WorldWideScience

Sample records for space related engineering

  1. Space engineering

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  2. Experience with Space Forums and Engineering Courses Organized for the Broad Dissemination of Space-related Information

    Science.gov (United States)

    Dessimoz, J.-D.; D'Aquino, U.; Gander, J.-G.; Sekler, J.

    2002-01-01

    Space technologies have been recognised as being of major importance for the welfare of our civilisation, not only in our industrially developed countries, but also for the world at large. Dating back to 1959, the Swiss Association for Astronautics (SRV; see http://srv-ch.org) has a long tradition of public communication in view of fostering support for space activities on a national scale. In recent years, the SRV has notably organised (or contributed for) about a dozen of Introductory Courses into Space Technology at different Swiss Universities of Applied Sciences (UAS), as well as set-up four Space Forums for reaching young people and the public at large. Space Forums are organised for younger students and the public at large. They have been so far organised at Zurich, with increasing impact. In 2002 the Space Forum is located at the "Technopark", a structure aiming at fostering technology transfers between universities and business, as well as to help creating start-up's. Contributions come from highly qualified speakers, such as "our" ESA astronaut Claude Nicollier, or scientists from leading research organisations. An exhibition is also organised, which presents space projects and material with very positive impact on the audience. As favourable by-product, the event tends to trigger further echoes in media (e.g. major press representatives and local radios). A good place is also made for outstanding contributions from young teenagers / enthusiastic supporters, which brings additional fresh views and effective communication channels for reaching the younger public. The Space techniques courses aim at a different public: engineering students and graduates. They are organised on a semester basis, with a frequency of about 1 or 2 courses per year; they are nearly always offered at different locations (most of the time at UAS) and can also be viewed as continuing education initiatives. Topics typically include a historical overview of space-related developments

  3. Climate engineering and space

    Science.gov (United States)

    Schrogl, K.-U.; Summerer, L.

    2016-12-01

    This article provides a comprehensive look at climate engineering and space. Its starting point is that the States are failing to slow down global warming. The consequences for the environment and the economic and societal burden are uncontested. The priority to maintain the use of fossil resources might soon lead to the implementation of deliberate engineering measures to alter the climate instead of reducing the greenhouse gases. The article describes these currently discussed measures for such climate engineering. It will particularly analyse the expected contributions from space to these concepts. Based on this it evaluates the economic and political implications and finally tests the conformity of these concepts with space law.

  4. Space Electronic Test Engineering

    Science.gov (United States)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  5. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  6. Thermoelectric applications as related to biomedical engineering for NASA Johnson Space Center

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, C D

    1997-07-01

    This paper presents current NASA biomedical developments and applications using thermoelectrics. Discussion will include future technology enhancements that would be most beneficial to the application of thermoelectric technology. A great deal of thermoelectric applications have focused on electronic cooling. As with all technological developments within NASA, if the application cannot be related to the average consumer, the technology will not be mass-produced and widely available to the public (a key to research and development expenditures and thermoelectric companies). Included are discussions of thermoelectric applications to cool astronauts during launch and reentry. The earth-based applications, or spin-offs, include such innovations as tank and race car driver cooling, to cooling infants with high temperatures, as well as, the prevention of hair loss during chemotherapy. In order to preserve the scientific value of metabolic samples during long-term space missions, cooling is required to enable scientific studies. Results of one such study should provide a better understanding of osteoporosis and may lead to a possible cure for the disease. In the space environment, noise has to be kept to a minimum. In long-term space applications such as the International Space Station, thermoelectric technology provides the acoustic relief and the reliability for food, as well as, scientific refrigeration/freezers. Applications and future needs are discussed as NASA moves closer to a continued space presence in Mir, International Space Station, and Lunar-Mars Exploration.

  7. Chemical Engineering in Space

    Science.gov (United States)

    Lobmeyer, Dennis A.; Meneghelli, Barry; Steinrock, Todd (Technical Monitor)

    2001-01-01

    The aerospace industry has long been perceived as the domain of both physicists and mechanical engineers. This perception has endured even though the primary method of providing the thrust necessary to launch a rocket into space is chemical in nature. The chemical engineering and chemistry personnel behind the systems that provide access to space have labored in the shadows of the physicists and mechanical engineers. As exploration into the cosmos moves farther away from Earth, there is a very distinct need for new chemical processes to help provide the means for advanced space exploration. The state of the art in launch systems uses chemical propulsion systems, primarily liquid hydrogen and liquid oxygen, to provide the energy necessary to achieve orbit. As we move away from Earth, there are additional options for propulsion. Unfortunately, few of these options can compare to the speed or ease of use provided by the chemical propulsion agents. It is with great care and significant cost that gaseous compounds such as hydrogen and oxygen are liquefied and become dense enough to use for rocket fuel. These low-temperature liquids fall within a specialty area known as cryogenics. Cryogenics, the science and art of producing cold operating conditions for use on Earth, in orbit, or on some other nonterrestrial body, has become increasingly important to our ability to travel within our solar system. The production of cryogenic fuels and the long-term storage of these fluids are necessary for travel. As our explorations move farther away from Earth, we need to address how to produce the necessary fuels to make a round-trip. The cost and the size of these expeditions are extreme at best. If we take everything necessary for our survival for the round-trip, we invalidate any chance of travel in the near future. As with the early explorers on Earth, we need to harvest much of our energy and our life support from the celestial bodies. The in situ production of these energy

  8. Space civil engineering - A new discipline

    Science.gov (United States)

    Sadeh, Willy Z.; Criswell, Marvin E.

    1991-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding the Civil Engineering know-how and practice to the development and maintenance of infrastructure on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University under a recently established NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts of the curriculum in the Space Civil Engineering Option at both undergraduate and graduate levels are presented. The role of Space Civil Engineering in the Space Program is discussed.

  9. Space Station Engineering Design Issues

    Science.gov (United States)

    Mcruer, Duane T.; Boehm, Barry W.; Debra, Daniel B.; Green, C. Cordell; Henry, Richard C.; Maycock, Paul D.; Mcelroy, John H.; Pierce, Chester M.; Stafford, Thomas P.; Young, Laurence R.

    1989-01-01

    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design.

  10. Relativity and accelerator engineering

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2017-09-01

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  11. Relativity and accelerator engineering

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Schenefeld (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-09-15

    From a geometrical viewpoint, according to the theory of relativity, space and time constitute a four-dimensional continuum with pseudo-Euclidean structure. This has recently begun to be a practically important statement in accelerator physics. An X-ray Free Electron Laser (XFEL) is in fact the best, exciting example of an engineering system where improvements in accelerator technology makes it possible to develop ultrarelativistic macroscopic objects with an internal fine structure, and the theory of relativity plays an essential role in their description. An ultrarelativistic electron bunch modulated at nanometer-scale in XFELs has indeed a macroscopic finite-size of order of 10 μm. Its internal, collective structure is characterized in terms of a wave number vector. Here we will show that a four-dimensional geometrical approach, unusual in accelerator physics, is needed to solve problems involving the emission of radiation from an ultrarelativistic modulated electron beam accelerating along a curved trajectory. We will see that relativistic kinematics enters XFEL physics in a most fundamental way through the so-called Wigner rotation of the modulation wave number vector, which is closely associated to the relativity of simultaneity. If not taken into account, relativistic kinematics effects would lead to a strong qualitative disagreement between theory and experiments. In this paper, several examples of relativistic kinematics effects, which are important for current and future XFEL operation, are studied. The theory of relativity is applied by providing details of the clock synchronization procedure within the laboratory frame. This approach, exploited here but unusual in literature, is rather ''practical'', and should be acceptable to accelerator physicists.

  12. Space Civil Engineering option - A progress report

    Science.gov (United States)

    Criswell, Marvin E.; Sadeh, Willy Z.

    1992-01-01

    Space Civil Engineering is an emerging engineering discipline that focuses on extending and expanding Civil Engineering to the development, operation, and maintenance of infrastructures on celestial bodies. Space Civil Engineering is presently being developed as a new discipline within the Department of Civil Engineering at Colorado State University and with support of the NASA Space Grant College Program. Academic programs geared toward creating Space Civil Engineering Options at both undergraduate and graduate levels are being formulated. Basic ideas and concepts and the current status of the curriculum in the Space Civil Engineering Option primarily at the undergraduate level are presented.

  13. Biomedical engineering strategies in system design space.

    Science.gov (United States)

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development

  14. Annual view (1999) - aeronautic relation/space relation. Space relation - communication/broadcasting/engineering test satellite; Nenkan tenbo (1999) koku kankei uchu kankei. Tsushin, hoso, gijutsu shiken eisei kanren

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-05

    To cope with the increasing communication demand, the R and D of engineering test satellite V III are being conducted being aimed at developing a technology of the world's largest class geostationary satellite. As to the large developing rectenna, a model for development was manufactured and is now in test. In August and September 1999, the system combustion test of complete two-liquid chemical propulsion system was carried out at Ishikawajima-Harima Heavy Industries. The R and D of the data relay technology satellite are being conducted for the purpose of conducting orbital demonstrative tests to improve the data relay functional performance of satellite and to spread the data relay range. The engineering test satellite VII was developed to study the space rendezvous/docking technology and the basic technology of space use robot. It was launched in November 1997 and got a lot of valuable data. The operation of satellite has been continued for the acquisition of data such as secular changes of satellite equipment. About the communication broadcasting satellite, experiments and functional tests were finished, and the operation was stopped in August 1999. (NEDO)

  15. Systems Engineering Analysis for Office Space Management

    Science.gov (United States)

    2017-09-01

    ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT by James E. Abellana September 2017 Thesis Advisor: Diana Angelis Second Reader: Walter E. Owen...Master’s thesis 4. TITLE AND SUBTITLE SYSTEMS ENGINEERING ANALYSIS FOR OFFICE SPACE MANAGEMENT 5. FUNDING NUMBERS 6. AUTHOR(S) James E. Abellana 7...of the systems engineering method, this thesis develops a multicriteria decision-making framework applicable to space allocation decisions for

  16. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  17. Space debris mitigation - engineering strategies

    Science.gov (United States)

    Taylor, E.; Hammond, M.

    The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).

  18. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  19. Space Shuttle Main Engine Public Test Firing

    Science.gov (United States)

    2000-01-01

    A new NASA Space Shuttle Main Engine (SSME) roars to the approval of more than 2,000 people who came to John C. Stennis Space Center in Hancock County, Miss., on July 25 for a flight-certification test of the SSME Block II configuration. The engine, a new and significantly upgraded shuttle engine, was delivered to NASA's Kennedy Space Center in Florida for use on future shuttle missions. Spectators were able to experience the 'shake, rattle and roar' of the engine, which ran for 520 seconds - the length of time it takes a shuttle to reach orbit.

  20. Space transportation main engine reliability and safety

    Science.gov (United States)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  1. Space Life-Support Engineering Program

    Science.gov (United States)

    Seagrave, Richard C. (Principal Investigator)

    1995-01-01

    This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.

  2. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    International Nuclear Information System (INIS)

    Sanders, Y.D.; Freeman, Y.B.; George, M.C.

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements)

  3. The Engineering Workforce of Tomorrow - The Integrated Space Engineer

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard

    2007-01-01

    The space engineer of tomorrow needs a variety of skills ranging from high specialized knowledge to cooperative capacities and the ability to understand and even to a certain degree to be productive outside their specialized skills. Newly educated engineers often lack many of these skills due...

  4. Initial tests of thermoacoustic space power engine

    International Nuclear Information System (INIS)

    Backhaus, S.N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  5. Space Shuttle main engine product improvement

    Science.gov (United States)

    Lucci, A. D.; Klatt, F. P.

    1985-01-01

    The current design of the Space Shuttle Main Engine has passed 11 certification cycles, amassed approximately a quarter million seconds of engine test time in 1200 tests and successfully launched the Space Shuttle 17 times of 51 engine launches through May 1985. Building on this extensive background, two development programs are underway at Rocketdyne to improve the flow of hot gas through the powerhead and evaluate the changes to increase the performance margins in the engine. These two programs, called Phase II+ and Technology Test Bed Precursor program are described. Phase II+ develops a two-tube hot-gas manifold that improves the component environment. The Precursor program will evaluate a larger throat main combustion chamber, conduct combustion stability testing of a baffleless main injector, fabricate an experimental weld-free heat exchanger tube, fabricate and test a high pressure oxidizer turbopump with an improved inlet, and develop and test methods for reducing temperature transients at start and shutdown.

  6. Space Industry Commercialization: A Systems Engineering Evaluation of Alternatives

    Science.gov (United States)

    Dinally, Jihan

    The Constellation Program cancellation reversed the government and commercial space industry's roles and relationships by dedicating the majority of the federal funding and opportunities to the commercial space industry and left the government space industry in search of an approach to collaborate with the dominant organization, the commercial space industry service providers. The space industry government agencies, Air Force Space Command (AFSPC) and National Aeronautics and Space Administration (NASA) had realized that to gain resources in the new commercially oriented economic environment, they had to work together and possess the capabilities aligned with the National Space Policy's documented goals. Multi-organizational collaboration in space industry programs is challenging, as NASA, AFSPC, and commercial providers, follow different [1] enterprise architecture guidance such as the NASA systems engineering Handbook, MIL-STD-499 and "A Guide to the systems engineering Body of Knowledge" by the International Council on systems engineering [2] [3]. A solution to streamline their enterprise architecture documentation and meet National Space Policy goals is the Multi-User Architecture Maturity Model Methodology (MAM3), which offers a tailored systems engineering technique the government agencies and private companies can implement for the program's maturity level. In order to demonstrate the MAM3, a CubeSat motivated study was conducted partnering a commercial provider with a government agency. A survey of the commercial space industry service providers' capabilities was performed to select the private companies for the study. Using the survey results, the commercial space industry service providers were ranked using the Analytic Hierarchy Process (AHP) [4]. The AHP is a structured technique for making complex decisions for representing and quantifying its weights, relating those weights to overall goals, and evaluating alternative solutions [5] - [8]. The weights

  7. Gravity-assist engine for space propulsion

    Science.gov (United States)

    Bergstrom, Arne

    2014-06-01

    As a possible alternative to rockets, the present article describes a new type of engine for space travel, based on the gravity-assist concept for space propulsion. The new engine is to a great extent inspired by the conversion of rotational angular momentum to orbital angular momentum occurring in tidal locking between astronomical bodies. It is also greatly influenced by Minovitch's gravity-assist concept, which has revolutionized modern space technology, and without which the deep-space probes to the outer planets and beyond would not have been possible. Two of the three gravitating bodies in Minovitch's concept are in the gravity-assist engine discussed in this article replaced by an extremely massive ‘springbell' (in principle a spinning dumbbell with a powerful spring) incorporated into the spacecraft itself, and creating a three-body interaction when orbiting around a gravitating body. This makes gravity-assist propulsion possible without having to find suitably aligned astronomical bodies. Detailed numerical simulations are presented, showing how an actual spacecraft can use a ca 10-m diameter springbell engine in order to leave the earth's gravitational field and enter an escape trajectory towards interplanetary destinations.

  8. Computer aided system engineering for space construction

    Science.gov (United States)

    Racheli, Ugo

    1989-01-01

    This viewgraph presentation covers the following topics. Construction activities envisioned for the assembly of large platforms in space (as well as interplanetary spacecraft and bases on extraterrestrial surfaces) require computational tools that exceed the capability of conventional construction management programs. The Center for Space Construction is investigating the requirements for new computational tools and, at the same time, suggesting the expansion of graduate and undergraduate curricula to include proficiency in Computer Aided Engineering (CAE) though design courses and individual or team projects in advanced space systems design. In the center's research, special emphasis is placed on problems of constructability and of the interruptability of planned activity sequences to be carried out by crews operating under hostile environmental conditions. The departure point for the planned work is the acquisition of the MCAE I-DEAS software, developed by the Structural Dynamics Research Corporation (SDRC), and its expansion to the level of capability denoted by the acronym IDEAS**2 currently used for configuration maintenance on Space Station Freedom. In addition to improving proficiency in the use of I-DEAS and IDEAS**2, it is contemplated that new software modules will be developed to expand the architecture of IDEAS**2. Such modules will deal with those analyses that require the integration of a space platform's configuration with a breakdown of planned construction activities and with a failure modes analysis to support computer aided system engineering (CASE) applied to space construction.

  9. Qualitative models for space system engineering

    Science.gov (United States)

    Forbus, Kenneth D.

    1990-01-01

    The objectives of this project were: (1) to investigate the implications of qualitative modeling techniques for problems arising in the monitoring, diagnosis, and design of Space Station subsystems and procedures; (2) to identify the issues involved in using qualitative models to enhance and automate engineering functions. These issues include representing operational criteria, fault models, alternate ontologies, and modeling continuous signals at a functional level of description; and (3) to develop a prototype collection of qualitative models for fluid and thermal systems commonly found in Space Station subsystems. Potential applications of qualitative modeling to space-systems engineering, including the notion of intelligent computer-aided engineering are summarized. Emphasis is given to determining which systems of the proposed Space Station provide the most leverage for study, given the current state of the art. Progress on using qualitative models, including development of the molecular collection ontology for reasoning about fluids, the interaction of qualitative and quantitative knowledge in analyzing thermodynamic cycles, and an experiment on building a natural language interface to qualitative reasoning is reported. Finally, some recommendations are made for future research.

  10. Space shuttle main engine vibration data base

    Science.gov (United States)

    Lewallen, Pat

    1986-01-01

    The Space Shuttle Main Engine Vibration Data Base is described. Included is a detailed description of the data base components, the data acquisition process, the more sophisticated software routines, and the future data acquisition methods. Several figures and plots are provided to illustrate the various output formats accessible to the user. The numerous vibration data recall and analysis capabilities available through automated data base techniques are revealed.

  11. Implementation of a Space Communications Cognitive Engine

    Science.gov (United States)

    Hackett, Timothy M.; Bilen, Sven G.; Ferreira, Paulo Victor R.; Wyglinski, Alexander M.; Reinhart, Richard C.

    2017-01-01

    Although communications-based cognitive engines have been proposed, very few have been implemented in a full system, especially in a space communications system. In this paper, we detail the implementation of a multi-objective reinforcement-learning algorithm and deep artificial neural networks for the use as a radio-resource-allocation controller. The modular software architecture presented encourages re-use and easy modification for trying different algorithms. Various trade studies involved with the system implementation and integration are discussed. These include the choice of software libraries that provide platform flexibility and promote reusability, choices regarding the deployment of this cognitive engine within a system architecture using the DVB-S2 standard and commercial hardware, and constraints placed on the cognitive engine caused by real-world radio constraints. The implemented radio-resource allocation-management controller was then integrated with the larger spaceground system developed by NASA Glenn Research Center (GRC).

  12. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  13. Space Transportation Engine Program (STEP), phase B

    Science.gov (United States)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  14. Space construction engineering - A new career field

    Science.gov (United States)

    Hagler, T.

    1979-01-01

    Opportunities for engineers in the design and construction of future large space structures are outlined. Possible space structures for the 1980's include a large mirror to reflect sunlight to earth for night lighting, an antenna for a personal communications system, a deep space communications relay system and a large passive radiometer to measure soil moisture. Considerations in the design of such structures include the lack of gravity, allowing structures to be built with much less supporting weight, the cost of transportation to orbit, leading to the use of aluminum or composite materials stored on reels and attached to a beam builder, and the required surface accuracy in the presence of thermal stresses. Construction factors to consider include the use of astronauts and remote manipulators in assembly, both of which have been demonstrated to be feasible.

  15. Design methodology and projects for space engineering

    Science.gov (United States)

    Nichols, S.; Kleespies, H.; Wood, K.; Crawford, R.

    1993-01-01

    NASA/USRA is an ongoing sponsor of space design projects in the senior design course of the Mechanical Engineering Department at The University of Texas at Austin. This paper describes the UT senior design sequence, consisting of a design methodology course and a capstone design course. The philosophical basis of this sequence is briefly summarized. A history of the Department's activities in the Advanced Design Program is then presented. The paper concludes with a description of the projects completed during the 1991-92 academic year and the ongoing projects for the Fall 1992 semester.

  16. Tissue Engineering Organs for Space Biology Research

    Science.gov (United States)

    Vandenburgh, H. H.; Shansky, J.; DelTatto, M.; Lee, P.; Meir, J.

    1999-01-01

    Long-term manned space flight requires a better understanding of skeletal muscle atrophy resulting from microgravity. Atrophy most likely results from changes at both the systemic level (e.g. decreased circulating growth hormone, increased circulating glucocorticoids) and locally (e.g. decreased myofiber resting tension). Differentiated skeletal myofibers in tissue culture have provided a model system over the last decade for gaining a better understanding of the interactions of exogenous growth factors, endogenous growth factors, and muscle fiber tension in regulating protein turnover rates and muscle cell growth. Tissue engineering these cells into three dimensional bioartificial muscle (BAM) constructs has allowed us to extend their use to Space flight studies for the potential future development of countermeasures.

  17. 46 CFR 25.40-1 - Tanks and engine spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Tanks and engine spaces. 25.40-1 Section 25.40-1...-1 Tanks and engine spaces. (a) All motorboats or motor vessels, except open boats and as provided in... from the bilges of every engine and fuel tank compartment. There shall be at least one exhaust duct...

  18. Engineering thermal engine rocket adventurer for space nuclear application

    International Nuclear Information System (INIS)

    Nam, Seung H.; Suh, Kune Y.; Kang, Seong G.

    2008-01-01

    The conceptual design for the first-of-a-kind engineering of Thermal Engine Rocket Adventure (TERA) is described. TERA comprising the Battery Omnibus Reactor Integral System (BORIS) as the heat resource and the Space Propulsion Reactor Integral System (SPRIS) as the propulsion system, is one of the advanced Nuclear Thermal Rocket (NTR) engine utilizing hydrogen (H 2 ) propellant being developed at present time. BORIS in this application is an open cycle high temperature gas cooled reactor that has eighteen fuel elements for propulsion and one fuel element for electricity generation and propellant pumping. Each fuel element for propulsion has its own small nozzle. The nineteen fuel elements are arranged into hexagonal prism shape in the core and surrounded by outer Be reflector. The TERA maximum power is 1,000 MW th , specific impulse 1,000 s, thrust 250,000 N, and the total mass is 550 kg including the reactor, turbo pump and auxiliaries. Each fuel element comprises the fuel assembly, moderators, pressure tube and small nozzle. The TERA fuel assembly is fabricated of 93% enriched 1.5 mm (U, Zr, Nb)C wafers in 25.3% voided Square Lattice Honeycomb (SLHC). The H 2 propellant passes through these flow channels. This study is concerned with thermohydrodynamic analysis of the fuel element for propulsion with hypothetical axial power distribution because nuclear analysis of TERA has not been performed yet. As a result, when the power distribution of INSPI's M-SLHC is applied to the fuel assembly, the local heat concentration of fuel is more serious and the pressure of the initial inlet H 2 is higher than those of constant average power distribution applied. This means the fuel assembly geometry of 1.5 mm fuel wafers and 25.3% voided SLHC needs to be changed in order to reduce thermal and mechanical shocks. (author)

  19. First-ever evening public engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Thousands of people watch the first-ever evening public engine test of a Space Shuttle Main Engine at NASA's John C. Stennis Space Center. The spectacular test marked Stennis Space Center's 20th anniversary celebration of the first Space Shuttle mission.

  20. Nano-Engineered Hierarchical Advanced Composite Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Composites are widely used throughout aerospace engineering and in numerous other applications where structures that possess high strength and toughness properties...

  1. Application of nuclear photon engines for deep-space exploration

    International Nuclear Information System (INIS)

    Gulevich, Andrey V.; Ivanov, Eugeny A.; Kukharchuk, Oleg F.; Poupko, Victor Ya.; Zrodnikov, Anatoly V.

    2001-01-01

    Conception of using the nuclear photon rocket engines for deep space exploration is proposed. Some analytical estimations have been made to illustrate the possibility to travel to 100-10000 AU using a small thrust photon engine. Concepts of high temperature nuclear reactors for the nuclear photon engines are also discussed

  2. Stennis Holds Last Planned Space Shuttle Engine Test

    Science.gov (United States)

    2009-01-01

    With 520 seconds of shake, rattle and roar on July 29, 2009 NASA's John C. Stennis Space Center marked the end of an era for testing the space shuttle main engines that have powered the nation's Space Shuttle Program for nearly three decades.

  3. Industrial relations in engineering education

    DEFF Research Database (Denmark)

    Kjærsdam, Finn

    2005-01-01

    gained from Aalborg University, Aalborg, Denmark, shows the strength of this type of combination. It produces creative engineers who are prepared to tackle unknown problems of the future using theories from very different disciplines and has proven to be a very effective educational method. More students...... pass their education. in due time, while project work supports the social environment on campus....

  4. Space engineering modeling and optimization with case studies

    CERN Document Server

    Pintér, János

    2016-01-01

    This book presents a selection of advanced case studies that cover a substantial range of issues and real-world challenges and applications in space engineering. Vital mathematical modeling, optimization methodologies and numerical solution aspects of each application case study are presented in detail, with discussions of a range of advanced model development and solution techniques and tools. Space engineering challenges are discussed in the following contexts: •Advanced Space Vehicle Design •Computation of Optimal Low Thrust Transfers •Indirect Optimization of Spacecraft Trajectories •Resource-Constrained Scheduling, •Packing Problems in Space •Design of Complex Interplanetary Trajectories •Satellite Constellation Image Acquisition •Re-entry Test Vehicle Configuration Selection •Collision Risk Assessment on Perturbed Orbits •Optimal Robust Design of Hybrid Rocket Engines •Nonlinear Regression Analysis in Space Engineering< •Regression-Based Sensitivity Analysis and Robust Design ...

  5. Young engineers and scientists - a mentorship program emphasizing space education

    Science.gov (United States)

    Boice, Daniel; Asbell, Elaine; Reiff, Patricia

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. The first component of YES is an intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. Afterwards, students complete individual research projects under the guidance of their mentors during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. During these years, YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). High school science teachers participate in the workshop and develop space-related lessons for classroom presentation in the academic year. Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  6. Concept for an International Standard related to Space Weather Effects on Space Systems

    Science.gov (United States)

    Tobiska, W. Kent; Tomky, Alyssa

    There is great interest in developing an international standard related to space weather in order to specify the tools and parameters needed for space systems operations. In particular, a standard is important for satellite operators who may not be familiar with space weather. In addition, there are others who participate in space systems operations that would also benefit from such a document. For example, the developers of software systems that provide LEO satellite orbit determination, radio communication availability for scintillation events (GEO-to-ground L and UHF bands), GPS uncertainties, and the radiation environment from ground-to-space for commercial space tourism. These groups require recent historical data, current epoch specification, and forecast of space weather events into their automated or manual systems. Other examples are national government agencies that rely on space weather data provided by their organizations such as those represented in the International Space Environment Service (ISES) group of 14 national agencies. Designers, manufacturers, and launchers of space systems require real-time, operational space weather parameters that can be measured, monitored, or built into automated systems. Thus, a broad scope for the document will provide a useful international standard product to a variety of engineering and science domains. The structure of the document should contain a well-defined scope, consensus space weather terms and definitions, and internationally accepted descriptions of the main elements of space weather, its sources, and its effects upon space systems. Appendices will be useful for describing expanded material such as guidelines on how to use the standard, how to obtain specific space weather parameters, and short but detailed descriptions such as when best to use some parameters and not others; appendices provide a path for easily updating the standard since the domain of space weather is rapidly changing with new advances

  7. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  8. Space Station Environmental Control/Life Support System engineering

    Science.gov (United States)

    Miller, C. W.; Heppner, D. B.

    1985-01-01

    The present paper is concerned with a systems engineering study which has provided an understanding of the overall Space Station ECLSS (Environmental Control and Life Support System). ECLSS/functional partitioning is considered along with function criticality, technology alternatives, a technology description, single thread systems, Space Station architectures, ECLSS distribution, mechanical schematics per space station, and Space Station ECLSS characteristics. Attention is given to trade studies and system synergism. The Space Station functional description had been defined by NASA. The ECLSS will utilize technologies which embody regenerative concepts to minimize the use of expendables.

  9. Space mapping optimization algorithms for engineering design

    DEFF Research Database (Denmark)

    Koziel, Slawomir; Bandler, John W.; Madsen, Kaj

    2006-01-01

    A simple, efficient optimization algorithm based on space mapping (SM) is presented. It utilizes input SM to reduce the misalignment between the coarse and fine models of the optimized object over a region of interest, and output space mapping (OSM) to ensure matching of response and first...... to a benchmark problem. In comparison with SMIS, the models presented are simple and have a small number of parameters that need to be extracted. The new algorithm is applied to the optimization of coupled-line band-pass filter....

  10. Industrial Engineering Lifts Off at Kennedy Space Center

    Science.gov (United States)

    Barth, Tim

    1998-01-01

    When the National Aeronautics and Space Administration (NASA) began the Space Shuttle Program, it did not have an established industrial engineering (IE) capability for several probable reasons. For example, it was easy for some managers to dismiss IE principles as being inapplicable at NASA's John F. Kennedy Space Center (KSC). When NASA was formed by the National Aeronautics and Space Act of 1958, most industrial engineers worked in more traditional factory environments. The primary emphasis early in the shuttle program, and during previous human space flight programs such as Mercury and Apollo, was on technical accomplishments. Industrial engineering is sometimes difficult to explain in NASA's highly technical culture. IE is different in many ways from other engineering disciplines because it is devoted to process management and improvement, rather than product design. Images of clipboards and stopwatches still come to the minds of many people when the term industrial engineering is mentioned. The discipline of IE has only recently begun to gain acceptance and understanding in NASA. From an IE perspective today, the facilities used for flight hardware processing at KSC are NASA's premier factories. The products of these factories are among the most spectacular in the world: safe and successful launches of shuttles and expendable vehicles that carry tremendous payloads into space.

  11. Engineering Risk Assessment of Space Thruster Challenge Problem

    Science.gov (United States)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  12. Systems Engineering for Space Exploration Medical Capabilities

    Science.gov (United States)

    Mindock, Jennifer; Reilly, Jeffrey; Rubin, David; Urbina, Michelle; Hailey, Melinda; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris; hide

    2017-01-01

    Human exploration missions that reach destinations beyond low Earth orbit, such as Mars, will present significant new challenges to crew health management. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system goals, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Model-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  13. Relational Reasoning in Science, Medicine, and Engineering

    Science.gov (United States)

    Dumas, Denis

    2017-01-01

    This review brings together the literature that pertains to the role of relational reasoning, or the ability to discern meaningful patterns within any stream of information, in the mental work of scientists, medical doctors, and engineers. Existing studies that measure four forms of relational reasoning--analogy, anomaly, antinomy, and…

  14. Public views evening engine test of a Space Shuttle Main Engine

    Science.gov (United States)

    2001-01-01

    Over the past year, more than 20,000 people came to Stennis Space Center to witness the 'shake, rattle and roar' of one of the world's most sophisticated engines. Stennis Space Center in south Mississippi is NASA's lead center for rocket propulsion testing. StenniSphere, the visitor center for Stennis Space Center, hosted more than 250,000 visitors in its first year of operation. Of those visitors, 26.4 percent were from Louisiana.

  15. The Extended Relativity Theory in Clifford Spaces

    CERN Document Server

    Castro, C

    2004-01-01

    A brief review of some of the most important features of the Extended Relativity theory in Clifford-spaces ( $C$-spaces) is presented whose " point" coordinates are noncommuting Clifford-valued quantities and which incoporate the lines, areas, volumes, .... degrees of freedom associated with the collective particle, string, membrane, ... dynamics of the $p$-loop histories (closed p-branes) living in target $D$-dimensional spacetime backgrounds. $C$-space Relativity naturally incoporates the ideas of an invariant length (Planck scale), maximal acceleration, noncommuting coordinates, supersymmetry, holography, superluminal propagation, higher derivative gravity with torsion and variable dimensions/signatures that allows to study the dynamics of all (closed ) p-branes, for all values of $ p $, in a unified footing. It resolves the ordering ambiguities in QFT and the problem of time in Cosmology. A discussion of the maximal-acceleration Relativity principle in phase-spaces follows along with the study of the inva...

  16. Advanced Health Management System for the Space Shuttle Main Engine

    Science.gov (United States)

    Davidson, Matt; Stephens, John; Rodela, Chris

    2006-01-01

    Pratt & Whitney Rocketdyne, Inc., in cooperation with NASA-Marshall Space Flight Center (MSFC), has developed a new Advanced Health Management System (AHMS) controller for the Space Shuttle Main Engine (SSME) that will increase the probability of successfully placing the shuttle into the intended orbit and increase the safety of the Space Transportation System (STS) launches. The AHMS is an upgrade o the current Block II engine controller whose primary component is an improved vibration monitoring system called the Real-Time Vibration Monitoring System (RTVMS) that can effectively and reliably monitor the state of the high pressure turbomachinery and provide engine protection through a new synchronous vibration redline which enables engine shutdown if the vibration exceeds predetermined thresholds. The introduction of this system required improvements and modification to the Block II controller such as redesigning the Digital Computer Unit (DCU) memory and the Flight Accelerometer Safety Cut-Off System (FASCOS) circuitry, eliminating the existing memory retention batteries, installation of the Digital Signal Processor (DSP) technology, and installation of a High Speed Serial Interface (HSSI) with accompanying outside world connectors. Test stand hot-fire testing along with lab testing have verified successful implementation and is expected to reduce the probability of catastrophic engine failures during the shuttle ascent phase and improve safely by about 23% according to the Quantitative Risk Assessment System (QRAS), leading to a safer and more reliable SSME.

  17. Engineering graphics data entry for space station data base

    Science.gov (United States)

    Lacovara, R. C.

    1986-01-01

    The entry of graphical engineering data into the Space Station Data Base was examined. Discussed were: representation of graphics objects; representation of connectivity data; graphics capture hardware; graphics display hardware; site-wide distribution of graphics, and consolidation of tools and hardware. A fundamental assumption was that existing equipment such as IBM based graphics capture software and VAX networked facilities would be exploited. Defensible conclusions reached after study and simulations of use of these systems at the engineering level are: (1) existing IBM based graphics capture software is an adequate and economical means of entry of schematic and block diagram data for present and anticipated electronic systems for Space Station; (2) connectivity data from the aforementioned system may be incorporated into the envisioned Space Station Data Base with modest effort; (3) graphics and connectivity data captured on the IBM based system may be exported to the VAX network in a simple and direct fashion; (4) graphics data may be displayed site-wide on VT-125 terminals and lookalikes; (5) graphics hard-copy may be produced site-wide on various dot-matrix printers; and (6) the system may provide integrated engineering services at both the engineering and engineering management level.

  18. Decision Making Methods in Space Economics and Systems Engineering

    Science.gov (United States)

    Shishko, Robert

    2006-01-01

    This viewgraph presentation reviews various methods of decision making and the impact that they have on space economics and systems engineering. Some of the methods discussed are: Present Value and Internal Rate of Return (IRR); Cost-Benefit Analysis; Real Options; Cost-Effectiveness Analysis; Cost-Utility Analysis; Multi-Attribute Utility Theory (MAUT); and Analytic Hierarchy Process (AHP).

  19. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    Science.gov (United States)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  20. Special relativity and space-time geometry.

    Science.gov (United States)

    Molski, M.

    An attempt has been made to formulate the special theory of relativity in a space-time that is explicitly absolute and strictly determines the kinematical characteristics of a particle in uniform translational motion. The approach developed is consistent with Einstein's relativity and permits explanation of the inertia phenomenon.

