are compiling information about gamma-ray telescopes and high energy cosmic-ray observatories for these surveys. Funding for this project was provided by the Arkansas Space Grant Consortium. Also enclosed Appendix A, B, C, D

  13. Strategy for implementing research in hydrology to promote space science among school children in Nigeria

    Alabi, Omowumi O.

    2015-04-01

    This paper describes a proposed activity to introduce school children in Nigeria to research in hydrology through the public outreach coordinated by the United Nations affiliated African Regional Centre for Space Science and Technology Education in English (ARCSSTE-E). Over the years, ARCSSTE-E has established a vibrant relationship with Nigerian schools through periodic zonal and national space educational workshops organized for students and teachers. The enthusiasm displayed by the students, coupled with the brilliant performance in the evaluation tests, indicated that this method of informal education is suitable for stimulating the interest of Nigerian pre-collegiate youths in space science and technology, and also to inspire the young learners and develop their interest in the Sciences, Technology, Engineering and Mathematics (STEM). Because only few representatives from each school can participate in these public outreach programs, it became expedient for the Centre to inaugurate space clubs in schools as a forum for students and teachers to meet regularly to discuss space related issues. Since the first space club was officially launched in 2007, the Centre has inaugurated over 300 space clubs in primary, secondary and tertiary institutions, strategically distributed over the six geopolitical zones of Nigeria. The presentation highlights a space club activity designed to introduce the students to precipitation data collection, with locally fabricated rain gauges. The paper also documents the proposed post-data collection activities in which ARCSSTE-E, acting as the coordinating Centre will collaborate with other national and international organizations to standardize and utilize the rainfall data collected by the students for ground validation of satellite data from the Global Precipitation Measurement. Key words: Public Outreach, Space Club, Human Capacity Development, Hydrologic Research, Global Precipitation Measurement.

  14. Policy for Robust Space-based Earth Science, Technology and Applications

    Brown, Molly Elizabeth; Escobar, Vanessa Marie; Aschbacher, Josef; Milagro-Pérez, Maria Pilar; Doorn, Bradley; Macauley, Molly K.; Friedl, Lawrence

    2013-01-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.

  15. Geological and geophysical activities at Spallanzani Science Department (Liceo Scientifico Statale "Lazzaro Spallanzani" - Tivoli, Italy)

    Favale, T.; De Angelis, F.; De Filippis, L.

    2012-04-01

    The high school Liceo Scientifico "Lazzaro Spallanzani" at Tivoli (Rome) has been fully involved in the study of geological and geophysical features of the town of Tivoli and the surrounding area in the last twelve years. Objective of this activity is to promote the knowledge of the local territory from the geological point of view. Main activities: • School year 2001-2002: Setting up inside the school building of a Geological Museum focusing on "Geological Evolution of Latium, Central Italy" (in collaboration with colleagues M. Mancini, and A. Pierangeli). • March, 15, 2001: Conference of Environmental Geology. Lecturer: Prof. Raniero Massoli Novelli, L'Aquila University and Società Italiana di Geologia Ambientale. • School years 2001-2002 and 2002-2003: Earth Sciences course for students "Brittle deformation and tectonic stress in Tivoli area". • November, 2003: Conference of Geology, GIS and Remote Sensing. Lecturers: Prof. Maurizio Parotto and Dr Alessandro Cecili (Roma Tre University, Rome), and Dr Stefano Pignotti (Istituto Nazionale per la Ricerca sulla Montagna, Rome). • November, 2003, 2004 and 2005: GIS DAY, organized in collaboration with ESRI Italia. • School year 2006-2007: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli, Latium, Central Italy" (focus on travertine formation). • School year 2010-2011: Earth Sciences course for students "Acque Albule basin and the Travertine of Tivoli. Geology, Hydrogeology and Microbiology of the basin, Latium, Central Italy" (focus on thermal springs and spa). In the period 2009-2010 a seismic station with three channels, currently working, was designed and built in our school by the science teachers Felice De Angelis and Tomaso Favale. Our seismic station (code name LTTV) is part of Italian Experimental Seismic Network (IESN) with identification code IZ (international database IRIS-ISC). The three drums are online in real time on websites http

  16. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications.

  17. Program report for FY 1984 and 1985 Atmospheric and Geophysical Sciences Division of the Physics Department

    Knox, J.B.; MacCracken, M.C.; Dickerson, M.H.; Gresho, P.M.; Luther, F.M.

    1986-08-01

    This annual report for the Atmospheric and Geophysical Sciences Division (G-Division) summarizes the activities and highlights of the past three years, with emphasis on significant research findings in two major program areas: the Atmospheric Release Advisory Capability (ARAC), with its recent involvement in assessing the effects of the Chernobyl reactor accident, and new findings on the environmental consequences of nuclear war. The technical highlights of the many other research projects are also briefly reported, along with the Division's organization, budget, and publications

  18. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre

  19. New Paradigms for Ensuring the Enduring Viability of the Space Science Enterprise

    Arenberg, Jonathan; Conti, Alberto

    2018-01-01

    Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future large space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This poster will present our recent results on the origins of these new questions and the steps to their answers.

  20. Ensuring the Enduring Viability of the Space Science Enterprise: New Questions, New Thinking, New Paradigms

    Arenberg, Jonathan; Conti, Alberto; Atkinson, Charles

    2017-01-01

    Pursuing ground breaking science in a highly cost and funding constrained environment presents new challenges to the development of future space astrophysics missions. Within the conventional cost models for large observatories, executing a flagship “mission after next” appears to be unstainable. To achieve our nation’s space astrophysics ambitions requires new paradigms in system design, development and manufacture. Implementation of this new paradigm requires that the space astrophysics community adopt new answers to a new set of questions. This paper will discuss the origins of these new questions and the steps to their answers.

  1. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  2. National Institute of Radiological Sciences. 2. Department of technical support and development

    Yukawa, Masae

    2005-01-01

    The Department has two Sections of Technical Service and Development, and of Laboratory Animal Development and Management, of which works are described in this paper. The former section works for planning and coordination, maintenance, management and operation of collaborative experimental facilities and equipments; maintenance, management and operation of radiation generating equipments involving accelerators; and maintenance, management and operation of specified experimental equipments (Radon Building). The recent topic is the introduction of a neutron accelerator system for biological effect experiment, neutron exposure accelerator system for biological effect experiment (NASBEE), and of a single particle irradiation system to cell, single particle irradiation system to cell (SPICE), the equipment for micro-beam (2 μm accuracy) for cell irradiation. The latter section works for production, maintenance and supply of experimental animals; maintenance, management and operation of facilities for experimental animals and plants; hygienic management of experimental animals; and research, development and application of new technology concerning experimental animals. The recent topic is the construction of buildings providing areas for SPF mice and rats in order to study the low dose radiation effect and for monkeys, to study the molecular imaging. The intellectual fundamentals of the Department are to be open to the public and be used collaboratively in principle. (S.I.)

  3. The Department of the Interior Southeast Climate Science Center synthesis report 2011–15—Projects, products, and science priorities

    Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard

    2016-09-28

    IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the

  4. The Big Crunch: A Hybrid Solution to Earth and Space Science Instruction for Elementary Education Majors

    Cervato, Cinzia; Kerton, Charles; Peer, Andrea; Hassall, Lesya; Schmidt, Allan

    2013-01-01

    We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the…

  5. Perceived Barriers and Strategies to Effective Online Earth and Space Science Instruction

    Pottinger, James E.

    2012-01-01

    With the continual growth and demand of online courses, higher education institutions are attempting to meet the needs of today's learners by modifying and developing new student centered services and programs. As a result, faculty members are being forced into teaching online, including Earth and Space science faculty. Online Earth and Space…

  6. Understanding of Earth and Space Science Concepts: Strategies for Concept-Building in Elementary Teacher Preparation

    Bulunuz, Nermin; Jarrett, Olga S.

    2009-01-01

    This research is concerned with preservice teacher understanding of six earth and space science concepts that are often taught in elementary school: the reason for seasons, phases of the moon, why the wind blows, the rock cycle, soil formation, and earthquakes. Specifically, this study examines the effect of readings, hands-on learning stations,…

  7. Learning in Earth and Space Science: A Review of Conceptual Change Instructional Approaches

    Mills, Reece; Tomas, Louisa; Lewthwaite, Brian

    2016-01-01

    In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the…

  8. Global Lunar Topography from the Deep Space Gateway for Science and Exploration

    Archinal, B.; Gaddis, L.; Kirk, R.; Edmundson, K.; Stone, T.; Portree, D.; Keszthelyi, L.

    2018-02-01

    The Deep Space Gateway, in low lunar orbit, could be used to achieve a long standing goal of lunar science, collecting stereo images in two months to make a complete, uniform, high resolution, known accuracy, global topographic model of the Moon.