  1. Lubrication of Space Shuttle Main Engine Turbopump Bearings

    Science.gov (United States)

    Gibson, Howard; Munafo, Paul (Technical Monitor)

    2001-01-01

    The Space Shuttle has three main engines that are used for propulsion into orbit. These engines are fed propellants by four turbopumps on each engine. A main element in the turbopump is the bearings supporting the rotor that spins the turbine blades and the pump impeller. These bearings are required to spin at very high speeds, support radial and thrust loads, and have high wear resistance without the benefit of lubrication. The liquid hydrogen and oxygen propellants flow through the bearings to cool the surfaces. The volatile nature of the propellants excludes any conventional means of lubrication. Lubrication for these bearings is provided by the ball separator inside the bearing. The separator is a composite material that supplies a transfer film of lubrication to the rings and balls. New separator materials and lubrication schemes have been investigated at Marshall Space Flight Center in a bearing test rig with promising results. Hybrid bearings with silicon nitride balls have also been evaluated. The use of hybrid, silicon nitride ball bearings in conjunction -with better separator materials has shown excellent results. The work that Marshall has done is being utilized in turbopumps flying on the space shuttle fleet and will be utilized in future space travel. This result of this work is valuable for all aerospace and commercial applications where high-speed bearings are used.

  2. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  3. Implementing CDIO Approach in preparing engineers for Space Industry

    Directory of Open Access Journals (Sweden)

    Daneykin Yury

    2017-01-01

    Full Text Available The necessity to train highly qualified specialists leads to the development of the trajectory that can allow training specialists for the space industry. Several steps have been undertaken to reach this purpose. First, the University founded the Space Instrument Design Center that promotes a wide range of initiatives in the sphere of educating specialists, retraining specialists, carrying out research and collaborating with profiled enterprises. The University introduced Elite Engineering Education system to attract talented specialist and help them to follow individual trajectory to train unique specialist. The paper discusses the targets necessary for achievement to train specialists. Moreover, the paper presents the compliance of the attempts with the CDIO Approach, which is widely used in leading universities to improve engineering programs.

  4. Platelet injectors for Space Shuttle orbit maneuvering engine

    Science.gov (United States)

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.

    1974-01-01

    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  5. System Engineering of Photonic Systems for Space Application

    Science.gov (United States)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  6. Space shuttle booster multi-engine base flow analysis

    Science.gov (United States)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  7. Stirling Space Engine Program. Volume 1; Final Report

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  8. Expanding P450 catalytic reaction space through evolution and engineering

    Science.gov (United States)

    McIntosh, John A.; Farwell, Christopher C.; Arnold, Frances H.

    2014-01-01

    Advances in protein and metabolic engineering have led to wider use of enzymes to synthesize important molecules. However, many desirable transformations are not catalyzed by any known enzyme, driving interest in understanding how new enzymes can be created. The cytochrome P450 enzyme family, whose members participate in xenobiotic metabolism and natural products biosynthesis, catalyzes an impressive range of difficult chemical reactions that continues to grow as new enzymes are characterized. Recent work has revealed that P450-derived enzymes can also catalyze useful reactions previously accessible only to synthetic chemistry. The evolution and engineering of these enzymes provides an excellent case study for how to genetically encode new chemistry and expand biology’s reaction space. PMID:24658056

  9. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  10. NASA Space Engineering Research Center for VLSI systems design

    Science.gov (United States)

    1991-01-01

    This annual review reports the center's activities and findings on very large scale integration (VLSI) systems design for 1990, including project status, financial support, publications, the NASA Space Engineering Research Center (SERC) Symposium on VLSI Design, research results, and outreach programs. Processor chips completed or under development are listed. Research results summarized include a design technique to harden complementary metal oxide semiconductors (CMOS) memory circuits against single event upset (SEU); improved circuit design procedures; and advances in computer aided design (CAD), communications, computer architectures, and reliability design. Also described is a high school teacher program that exposes teachers to the fundamentals of digital logic design.

  11. Space Research, Education, and Related Activities In the Space Sciences

    Science.gov (United States)

    Black, David

    2002-01-01

    The mission of this activity, known as the Cooperative Program in Space Sciences (CPSS), is to conduct space science research and leading-edge instrumentation and technology development, enable research by the space sciences communities, and to expedite the effective dissemination of space science research, technology, data, and information to the educational community and the general public. To fulfill this mission, the Universities Space Research Association (USRA) recruits and maintains a staff of scientific researchers, operates a series of guest investigator facilities, organizes scientific meetings and workshops, and encourages various interactions with students and university faculty members. This paper is the final report from this now completed Cooperative Agreement.

  12. Engaging Students in Space Research: Young Engineers and Scientists 2008

    Science.gov (United States)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  13. Special relativity induced by granular space

    International Nuclear Information System (INIS)

    Jizba, Petr; Scardigli, Fabio

    2013-01-01

    We show that the special relativistic dynamics, when combined with quantum mechanics and the concept of superstatistics, can be interpreted as arising from two interlocked non-relativistic stochastic processes that operate at different energy scales. This framework leads to Feynman amplitudes that are, in the Euclidean regime, identical to the transition probability of a Brownian particle propagating through a granular space. For illustration we consider the dynamics and the propagator of a Klein-Gordon particle. Implications for deformed special relativity, quantum field theory, quantum gravity and cosmology are also discussed. (orig.)

  14. Space shuttle orbit maneuvering engine reusable thrust chamber program

    Science.gov (United States)

    Senneff, J. M.

    1975-01-01

    Reusable thrust chamber and injector concepts were evaluated for the space shuttle orbit maneuvering engine (OME). Parametric engine calculations were carried out by computer program for N2O4/amine, LOX/amine and LOX/hydrocarbon propellant combinations for engines incorporating regenerative cooled and insulated columbium thrust chambers. The calculation methods are described including the fuel vortex film cooling method of combustion gas temperature control, and performance prediction. A method of acceptance of a regeneratively cooled heat rejection reduction using a silicone oil additive was also demonstrated by heated tube heat transfer testing. Regeneratively cooled thrust chamber operation was also demonstrated where the injector was characterized for the OME application with a channel wall regenerative thrust chamber. Bomb stability testing of the demonstration chambers/injectors demonstrated recovery for the nominal design of acoustic cavities. Cavity geometry changes were also evaluated to assess their damping margin. Performance and combustion stability was demonstrated of the originally developed 10 inch diameter combustion pattern operating in an 8 inch diameter thrust chamber.

  15. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    Science.gov (United States)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  16. 46 CFR 28.340 - Ventilation of enclosed engine and fuel tank spaces.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Ventilation of enclosed engine and fuel tank spaces. 28... of enclosed engine and fuel tank spaces. (a) Applicability. Each vessel with a gasoline outboard engine or gasoline storage tank must comply with the requirements of this section. (b) Ventilation of...

  17. Engineering aspects of the Stanford relativity gyro experiment

    Science.gov (United States)

    Everitt, C. W. F.; Debra, D. B.

    1981-01-01

    According to certain theoretical predictions, the Newtonian laws of motion must be corrected for the effect of a gravitational field. Schiff (1960) proposed an experiment which would demonstrate the effect predicted by Einstein's Theory of General Relativity on a gyroscope. The experiment has been under development at Stanford University since 1961. The requirements involved make it necessary that the test be performed in a satellite to take advantage of weightlessness in space. In a discussion of engineering developments related to the experiment, attention is given to the development of proportional helium thrusters, the simulation of the attitude control system, aspects of inner loop control, the mechanization of the two-loop attitude control system, the effects of helium slosh on spacecraft pointing, and the data instrumentation system.

  18. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    Science.gov (United States)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  19. [Engineering issues of microbial ecology in space agriculture].

    Science.gov (United States)

    Yamashita, Masamichi; Ishikawa, Yoji; Oshima, Tairo

    2005-03-01

    how to conduct preventive maintenance for keeping cultivating soil healthy and productive. 3) Does microbial ecology contribute to building sustainable and expandable human habitation by utilizing the on site extraterrestrial resources? We are assessing technical feasibility of converting regolith to farming soil and structural materials for space agriculture. In the case of Mars habitation, carbon dioxide and a trace amount of nitrogen in atmosphere, and potassium and phosphor in minerals are the sources we consider. Excess oxygen can be accumulated by woods cultivation and their use for lumber. 4) Is the operation of space agriculture robust and safe, if it adopts hyper-thermophilic aerobic microbial ecology? Any ecological system is complex and non-linear, and shows latency and memory effects in its response. It is highly important to understand those features to design and operate space agriculture without falling into the fatal failure. Assessment should be made on the microbial safety and preparation of the preventive measures to eliminate negative elements that would either retard agricultural production or harm the healthy environment. It is worth to mention that such space agriculture would be an effective engineering testbed to solve the global problem on energy and environment. Mars and Moon exploration itself is a good advocate of healthy curiosity expressed by the sustainable civilization of our humankind. We propose to work together towards Mars and Moon with microbial ecology to assure pleasant habitation there.

  20. Hydrogen fuel cell engines and related technologies

    Science.gov (United States)

    2001-12-01

    The manual documents the first training course developed on the use of hydrogen fuel cells in transportation. The manual contains eleven modules covering hydrogen properties, use and safety; fuel cell technology and its systems, fuel cell engine desi...

  1. Review of the Space Mapping Approach to Engineering Optimization and Modeling

    DEFF Research Database (Denmark)

    Bakr, M. H.; Bandler, J. W.; Madsen, Kaj

    2000-01-01

    We review the Space Mapping (SM) concept and its applications in engineering optimization and modeling. The aim of SM is to avoid computationally expensive calculations encountered in simulating an engineering system. The existence of less accurate but fast physically-based models is exploited. S......-based Modeling (SMM). These include Space Derivative Mapping (SDM), Generalized Space Mapping (GSM) and Space Mapping-based Neuromodeling (SMN). Finally, we address open points for research and future development....

  2. Scoping the parameter space for demo and the engineering test

    International Nuclear Information System (INIS)

    Meier, W R.

    1999-01-01

    In our IFE development plan, we have set a goal of building an Engineering Test Facility (ETF) for a total cost of $2B and a Demo for $3B. In Mike Campbell s presentation at Madison, we included a viewgraph with an example Demo that had 80 to 250 MWe of net power and showed a plausible argument that it could cost less than $3B. In this memo, I examine the design space for the Demo and then briefly for the ETF. Instead of attempting to estimate the costs of the drivers, I pose the question in a way to define R ampersand D goals: As a function of key design and performance parameters, how much can the driver cost if the total facility cost is limited to the specified goal? The design parameters examined for the Demo included target gain, driver energy, driver efficiency, and net power output. For the ETF; the design parameters are target gain, driver energy, and target yield. The resulting graphs of allowable driver cost determine the goals that the driver R ampersand D programs must seek to meet

  3. 2015 Space Human Factors Engineering Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2015-01-01

    The 2015 Space Human Factors Engineering (SHFE) Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on December 2 - 3, 2015. The SRP reviewed the updated research plans for the Risk of Inadequate Design of Human and Automation/Robotic Integration (HARI Risk), the Risk of Inadequate Human-Computer Interaction (HCI Risk), and the Risk of Inadequate Mission, Process and Task Design (MPTask Risk). The SRP also received a status update on the Risk of Incompatible Vehicle/Habitat Design (Hab Risk) and the Risk of Performance Errors Due to Training Deficiencies (Train Risk). The SRP is pleased with the progress and responsiveness of the SHFE team. The presentations were much improved this year. The SRP is also pleased with the human-centered design approach. Below are some of the more extensive comments from the SRP. We have also made comments in each section concerning gaps/tasks in each. The comments below reflect more significant changes that impact more than just one particular section.

  4. Getting to First Flight: Equipping Space Engineers to Break the Start-Stop-Restart Cycle

    Science.gov (United States)

    Singer, Christopher E.; Dumbacher, Daniel L.

    2010-01-01

    The National Aeronautics and Space Administration s (NASA s) history is built on a foundation of can-do strength, while pointing to the Saturn/Apollo Moon missions in the 1960s and 1970s as its apex a sentiment that often overshadows the potential that lies ahead. The chronicle of America s civil space agenda is scattered with programs that got off to good starts with adequate resources and vocal political support but that never made it past a certain milestone review, General Accountability Office report, or Congressional budget appropriation. Over the decades since the fielding of the Space Shuttle in the early 1980s, a start-stop-restart cycle has intervened due to many forces. Despite this impediment, the workforce has delivered engineering feats such as the International Space Station and numerous Shuttle and science missions, which reflect a trend in the early days of the Exploration Age that called for massive infrastructure and matching capital allocations. In the new millennium, the aerospace industry must respond to transforming economic climates, the public will, national agendas, and international possibilities relative to scientific exploration beyond Earth s orbit. Two pressing issues - workforce transition and mission success - are intertwined. As this paper will address, U.S. aerospace must confront related workforce development and industrial base issues head on to take space exploration to the next level. This paper also will formulate specific strategies to equip space engineers to move beyond the seemingly constant start-stop-restart mentality to plan and execute flight projects that actually fly.

  5. What Reliability Engineers Should Know about Space Radiation Effects

    Science.gov (United States)

    DiBari, Rebecca

    2013-01-01

    Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the

  6. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    Science.gov (United States)

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  7. Photovoltaic Engineering Testbed: A Facility for Space Calibration and Measurement of Solar Cells on the International Space Station

    Science.gov (United States)

    Landis, Geoffrey A.; Bailey, Sheila G.; Jenkins, Phillip; Sexton, J. Andrew; Scheiman, David; Christie, Robert; Charpie, James; Gerber, Scott S.; Johnson, D. Bruce

    2001-01-01

    The Photovoltaic Engineering Testbed ("PET") is a facility to be flown on the International Space Station to perform calibration, measurement, and qualification of solar cells in the space environment and then returning the cells to Earth for laboratory use. PET will allow rapid turnaround testing of new photovoltaic technology under AM0 conditions.

  8. Embedded expert system for space shuttle main engine maintenance

    Science.gov (United States)

    Pooley, J.; Thompson, W.; Homsley, T.; Teoh, W.; Jones, J.; Lewallen, P.

    1987-01-01

    The SPARTA Embedded Expert System (SEES) is an intelligent health monitoring system that directs analysis by placing confidence factors on possible engine status and then recommends a course of action to an engineer or engine controller. The technique can prevent catastropic failures or costly rocket engine down time because of false alarms. Further, the SEES has potential as an on-board flight monitor for reusable rocket engine systems. The SEES methodology synergistically integrates vibration analysis, pattern recognition and communications theory techniques with an artificial intelligence technique - the Embedded Expert System (EES).

  9. Pathways to space: A mission to foster the next generation of scientists and engineers

    Science.gov (United States)

    Dougherty, Kerrie; Oliver, Carol; Fergusson, Jennifer

    2014-06-01

    The first education project funded under the Australian Government's Australian Space Research Program (ASRP), Pathways to Space was a unique project combining education, science communication research and research in astrobiology and robotics. It drew upon the challenges of space exploration to inspire students to consider study and careers in science and engineering. A multi-faceted program, Pathways to Space provided hands-on opportunities for high school and university students to participate in realistic simulations of a robotic Mars exploration mission for astrobiology. Its development was a collaboration between the Australian Centre for Astrobiology (University of New South Wales), the Australian Centre for Field Robotics (University of Sydney), the Powerhouse Museum and industry partner, Cisco. Focused on students in Years 9-10 (15-16 years of age), this program provided them with the opportunity to engage directly with space engineers and astrobiologists, while carrying out a simulated Mars mission using the digital learning facilities available at the Powerhouse Museum. As a part of their program, the students operated robotic mini-rovers in the Powerhouse Museum's “Mars Yard”, a highly accurate simulation of the Martian surface, where university students also carry out the development and testing of experimental Mars roving vehicles. This aspect of the program has brought real science and engineering research into the public space of the museum. As they undertook the education program, the students participated in a research study aimed at understanding the effectiveness of the project in achieving its key objective - encouraging students to consider space related courses and careers. This paper outlines the development and operation of the Pathways to Space project over its 3-year funding period, during which it met and exceeded all the requirements of its ASRP grant. It will look at the goals of the project, the rationale behind the education and

  10. System Engineering Processes at Kennedy Space Center for Development of SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric; Stambolian, Damon; Henderson, Gena

    2013-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems are developed at the Kennedy Space Center Engineering Directorate. The Engineering Directorate at Kennedy Space Center follows a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Presentation describes this process with examples of where the process has been applied.

  11. CO2 laser-driven Stirling engine. [space power applications

    Science.gov (United States)

    Lee, G.; Perry, R. L.; Carney, B.

    1978-01-01

    A 100-W Beale free-piston Stirling engine was powered remotely by a CO2 laser for long periods of time. The engine ran on both continuous-wave and pulse laser input. The working fluid was helium doped with small quantities of sulfur hexafluoride, SF6. The CO2 radiation was absorbed by the vibrational modes of the sulfur hexafluoride, which in turn transferred the energy to the helium to drive the engine. Electrical energy was obtained from a linear alternator attached to the piston of the engine. Engine pressures, volumes, and temperatures were measured to determine engine performance. It was found that the pulse radiation mode was more efficient than the continuous-wave mode. An analysis of the engine heat consumption indicated that heat losses around the cylinder and the window used to transmit the beam into the engine accounted for nearly half the energy input. The overall efficiency, that is, electrical output to laser input, was approximately 0.75%. However, this experiment was not designed for high efficiency but only to demonstrate the concept of a laser-driven engine. Based on this experiment, the engine could be modified to achieve efficiencies of perhaps 25-30%.

  12. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  13. Information Presentation: Human Research Program - Space Human Factors and Habitability, Space Human Factors Engineering Project

    Science.gov (United States)

    Holden, Kristina L.; Sandor, Aniko; Thompson, Shelby G.; Kaiser, Mary K.; McCann, Robert S.; Begault, D. R.; Adelstein, B. D.; Beutter, B. R.; Wenzel, E. M.; Godfroy, M.; hide

    2010-01-01

    The goal of the Information Presentation Directed Research Project (DRP) is to address design questions related to the presentation of information to the crew. The major areas of work, or subtasks, within this DRP are: 1) Displays, 2) Controls, 3) Electronic Procedures and Fault Management, and 4) Human Performance Modeling. This DRP is a collaborative effort between researchers atJohnson Space Center and Ames Research Center. T

  14. Mixed reality learning spaces for collaborative experimentation: A challenge for engineering education and training

    Directory of Open Access Journals (Sweden)

    Dieter Müller

    2007-10-01

    Full Text Available Although the vast majority of research in human-computer interaction involves only our senses of sight and hearing, with sporadic forays into touch, future laboratories used in engineering education will mostly benefit from developments beyond video and sound. Tangible and embedded interaction, augmented and mixed reality characterizes ultimate technologies for further applications in collaborative remote engineering and lab work. This paper presents our latest research to facilitate collaborative experimentation with such innovative technologies. Our vision is a collaborative learning space, which involves an amalgam of real, virtual and remote lab tools to support a wide spectrum of simple and complex, concrete and abstract, safe and dangerous experimentation settings. We will review related concepts and discuss lessons learned from our research and prototype development. Recent work involves the use of mixed reality (as opposed to ‘pure’ virtual reality techniques to support seamless collaborative work between remote sites. We describe this and identify areas for future research.

  15. Growing Minority Student Interest in Earth and Space Science with Suborbital and Space-related Investigations

    Science.gov (United States)

    Austin, S. A.

    2009-12-01

    Cubesat and related vehicles. The Cubesat extension benefits from specifications developed by Stanford University and California Polytechnical State University which provides low-profile, entry-level access for student-based science and engineering investigations in low-earth orbits and the availability of Commercial-Off-The-Shelf components including a Cubesat kit developed by Pumpkin, Inc. The programs have also benefited from partnerships with other universities including Montana State University, University of Vermont, University of Rhode Island and Cornell University. The programs are presently supported by funding from NSF Geoscience, the New York State Space Grant Consortium and a National Space Grant Minority Serving Institution Partnership award.

  16. Center for the Utilization of Biological Engineering in Space (CUBES)

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA shifts its focus from low-Earth orbit to deep space missions, the agency is investing in the development of technologies that will allow long-duration...

  17. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  18. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  19. Application of a Systems Engineering Approach to Support Space Reactor Development

    International Nuclear Information System (INIS)

    Wold, Scott

    2005-01-01

    In 1992, approximately 25 Russian and 12 U.S. engineers and technicians were involved in the transport, assembly, inspection, and testing of over 90 tons of Russian equipment associated with the Thermionic System Evaluation Test (TSET) Facility. The entire Russian Baikal Test Stand, consisting of a 5.79 m tall vacuum chamber and related support equipment, was reassembled and tested at the TSET facility in less than four months. In November 1992, the first non-nuclear operational test of a complete thermionic power reactor system in the U.S. was accomplished three months ahead of schedule and under budget. A major factor in this accomplishment was the application of a disciplined top-down systems engineering approach and application of a spiral development model to achieve the desired objectives of the TOPAZ International Program (TIP). Systems Engineering is a structured discipline that helps programs and projects conceive, develop, integrate, test and deliver products and services that meet customer requirements within cost and schedule. This paper discusses the impact of Systems Engineering and a spiral development model on the success of the TOPAZ International Program and how the application of a similar approach could help ensure the success of future space reactor development projects

  20. The Application of the Human Engineering Modeling and Performance Laboratory for Space Vehicle Ground Processing Tasks at Kennedy Space Center

    Science.gov (United States)

    Woodbury, Sarah K.

    2008-01-01

    The introduction of United Space Alliance's Human Engineering Modeling and Performance Laboratory began in early 2007 in an attempt to address the problematic workspace design issues that the Space Shuttle has imposed on technicians performing maintenance and inspection operations. The Space Shuttle was not expected to require the extensive maintenance it undergoes between flights. As a result, extensive, costly resources have been expended on workarounds and modifications to accommodate ground processing personnel. Consideration of basic human factors principles for design of maintenance is essential during the design phase of future space vehicles, facilities, and equipment. Simulation will be needed to test and validate designs before implementation.

  1. NASA universities advanced space design program, focus on nuclear engineering

    International Nuclear Information System (INIS)

    Lyon, W.F. III; George, J.A.; Alred, J.W.; Peddicord, K.L.

    1987-01-01

    In January 1985, the National Aeronautics and Space Administration (NASA), in affiliation with the Universities Space Research Association (USRA), inaugurated the NASA Universities Advanced Space Design Program. The purpose of the program was to encourage participating universities to utilize design projects for the senior and graduate level design courses that would focus on topics relevant to the nation's space program. The activities and projects being carried out under the NASA Universities Advanced Space Design Program are excellent experiences for the participants. This program is a well-conceived, well-planned effort to achieve the maximum benefit out of not only the university design experience but also of the subsequent summer programs. The students in the university design classes have the opportunity to investigate dramatic and new concepts, which at the same time have a place in a program of national importance. This program could serve as a very useful model for the development of university interaction with other federal agencies

  2. Engineering and Safety Partnership Enhances Safety of the Space Shuttle Program (SSP)

    Science.gov (United States)

    Duarte, Alberto

    2007-01-01

    Project Management must use the risk assessment documents (RADs) as tools to support their decision making process. Therefore, these documents have to be initiated, developed, and evolved parallel to the life of the project. Technical preparation and safety compliance of these documents require a great deal of resources. Updating these documents after-the-fact not only requires substantial increase in resources - Project Cost -, but this task is also not useful and perhaps an unnecessary expense. Hazard Reports (HRs), Failure Modes and Effects Analysis (FMEAs), Critical Item Lists (CILs), Risk Management process are, among others, within this category. A positive action resulting from a strong partnership between interested parties is one way to get these documents and related processes and requirements, released and updated in useful time. The Space Shuttle Program (SSP) at the Marshall Space Flight Center has implemented a process which is having positive results and gaining acceptance within the Agency. A hybrid Panel, with equal interest and responsibilities for the two larger organizations, Safety and Engineering, is the focal point of this process. Called the Marshall Safety and Engineering Review Panel (MSERP), its charter (Space Shuttle Program Directive 110 F, April 15, 2005), and its Operating Control Plan emphasizes the technical and safety responsibilities over the program risk documents: HRs; FMEA/CILs; Engineering Changes; anomalies/problem resolutions and corrective action implementations, and trend analysis. The MSERP has undertaken its responsibilities with objectivity, assertiveness, dedication, has operated with focus, and has shown significant results and promising perspectives. The MSERP has been deeply involved in propulsion systems and integration, real time technical issues and other relevant reviews, since its conception. These activities have transformed the propulsion MSERP in a truly participative and value added panel, making a

  3. Wings In Orbit: Scientific and Engineering Legacies of the Space Shuttle

    Science.gov (United States)

    Hale, N. Wayne (Editor); Lulla, Kamlesh (Editor); Lane, Helen W. (Editor); Chapline, Gail (Editor)

    2010-01-01

    This Space Shuttle book project reviews Wings In Orbit-scientific and engineering legacies of the Space Shuttle. The contents include: 1) Magnificent Flying Machine-A Cathedral to Technology; 2) The Historical Legacy; 3) The Shuttle and its Operations; 4) Engineering Innovations; 5) Major Scientific Discoveries; 6) Social, Cultural, and Educational Legacies; 7) Commercial Aerospace Industries and Spin-offs; and 8) The Shuttle continuum, Role of Human Spaceflight.

  4. Space Power Free-Piston Stirling Engine Scaling Study

    Science.gov (United States)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  5. Thermohydraulic Design Analysis Modeling for Korea Advanced NUclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Choi, Jae Young; Venneria, Paolo F.; Jeong, Yong Hoon; Chang, Soon Heung [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    Space exploration is a realistic and profitable goal for long-term humanity survival, although the harsh space environment imposes lots of severe challenges to space pioneers. To date, almost all space programs have relied upon Chemical Rockets (CRs) rating superior thrust level to transit from the Earth's surface to its orbit. However, CRs inherently have insurmountable barrier to carry out deep space missions beyond Earth's orbit due to its low propellant efficiency, and ensuing enormous propellant requirement and launch costs. Meanwhile, nuclear rockets typically offer at least two times the propellant efficiency of a CR and thus notably reduce the propellant demand. Particularly, a Nuclear Thermal Rocket (NTR) is a leading candidate for near-term manned missions to Mars and beyond because it satisfies a relatively high thrust as well as a high efficiency. The superior efficiency of NTRs is due to both high energy density of nuclear fuel and the low molecular weight propellant of Hydrogen (H{sub 2}) over the chemical reaction by-products. A NTR uses thermal energy released from a nuclear fission reactor to heat the H{sub 2} propellant and then exhausted the highly heated propellant through a propelling nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub s}p) which represents the ratio of the thrust over the propellant consumption rate. If the average exhaust H{sub 2} temperature of a NTR is around 3,000 K, the I{sub s}p can be achieved as high as 1,000 s as compared with only 450 - 500 s of the best CRs. For this reason, NTRs are favored for various space applications such as orbital tugs, lunar transports, and manned missions to Mars and beyond. The best known NTR development effort was conducted from 1955 to1974 under the ROVER and NERVA programs in the USA. These programs had successfully designed and tested many different reactors and engines. After these projects, the researches on NERVA derived

  6. Design space for space design: Dialogs through boundary objects at the intersections of art, design, science, and engineering

    Science.gov (United States)

    Balint, Tibor S.; Pangaro, Paul

    2017-05-01

    towards common shared languages between the actors. The shared language can also create new variety that evolves through conversations between the participants. Misunderstandings through conversations can also lead to new ideas, as they stimulate questions and may suggest novel solutions. In this paper we propose new categorizations for boundary objects, drawn from design and cybernetic approaches. We evidence these categories with a number of space-related object examples. Furthermore, we discuss how these boundary objects facilitate communications between diverse audiences, ranging from scientists, and engineers, to artists, designers, and the general public.

  7. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-01-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  8. Space Shuttle main engine OPAD: The search for a hardware enhanced plume

    Science.gov (United States)

    Powers, W. T.; Cooper, A. E.; Wallace, Tim L.; Buntine, W. L.; Whitaker, K. W.

    1993-11-01

    The process of applying spectroscopy to the Space Shuttle Main Engine (SSME) for plume diagnostics, as it exists today, originated at Marshall Space Flight Center in Huntsville, Alabama, and its implementation was assured largely through the efforts of Sverdrup AEDC, in Tullahoma, Tennessee. This team continues to lead and guide efforts in the plume diagnostics arena. The process, Optical Plume Anomaly Detection (OPAD), formed the basis for various activities in the development of ground-based systems as well as the development of in-flight plume spectroscopy. OPAD currently provides and will continue to provide valuable information relative to future systems definitions, instrumentation development, code validation, and data diagnostic processing. OPAD is based on the detection of anomalous atomic and molecular species in the SSME plume using two complete, stand-alone optical spectrometers. To-date OPAD has acquired data on 44 test firings of the SSME at the Technology Test Bed (TTB) at MSFC. The purpose of this paper will be to provide an introduction to the OPAD system by discussing the process of obtaining data as well as the methods of examining and interpreting the data. It will encompass such issues as selection of instrumentation correlation of data to nominal engine operation, investigation of SSME component erosion via OPAD spectral data, necessity and benefits of plume seeding, application of artificial intelligence (AI) techniques to data analysis, and the present status of efforts to quantify specie erosion utilizing standard plume and chemistry codes as well as radiative models currently under development.

  9. The role of chemical engineering in space manufacturing

    Science.gov (United States)

    Waldron, R. D.; Criswell, D. R.; Erstfeld, T. E.

    1979-01-01

    A survey of factors involved in space manufacturing is presented. It is shown that it will be more economical to obtain the necessary raw materials from the moon than from earth due to earth's greater gravity and atmosphere. Discussion covers what resources can be mined and recovered from the moon and what ranges of industrial feedstock can be provided from lunar materials, noting that metallurgy will be different in space due to the lack of key elements such as H, C, Na, Cl, etc. Also covered are chemical plant design, space environmental factors such as vacuum and zero gravity, recycling requirments, reagent and equipment mass, and unit operations such as materials handling and phase separation. It is concluded that a pilot plant in space could be an economic boon to mankind.

  10. White space communication advances, developments and engineering challenges

    CERN Document Server

    Johnson, David

    2015-01-01

    This monograph presents a collection of major developments leading toward the implementation of white space technology - an emerging wireless standard for using wireless spectrum in locations where it is unused by licensed users. Some of the key research areas in the field are covered. These include emerging standards, technical insights from early pilots and simulations, software defined radio platforms, geo-location spectrum databases and current white space spectrum usage in India and South Africa.

  11. State Space identification of Civil Engineering Structures from Output Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.

    for identification of civil engineering structures. The SST is compared with the stochastic realization estimator Matrix Block Hankel (MBH) and a prediction error method (PEM). The results show that the investigated techniques give good results in terms of estimated modal parameters and mode shapes. Especially...

  12. State Space identification of Civil Engineering Structures from Output Measurements

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Andersen, P.

    1997-01-01

    for identification of civil engineering structures. The SST is compared with the stochastic realization estimator Matrix Block Hankel (MBH) and a prediction error method (PEM). The results show that the investigated techniques give good results in terms of estimated modal parameters and mode shapes. Especially...

  13. Space Station Freedom - Configuration management approach to supporting concurrent engineering and total quality management. [for NASA Space Station Freedom Program

    Science.gov (United States)

    Gavert, Raymond B.

    1990-01-01

    Some experiences of NASA configuration management in providing concurrent engineering support to the Space Station Freedom program for the achievement of life cycle benefits and total quality are discussed. Three change decision experiences involving tracing requirements and automated information systems of the electrical power system are described. The potential benefits of concurrent engineering and total quality management include improved operational effectiveness, reduced logistics and support requirements, prevention of schedule slippages, and life cycle cost savings. It is shown how configuration management can influence the benefits attained through disciplined approaches and innovations that compel consideration of all the technical elements of engineering and quality factors that apply to the program development, transition to operations and in operations. Configuration management experiences involving the Space Station program's tiered management structure, the work package contractors, international partners, and the participating NASA centers are discussed.

  14. EXTRACTING TOPOLOGICAL RELATIONS BETWEEN INDOOR SPACES FROM POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    H. Tran

    2017-09-01

    Full Text Available 3D models of indoor environments are essential for many application domains such as navigation guidance, emergency management and a range of indoor location-based services. The principal components defined in different BIM standards contain not only building elements, such as floors, walls and doors, but also navigable spaces and their topological relations, which are essential for path planning and navigation. We present an approach to automatically reconstruct topological relations between navigable spaces from point clouds. Three types of topological relations, namely containment, adjacency and connectivity of the spaces are modelled. The results of initial experiments demonstrate the potential of the method in supporting indoor navigation.

  15. System Engineering Processes at Kennedy Space Center for Development of the SLS and Orion Launch Systems

    Science.gov (United States)

    Schafer, Eric J.

    2012-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.

  16. Birth Order, Age-Spacing, IQ Differences, and Family Relations.

    Science.gov (United States)

    Pfouts, Jane H.

    1980-01-01

    Very close age spacing was an obstacle to high academic performance for later borns. In family relations and self-esteem, first borns scored better and performed in school as well as their potentially much more able younger siblings, regardless of age spacing. (Author)

  17. Approaching space-time through velocity in doubly special relativity

    International Nuclear Information System (INIS)

    Aloisio, R.; Galante, A.; Grillo, A.F.; Luzio, E.; Mendez, F.

    2004-01-01

    We discuss the definition of velocity as dE/d vertical bar p vertical bar, where E, p are the energy and momentum of a particle, in doubly special relativity (DSR). If this definition matches dx/dt appropriate for the space-time sector, then space-time can in principle be built consistently with the existence of an invariant length scale. We show that, within different possible velocity definitions, a space-time compatible with momentum-space DSR principles cannot be derived

  18. Engineering America's Future in Space: Systems Engineering Innovations for Sustainable Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Caruso, Pamela W.; Jones, Carl P.

    2008-01-01

    This viewgraph presentation reviews systems engineering innovations for Ares I and Ares V launch vehicles. The contents include: 1) NASA's Exploratoin Roadmap; 2) Launch Vehicle Comparisons; 3) Designing the Ares I and Ares V in House; 4) Exploring the Moon; and 5) Systems Engineering Adds Value Throughout the Project Lifecycle.

  19. Study of the space environmental effects on spacecraft engineering materials

    Science.gov (United States)

    Obrien, Susan K.; Workman, Gary L.; Smith, Guy A.

    1995-01-01

    The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the current estimates of the integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 10(exp 10) electrons/sq cm/day. and the proton integral fluence is above 1 x 109 protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionately less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are worth performing in order to simulate at some level the effect of the environment. For example the effect of protons and electrons impacting structural materials are easily simulated through experiments using the Van de Graff and Pelletron accelerators currently housed in the Environmental Effects Facility at MSFC. Proton fluxes with energies of 700 Kev-2.5 Mev can be generated and used to impinge on sample targets to determine the effects of the particles. Also the Environmental Effects Facility has the capability to generate electron beams with energies from 700 Kev to 2.5 Mev. These facilities will be used in this research to simulate space environmental effects from energetic particles. Ultraviolet radiation, particularly in the ultraviolet (less than 400 nm wavelength) is less well characterized at this time. The Environmental Effects Facility has a vacuum system dedicated to studying the effects of ultraviolet radiation on specific surface materials. This particular system was assembled in a previous study (NAS8-38609) in order to

  20. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  1. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph I.; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    The awareness of potentially significant impacts of space weather on spaceand ground ]based technological systems has generated a strong desire in many sectors of government and industry to effectively transform knowledge and understanding of the variable space environment into useful tools and applications for use by those entities responsible for systems that may be vulnerable to space weather impacts. Essentially, effectively transitioning science knowledge to useful applications relevant to space weather has become important. This talk will present proven methodologies that have been demonstrated to be effective, and how in the current environment those can be applied to space weather transition efforts.

  2. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  3. A History of Welding on the Space Shuttle Main Engine (1975 to 2010)

    Science.gov (United States)

    Zimmerman, Frank R.; Russell, Carolyn K.

    2010-01-01

    The Space Shuttle Main Engine (SSME) is a high performance, throttleable, liquid hydrogen fueled rocket engine. High thrust and specific impulse (Isp) are achieved through a staged combustion engine cycle, combined with high combustion pressure (approx.3000psi) generated by the two-stage pump and combustion process. The SSME is continuously throttleable from 67% to 109% of design thrust level. The design criteria for this engine maximize performance and weight, resulting in a 7,800 pound rocket engine that produces over a half million pounds of thrust in vacuum with a specific impulse of 452/sec. It is the most reliable rocket engine in the world, accumulating over one million seconds of hot-fire time and achieving 100% flight success in the Space Shuttle program. A rocket engine with the unique combination of high reliability, performance, and reusability comes at the expense of manufacturing simplicity. Several innovative design features and fabrication techniques are unique to this engine. This is as true for welding as any other manufacturing process. For many of the weld joints it seemed mean cheating physics and metallurgy to meet the requirements. This paper will present a history of the welding used to produce the world s highest performance throttleable rocket engine.

  4. Advanced 35 W Free-Piston Stirling Engine for Space Power Applications

    Science.gov (United States)

    Wood, J. Gary; Lane, Neill

    2003-01-01

    This paper presents the projected performance and overall design characteristics of a high efficiency, low mass 35 W free-piston Stirling engine design. Overall (engine plus linear alternator) thermodynamic performance greater than 50% of Carnot, with a specific power close to 100 W/kg appears to be a reasonable goal at this small power level. Supporting test data and analysis results from exiting engines are presented. Design implications of high specific power in relatively low power engines is presented and discussed.

  5. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  6. Optical Properties of Quantum Vacuum. Space-Time Engineering

    International Nuclear Information System (INIS)

    Gevorkyan, A. S.; Gevorkyan, A. A.

    2011-01-01

    The propagation of electromagnetic waves in the vacuum is considered taking into account quantum fluctuations in the limits of Maxwell-Langevin (ML) type stochastic differential equations. For a model of fluctuations, type of 'white noise', using ML equations a partial differential equation of second order is obtained which describes the quantum distribution of virtual particles in vacuum. It is proved that in order to satisfy observed facts, the Lamb Shift etc, the virtual particles should be quantized in unperturbed vacuum. It is shown that the quantized virtual particles in toto (approximately 86 percent) are condensed on the 'ground state' energy level. It is proved that the extension of Maxwell electrodynamics with inclusion of quantum vacuum fluctuations may be constructed on a 6D space-time continuum, where 4D is Minkowski space-time and 2D is a compactified subspace. In detail is studied of vacuum's refraction indexes under the influence of external electromagnetic fields.

  7. Total Quality Management in Space Shuttle Main Engine manufacturing

    Science.gov (United States)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  8. Collaborative Human Engineering Work in Space Exploration Extravehicular Activities (EVA)

    Science.gov (United States)

    DeSantis, Lena; Whitmore, Mihriban

    2007-01-01

    A viewgraph presentation on extravehicular activities in space exploration in collaboration with other NASA centers, industries, and universities is shown. The topics include: 1) Concept of Operations for Future EVA activities; 2) Desert Research and Technology Studies (RATS); 3) Advanced EVA Walkback Test; 4) Walkback Subjective Results; 5) Integrated Suit Test 1; 6) Portable Life Support Subsystem (PLSS); 7) Flex PLSS Design Process; and 8) EVA Information System; 9)

  9. Engineering a Live UHD Program from the International Space Station

    Science.gov (United States)

    Grubbs, Rodney; George, Sandy

    2017-01-01

    The first-ever live downlink of Ultra-High Definition (UHD) video from the International Space Station (ISS) was the highlight of a “Super Session” at the National Association of Broadcasters (NAB) Show in April 2017. Ultra-High Definition is four times the resolution of “full HD” or “1080P” video. Also referred to as “4K”, the Ultra-High Definition video downlink from the ISS all the way to the Las Vegas Convention Center required considerable planning, pushed the limits of conventional video distribution from a space-craft, and was the first use of High Efficiency Video Coding (HEVC) from a space-craft. The live event at NAB will serve as a pathfinder for more routine downlinks of UHD as well as use of HEVC for conventional HD downlinks to save bandwidth. A similar demonstration was conducted in 2006 with the Discovery Channel to demonstrate the ability to stream HDTV from the ISS. This paper will describe the overall work flow and routing of the UHD video, how audio was synchronized even though the video and audio were received many seconds apart from each other, and how the demonstration paves the way for not only more efficient video distribution from the ISS, but also serves as a pathfinder for more complex video distribution from deep space. The paper will also describe how a “live” event was staged when the UHD video coming from the ISS had a latency of 10+ seconds. In addition, the paper will touch on the unique collaboration between the inherently governmental aspects of the ISS, commercial partners Amazon and Elemental, and the National Association of Broadcasters.

  10. Model-Based Engineering Design for Trade Space Exploration throughout the Design Cycle

    Science.gov (United States)

    Lamassoure, Elisabeth S.; Wall, Stephen D.; Easter, Robert W.

    2004-01-01

    This paper presents ongoing work to standardize model-based system engineering as a complement to point design development in the conceptual design phase of deep space missions. It summarizes two first steps towards practical application of this capability within the framework of concurrent engineering design teams and their customers. The first step is standard generation of system sensitivities models as the output of concurrent engineering design sessions, representing the local trade space around a point design. A review of the chosen model development process, and the results of three case study examples, demonstrate that a simple update to the concurrent engineering design process can easily capture sensitivities to key requirements. It can serve as a valuable tool to analyze design drivers and uncover breakpoints in the design. The second step is development of rough-order- of-magnitude, broad-range-of-validity design models for rapid exploration of the trade space, before selection of a point design. At least one case study demonstrated the feasibility to generate such models in a concurrent engineering session. The experiment indicated that such a capability could yield valid system-level conclusions for a trade space composed of understood elements. Ongoing efforts are assessing the practicality of developing end-to-end system-level design models for use before even convening the first concurrent engineering session, starting with modeling an end-to-end Mars architecture.

  11. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  12. Space architecture education for engineers and architects designing and planning beyond earth

    CERN Document Server

    Häuplik-Meusburger, Sandra

    2016-01-01

    This book considers two key educational tools for future generations of professionals with a space architecture background in the 21st century: (1) introducing the discipline of space architecture into the space system engineering curricula; and (2) developing space architecture as a distinct, complete training curriculum.  Professionals educated this way will help shift focus from solely engineering-driven transportation systems and “sortie” missions towards permanent off-world human presence. The architectural training teaches young professionals to operate at all scales from the “overall picture” down to the smallest details, to provide directive intention–not just analysis–to design opportunities, to address the relationship between human behavior and the built environment, and to interact with many diverse fields and disciplines throughout the project lifecycle. This book will benefit individuals and organizations responsible for planning transportation and habitat systems in space, while a...

  13. An engineering evaluation of the Space Shuttle OMS engine after 5 orbital flights

    Science.gov (United States)

    David, D.

    1983-01-01

    Design features, performances on the first five flights, and condition of the Shuttle OMS engines are summarized. The engines were designed to provide a vacuum-fed 6000 lb of thrust and a 310 sec specific impulse, fueled by a combination of N2O4 and monomethylhydrazine (MMH) at a mixture ratio of 1.65. The design lifetime is 1000 starts and 15 hr of cumulative firing duration. The engine assembly is throat gimballed and features yaw actuators. No degradation of the hot components was observed during the first five flights, and the injector pattern maintained a uniform, enduring level of performance. An increase in the take-off loads have led to enhancing the wall thickness in the nozzle in affected areas. The engine is concluded to be performing to design specifications and is considered an operational system.

  14. Materials compatibility issues related to thermal energy storage for a space solar dynamic power system

    Science.gov (United States)

    Faget, N. M.

    1986-01-01

    Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.

  15. International evaluation of the programme on engine-related combustion

    Energy Technology Data Exchange (ETDEWEB)

    Arcoumanis, D [Imperial College, London (United Kingdom); Greenhalgh, D [Cranfield Univ. (United Kingdom); Magnusson, B F [Norwegian Univ. of Science and Technology, Trondheim (Norway); Peters, N [Institut fuer Technische Mechanik, RWTH Aachen (Germany)

    1996-11-01

    The 12 projects in the engine related combustion programme cover the entire range from fundamental and theoretical aspects of combustion to more applied subjects such as engine control. The common denominator in the programme clearly is the internal combustion engine, both the reciprocating as well as the gas turbine engine. Such a large coverage by a relatively small number of projects necessarily leads to an isolation of some of the projects in terms of their subject as well as the methodology that is used. On the other hand, all the research areas of interest in combustion technology are represented by at least one of the projects. These are: mathematical and numerical methods in combustion; modelling of turbulent combustion; laser diagnostics of flows with combustion; studies of engine performance and their control; semi-empirical model development for practical applications. As a conclusion, the evaluation committee believes that the programme is well balanced between fundamental and applied projects. It covers the entire range of modern methodologies that are used on the international level and thereby contributes to the application and further development of these research tools in Sweden

  16. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  17. Human Engineering of Space Vehicle Displays and Controls

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  18. Heat Transfer and Fluid Dynamics Measurements in the Expansion Space of a Stirling Cycle Engine

    Science.gov (United States)

    Jiang, Nan; Simon, Terrence W.

    2006-01-01

    The heater (or acceptor) of a Stirling engine, where most of the thermal energy is accepted into the engine by heat transfer, is the hottest part of the engine. Almost as hot is the adjacent expansion space of the engine. In the expansion space, the flow is oscillatory, impinging on a two-dimensional concavely-curved surface. Knowing the heat transfer on the inside surface of the engine head is critical to the engine design for efficiency and reliability. However, the flow in this region is not well understood and support is required to develop the CFD codes needed to design modern Stirling engines of high efficiency and power output. The present project is to experimentally investigate the flow and heat transfer in the heater head region. Flow fields and heat transfer coefficients are measured to characterize the oscillatory flow as well as to supply experimental validation for the CFD Stirling engine design codes. Presented also is a discussion of how these results might be used for heater head and acceptor region design calculations.

  19. The History and Promise of Combined Cycle Engines for Access to Space Applications

    Science.gov (United States)

    Clark, Casie

    2010-01-01

    For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.

  20. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  1. Embodiment, Virtual Space, Temporality and Interpersonal Relations in Online Writing

    Science.gov (United States)

    Adams, Catherine; van Manen, Max

    2006-01-01

    In this paper we discuss how online seminar participants experience dimensions of embodiment, virtual space, interpersonal relations, and temporality; and how interacting through reading-writing, by means of online technologies, creates conditions, situations, and actions of pedagogical influence and relational affectivities. We investigate what…

  2. Facility for the evaluation of space communications and related systems

    Science.gov (United States)

    Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.

    1995-01-01

    NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.

  3. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  4. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  5. Parametric analysis of diffuser requirements for high expansion ratio space engine

    Science.gov (United States)

    Wojciechowski, C. J.; Anderson, P. G.

    1981-01-01

    A supersonic diffuser ejector design computer program was developed. Using empirically modified one dimensional flow methods the diffuser ejector geometry is specified by the code. The design code results for calculations up to the end of the diffuser second throat were verified. Diffuser requirements for sea level testing of high expansion ratio space engines were defined. The feasibility of an ejector system using two commonly available turbojet engines feeding two variable area ratio ejectors was demonstrated.

  6. Handbook of exponential and related distributions for engineers and scientists

    CERN Document Server

    Pal, Nabendu; Lim, Wooi K

    2005-01-01

    The normal distribution is widely known and used by scientists and engineers. However, there are many cases when the normal distribution is not appropriate, due to the data being skewed. Rather than leaving you to search through journal articles, advanced theoretical monographs, or introductory texts for alternative distributions, the Handbook of Exponential and Related Distributions for Engineers and Scientists provides a concise, carefully selected presentation of the properties and principles of selected distributions that are most useful for application in the sciences and engineering.The book begins with all the basic mathematical and statistical background necessary to select the correct distribution to model real-world data sets. This includes inference, decision theory, and computational aspects including the popular Bootstrap method. The authors then examine four skewed distributions in detail: exponential, gamma, Weibull, and extreme value. For each one, they discuss general properties and applicabi...

  7. Feasibility study of a pressure fed engine for a water recoverable space shuttle booster Volume 2: Technical, phase A effort

    Science.gov (United States)

    1972-01-01

    Design and systems considerations are presented on an engine concept selection for further preliminary design and program evaluation. These data have been prepared from a feasibility study of a pressure-fed engine for the water recoverable space shuttle booster.

  8. Systems engineering, systems thinking, and learning a case study in space industry

    CERN Document Server

    Moser, Hubert Anton

    2014-01-01

    This book focuses on systems engineering, systems thinking, and how that thinking can be learned in practice. It describes a novel analytical framework based on activity theory for understanding how systems thinking evolves and how it can be improved to support multidisciplinary teamwork in the context of system development and systems engineering. This method, developed using data collected over four years from three different small space systems engineering organizations, can be applied in a wide variety of work activities in the context of engineering design and beyond in order to monitor and analyze multidisciplinary interactions in working teams over time. In addition, the book presents a practical strategy called WAVES (Work Activity for a Evolution of Systems engineering and thinking), which fosters the practical learning of systems thinking with the aim of improving process development in different industries. The book offers an excellent resource for researchers and practitioners interested in system...

  9. Research on Life Science and Life Support Engineering Problems of Manned Deep Space Exploration Mission

    Science.gov (United States)

    Qi, Bin; Guo, Linli; Zhang, Zhixian

    2016-07-01

    Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key

  10. Smarandache Spaces as a New Extension of the Basic Space-Time of General Relativity

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2010-04-01

    Full Text Available This short letter manifests how Smarandache geometries can be employed in order to extend the “classical” basis of the General Theory of Relativity (Riemannian geometry through joining the properties of two or more (different geometries in the same single space. Perspectives in this way seem much profitable: the basic space-time of General Relativity can be extended to not only metric geometries, but even to non-metric ones (where no distances can be measured, or to spaces of the mixed kind which possess the properties of both metric and non-metric spaces (the latter should be referred to as “semi-metric spaces”. If both metric and non-metric properties possessed at the same (at least one point of a space, it is one of Smarandache geometries, and should be re- ferred to as “Smarandache semi-metric space”. Such spaces can be introduced accord- ing to the mathematical apparatus of physically observable quantities (chronometric invariants, if we consider a breaking of the observable space metric in the continuous background of the fundamental metric tensor.

  11. An Architecture, System Engineering, and Acquisition Approach for Space System Software Resiliency

    Science.gov (United States)

    Phillips, Dewanne Marie

    Software intensive space systems can harbor defects and vulnerabilities that may enable external adversaries or malicious insiders to disrupt or disable system functions, risking mission compromise or loss. Mitigating this risk demands a sustained focus on the security and resiliency of the system architecture including software, hardware, and other components. Robust software engineering practices contribute to the foundation of a resilient system so that the system "can take a hit to a critical component and recover in a known, bounded, and generally acceptable period of time". Software resiliency must be a priority and addressed early in the life cycle development to contribute a secure and dependable space system. Those who develop, implement, and operate software intensive space systems must determine the factors and systems engineering practices to address when investing in software resiliency. This dissertation offers methodical approaches for improving space system resiliency through software architecture design, system engineering, increased software security, thereby reducing the risk of latent software defects and vulnerabilities. By providing greater attention to the early life cycle phases of development, we can alter the engineering process to help detect, eliminate, and avoid vulnerabilities before space systems are delivered. To achieve this objective, this dissertation will identify knowledge, techniques, and tools that engineers and managers can utilize to help them recognize how vulnerabilities are produced and discovered so that they can learn to circumvent them in future efforts. We conducted a systematic review of existing architectural practices, standards, security and coding practices, various threats, defects, and vulnerabilities that impact space systems from hundreds of relevant publications and interviews of subject matter experts. We expanded on the system-level body of knowledge for resiliency and identified a new software

  12. In-space research, technology and engineering experiments and Space Station

    Science.gov (United States)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  13. Engineering aspects of rate-related processes in food manufacturing.

    Science.gov (United States)

    Adachi, Shuji

    2015-01-01

    Many rate-related phenomena occur in food manufacturing processes. This review addresses four of them, all of which are topics that the author has studied in order to design food manufacturing processes that are favorable from the standpoint of food engineering. They include chromatographic separation through continuous separation with a simulated moving adsorber, lipid oxidation kinetics in emulsions and microencapsulated systems, kinetic analysis and extraction in subcritical water, and water migration in pasta.

  14. A Programmatic and Engineering Approach to the Development of a Nuclear Thermal Rocket for Space Exploration

    Science.gov (United States)

    Bordelon, Wayne J., Jr.; Ballard, Rick O.; Gerrish, Harold P., Jr.

    2006-01-01

    With the announcement of the Vision for Space Exploration on January 14, 2004, there has been a renewed interest in nuclear thermal propulsion. Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions; however, the cost to develop a nuclear thermal rocket engine system is uncertain. Key to determining the engine development cost will be the engine requirements, the technology used in the development and the development approach. The engine requirements and technology selection have not been defined and are awaiting definition of the Mars architecture and vehicle definitions. The paper discusses an engine development approach in light of top-level strategic questions and considerations for nuclear thermal propulsion and provides a suggested approach based on work conducted at the NASA Marshall Space Flight Center to support planning and requirements for the Prometheus Power and Propulsion Office. This work is intended to help support the development of a comprehensive strategy for nuclear thermal propulsion, to help reduce the uncertainty in the development cost estimate, and to help assess the potential value of and need for nuclear thermal propulsion for a human Mars mission.

  15. GridSpace Engine of the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Ciepiela, E.; Kocot, J.; Gubala, T.; Malawski, M.; Kasztelnik, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    GridSpace Engine is the central operational unit of the ViroLab Virtual Laboratory. This specific runtime environment enables access to computational and data resources by coordinating execution of experiments written in the Ruby programming language extended with virtual laboratory capabilities.

  16. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 6

    Science.gov (United States)

    Anderson, P. J.; Johnson, R. L.

    1984-01-01

    Research concerning the utilization of silicon piezoresistive strain sensing technology for space shuttle main engine applications is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  17. Research pressure instrumentation for NASA Space Shuttle main engine, modification no. 5

    Science.gov (United States)

    Anderson, P. J.; Nussbaum, P.; Gustafson, G.

    1984-01-01

    Research concerning the development of pressure instrumentation for the space shuttle main engine is reported. The following specific topics were addressed: (1) transducer design and materials, (2) silicon piezoresistor characterization at cryogenic temperatures, (3) chip mounting characterization, and (4) frequency response optimization.

  18. Towards a Rigorous Formulation of the Space Mapping Technique for Engineering Design

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Madsen, Kaj

    2005-01-01

    This paper deals with the Space Mapping (SM) approach to engineering design optimization. We attempt here a theoretical justification of methods that have already proven efficient in solving practical problems, especially in the RF and microwave area. A formal definition of optimization algorithm...

  19. Architectural Design Space Exploration of an FPGA-based Compressed Sampling Engine

    DEFF Research Database (Denmark)

    El-Sayed, Mohammad; Koch, Peter; Le Moullec, Yannick

    2015-01-01

    We present the architectural design space exploration of a compressed sampling engine for use in a wireless heart-rate monitoring system. We show how parallelism affects execution time at the register transfer level. Furthermore, two example solutions (modified semi-parallel and full...

  20. The Engineering of LISA Pathfinder – the quietest Laboratory ever flown in Space

    International Nuclear Information System (INIS)

    Trenkel, Christian; Wealthy, Dave; Dunbar, Neil; Warren, Carl; Schleicher, Alexander; Ziegler, Tobias; Brandt, Nico; Gerndt, Rüdiger

    2017-01-01

    We review the engineering approach adopted to ensure the required gravitational, magnetic, thermal and residual acceleration stability on-board LISA Pathfinder, and present the in-flight results that have been achieved. Arguably, this stability makes LISA Pathfinder the quietest laboratory ever flown in space. The implications for LISA are also discussed. (paper)

  1. Incipient failure detection of space shuttle main engine turbopump bearings using vibration envelope detection

    Science.gov (United States)

    Hopson, Charles B.

    1987-01-01

    The results of an analysis performed on seven successive Space Shuttle Main Engine (SSME) static test firings, utilizing envelope detection of external accelerometer data are discussed. The results clearly show the great potential for using envelope detection techniques in SSME incipient failure detection.

  2. Engineers' Spatial Orientation Ability Development at the European Space for Higher Education

    Science.gov (United States)

    Carrera, C. Carbonell; Perez, J. L. Saorin; Cantero, J. de la Torre; Gonzalez, A. M. Marrero

    2011-01-01

    The aim of this research was to determine whether the new geographic information technologies, included as teaching objectives in the new European Space for Higher Education Engineering degrees, develop spatial abilities. Bearing this in mind, a first year seminar using the INSPIRE Geoportal (Infrastructure for Spatial Information in Europe) was…

  3. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joe

    2000-01-01

    This paper describes, in viewgraph form, the faster, better, cheaper approach to space missions. The topics include: 1) What drives "Faster, Better, Cheaper"? 2) Why Space Programs are Costly; 3) Background; 4) Aerospace Project Management (Old Culture); 5) Aerospace Project Management (New Culture); 6) Scope of Analysis Limited to Engineering Management Culture; 7) Qualitative Analysis; 8) Some Basic Principles of the New Culture; 9) Cause and Effect; 10) "New Ways of Doing Business" Survey Results; 11) Quantitative Analysis; 12) Recent Space System Cost Trends; 13) Spacecraft Dry Weight Trend; 14) Complexity Factor Trends; 15) Cost Normalization; 16) Cost Normalization Algorithm; 17) Unnormalized Cost vs. Normalized Cost; and 18) Concluding Observations.

  4. Brownian motion, Minkowski space and principle of special relativity

    International Nuclear Information System (INIS)

    Caubet, J.-P.

    1977-01-01

    From the assumption that the brownian diffusion locally behaves like an ideal gas (pressure being inversely proportional to volume according to Boyle's law) one can deduce the signature +++- of the Minkowski space, the Lorentz addition of velocities, and the principle of special relativity [fr

  5. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  6. [Factors related to the life space of daycare center users].

    Science.gov (United States)

    Kawamura, Koki; Kato, Chikako; Kondo, Izumi

    2018-01-01

    We examined the factors related to life space and changes in the care level after one year in daycare center users. The participants were 83 older adults (age, > 65 years; mean age, 79.5±6.8 years) with MMSE scores of ≥20, who could walk independently, who needed support (1-2) or care (1), and who underwent rehabilitation at a daycare center. The life space was evaluated by the Life Space Assessment (LSA). The subjects' basic information (i.e., age, medical history.) was collected, and their physical function (i.e., grip strength, timed up and go test [TUG]), mental function (i.e., vitality, fear of falls), and social function (i.e., friends, hobbies, public transportation) were assessed to investigate the factors associated with their LSA scores. In addition, a follow-up survey was conducted on the care level at approximately one year later. A multiple regression analysis indicated that TUG scores (β=-0.33), hobbies (β=0.30), friends (β=0.29), public transportation (β=0.26), and grip strength (β=0.24) were related to the life space. Next, the participants were divided into LSA-high and LSA-low groups, and changes in the care level (improvement, maintenance, deterioration) at approximately one year after the initial assessment were examined using a chi-squared test. A significant difference was observed in the distribution of the groups (p=0.03). Multiple factors were related to the life space. Moreover, it is possible that improvements in the level of care may be achieved by improving the life space.

  7. A History of Space Shuttle Main Engine (SSME) Redline Limits Management

    Science.gov (United States)

    Arnold, Thomas M.

    2011-01-01

    The Space Shuttle Main Engine (SSME) has several "redlines", which are operational limits designated to preclude a catastrophic shutdown of the SSME. The Space Shuttle Orbiter utilizes a combination of hardware and software to enable or disable the automated redline shutdown capability. The Space Shuttle is launched with the automated SSME redline limits enabled, but there are many scenarios which may result in the manual disabling of the software by the onboard crew. The operational philosophy for manually enabling and disabling the redline limits software has evolved continuously throughout the history of the Space Shuttle Program, due to events such as SSME hardware changes and updates to Space Shuttle contingency abort software. In this paper, the evolution of SSME redline limits management will be fully reviewed, including the operational scenarios which call for manual intervention, and the events that triggered changes to the philosophy. Following this review, improvements to the management of redline limits for future spacecraft will be proposed.

  8. UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model

    Science.gov (United States)

    Thorsen, D.

    2017-12-01

    Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.

  9. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  10. SPACE 365: Upgraded App for Aviation and Space-Related Information and Program Planning

    Science.gov (United States)

    Williams, S.; Maples, J. E.; Castle, C. E.

    2014-12-01

    Foreknowledge of upcoming events and anniversary dates can be extraordinarily valuable in the planning and preparation of a variety of aviation and Space-related educational programming. Alignment of programming with items "newsworthy" enough to attract media attention on their own can result in effective program promotion at low/no cost. Similarly, awareness and avoidance of dates upon which media and public attention will likely be elsewhere can keep programs from being lost in the noise.NASA has created a useful and entertaining app called "SPACE 365" to help supply that foreknowledge. The app contains an extensive database of historical aviation and Space exploration-related events, along with other events and birthdays to provide socio-historical context, as well as an extensive file of present and future space missions, complete with images and videos. The user can search by entry topic category, date, and key words. Upcoming Events allows the user to plan, participate, and engage in significant "don't miss" happenings.The historical database was originally developed for use at the National Air and Space Museum, then expanded significantly to include more NASA-related information. The CIMA team at NASA MSFC, sponsored by the Planetary Science Division, added NASA current events and NASA educational programming information, and are continually adding new information and improving the functionality and features of the app. Features of SPACE 365 now include: NASA Image of the Day, Upcoming NASA Events, Event Save, Do Not Miss, and Ask Dr. Steve functions, and the CIMA team recently added a new start page and added improved search and navigation capabilities. App users can now socialize the Images of the Day via Twitter, Pinterest, Facebook, and other social media outlets.SPACE 365 is available at no cost from both the Apple appstore and GooglePlay, and has helped NASA, NASM, and other educators plan and schedule programming events. It could help you, too!

  11. Starguides plus a world-wide directory of organizations in astronomy and related space sciences

    CERN Document Server

    Heck, André

    2004-01-01

    StarGuides Plus represents the most comprehensive and accurately validated collection of practical data on organizations involved in astronomy, related space sciences and other related fields This invaluable reference source (and its companion volume, StarBriefs Plus) should be on the reference shelf of every library, organization or individual with any interest in these areas The coverage includes relevant universities, scientific committees, institutions, associations, societies, agencies, companies, bibliographic services, data centers, museums, dealers, distributors, funding organizations, journals, manufacturers, meteorological services, national norms & standard institutes, parent associations & societies, publishers, software producers & distributors, and so on Besides astronomy and associated space sciences, related fields such as aeronautics, aeronomy, astronautics, atmospheric sciences, chemistry, communications, computer sciences, data processing, education, electronics, engineering, en...

  12. Creating social spaces to tackle AIDS-related stigma

    DEFF Research Database (Denmark)

    Campbell, C.; Skovdal, Morten; Gibbs, A.

    2011-01-01

    be challenged, we systematically review this literature, identifying five themes that highlight the complex and contradictory role of the church as a potential agent of health-enhancing social change. In many ways the church perpetuates HIV/AIDS-related stigma through (i) moralistic attitudes and (ii) its......) providing social spaces for challenging stigmatising ideas and practices. We conclude that church groups, including church leadership, can play a key role in facilitating or hindering the creation of supportive social spaces to challenge stigma. Much work remains to be done in developing deeper...

  13. Lagrangian space consistency relation for large scale structure

    International Nuclear Information System (INIS)

    Horn, Bart; Hui, Lam; Xiao, Xiao

    2015-01-01

    Consistency relations, which relate the squeezed limit of an (N+1)-point correlation function to an N-point function, are non-perturbative symmetry statements that hold even if the associated high momentum modes are deep in the nonlinear regime and astrophysically complex. Recently, Kehagias and Riotto and Peloso and Pietroni discovered a consistency relation applicable to large scale structure. We show that this can be recast into a simple physical statement in Lagrangian space: that the squeezed correlation function (suitably normalized) vanishes. This holds regardless of whether the correlation observables are at the same time or not, and regardless of whether multiple-streaming is present. The simplicity of this statement suggests that an analytic understanding of large scale structure in the nonlinear regime may be particularly promising in Lagrangian space

  14. Free-piston Stirling engine conceptual design and technologies for space power, Phase 1. Final Report

    International Nuclear Information System (INIS)

    Penswick, L.B.; Beale, W.T.; Wood, J.G.

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis

  15. Free-piston Stirling engine conceptual design and technologies for space power, phase 1

    Science.gov (United States)

    Penswick, L. Barry; Beale, William T.; Wood, J. Gary

    1990-01-01

    As part of the SP-100 program, a phase 1 effort to design a free-piston Stirling engine (FPSE) for a space dynamic power conversion system was completed. SP-100 is a combined DOD/DOE/NASA program to develop nuclear power for space. This work was completed in the initial phases of the SP-100 program prior to the power conversion concept selection for the Ground Engineering System (GES). Stirling engine technology development as a growth option for SP-100 is continuing after this phase 1 effort. Following a review of various engine concepts, a single-cylinder engine with a linear alternator was selected for the remainder of the study. The relationships of specific mass and efficiency versus temperature ratio were determined for a power output of 25 kWe. This parametric study was done for a temperature ratio range of 1.5 to 2.0 and for hot-end temperatures of 875 K and 1075 K. A conceptual design of a 1080 K FPSE with a linear alternator producing 25 kWe output was completed. This was a single-cylinder engine designed for a 62,000 hour life and a temperature ratio of 2.0. The heat transport systems were pumped liquid-metal loops on both the hot and cold ends. These specifications were selected to match the SP-100 power system designs that were being evaluated at that time. The hot end of the engine used both refractory and superalloy materials; the hot-end pressure vessel featured an insulated design that allowed use of the superalloy material. The design was supported by the hardware demonstration of two of the component concepts - the hydrodynamic gas bearing for the displacer and the dynamic balance system. The hydrodynamic gas bearing was demonstrated on a test rig. The dynamic balance system was tested on the 1 kW RE-1000 engine at NASA Lewis.

  16. The canonical Lagrangian approach to three-space general relativity

    Science.gov (United States)

    Shyam, Vasudev; Venkatesh, Madhavan

    2013-07-01

    We study the action for the three-space formalism of general relativity, better known as the Barbour-Foster-Ó Murchadha action, which is a square-root Baierlein-Sharp-Wheeler action. In particular, we explore the (pre)symplectic structure by pulling it back via a Legendre map to the tangent bundle of the configuration space of this action. With it we attain the canonical Lagrangian vector field which generates the gauge transformations (3-diffeomorphisms) and the true physical evolution of the system. This vector field encapsulates all the dynamics of the system. We also discuss briefly the observables and perennials for this theory. We then present a symplectic reduction of the constrained phase space.

  17. Initial Efforts in Characterizing Radiation and Plasma Effects on Space Assets: Bridging the Space Environment, Engineering and User Community

    Science.gov (United States)

    Zheng, Y.; Ganushkina, N. Y.; Guild, T. B.; Jiggens, P.; Jun, I.; Mazur, J. E.; Meier, M. M.; Minow, J. I.; Pitchford, D. A.; O'Brien, T. P., III; Shprits, Y.; Tobiska, W. K.; Xapsos, M.; Rastaetter, L.; Jordanova, V. K.; Kellerman, A. C.; Fok, M. C. H.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) has been leading the community-wide model validation projects for many years. Such effort has been broadened and extended via the newly-launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/), Its objective is to track space weather models' progress and performance over time, which is critically needed in space weather operations. The Radiation and Plasma Effects Working Team is working on one of the many focused evaluation topics and deals with five different subtopics: Surface Charging from 10s eV to 40 keV electrons, Internal Charging due to energetic electrons from hundreds keV to several MeVs. Single Event Effects from solar energetic particles (SEPs) and galactic cosmic rays (GCRs) (several MeV to TeVs), Total Dose due to accumulation of doses from electrons (>100 KeV) and protons (> 1 MeV) in a broad energy range, and Radiation Effects from SEPs and GCRs at aviation altitudes. A unique aspect of the Radiation and Plasma Effects focus area is that it bridges the space environments, engineering and user community. This presentation will summarize the working team's progress in metrics discussion/definition and the CCMC web interface/tools to facilitate the validation efforts. As an example, tools in the areas of surface charging/internal charging will be demoed.

  18. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J.W.

    2006-12-15

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  19. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    International Nuclear Information System (INIS)

    Zahn, J.W.

    2006-12-01

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ 3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  20. Space, geophysical research related to Latin America - Part 2

    Science.gov (United States)

    Mendoza, Blanca; Shea, M. A.

    2016-11-01

    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers have been printed in two separate issues. The first issue was published in Advances in Space Research, Vol. 57, number 6 and contained 15 papers. This is the second issue and contains 25 additional papers. These papers show the wide variety of research, both theoretical and applied, that is currently being developed or related to space and geophysical sciences in the Sub-Continent.

  1. Free-piston Stirling engine system considerations for various space power applications

    International Nuclear Information System (INIS)

    Dochat, G.R.; Dhar, M.

    1991-01-01

    The U.S. Government is evaluating power requirements for future space applications. As power requirements increase solar or nuclear dynamic systems become increasingly attractive. Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (AC, DC, high or low voltage, and fixed or variable load). This paper will review potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. Currently free-piston Stirling engine technology for space power applications is being developed under contract with NASA-Lewis Research Center. This paper will also briefly outline the program and recent progress

  2. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  3. Design considerations for a Space Shuttle Main Engine turbine blade made of single crystal material

    Science.gov (United States)

    Abdul-Aziz, A.; August, R.; Nagpal, V.

    1993-01-01

    Nonlinear finite-element structural analyses were performed on the first stage high-pressure fuel turbopump blade of the Space Shuttle Main Engine. The analyses examined the structural response and the dynamic characteristics at typical operating conditions. Single crystal material PWA-1480 was considered for the analyses. Structural response and the blade natural frequencies with respect to the crystal orientation were investigated. The analyses were conducted based on typical test stand engine cycle. Influence of combined thermal, aerodynamic, and centrifugal loadings was considered. Results obtained showed that the single crystal secondary orientation effects on the maximum principal stresses are not highly significant.

  4. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    International Nuclear Information System (INIS)

    Berg, Thomas A.; Disney, Richard K.

    2004-01-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs

  5. Space nuclear power plant technology development philosophy for a ground engineering phase

    International Nuclear Information System (INIS)

    Buden, D.; Trapp, T.J.; Los Alamos National Lab., NM)

    1985-01-01

    The development of a space qualified nuclear power plant is proceeding from the technical assessment and advancement phase to the ground engineering phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the ground engineering phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase. 5 references

  6. Space nuclear power plant technology development philosophy for a ground engineering phase

    International Nuclear Information System (INIS)

    Buden, D.; Trapp, T.J.