  9. Technical Challenges and Opportunities of Centralizing Space Science Mission Operations (SSMO) at NASA Goddard Space Flight Center

    Ido, Haisam; Burns, Rich

    2015-01-01

    The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.

  10. MIT-NASA/KSC space life science experiments - A telescience testbed

    Oman, Charles M.; Lichtenberg, Byron K.; Fiser, Richard L.; Vordermark, Deborah S.

    1990-01-01

    Experiments performed at MIT to better define Space Station information system telescience requirements for effective remote coaching of astronauts by principal investigators (PI) on the ground are described. The experiments were conducted via satellite video, data, and voice links to surrogate crewmembers working in a laboratory at NASA's Kennedy Space Center. Teams of two PIs and two crewmembers performed two different space life sciences experiments. During 19 three-hour interactive sessions, a variety of test conditions were explored. Since bit rate limits are necessarily imposed on Space Station video experiments surveillance video was varied down to 50 Kb/s and the effectiveness of PI controlled frame rate, resolution, grey scale, and color decimation was investigated. It is concluded that remote coaching by voice works and that dedicated crew-PI voice loops would be of great value on the Space Station.

  11. The space telescope: A study of NASA, science, technology, and politics

    Smith, Robert William

    1989-01-01

    Scientific, technological, economic, and political aspects of NASA efforts to orbit a large astronomical telescope are examined in a critical historical review based on extensive interviews with participants and analysis of published and unpublished sources. The scientific advantages of large space telescopes are explained; early plans for space observatories are summarized; the history of NASA and its major programs is surveyed; the redesign of the original Large Space Telescope for Shuttle deployability is discussed; the impact of the yearly funding negotiations with Congress on the development of the final Hubble Space Telescope (HST) is described; and the implications of the HST story for the future of large space science projects are explored. Drawings, photographs, a description of the HST instruments and systems, and lists of the major contractors and institutions participating in the HST program are provided.

  12. The Coalition for Publishing Data in the Earth and Space Sciences

    Lehnert, Kerstin; Hanson, Brooks; Cutcher-Gershenfeld, Joel

    2015-04-01

    Scholarly publishing remains a key high-value point in making data available and will for the foreseeable future be tied to the availability of science data. Data need to be included in or released as part of publications to make the science presented in an article reproducible, and most publishers have statements related to the inclusion of data, recognizing that such release enhances the value and is part of the integrity of the research. Unfortunately, practices for reporting and documenting data in the scientific literature are inconsistent and inadequate, and the vast majority of data submitted along with publications is still in formats and forms of storage that make discovery and reuse difficult or impossible. Leading earth and space science repositories on the other hand are eager and set up to provide persistent homes for these data, and also ensure quality, enhancing their value, access, and reusability. Unfortunately only a small fraction of the data associated with scientific publications makes it to these data facilities. Connecting scholarly publication more firmly with data facilities is essential in meeting the expectations of open, accessible and useful data as aspired by all stakeholders and expressed in position statements, policies, and guidelines. To strengthen these connections, a new initiative was launched in Fall 2014 at a conference that brought together major publishers, data facilities, and consortia in the Earth and space sciences, as well as governmental, association, and foundation funders. The aim of this initiative is to foster consensus and consistency among publishers, editors, funders, and data repositories on how data that are part of scholarly publications should be curated and published, and guide the development of practical resources based on those guidelines that will help authors and publishers support open data policies, facilitate proper data archiving, and support the linking of data to publications. The most relevant

  13. Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data

    Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan

    1995-01-01

    The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.

  14. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  15. Final Report to the Department of the Energy for Project Entitled Rare Isotope Science Assessment Committee

    Shapero, Donald; Meyer, Timothy I.

    2007-01-01

    The Rare Isotope Science Assessment Committee (RISAC) was convened by the National Research Council in response to an informal request from the DOE's Office of Nuclear Physics and the White House Office of Management and Budget. The charge to the committee is to examine and assess the broader scientific and international contexts of a U.S.-based rare-isotope facility. The committee met for the first time on December 16-17, 2005, in Washington, DC, and held three subsequent meetings. The committee's's final report was publicly released in unedited, prepublication form on Friday, December 8, 2006. The report was published in full-color by the National Academies Press in April 2007. Copies of the report were distributed to key decision makers and stakeholders around the world.

  16. ROLE OF HYDROBIOLOGY DEPARTMENT IN EDUCATIONAL PROCESS, DEVELOPMENT OF FISHING INDUSTRY AND SCIENCE IN THE UKRAINE

    Yevtushenko N.Y.

    2014-04-01

    Full Text Available Article summarized the information concerning the basic objectives and lines of action of hydrobiology department in training the specialists in major Water Bioresources and Aquaculture. The value of the complex of disciplines, which disclose processes of studying the water quality, condition of aquatic ecosystems, biological and fish productivity of different water types, is shown. The main focus is on the structure and content of educational disciplines, which provide realization of master program in hydrobioresources safety, and on their tight connection with scientific researches, which aim at safety, reproduction and rational use of hydrobioresources, the importance of aquatic organisms in the system of water quality bioidentification, using international and european standarts, also on processes of water quality control and waters’ bioreproduction.

  17. ROLE OF HYDROBIOLOGY DEPARTMENT IN EDUCATIONAL PROCESS, DEVELOPMENT OF FISHING INDUSTRY AND SCIENCE IN THE UKRAINE

    N. Y. Yevtushenko

    2014-04-01

    Full Text Available Article summarized the information concerning the basic objectives and lines of action of hydrobiology department in training the specialists in major Water Bioresources and Aquaculture. The value of the complex of disciplines, which disclose processes of studying the water quality, condition of aquatic ecosystems, biological and fish productivity of different water types, is shown. The main focus is on the structure and content of educational disciplines, which provide realization of master program in hydrobioresources safety, and on their tight connection with scientific researches, which aim at safety, reproduction and rational use of hydrobioresources, the importance of  aquatic organisms in the system of  water quality bioidentification, using international and european standarts, also on processes of water quality control and waters’ bioreproduction. Key words: discipline, educational process, waters, bioresources, pollution, biological productivity processes, water quality, fish productivity

  18. Climate Change Education Today in K-12: What's Happening in the Earth and Space Science Classroom?

    Holzer, M. A.; National Earth Science Teachers Association

    2011-12-01

    Climate change is a highly interdisciplinary topic, involving not only multiple fields of science, but also social science and the humanities. There are many aspects of climate change science that make it particularly well-suited for exploration in the K-12 setting, including opportunities to explore the unifying processes of science such as complex systems, models, observations, change and evolution. Furthermore, this field of science offers the opportunity to observe the nature of science in action - including how scientists develop and improve their understanding through research and debate. Finally, climate change is inherently highly relevant to students - indeed, students today will need to deal with the consequences of the climate change. The science of climate change is clearly present in current science education standards, both at the National level as well as in the majority of states. Nonetheless, a significant number of teachers across the country report difficulties addressing climate change in the classroom. The National Earth Science Teachers Association has conducted several surveys of Earth and space science educators across the country over the past several years on a number of issues, including their needs and concerns, including their experience of external influences on what they teach. While the number of teachers that report external pressures to not teach climate change science are in the minority (and less than the pressure to not teach evolution and related topics), our results suggest that this pressure against climate change science in the K-12 classroom has grown over the past several years. Some teachers report being threatened by parents, being encouraged by administrators to not teach the subject, and a belief that the "two sides" of climate change should be taught. Survey results indicate that teachers in religious or politically-conservative districts are more likely to report difficulties in teaching about climate change than in

  19. A look towards the future in the handling of space science mission geometry

    Acton, Charles; Bachman, Nathaniel; Semenov, Boris; Wright, Edward

    2018-01-01

    The "SPICE" system has been widely used since the days of the Magellan mission to Venus as the method for scientists and engineers to access a variety of space mission geometry such as positions, velocities, directions, orientations, sizes and shapes, and field-of-view projections (Acton, 1996). While originally focused on supporting NASA's planetary missions, the use of SPICE has slowly grown to include most worldwide planetary missions, and it has also been finding application in heliophysics and other space science disciplines. This paper peeks under the covers to see what new capabilities are being developed or planned at SPICE headquarters to better support the future of space science. The SPICE system is implemented and maintained by NASA's Navigation and Ancillary Information Facility (NAIF) located at the Jet Propulsion Laboratory in Pasadena, California (http://naif.jpl.nasa.gov).

  20. The JOVE initiative - A NASA/university Joint Venture in space science

    Six, F.; Chappell, R.