    1985-01-01

    The development of a space qualified nuclear power plant is proceeding from the Technical Assessment and Advancement Phase to the Ground Engineering Phase. In this new phase, the selected concept will be matured by the completion of activities needed before protoflight units can be assembled and qualified for first flight applications. This paper addresses a possible philosophy to arrive at the activities to be performed during the Ground Engineering Phase. The philosophy is derived from what we believe a potential user of nuclear power would like to see completed before commitment to a flight development phase

  7. Application of Space Environmental Observations to Spacecraft Pre-Launch Engineering and Spacecraft Operations

    Science.gov (United States)

    Barth, Janet L.; Xapsos, Michael

    2008-01-01

    This presentation focuses on the effects of the space environment on spacecraft systems and applying this knowledge to spacecraft pre-launch engineering and operations. Particle radiation, neutral gas particles, ultraviolet and x-rays, as well as micrometeoroids and orbital debris in the space environment have various effects on spacecraft systems, including degradation of microelectronic and optical components, physical damage, orbital decay, biasing of instrument readings, and system shutdowns. Space climate and weather must be considered during the mission life cycle (mission concept, mission planning, systems design, and launch and operations) to minimize and manage risk to both the spacecraft and its systems. A space environment model for use in the mission life cycle is presented.

  8. Special Relativity Corrections for Space-Based Lidars

    Science.gov (United States)

    RaoGudimetla, Venkata S.; Kavaya, Michael J.

    1999-01-01

    The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.

  9. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2013-01-01

    This book explains the theory of special and general relativity in detail, without digressions such as information on Einstein's life or the historical background. However, complicated calculations are replaced with figures and thought experiments, the text being formulated in such a way that the reader will be able to understand the gist intuitively. The first part of the book focuses on the essentials of special relativity. Explanations are provided of the famous equivalence between mass and energy and of why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies", simply because besides the speed of light, the electric charge itself is also absolute, leading to the relativity of other physical quantities. General relativity is then introduced, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending und...

  10. Relativity Based on Physical Processes Rather Than Space-Time

    Science.gov (United States)

    Giese, Albrecht

    2013-09-01

    Physicists' understanding of relativity and the way it is handled is at present dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity, which explains the origin of mass without the use of the Higgs mechanism, based on the finiteness of the speed of light, and which provides the classical results for particle properties that are currently only accessible through quantum mechanics.

  11. The HAL 9000 Space Operating System Real-Time Planning Engine Design and Operations Requirements

    Science.gov (United States)

    Stetson, Howard; Watson, Michael D.; Shaughnessy, Ray

    2012-01-01

    In support of future deep space manned missions, an autonomous/automated vehicle, providing crew autonomy and an autonomous response planning system, will be required due to the light time delays in communication. Vehicle capabilities as a whole must provide for tactical response to vehicle system failures and space environmental effects induced failures, for risk mitigation of permanent loss of communication with Earth, and for assured crew return capabilities. The complexity of human rated space systems and the limited crew sizes and crew skills mix drive the need for a robust autonomous capability on-board the vehicle. The HAL 9000 Space Operating System[2] designed for such missions and space craft includes the first distributed real-time planning / re-planning system. This paper will detail the software architecture of the multiple planning engine system, and the interface design for plan changes, approval and implementation that is performed autonomously. Operations scenarios will be defined for analysis of the planning engines operations and its requirements for nominal / off nominal activities. An assessment of the distributed realtime re-planning system, in the defined operations environment, will be provided as well as findings as it pertains to the vehicle, crew, and mission control requirements needed for implementation.

  12. Building on 50 Years of Systems Engineering Experience for a New Era of Space Exploration

    Science.gov (United States)

    Dumbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul K.

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States (US) capability for both crew and heavy cargo to low-Earth orbit to construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I crew launch vehicle and the Ares V cargo launch vehicle. The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion crew exploration vehicle, while the heavy-lift Ares V will carry the Altair lunar lander, as well as the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. NASA's Marshall Space Flight Center manages the Shuttle's propulsion elements and is managing the design and development of the Ares rockets, along with a host of other engineering assignments in the field of scientific space exploration. Specifically, the Marshall Center's Engineering Directorate houses the skilled workforce and unique facilities needed to build capable systems upon the foundation laid by the Mercury, Gemini, Apollo, and Shuttle programs. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level testing activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural

  13. Canonical quantization of general relativity in discrete space-times.

    Science.gov (United States)

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  14. Computed tomography of the carotid space and related cervical spaces. Part 1. Anatomy

    International Nuclear Information System (INIS)

    Silver, A.J.; Mawad, M.E.; Hilal, S.K.; Sane, P.; Ganti, S.R.

    1984-01-01

    The carotid space, parapharyngeal space, and paraspinal space are described. The carotid space is shown on computed tomography (CT) to be posterior to the parapharyngeal space and separated from it by the styloid apparatus. The paraspinal space is posterior to the carotid space and separated from it by the longus and anterior scalene muscles

  15. Optical isolation based on space-time engineered asymmetric photonic band gaps

    Science.gov (United States)

    Chamanara, Nima; Taravati, Sajjad; Deck-Léger, Zoé-Lise; Caloz, Christophe

    2017-10-01

    Nonreciprocal electromagnetic devices play a crucial role in modern microwave and optical technologies. Conventional methods for realizing such systems are incompatible with integrated circuits. With recent advances in integrated photonics, the need for efficient on-chip magnetless nonreciprocal devices has become more pressing than ever. This paper leverages space-time engineered asymmetric photonic band gaps to generate optical isolation. It shows that a properly designed space-time modulated slab is highly reflective/transparent for opposite directions of propagation. The corresponding design is magnetless, accommodates low modulation frequencies, and can achieve very high isolation levels. An experimental proof of concept at microwave frequencies is provided.

  16. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  17. Free-piston Stirling Engine system considerations for various space power applications

    Science.gov (United States)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  18. Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  19. Transient and steady-state tests of the space power research engine with resistive and motor loads

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David

    1995-01-01

    The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.

  20. Wings in Orbit: Scientific and Engineering Legacies of the Space Shuttle, 1971-2010

    Science.gov (United States)

    Hale, Wayne (Editor); Lane, Helen (Editor); Chapline, Gail (Editor); Lulla, Kamlesh (Editor)

    2011-01-01

    The Space Shuttle is an engineering marvel perhaps only exceeded by the station itself. The shuttle was based on the technology of the 1960s and early 1970s. It had to overcome significant challenges to make it reusable. Perhaps the greatest challenges were the main engines and the Thermal Protection System. The program has seen terrible tragedy in its 3 decades of operation, yet it has also seen marvelous success. One of the most notable successes is the Hubble Space Telescope, a program that would have been a failure without the shuttle's capability to rendezvous, capture, repair, as well as upgrade. Now Hubble is a shining example of success admired by people around the world. As the program comes to a close, it is important to capture the legacy of the shuttle for future generations. That is what "Wings In Orbit" does for space fans, students, engineers, and scientists. This book, written by the men and women who made the program possible, will serve as an excellent reference for building future space vehicles. We are proud to have played a small part in making it happen. Our journey to document the scientific and engineering accomplishments of this magnificent winged vehicle began with an audacious proposal: to capture the passion of those who devoted their energies to its success while answering the question "What are the most significant accomplishments?" of the longestoperating human spaceflight program in our nation s history. This is intended to be an honest, accurate, and easily understandable account of the research and innovation accomplished during the era.

  1. Requirements for High Level Models Supporting Design Space Exploration in Model-based Systems Engineering

    OpenAIRE

    Haveman, Steven P.; Bonnema, G. Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during detailed design. In this paper, we define requirements for a high level model that is firstly driven by key systems engineering challenges present in industry and secondly connects to several formal and d...

  2. Space and Time as Relations: The Theoretical Approach of Leibniz

    Directory of Open Access Journals (Sweden)

    Basil Evangelidis

    2018-04-01

    Full Text Available The epistemological rupture of Copernicus, the laws of planetary motions of Kepler, the comprehensive physical observations of Galileo and Huygens, the conception of relativity, and the physical theory of Newton were components of an extremely fertile and influential cognitive environment that prompted the restless Leibniz to shape an innovative theory of space and time. This theory expressed some of the concerns and intuitions of the scientific community of the seventeenth century, in particular the scientific group of the Academy of Sciences of Paris, but remained relatively unknown until the twentieth century. After Einstein, however, the relational theory of Leibniz gained wider respect and fame. The aim of this article is to explain how Leibniz foresaw relativity, through his critique of contemporary mechanistic philosophy.

  3. Use of an expert system data analysis manager for space shuttle main engine test evaluation

    Science.gov (United States)

    Abernethy, Ken

    1988-01-01

    The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.

  4. Relativity for everyone how space-time bends

    CERN Document Server

    Fischer, Kurt

    2015-01-01

    This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...

  5. Advanced Vacuum Plasma Spray (VPS) for a Robust, Longlife and Safe Space Shuttle Main Engine (SSME)

    Science.gov (United States)

    Holmes, Richard R.; Elam, Sandra K.; McKechnie, Timothy N.; Power, Christopher A.

    2010-01-01

    In 1984, the Vacuum Plasma Spray Lab was built at NASA/Marshall Space Flight Center for applying durable, protective coatings to turbine blades for the space shuttle main engine (SSME) high pressure fuel turbopump. Existing turbine blades were cracking and breaking off after five hot fire tests while VPS coated turbine blades showed no wear or cracking after 40 hot fire tests. Following that, a major manufacturing problem of copper coatings peeling off the SSME Titanium Main Fuel Valve Housing was corrected with a tenacious VPS copper coating. A patented VPS process utilizing Functional Gradient Material (FGM) application was developed to build ceramic lined metallic cartridges for space furnace experiments, safely containing gallium arsenide at 1260 degrees centigrade. The VPS/FGM process was then translated to build robust, long life, liquid rocket combustion chambers for the space shuttle main engine. A 5K (5,000 Lb. thrust) thruster with the VPS/FGM protective coating experienced 220 hot firing tests in pristine condition with no wear compared to the SSME which showed blanching (surface pulverization) and cooling channel cracks in less than 30 of the same hot firing tests. After 35 of the hot firing tests, the injector face plates disintegrated. The VPS/FGM process was then applied to spraying protective thermal barrier coatings on the face plates which showed 50% cooler operating temperature, with no wear after 50 hot fire tests. Cooling channels were closed out in two weeks, compared to one year for the SSME. Working up the TRL (Technology Readiness Level) to establish the VPS/FGM process as viable technology, a 40K thruster was built and is currently being tested. Proposed is to build a J-2X size liquid rocket engine as the final step in establishing the VPS/FGM process TRL for space flight.

  6. Kuwaiti engineers' perspectives of the engineering senior design (Capstone) course as related to their professional experiences

    Science.gov (United States)

    Alsagheer, Abdullah

    This study looks into transfer of learning and its application in the actual employment of engineering students after graduation. At Kuwait University, a capstone course is being offered that aims to ensure that students amalgamate all kinds of engineering skills to apply to their work. Within a basic interpretive, qualitative study-design methodology, I interviewed 12 engineers who have recently experienced the senior design course at Kuwait University and are presently working in industry. From the analysis, four basic themes emerged that further delineate the focus of the entire study. The themes are 1) need for the capstone course, 2) applicability of and problems with the capstone course, 3) industry problems with training, and 4) students' attitudes toward the capstone course. The study concludes that participants are not transferring engineering skills; rather, they are transferring all types of instructions they have been given during their course of study at the university. A frequent statement is that the capstone course should be improved and specifically that it is necessary to improve upon the timing, schedule, teachers' behavior, contents, and format. The study concludes that Kuwaiti engineers on the whole face problems with time management and management support. The study includes some implications for Kuwait University and recommendations that can provide significant support for the development of the Senior Design (Capstone) Course. For examples: the project must be divided into phases to ensure timely completion of deliverables. In order to motivate students for hard work and to achieve true transfer of learning, Kuwait University is required to communicate with certain organizations to place its students at their research centers for capstone projects. All universities, including Kuwait University, should hire faculty specifically to run the capstone course. In conclusion, the study includes some suggestions for further research studies focused

  7. Active learning in the space engineering education at Technical University of Madrid

    Science.gov (United States)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; Lapuerta, Victoria; Ezquerro Navarro, Jose Miguel; Cordero-Gracia, Marta

    This work describes the innovative activities performed in the field of space education at the Technical University of Madrid (UPM), in collaboration with the center engaged by the European Space Agency (ESA) in Spain to support the operations for scientific experiments on board the International Space Station (E-USOC). These activities have been integrated along the last academic year of the Aerospatiale Engineering degree. A laboratory has been created, where the students have to validate and integrate the subsystems of a microsatellite by using demonstrator satellites. With the acquired skills, the students participate in a training process centered on Project Based Learning, where the students work in groups to perform the conceptual design of a space mission, being each student responsible for the design of a subsystem of the satellite and another one responsible of the mission design. In parallel, the students perform a training using a ground station, installed at the E-USOC building, which allow them to learn how to communicate with satellites, how to download telemetry and how to process the data. This also allows students to learn how the E-USOC works. Two surveys have been conducted to evaluate the impact of these techniques in the student engineering skills and to know the degree of satisfaction of students with respect to the use of these learning methodologies.

  8. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    Science.gov (United States)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  9. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    Science.gov (United States)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  10. MUSICAL SPACE AS A WAY OF REFLECTING PUBLIC RELATIONS

    Directory of Open Access Journals (Sweden)

    MOZGOT SVETLANA

    2017-12-01

    Full Text Available The semantic universality of the space category and its relationship with the extra musical experience of the person provides composers an opportunity to model various forms of public relations in music. Being guided by E. Hall’s theory and the four models of communicative space identified by him – intimate, personal, social and public – we make an attempt to define the specific features of these spatial models in music. In this paper, the principles of E. Hall’s theory are for the first time projected on music. The research methods include hermeneutics, inter-disciplinary approach and musicological analysis. The research of the samples of instrumental music written by Scarlatti, Mozart, Beethoven, Chopin and Liszt showed the specific features of the intimate space model as the basic isolation of its structure, hierarchy and a special toponymy of the man’s inner world including the invariant steady presence of certain subjects and objects. The research of other spatial models in music shows prospects of conceiving the evolution of music as a special spatial form of reflecting the patterns of public consciousness and society arrangement.

  11. Relative Importance of Professional Practice and Engineering Management Competencies

    Science.gov (United States)

    Pons, Dirk

    2016-01-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering…

  12. An Engineering Design Reference Mission for a Future Large-Aperture UVOIR Space Observatory

    Science.gov (United States)

    Thronson, Harley A.; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie A.; Redding, David; Rioux, Norman; Stahl, H. Philip

    2016-01-01

    From the 2010 NRC Decadal Survey and the NASA Thirty-Year Roadmap, Enduring Quests, Daring Visions, to the recent AURA report, From Cosmic Birth to Living Earths, multiple community assessments have recommended development of a large-aperture UVOIR space observatory capable of achieving a broad range of compelling scientific goals. Of these priority science goals, the most technically challenging is the search for spectroscopic biomarkers in the atmospheres of exoplanets in the solar neighborhood. Here we present an engineering design reference mission (EDRM) for the Advanced Technology Large-Aperture Space Telescope (ATLAST), which was conceived from the start as capable of breakthrough science paired with an emphasis on cost control and cost effectiveness. An EDRM allows the engineering design trade space to be explored in depth to determine what are the most demanding requirements and where there are opportunities for margin against requirements. Our joint NASA GSFC/JPL/MSFC/STScI study team has used community-provided science goals to derive mission needs, requirements, and candidate mission architectures for a future large-aperture, non-cryogenic UVOIR space observatory. The ATLAST observatory is designed to operate at a Sun-Earth L2 orbit, which provides a stable thermal environment and excellent field of regard. Our reference designs have emphasized a serviceable 36-segment 9.2 m aperture telescope that stows within a five-meter diameter launch vehicle fairing. As part of our cost-management effort, this particular reference mission builds upon the engineering design for JWST. Moreover, it is scalable to a variety of launch vehicle fairings. Performance needs developed under the study are traceable to a variety of additional reference designs, including options for a monolithic primary mirror.

  13. Observing power blackouts from space - A disaster related study

    Science.gov (United States)

    Aubrecht, C.; Elvidge, C. D.; Ziskin, D.; Baugh, K. E.; Tuttle, B.; Erwin, E.; Kerle, N.

    2009-04-01

    capability of detecting power blackouts in OLS data have been identified (e.g. sunlight, heavy cloud cover and bright moonlight). Furthermore, the change detection procedure only works when power blackouts happen or still persist at night at the time of an OLS overpass. In some cases (e.g. Hurricane Katrina) it has been possible to track the gradual recovery of power by repeating the procedure on nights following a disaster event. In this paper several examples of successful power blackout detection following natural disasters including hurricanes (e.g. Isabel 2003 and Wilma 2005 in the USA) and earthquakes (e.g. Gujarat Earthquake 2001 in India) will be presented, whereas overlaid hurricane paths and earthquake epicenters serve as landmarks and indicate locations around the potential highest impact. Disaster impact assessment and post-disaster research is strongly related to impacts on population, related infrastructure and activities (Kerle et al. 2005, Zhang and Kerle 2008). In particular in the case of emergency management and response humans are the main actors and first-pass assessment of affected population and locations of affected areas are essential. Space-based power blackout detection, as described above, has the potential to delineate the spatial extent of the disaster impact. Overlaying the respective OLS data with regional population data such as LandScan (Dobson et al. 2000) or Gridded Population of the World (CIESIN and CIAT 2005) allows estimating a potential number of affected people. Without a doubt such estimates comprise a considerable number of uncertainties. However, the capability of providing the information in near-real time as offered by using DMSP-OLS makes the presented approach very valuable for emergency and disaster managers worldwide. REFERENCES Center for International Earth Science Information Network CIESIN at Columbia University, and Centro Internacional de Agricultura Tropical CIAT (2005). Gridded Population of the World Version 3 (GPWv

  14. Women Engineers: Factors and Obstacles Related to the Pursuit of a Degree in Engineering

    Science.gov (United States)

    Wentling, Rose Mary; Camacho, Cristina

    Research on women in engineering confirms the presence of gender barriers that affect the recruitment and retention of women in engineering. These barriers stop some women from choosing engineering as a field of study, and impede some women from completing a degree in engineering. However, there are some young female students who complete their engineering education despite the presence of obstacles throughout their college years. This study addressed the factors that have hindered, motivated, and assisted women who graduated with a degree in engineering. By studying and understanding the barriers that hinder women in deciding to pursue and in completing a degree in engineering, as well as the factors that assist and encourage them, we can learn how to break down the barriers and how to facilitate the educational journey of female engineering students. This study provides valuable insights and created a framework from which high schools, universities, researchers, and female students can directly benefit.

  15. Human Research Program Space Human Factors Engineering (SHFE) Standing Review Panel (SRP)

    Science.gov (United States)

    Wichansky, Anna; Badler, Norman; Butler, Keith; Cummings, Mary; DeLucia, Patricia; Endsley, Mica; Scholtz, Jean

    2009-01-01

    The Space Human Factors Engineering (SHFE) Standing Review Panel (SRP) evaluated 22 gaps and 39 tasks in the three risk areas assigned to the SHFE Project. The area where tasks were best designed to close the gaps and the fewest gaps were left out was the Risk of Reduced Safety and Efficiency dire to Inadequate Design of Vehicle, Environment, Tools or Equipment. The areas where there were more issues with gaps and tasks, including poor or inadequate fit of tasks to gaps and missing gaps, were Risk of Errors due to Poor Task Design and Risk of Error due to Inadequate Information. One risk, the Risk of Errors due to Inappropriate Levels of Trust in Automation, should be added. If astronauts trust automation too much in areas where it should not be trusted, but rather tempered with human judgment and decision making, they will incur errors. Conversely, if they do not trust automation when it should be trusted, as in cases where it can sense aspects of the environment such as radiation levels or distances in space, they will also incur errors. This will be a larger risk when astronauts are less able to rely on human mission control experts and are out of touch, far away, and on their own. The SRP also identified 11 new gaps and five new tasks. Although the SRP had an extremely large quantity of reading material prior to and during the meeting, we still did not feel we had an overview of the activities and tasks the astronauts would be performing in exploration missions. Without a detailed task analysis and taxonomy of activities the humans would be engaged in, we felt it was impossible to know whether the gaps and tasks were really sufficient to insure human safety, performance, and comfort in the exploration missions. The SRP had difficulty evaluating many of the gaps and tasks that were not as quantitative as those related to concrete physical danger such as excessive noise and vibration. Often the research tasks for cognitive risks that accompany poor task or

  16. IMP: Using microsat technology to support engineering research inside of the International Space Station

    Science.gov (United States)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  17. Real-time graphics for the Space Station Freedom cupola, developed in the Systems Engineering Simulator

    Science.gov (United States)

    Red, Michael T.; Hess, Philip W.

    1989-01-01

    Among the Lyndon B. Johnson Space Center's responsibilities for Space Station Freedom is the cupola. Attached to the resource node, the cupola is a windowed structure that will serve as the space station's secondary control center. From the cupola, operations involving the mobile service center and orbital maneuvering vehicle will be conducted. The Systems Engineering Simulator (SES), located in building 16, activated a real-time man-in-the-loop cupola simulator in November 1987. The SES cupola is an engineering tool with the flexibility to evolve in both hardware and software as the final cupola design matures. Two workstations are simulated with closed-circuit television monitors, rotational and translational hand controllers, programmable display pushbuttons, and graphics display with trackball and keyboard. The displays and controls of the SES cupola are driven by a Silicon Graphics Integrated Raster Imaging System (IRIS) 4D/70 GT computer. Through the use of an interactive display builder program, SES, cupola display pages consisting of two dimensional and three dimensional graphics are constructed. These display pages interact with the SES via the IRIS real-time graphics interface. The focus is on the real-time graphics interface applications software developed on the IRIS.

  18. Engineering approach to relative quantitative assessment of safety culture and related social issues in NPP operation

    International Nuclear Information System (INIS)

    Sivokon, V.; Gladyshev, M.; Malkin, S.

    2005-01-01

    The report is devoted to presentation of engineering approach and software tool developed for Safety Culture (SC) assessment as well as to the results of their implementation at Smolensk NPP. The engineering approach is logic evolution of the IAEA ASSET method broadly used at European NPPs in 90-s. It was implemented at Russian and other plants including Olkiluoto NPP in Finland. The approach allows relative quantitative assessing and trending the aspects of SC by the analysis of evens features and causes, calculation and trending corresponding indicators. At the same time plant's operational performances and related social issues, including efficiency of plant operation and personnel reliability, can be monitored. With the help of developed tool the joint team combined from personnel of Smolensk NPP and RRC 'Kurchatov Institute' ('KI') issued the SC self-assessment report, which identifies: families of recurrent events, main safety and operational problems ; their trends and importance to SC and plant efficiency; recommendations to enhance SC and operational performance

  19. An Update to Space Biomedical Research: Tissue Engineering in Microgravity Bioreactors

    Directory of Open Access Journals (Sweden)

    Abolfazl Barzegari

    2012-03-01

    Full Text Available Introduction: The severe need for constructing replacement tissues in organ transplantation has necessitated the development of tissue engineering approaches and bioreactors that can bring these approaches to reality. The inherent limitations of conventional bioreactors in generating realistic tissue constructs led to the devise of the microgravity tissue engineering that uses Rotating Wall Vessel (RWV bioreactors initially developed by NASA. Methods: In this review article, we intend to highlight some major advances and accomplishments in the rapidly-growing field of tissue engineering that could not be achieved without using microgravity. Results: Research is now focused on assembly of 3 dimensional (3D tissue fragments from various cell types in human body such as chondrocytes, osteoblasts, embryonic and mesenchymal stem cells, hepatocytes and pancreas islet cells. Hepatocytes cultured under microgravity are now being used in extracorporeal bioartificial liver devices. Tissue constructs can be used not only in organ replacement therapy, but also in pharmaco-toxicology and food safety assessment. 3D models of various cancers may be used in studying cancer development and biology or in high-throughput screening of anticancer drug candidates. Finally, 3D heterogeneous assemblies from cancer/immune cells provide models for immunotherapy of cancer. Conclusion: Tissue engineering in (simulated microgravity has been one of the stunning impacts of space research on biomedical sciences and their applications on earth.

  20. AMTD: update of engineering specifications derived from science requirements for future UVOIR space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Postman, Marc; Mosier, Gary; Smith, W. Scott; Blaurock, Carl; Ha, Kong; Stark, Christopher C.

    2014-08-01

    The Advance Mirror Technology Development (AMTD) project is in Phase 2 of a multiyear effort, initiated in FY12, to mature by at least a half TRL step six critical technologies required to enable 4 meter or larger UVOIR space telescope primary mirror assemblies for both general astrophysics and ultra-high contrast observations of exoplanets. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND provide a high-performance low-cost low-risk system. To give the science community options, we are pursuing multiple technology paths. A key task is deriving engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicles and their mass and volume constraints. A key finding of this effort is that the science requires an 8 meter or larger aperture telescope.

  1. A Case Study : Application of the Systems Engineering Modeling in the early phases of a Complex Space System Project

    NARCIS (Netherlands)

    Bone, M.; Cloutier, R.L.; Gill, E.K.A.; Verma, D.

    2009-01-01

    There is increased recognition of the role of systems engineering in reducing the risk (technical, cost, and schedule) on complex space systems development and integration projects. A number of international systems engineering standards have been published in the last five years (ISO 15288, IEEE

  2. Use of probabilistic design methods for NASA applications. [to be used in design phase of Space Transportation Main Engine

    Science.gov (United States)

    Safie, Fayssal M.

    1992-01-01

    This paper presents a reliability evaluation process designed to improve the reliability of advanced launch systems. The work performed includes the development of a reliability prediction methodology to be used in the design phase of the Space Transportation Main Engine (STME). This includes prediction techniques which use historical data bases as well as deterministic and probabilistic engineering models for predicting design reliability. In summary, this paper describes a probabilistic design approach for the next-generation liquid rocket engine, the STME.

  3. Ascent, descent, nullity, defect, and related notions for linear relations in linear spaces

    NARCIS (Netherlands)

    Sandovici, Adrian; de Snoo, Henk; Winkler, Henrik

    2007-01-01

    For a linear relation in a linear space the concepts of ascent, descent, nullity, and defect are introduced and studied. It is shown that the results of A.E. Taylor and M.A. Kaashoek concerning the relationship between ascent, descent, nullity, and defect for the case of linear operators remain

  4. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Science.gov (United States)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  5. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    Nclear rockets improve the propellant efficiency more than twice compared to CRs and thus significantly reduce the propellant requirement. The superior efficiency of nuclear rockets is due to the combination of the huge energy density and a single low molecular weight propellant utilization. Nuclear Thermal Rockets (NTRs) are particularly suitable for manned missions to Mars because it satisfies a relatively high thrust as well as a high propellant efficiency. NTRs use thermal energy released from a nuclear fission reactor to heat a single low molecular weight propellant, i. e., Hydrogen (H{sub 2}) and then exhausted the extremely heated propellant through a thermodynamic nozzle to produce thrust. A propellant efficiency parameter of rocket engines is specific impulse (I{sub sp}) which represents the ratio of the thrust over the rate of propellant consumption. The difference of I{sub sp} makes over three times propellant savings of NTRs for a manned Mars mission compared to CRs. NTRs can also be configured to operate bimodally by converting the surplus nuclear energy to auxiliary electric power required for the operation of a spacecraft. Moreover, the concept and technology of NTRs are very simple, already proven, and safe. Thus, NTRs can be applied to various space missions such as solar system exploration, International Space Station (ISS) transport support, Near Earth Objects (NEOs) interception, etc. Nuclear propulsion is the most promising and viable option to achieve challenging deep space missions. Particularly, the attractions of a NTR include excellent thrust and propellant efficiency, bimodal capability, proven technology, and safe and reliable performance. The ROK has also begun the research for space nuclear systems as a volunteer of the international space race and a major world nuclear energy country. KANUTER is one of the advanced NTR engines currently under development at KAIST. This bimodal engine is operated in two modes of propulsion with 100 MW

  6. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    Science.gov (United States)

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Object oriented fault diagnosis system for space shuttle main engine redlines

    Science.gov (United States)

    Rogers, John S.; Mohapatra, Saroj Kumar

    1990-01-01

    A great deal of attention has recently been given to Artificial Intelligence research in the area of computer aided diagnostics. Due to the dynamic and complex nature of space shuttle red-line parameters, a research effort is under way to develop a real time diagnostic tool that will employ historical and engineering rulebases as well as a sensor validity checking. The capability of AI software development tools (KEE and G2) will be explored by applying object oriented programming techniques in accomplishing the diagnostic evaluation.

  8. Use of diesel engines in industrial trucks operated in enclosed spaces

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, W; Reibold, G

    1981-01-01

    Report on emission investigations on a fork-lifter equipped with a low-pollutant MWM-engine, tests were carried out in enclosed spaces. The aim was to clarify if the maximum MPC at a place of work listed in a table of waste gas components can be observed even under unfavourable operating conditions of the fork lifter. The test is described, results are analysed. It is proved that there are no health hazards for the staff even under the extreme conditions chosen for the test.

  9. Phased Array Ultrasonic Evaluation of Space Shuttle Main Engine (SSME) Nozzle Weld

    Science.gov (United States)

    James, Steve; Engel, J.; Kimbrough, D.; Suits, M.; Hopson, George (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of the phased array ultrasonic evaluation of the Space Shuttle Main Engine (SSME) nozzle weld. Details are given on the nondestructive testing evaluation approach, conventional shear wave and phased array techniques, and an x-ray versus phased array risk analysis. The field set-up was duplicated to the greatest extent possible in the laboratory and the phased array ultrasonic technique was developed and validated prior to weld evaluation. Results are shown for the phased array ultrasonic evaluation and conventional ultrasonic evaluation results.

  10. EmptyHeaded: A Relational Engine for Graph Processing.

    Science.gov (United States)

    Aberger, Christopher R; Tu, Susan; Olukotun, Kunle; Ré, Christopher

    2016-01-01

    There are two types of high-performance graph processing engines: low- and high-level engines. Low-level engines (Galois, PowerGraph, Snap) provide optimized data structures and computation models but require users to write low-level imperative code, hence ensuring that efficiency is the burden of the user. In high-level engines, users write in query languages like datalog (SociaLite) or SQL (Grail). High-level engines are easier to use but are orders of magnitude slower than the low-level graph engines. We present EmptyHeaded, a high-level engine that supports a rich datalog-like query language and achieves performance comparable to that of low-level engines. At the core of EmptyHeaded's design is a new class of join algorithms that satisfy strong theoretical guarantees but have thus far not achieved performance comparable to that of specialized graph processing engines. To achieve high performance, EmptyHeaded introduces a new join engine architecture, including a novel query optimizer and data layouts that leverage single-instruction multiple data (SIMD) parallelism. With this architecture, EmptyHeaded outperforms high-level approaches by up to three orders of magnitude on graph pattern queries, PageRank, and Single-Source Shortest Paths (SSSP) and is an order of magnitude faster than many low-level baselines. We validate that EmptyHeaded competes with the best-of-breed low-level engine (Galois), achieving comparable performance on PageRank and at most 3× worse performance on SSSP.

  11. Some normed binomial difference sequence spaces related to the [Formula: see text] spaces.

    Science.gov (United States)

    Song, Meimei; Meng, Jian

    2017-01-01

    The aim of this paper is to introduce the normed binomial sequence spaces [Formula: see text] by combining the binomial transformation and difference operator, where [Formula: see text]. We prove that these spaces are linearly isomorphic to the spaces [Formula: see text] and [Formula: see text], respectively. Furthermore, we compute Schauder bases and the α -, β - and γ -duals of these sequence spaces.

  12. Preserving the Near-Earth Space Environment with Green Engineering and Operations

    Science.gov (United States)

    Johnson, Nicholas L.

    2009-01-01

    Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.

  13. Project Based Learning experiences in the space engineering education at Technical University of Madrid

    Science.gov (United States)

    Rodríguez, Jacobo; Laverón-Simavilla, Ana; del Cura, Juan M.; Ezquerro, José M.; Lapuerta, Victoria; Cordero-Gracia, Marta

    2015-10-01

    This work describes the innovation activities performed in the field of space education since the academic year 2009/10 at the Technical University of Madrid (UPM), in collaboration with the Spanish User Support and Operations Center (E-USOC), the center assigned by the European Space Agency (ESA) in Spain to support the operations of scientific experiments on board the International Space Station. These activities have been integrated within the last year of the UPM Aerospace Engineering degree. A laboratory has been created, where students have to validate and integrate the subsystems of a microsatellite using demonstrator satellites. In parallel, the students participate in a Project Based Learning (PBL) training process in which they work in groups to develop the conceptual design of a space mission. One student in each group takes the role of project manager, another one is responsible for the mission design and the rest are each responsible for the design of one of the satellite subsystems. A ground station has also been set up with the help of students developing their final thesis, which will allow future students to perform training sessions and learn how to communicate with satellites, how to receive telemetry and how to process the data. Several surveys have been conducted along two academic years to evaluate the impact of these techniques in engineering learning. The surveys evaluate the acquisition of specific and generic competences, as well as the students' degree of satisfaction with respect to the use of these learning methodologies. The results of the surveys and the perception of the lecturers show that PBL encourages students' motivation and improves their results. They not only acquire better technical training, but also improve their transversal skills. It is also pointed out that this methodology requires more dedication from lecturers than traditional methods.

  14. Relations between Corporate Social Responsibility and Engineering Ethics

    Science.gov (United States)

    Yasui, Itaru

    Environmental responsibility of corporations has been changed drastically in the last 20 years. In 1980s, pollution prevention was the main mandate for corporations and in 1990s global scale environmental issues such as global warming must be also considered by at least industries. In the year of 2000, United Nations decided to make a challenge towards sustainability of human activities on the Earth, and since then, every corporation must take this concept into account when policy for its own business is described. Within this framework, some companies have succeeded to be evaluated as “environmental conscious companies” and enjoyed success also in their business. The reality of sustainability is very complex and any company must consider rather long future, say more than 30 years, in the strategy of its operation. All engineers should watch the direction and the norm carefully, which their own company is now aiming at, with enough knowledge regarding the trend of total human activities in relation to the limitation of the Earth.

  15. Digital advertising around paid spaces, e-advertising industry’s revenue engine : A review and research agenda

    OpenAIRE

    Aslam, Bilal; Karjaluoto, Heikki

    2017-01-01

    We develop and describe a framework for research in a particular segment of digital advertising. Internet Advertising Paid Slots and Spaces (IAPS) is a neologism and work almost like a stock exchange for buying and selling advertising in various formats on designated spaces around web and make a significant contribution to Internet advertising revenues. These paid spaces were found to encompass diverse areas of Internet advertising that include search engine marketing, social media advertisin...

  16. The Quest for Engineering Innovation at NASA's Marshall Space Flight (MSFC)

    Science.gov (United States)

    Turner, James E.

    2017-01-01

    A recent NASA team, chartered to examine innovation within the Agency, captured the meaning of the word innovation as the "application of creative ideas to improve and generate value for the organization". The former NASA Administrator Charles Bolden shared his own thoughts about innovation in a memo with all employees that stated, "At NASA, we are dedicated to innovation, bold ideas, and excellence." Innovation turns out to be one of the major driving forces behind the work produced at NASA. It seems failure is often what has driven NASA to be more innovative. Fifty years ago, the Apollo 1 tragedy killed three astronauts when fire erupted in their command module. NASA had to bear the responsibility of such loss and at the same time work smarter in order to obtain the dream to reach the moon by the end of the 1960s. Through this circumstance, NASA engineers developed a revolutionary replacement for the combustible nylon astronaut suits so the Apollo program could continue. A material called Beta Cloth was born. This material was used to produce noncombustible space suits for all Apollo astronauts, enabling the United States to ultimately land 12 Americans on the moon. Eventually this material was used as the roof system in the Denver International Airport, showing relevance and applications of NASA innovations to real-world need. Innovative ideas are also driven by the need to accomplish NASA missions and to improve the way we produce our products. MSFC engineers are advancing technologies in additive manufacturing of liquid rocket engines in order to reduce the number of parts, design time, and the cost of the engines. NASA is working with academia to eliminate the need for miles of sensor cables by investigating innovations in wireless sensors. In order to enable future exploration missions to Mars, MSFC engineers are pursuing innovative approaches in diverse areas such as the use of ionic liquids for life support systems and composite cryogenic tanks, very low

  17. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    International Nuclear Information System (INIS)

    White, Maurice A.; Qiu Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's)

  18. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  19. Relative importance of professional practice and engineering management competencies

    Science.gov (United States)

    Pons, Dirk

    2016-09-01

    Problem: The professional practice of engineering always involves engineering management, but it is difficult to know what specifically to include in the undergraduate curriculum. Approach: The population of New Zealand practising engineers was surveyed to determine the importance they placed on specific professional practice and engineering management competencies. Findings: Results show that communication and project planning were the two most important topics, followed by others as identified. The context in which practitioners use communication skills was found to be primarily with project management, with secondary contexts identified. The necessity for engineers to develop the ability to use multiple soft skills in an integrative manner is strongly supported by the data. Originality: This paper is one of only a few large-scale surveys of practising engineers to have explored the soft skill attributes. It makes a didactic contribution of providing a ranked list of topics which can be used for designing the curriculum and prioritising teaching effort, which has not previously been achieved. It yields the new insight that combinations of topics are sometimes more important than individual topics.

  20. Special relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Raogudimetla, V. S.

    1994-01-01

    There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the

  1. Intuitionistic fuzzy 2-normed space and some related concepts

    International Nuclear Information System (INIS)

    Mursaleen, M.; Danish Lohani, Q.M.

    2009-01-01

    Motivated by the notion of 2-norm due to Gaehler [Gaehler S. Lineare 2-normietre Raeume. Math Nachr 28;1965:1-43], in this paper we define the concept of intuitionistic fuzzy 2-normed space which is a generalization of the notion of intuitionistic fuzzy normed space due to Saadati and Park [Saadati R, Park JH, On the intuitionistic fuzzy topological spaces. Chaos Solitons and Fractals 2006;27:331-44]. Further we establish some topological results in this new set up.

  2. Engineering and maintenance applied to safety-related valves in nuclear power plants

    International Nuclear Information System (INIS)

    Verdu, M. F.; Perez-Aranda, J.

    2014-01-01

    Nuclear Division in Iberdrola engineering and Construction has a team with extensive experience on engineering and services works related to valves. Also, this team is linked to UNESA as Technical support and Reference Center. Iberdrola engineering and construction experience in nuclear power plants valves, gives effective response to engineering and maintenance works that can be demanded in a nuclear power plant and it requires a high degree of qualification and knowledge both in Operation and Outages. (Author)

  3. (Ln-bar, g)-spaces. General relativity over V4-bar - spaces

    International Nuclear Information System (INIS)

    Manoff, S.; Kolarov, A.; Dimitrov, B.

    1998-01-01

    The results from the considerations of differentiable manifolds with contravariant and covariant affine connections and metrics are specialized for the case of (L n bar, g)-spaces with metric transport (∇ ξ g = 0 for all ξ is T (M), g ij;k = 0 and f j i = e φ · g j i (the s.c. (pseudo)Riemannian spaces with contravariant and covariant symmetric affine connections). Einstein's theory of gravitation is considered in (pseudo)Riemannian spaces with different (not only by sign) contravariant and covariant affine connections ((V n bar)-spaces, n = 4). The Euler-Lagrange equations and the corresponding energy-momentum tensors (EMT-s) are obtained and compared with the Einstein equations and the EMT-s in V 4 -spaces. The geodesic and autoparallel equations in V 4 bar -spaces are found as different equations in contrast to the case of V 4 -spaces

  4. System Identification of Civil Engineering Structures using State Space and ARMAV Models

    DEFF Research Database (Denmark)

    Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

    In this paper the relations between an ambient excited structural system, represented by an innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAV) model are considered. It is shown how to obtain a multivariate estimate of the ARMAV model from output measurements, usi...

  5. Fractals and spectra related to fourier analysis and function spaces

    CERN Document Server

    Triebel, Hans

    1997-01-01

    Fractals and Spectra Hans Triebel This book deals with the symbiotic relationship between the theory of function spaces, fractal geometry, and spectral theory of (fractal) pseudodifferential operators as it has emerged quite recently. Atomic and quarkonial (subatomic) decompositions in scalar and vector valued function spaces on the euclidean n-space pave the way to study properties (compact embeddings, entropy numbers) of function spaces on and of fractals. On this basis, distributions of eigenvalues of fractal (pseudo)differential operators are investigated. Diverse versions of fractal drums are played. The book is directed to mathematicians interested in functional analysis, the theory of function spaces, fractal geometry, partial and pseudodifferential operators, and, in particular, in how these domains are interrelated. ------ It is worth mentioning that there is virtually no literature on this topic and hence the most of the presented material is published here the first time. - Zentralblatt MATH (…) ...

  6. ENGage: The use of space and pixel art for increasing primary school children's interest in science, technology, engineering and mathematics

    Science.gov (United States)

    Roberts, Simon J.

    2014-01-01

    The Faculty of Engineering at The University of Nottingham, UK, has developed interdisciplinary, hands-on workshops for primary schools that introduce space technology, its relevance to everyday life and the importance of science, technology, engineering and maths. The workshop activities for 7-11 year olds highlight the roles that space and satellite technology play in observing and monitoring the Earth's biosphere as well as being vital to communications in the modern digital world. The programme also provides links to 'how science works', the environment and citizenship and uses pixel art through the medium of digital photography to demonstrate the importance of maths in a novel and unconventional manner. The interactive programme of activities provides learners with an opportunity to meet 'real' scientists and engineers, with one of the key messages from the day being that anyone can become involved in science and engineering whatever their ability or subject of interest. The methodology introduces the role of scientists and engineers using space technology themes, but it could easily be adapted for use with any inspirational topic. Analysis of learners' perceptions of science, technology, engineering and maths before and after participating in ENGage showed very positive and significant changes in their attitudes to these subjects and an increase in the number of children thinking they would be interested and capable in pursuing a career in science and engineering. This paper provides an overview of the activities, the methodology, the evaluation process and results.

  7. Research and development related to the services engineering

    International Nuclear Information System (INIS)

    Rembado, J. L.

    2000-01-01

    In the present paper it is clarified what is understood by the expression R and D, Research and Development in the Servicie Engineering's which support the nuclear power plants exploitation, being more appropriated to talk about Innovation and Technological Development. In this paper it is analysed the need to have an innovation as per the marketing needs and to have a technological development to maintain an independence to let us to keep and increase the company's activity. It is described how the Services Engineering's with technological development turn to equipment suppliers which can be supplied to the nuclear sector as well as to other industrial sectors. Finally, it is described the innovation and technological development evolution, the technological polities objectives and the action lines of Tecnatom, S. A. as a Services Engineering's. (Author)

  8. Long term trending of engineering data for the Hubble Space Telescope

    Science.gov (United States)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  9. Control of magnetohydrodynamic stability by phase space engineering of energetic ions in tokamak plasmas.

    Science.gov (United States)

    Graves, J P; Chapman, I T; Coda, S; Lennholm, M; Albergante, M; Jucker, M

    2012-01-10

    Virtually collisionless magnetic mirror-trapped energetic ion populations often partially stabilize internally driven magnetohydrodynamic disturbances in the magnetosphere and in toroidal laboratory plasma devices such as the tokamak. This results in less frequent but dangerously enlarged plasma reorganization. Unique to the toroidal magnetic configuration are confined 'circulating' energetic particles that are not mirror trapped. Here we show that a newly discovered effect from hybrid kinetic-magnetohydrodynamic theory has been exploited in sophisticated phase space engineering techniques for controlling stability in the tokamak. These theoretical predictions have been confirmed, and the technique successfully applied in the Joint European Torus. Manipulation of auxiliary ion heating systems can create an asymmetry in the distribution of energetic circulating ions in the velocity orientated along magnetic field lines. We show the first experiments in which large sawtooth collapses have been controlled by this technique, and neoclassical tearing modes avoided, in high-performance reactor-relevant plasmas.

  10. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    International Nuclear Information System (INIS)

    Nam, S. H.; Suh, K. Y.; Kang, S. G.

    2008-01-01

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H 2 ) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I sp ) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H 2 /O 2 rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance

  11. A model for the Space Shuttle Main Engine High Pressure Oxidizer Turbopump shaft seal system

    Science.gov (United States)

    Paxson, Daniel E.

    1990-01-01

    A model of the High Pressure Oxidizer Turbopump (HPOTP) shaft seal system on the Space Shuttle Main Engine (SSME) is described. The model predicts the fluid properties and flow rates throughout this system for a number of conditions simulating failed seals. The results agree well with qualitative expectations and redline values but cannot be verified with actual data due to the lack thereof. The results indicate that each failure mode results in a unique distribution of properties throughout the seal system and can therefore be individually identified given the proper instrumentation. Furthermore, the detection process can be built on the principle of qualitative reasoning without the use of exact fluid property values. A simplified implementation of the model which does not include the slinger/labyrinth seal combination has been developed and will be useful for inclusion in a real-time diagnostic system.

  12. Human Systems Engineering for Launch processing at Kennedy Space Center (KSC)

    Science.gov (United States)

    Henderson, Gena; Stambolian, Damon B.; Stelges, Katrine

    2012-01-01

    Launch processing at Kennedy Space Center (KSC) is primarily accomplished by human users of expensive and specialized equipment. In order to reduce the likelihood of human error, to reduce personal injuries, damage to hardware, and loss of mission the design process for the hardware needs to include the human's relationship with the hardware. Just as there is electrical, mechanical, and fluids, the human aspect is just as important. The focus of this presentation is to illustrate how KSC accomplishes the inclusion of the human aspect in the design using human centered hardware modeling and engineering. The presentations also explain the current and future plans for research and development for improving our human factors analysis tools and processes.

  13. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  14. A Space Cam Mechanism for Power Transmission of an Opposite-cylinder Piston Engine

    Directory of Open Access Journals (Sweden)

    Zhang Haoyue

    2015-01-01

    Full Text Available For the purpose of improving the engine’s power density, we put forward a new type of power transmission mechanism which is used for opposed-cylinder engine. The gas pressure acts on the cam through the piston and push rod, and the spindle rotation of external is driven by the cam. The design of spatial cam work surface is completed by using the enveloping theory of a family of space curves, the force between roller and cam is analyzed using dynamic analysis software. Under the condition of equal number, size and stroke of piston, the new one with larger power density is more compact in structure than the traditional power transmission mechanism, and the reaction force on either side of the main shaft and the acting force between pistons and cylinders are smaller than those in traditional one, which prolongs the service life of the pistons.

  15. Identifying Indicators Related to Constructs for Engineering Design Outcome

    Science.gov (United States)

    Wilhelmsen, Cheryl A.; Dixon, Raymond A.

    2016-01-01

    This study ranked constructs articulated by Childress and Rhodes (2008) and identified the key indicators for each construct as a starting point to explore what should be included on an instrument to measure the engineering design process and outcomes of students in high schools that use the PLTW and EbDTM curricula in Idaho. A case-study design…

  16. Controlling the Didactic Relation: A Case in Process Engineering Education

    Science.gov (United States)

    Jaako, Juha

    2014-01-01

    A case study was conducted during 1994-2013 on several groups of process engineering students to see what was needed to transform a single course from a teacher-centred to a student-centred learning environment (SCLE). Development work was done incrementally, using Herbart's didactic triangle as a theoretical framework. The effects of the…

  17. Definitions of engineered safety features and related features for nuclear power plants

    International Nuclear Information System (INIS)

    1986-01-01

    In light water moderated, light water cooled nuclear power plants, definitions are given of engineered safety features which are designed to suppress or prevent dispersion of radioactive materials due to damage etc. of fuel at the times of power plant failures, and of related features which are designed to actuate or operate the engineered safety features. Contents are the following: scope of engineered safety features and of related features; classification of engineered safety features (direct systems and indirect systems) and of related features (auxiliaries, emergency power supply, and protective means). (Mori, K.)

  18. Relation of the runaway avalanche threshold to momentum space topology

    Science.gov (United States)

    McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu

    2018-02-01

    The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.

  19. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    Science.gov (United States)

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-03

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. ANGULAR SPACE – TIME RELATIONS IN SOLAR RADIATION

    African Journals Online (AJOL)

    ES Obe

    1979-03-01

    Mar 1, 1979 ... The analyses are educational adaptations of engineering mechanics to this growing field of heliotechnoloy. NOTATION [1] α = solar altitude angle β = surface tilt angle, towards Equator +β, away from Equator -β γ = solar azimuth angle, clockwise from. North δ. = solar declination angle θ, i = incidence angle ...

  1. Angular Space –Time Relations in Solar Radiation | Ezeilo ...

    African Journals Online (AJOL)

    The engineer relies greatly on Meteorological data for solar energy applications. In most case the available equipments indicate only the hourly or daily total irradiance on a flat horizontal surface. However, a more basic or fundamental information may also be necessary especially when application call for a knowledge of ...

  2. Critical issues related to registration of space objects and transparency of space activities

    Science.gov (United States)

    Jakhu, Ram S.; Jasani, Bhupendra; McDowell, Jonathan C.

    2018-02-01

    The main purpose of the 1975 Registration Convention is to achieve transparency in space activities and this objective is motivated by the belief that a mandatory registration system would assist in the identification of space objects launched into outer space. This would also consequently contribute to the application and development of international law governing the exploration and use of outer space. States Parties to the Convention furnish the required information to the United Nations' Register of Space Objects. However, the furnished information is often so general that it may not be as helpful in creating transparency as had been hoped by the drafters of the Convention. While registration of civil satellites has been furnished with some general details, till today, none of the Parties have described the objects as having military functions despite the fact that a large number of such objects do perform military functions as well. In some cases, the best they have done is to indicate that the space objects are for their defense establishments. Moreover, the number of registrations of space objects is declining. This paper addresses the challenges posed by the non-registration of space objects. Particularly, the paper provides some data about the registration and non-registration of satellites and the States that have and have not complied with their legal obligations. It also analyses the specific requirements of the Convention, the reasons for non-registration, new challenges posed by the registration of small satellites and the on-orbit transfer of satellites. Finally, the paper provides some recommendations on how to enhance the registration of space objects, on the monitoring of the implementation of the Registration Convention and consequently how to achieve maximum transparency in space activities.

  3. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment

    Science.gov (United States)

    Ciufolini, Ignazio; Paolozzi, Antonio; Pavlis, Erricos C.; Sindoni, Giampiero; Koenig, Rolf; Ries, John C.; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger; Rubincam, David; Paris, Claudio

    2017-08-01

    We introduce the LARES 2 space experiment recently approved by the Italian Space Agency (ASI). The LARES 2 satellite is planned for launch in 2019 with the new VEGA C launch vehicle of ASI, ESA and ELV. The orbital analysis of LARES 2 experiment will be carried out by our international science team of experts in General Relativity, theoretical physics, space geodesy and aerospace engineering. The main objectives of the LARES 2 experiment are gravitational and fundamental physics, including accurate measurements of General Relativity, in particular a test of frame-dragging aimed at achieving an accuracy of a few parts in a thousand, i.e., aimed at improving by about an order of magnitude the present state-of-the-art and forthcoming tests of this general relativistic phenomenon. LARES 2 will also achieve determinations in space geodesy. LARES 2 is an improved version of the LAGEOS 3 experiment, proposed in 1984 to measure frame-dragging and analyzed in 1989 by a joint ASI and NASA study.

  4. Internal Social Media at Marshall Space Flight Center - An Engineer's Snapshot

    Science.gov (United States)

    Scott, David W.

    2013-01-01

    In the brief span of about six years (2004-2010), social media radically enhanced people's ways of maintaining recreational friendships. Social media's impact on public affairs (PAO) and community engagement is equally striking: NASA has involved millions of non-NASA viewers in its activities via outward-facing social media, often in a very two-way street fashion. Use of social media as an internal working tool by NASA's tens of thousands of civil servants, onsite contractor employees, and external stakeholders is evolving more slowly. This paper examines, from an engineer's perspective, Marshall Space Flight Center s (MSFC) efforts to bring the power of social media to the daily working environment. Primary emphasis is on an internal Social Networking Service called Explornet that could be scaled Agency-wide. Other topics include MSFC use of other social media day-to-day for non-PAO purposes, some specialized uses of social techniques in space flight control operations, and how to help a community open up so it can discover and adopt what works well.

  5. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    Science.gov (United States)

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  6. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  7. On Yang's Noncommutative Space Time Algebra, Holography, Area Quantization and C-space Relativity

    CERN Document Server

    Castro, C

    2004-01-01

    An isomorphism between Yang's Noncommutative space-time algebra (involving two length scales) and the holographic-area-coordinates algebra of C-spaces (Clifford spaces) is constructed via an AdS_5 space-time which is instrumental in explaining the origins of an extra (infrared) scale R in conjunction to the (ultraviolet) Planck scale lambda characteristic of C-spaces. Yang's space-time algebra allowed Tanaka to explain the origins behind the discrete nature of the spectrum for the spatial coordinates and spatial momenta which yields a minimum length-scale lambda (ultraviolet cutoff) and a minimum momentum p = (\\hbar / R) (maximal length R, infrared cutoff). The double-scaling limit of Yang's algebra : lambda goes to 0, and R goes to infinity, in conjunction with the large n infinity limit, leads naturally to the area quantization condition : lambda R = L^2 = n lambda^2 (in Planck area units) given in terms of the discrete angular-momentum eigenvalues n . The generalized Weyl-Heisenberg algebra in C-spaces is ...

  8. Applying the system engineering approach to devise a master’s degree program in space technology in developing countries

    Science.gov (United States)

    Jazebizadeh, Hooman; Tabeshian, Maryam; Taheran Vernoosfaderani, Mahsa

    2010-11-01

    Although more than half a century is passed since space technology was first developed, developing countries are just beginning to enter the arena, focusing mainly on educating professionals. Space technology by itself is an interdisciplinary science, is costly, and developing at a fast pace. Moreover, a fruitful education system needs to remain dynamic if the quality of education is the main concern, making it a complicated system. This paper makes use of the System Engineering Approach and the experiences of developed countries in this area while incorporating the needs of the developing countries to devise a comprehensive program in space engineering at the Master's level. The needs of the developing countries as regards space technology education may broadly be put into two categories: to raise their knowledge of space technology which requires hard work and teamwork skills, and to transfer and domesticate space technology while minimizing the costs and maximizing its effectiveness. The requirements of such space education system, which include research facilities, courses, and student projects are then defined using a model drawn from the space education systems in universities in North America and Europe that has been modified to include the above-mentioned needs. Three design concepts have been considered and synthesized through functional analysis. The first one is Modular and Detail Study which helps students specialize in a particular area in space technology. Second is referred to as Integrated and Interdisciplinary Study which focuses on understanding and development of space systems. Finally, the third concept which has been chosen for the purpose of this study, is a combination of the other two, categorizing the required curriculum into seven modules, setting aside space applications. This helps students to not only specialize in one of these modules but also to get hands-on experience in a real space project through participation in summer group

  9. The Effect of Acoustic Disturbances on the Operation of the Space Shuttle Main Engine Fuel Flowmeter

    Science.gov (United States)

    Marcu, Bogdan; Szabo, Roland; Dorney, Dan; Zoladz, Tom

    2007-01-01

    The Space Shuttle Main Engine (SSME) uses a turbine fuel flowmeter (FFM) in its Low Pressure Fuel Duct (LPFD) to measure liquid hydrogen flowrates during engine operation. The flowmeter is required to provide accurate and robust measurements of flow rates ranging from 10000 to 18000 GPM in an environment contaminated by duct vibration and duct internal acoustic disturbances. Errors exceeding 0.5% can have a significant impact on engine operation and mission completion. The accuracy of each sensor is monitored during hot-fire engine tests on the ground. Flow meters which do not meet requirements are not flown. Among other parameters, the device is screened for a specific behavior in which a small shift in the flow rate reading is registered during a period in which the actual fuel flow as measured by a facility meter does not change. Such behavior has been observed over the years for specific builds of the FFM and must be avoided or limited in magnitude in flight. Various analyses of the recorded data have been made prior to this report in an effort to understand the cause of the phenomenon; however, no conclusive cause for the shift in the instrument behavior has been found. The present report proposes an explanation of the phenomenon based on interactions between acoustic pressure disturbances in the duct and the wakes produced by the FFM flow straightener. Physical insight into the effects of acoustic plane wave disturbances was obtained using a simple analytical model. Based on that model, a series of three-dimensional unsteady viscous flow computational fluid dynamics (CFD) simulations were performed using the MSFC PHANTOM turbomachinery code. The code was customized to allow the FFM rotor speed to change at every time step according to the instantaneous fluid forces on the rotor, that, in turn, are affected by acoustic plane pressure waves propagating through the device. The results of the simulations show the variation in the rotation rate of the flowmeter

  10. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  11. Curricular, Relational, and Physical Spaces in the Japanese Hoikuen

    Science.gov (United States)

    Ferguson, Daniel E.; Kuby, Candace R.

    2015-01-01

    Recent scholarship looks at the relationship of learning to space and place within educational research. The purpose of this article was to put data produced from teaching in four Japanese preschools into conversation with spatial theory and Ma, a Japanese spatial esthetic. We seek to understand "how" and "what" spaces…

  12. Some p-ranks related to orthogonal spaces

    NARCIS (Netherlands)

    Blokhuis, A.; Moorhouse, G.E.

    1995-01-01

    We determine the p-rank of the incidence matrix of hyperplanes of PG(n, p e) and points of a nondegenerate quadric. This yields new bounds for ovoids and the size of caps in finite orthogonal spaces. In particular, we show the nonexistence of ovoids in O10+ (2e ),O10+ (3e ),O9 (5e ),O12+ (5e

  13. spatio-temporal relativities in antonio tabucchi's urban spaces

    African Journals Online (AJOL)

    User

    journey through physical places that at first appear 'normal' but on closer examination reveal that they are in fact 'zones' (McHale, 1989: 43), i.e. a space in which ... city is empty, there are no customers at the restaurants, and the pier at. Alcantara, the bar of the museum, the Casa do Alentejo and the train are all deserted.

  14. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  15. A neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine

    Science.gov (United States)

    Guo, T. H.; Musgrave, J.

    1992-11-01

    In order to properly utilize the available fuel and oxidizer of a liquid propellant rocket engine, the mixture ratio is closed loop controlled during main stage (65 percent - 109 percent power) operation. However, because of the lack of flight-capable instrumentation for measuring mixture ratio, the value of mixture ratio in the control loop is estimated using available sensor measurements such as the combustion chamber pressure and the volumetric flow, and the temperature and pressure at the exit duct on the low pressure fuel pump. This estimation scheme has two limitations. First, the estimation formula is based on an empirical curve fitting which is accurate only within a narrow operating range. Second, the mixture ratio estimate relies on a few sensor measurements and loss of any of these measurements will make the estimate invalid. In this paper, we propose a neural network-based estimator for the mixture ratio of the Space Shuttle Main Engine. The estimator is an extension of a previously developed neural network based sensor failure detection and recovery algorithm (sensor validation). This neural network uses an auto associative structure which utilizes the redundant information of dissimilar sensors to detect inconsistent measurements. Two approaches have been identified for synthesizing mixture ratio from measurement data using a neural network. The first approach uses an auto associative neural network for sensor validation which is modified to include the mixture ratio as an additional output. The second uses a new network for the mixture ratio estimation in addition to the sensor validation network. Although mixture ratio is not directly measured in flight, it is generally available in simulation and in test bed firing data from facility measurements of fuel and oxidizer volumetric flows. The pros and cons of these two approaches will be discussed in terms of robustness to sensor failures and accuracy of the estimate during typical transients using

  16. Options for reducing HIV transmission related to the dead space in needles and syringes.

    Science.gov (United States)

    Zule, William A; Pande, Poonam G; Otiashvili, David; Bobashev, Georgiy V; Friedman, Samuel R; Gyarmathy, V Anna; Des Jarlais, Don C

    2018-01-15

    When shared by people who inject drugs, needles and syringes with different dead space may affect the probability of HIV and hepatitis C virus (HCV) transmission differently. We measured dead space in 56 needle and syringe combinations obtained from needle and syringe programs across 17 countries in Europe and Asia. We also calculated the amounts of blood and HIV that would remain in different combinations following injection and rinsing. Syringe barrel capacities ranged from 0.5 to 20 mL. Needles ranged in length from 8 to 38 mm. The average dead space was 3 μL in low dead space syringes with permanently attached needles, 13 μL in high dead space syringes with low dead space needles, 45 μL in low dead space syringes with high dead space needles, and 99 μL in high dead space syringes with high dead space needles. Among low dead space designs, calculated volumes of blood and HIV viral burden were lowest for low dead space syringes with permanently attached needles and highest for low dead space syringes with high dead space needles. The dead space in different low dead space needle and syringe combinations varied substantially. To reduce HIV transmission related to syringe sharing, needle and syringe programs need to combine this knowledge with the needs of their clients.

  17. Visualization of the Left Extraperitoneal Space and Spatial Relationships to Its Related Spaces by the Visible Human Project

    Science.gov (United States)

    Xu, Haotong; Li, Xiaoxiao; Zhang, Zhengzhi; Qiu, Mingguo; Mu, Qiwen; Wu, Yi; Tan, Liwen; Zhang, Shaoxiang; Zhang, Xiaoming

    2011-01-01

    Background The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D. Methods In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images. Principal Findings What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively. Conclusion The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis. PMID:22087259

  18. Probabilistic Structural Analysis Methods for select space propulsion system components (PSAM). Volume 2: Literature surveys of critical Space Shuttle main engine components

    Science.gov (United States)

    Rajagopal, K. R.

    1992-01-01

    The technical effort and computer code development is summarized. Several formulations for Probabilistic Finite Element Analysis (PFEA) are described with emphasis on the selected formulation. The strategies being implemented in the first-version computer code to perform linear, elastic PFEA is described. The results of a series of select Space Shuttle Main Engine (SSME) component surveys are presented. These results identify the critical components and provide the information necessary for probabilistic structural analysis. Volume 2 is a summary of critical SSME components.

  19. Space Mathematics, A Resource for Teachers Outlining Supplementary Space-Related Problems in Mathematics.

    Science.gov (United States)

    Reynolds, Thomas D.; And Others

    This compilation of 138 problems illustrating applications of high school mathematics to various aspects of space science is intended as a resource from which the teacher may select questions to supplement his regular course. None of the problems require a knowledge of calculus or physics, and solutions are presented along with the problem…

  20. Summary of Auger-Related Entanglement Incidents Occurring Inside Agricultural Confined Spaces.

    Science.gov (United States)

    Cheng, Y H; Field, W E

    2016-04-01

    when the victim stepped into an unguarded opening or well in the floor of the confined space. The primary reason identified as to why workers were exposed to energized augers in the cases documented was to assist in the removal of residual or out-of-condition grain. The large number of cases involving augers on top-unloading silo unloaders (36) was not anticipated. Silo unloaders also accounted for the largest number of documented fatalities (15). This analysis is the first known attempt to provide a better understanding of the frequency, severity, and causative factors of these incidents. Those key causative factors were found to be: (1) lack of or inadequate guarding, (2) unintentional energizing of components due to a lack of lockout/tagout training and provisions, and (3) exposure of untrained or inexperienced workers to energized and unguarded components during procedures to remove residual grain or other agricultural crops from storage structures. It is hoped that the results and recommendations presented will raise awareness of the hazards related to using energized equipment in confined spaces as well as contribute to development of new evidenced-based educational resources, engineering safety standards, and workplace safety regulations.

  1. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    Science.gov (United States)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  2. VIP: A knowledge-based design aid for the engineering of space systems

    Science.gov (United States)

    Lewis, Steven M.; Bellman, Kirstie L.

    1990-01-01

    The Vehicles Implementation Project (VIP), a knowledge-based design aid for the engineering of space systems is described. VIP combines qualitative knowledge in the form of rules, quantitative knowledge in the form of equations, and other mathematical modeling tools. The system allows users rapidly to develop and experiment with models of spacecraft system designs. As information becomes available to the system, appropriate equations are solved symbolically and the results are displayed. Users may browse through the system, observing dependencies and the effects of altering specific parameters. The system can also suggest approaches to the derivation of specific parameter values. In addition to providing a tool for the development of specific designs, VIP aims at increasing the user's understanding of the design process. Users may rapidly examine the sensitivity of a given parameter to others in the system and perform tradeoffs or optimizations of specific parameters. A second major goal of VIP is to integrate the existing corporate knowledge base of models and rules into a central, symbolic form.

  3. CFD Analysis of Square Flow Channel in Thermal Engine Rocket Adventurer for Space Nuclear Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, S. H.; Suh, K. Y. [Seoul National University, Seoul (Korea, Republic of); Kang, S. G. [PHILOSOPHIA, Inc., Seoul (Korea, Republic of)

    2008-10-15

    Solar system exploration relying on chemical rockets suffers from long trip time and high cost. In this regard nuclear propulsion is an attractive option for space exploration. The performance of Nuclear Thermal Rocket (NTR) is more than twice that of the best chemical rocket. Resorting to the pure hydrogen (H{sub 2}) propellant the NTRs can possibly achieve as high as 1,000 s of specific impulse (I{sub sp}) representing the ratio of the thrust over the fuel consumption rate, as compared to only 425 s of H{sub 2}/O{sub 2} rockets. If we reflect on the mission to Mars, NTRs would reduce the round trip time to less than 300 days, instead of over 600 days with chemical rockets. This work presents CFD analysis of one Fuel Element (FE) of Thermal Engine Rocket Adventurer (TERA). In particular, one Square Flow Channel (SFC) is analyzed in Square Lattice Honeycomb (SLHC) fuel to examine the effects of mass flow rate on rocket performance.

  4. A Monte Carlo study of Weibull reliability analysis for space shuttle main engine components

    Science.gov (United States)

    Abernethy, K.

    1986-01-01

    The incorporation of a number of additional capabilities into an existing Weibull analysis computer program and the results of Monte Carlo computer simulation study to evaluate the usefulness of the Weibull methods using samples with a very small number of failures and extensive censoring are discussed. Since the censoring mechanism inherent in the Space Shuttle Main Engine (SSME) data is hard to analyze, it was decided to use a random censoring model, generating censoring times from a uniform probability distribution. Some of the statistical techniques and computer programs that are used in the SSME Weibull analysis are described. The methods documented in were supplemented by adding computer calculations of approximate (using iteractive methods) confidence intervals for several parameters of interest. These calculations are based on a likelihood ratio statistic which is asymptotically a chisquared statistic with one degree of freedom. The assumptions built into the computer simulations are described. The simulation program and the techniques used in it are described there also. Simulation results are tabulated for various combinations of Weibull shape parameters and the numbers of failures in the samples.

  5. Gamma Ray Large Area Space Telescope (GLAST) Balloon Flight Engineering Model: Overview

    Science.gov (United States)

    Thompson, D. J.; Godfrey, G.; Williams, S. M.; Grove, J. E.; Mizuno, T.; Sadrozinski, H. F.-W.; Kamae, T.; Ampe, J.; Briber, Stuart; Dann, James; hide

    2001-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) is a pair-production high-energy (greater than 20 MeV) gamma-ray telescope being built by an international partnership of astrophysicists and particle physicists for a satellite launch in 2006, designed to study a wide variety of high-energy astrophysical phenomena. As part of the development effort, the collaboration has built a Balloon Flight Engineering Model (BFEM) for flight on a high-altitude scientific balloon. The BFEM is approximately the size of one of the 16 GLAST-LAT towers and contains all the components of the full instrument: plastic scintillator anticoincidence system (ACD), high-Z foil/Si strip pair-conversion tracker (TKR), CsI hodoscopic calorimeter (CAL), triggering and data acquisition electronics (DAQ), commanding system, power distribution, telemetry, real-time data display, and ground data processing system. The principal goal of the balloon flight was to demonstrate the performance of this instrument configuration under conditions similar to those expected in orbit. Results from a balloon flight from Palestine, Texas, on August 4, 2001, show that the BFEM successfully obtained gamma-ray data in this high-background environment.

  6. Gross anatomy of pancreatic surgery related fascia and fascial spaces.

    Science.gov (United States)

    Zhou, Xiaobo; Ding, Zihai

    2014-01-01

    The study aims to provide anatomical basis and identify surgical planes or safe routes for pancreatic surgery by studying adult or fresh cadaver specimens. Thirty formalin-fixed adult cadavers (16 males and 14 females), provided by the Department of Anatomy at Southern Medical University, China, were perfused with red latex through the abdominal aorta, treated with antiseptic and antibacterial agents and then refrigerated. Fifteen abdomen specimens from fresh adult cadavers (Southern Medical body donation reception centers) were also perfused with red latex through the femoral artery and placed in -20 C freezer for 1 week before surgery and anatomic observation. The renal fascia surrounding pancreas and duodenum were mostly filled with loose connective tissues and adipose tissues. They were mutually connected with clear fascial borders but easily to be separated, suitable for surgical operations. Also, the integrating spaces were the connecting borders between different tissues without nerves or blood vessels inside. They may serve as ideal surgical planes for pancreatic surgery. A better understanding of the anatomy of the renal fascia and fascial spaces may provide guidance for identifying surgical landmarks and planes, and help to reduce bleeding and unnecessary side injuries in pancreatic surgery.

  7. Hippocampal place cells construct reward related sequences through unexplored space.

    Science.gov (United States)

    Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J

    2015-06-26

    Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.

  8. Field theories on conformally related space-times: Some global considerations

    International Nuclear Information System (INIS)

    Candelas, P.; Dowker, J.S.

    1979-01-01

    The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in conformally flat spaces is clarified. The simple but essential point is that the relevant spaces should have conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are divided into two families according to whether they are conformally equivalent to Minkowski space or to the Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two families

  9. Integrating systems and business engineering in an international context : The SpaceTech Postgraduate Program

    NARCIS (Netherlands)

    Gill, E.K.A.; Kreisl, J.; Verma, D.

    2009-01-01

    Successful education of engineers needs continuous adaptation to track the changing needs of industry. The adaptation is not limited to technological advance or to the changing mentality of new students but also to end-to-end engineering approaches using Systems Engineering. However, industries

  10. Physical relativity. Space-time structure from a dynamical perspective

    Science.gov (United States)

    Brown, Harvey R.