    1990-01-01

    The JOVE (NASA/university Joint Venture in space science) initiative is a point program between NASA and institutions of higher education whose aim is to bring about an extensive merger between these two communities. The project is discussed with emphasis on suggested contributions of partnership members, JOVE process timeline, and project schedules and costs. It is suggested that NASA provide a summer resident research associateship (one ten week stipend); scientific on-line data from space missions; an electronic network and work station, providing a link to the data base and to other scientists; matching student support, both undergraduate and graduate; matching summer salary for up to three faculty participants; and travel funds. The universities will be asked to provide research time for faculty participants, matching student support, matching summer salary for faculty participants, an instructional unit in space science, and an outreach program to pre-college students.

  1. USRA's NCSEFSE: a new National Center for Space, Earth, and Flight Sciences Education

    Livengood, T. A.; Goldstein, J.; Vanhala, H.; Hamel, J.; Miller, E. A.; Pulkkinen, K.; Richards, S.

    2005-08-01

    A new National Center for Space, Earth, and Flight Sciences Education (NCSEFSE) has been created in the Washington, DC metropolitan area under the auspices of the Universities Space Research Association. The NCSEFSE provides education and public outreach services in the areas of NASA's research foci in programs of both national and local scope. Present NCSEFSE programs include: Journey through the Universe, which unites formal and informal education within communities and connects a nationally-distributed network of communities from Hilo, HI to Washington, DC with volunteer Visiting Researchers and thematic education modules; the Voyage Scale Model Solar System exhibition on the National Mall, a showcase for planetary science placed directly outside the National Air and Space Museum; educational module development and distribution for the MESSENGER mission to Mercury through a national cadre of MESSENGER Educator Fellows; Teachable Moments in the News, which capitalizes on current events in space, Earth, and flight sciences to teach the science that underlies students' natural interests; the Voyages Across the Universe Speakers' Bureau; and Family Science Night at the National Air and Space Museum, which reaches audiences of 2000--3000 each year, drawn from the Washington metropolitan area. Staff scientists of NCSEFSE maintain active research programs, presently in the areas of planetary atmospheric composition, structure, and dynamics, and in solar system formation. NCSEFSE scientists thus are able to act as authentic representatives of frontier scientific research, and ensure accuracy, relevance, and significance in educational products. NCSEFSE instructional designers and educators ensure pedagogic clarity and effectiveness, through a commitment to quantitative assessment.

  2. 2000 U.S. Department of Energy Strategic Plan: Strength through Science Powering the 21st Century

    None,

    2000-09-01

    The Department of Energy conducts programs relating to energy resources, national nuclear security, environmental quality, and science. In each of these areas, the US is facing significant challenges. Our economic well-being depends on the continuing availability of reliable and affordable supplies of clean energy. Our Nation's security is threatened by the proliferation of weapons of mass destruction. Our environment is under threat from the demands a more populated planet and the legacies of 20th-century activities. Science and the technology derived from it offer the promise to improve the Nation's health and well-being and broadly expand human knowledge. In conducting its programs, the Department of Energy (DOE) employs unique scientific and technical assets, including 30,000 scientists, engineers, and other technical staff, in a complex of outstanding national laboratories that have a capital value of over $45 billion. Through its multidisciplinary research and development activities and its formidable assemblage of scientific and engineering talent, DOE focuses its efforts on four programmatic business lines: (1) Energy Resources--promoting the development and deployment of systems and practices that provide energy that is clean, efficient, reasonably priced, and reliable. (2) National Nuclear Security--enhancing national security through military application of nuclear technology and by reducing global danger from the potential spread of weapons of mass destruction. (3) Environmental Quality--cleaning up the legacy of nuclear weapons and nuclear research activities, safely managing nuclear materials, and disposing of radioactive wastes. (4) Science--advancing science and scientific tools to provide the foundation for DOE's applied missions and to provide remarkable insights into our physical and biological world. In support of the above four business lines, DOE provides management services to ensure that the technical programs can run efficiently. Our

  3. Patient’s Satisfaction of Emergency Department Affiliated Hospital of Babol University of Medical Sciences in 2013 -14

    H Datobar

    2016-04-01

    Full Text Available BACKGROUND AND OBJECTIVE: Patient satisfaction in emergency departments is an indicator of healthcare quality, evaluation of which can promote awareness of the relevant authorities regarding its status. This study aimed to evaluate patient satisfaction in emergency departments in hospitals affiliated to Babol University of Medical Sciences. METHODS: This cross-sectional study was performed in patients admitted to emergency departments in hospitals affiliated to Babol University of Medical Sciences, Babol, Iran, during a period of eight months (2013-2014. The participants were chosen through convenience sampling. Information regarding hospital environment, facilities, and nursing team was collected using a standard questionnaire. Standard questionnaire responses were classified to” don’t happen, dissatisfied, low, medium and high satisfaction”. Then medium and high responses classified to favorable satisfaction (above average and low or dissatisfied responses were classified to unfavorable satisfaction. In case the patients were unable to fill-out the questionnaire, their companion completed it for them. FINDINGS: Overall, 444 (87.9% patients expressed optimum satisfaction. The highest rate of dissatisfaction (14.8%, n=74 was related to environment and services, while the highest rate of satisfaction (49.3%, n=246 was pertinent to nursing staff. The results indicated that the rate of satisfaction in residents of rural areas was 0.55 times higher than in urban residents (OR: 1.55, 95% CI: 1.12-2.70, p=0.02, 50% lower in patients compared to companions (OR: 0.55, 95% CI: 0.36-0.83, p=0.05,and  in the evening shift was 0.65 times higher than in those admitted in the morning (OR: 1.65, 95% CI: 1.06-2.58, p=0.03. Moreover, this rate in patients admitted at night shift was 0.74 times higher than in those admitted in the morning (OR: 1.74, 95% CI: 1.12-2.70, p=0.01. CONCLUSION: This study demonstrated optimum patient satisfaction in emergency

  4. Discursive geographies in science: space, identity, and scientific discourse among indigenous women in higher education

    Brandt, Carol B.

    2008-09-01

    Despite completing undergraduate degrees in the life sciences, few Indigenous women choose to pursue careers in scientific research. To help us understand how American Indian students engage with science, this ethnographic research describes (1) how four Navajo women identified with science, and (2) the narratives they offered when we discussed their experiences with scientific discourse. Using intensive case studies to describe the experiences of these women, my research focused on their final year of undergraduate study in the life sciences at a university in southwestern US. I point to the processes by which the participants align themselves with ideas, practices, groups, or people in science. As each participant recounted her experiences with scientific discourse, they recreated for me a discursive geography of their lives on the reservation, at home, at community colleges (in some cases), and on the university campus. In the construction and analysis of the narratives for this research, mapping this geography was critical to understanding each participant's discursive relationship with science. In these discursive spaces, I observed productive "locations of possibility" in which students and their instructors: valued connected knowing; acknowledged each other's history, culture, and knowledge; began to speak to each other subject-to-subject; and challenged normative views of schooling. I argue that this space, as a location of possibility, has the power to transform the crushing impersonalized schooling that often characterizes "rigorous" scientific programs in a research institution.

  5. System Design and Performance of the Two-Gyro Science Mode For the Hubble Space Telescope

    Prior, Michael; Dunham, Larry

    2005-01-01

    For fifteen years, the science mission of the Hubble Space Telescope (HST) required using at least three of the six on-board rate gyros for attitude control. Failed gyros were eventually replaced through Space Shuttle Servicing Missions. The tragic loss of the Space Shuttle Columbia has resulted in the cancellation of all planned Shuttle based missions to HST. While a robotic servicing mission is currently being planned instead, controlling with alternate sensors to replace failed gyros can extend the HST science gathering until a servicing mission can be performed, and also extend science at HST s end of life. Additionally, sufficient performance may allow a permanent transition to operations with less than 3 gyros (by intentionally turning off working gyros saving them for later use) allowing for an even greater science mission extension. To meet this need, a Two Gyro Science (TGS) mode has been designed and implemented using magnetometers (Magnetic Sensing System - MSS), Fixed Head Star Trackers (FHSTs), and Fine Guidance Sensors (FGSs) to control vehicle rate about the missing gyro input axis. The development of the TGS capability is the largest re-design of HST operations undertaken, since it affects several major spacecraft subsystems, the most heavily being the Pointing Control System (PCS) and Flight Software (FSW). Additionally, and equally important, are the extensive modifications and enhancements of the Planning and Scheduling system which must now be capable of scheduling science observations while taking into account several new constraints imposed by the TGS operational modes (such as FHST availability and magnetic field geometry) that will impact science gathering efficiency and target availability. This paper discusses the systems engineering design, development, and performance of the TGS mode, now in its final stages of completion.

  6. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Phillips, Ann Marie

    2003-01-01

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D and D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D and D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D and D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D and D basic research projects will directly impact and provide solutions to DOE's D and D problems

  7. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Palanisamy, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, Thomas A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Voyles, Jimmy W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  8. Students' attitudes towards impact of the health department website on their health literacy in Semnan University of Medical Sciences.