    Physical Relativity explores the nature of the distinction at the heart of Einstein's 1905 formulation of his special theory of relativity: that between kinematics and dynamics. Einstein himself became increasingly uncomfortable with this distinction, and with the limitations of what he called the 'principle theory' approach inspired by the logic of thermodynamics. A handful of physicists and philosophers have over the last century likewise expressed doubts about Einstein's treatment of the relativistic behaviour of rigid bodies and clocks in motion in the kinematical part of his great paper, and suggested that the dynamical understanding of length contraction and time dilation intimated by the immediate precursors of Einstein is more fundamental. Harvey Brown both examines and extends these arguments (which support a more 'constructive' approach to relativistic effects in Einstein's terminology), after giving a careful analysis of key features of the pre-history of relativity theory. He argues furthermore that the geometrization of the theory by Minkowski in 1908 brought illumination, but not a causal explanation of relativistic effects. Finally, Brown tries to show that the dynamical interpretation of special relativity defended in the book is consistent with the role this theory must play as a limiting case of Einstein's 1915 theory of gravity: the general theory of relativity. Appearing in the centennial year of Einstein's celebrated paper on special relativity, Physical Relativity is an unusual, critical examination of the way Einstein formulated his theory. It also examines in detail certain specific historical and conceptual issues that have long given rise to debate in both special and general relativity theory, such as the conventionality of simultaneity, the principle of general covariance, and the consistency or otherwise of the special theory with quantum mechanics. Harvey Brown's new interpretation of relativity theory will interest anyone working on

  11. Putting ROSE to Work: A Proposed Application of a Request-Oriented Scheduling Engine for Space Station Operations

    Science.gov (United States)

    Jaap, John; Muery, Kim

    2000-01-01

    Scheduling engines are found at the core of software systems that plan and schedule activities and resources. A Request-Oriented Scheduling Engine (ROSE) is one that processes a single request (adding a task to a timeline) and then waits for another request. For the International Space Station, a robust ROSE-based system would support multiple, simultaneous users, each formulating requests (defining scheduling requirements), submitting these requests via the internet to a single scheduling engine operating on a single timeline, and immediately viewing the resulting timeline. ROSE is significantly different from the engine currently used to schedule Space Station operations. The current engine supports essentially one person at a time, with a pre-defined set of requirements from many payloads, working in either a "batch" scheduling mode or an interactive/manual scheduling mode. A planning and scheduling process that takes advantage of the features of ROSE could produce greater customer satisfaction at reduced cost and reduced flow time. This paper describes a possible ROSE-based scheduling process and identifies the additional software component required to support it. Resulting changes to the management and control of the process are also discussed.

  12. On the electromagnetic field and the Teukolsky relations in arbitrary space-times

    International Nuclear Information System (INIS)

    Coll, B.; Ferrando, J.J.

    1985-01-01

    The relations on the electromagnetic field obtained by Teukolsky for type D, vacuum space-times are studied. The role played by the maxwellian geometry of the basic tetrad is shown. It is proved that Teukolsky relations are, generically, incomplete. Once completed, their generalization to arbitrary space-times is given [fr

  13. Thermodynamics of Paint Related Systems with Engineering Models

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios

    2001-01-01

    Paints are complex materials composed of polymers (binders) dissolved in one or more solvents, pigments, and other additives. The thermodynamics of such systems is essential, for example, for selecting improved solvents and understanding a number of phenomena related especially! to adhesion...

  14. How Math Anxiety Relates to Number–Space Associations

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number–space associations constitute a potential risk factor of math anxiety. PMID:27683570

  15. How math anxiety relates to number-space associations

    Directory of Open Access Journals (Sweden)

    Carrie Georges

    2016-09-01

    Full Text Available Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioural evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  16. How Math Anxiety Relates to Number-Space Associations.

    Science.gov (United States)

    Georges, Carrie; Hoffmann, Danielle; Schiltz, Christine

    2016-01-01

    Given the considerable prevalence of math anxiety, it is important to identify the factors contributing to it in order to improve mathematical learning. Research on math anxiety typically focusses on the effects of more complex arithmetic skills. Recent evidence, however, suggests that deficits in basic numerical processing and spatial skills also constitute potential risk factors of math anxiety. Given these observations, we determined whether math anxiety also depends on the quality of spatial-numerical associations. Behavioral evidence for a tight link between numerical and spatial representations is given by the SNARC (spatial-numerical association of response codes) effect, characterized by faster left-/right-sided responses for small/large digits respectively in binary classification tasks. We compared the strength of the SNARC effect between high and low math anxious individuals using the classical parity judgment task in addition to evaluating their spatial skills, arithmetic performance, working memory and inhibitory control. Greater math anxiety was significantly associated with stronger spatio-numerical interactions. This finding adds to the recent evidence supporting a link between math anxiety and basic numerical abilities and strengthens the idea that certain characteristics of low-level number processing such as stronger number-space associations constitute a potential risk factor of math anxiety.

  17. Graphite structure and its relation to mechanical engineering design

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.; Kelly, B.T.

    1980-01-01

    The inhomogeneous nature of polycrystalline graphite requires property measurements to be made over dimensions large enough to average the local variations in the structure. This is particularly true for mechanical integrity, and experimental data are presented which illustrate the importance of the real aggregate structure of graphite and the difficulties of interpreting strength data from different tests. The classical statistical treatments do not hold generally, and the problem of defining a failure criterion for graphite is discussed. It is suggested that the stress conditions in graphite components might be classified in terms of the dimensions and stress gradients related to the characteristic flaw size of the material as determined experimentally. (author)

  18. Group-by Skyline Query Processing in Relational Engines

    DEFF Research Database (Denmark)

    Yiu, Man Lung; Luk, Ming-Hay; Lo, Eric

    2009-01-01

    the missing cost model for the BBS algorithm. Experimental results show that our techniques are able to devise the best query plans for a variety of group-by skyline queries. Our focus is on algorithms that can be directly implemented in today's commercial database systems without the addition of new access......The skyline operator was first proposed in 2001 for retrieving interesting tuples from a dataset. Since then, 100+ skyline-related papers have been published; however, we discovered that one of the most intuitive and practical type of skyline queries, namely, group-by skyline queries remains...

  19. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    Science.gov (United States)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  20. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  1. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 2

    Science.gov (United States)

    Bannerot, Richard B.; Goldstein, Stanley H.

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JCS. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1989, volume 1

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.

  3. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program 1988, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1989-01-01

    The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.

  4. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 2

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.

  5. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1987, volume 2

    Science.gov (United States)

    Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)

    1987-01-01

    The 1987 Johnson Space Center (JCS) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of ASEE. The basic objectives of the program are: to further the professional knowledge of qualified engineering and science faculty members; to stimulate an exchange of ideas between participants and NASA; to enrich and refresh the research and teaching activities of participants' institutions; and to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 1987.

  6. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1992, volume 1

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)

    1992-01-01

    The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.

  7. Specialized data analysis for the Space Shuttle Main Engine and diagnostic evaluation of advanced propulsion system components

    Science.gov (United States)

    1993-01-01

    The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.

  8. The integration of automated knowledge acquisition with computer-aided software engineering for space shuttle expert systems

    Science.gov (United States)

    Modesitt, Kenneth L.

    1990-01-01

    A prediction was made that the terms expert systems and knowledge acquisition would begin to disappear over the next several years. This is not because they are falling into disuse; it is rather that practitioners are realizing that they are valuable adjuncts to software engineering, in terms of problem domains addressed, user acceptance, and in development methodologies. A specific problem was discussed, that of constructing an automated test analysis system for the Space Shuttle Main Engine. In this domain, knowledge acquisition was part of requirements systems analysis, and was performed with the aid of a powerful inductive ESBT in conjunction with a computer aided software engineering (CASE) tool. The original prediction is not a very risky one -- it has already been accomplished.

  9. Construction engineering and planning of buildings related to the EPR

    International Nuclear Information System (INIS)

    Kaercher, H.

    1995-01-01

    Among the site-independent unit buildings are the reactor building with annulus; building for safety systems with main control room; new fuel storage pit, emergency power unit, reactor auxiliaries, access building; conventional switchgear building, and the turbine building. All buildings housing safety-related systems are protected against external and internal influences. Among the design-determining external influences are earthquakes, explosion high-pressure wave and aircraft crash. Internal incidents are caused by failure of components and pipes. The most discussed incident in the connection is the failure of the reactor pressure vessel involving core melt release which is safely retained by special devices. Earlier 3D plant models made of plastic have been replaced by 3D CAE computer models. Thus the graphic data of CAD systems have been added to the immense amount of logistic programmes/process data chains. This leads to new planning tools which are able to safely process such amounts of data and at the same time notably reduce planning time and expense. The whole data processing concept is characterized by simple, consistent data structures according to a uniform data model. It enables continual treatment throughout all planning stages and data exchange through simple, uniformly structured interfaces. (orig./HP) [de

  10. Energy-related doctoral scientists and engineers in the United States, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-01

    The pursuit of a vigorous research and development program to provide renewable and other resources to meet U. S. energy needs in the next century is an important objective of President Carter's National Energy Plan. A highly educated and motivated pool of engineers and scientists must be available for energy research and development if this objective is to be achieved. This report provides, for the first time, information about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data for the year 1975 will become part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Information is provided for employment in the following fields: mathematics; physics/astronomy; chemistry; Earth, Environment, and Marine Sciences; Engineering; Life Sciences; Psychology; Social Sciences; Arts and Humanities; and Education and Business.

  11. Automation based on knowledge modeling theory and its applications in engine diagnostic systems using Space Shuttle Main Engine vibrational data. M.S. Thesis

    Science.gov (United States)

    Kim, Jonnathan H.

    1995-01-01

    Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).

  12. The separating topology for the space-times of general relativity

    International Nuclear Information System (INIS)

    Lindstroem, U.

    1977-08-01

    The separating topology, first suggested by Zeeman, is defined for the space-times of general relativity. It is defined by a basis. A number of properties are derived. The topology induces the ordinary Euclidean topology on space-like hypersurfaces as well as on timelike curves and the discrete topology on null-cones. The group of auto-homeomorphisms is found to be the group of smooth conformal diffeomorphisms if the space-time is strongly causal. (author)

  13. Limit Formulae and Jump Relations of Potential Theory in Sobolev Spaces

    OpenAIRE

    Raskop, Thomas; Grothaus, Martin

    2009-01-01

    In this article we combine the modern theory of Sobolev spaces with the classical theory of limit formulae and jump relations of potential theory. Also other authors proved the convergence in Lebesgue spaces for integrable functions. The achievement of this paper is the L2 convergence for the weak derivatives of higher orders. Also the layer functions F are elements of Sobolev spaces and a two dimensional suitable smooth submanifold in R3, called regular Cm-surface. We are considering the pot...

  14. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    Science.gov (United States)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  15. From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager's Relations Revisited

    Science.gov (United States)

    Feidt, Michel; Costea, Monica

    2018-04-01

    Many works have been devoted to finite time thermodynamics since the Curzon and Ahlborn [1] contribution, which is generally considered as its origin. Nevertheless, previous works in this domain have been revealed [2], [3], and recently, results of the attempt to correlate Finite Time Thermodynamics with Linear Irreversible Thermodynamics according to Onsager's theory were reported [4]. The aim of the present paper is to extend and improve the approach relative to thermodynamic optimization of generic objective functions of a Carnot engine with linear response regime presented in [4]. The case study of the Carnot engine is revisited within the steady state hypothesis, when non-adiabaticity of the system is considered, and heat loss is accounted for by an overall heat leak between the engine heat reservoirs. The optimization is focused on the main objective functions connected to engineering conditions, namely maximum efficiency or power output, except the one relative to entropy that is more fundamental. Results given in reference [4] relative to the maximum power output and minimum entropy production as objective function are reconsidered and clarified, and the change from finite time to finite physical dimension was shown to be done by the heat flow rate at the source. Our modeling has led to new results of the Carnot engine optimization and proved that the primary interest for an engineer is mainly connected to what we called Finite Physical Dimensions Optimal Thermodynamics.

  16. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    1997-01-01

    This book deals with special relativity theory and its application to cosmology. It presents Einstein's theory of space and time in detail, and describes the large scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The book will be of interest to cosmologists, astrophysicists, theoretical

  17. Stackel spaces of an electrovacuum with isotropic complete sets. Formulation of problem and basic relations

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Evseevich, A.A.; Obukhov, V.V.; Osetrin, K.E.

    1987-01-01

    The authors consider the problem of the classification of the Stackel spaces of the electrovacuum with isotropic complete sets. The metrics of the spaces are represented in a form that is convenient for their investigation. We obtain necessary relations for the construction of the field equations

  18. Reducing variety in product solution spaces of engineer-to-order companies: The case of Novenco A/S

    DEFF Research Database (Denmark)

    Haug, Anders; Hvam, Lars; Mortensen, Niels Henrik

    2013-01-01

    by eliminating the product variety that do not create customer value. However, for Engineer-to-Order (ETO) companies, elimination of variety is particularly challenging, since it is about reducing variety in a complex product solution space, rather than just eliminating already produced product variants......Today many companies are experiencing increasing demands from customers for shorter delivery times and more competitive prices. In order to increase competitiveness from a price and time-to-market perspective, many companies initiate projects to reduce their internal product complexity....... To support ETO companies in achieving more efficient product solution spaces, this paper presents a procedure for reducing product solution spaces in ETO companies. The procedure is demonstrated through an action research study at the Danish ETO company, Novenco, which develops and manufactures heating...

  19. Faculty perspectives on the inclusion of work-related learning in engineering curricula

    DEFF Research Database (Denmark)

    Magnell, Marie; Geschwind, Lars Allan; Kolmos, Anette

    2017-01-01

    The purpose of this paper is to identify faculty perspectives on the integration of work-related issues in engineering education. A mixed methods approach was used to explore faculty attitudes towards work-related learning, to describe activities related to working life that have been introduced...... into the curriculum and to identify factors that faculty see as important if the amount of work-related learning is to increase. The results show that faculty members are positive about integrating work-related issues into the curriculum. Programmes with more extensive connections to industry offer more integrated...... activities, such as projects with external actors, and use professional contacts established through research in their teaching. In order to increase work-related learning in engineering curricula, faculty request clear goals and pedagogical tools. Other options to increase work-related learning include...

  20. Study of Modern Approach to Build the Functional Models of Managerial and Engineering Systems in Training Specialists for Space Industry

    Directory of Open Access Journals (Sweden)

    N. V. Arhipova

    2016-01-01

    Full Text Available The SM8 Chair at Bauman Moscow State Technological University (BMSTU trains specialists majoring not only in design and manufacture, but also in operation and maintenance of space ground-based infrastructure.The learning courses in design, production, and operation of components of the missile and space technology, give much prominence to modeling. The same attention should be given to the modeling of managerial and engineering systems, with which deal both an expert and a leadman. It is important to choose the modeling tools for managerial and engineering systems with which they are to work and to learn how to apply these tools.The study of modern approach to functional modeling of managerial and engineering systems is held in the format of business game in laboratory class. A structural analysis and design technique (IDEFØ is considered as the means of modeling.The article stresses the IDEFØ approach advantages, namely: comprehensible graphical language, applicability to all-types and all-levels-of-hierarchy managerial and engineering systems modeling, popularity, version control means, teamwork tools. Moreover, the IDEFØ allows us to illustrate such notions, as point of view, system bounders, structure, control, feedback as applied to the managerial and engineering systems.The article offers a modified procedure to create an IDEFØ model in the context of training session. It also suggests a step-by-step procedure of the instruction session to be held, as well as of student self-training to have study credits, and a procedure of the work defense (final test.The approach under consideration can be applied to other training courses. The article proves it giving information about positive experience of its application.

  1. Doctoral scientists and engineers working in energy-related activities, 1981

    International Nuclear Information System (INIS)

    1983-04-01

    The Department of Energy has a responsibility to help ensure the supply of highly trained personnel by providing supply and demand information on energy-related manpower to public and private planners and the general public. This report provides information about the number and characteristics of doctoral-level engineers and scientists working primarily in energy-related activities. The data for the year 1981 are part of the information base for a program of continuing studies of the employment and utilization of all scientists and engineers involved in energy-related activities. Information from these studies will provide input to consideration of actions necessary to ensure that adequate numbers of qualified scientists and engineers are available, when needed, to develop the nation's energy resources and technologies

  2. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  3. Space and Missile Systems Center Standard: Systems Engineering Requirements and Products

    Science.gov (United States)

    2013-07-01

    MISSILE SYSTEMS CENTER Air Force Space Command 483 N. Aviation Blvd. El Segundo, CA 90245 4. This standard has been approved for use on all Space...Any RF receiver with a burnout level of less than 30 dBm (1 mW). b. A summary of all significant areas are addressed in the EMC Control Plan...address 7. Date Submitted 8. Preparing Activity Space and Missile Systems Center AIR FORCE SPACE COMMAND 483 N. Aviation Blvd. El Segundo, CA 91245 Attention: SMC/EN February 2013

  4. Space-Based Infrared System-Supportability Engineering and Acquisition Reform in an Existing Acquisition Environment

    National Research Council Canada - National Science Library

    Fickes, Richard

    1999-01-01

    .... SBIRS is being developed in three increments. This article discusses supportability requirements definition and the implementation of supportability engineering in SBIRS evolution from an Integrated Product Team (IPT) aspect...

  5. NASA's Suborbital Missions Teach Engineering and Technology: Goddard Space Flight Center's Wallops Flight Facility

    Science.gov (United States)

    Winterton, Joyce L.

    2016-01-01

    A 50 minute-workshop based on NASA publicly available information will be conducted at the International Technology and Engineering Educator Association annual conference. Attendees will include middle and high school teachers and university teacher educators. Engineering and technology are essential to NASA's suborbital missions including sounding rockets, scientific balloon and airborne science. The attendees will learn how to include NASA information on these missions in their teaching.

  6. Cosmological special relativity the large scale structure of space, time and velocity

    CERN Document Server

    Carmeli, Moshe

    2002-01-01

    This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g

  7. Cognitive Systems Engineering Tool Survey - A Subtask in Support of Commander's Decision Aids for Predictive Battle-Space Awareness (CDA4PBA)

    National Research Council Canada - National Science Library

    Sanders, Mary; Fitzhugh, Elisabeth

    2005-01-01

    ...) DO 6, Commander's Decision Aids for Predictive Battle-Space Awareness, (CDA4PBA) is to identify system requirements necessary to capture the entire software and systems engineering process from concept...

  8. Calculation of the relative efficiency of thermoluminescent detectors to space radiation

    International Nuclear Information System (INIS)

    Bilski, P.

    2011-01-01

    Thermoluminescent (TL) detectors are often used for measurements of radiation doses in space. While space radiation is composed of a mixture of heavy charged particles, the relative TL efficiency depends on ionization density. The question therefore arises: what is the relative efficiency of TLDs to the radiation present in space? In the attempt to answer this question, the relative TL efficiency of two types of lithium fluoride detectors for space radiation has been calculated, based on the theoretical space spectra and the experimental values of TL efficiency to ion beams. The TL efficiency of LiF:Mg,Ti detectors for radiation encountered at typical low-Earth’s orbit was found to be close to unity, justifying a common application of these TLDs to space dosimetry. The TL efficiency of LiF:Mg,Cu,P detectors is significantly lower. It was found that a shielding may have a significant influence on the relative response of TLDs, due to changes caused in the radiation spectrum. In case of application of TLDs outside the Earth’s magnetosphere, one should expect lower relative efficiency than at the low-Earth’s orbit.

  9. SpaceTech—Postgraduate space education

    Science.gov (United States)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  10. Stationary Engineers Apprenticeship. Related Training Modules. 20.1-23.1 Miscellaneous.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with miscellaneous job skills needed by persons working in power plants. Addressed in the individual instructional packages included in the module are the following topics: transformers, circuit protection, construction of foundations…

  11. An Investigation of Factors Related to Self-Efficacy for Java Programming among Engineering Students

    Science.gov (United States)

    Askar, Petek; Davenport, David

    2009-01-01

    The purpose of this study was to examine the factors related to self-efficacy for Java programming among first year engineering students. An instrument assessing Java programming self-efficacy was developed from the computer programming self-efficacy scale of Ramalingam & Wiedenbeck. The instrument was administered at the beginning of the…

  12. Stationary Engineers Apprenticeship. Related Training Modules. 12.1-12.9. Boilers.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with boilers. Addressed in the individual instructional packages included in the module are the following topics: firetube and watertube boilers; boiler construction; procedures for operating and cleaning boilers; and boiler fittings,…

  13. Stationary Engineers Apprenticeship. Related Training Modules. 15.1-15.5 Turbines.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with turbines. addressed in the individual instructional packages included in the module are the following topics: types and components of steam turbines, steam turbine auxiliaries, operation and maintenance of steam turbines, and gas…

  14. A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.

    Science.gov (United States)

    Clark, Aaron C.; Scales Alice

    2000-01-01

    Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)

  15. Stationary Engineers Apprenticeship. Related Training Modules. 16.1-16.5 Combustion.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with combustion. Addressed in the individual instructional packages included in the module are the following topics: the combustion process, types of fuel, air and flue gases, heat transfer during combustion, and wood combustion. Each…

  16. Transactional, Cooperative, and Communal: Relating the Structure of Engineering Engagement Programs with the Nature of Partnerships

    Science.gov (United States)

    Thompson, Julia D.; Jesiek, Brent K.

    2017-01-01

    This paper examines how the structural features of engineering engagement programs (EEPs) are related to the nature of their service-learning partnerships. "Structure" refers to formal and informal models, processes, and operations adopted or used to describe engagement programs, while "nature" signifies the quality of…

  17. PHOTOGRAMMETRIC MODEL BASED METHOD OF AUTOMATIC ORIENTATION OF SPACE CARGO SHIP RELATIVE TO THE INTERNATIONAL SPACE STATION

    Directory of Open Access Journals (Sweden)

    Y. B. Blokhinov

    2012-07-01

    Full Text Available The technical problem of creating the new Russian version of an automatic Space Cargo Ship (SCS for the International Space Station (ISS is inseparably connected to the development of a digital video system for automatically measuring the SCS position relative to ISS in the process of spacecraft docking. This paper presents a method for estimating the orientation elements based on the use of a highly detailed digital model of the ISS. The input data are digital frames from a calibrated video system and the initial values of orientation elements, these can be estimated from navigation devices or by fast-and-rough viewpoint-dependent algorithm. Then orientation elements should be defined precisely by means of algorithmic processing. The main idea is to solve the exterior orientation problem mainly on the basis of contour information of the frame image of ISS instead of ground control points. A detailed digital model is used for generating raster templates of ISS nodes; the templates are used to detect and locate the nodes on the target image with the required accuracy. The process is performed for every frame, the resulting parameters are considered to be the orientation elements. The Kalman filter is used for statistical support of the estimation process and real time pose tracking. Finally, the modeling results presented show that the proposed method can be regarded as one means to ensure the algorithmic support of automatic space ships docking.

  18. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  19. ACCESS - A Science and Engineering Assessment of Space Coronagraph Concepts for the Direct Imaging and Spectroscopy of Exoplanetary Systems

    Science.gov (United States)

    Trauger, John

    2008-01-01

    Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.

  20. NASA/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1985. [Space Stations and Their Environments

    Science.gov (United States)

    Chilton, R. G. (Editor); Williams, C. E. (Editor)

    1986-01-01

    The 1985 NASA/ASEE Summer Faculty Fellowship Research Program was conducted by Texas A&M University and the Johnson Space Center. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The faculty fellows spent the time at JSC engaged in research projects commensurate with their interests and background and worked in collaboration with NASA/JSC colleagues. This document is a compilation of the final reports of their research during the summer of 1985.

  1. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    Science.gov (United States)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  2. National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) summer faculty fellowship program, 1986, Volume 1

    International Nuclear Information System (INIS)

    Mcinnis, B.; Goldstein, S.

    1987-06-01

    The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14

  3. Nano-Engineered Materials for Rapid Rechargeable Space Rated Advanced Li-Ion Batteries, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy, energy density...

  4. Engineering report. Part 1: NASA wheel air seal development for space shuttle type environmental requirements

    Science.gov (United States)

    1973-01-01

    The sealing techniques are studied for existing aircraft wheel-tire designs to meet the hard vacuum .00001 torr and cold temperature -65 F requirements of space travel. The investigation covers the use of existing wheel seal designs.

  5. Cognitive Engine enabled Mission-aware Intelligent Communication System for Space Networking, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Cognitive radio technology provides spectrum agility to increase the level of cognition and automation. However, spectrum agility alone is not enough to achieve...

  6. Nano-Engineered Materials for Rapid Rechargeable Space Rated Advanced Li-Ion Batteries, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Lithium-ion (Li-ion) batteries are attractive candidates for use as power sources in aerospace applications because they have high specific energy, energy density...

  7. Control of the interparticle spacing in superparamagnetic iron oxide nanoparticle clusters by surface ligand engineering

    Science.gov (United States)

    Dan, Wang; Bingbing, Lin; Taipeng, Shen; Jun, Wu; Fuhua, Hao; Chunchao, Xia; Qiyong, Gong; Huiru, Tang; Bin, Song; Hua, Ai

    2016-07-01

    Polymer-mediated self-assembly of superparamagnetic iron oxide (SPIO) nanoparticles allows modulation of the structure of SPIO nanocrystal cluster and their magnetic properties. In this study, dopamine-functionalized polyesters (DA-polyester) were used to directly control the magnetic nanoparticle spacing and its effect on magnetic resonance relaxation properties of these clusters was investigated. Monodisperse SPIO nanocrystals with different surface coating materials (poly(ɛ-caprolactone), poly(lactic acid)) of different molecular weights containing dopamine (DA) structure (DA-PCL2k, DA-PCL1k, DA-PLA1k)) were prepared via ligand exchange reaction, and these nanocrystals were encapsulated inside amphiphilic polymer micelles to modulate the SPIO nanocrystal interparticle spacing. Small-angle x-ray scattering (SAXS) was applied to quantify the interparticle spacing of SPIO clusters. The results demonstrated that the tailored magnetic nanoparticle clusters featured controllable interparticle spacing providing directly by the different surface coating of SPIO nanocrystals. Systematic modulation of SPIO nanocrystal interparticle spacing can regulate the saturation magnetization (M s) and T 2 relaxation of the aggregation, and lead to increased magnetic resonance (MR) relaxation properties with decreased interparticle spacing. Project supported by the National Key Basic Research Program of China (Grant No. 2013CB933903), the National Key Technology R&D Program of China (Grant No. 2012BAI23B08), and the National Natural Science Foundation of China (Grant Nos. 20974065, 51173117, and 50830107).

  8. Issues in visual support to real-time space system simulation solved in the Systems Engineering Simulator

    Science.gov (United States)

    Yuen, Vincent K.

    1989-01-01

    The Systems Engineering Simulator has addressed the major issues in providing visual data to its real-time man-in-the-loop simulations. Out-the-window views and CCTV views are provided by three scene systems to give the astronauts their real-world views. To expand the window coverage for the Space Station Freedom workstation a rotating optics system is used to provide the widest field of view possible. To provide video signals to as many viewpoints as possible, windows and CCTVs, with a limited amount of hardware, a video distribution system has been developed to time-share the video channels among viewpoints at the selection of the simulation users. These solutions have provided the visual simulation facility for real-time man-in-the-loop simulations for the NASA space program.

  9. Studies and analyses of the space shuttle main engine. Failure information propagation model data base and software

    Science.gov (United States)

    Tischer, A. E.

    1987-01-01

    The failure information propagation model (FIPM) data base was developed to store and manipulate the large amount of information anticipated for the various Space Shuttle Main Engine (SSME) FIPMs. The organization and structure of the FIPM data base is described, including a summary of the data fields and key attributes associated with each FIPM data file. The menu-driven software developed to facilitate and control the entry, modification, and listing of data base records is also discussed. The transfer of the FIPM data base and software to the NASA Marshall Space Flight Center is described. Complete listings of all of the data base definition commands and software procedures are included in the appendixes.

  10. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment

    DEFF Research Database (Denmark)

    Høybye, Mette Terp

    2013-01-01

    of the individual patient ’ s needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive...... these concepts, the study demonstrates how the hospital environment is a fl ow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients ’ sense of healing changes with the experience of progression in treatment and the capacity of the hospital space...... to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Discussion. Healing environments are complex relations between practices, space and care, where recognition...

  11. Evaluation of different design space description methods for analysing combustion engine operation limits

    NARCIS (Netherlands)

    Kieft, Nataša

    2014-01-01

    Over the last 20 years large efforts have been made in developing and optimising modelling techniques for DoE usage in engine calibration. A prerequisite for optimally applying DoE test designs is the detailed knowledge of the engine’s operating boundaries enclosing the ‘design space’. Known

  12. Making Space for the Act of Making: Creativity in the Engineering Design Classroom

    Science.gov (United States)

    Lasky, Dorothea; Yoon, Susan A.

    2011-01-01

    Creativity continues to be an important goal for 21st century learning. However, teachers often have difficulties fostering creativity in their classrooms. Current creativity research suggests that the act of making can enhance the teaching of creativity. Hands-on engineering design lessons are ideal contexts for studying this effect. Through…

  13. Phase-space interference in extensive and nonextensive quantum heat engines

    DEFF Research Database (Denmark)

    Hardal, Ali Ümit Cemal; Paternostro, Mauro; Mustecaplioglu, Ozgur E.

    2018-01-01

    Quantum interference is at the heart of what sets the quantum and classical worlds apart. We demonstrate that quantum interference effects involving a many-body working medium is responsible for genuinely nonclassical features in the performance of a quantum heat engine. The features with which...

  14. Role of the chemical engineering technician in applied research related to tritium separation from aqueous effluents

    International Nuclear Information System (INIS)

    Nelson, S.D.

    1978-01-01

    Applied research and development activities related to the removal of tritium from aqueous effluent streams have presented broad opportunities to the chemical engineering technician for professional growth. Technician job activities involve operating complex analytical instrumentation and constructing, maintaining, and operating experimental electrolysis apparatus. The technician is a member of a professional team including scientific, engineering, and other technical personnel and as such is expected to exercise creative thought. Proximity of a large university and availability of formalized ''in house'' training courses provide incentives for technicians to broaden their academic base concurrent with their work involvement

  15. Usage of the Jess Engine, Rules and Ontology to Query a Relational Database

    Science.gov (United States)

    Bak, Jaroslaw; Jedrzejek, Czeslaw; Falkowski, Maciej

    We present a prototypical implementation of a library tool, the Semantic Data Library (SDL), which integrates the Jess (Java Expert System Shell) engine, rules and ontology to query a relational database. The tool extends functionalities of previous OWL2Jess with SWRL implementations and takes full advantage of the Jess engine, by separating forward and backward reasoning. The optimization of integration of all these technologies is an advancement over previous tools. We discuss the complexity of the query algorithm. As a demonstration of capability of the SDL library, we execute queries using crime ontology which is being developed in the Polish PPBW project.

  16. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Sloth, Martin Snoager

    2010-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to co...... with a sharp perturbative calculation of "missing information" in Hawking radiation....

  17. [Application of target restoration space quantity and quantitative relation in precise esthetic prosthodontics].

    Science.gov (United States)

    Haiyang, Yu; Tian, Luo

    2016-06-01

    Target restoration space (TRS) is the most precise space required for designing optimal prosthesis. TRS consists of an internal or external tooth space to confirm the esthetics and function of the final restoration. Therefore, assisted with quantitive analysis transfer, TRS quantitative analysis is a significant improvement for minimum tooth preparation. This article presents TRS quantity-related measurement, analysis, transfer, and internal relevance of three TR. classifications. Results reveal the close bond between precision and minimally invasive treatment. This study can be used to improve the comprehension and execution of precise esthetic prosthodontics.

  18. The People Are Missing: Cramped Space, Social Relations, and the Mediators of Politics

    OpenAIRE

    Thoburn, Nicholas

    2016-01-01

    This article investigates the place of social relations in Deleuze and Guattari’s figure of ‘cramped space’, a figure integral to their ‘minor politics’. Against social and political theories that seek the source of political practice in a collective identity, the theory of cramped space contends that politics arises among those who lack and refuse coherent identity, in their encounter with the impasses, limits, or impossibilities of individual and collective subjectivity. Cramped space, as D...

  19. Fuel efficiency of conventional design tractors diesel engines in relation to new design

    Directory of Open Access Journals (Sweden)

    Jevtić Jeremija

    2006-01-01

    Full Text Available Total consumption of all types of energies is rather high nowadays with constant tendency of increasing. Transport section is one of the highest consumers of energy obtained from fossil fuels. It is absolutely clear that the reduction of energy consumption and the protection of environment - exhaust emission reduction, i. e. cleaner air, will be one of the main tasks of automotive industry in the first decades of the 21st century. In spite of its superiority over the petrol engine in respect of the fuel consumption, a diesel engine "suffers" from the increased exhaust emission, particles and NOx first of all and also from the noise and vibrations. The paper gives a review of fuel efficiency of conventional design tractors diesel engines in relation to new design. .

  20. Civil engineering airman at increased risk for injuries and injury-related musculoskeletal disorders.

    Science.gov (United States)

    Webb, Timothy S; Wells, Timothy S

    2011-03-01

    With the advent of electronic records, the opportunity to conduct research on workplace-related injuries and musculoskeletal disorders has increased dramatically. The purpose of this study was to examine the United States Air Force Civil Engineering career field to determine if they are negatively impacted by their work environment. Specifically, the objective of this study was to determine if enlisted Civil Engineering Airmen (n = 25,385) were at increased risk for injury or injury-related musculoskeletal disorders compared to enlisted Information Management/Communications Airmen (n = 28,947). Using an historical prospective design, electronic data were assembled and analyzed using Cox's proportional hazards modeling. Models were stratified by gender and adjusted for race/ethnicity, marital status, birth year, and deployment status. Male Civil Engineers were observed to be at greater risk for both inpatient injury-related musculoskeletal disorders (HR = 1.86; 95% CI = 1.54-2.26) and injuries (HR = 1.77; 95% CI = 1.48-2.11), while female Civil Engineers were more than double the risk for both inpatient injury-related musculoskeletal disorders (HR = 2.18; 95% CI = 1.28-3.73) and injuries (HR = 2.22; 95% CI = 1.27-3.88) compared to Information Management/Communications Airmen. Although analyses do not allow exploration of specific causes, they highlight the utility of using electronic data to identify occupations for further evaluation. Based on these results, additional resources were allocated to survey Civil Engineers on their physical work demands and job requirements to identify key problem areas for further study and mitigation. Copyright © 2010 Wiley-Liss, Inc.

  1. Hazards in the Solar System: Out-of-School Time Student Activities Focused on Engineering Protective Space Gloves

    Science.gov (United States)

    Vaughan, R. G.; Meyer, N.; Anderson, R. B.; Sokol, K.; Nolan, B.; Edgar, L. A.; Gaither, T. A.; Milazzo, M. P.; Clark, J.

    2017-12-01

    "In Good Hands: Engineering Space Gloves" is a new Engineering Adventures® curriculum unit created for students in grades 3-5 in out-of-school time programs. It was designed and created by the Engineering is Elementary® team at the Museum of Science in Boston, MA, in collaboration with subject matter experts at the USGS Astrogeology Science Center and teacher professional development experts at Northern Arizona University's Center for Science Teaching and Learning. As part of the NASA-funded PLANETS (Planetary Learning that Advances the Nexus of Engineering, Technology, and Science) project, the goals for this unit are to introduce students to some of the potential hazards that would be faced by astronauts exploring planetary bodies in the solar system, and to engage students in thinking about how to engineer solutions to these challenges. Potential human health hazards in planetary exploration include: little to no breathable oxygen, exposure to extreme temperatures and pressures, radiation, dusty or toxic environments, and/or high velocity debris. First, students experiment with gloves made of different materials to accomplish tasks like picking up paper clips, entering numbers on a calculator, and using simple tools, while also testing for insulating properties, protection from crushing forces, and resistance to dust contamination. Students explore the trade-offs between form and multiple desired functions, and gain an introduction to materials engineering. Students are then presented with three different missions. Mission 1 is to collect and return a sample from Saturn's moon, Titan; Mission 2 is mining asteroids for useful minerals; and Mission 3 is to build a radio tower on the far side of Earth's moon. Each of these missions exhibits different potential hazards. Based on their previous experiments with different types of glove materials, students develop and test glove designs that will protect astronauts from mission-specific hazards, while still

  2. Assessing Space Utilisation Relative to Key Performance Indicators--How Well, Not How Much, Space Is Used

    Science.gov (United States)

    Fleming, Simon; Apps, Nathan; Harbon, Paul; Baldock, Clive

    2012-01-01

    Efficient use of resources, including space, is critical in academic departments. Traditional space auditing simply assesses occupancy levels. We present a novel approach which assesses not just the extent to which space is used, but also how well it is used. We link space use quantitatively to key performance indicators in a research-intensive…

  3. National Aeronautics and Space Administration (NASA)/American Society of Engineering Education (ASEE) Summer Faculty Fellowship Program - 2000

    Science.gov (United States)

    Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)

    2003-01-01

    The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.

  4. Healing environments in cancer treatment and care. Relations of space and practice in hematological cancer treatment.

    Science.gov (United States)

    Høybye, Mette Terp

    2013-02-01

    Given the growing attention to the importance of design in shaping healing hospital environments this study extends the understanding of healing environments, beyond causal links between environmental exposure and health outcome by elucidating how environments and practices interrelate. The study was conducted as an ethnographic fieldwork from March 2011 to September 2011 at the Department of Haematology at Odense University Hospital, Denmark, systematically using participant observation and interviews as research strategies. It included 20 patients, four of who were followed closely over an extended time period. Through thematic analysis five key concepts emerged about the social dynamics of hospital environments: practices of self; creating personal space; social recognition; negotiating space; and ambiguity of space and care. Through these concepts, the study demonstrates how the hospital environment is a flow of relations between space and practice that changes and challenges a structural idea of design and healing. Patients' sense of healing changes with the experience of progression in treatment and the capacity of the hospital space to incite an experience of homeliness and care. Furthermore, cancer patients continuously challenge the use and limits of space by individual objects and practices of privacy and home. Healing environments are complex relations between practices, space and care, where recognition of the individual patient's needs, values and experiences is key to developing the environment to support the patient quality of life. The present study holds implications for practice to inform design of future hospital environments for cancer treatment. The study points to the importance for being attentive to the need for flexible spaces in hospitals that recognize the dynamics of healing, by providing individualized care, relating to the particular and changing needs of patients supporting their potential and their challenged condition with the best

  5. Analyzing Social Spaces: Relational Citizenship for Patients Leaving Mental Health Care Institutions.

    Science.gov (United States)

    Pols, Jeannette

    2016-01-01

    "Citizenship" is a term from political theory. The term has moved from the relationship between the individual and the state toward addressing the position of 'others' in society. Here, I am concerned with people with long-term mental health problems. I explore the possibilities of ethnographically studying this rather more cultural understanding of citizenship with the use of the concept of relational citizenship, attending to people who leave Dutch institutions for mental health care. Relational citizenship assumes that people become citizens through interactions, whereby they create particular relations and social spaces. Rather than studying the citizen as a particular individual, citizenship becomes a matter of sociality. In this article, I consider what social spaces these relationships create and what values and mechanisms keep people together. I argue that the notion of neighborhood as a form of community, although built implicitly or explicitly into mental health care policy, is no longer the most plausible model to understand social spaces.

  6. Design study of RL10 derivatives. Volume 3, part 2: Operational and flight support plan. [analysis of transportation requirements for rocket engine in support of space tug program

    Science.gov (United States)

    Shubert, W. C.

    1973-01-01

    Transportation requirements are considered during the engine design layout reviews and maintenance engineering analyses. Where designs cannot be influenced to avoid transportation problems, the transportation representative is advised of the problems permitting remedies early in the program. The transportation representative will monitor and be involved in the shipment of development engine and GSE hardware between FRDC and vehicle manufacturing plant and thereby will be provided an early evaluation of the transportation plans, methods and procedures to be used in the space tug support program. Unanticipated problems discovered in the shipment of development hardware will be known early enough to permit changes in packaging designs and transportation plans before the start of production hardware and engine shipments. All conventional transport media can be used for the movement of space tug engines. However, truck transport is recommended for ready availability, variety of routes, short transit time, and low cost.

  7. Loop space representation of quantum general relativity and the group of loops

    International Nuclear Information System (INIS)

    Gambini, R.

    1991-01-01

    The action of the constraints of quantum general relativity on a general state in the loop representation is coded in terms of loop derivatives. These differential operators are related to the infinitesimal generators of the group of loops and generalize the area derivative first considered by Mandelstam. A new sector of solutions of the physical states space of nonperturbative quantum general relativity is found. (orig.)

  8. Space polypropulsion

    Science.gov (United States)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  9. Requirements for high level models supporting design space exploration in model-based systems engineering

    NARCIS (Netherlands)

    Haveman, Steven; Bonnema, Gerrit Maarten

    2013-01-01

    Most formal models are used in detailed design and focus on a single domain. Few effective approaches exist that can effectively tie these lower level models to a high level system model during design space exploration. This complicates the validation of high level system requirements during

  10. S-Denying of the Signature Conditions Expands General Relativity's Space

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-07-01

    Full Text Available We apply the S-denying procedure to signature conditions in a four-dimensional pseudo-Riemannian space — i. e. we change one (or even all of the conditions to be partially true and partially false. We obtain five kinds of expanded space-time for General Relativity. Kind I permits the space-time to be in collapse. Kind II permits the space-time to change its own signature. Kind III has peculiarities, linked to the third signature condition. Kind IV permits regions where the metric fully degenerates: there may be non-quantum teleportation, and a home for virtual photons. Kind V is common for kinds I, II, III, and IV.

  11. Examination of engineering design teacher self-efficacy and knowledge base in secondary technology education and engineering-related courses

    Science.gov (United States)

    Vessel, Kanika Nicole

    2011-12-01

    There is an increasing demand for individuals with engineering education and skills of varying fields in everyday life. With the proper education students of high-needs schools can help meet the demand for a highly skilled and educated workforce. Researchers have assumed the supply and demand has not been met within the engineering workforce as a result of students' collegiate educational experiences, which are impacted by experiences in K-12 education. Although factors outside of the classroom contribute to the inability of universities to meet the increasing demand for the engineering workforce, most noted by researchers is the academic unpreparedness of freshman engineering students. The unpreparedness of entering freshman engineering students is a result of K-12 classroom experiences. This draws attention not only to the quality and competence of teachers present in the K-12 classroom, but the type of engineering instruction these students are receiving. This paper was an effort to systematically address one of the more direct and immediate factors impacting freshman engineering candidates, the quality of secondary engineering educators. Engineers develop new ideas using the engineering design process, which is taught at the collegiate level, and has been argued to be the best approach to teach technological literacy to all K-12 students. However, it is of importance to investigate whether technology educators have the knowledge and understanding of engineering design, how to transfer that knowledge in the classroom to students through instructional strategies, and their perception of their ability to do that. Therefore, the purpose of this study is to show the need for examining the degree to which technology and non-technology educators are implementing elements of engineering design in the curriculum.

  12. Einstein's space-time an introduction to special and general relativity

    CERN Document Server

    Ferraro, Rafael

    2007-01-01

    Einstein's Space-Time: An Introduction to Special and General Relativity is a textbook addressed to students in physics and other people interested in Relativity and a history of physics. The book contains a complete account of Special Relativity that begins with the historical analysis of the reasons that led to a change in our manner of regarding the space and time. The first chapters are aimed to afford a deep understanding of the relativistic spacetime and its consequences for Dynamics. The chapter about covariant formulation includes among its topics the concepts of volume and hypersurfaces in manifolds, energy-momentum tensor of a fluid, and prepares the language for General Relativity. The last two chapters are devoted to an introduction of General Relativity and Cosmology in a modern approach connected with the latest discoveries in these areas.

  13. SAFSIM: A computer program for engineering simulations of space reactor system performance

    International Nuclear Information System (INIS)

    Dobranich, D.

    1992-01-01

    SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that provides engineering simulations of user-specified flow networks at the system level. It includes fluid mechanics, heat transfer, and reactor dynamics capabilities. SAFSIM provides sufficient versatility to allow the simulation of almost any flow system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM. The current capabilities of SAFSIM are summarized, and some illustrative example results are presented

  14. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    Science.gov (United States)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  15. 14 CFR 33.23 - Engine mounting attachments and structure.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine mounting attachments and structure... mounting attachments and structure. (a) The maximum allowable limit and ultimate loads for engine mounting attachments and related engine structure must be specified. (b) The engine mounting attachments and related...

  16. Selected Legal Challenges Relating to the Military use of Outer Space, with Specific Reference to Article IV of the Outer Space Treaty

    Directory of Open Access Journals (Sweden)

    Anél Ferreira-Snyman

    2015-12-01

    Full Text Available Since the end of the Second World War the potential use of outer space for military purposes persisted to be intrinsically linked to the development of space technology and space flight. The launch of the first artificial satellite, Sputnik 1, by the USSR in 1957 made Western states realise that a surprise attack from space was a real possibility, resulting in the so-called "space-race" between the USA and the USSR. During the Cold War space activities were intrinsically linked to the political objectives, priorities and national security concerns of the USA and the Soviet Union. After the Cold War the political relevance and benefits of space continued to be recognised by states. In view of the recent emergence of new major space powers such as China, the focus has again shifted to the military use of outer space and the potential that a state with advanced space technology may use it for military purposes in order to dominate other states. Article IV of the Outer Space Treaty prohibits the installation of nuclear weapons and weapons of mass destruction in outer space and determines that the moon and other celestial bodies shall be used for peaceful purposes only. Due to the dual-use character of many space assets, the distinction between military and non-military uses of outer space is becoming increasingly blurred. This article discusses a number of legal challenges presented by article IV of the Outer Space Treaty, relating specifically to the term peaceful, the distinction between the terms militarisation and weaponisation and the nature of a space weapon. It is concluded that article IV is in many respects outdated and that it cannot address the current legal issues relating to the military use of outer space. The legal vacuum in this area may have grave consequences not only for maintaining peace and security in outer space, but also on earth. Consequently, an international dialogue on the military uses of outer space should be

  17. Conceptual model study using origami for membrane space structures : a perspective of origami-based engineering

    OpenAIRE

    NATORI, M. C.; SAKAMOTO, Hiraku; KATSUMATA, Nobuhisa; YAMAKAWA, Hiroshi; KISHIMOTO, Naoko

    2015-01-01

    This paper discusses what has been found and what will be found using conceptual “origami” models to develop deployable space structures. The study covers the following: (i) one-dimensional structural elements, which are axially buckled inflatable tubes; (ii) two-dimensional elements, which are deployable membranes, such as solar arrays and solar sails; and (iii) deployable elements in nature. The study clarifies what design considerations are necessary to adapt the basic concepts to actual s...

  18. Profile of software engineering within the National Aeronautics and Space Administration (NASA)

    Science.gov (United States)

    Sinclair, Craig C.; Jeletic, Kellyann F.

    1994-01-01

    This paper presents findings of baselining activities being performed to characterize software practices within the National Aeronautics and Space Administration. It describes how such baseline findings might be used to focus software process improvement activities. Finally, based on the findings to date, it presents specific recommendations in focusing future NASA software process improvement efforts. The findings presented in this paper are based on data gathered and analyzed to date. As such, the quantitative data presented in this paper are preliminary in nature.

  19. Model-based system-of-systems engineering for space-based command, control, communication, and information architecture design

    Science.gov (United States)

    Sindiy, Oleg V.

    This dissertation presents a model-based system-of-systems engineering (SoSE) approach as a design philosophy for architecting in system-of-systems (SoS) problems. SoS refers to a special class of systems in which numerous systems with operational and managerial independence interact to generate new capabilities that satisfy societal needs. Design decisions are more complicated in a SoS setting. A revised Process Model for SoSE is presented to support three phases in SoS architecting: defining the scope of the design problem, abstracting key descriptors and their interrelations in a conceptual model, and implementing computer-based simulations for architectural analyses. The Process Model enables improved decision support considering multiple SoS features and develops computational models capable of highlighting configurations of organizational, policy, financial, operational, and/or technical features. Further, processes for verification and validation of SoS models and simulations are also important due to potential impact on critical decision-making and, thus, are addressed. Two research questions frame the research efforts described in this dissertation. The first concerns how the four key sources of SoS complexity---heterogeneity of systems, connectivity structure, multi-layer interactions, and the evolutionary nature---influence the formulation of SoS models and simulations, trade space, and solution performance and structure evaluation metrics. The second question pertains to the implementation of SoSE architecting processes to inform decision-making for a subset of SoS problems concerning the design of information exchange services in space-based operations domain. These questions motivate and guide the dissertation's contributions. A formal methodology for drawing relationships within a multi-dimensional trade space, forming simulation case studies from applications of candidate architecture solutions to a campaign of notional mission use cases, and

  20. On the Possibility of Instant Displacements in the Space-Time of General Relativity

    Directory of Open Access Journals (Sweden)

    Borissova L.

    2005-04-01

    Full Text Available Employing the mathematical apparatus of chronometric invariants (physical observable quantities, this study finds a theoretical possibility for the instant displacement of particles in the space-time of the General Theory of Relativity. This is to date the sole theoretical explanation of the well-known phenomenon of photon teleportation, given by the purely geometrical methods of Einstein’s theory.

  1. On the Possibility of Instant Displacements in the Space-Time of General Relativity

    OpenAIRE

    Borissova L.; Rabounski D.

    2005-01-01

    Employing the mathematical apparatus of chronometric invariants (physical observable quantities), this study finds a theoretical possibility for the instant displacement of particles in the space-time of the General Theory of Relativity. This is to date the sole theoretical explanation of the well-known phenomenon of photon teleportation, given by the purely geometrical methods of Einstein’s theory.

  2. Anatomical nuances of the internal carotid artery in relation to the quadrangular space.

    Science.gov (United States)

    Dolci, Ricardo L L; Ditzel Filho, Leo F S; Goulart, Carlos R; Upadhyay, Smita; Buohliqah, Lamia; Lazarini, Paulo R; Prevedello, Daniel M; Carrau, Ricardo L

    2018-01-01

    OBJECTIVE The aim of this study was to evaluate the anatomical variations of the internal carotid artery (ICA) in relation to the quadrangular space (QS) and to propose a classification system based on the results. METHODS A total of 44 human cadaveric specimens were dissected endonasally under direct endoscopic visualization. During the dissection, the anatomical variations of the ICA and their relationship with the QS were noted. RESULTS The space between the paraclival ICAs (i.e., intercarotid space) can be classified as 1 of 3 different shapes (i.e., trapezoid, square, or hourglass) based on the trajectory of the ICAs. The ICA trajectories also directly influence the volumetric area of the QS. Based on its geometry, the QS was classified as one of the following: 1) Type A has the smallest QS area and is associated with a trapezoid intercarotid space, 2) Type B corresponds to the expected QS area (not minimized or enlarged) and is associated with a square intercarotid space, and 3) Type C has the largest QS area and is associated with an hourglass intercarotid space. CONCLUSIONS The different trajectories of the ICAs can modify the area of the QS and may be an essential parameter to consider for preoperative planning and defining the most appropriate corridor to reach Meckel's cave. In addition, ICA trajectories should be considered prior to surgery to avoid injuring the vessels.

  3. Extended space expectation values of position related operators for hydrogen-like quantum system evolutions

    International Nuclear Information System (INIS)

    Kalay, Berfin; Demiralp, Metin

    2014-01-01

    The expectation value definitions over an extended space from the considered Hilbert space of the system under consideration is given in another paper of the second author in this symposium. There, in that paper, the conceptuality rather than specification is emphasized on. This work uses that conceptuality to investigate the time evolutions of the position related operators' expectation values not in its standard meaning but rather in a new version of the definition over not the original Hilbert space but in the space obtained by extensions via introducing the images of the given initial wave packet under the positive integer powers of the system Hamiltonian. These images may not be residing in the same space of the initial wave packet when certain singularities appear in the structure of the system Hamiltonian. This may break down the existence of the integrals in the definitions of the expectation values. The cure is the use of basis functions in the abovementioned extended space and the sandwiching of the target operator whose expectation value is under questioning by an appropriately chosen operator guaranteeing the existence of the relevant integrals. Work specifically focuses on the hydrogen-like quantum systems whose Hamiltonians contain a polar singularity at the origin

  4. Impact of the New Optimal Rules for Arbitration of Disputers Relating to Space Debris Controversies

    Science.gov (United States)

    Force, Melissa K.

    2013-09-01

    The mechanisms and procedures for settlement of disputes arising from space debris collision damage, such as that suffered by the Russian Cosmos and US Iridium satellites in 2009, are highly political, nonbinding and unpredictable - all of which contributes to the uncertainty that increases the costs of financing and insuring those endeavors that take place in near-Earth space, especially in Low Earth Orbit. Dispute settlement mechanisms can be found in the 1967 Outer Space Treaty, which provides for consultations in cases involving potentially harmful interference with activities of States parties, and in the 1972 Liability Convention which permits but does not require States - not non-governmental entities - to pursue claims in a resolution process that is nonbinding (unless otherwise agreed.) There are soft- law mechanisms to control the growth of space debris, such as the voluntary 2008 United Nations Space Debris Mitigation Guidelines, and international law and the principles of equity and justice generally provide reparation to restore a person, State or organization to the condition which would have existed if damage had not occurred, but only if all agree to a specific tribunal or international court; even then, parties may be bound by the result only if agreed and enforcement of the award internationally remains uncertain. In all, the dispute resolution process for damage resulting from inevitable future damage from space debris collisions is highly unsatisfactory. However, the Administrative Council of the Permanent Court of Arbitration's recently adopted Optional Rules for the Arbitration of Disputes Relating to Outer Space Activities are, as of yet, untested, and this article will provide an overview of the process, explore the ways in which they fill in gaps in the previous patchwork of systems and analyze the benefits and shortcomings of the new Outer Space Optional Rules.

  5. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joseph W.

    1999-01-01

    NASA was chartered as an independent civilian space agency in 1958 following the Soviet Union's dramatic launch of the Sputnik 1 (1957). In his state of the union address in May of 1961, President Kennedy issued to the fledging organization his famous challenge for a manned lunar mission by the end of the decade. The Mercury, Gemini and Apollo programs that followed put the utmost value on high quality, low risk (as low as possible within the context of space flight), quick results, all with little regard for cost. These circumstances essentially melded NASAs culture as an organization capable of great technological achievement but at extremely high cost. The Space Shuttle project, the next major agency endeavor, was put under severe annual budget constraints in the 1970's. NASAs response was to hold to the high quality standards, low risk and annual cost and let schedule suffer. The result was a significant delay in the introduction of the Shuttle as well as overall total cost growth. By the early 1990's, because NASA's budget was declining, the number of projects was also declining. Holding the same cost and schedule productivity levels as before was essentially causing NASA to price itself out of business. In 1992, the helm of NASA was turned over to a new Administrator. Dan Goldin's mantra was "faster, better, cheaper" and his enthusiasm and determination to change the NASA culture was not to be ignored. This research paper documents the various implementations of "faster, better, cheaper" that have been attempted, analyzes their impact and compares the cost performance of these new projects to previous NASA benchmarks. Fundamentally, many elements of "faster, better, cheaper" are found to be working well, especially on smaller projects. Some of the initiatives are found to apply only to smaller or experimental projects however, so that extrapolation to "flagship" projects may be problematic.

  6. Advanced engineering software for in-space assembly and manned planetary spacecraft

    Science.gov (United States)

    Delaquil, Donald; Mah, Robert

    1990-01-01

    Meeting the objectives of the Lunar/Mars initiative to establish safe and cost-effective extraterrestrial bases requires an integrated software/hardware approach to operational definitions and systems implementation. This paper begins this process by taking a 'software-first' approach to systems design, for implementing specific mission scenarios in the domains of in-space assembly and operations of the manned Mars spacecraft. The technological barriers facing implementation of robust operational systems within these two domains are discussed, and preliminary software requirements and architectures that resolve these barriers are provided.

  7. A Space-Mapping Framework for Engineering Optimization: Theory and Implementation

    DEFF Research Database (Denmark)

    Koziel, Slawomir; Bandler, John W.; Madsen, Kaj

    2006-01-01

    a region of interest. Output space mapping ensures the matching of responses and first-order derivatives between the mapped coarse model and the fine model at the current iteration point in the optimization process. We provide theoretical results that show the importance of the explicit use of sensitivity...... information to the convergence properties of our family of algorithms. Our algorithm is demonstrated on the optimization of a microstrip band-pass filter, a band-pass filter with double-coupled resonators and a seven-section impedance transformer. We describe the novel user-oriented software package SMF...

  8. The outlook for application of powerful nuclear thermionic reactor -powered space electric jet propulsion engines

    International Nuclear Information System (INIS)

    Semyonov, Y.P.; Bakanov, Y.A.; Synyavsky, V.V.; Yuditsky, V.D.

    1997-01-01

    This paper summarizes main study results for application of powerful space electric jet propulsion unit (EJPUs) which is powered by Nuclear Thermionic Power Unit (NTPU). They are combined in Nuclear Power/Propulsion Unit (NPPU) which serves as means of spacecraft equipment power supply and spacecraft movement. Problems the paper deals with are the following: information satellites delivery and their on-orbit power supply during 10-15 years, removal of especially hazardous nuclear wastes, mining of asteroid resources and others. Evaluations on power/time/mass relationship for this type of mission are given. EJPU parameters are compatible with Russian existent or being under development launch vehicle. (author)

  9. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  10. Recent trends related to the use of formal methods in software engineering

    Science.gov (United States)

    Prehn, Soren

    1986-01-01

    An account is given of some recent developments and trends related to the development and use of formal methods in software engineering. Ongoing activities in Europe are focussed on, since there seems to be a notable difference in attitude towards industrial usage of formal methods in Europe and in the U.S. A more detailed account is given of the currently most widespread formal method in Europe: the Vienna Development Method. Finally, the use of Ada is discussed in relation to the application of formal methods, and the potential for constructing Ada-specific tools based on that method is considered.

  11. DB90: A Fortran Callable Relational Database Routine for Scientific and Engineering Computer Programs

    Science.gov (United States)

    Wrenn, Gregory A.

    2005-01-01

    This report describes a database routine called DB90 which is intended for use with scientific and engineering computer programs. The software is written in the Fortran 90/95 programming language standard with file input and output routines written in the C programming language. These routines should be completely portable to any computing platform and operating system that has Fortran 90/95 and C compilers. DB90 allows a program to supply relation names and up to 5 integer key values to uniquely identify each record of each relation. This permits the user to select records or retrieve data in any desired order.

  12. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    Science.gov (United States)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  13. Some Remarks on Space-Time Decompositions, and Degenerate Metrics, in General Relativity

    Science.gov (United States)

    Bengtsson, Ingemar

    Space-time decomposition of the Hilbert-Palatini action, written in a form which admits degenerate metrics, is considered. Simple numerology shows why D = 3 and 4 are singled out as admitting a simple phase space. The canonical structure of the degenerate sector turns out to be awkward. However, the real degenerate metrics obtained as solutions are the same as those that occur in Ashtekar's formulation of complex general relativity. An exact solution of Ashtekar's equations, with degenerate metric, shows that the manifestly four-dimensional form of the action, and its 3 + 1 form, are not quite equivalent.

  14. The Role of Open Space in Urban Neighbourhoods for Health-Related Lifestyle

    Science.gov (United States)

    Lestan, Katarina Ana; Eržen, Ivan; Golobič, Mojca

    2014-01-01

    The research reported in this paper addresses the relationship between quality of open space and health related lifestyle in urban residential areas. The research was performed in the residential developments in Ljubljana, Slovenia, dating from the time of political and economic changes in the early nineties. Compared to the older neighborhoods, these are typically single-use residential areas, with small open spaces and poor landscape design. The research is concerned with the quality of life in these areas, especially from the perspective of the vulnerable users, like the elderly and children. Both depend on easily accessible green areas in close proximity to their homes. The hypothesis is that the poor open space quality affects their health-related behavior and their perceived health status. The research has three methodological phases: (1) a comparison between urban residential areas by criteria describing their physical characteristics; (2) behavior observation and mapping and (3) a resident opinion survey. The results confirm differences between open spaces of the selected residential areas as well as their relation with outdoor activities: a lack of outdoor programs correlates with poor variety of outdoor activities, limited to transition type, less time spent outdoors and lower satisfaction with their home environment. The survey also disclosed a strong influence of a set of socio-economic variables such as education and economic status on physical activity and self-perceived health status of people. The results therefore confirm the hypothesis especially for less affluent and educated; i.e., vulnerable groups. PMID:25003173

  15. The Role of Open Space in Urban Neighbourhoods for Health-Related Lifestyle

    Directory of Open Access Journals (Sweden)

    Katarina Ana Lestan

    2014-06-01

    Full Text Available The research reported in this paper addresses the relationship between quality of open space and health related lifestyle in urban residential areas. The research was performed in the residential developments in Ljubljana, Slovenia, dating from the time of political and economic changes in the early nineties. Compared to the older neighborhoods, these are typically single-use residential areas, with small open spaces and poor landscape design. The research is concerned with the quality of life in these areas, especially from the perspective of the vulnerable users, like the elderly and children. Both depend on easily accessible green areas in close proximity to their homes. The hypothesis is that the poor open space quality affects their health-related behavior and their perceived health status. The research has three methodological phases: (1 a comparison between urban residential areas by criteria describing their physical characteristics; (2 behavior observation and mapping and (3 a resident opinion survey. The results confirm differences between open spaces of the selected residential areas as well as their relation with outdoor activities: a lack of outdoor programs correlates with poor variety of outdoor activities, limited to transition type, less time spent outdoors and lower satisfaction with their home environment. The survey also disclosed a strong influence of a set of socio-economic variables such as education and economic status on physical activity and self-perceived health status of people. The results therefore confirm the hypothesis especially for less affluent and educated; i.e., vulnerable groups.

  16. Engineering and design aspects related to the development of the ITER divertor

    International Nuclear Information System (INIS)

    Dietz, J.; Chiocchio, S.; Antipenkov, A.

    1994-01-01

    Most of the divertor concepts proposed for the Next Step devices relied on the exhaust of the SOL power to target plates which intersect the magnetic field fines. The resulting highly peaked thermal load, together with the concentrated fluxes of energetic particles, posed severe design constraints and ultimately led to unacceptably short target lifetime. The ITER high density gas target divertor concept is based on transferring the nominal power perpendicular to the magnetic field lines from the plasma edge onto large surfaces and on dissipating the particles' energy through atomic and molecular mechanisms. While the basic ideas for this approach have been motivated by recent results in present tokamaks, a full assessment of this concept still requires extensive experimental and modelling work. The paper describes the engineering and design aspects involving the development of the ITER divertor and shows how the physics assumptions translate into engineering requirements, and how the additional existing constraints (such as the limited space, neutron load, electromagnetic effects, compatibility with other components, remote maintainability) have been taken into account for the design definition. The concept developed takes advantage of the spatial separation of the several physics phenomena anticipated to take place in the divertor, thus relaxing the needs to accommodate in the same region opposing requirements

  17. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    Science.gov (United States)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  18. Supersonic plasma beams with controlled speed generated by the alternative low power hybrid ion engine (ALPHIE) for space propulsion

    Science.gov (United States)

    Conde, L.; Domenech-Garret, J. L.; Donoso, J. M.; Damba, J.; Tierno, S. P.; Alamillo-Gamboa, E.; Castillo, M. A.

    2017-12-01

    The characteristics of supersonic ion beams from the alternative low power hybrid ion engine (ALPHIE) are discussed. This simple concept of a DC powered plasma accelerator that only needs one electron source for both neutral gas ionization and ion beam neutralization is also examined. The plasma production and space charge neutralization processes are thus coupled in this plasma thruster that has a total DC power consumption of below 450 W, and uses xenon or argon gas as a propellant. The operation parameters of the plasma engine are studied in the laboratory in connection with the ion energy distribution function obtained with a retarding-field energy analyzer. The ALPHIE plasma beam expansion produces a mesothermal plasma flow with two-peaked ion energy distribution functions composed of low and high speed ion groups. The characteristic drift velocities of the fast ion groups, in the range 36.6-43.5 Km/s, are controlled by the acceleration voltage. These supersonic speeds are higher than the typical ion sound velocities of the low energy ion group produced by the expansion of the plasma jet. The temperatures of the slow ion population lead to ion Debye lengths longer than the electron Debye lengths. Furthermore, the electron impact ionization can coexist with collisional ionization by fast ions downstream the grids. Finally, the performance characteristics and comparisons with other plasma accelerator schemes are also discussed.

  19. State-space approaches for modelling and control in financial engineering systems theory and machine learning methods

    CERN Document Server

    Rigatos, Gerasimos G

    2017-01-01

    The book conclusively solves problems associated with the control and estimation of nonlinear and chaotic dynamics in financial systems when these are described in the form of nonlinear ordinary differential equations. It then addresses problems associated with the control and estimation of financial systems governed by partial differential equations (e.g. the Black–Scholes partial differential equation (PDE) and its variants). Lastly it an offers optimal solution to the problem of statistical validation of computational models and tools used to support financial engineers in decision making. The application of state-space models in financial engineering means that the heuristics and empirical methods currently in use in decision-making procedures for finance can be eliminated. It also allows methods of fault-free performance and optimality in the management of assets and capitals and methods assuring stability in the functioning of financial systems to be established. Covering the following key are...

  20. Sector models—A toolkit for teaching general relativity: I. Curved spaces and spacetimes

    International Nuclear Information System (INIS)

    Zahn, C; Kraus, U

    2014-01-01

    Teaching the general theory of relativity to high school or undergraduate students must be based on an approach that is conceptual rather than mathematical. In this paper we present such an approach that requires no more than elementary mathematics. The central idea of this introduction to general relativity is the use of so-called sector models. Sector models describe curved spaces the Regge calculus way by subdivision into blocks with euclidean geometry. This procedure is similar to the approximation of a curved surface by flat triangles. We outline a workshop for high school and undergraduate students that introduces the notion of curved space by means of sector models of black holes. We further describe the extension to sector models of curved spacetimes. The spacetime models are suitable for learners with a basic knowledge of special relativity. The teaching materials presented in this paper are available online for teaching purposes at www.spacetimetravel.org. (paper)

  1. Recent Joint Studies Related to the Development of Space Radioisotope Power Systems

    Directory of Open Access Journals (Sweden)

    Kramer Daniel P.

    2017-01-01

    Full Text Available Over the last several years there has been a mutually beneficial ongoing technical interchange between the U.K and the U.S. related to various aspects of space radioisotope power systems (RPS. While this interchange has been primarily focused on materials based activities, it has also included some aspects related to safety, environmental, and lessons learned during the application of RPSs by the U.S. during the last fifty years. Recent joint technical RPS endeavors have centered on the development of a possible “cold” ceramic surrogate for 238PuO2 and 241AmOx and the irradiation of thermoelectrics and other materials at expected RPS related neutron fluences. As the U.S. continues to deploy and Europe develops RPS capability, on-going joint RPS technical interfaces will continue to enhance each entities’ endeavors in this nuclear based power technology critical for deep space exploration.

  2. Experience of Use of Knowledge Relative Assessment System for Training in Area of Civil Engineering

    Directory of Open Access Journals (Sweden)

    Romanova Elena

    2017-01-01

    Full Text Available Nowadays E-Learning is becoming more and more relevant in training civil engineers. Electronic resources are used for classroom activities and for independent work. It allows allocating extra time for development of practical skills. Experience of remote knowledge control application in the educational process of Moscow State University of Civil Engineering is presented in the article. The control system is called Knowledge Relative Assessment System using Bekker's method. The following steps of system using are described in detail in the article: loading test material, action of users, protection from wrong acts and calculation of rating. The main merits and demerits from the point of view of teachers and students are listed.

  3. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    Science.gov (United States)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  4. Space Shuttle Main Engine Low Pressure Oxidizer Turbo-Pump Inducer Dynamic Environment Characterization through Water Model and Hot-Fire Testing

    Science.gov (United States)

    Arellano, Patrick; Patton, Marc; Schwartz, Alan; Stanton, David

    2006-01-01

    The Low Pressure Oxidizer Turbopump (LPOTP) inducer on the Block II configuration Space Shuttle Main Engine (SSME) experienced blade leading edge ripples during hot firing. This undesirable condition led to a minor redesign of the inducer blades. This resulted in the need to evaluate the performance and the dynamic environment of the redesign, relative to the current configuration, as part of the design acceptance process. Sub-scale water model tests of the two inducer configurations were performed, with emphasis on the dynamic environment due to cavitation induced vibrations. Water model tests were performed over a wide range of inlet flow coefficient and pressure conditions, representative of the scaled operating envelope of the Block II SSME, both in flight and in ground hot-fire tests, including all power levels. The water test hardware, facility set-up, type and placement of instrumentation, the scope of the test program, specific test objectives, data evaluation process and water test results that characterize and compare the two SSME LPOTP inducers are discussed. In addition, dynamic characteristics of the two water models were compared to hot fire data from specially instrumented ground tests. In general, good agreement between the water model and hot fire data was found, which confirms the value of water model testing for dynamic characterization of rocket engine turbomachinery.

  5. Leucine-based receptor sorting motifs are dependent on the spacing relative to the plasma membrane

    DEFF Research Database (Denmark)

    Geisler, C; Dietrich, J; Nielsen, B L

    1998-01-01

    Many integral membrane proteins contain leucine-based motifs within their cytoplasmic domains that mediate internalization and intracellular sorting. Two types of leucine-based motifs have been identified. One type is dependent on phosphorylation, whereas the other type, which includes an acidic...... amino acid, is constitutively active. In this study, we have investigated how the spacing relative to the plasma membrane affects the function of both types of leucine-based motifs. For phosphorylation-dependent leucine-based motifs, a minimal spacing of 7 residues between the plasma membrane...... and the phospho-acceptor was required for phosphorylation and thereby activation of the motifs. For constitutively active leucine-based motifs, a minimal spacing of 6 residues between the plasma membrane and the acidic residue was required for optimal activity of the motifs. In addition, we found that the acidic...

  6. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  7. Legal and Ethical Issues Related to the Management of Cultural Heritage in Space

    Science.gov (United States)

    Walsh, Justin

    The recent discovery of water in darkened craters of the Moon's south pole is only the latest development drawing public and corporate interest to the possibilities of research and travel in outer space. Scientists pursuing fusion-generated power as a solution to global energy needs have also noted the relative abundance of Helium-3, an efficient fuel, on the Moon's surface, and there is the promise of other precious resources there as well. The implantation of colonies on the Moon or Mars, discussed for many decades as science fiction, therefore seems increasingly likely to happen. Some private companies and members of the public are even looking forward to the days when tourists will be able to travel for leisure beyond the earth's atmosphere. Most notably, the X Prize Foundation and Google are sponsoring a prize for the first private group to send an unmanned rover to the Moon as a way of advancing these agendas; 22 teams have registered for the competition, with some scheduled to launch by the end of 2010. Increased attention to outer space travel, exploration, and commercial exploitation has been paralleled by a rise in interest in the protection of cultural resources on Earth, such as ar-chaeological sites and historic monuments. Such sites and monuments already exist in outer space and on extraterrestrial planetary bodies. The Apollo 11 landing site, Tranquility Base, is only the most obvious example of a cultural site of outstanding significance in space. Satellites orbiting the earth -even defunct ones such as Vanguard 1, the oldest man-made object still in orbit, might be considered to have extraordinary historic and cultural value, too. As archae-ologists working on Earth have long recognized, once a site or object is damaged, it can never be perfectly restored to its original condition. Unfortunately, there are so far only a few vague guidelines, drafted in the 1960's and agreed upon by the international community, protecting mankind's cultural heritage

  8. Observation of the exhaust plume from the space shuttle main engines using the microwave limb sounder

    Directory of Open Access Journals (Sweden)

    H. C. Pumphrey

    2011-01-01

    Full Text Available A space shuttle launch deposits 700 tonnes of water in the atmosphere. Some of this water is released into the upper mesosphere and lower thermosphere where it may be directly detected by a limb sounding satellite instrument. We report measurements of water vapour plumes from shuttle launches made by the Microwave Limb Sounder (MLS on the Aura satellite. Approximately 50%–65% of shuttle launches are detected by MLS. The signal appears at a similar level across the upper 10 km of the MLS limb scan, suggesting that the bulk of the observed water is above the top of the scan. Only a small fraction at best of smaller launches (Ariane 5, Proton are detected. We conclude that the sensitivity of MLS is only just great enough to detect a shuttle sized launch, but that a suitably designed instrument of the same general type could detect the exhausts from a large proportion of heavy-lift launches.