    Mahdizadeh, Jamileh; Valinejadi, Ali; Pooyesh, Behnoosh; Jafari, Fatemeh; Kahouei, Mehdi

    2018-01-01

    Health literacy has been of interest to policymakers because of its impact on health decision-making as one of the important issues for promoting community health and improving the quality of health care delivery. Therefore, it seems necessary to examine the status of the website of the health sector of the University of Medical Sciences in promoting health literacy from the viewpoint of the students. This cross-sectional study was performed on 529 medical and allied students in schools affiliated to Semnan University of Medical Sciences, Semnan, Iran between 2016 and 2017. In this study, a valid and reliable adult health literacy questionnaire designed by Montazeri et al. was used. The questionnaire was distributed among students in medical and allied health schools and they were asked to complete the questionnaire. Independent-samples t-test, one-way ANOVA, and Pearson product-moment correlation were used to analyze data by SPSS 19. Mean scores of the participants' attitudes towards reading of health information was 3.14 and towards decision and usage of health information was 2.53. Relationship between the study subjects' demographic characteristics and their attitudes was significant (pwebsite. Hence, the results of this study showed that the website of the health department needs to be redesigned, and this design would allow a better link between the University of Medical Sciences and its audience to promote health literacy.

  9. Students’ attitudes towards impact of the health department website on their health literacy in Semnan University of Medical Sciences

    Mahdizadeh, Jamileh; Valinejadi, Ali; Pooyesh, Behnoosh; Jafari, Fatemeh

    2018-01-01

    Background and aim Health literacy has been of interest to policymakers because of its impact on health decision-making as one of the important issues for promoting community health and improving the quality of health care delivery. Therefore, it seems necessary to examine the status of the website of the health sector of the University of Medical Sciences in promoting health literacy from the viewpoint of the students. Methods This cross-sectional study was performed on 529 medical and allied students in schools affiliated to Semnan University of Medical Sciences, Semnan, Iran between 2016 and 2017. In this study, a valid and reliable adult health literacy questionnaire designed by Montazeri et al. was used. The questionnaire was distributed among students in medical and allied health schools and they were asked to complete the questionnaire. Independent-samples t-test, one-way ANOVA, and Pearson product-moment correlation were used to analyze data by SPSS 19. Results Mean scores of the participants’ attitudes towards reading of health information was 3.14 and towards decision and usage of health information was 2.53. Relationship between the study subjects’ demographic characteristics and their attitudes was significant (pwebsite. Hence, the results of this study showed that the website of the health department needs to be redesigned, and this design would allow a better link between the University of Medical Sciences and its audience to promote health literacy. PMID:29588815

  10. ENVIRONMENTAL MANAGEMENT SCIENCE PROGRAM RESEARCH PROJECTS TO IMPROVE DECONTAMINATION AND DECOMMISIONING OF U.S. DEPARTMENT OF ENERGY FACILITIES

    Phillips, Ann Marie

    2003-02-27

    This paper describes fourteen basic science projects aimed at solving decontamination and decommissioning (D&D) problems within the U.S. Department of Energy (DOE). Funded by the Environmental Science Management Program (EMSP), these research projects address D&D problems where basic science is needed to expand knowledge and develop solutions to help DOE meet its cleanup milestones. EMSP uses directed solicitations targeted at identified Environmental Management (EM) needs to ensure that research results are directly applicable to DOE's EM problems. The program then helps transition the projects from basic to applied research by identifying end-users and coordinating proof-of-principle field tests. EMSP recently funded fourteen D&D research projects through the directed solicitation process. These research projects will be discussed, including description, current status, and potential impact. Through targeted research and proof-of-principle tests, it is hoped that EMSP's fourteen D&D basic research projects will directly impact and provide solutions to DOE's D&D problems.

  11. A shared-world conceptual model for integrating space station life sciences telescience operations

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  12. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  13. The Process of Science Communications at NASA/Marshall Space Flight Center

    Horack, John M.; Treise, Deborah

    1998-01-01

    The communication of new scientific knowledge and understanding is an integral component of science research, essential for its continued survival. Like any learning- based activity, science cannot continue without communication between and among peers so that skeptical inquiry and learning can take place. This communication provides necessary organic support to maintain the development of new knowledge and technology. However, communication beyond the peer-community is becoming equally critical for science to survive as an enterprise into the 21st century. Therefore, scientists not only have a 'noble responsibility' to advance and communicate scientific knowledge and understanding to audiences within and beyond the peer-community, but their fulfillment of this responsibility is necessary to maintain the survival of the science enterprise. Despite the critical importance of communication to the viability of science, the skills required to perform effective science communications historically have not been taught as a part of the training of scientist, and the culture of science is often averse to significant communication beyond the peer community. Thus scientists can find themselves ill equipped and uncomfortable with the requirements of their job in the new millennium. At NASA/Marshall Space Flight Center, we have developed and implemented an integrated science communications process, providing an institutional capability to help scientist accurately convey the content and meaning of new scientific knowledge to a wide variety of audiences, adding intrinsic value to the research itself through communication, while still maintaining the integrity of the peer-review process. The process utilizes initial communication through the world-wide web at the site http://science.nasa.gov to strategically leverage other communications vehicles and to reach a wide-variety of audiences. Here we present and discuss the basic design of the science communications process, now in

  14. Building Cyberinfrastructures for Earth and Space Sciences so that they will come: lessons learnt from Australia

    Wyborn, L. A.; Woodcock, R.

    2013-12-01

    One of the greatest drivers for change in the way scientific research is undertaken in Australia was the development of the Australian eResearch Infrastructure which was coordinated by the then Australian Government Department of Innovation, Industry, Science and Research. There were two main tranches of funding: the 2007-2013 National Collaborative Research Infrastructure Strategy (NCRIS) and the 2009 Education and Investment Framework (EIF) Super Science Initiative. Investments were in two areas: the Australian e-Research Infrastructure and domain specific capabilities: combined investment in both is 1,452M with at least 456M being invested in eResearch infrastructure. NCRIS was specifically designed as a community-guided process to provide researchers, both academic and government, with major research facilities, supporting infrastructures and networks necessary for world-class research. Extensive community engagement was sought to inform decisions on where Australia could best make strategic infrastructure investments to further develop its research capacity and improve research outcomes over the next 5 to 10years. The current (2007-2014) Australian e-Research Infrastructure has 2 components: 1. The National eResearch physical infrastructure which includes two petascale HPC facilities (one in Canberra and one in Perth), a 10 Gbps national network (National Research Network), a national data storage infrastructure comprising 8 multi petabyte data stores and shared access methods (Australian Access Federation). 2. A second component is focused on research integration infrastructures and includes the Australian National Data Service, which is concerned with better management, description and access to distributed research data in Australia and the National eResearch Collaboration Tools and Resources (NeCTAR) project. NeCTAR is centred on developing problem oriented digital laboratories which provide better and coordinated access to research tools, data

  15. The Sharjah Center for Astronomy and Space Sciences (SCASS 2015): Concept and Resources

    Naimiy, Hamid M. K. Al

    2015-08-01

    The Sharjah Center for Astronomy and Space Sciences (SCASS) was launched this year 2015 at the University of Sharjah in the UAE. The center will serve to enrich research in the fields of astronomy and space sciences, promote these fields at all educational levels, and encourage community involvement in these sciences. SCASS consists of:The Planetarium: Contains a semi-circle display screen (18 meters in diameter) installed at an angle of 10° which displays high-definition images using an advanced digital display system consisting of seven (7) high-performance light-display channels. The Planetarium Theatre offers a 200-seat capacity with seats placed at highly calculated angles. The Planetarium also contains an enormous star display (Star Ball - 10 million stars) located in the heart of the celestial dome theatre.The Sharjah Astronomy Observatory: A small optical observatory consisting of a reflector telescope 45 centimeters in diameter to observe the galaxies, stars and planets. Connected to it is a refractor telescope of 20 centimeters in diameter to observe the sun and moon with highly developed astronomical devices, including a digital camera (CCD) and a high-resolution Echelle Spectrograph with auto-giving and remote calibration ports.Astronomy, space and physics educational displays for various age groups include:An advanced space display that allows for viewing the universe during four (4) different time periods as seen by:1) The naked eye; 2) Galileo; 3) Spectrographic technology; and 4) The space technology of today.A space technology display that includes space discoveries since the launching of the first satellite in 1940s until now.The Design Concept for the Center (450,000 sq. meters) was originated by HH Sheikh Sultan bin Mohammed Al Qasimi, Ruler of Sharjah, and depicts the dome as representing the sun in the middle of the center surrounded by planetary bodies in orbit to form the solar system as seen in the sky.

  16. Union of the potential academic science and leading specialized universities for provision of the underground space effective development

    Vartanov Aleksandr Zarairovich

    2018-03-01

    Full Text Available Subject of research: providing of enabling environment through the use of underground subsurface resources for the purposes of civil construction is the main trend of the modern development of society. Large-scale development of the megacities subsoils and urban-industrial agglomerations faces significant threats caused by the risks of the consequences of techno-genic impact on the rock massif of urbanized areas, which requires the use of special construction geotechnologies and construction specialists of appropriate qualifications. Objectives: for efficient development of underground space, it is necessary to solve problems at the junction of construction and mining sciences with the formation of a modern system of scientific and methodological support for the training of personnel in this field. It is necessary to use the scientific, educational, innovative and intellectual potential of academic science and national research universities most fully and effectively. Materials and methods: proceeding from the necessity of convergence of science and education, with the goal of integrating efforts and improving the efficiency of scientific research and educational activities aimed at the Russian mining and construction industry effective development providing, the Moscow State University of Civil Engineering and the Institute for Complex Development of Mineral Resources of the Russian Academy of Sciences created the basic department “Development of Underground Spaces”. Results and conclusions: the conducted complex of organizational and management measures, taking into account the potential of leading scientific and educational schools, has made it possible to form the basis for the development of the competencies of future engineers-constructors and highly qualified personnel (masters, candidates and doctors of sciences in the field of construction geo-technologies, which will be responsible for effective and safe development of megacities

  17. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  18. Science with a vengeance: How the Military created the US Space Sciences after World War II

    Devorkin, David H.

    The exploration of the upper atmosphere was given a jump start in the United States by German V-2 rockets - Hitler's "vengeance weapon" - captured at the end of World War II. The science performed with these missiles was largely determined by the missile itself, such as learning more about the medium through which a ballistic missile travels. Groups rapidly formed within the military and military-funded university laboratories to build instruments to investigate the Earth's upper atmosphere and ionosphere, the nature of cosmic radiation, and the ultraviolet spectrum of the Sun. Few, if any, members of these research groups had prior experience or demonstrated interests in atmospheric, cosmic-ray, or solar physics. Although scientific agendas were at first centered on what could be done with missiles and how to make ballistic missile systems work, reports on techniques and results were widely publicized as the research groups and their patrons sought scientific legitimacy and learned how to make their science an integral part of the national security state. The process by which these groups gained scientific and institutional authority was far from straightforward and offers useful insight both for the historian and for the scientist concerned with how specialties born within the military services became part of post-war American science.

  19. The Use of a Learning Management System (LMS to Serve as the Virtual Common Space of a Network for the Scholarship of Teaching and Learning (SoTL in an Academic Department

    Scott Merrett

    2013-05-01

    Full Text Available Traditionally, undergraduate curriculum committees, consisting of appointed faculty and student representatives, have served as the sole departmental vehicle for investigating, discussing and promoting the scholarship of teaching and learning (SoTL within an academic department. However, with the universal demand for greater accountability on all aspects of evidence-based teaching and on the totality of student learning and career outcomes, some academic departments have encouraged the formation of additional organizations to support their SoTL mandate. In the Department of Human Health and Nutritional Sciences, the approach taken was to combine the interests of the faculty who had a sustained interest in the “scholarship of knowledge translation and transfer” in the health sciences with those who had a developing interest in SoTL. These faculty members would then form the foundation of a “network” which has been called the K*T3net. The virtual common space of the network is on a Learning Management System (LMS site which is accessed by all faculty members in the network and by a growing number of staff and senior PhD students in the department. The features and potential uses of the K*T3net website will be discussed. The development of the K*T3net has already supported the proposal for a new undergraduate course on SoTL and is opening the possibility for graduate students to add a SoTL component to their thesis research.

  20. Earth and Space Science Ph.D. Class of 2003 Report released

    Keelor, Brad

    AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.

  1. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017

    Varela Minder, Elda

    2018-04-19

    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  2. [Hygiene during leisure time among third year students from the Department of Nursing and Health Sciences].

    Czabak-Garbacz, Róza; Skibniewska, Agnieszka; Mazurkiewicz, Piotr; Wisowska, Anna

    2002-01-01

    The aim of the study was the assessment of hygiene of leisure time among third year students from Faculty of Nursing and Health Science of Lublin Medical Academy. It analysed passive and active ways of spending free time. The study involved 106 students (55 stationary and 51 extramural) and it was conducted by means of questionnaire. The study revealed that students prefer passive types of spending their leisure time. The most popular activity was listening to the radio, to which they devoted average 2.9 hours a day (listening to music mainly). Extramural students listened to the radio shorter than stationary ones (the difference was statistically significant). Students spent also a lot of their time watching television (average 1.5 hours a day), reading books and newspapers (average 1.85 hours a day) and doing housework, which is an active way of rest (average 2.7 hours a day), mainly preparing meals and shopping. Students devoted the least of their free time to sleep during the day in spite of the fact it is an excellent way of rest. The study found also that physical activity was not a favourite type of spending free time. Every third student did not do any sport. Stationary students did sport 4 times longer than extramural (the difference was statistically significant). Only 31% practiced taking a daily walk and only 44% of students made tourist trips. 81.9% of them went away during summer holidays, but only 31% of them during the winter break. Undoubtedly, the way of spending free time by the students under examination was not hygienic as it did not give them a sense of relaxation and rest; also the students themselves were not satisfied with it.

  3. Globalizing Space and Earth Science - the International Heliophysical Year Education and Outreach Program

    Rabello-Soares, M. C.; Morrow, C.; Thompson, B. J.

    2006-08-01

    The International Heliophysical Year (IHY) in 2007 & 2008 will celebrate the 50th anniversary of the International Geophysical Year (IGY) and, following its tradition of international research collaboration, will focus on the cross-disciplinary studies of universal processes in the heliosphere. The main goal of IHY Education and Outreach Program is to create more global access to exemplary resources in space and earth science education and public outreach. By taking advantage of the IHY organization with representatives in every nation and in the partnership with the United Nations Basic Space Science Initiative (UNBSSI), we aim to promote new international partnerships. Our goal is to assist in increasing the visibility and accessibility of exemplary programs and in the identification of formal or informal educational products that would be beneficial to improve the space and earth science knowledge in a given country; leaving a legacy of enhanced global access to resources and of world-wide connectivity between those engaged in education and public outreach efforts that are related to IHY science. Here we describe how to participate in the IHY Education and Outreach Program and the benefits in doing so. Emphasis will be given to the role played by developing countries; not only in selecting useful resources and helping in their translation and adaptation, but also in providing different approaches and techniques in teaching.

  4. Staff Report to the Senior Department Official on Recognition Compliance Issues. Recommendation Page: National Accrediting Commission Of Cosmetology Arts and Sciences

    US Department of Education, 2010

    2010-01-01

    The National Accrediting Commission of Cosmetology Arts and Sciences (NACCAS) is a national accreditor whose scope of recognition is for the accreditation throughout the United States of postsecondary schools and departments of cosmetology arts and sciences and massage therapy. The agency accredits approximately 1,300 institutions offering…

  5. The Archives of the Department of Terrestrial Magnetism: Documenting 100 Years of Carnegie Science

    Hardy, S. J.

    2005-12-01

    The archives of the Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington document more than a century of geophysical and astronomical investigations. Primary source materials available for historical research include field and laboratory notebooks, equipment designs, plans for observatories and research vessels, scientists' correspondence, and thousands of expedition and instrument photographs. Yet despite its history, DTM long lacked a systematic approach to managing its documentary heritage. A preliminary records survey conducted in 2001 identified more than 1,000 linear feet of historically-valuable records languishing in dusty, poorly-accessible storerooms. Intellectual control at that time was minimal. With support from the National Historical Publications and Records Commission, the "Carnegie Legacy Project" was initiated in 2003 to preserve, organize, and facilitate access to DTM's archival records, as well as those of the Carnegie Institution's administrative headquarters and Geophysical Laboratory. Professional archivists were hired to process the 100-year backlog of records. Policies and procedures were established to ensure that all work conformed to national archival standards. Records were appraised, organized, and rehoused in acid-free containers, and finding aids were created for the project web site. Standardized descriptions of each collection were contributed to the WorldCat bibliographic database and the AIP International Catalog of Sources for History of Physics. Historic photographs and documents were digitized for online exhibitions to raise awareness of the archives among researchers and the general public. The success of the Legacy Project depended on collaboration between archivists, librarians, historians, data specialists, and scientists. This presentation will discuss key aspects (funding, staffing, preservation, access, outreach) of the Legacy Project and is aimed at personnel in observatories, research

  6. The AGI-ASU-NASA Triad Program for K-12 Earth and Space Science Education

    Pacheco, H. A.; Semken, S. C.; Taylor, W.; Benbow, A. E.

    2011-12-01

    The NASA Triad program of the American Geological Institute (AGI) and Arizona State University School of Earth and Space Exploration (ASU SESE) is a three-part effort to promote Earth and space science literacy and STEM education at the national level, funded by NASA through a cooperative agreement starting in 2010. NASA Triad comprises (1) infusion of NASA STEM content into AGI's secondary Earth science curricula; (2) national lead teacher professional development workshops; and (3) an online professional development guide for teachers running NASA STEM workshops. The Triad collaboration draws on AGI's inquiry-based curriculum and teacher professional-development resources and workforce-building programs; ASU SESE's spectrum of research in Mars and Moon exploration, astrobiology, meteoritics, Earth systems, and cyberlearning; and direct access to NASA facilities and dynamic education resources. Triad milestones to date include integration of NASA resources into AGI's print and online curricula and two week-long, national-scale, teacher-leader professional development academies in Earth and space sciences presented at ASU Dietz Museum in Tempe and NASA Johnson Space Flight Center in Houston. Robust front-end and formative assessments of these program components, including content gains, teacher-perceived classroom relevance, teacher-cohort lesson development, and teacher workshop design, have been conducted. Quantitative and qualitative findings from these assessment activities have been applied to identify best and most effective practices, which will be disseminated nationally and globally through AGI and NASA channels.

  7. Workshop on Research for Space Exploration: Physical Sciences and Process Technology

    Singh, Bhim S.

    1998-01-01

    This report summarizes the results of a workshop sponsored by the Microgravity Research Division of NASA to define contributions the microgravity research community can provide to advance the human exploration of space. Invited speakers and attendees participated in an exchange of ideas to identify issues of interest in physical sciences and process technologies. This workshop was part of a continuing effort to broaden the contribution of the microgravity research community toward achieving the goals of the space agency in human exploration, as identified in the NASA Human Exploration and Development of Space (HEDS) strategic plan. The Microgravity program is one of NASA'a major links to academic and industrial basic research in the physical and engineering sciences. At present, it supports close to 400 principal investigators, who represent many of the nation's leading researchers in the physical and engineering sciences and biotechnology. The intent of the workshop provided a dialogue between NASA and this large, influential research community, mission planners and industry technical experts with the goal of defining enabling research for the Human Exploration and Development of Space activities to which the microgravity research community can contribute.

  8. Fun and Games: using Games and Immersive Exploration to Teach Earth and Space Science

    Reiff, P. H.; Sumners, C.

    2011-12-01

    We have been using games to teach Earth and Space Science for over 15 years. Our software "TicTacToe" has been used continuously at the Houston Museum of Natural Science since 2002. It is the single piece of educational software in the "Earth Forum" suite that holds the attention of visitors the longest - averaging over 10 minutes compared to 1-2 minutes for the other software kiosks. We now have question sets covering solar system, space weather, and Earth science. In 2010 we introduced a new game technology - that of immersive interactive explorations. In our "Tikal Explorer", visitors use a game pad to navigate a three-dimensional environment of the Classic Maya city of Tikal. Teams of students climb pyramids, look for artifacts, identify plants and animals, and site astronomical alignments that predict the annual return of the rains. We also have a new 3D exploration of the International Space Station, where students can fly around and inside the ISS. These interactive explorations are very natural to the video-game generation, and promise to bring educational objectives to experiences that had previously been used strictly for gaming. If space permits, we will set up our portable Discovery Dome in the poster session for a full immersive demonstration of these game environments.

  9. Astronomy and space sciences studies - use of a remotely controlled robotic observatory

    Priskitch, Ray

    Trinity College in Perth, Western Australia, has designed a self-paced online astronomy and space science course in response to the Earth & Beyond strand of the State's Curriculum Framework learning environment. The course also provides senior physics students the opportunity to undertake research that contributes towards their school-based assessment. Special features of the course include use of the first remotely controlled robotic telescope in a secondary school within Australia, and direct real time links to NASA's Johnson Space Centre. The quantum leap in telescope design and control technology introduces users, especially school students, to a means of data collection and processing that hitherto was in the realm of the professional astronomer. No longer must students be, both in time and space, located at the telescope when an event is taking place. Convenience of use and the high quality of data allows students to undertake scientific investigations that were impractical or of dubious quality beforehand. The Astronomy and Space Sciences course at Trinity offers students the opportunity to explore the solar system and the universe beyond whilst also incorporating a wide range of subjects other than science per se such as mathematics, computing, geography, multimedia, religious education and art. Skills developed in this course are of practical value, such as image processing, and the context of the studies serve to illuminate and stimulate student awareness of our unique environment and its finiteness.

  10. The Astronomy and Space Science Concept Inventory: Assessment Instruments Aligned with the K-12 National Science Standards

    Sadler, Philip M.

    2011-01-01

    We report on the development of an item test bank and associated instruments based on those K-12 national standards which involve astronomy and space science. Utilizing hundreds of studies in the science education research literature on student misconceptions, we have constructed 211 unique items that measure the degree to which students abandon such ideas for accepted scientific views. Piloted nationally with 7599 students and their 88 teachers spanning grades 5-12, the items reveal a range of interesting results, particularly student difficulties in mastering the NRC Standards and AAAS Benchmarks. Teachers generally perform well on items covering the standards of the grade level at which they teach, exhibiting few misconceptions of their own. Teachers dramatically overestimate their students’ performance, perhaps because they are unaware of their students’ misconceptions. Examples are given showing how the developed instruments can be used to assess the effectiveness of instruction and to evaluate the impact of professional development activities for teachers.

  11. ART-SCIENCE OF THE SPACE AGE: towards a platform for art-science collaborations at ESTEC

    Domnitch, E.; Gelfand, D.

    2015-10-01

    In 2013, in collaboration with ESTEC scientist Bernard Foing and the ArtScience Interfaculty (Royal Academy of the Arts, The Hague), Synergetica Lab (Amsterdam) developed a course, which was repeated in 2015, for bachelor's and master's students aimed at seeding interactions with ESA researchers. The participants created artworks investigating space travel, radio astronomy, microgravity, ecosynthesis as well as extraterrestrial physics and architecture [1] [2]. After their initial presentation at the Royal Academy, these artworks were shown at ESTEC, TodaysArt Festival (The Hague), and TEC ART (Rotterdam). These presentations prompted diverse future collaborations and outreach opportunities, including the European Planetary Science Congress 2014 (Cascais) and the AxS Festival (Los Angeles).

  12. New FINESSE Faculty Institutes for NASA Earth and Space Science Education

    Slater, Timothy F.; Slater, Stephanie; Marshall, Sunette Sophia; Stork, Debra; Pomeroy, J. Richard R

    2014-06-01

    In a systematic effort to improve the preparation of future science teachers, scholars coordinated by the CAPER Center for Astronomy & Physics Education Research are providing a series of high-quality, 2-day professional development workshops, with year-round follow-up support, for college and university professors who prepare future science teachers to work with highly diverse student populations. These workshops focus on reforming and revitalizing undergraduate science teaching methods courses and Earth and Space science content courses that future teachers most often take to reflect contemporary pedagogies and data-rich problem-based learning approaches steeped in authentic scientific inquiry, which consistently demonstrate effectiveness with diverse students. Participants themselves conduct science data-rich research projects during the institutes using highly regarded approaches to inquiry using proven models. In addition, the Institute allocates significant time to illustrating best practices for working with diverse students. Moreover, participants leave with a well-formulated action plan to reform their courses targeting future teachers to include more data-rich scientific inquiry lessons and to be better focused on improving science education for a wide diversity of students. Through these workshops faculty use a backwards faded scaffolding mechanism for working inquiry into a deeper understanding of science by using existing on-line data to develop and research astronomy, progressing from creating a valid and easily testable question, to simple data analysis, arriving at a conclusion, and finally presenting and supporting that conclusion in the classroom. An updated schedule is available at FINESSEProgram.org

  13. Life science payloads planning study. [for space shuttle orbiters and spacelab

    Nelson, W. G.; Wells, G. W.

    1977-01-01

    Preferred approaches and procedures were defined for integrating the space shuttle life sciences payload from experiment solicitation through final data dissemination at mission completion. The payloads operations plan was refined and expended to include current information. The NASA-JSC facility accommodations were assessed, and modifications recommended to improve payload processing capability. Standard format worksheets were developed to permit rapid location of experiment requirements and a Spacelab mission handbook was developed to assist potential life sciences investigators at academic, industrial, health research, and NASA centers. Practical, cost effective methods were determined for accommodating various categories of live specimens during all mission phases.

  14. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  15. A new era in science at Washington University, St. Louis: Viktor Hamburger's zoology department in the 1940's.

    Carson, H L

    2001-04-01

    In the early 1940s, the administration of the College of Arts and Sciences at Washington University, St. Louis was firmly in the hands of classical scholars who were not inclined to promote the development of modern research on scientific subjects. Funds supporting research in biology favored the School of Medicine and the Missouri Botanical Garden. Viktor Hamburger arrived at Washington University in 1935. At about the time he became the Acting Chairman of Zoology in 1942, research work in the biological departments began a dramatic surge that has continued to this day. For 65 years under his counsel and leadership, basic biology has thrived at this fine institution. As an early faculty recruit, I recount here a few personal recollections from those formative years.

  16. Simulation of Cascaded Longitudinal-Space-Charge Amplifier at the Fermilab Accelerator Science & Technology (Fast) Facility

    Halavanau, A. [Northern Illinois U.; Piot, P. [Northern Illinois U.

    2015-12-01

    Cascaded Longitudinal Space Charge Amplifiers (LSCA) have been proposed as a mechanism to generate density modulation over a board spectral range. The scheme has been recently demonstrated in the optical regime and has confirmed the production of broadband optical radiation. In this paper we investigate, via numerical simulations, the performance of a cascaded LSCA beamline at the Fermilab Accelerator Science & Technology (FAST) facility to produce broadband ultraviolet radiation. Our studies are carried out using elegant with included tree-based grid-less space charge algorithm.

  17. Avenues for Scientist Involvement in Earth and Space Science Education and Public Outreach (Invited)

    Peticolas, L. M.; Gross, N. A.; Hsu, B. C.; Shipp, S. S.; Buxner, S.; Schwerin, T. G.; Smith, D.; Meinke, B. K.

    2013-12-01

    NASA's Science Mission Directorate (SMD) Science Education and Public Outreach (E/PO) Forums are charged with engaging, extending, supporting, and coordinating the community of E/PO professionals and scientists involved in Earth and space science education activities. This work is undertaken to maximize the effectiveness and efficiency of the overall national NASA science education and outreach effort made up of individual efforts run by these education professionals. This includes facilitating scientist engagement in education and outreach. A number of resources and opportunities for involvement are available for scientists involved in - or interested in being involved in - education or outreach. The Forums provide opportunities for earth and space scientists to stay informed, communicate, collaborate, leverage existing programs and partnerships, and become more skilled education practitioners. Interested scientists can receive newsletters, participate in monthly calls, interact through an online community workspace, and attend E/PO strategic meetings. The Forums also provide professional development opportunities on a myriad of topics, from common pre-conceptions in science, to program evaluation, to delivering effective workshops. Thematic approaches, such as Earth Science Week (http://www.earthsciweek.org), and the Year of the Solar System (http://solarsystem.nasa.gov/yss) are coordinated by the Forums; through these efforts resources are presented topically, in a manner that can be easily ported into diverse learning environments. Information about the needs of audiences with which scientists interact - higher education, K-12 education, informal education, and public - are provided by SMD's Audience-Based Working Groups. Their findings and recommendations are made available to inform the activities and products of E/PO providers so they are able to better serve these audiences. Also available is a 'one-stop shop' of SMD E/PO products and resources that can be

  18. Resource Handbook--Space Beyond the Earth. A Supplement to Basic Curriculum Guide--Science, Grades K-6.

    Starr, John W., 3rd., Ed.

    GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; space. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into four units: 1) the sun, earth, and moon; 2) stars and planets; 3) exploring space; 4) man's existence in space. Each unit includes initiatory and developmental activities. There are also sections on evaluation, vocabulary,…

  19. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  20. Proceedings of the Twentieth International Symposium on Space Technology and Science. Volume 1

    NONE

    1996-10-31

    The 20th International Symposium on Space Technology and Science was held in Japan on May 19-25, 1996, and a lot of papers were made public. This proceedings has 252 papers of all the papers read in the symposium including the following: Computational fluid dynamics in the design of M-V rocket motors in the propulsion field; Joint structures of carbon-carbon composites in the field of materials and structures; On-orbit attitude control experiment of ETS-VI in the field of astrodynamics, navigation, guidance and control; Magnetic transport of bubbles in liquid in microgravity; The outline and development status of JEM-EF in the field of on-orbit and ground support systems. The proceedings also includes the papers titled Conceptual study of H-IIA rocket in the space transportation field; Microgravity research in the microgravity science field; `Project Genesys` in the field of satellite communications and broadcasting.

  1. Postcolonial foldings of space and identity in science education: limits, transformations, prospects

    Zembylas, Michalinos; Avraamidou, Lucy

    2008-12-01

    The four essays reviewed here constitute a worthwhile attempt to discuss various aspects of postcolonial theory, and offer constructive ideas to ongoing academic as well as public conversations with respect to whether science education can meet the challenges of educating an increasingly diverse population in the 21st century. These essays are grounded in the assumption that it is difficult to make meaningful and transformative changes in science education so that educators' efforts take into consideration the dramatic changes (i.e., diverse culture and racial origins, language, economic status etc.) of `an era of globalization' in order to meet the demands of today's schools. Each of these four essays problematizes various aspects of the social and cultural conditions of science education nowadays using different `postcolonial' ideas to interpret the implications for science learning and teaching. Although the term `postcolonial' has certainly multiple meanings in the literature, we use this term here to describe the philosophical position of these essays to challenge long-standing and hegemonic practices and taken-for-granted assumptions in science education. Through critical analysis of these essays, we engage in a dialogue with the authors, focusing on two of what seem crucial issues in understanding the potential contributions as well as the risks of postcolonial concepts in science education; these issues are space and identity. We choose these issues because they permeate all four essays in interesting and often provocative ways.

  2. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  3. Integrating SQ4R Technique with Graphic Postorganizers in the Science Learning of Earth and Space

    Djudin, Tomo; Amir, R

    2018-01-01

    This study examined the effect of integrating SQ4R reading technique with graphic post organizers on the students' Earth and Space Science learning achievement and development of metacognitive knowledge. The pretest-posttest non-equivalent control group design was employed in this quasi-experimental method. The sample which consists of 103 seventh grade of secondary school students of SMPN 1 Pontianak was drawn by using intact group random sampling technique. An achievement test and a questio...

  4. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.

    2003-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a three-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret real data, students realize that the research is an application of basic science concepts they should know, the electromagnetic spectrum and isotopes. They can understand the results without knowing how to do the research or operate the instruments.

  5. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes. Update.

    Lindstrom, M. M.; Tobola, K. W.; Allen, J. S.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2005-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, "How do we know these meteorites are from Mars?" This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer "It's the chemistry of the rock", students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes. Additional information is included in the original extended abstract.

  6. Space Rocks Tell Their Secrets: Space Science Applications of Physics and Chemistry for High School and College Classes: Update

    Lindstrom, M. M.; Tobola, K. W.; Stocco, K.; Henry, M.; Allen, J. S.; McReynolds, Julie; Porter, T. Todd; Veile, Jeri

    2004-01-01

    As the scientific community studies Mars remotely for signs of life and uses Martian meteorites as its only available samples, teachers, students, and the general public continue to ask, How do we know these meteorites are from Mars? This question sets the stage for a six-lesson instructional package Space Rocks Tell Their Secrets. Expanding on the short answer It s the chemistry of the rock , students are introduced to the research that reveals the true identities of the rocks. Since few high school or beginning college students have the opportunity to participate in this level of research, a slide presentation introduces them to the labs, samples, and people involved with the research. As they work through the lessons and interpret authentic data, students realize that the research is an application of two basic science concepts taught in the classroom, the electromagnetic spectrum and isotopes.

  7. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  8. Training for life science experiments in space at the NASA Ames Research Center

    Rodrigues, Annette T.; Maese, A. Christopher

    1993-01-01

    As this country prepares for exploration to other planets, the need to understand the affects of long duration exposure to microgravity is evident. The National Aeronautics and Space Administration (NASA) Ames Research Center's Space Life Sciences Payloads Office is responsible for a number of non-human life sciences payloads on NASA's Space Shuttle's Spacelab. Included in this responsibility is the training of those individuals who will be conducting the experiments during flight, the astronauts. Preparing a crew to conduct such experiments requires training protocols that build on simple tasks. Once a defined degree of performance proficiency is met for each task, these tasks are combined to increase the complexity of the activities. As tasks are combined into in-flight operations, they are subjected to time constraints and the crew enhances their skills through repetition. The science objectives must be completely understood by the crew and are critical to the overall training program. Completion of the in-flight activities is proof of success. Because the crew is exposed to the background of early research and plans for post-flight analyses, they have a vested interest in the flight activities. The salient features of this training approach is that it allows for flexibility in implementation, consideration of individual differences, and a greater ability to retain experiment information. This training approach offers another effective alternative training tool to existing methodologies.

  9. Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1

    Estes, Ronald H. (Editor)

    1993-01-01

    This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.

  10. Fostering Diversity in the Earth and Space Sciences: The Role of AGU

    Snow, J. T.; Johnson, R. M.; Hall, F. R.

    2002-12-01

    In May 2002, AGU's Committee on Education and Human Resources (CEHR) approved a new Diversity Plan, developed in collaboration with the CEHR Subcommittee on Diversity. Efforts to develop a diversity plan for AGU were motivated by the recognition that the present Earth and space science community poorly represents the true diversity of our society. Failure to recruit a diverse scientific workforce in an era of rapidly shifting demographics could have severe impact on the health of our profession. The traditional base of Earth and space scientists in the US (white males) has been shrinking during the past two decades, but women, racial and ethnic minorities, and persons with disabilities are not compensating for this loss. The potential ramifications of this situation - for investigators seeking to fill classes and recruit graduate students, for institutions looking to replace faculty and researchers, and for the larger community seeking continued public support of research funding - could be crippling. AGU's new Diversity Plan proposes a long-term strategy for addressing the lack of diversity in the Earth and space sciences with the ultimate vision of reflecting diversity in all of AGU's activities and programs. Four key goals have been identified: 1) Educate and involve the AGU membership in diversity issues; 2) Enhance and foster the participation of Earth and space scientists, educators and students from underrepresented groups in AGU activities; 3) Increase the visibility of the Earth and space sciences and foster awareness of career opportunities in these fields for underrepresented populations; and 4) Promote changes in the academic culture that both remove barriers and disincentives for increasing diversity in the student and faculty populations and reward member faculty wishing to pursue these goals. A detailed implementation plan that utilizes all of AGU's resources is currently under development in CEHR. Supportive participation by AGU members and

  11. Materials Science Research Rack Onboard the International Space Station Hardware and Operations

    Lehman, John R.; Frazier, Natalie C.; Johnson, Jimmie

    2012-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009, and is currently installed in the U.S. Destiny Laboratory Module. Since that time, MSRR has performed virtually flawlessly, logging more than 620 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials Science Laboratory (MSL) which accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample-Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400 C. Once an SCA is installed, the experiment can be run by automatic command or science conducted via

  12. Modeling Ships and Space Craft The Science and Art of Mastering the Oceans and Sky

    Hagler, Gina

    2013-01-01

    Modeling Ships and Space Craft: The Science and Art of Mastering the Oceans and Sky begins with the theories of Aristotle and Archimedes, moving on to examine the work of Froude and Taylor, the early aviators and the Wright Brothers, Goddard and the other rocket men, and the computational fluid dynamic models of our time. It examines the ways each used fluid dynamic principles in the design of their vessels. In the process, this book covers the history of hydrodynamic (aero and fluid) theory and its progression – with some very accessible science examples – including seminal theories. Hydrodynamic principles in action are also explored with examples from nature and the works of man. This is a book for anyone interested in the history of technology – specifically the methods and science behind the use of scale models and hydrodynamic principles in the marine and aeronautical designs of today.

  13. Using and Distributing Spaceflight Data: The Johnson Space Center Life Sciences Data Archive

    Cardenas, J. A.; Buckey, J. C.; Turner, J. N.; White, T. S.; Havelka,J. A.

    1995-01-01

    Life sciences data collected before, during and after spaceflight are valuable and often irreplaceable. The Johnson Space Center Life is hard to find, and much of the data (e.g. Sciences Data Archive has been designed to provide researchers, engineers, managers and educators interactive access to information about and data from human spaceflight experiments. The archive system consists of a Data Acquisition System, Database Management System, CD-ROM Mastering System and Catalog Information System (CIS). The catalog information system is the heart of the archive. The CIS provides detailed experiment descriptions (both written and as QuickTime movies), hardware descriptions, hardware images, documents, and data. An initial evaluation of the archive at a scientific meeting showed that 88% of those who evaluated the catalog want to use the system when completed. The majority of the evaluators found the archive flexible, satisfying and easy to use. We conclude that the data archive effectively provides key life sciences data to interested users.

  14. Training Informal Educators Provides Leverage for Space Science Education and Public Outreach

    Allen, J. S.; Tobola, K. W.; Betrue, R.

    2004-01-01

    How do we reach the public with the exciting story of Solar System Exploration? How do we encourage girls to think about careers in science, math, engineering and technology? Why should NASA scientists make an effort to reach the public and informal education settings to tell the Solar System Exploration story? These are questions that the Solar System Exploration Forum, a part of the NASA Office of Space Science Education (SSE) and Public Outreach network, has tackled over the past few years. The SSE Forum is a group of education teams and scientists who work to share the excitement of solar system exploration with colleagues, formal educators, and informal educators like museums and youth groups. One major area of the SSE Forum outreach supports the training of Girl Scouts of the USA (GS) leaders and trainers in a suite of activities that reflect NASA missions and science research. Youth groups like Girl Scouts structure their activities as informal education.

  15. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  16. The Importance of Conducting Life Sciences Experiments on the Deep Space Gateway Platform

    Bhattacharya, S.

    2018-01-01

    Over the last several decades important information has been gathered by conducting life science experiments on the Space Shuttle and on the International Space Station. It is now time to leverage that scientific knowledge, as well as aspects of the hardware that have been developed to support the biological model systems, to NASA's next frontier - the Deep Space Gateway. In order to facilitate long duration deep space exploration for humans, it is critical for NASA to understand the effects of long duration, low dose, deep space radiation on biological systems. While carefully controlled ground experiments on Earth-based radiation facilities have provided valuable preliminary information, we still have a significant knowledge gap on the biological responses of organisms to chronic low doses of the highly ionizing particles encountered beyond low Earth orbit. Furthermore, the combined effects of altered gravity and radiation have the potential to cause greater biological changes than either of these parameters alone. Therefore a thorough investigation of the biological effects of a cis-lunar environment will facilitate long term human exploration of deep space.

  17. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  18. Transformation Problems of Socio-Economic Space: Between Ideology and Science

    Anton Aleksandrovich Kireev

    2015-09-01

    Full Text Available The article gives a critical analysis of liberal version of the transformation policy of the Russian socio-economic space. The study also describes main components of the transformation policy. Paying attention to the dominant role of ideological knowledge in its structure, the author proposes to change the relationship of ideology and science in the formulation and solution of basic problems of regional policy. The essence of the political (federal regulation is to ensure such equitable terms of exchange, in which regional differences would serve the purpose of integration and development of the national system. However, in order to ensure equitable interregional exchange, the objective heterogeneity of the Russia’s space should be identified and presented in the form of «inventory» of regional advantages and limitations. In terms of heterogeneity of the Russia’s space regional science needs to determine the spatial limits of applicability of different transformation ideologies, trim hyper centralized public policy (irrespective of used ideology, and, pointing to the structural constraints of grading transformations, formulate the terms of possible unity of the Russia’s space

  19. An urban area minority outreach program for K-6 children in space science

    Morris, P.; Garza, O.; Lindstrom, M.; Allen, J.; Wooten, J.; Sumners, C.; Obot, V.

    The Houston area has minority populations with significant school dropout rates. This is similar to other major cities in the United States and elsewhere in the world where there are significant minority populations from rural areas. The student dropout rates are associated in many instances with the absence of educational support opportuni- ties either from the school and/or from the family. This is exacerbated if the student has poor English language skills. To address this issue, a NASA minority university initiative enabled us to develop a broad-based outreach program that includes younger children and their parents at a primarily Hispanic inner city charter school. The pro- gram at the charter school was initiated by teaching computer skills to the older chil- dren, who in turn taught parents. The older children were subsequently asked to help teach a computer literacy class for mothers with 4-5 year old children. The computers initially intimidated the mothers as most had limited educational backgrounds and En- glish language skills. To practice their newly acquired computer skills and learn about space science, the mothers and their children were asked to pick a space project and investigate it using their computer skills. The mothers and their children decided to learn about black holes. The project included designing space suits for their children so that they could travel through space and observe black holes from a closer proxim- ity. The children and their mothers learned about computers and how to use them for educational purposes. In addition, they learned about black holes and the importance of space suits in protecting astronauts as they investigated space. The parents are proud of their children and their achievements. By including the parents in the program, they have a greater understanding of the importance of their children staying in school and the opportunities for careers in space science and technology. For more information on our overall

  20. Application of X-ray topography to USSR and Russian space materials science.

    Shul'pina, I L; Prokhorov, I A; Serebryakov, Yu A; Bezbakh, I Zh

    2016-05-01

    The authors' experience of the application of X-ray diffraction imaging in carrying out space technological experiments on semiconductor crystal growth for the former USSR and for Russia is reported, from the Apollo-Soyuz programme (1975) up to the present day. X-ray topography was applied to examine defects in crystals in order to obtain information on the crystallization conditions and also on their changes under the influence of factors of orbital flight in space vehicles. The data obtained have promoted a deeper understanding of the conditions and mechanisms of crystallization under both microgravity and terrestrial conditions, and have enabled the elaboration of terrestrial methods of highly perfect crystal growth. The use of X-ray topography in space materials science has enriched its methods in the field of digital image processing of growth striations and expanded its possibilities in investigating the inhomogeneity of crystals.