  9. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    Science.gov (United States)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  10. Modeling of lighting behaviour of a hybrid lighting system in inner spaces of Building of Electrical Engineering

    Science.gov (United States)

    Amado, L.; Osma, G.; Villamizar, R.

    2016-07-01

    This paper presents the modelling of lighting behaviour of a hybrid lighting system - HLS in inner spaces for tropical climate. HLS aims to mitigate the problem of high electricity consumption used by artificial lighting in buildings. These systems integrate intelligently the daylight and artificial light through control strategies. However, selection of these strategies usually depends on expertise of designer and of available budget. In order to improve the selection process of the control strategies, this paper analyses the Electrical Engineering Building (EEB) case, initially modelling of lighting behaviour is established for the HLS of a classroom and an office. This allows estimating the illuminance level of the mixed lighting in the space, and energy consumption by artificial light according to different lighting control techniques, a control strategy based on occupancy and a combination of them. The model considers the concept of Daylight Factor (DF) for the estimating of daylight illuminance on the work plane for tropical climatic conditions. The validation of the model was carried out by comparing the measured and model-estimated indoor illuminances.

  11. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  12. Method of locating related items in a geometric space for data mining

    Science.gov (United States)

    Hendrickson, Bruce A.

    1999-01-01

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.

  13. Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor

    Science.gov (United States)

    Hogan, Erik A.; Schaub, Hanspeter

    2016-09-01

    With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.

  14. Realizations of κ-Minkowski space, Drinfeld twists, and related symmetry algebras

    Energy Technology Data Exchange (ETDEWEB)

    Juric, Tajron; Meljanac, Stjepan; Pikutic, Danijel [Ruder Boskovic Institute, Theoretical Physics Division, Zagreb (Croatia)

    2015-11-15

    Realizations of κ-Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the gl(n) generators. There are three one-parameter families of linear realizations for timelike and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ-Deformed igl(n)-Hopf algebras are presented for all cases. The κ-Poincare-Weyl and κ-Poincare-Hopf algebras are discussed. The left-right dual κ-Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ-Minkowski space are obtained from our construction. Finally, some physical applications are discussed. (orig.)

  15. Realizations of κ-Minkowski space, Drinfeld twists, and related symmetry algebras

    International Nuclear Information System (INIS)

    Juric, Tajron; Meljanac, Stjepan; Pikutic, Danijel

    2015-01-01

    Realizations of κ-Minkowski space linear in momenta are studied for time-, space- and light-like deformations. We construct and classify all such linear realizations and express them in terms of the gl(n) generators. There are three one-parameter families of linear realizations for timelike and space-like deformations, while for light-like deformations, there are only four linear realizations. The relation between a deformed Heisenberg algebra, the star product, the coproduct of momenta, and the twist operator is presented. It is proved that for each linear realization there exists a Drinfeld twist satisfying normalization and cocycle conditions. κ-Deformed igl(n)-Hopf algebras are presented for all cases. The κ-Poincare-Weyl and κ-Poincare-Hopf algebras are discussed. The left-right dual κ-Minkowski algebra is constructed from the transposed twists. The corresponding realizations are nonlinear. All Drinfeld twists related to κ-Minkowski space are obtained from our construction. Finally, some physical applications are discussed. (orig.)

  16. Systems Engineering Using Heritage Spacecraft Technology: Lessons Learned from Discovery and New Frontiers Deep Space Missions

    Science.gov (United States)

    Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon

    2011-01-01

    In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced or heritage systems and the system environment identifies unanticipated issues that result in cost overruns or schedule impacts. The Discovery & New Frontiers (D&NF) Program Office recently studied cost overruns and schedule delays resulting from advanced technology or heritage assumptions for 6 D&NF missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that the cost and schedule growth did not result from technical hurdles requiring significant technology development. Instead, systems engineering processes did not identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement the heritage or advanced technology. This presentation summarizes the study s findings and offers suggestions for improving the project s ability to identify and manage the risks inherent in the technology and heritage design solution.

  17. Expanding the Bioactive Chemical Space of Anthrabenzoxocinones through Engineering the Highly Promiscuous Biosynthetic Modification Steps.

    Science.gov (United States)

    Mei, Xianyi; Yan, Xiaoli; Zhang, Hui; Yu, Mingjia; Shen, Guangqing; Zhou, Linjun; Deng, Zixin; Lei, Chun; Qu, Xudong

    2018-01-19

    Anthrabenzoxocinones (ABXs) including (-)-ABXs and (+)-ABXs are a group of bacterial FabF-specific inhibitors with potent antimicrobial activity of resistant strains. Optimization of their chemical structures is a promising method to develop potent antibiotics. Through biosynthetic investigation, we herein identified and characterized two highly promiscuous enzymes involved in the (-)-ABX structural modification. The promiscuous halogenase and methyltransferase can respectively introduce halogen-modifications into various positions of the ABX scaffolds and methylation to highly diverse substrates. Manipulation of their activity in both of the (-)-ABXs and (+)-ABXs biosyntheses led to the generation of 14 novel ABX analogues of both enantiomers. Bioactivity assessment revealed that a few of the analogues showed significantly improved antimicrobial activity, with the C3-hydroxyl and chlorine substitutions critical for their activity. This study enormously expands the bioactive chemical space of the ABX family and FabF-specific inhibitors. The disclosed broad-selective biosynthetic machineries and structure-activity relationship provide a solid basis for further generation of potent antimicrobial agents.

  18. Development and evaluation of a biomedical search engine using a predicate-based vector space model.

    Science.gov (United States)

    Kwak, Myungjae; Leroy, Gondy; Martinez, Jesse D; Harwell, Jeffrey

    2013-10-01

    Although biomedical information available in articles and patents is increasing exponentially, we continue to rely on the same information retrieval methods and use very few keywords to search millions of documents. We are developing a fundamentally different approach for finding much more precise and complete information with a single query using predicates instead of keywords for both query and document representation. Predicates are triples that are more complex datastructures than keywords and contain more structured information. To make optimal use of them, we developed a new predicate-based vector space model and query-document similarity function with adjusted tf-idf and boost function. Using a test bed of 107,367 PubMed abstracts, we evaluated the first essential function: retrieving information. Cancer researchers provided 20 realistic queries, for which the top 15 abstracts were retrieved using a predicate-based (new) and keyword-based (baseline) approach. Each abstract was evaluated, double-blind, by cancer researchers on a 0-5 point scale to calculate precision (0 versus higher) and relevance (0-5 score). Precision was significantly higher (psearching than keywords, laying the foundation for rich and sophisticated information search. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Regressed relations for forced convection heat transfer in a direct injection stratified charge rotary engine

    Science.gov (United States)

    Lee, Chi M.; Schock, Harold J.

    1988-01-01

    Currently, the heat transfer equation used in the rotary combustion engine (RCE) simulation model is taken from piston engine studies. These relations have been empirically developed by the experimental input coming from piston engines whose geometry differs considerably from that of the RCE. The objective of this work was to derive equations to estimate heat transfer coefficients in the combustion chamber of an RCE. This was accomplished by making detailed temperature and pressure measurements in a direct injection stratified charge (DISC) RCE under a range of conditions. For each specific measurement point, the local gas velocity was assumed equal to the local rotor tip speed. Local physical properties of the fluids were then calculated. Two types of correlation equations were derived and are described in this paper. The first correlation expresses the Nusselt number as a function of the Prandtl number, Reynolds number, and characteristic temperature ratio; the second correlation expresses the forced convection heat transfer coefficient as a function of fluid temperature, pressure and velocity.

  20. Toward the classification of differential calculi on κ-Minkowski space and related field theories

    Energy Technology Data Exchange (ETDEWEB)

    Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel [Ruđer Bošković Institute, Theoretical Physics Division,Bijenička c.54, HR-10002 Zagreb (Croatia); Štrajn, Rina [Dipartimento di Matematica e Informatica, Università di Cagliari,viale Merello 92, I-09123 Cagliari (Italy); INFN, Sezione di Cagliari,Cagliari (Italy)

    2015-07-13

    Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.

  1. On Dual Phase-Space Relativity, the Machian Principle and Modified Newtonian Dynamics

    CERN Document Server

    Castro, C

    2004-01-01

    We investigate the consequences of the Mach's principle of inertia within the context of the Dual Phase Space Relativity which is compatible with the Eddington-Dirac large numbers coincidences and may provide with a physical reason behind the observed anomalous Pioneer acceleration and a solution to the riddle of the cosmological constant problem ( Nottale ). The cosmological implications of Non-Archimedean Geometry by assigning an upper impassible scale in Nature and the cosmological variations of the fundamental constants are also discussed. We study the corrections to Newtonian dynamics resulting from the Dual Phase Space Relativity by analyzing the behavior of a test particle in a modified Schwarzschild geometry (due to the the effects of the maximal acceleration) that leads in the weak-field approximation to essential modifications of the Newtonian dynamics and to violations of the equivalence principle. Finally we follow another avenue and find modified Newtonian dynamics induced by the Yang's Noncommut...

  2. Teacher Effectiveness in Relation to Emotional Intelligence Among Medical and Engineering Faculty Members

    Directory of Open Access Journals (Sweden)

    Ajeya Jha

    2012-11-01

    Full Text Available Studies have revealed that emotional intelligence (EI influences an individual's job performance in terms of organizational commitment and job satisfaction. But prior studies were limited mostly to the corporate sector. Therefore the present study was conducted to understand the correlation between EI and teaching performance in the case of faculty members at medical and engineering colleges, as courses related to these two fields are quite extensive and demanding which often leads to stress among students (Saipanish, 2003; Foster & Spencer, 2003; Schneider, 2007; Ray and Joseph, 2010. A total of 250 faculty members from three medical and four private engineering colleges of Uttar Pradesh, India, participated in the study. Emotional intelligence scale (EIS, 2007, Teacher Effectiveness Scale (TES, 2010 and Teacher Rating Scale (TRS, 2003 were administered to measure the emotional intelligence, self-reported teacher effectiveness and student rated teacher effectiveness of the faculty members respectively. All materials used in the study are constructed and standardized on Indian population. The study revealed a positive correlation between EI and teacher effectiveness, both self-reported and students rated. Among ten components of EI considered in the study; emotional stability, self-motivation, managing relations, self-awareness and integrity emerged as the best predictors of teacher effectiveness. Gender differences on the scores of EI and Teacher Effectiveness was insignificant. The EI and self-reported teacher effectiveness of engineering faculty members were relatively higher than those of medical faculty. However, according to students’ rating there was no significant difference in teacher effectiveness among the two groups. Implications of this research from the perspective of training faculty members are discussed.

  3. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    Science.gov (United States)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  4. Relations between focusing power of space-charge lenses and external electromagnetic fields

    International Nuclear Information System (INIS)

    Yu Qingchang; Qiu Hong; Huang Jiachang

    1991-01-01

    Under different external electromagnetic fields, the electron densities of the electron cloud in a self-sustaning spece-charge lens are measured with the radio-frequency method and the energy distributions of the ions produced in ionization are measured with the stopping field method. From them the relations between the focusing power of space-charge lenses and the external electromagnetic fields are determined. The available region of the Lebedev-Morozov formula is discussed

  5. Relational safety and liberating training spaces: an application with a focus on sexual orientation issues.

    Science.gov (United States)

    Hernández, Pilar; Rankin, Pressley

    2008-04-01

    This article describes and discusses a teaching case of a clinical training situation involving a gay marriage and family therapy student working with a same-sex affectional couple. The conceptual pillars of this teaching case, relational safety and liberating spaces, are advanced as illustrations of how the student developed his voice in the training process. Pivotal moments in this process are discussed, as are implications for training and personal and professional growth.

  6. Work demands are related to mental health problems for older engine room officers.

    Science.gov (United States)

    Rydstedt, Leif W; Lundh, Monica

    2012-01-01

    The aim of the present study was to analyse the main and interaction effects of age and psychosocial work demands on mental wellbeing in a sample (N = 685; age M = 47 years) of engine room officers in the Swedish merchant fleet. As expected, work demands were highly related to general mental health as well as to perceived stress, while the main effect of age only related significantly to perceived stress. The interaction effects between high work demands and high age significantly explained the variance of general mental health as well as perceived stress. The results can be understood as a consequence of the rapid technological and organisational development in the shipping industry and suggest that it ought be of high priority to provide older employees with work-related resources to support their long-term work performance as well as their health and wellbeing.

  7. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    Science.gov (United States)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  8. NASA Space Science Days: An Out of School Program Using National Partnerships to Further Influence Future Scientists and Engineers.

    Science.gov (United States)

    Galindo, Charles; Allen, Jaclyn; Garcia, Javier; Hrrera, Stephanie

    2012-01-01

    The National Math and Science Initiative states that American students are falling behind in the essential subjects of math and science, putting our position in the global economy at risk a foreboding statement that has caused the U.S. to re-evaluate how we view STEM education. Developing science and engineering related out of school programs that expose middle school students to math and science in a nontraditional university environment has the potential to motivate young students to look at the physical sciences in an exciting out of the norm environment.

  9. A Description Of Space Relations In An NLP Model: The ABBYY Compreno Approach

    Directory of Open Access Journals (Sweden)

    Aleksey Leontyev

    2015-12-01

    Full Text Available The current paper is devoted to a formal analysis of the space category and, especially, to questions bound with the presentation of space relations in a formal NLP model. The aim is to demonstrate how linguistic and cognitive problems relating to spatial categorization, definition of spatial entities, and the expression of different locative senses in natural languages can be solved in an artificial intelligence system. We offer a description of the locative groups in the ABBYY Compreno formalism – an integral NLP framework applied for machine translation, semantic search, fact extraction, and other tasks based on the semantic analysis of texts. The model is based on a universal semantic hierarchy of the thesaurus type and includes a description of all possible semantic and syntactic links every word can attach. In this work we define the set of semantic locative relations between words, suggest different tools for their syntactic presentation, give formal restrictions for the word classes that can denote spaces, and show different strategies of dealing with locative prepositions, especially as far as the problem of their machine translation is concerned.

  10. On System Engineering a Barter-Based Re-allocation of Space System Key Development Resources

    Science.gov (United States)

    Kosmann, William J.

    NASA has had a decades-long problem with cost growth during the development of space science missions. Numerous agency-sponsored studies have produced average mission level development cost growths ranging from 23 to 77%. A new study of 26 historical NASA science instrument set developments using expert judgment to re-allocate key development resources has an average cost growth of 73.77%. Twice in history, during the Cassini and EOS-Terra science instrument developments, a barter-based mechanism has been used to re-allocate key development resources. The mean instrument set development cost growth was -1.55%. Performing a bivariate inference on the means of these two distributions, there is statistical evidence to support the claim that using a barter-based mechanism to re-allocate key instrument development resources will result in a lower expected cost growth than using the expert judgment approach. Agent-based discrete event simulation is the natural way to model a trade environment. A NetLogo agent-based barter-based simulation of science instrument development was created. The agent-based model was validated against the Cassini historical example, as the starting and ending instrument development conditions are available. The resulting validated agent-based barter-based science instrument resource re-allocation simulation was used to perform 300 instrument development simulations, using barter to re-allocate development resources. The mean cost growth was -3.365%. A bivariate inference on the means was performed to determine that additional significant statistical evidence exists to support a claim that using barter-based resource re-allocation will result in lower expected cost growth, with respect to the historical expert judgment approach. Barter-based key development resource re-allocation should work on science spacecraft development as well as it has worked on science instrument development. A new study of 28 historical NASA science spacecraft

  11. Google and Women's Health-Related Issues: What Does the Search Engine Data Reveal?

    Science.gov (United States)

    Baazeem, Mazin; Abenhaim, Haim

    2014-01-01

    Identifying the gaps in public knowledge of women's health related issues has always been difficult. With the increasing number of Internet users in the United States, we sought to use the Internet as a tool to help us identify such gaps and to estimate women's most prevalent health concerns by examining commonly searched health-related keywords in Google search engine. We collected a large pool of possible search keywords from two independent practicing obstetrician/gynecologists and classified them into five main categories (obstetrics, gynecology, infertility, urogynecology/menopause and oncology), and measured the monthly average search volume within the United States for each keyword with all its possible combinations using Google AdWords tool. We found that pregnancy related keywords were less frequently searched in general compared to other categories with an average of 145,400 hits per month for the top twenty keywords. Among the most common pregnancy-related keywords was "pregnancy and sex' while pregnancy-related diseases were uncommonly searched. HPV alone was searched 305,400 times per month. Of the cancers affecting women, breast cancer was the most commonly searched with an average of 247,190 times per month, followed by cervical cancer then ovarian cancer. The commonly searched keywords are often issues that are not discussed in our daily practice as well as in public health messages. The search volume is relatively related to disease prevalence with the exception of ovarian cancer which could signify a public fear.

  12. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    Science.gov (United States)

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Cost-benefit evaluation of containment related engineered safety features of Indian pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Bajaj, S.S.; Bhawal, R.N.; Rustagi, R.S.

    1984-01-01

    The typical containment system for a commercial nuclear reactor uses several engineered safety features to achieve its objective of limiting the release of radioactive fission products to the environment in the event of postulated accident conditions. The design of containment systems and associated features for Indian Pressurized Heavy Water Reactors (PHWRs) has undergone progressive improvement in successive projects. In particular, the current design adopted for the Narora Atomic Power Project (NAPP) has seen several notable improvements. The paper reports on a cost-benefit study in respect of three containment related engineered safety features and subsystems of NAPP, viz. (i) secondary containment envelope, (ii) primary containment filtration and pump-back system, and (iii) secondary containment filtration, recirculation and purge system. The effect of each of these systems in reducing the environmental releases of radioactivity following a design basis accident is presented. The corresponding reduction in population exposure and the associated monetary value of this reduction in exposure are also given. The costs of the features and subsystem under consideration are then compared with the monetary value of the exposures saved, as well as other non-quantified benefits, to arrive at conclusions regarding the usefulness of each subsystem. This study clearly establishes for the secondary containment envelope the benefit in terms of reduction in public exposure giving a quantitative justification for the costs involved. In the case of the other two subsystems, which involve relatively low costs, while all benefits have not been quantified, their desirability is justified on qualitative considerations. It is concluded that the engineered safety features adopted in the current containment system design of Indian PHWRs contribute to reducing radiation exposures during accident conditions in accordance with the ALARA ('as low as reasonably achievable') principle

  14. Time, space and simultaneity: a question, in the XIX century, for scientists, artists, engineers and mathematicians

    Directory of Open Access Journals (Sweden)

    Andreia Guerra

    2010-03-01

    Full Text Available The study of Contemporary and Modern Physics in High School is an important proposal for a large number of scientific education researchers. In the past years, various papers discussed and presented results about the introduction of Contemporary and Modern Physics in Science classes. This paper discuss these subjects and propose an historical-philosophical approach for the study of the Special Theory of Relativity, so this way students could understand questions about these subjects which bring different reflections from the common sense students have learned.

  15. Revised Robertson's test theory of special relativity: space-time structure and dynamics

    International Nuclear Information System (INIS)

    Vargas, J.G.; Torr, D.G.

    1986-01-01

    The experimental testing of the Lorentz transformations is based on a family of sets of coordinate transformations that do not comply in general with the principle of equivalence of the inertial frames. The Lorentz and Galilean sets of transformations are the only member sets of the family that satisfy this principle. In the neighborhood of regular points of space-time, all members in the family are assumed to comply with local homogeneity of space-time and isotropy of space in at least one free-falling elevator, to be denoted as Robertson's ab initio rest frame (H.P. Robertson, Rev. Mod. Phys. 21, 378 (1949)). Without any further assumptions, it is shown that Robertson's rest frame becomes a preferred frame for all member sets of the Robertson family except for, again, Galilean and Einstein's relativities. If one now assumes the validity of Maxwell-Lorentz electrodynamics in the preferred frame, a different electrodynamics spontaneously emerges for each set of transformations. The flat space-time of relativity retains its relevance, which permits an obvious generalization, in a Robertson context, of Dirac's theory of the electron and Einstein's gravitation. The family of theories thus obtained constitutes a covering theory of relativistic physics. A technique is developed to move back and forth between Einstein's relativity and the different members of the family of theories. It permits great simplifications in the analysis of relativistic experiments with relevant ''Robertson's subfamilies.'' It is shown how to adapt the Clifford algebra version of standard physics for use with the covering theory and, in particular, with the covering Dirac theory

  16. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Man-Ting; Chen, Hsun-Jung [Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Young, Li-Hao, E-mail: lhy@mail.cmu.edu.tw [Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Yang, Hsi-Hsien [Department of Environmental Engineering and Management, Chaoyang University of Technology, 168, Jifeng E. Road, Wufeng District, Taichung 41349, Taiwan (China); Tsai, Ying I. [Department of Environmental Engineering and Science, Chia Nan University of Pharmacy and Science, 60, Sec. 1, Erren Rd., Rende District, Tainan 71710, Taiwan (China); Wang, Lin-Chi [Department of Civil Engineering and Geomatics, Cheng Shiu University, 840, Chengcing Road, Niaosong District, Kaohsiung 83347, Taiwan (China); Lu, Jau-Huai [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 40254, Taiwan (China); Chen, Chung-Bang [Fuel Quality and Engine Performance Research, Refining and Manufacturing Research Institute, Chinese Petroleum Corporation, 217, Minsheng S. Road, West District, Chiayi 60051, Taiwan (China)

    2015-10-30

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study.

  17. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads

    International Nuclear Information System (INIS)

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I.; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-01-01

    Highlights: • We study particulate OC and EC under 3 fuels, 2 aftertreatments and 4 engine loads. • Negligible to minor OC and EC changes with low, ultralow sulfur and 10% biodiesels. • Moderate reductions of EC and particularly OC from diesel oxidation catalyst (DOC). • Large reductions of OC and particularly EC from DOC plus diesel particulate filter. • Highest at idle, whereas OC decreases but EC increases from low to high load. - Abstract: Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study

  18. The equivalence of perfect fluid space-times and viscous magnetohydrodynamic space-times in general relativity

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1983-01-01

    The work of a previous article is extended to show that space-times which are the exact solutions of the field equations for a perfect fluid also may be exact solutions of the field equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equivalence to exist and viscous magnetohydrodynamic solutions are found for a number of known perfect fluid space-times. (author)

  19. Developing Automatic Form and Design System Using Integrated Grey Relational Analysis and Affective Engineering

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Liu

    2018-01-01

    Full Text Available In the modern highly competitive marketplace and global market environment, product quality improvements that abridge development time and reduce the production costs are effective methods for promoting the business competitiveness of a product in shorter lifecycles. Since the design process is the best time to control such parameters, systematically designing the processes to develop a product that more closely fits the demand requirements for the market is a key factor for developing a successful product. In this paper, a combined affective engineering method and grey relational analysis are used to develop a product design process. First, design image scale technology is used to acquire the best the design criteria factors, and then affective engineering methods are used to set the relationships between customer needs and production factors. Finally, grey relational analysis is used to select the optimal design strategy. Using this systematic design method, a higher quality product can be expanded upon in a shorter lead-time for improving business competition.

  20. 2001 Bhuj, India, earthquake engineering seismoscope recordings and Eastern North America ground-motion attenuation relations

    Science.gov (United States)

    Cramer, C.H.; Kumar, A.

    2003-01-01

    Engineering seismoscope data collected at distances less than 300 km for the M 7.7 Bhuj, India, mainshock are compatible with ground-motion attenuation in eastern North America (ENA). The mainshock ground-motion data have been corrected to a common geological site condition using the factors of Joyner and Boore (2000) and a classification scheme of Quaternary or Tertiary sediments or rock. We then compare these data to ENA ground-motion attenuation relations. Despite uncertainties in recording method, geological site corrections, common tectonic setting, and the amount of regional seismic attenuation, the corrected Bhuj dataset agrees with the collective predictions by ENA ground-motion attenuation relations within a factor of 2. This level of agreement is within the dataset uncertainties and the normal variance for recorded earthquake ground motions.

  1. Nuclear design analysis of square-lattice honeycomb space nuclear rocket engine

    International Nuclear Information System (INIS)

    Widargo, Reza; Anghaie, Samim

    1999-01-01

    The square-lattice honeycomb reactor is designed based on a cylindrical core that is determined to have critical diameter and length of 0.50 m and 0.50 c, respectively. A 0.10-cm thick radial graphite reflector, in addition to a 0.20-m thick axial graphite reflector are used to reduce neutron leakage from the reactor. The core is fueled with solid solution of 93% enriched (U, Zr, Nb)C, which is one of several ternary uranium carbides that are considered for this concept. The fuel is to be fabricated as 2 mm grooved (U, Zr, Nb)C wafers. The fuel wafers are used to form square-lattice honeycomb fuel assemblies, 0.10 m in length with 30% cross-sectional flow area. Five fuel assemblies are stacked up axially to form the reactor core. Based on the 30% void fraction, the width of the square flow channel is about 1.3 mm. The hydrogen propellant is passed through these flow channels and removes the heat from the reactor core. To perform nuclear design analysis, a series of neutron transport and diffusion codes are used. The preliminary results are obtained using a simple four-group cross-section model. To optimize the nuclear design, the fuel densities are varied for each assembly. Tantalum, hafnium and tungsten are considered and used as a replacement for niobium in fuel material to provide water submersion sub-criticality for the reactor. Axial and radial neutron flux and power density distributions are calculated for the core. Results of the neutronic analysis indicate that the core has a relatively fast spectrum. From the results of the thermal hydraulic analyses, eight axial temperature zones are chosen for the calculation of group average cross-sections. An iterative process is conducted to couple the neutronic calculations with the thermal hydraulics calculations. Results of the nuclear design analysis indicate that a compact core can be designed based on ternary uranium carbide square-lattice honeycomb fuel. This design provides a relatively high thrust to weight

  2. Organizing Space and Time through Relational Human–animal Boundary Work

    DEFF Research Database (Denmark)

    Sage, Daniel; Justesen, Lise; Dainty, Andrew

    2016-01-01

    In this article, we examine the role that animals play within human organizational boundary work. In so doing, we challenge the latent anthropocentricism in many, if not most, theories of organization that locate animal agencies outside the boundary work that is said to constitute organizing....... In developing this argument, we draw together diverse strands of work mobilizing Actor–Network Theory that engage the entanglement of human/nonhuman agencies. In bringing this work together, we suggest humans may organize, even manage, by conducting relational boundary work with animal agencies, spacings...... and timings. Our argument is empirically illustrated and theoretically developed across two cases of the spacings and timings of construction project organizations—an infrastructure project in the United Kingdom and a housing development in Scandinavia. Construction projects are well-known for their tightly...

  3. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  4. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  5. In-Vessel Composting of Simulated Long-Term Missions Space-Related Solid Wastes

    Science.gov (United States)

    Rodriguez-Carias, Abner A.; Sager, John; Krumins, Valdis; Strayer, Richard; Hummerick, Mary; Roberts, Michael S.

    2002-01-01

    Reduction and stabilization of solid wastes generated during space missions is a major concern for the Advanced Life Support - Resource Recovery program at the NASA, Kennedy Space Center. Solid wastes provide substrates for pathogen proliferation, produce strong odor, and increase storage requirements during space missions. A five periods experiment was conducted to evaluate the Space Operation Bioconverter (SOB), an in vessel composting system, as a biological processing technology to reduce and stabilize simulated long-term missions space related solid-wastes (SRSW). For all periods, SRSW were sorted into components with fast (FBD) and slow (SBD) biodegradability. Uneaten food and plastic were used as a major FBD and SBD components, respectively. Compost temperature (C), CO2 production (%), mass reduction (%), and final pH were utilized as criteria to determine compost quality. In period 1, SOB was loaded with a 55% FBD: 45% SBD mixture and was allowed to compost for 7 days. An eleven day second composting period was conducted loading the SOB with 45% pre-composted SRSW and 55% FBD. Period 3 and 4 evaluated the use of styrofoam as a bulking agent and the substitution of regular by degradable plastic on the composting characteristics of SRSW, respectively. The use of ceramic as a bulking agent and the relationship between initial FBD mass and heat production was investigated in period 5. Composting SRSW resulted in an acidic fermentation with a minor increase in compost temperature, low CO2 production, and slightly mass reduction. Addition of styrofoam as a bulking agent and substitution of regular by biodegradable plastic improved the composting characteristics of SRSW, as evidenced by higher pH, CO2 production, compost temperature and mass reduction. Ceramic as a bulking agent and increase the initial FBD mass (4.4 kg) did not improve the composting process. In summary, the SOB is a potential biological technology for reduction and stabilization of mission space-related

  6. Association between urban green space and self-reported lifestyle-related disorders in Oslo, Norway.

    Science.gov (United States)

    Camilla, Ihlebæk; Geir, Aamodt; Renata, Aradi; Bjørgulf, Claussen; Halvorsen, Thorén Kine

    2017-10-01

    The need for studies from more countries on the relationship between urban green space and health has been emphasized. The aim of this study was to investigate the association between two types of measurement of urban green space and self-reported lifestyle-related disorders in Oslo, Norway. Self-reported measures on mental disorders, asthma, type 2 diabetes and musculoskeletal pain of 8638 participants in the Oslo Health Study (HUBRO) were linked to two types of green space variables: the vegetation cover greenness derived from satellite data, which shows the city's vegetation cover regardless of property boundaries, and the land use greenness derived from municipal plans showing information about publicly accessible vegetation-covered areas. Associations between greenness and health measures were analysed by logistic regression models controlling for possible individual and contextual confounders. Increasing vegetation cover greenness was associated with fewer self-reported mental disorders for both men and women after controlling for possible confounders. The proportion of women who reported high levels of musculoskeletal pain increased with increasing degrees of both of the greenness measurements, but no significant association was observed for men. No association was found for asthma and diabetes type 2 for either men or women. Although there was a positive association between vegetation cover greenness and self-reported mental disorders, the main findings showed mixed results. The lack of clear associations between urban green space and lifestyle-related health disorders in Oslo might have been influenced by a large proportion of the inhabitants having easy access to green areas.

  7. Cold flow testing of the Space Shuttle Main Engine alternate turbopump development high pressure fuel turbine model

    Science.gov (United States)

    Gaddis, Stephen W.; Hudson, Susan T.; Johnson, P. D.

    1992-01-01

    NASA's Marshall Space Flight Center has established a cold airflow turbine test program to experimentally determine the performance of liquid rocket engine turbopump drive turbines. Testing of the SSME alternate turbopump development (ATD) fuel turbine was conducted for back-to-back comparisons with the baseline SSME fuel turbine results obtained in the first quarter of 1991. Turbine performance, Reynolds number effects, and turbine diagnostics, such as stage reactions and exit swirl angles, were investigated at the turbine design point and at off-design conditions. The test data showed that the ATD fuel turbine test article was approximately 1.4 percent higher in efficiency and flowed 5.3 percent more than the baseline fuel turbine test article. This paper describes the method and results used to validate the ATD fuel turbine aerodynamic design. The results are being used to determine the ATD high pressure fuel turbopump (HPFTP) turbine performance over its operating range, anchor the SSME ATD steady-state performance model, and validate various prediction and design analyses.

  8. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation.

  9. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Sloth, Martin S.

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation

  10. APLIKASI SEARCH ENGINE PAPER KARYA ILMIAH BERBASIS WEB DENGAN METODE FUZZY RELATION

    Directory of Open Access Journals (Sweden)

    Bernard Adytia Darmadi

    2005-01-01

    Full Text Available The number of paper collected by an educational institution is incresing each year. The increasing number of paper collected demand a method in order to find the right paper everytime there is someone who needs a reference. By far, most search engine still depend on keyword matching / string maching to find the apropriate result. This method will only find the apropriate paper based on the occurance of the inserted keyword on the paper. This research will discuss a searching system using fuzzy relation, by using fuzzy relation the relation between keyword and paper is found and determined. Searching system using fuzzy relation allows the search result include paper that do not have the keyword to be shown as a result. This result is made posssible because the word which occur in the paper is related to keyword inserted. Abstract in Bahasa Indonesia : Banyaknya jumlah paper yang dikoleksi sebuah lembaga pendidikan setiap tahun akan bertambah. Seiring dengan pertambahan jumlah paper tersebut maka diperlukan sebuah metode untuk mencari paper agar bila membutuhkan referensi maka paper/dokumen yang diperlukan dapat dengan mudah dapat ditemukan. Sejauh yang ada saat ini, kebanyakan mesin pencari masih mengandalkan pencarian dengan menggunakan keyword matching/string matching sehingga mengakibatkan hasil pencarian hanya akan menampilkan paper-paper yang mempunyai keyword/kata kunci yang dicari. Penelitan ini membahas sebuah sistem pencarian dengan menggunakan metode fuzzy relation, dimana dengan fuzzy relation didapatkan hubungan antara keyword dan paper. Dengan metode fuzzy relation maka sebuah pencarian mempunyai kemungkinan menampilkan hasil berupa paper yang tidak mengandung keyword yang dicari. Karena kata yang mengakibatkan paper (yang tidak mengandung keyword muncul mempunyai hubungan dengan keyword yang dimasukkan. Kata kunci: mesin pencari, relasi fuzzy, sistem cerdas.

  11. Proceedings of the OECD/NEA workshop on the relations between seismological data and seismic engineering

    International Nuclear Information System (INIS)

    2003-01-01

    The Committee on the Safety of Nuclear Installations (CSNI) of the OECD-NEA co-ordinates the NEA activities concerning the technical aspects of design, construction and operation of nuclear installations insofar as they affect the safety of such installations. The Integrity and Ageing Working Group (IAGE WG) of the CSNI deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The sub-group dealing with the seismic behaviour of structures proposed this workshop. The OECD-NEA workshop on the relations between seismological data and seismic engineering analyses was held on October 17-18, 2002. A field visits in the Izmit area where the fault scarp is still visible was organised on Wednesday October 16, 2002. The Ttirkiye Atom Enerjisi Kurumu, TAEK (Turkish Atomic Energy Agency) in Istanbul, Turkey, hosted the workshop. A recommendation of the OECD workshop on the engineering characterisation of seismic input (hosted by the United States Nuclear Regulatory Commission and organised by Brookhaven National Laboratory on November 15-17, 1999) was to foster the growth of interaction between 'design engineers' and 'ground motion specialists'. The objective of the Istanbul workshop is to address this recommendation. The workshop gave seismologists the opportunity to present observed damages and their related ground motions and design engineers the opportunity to present current techniques used in the evaluation of seismic hazards. Bridging the gap between these two fields was a key objective - this workshop was a forum for bringing together the two communities. In addition, the location of the workshop was particularly interesting and provided possibilities for several of the host country participants to discuss the 1999 Kocaeli earthquake. On the basis of lessons learned from large earthquakes over the last decade, the

  12. Proposed Rule and Related Materials for Control of Emissions of Air Pollution From Nonroad Diesel Engines Control of Air Pollution From Aircraft and Aircraft Engines; Proposed Emission Standards and Test Procedures

    Science.gov (United States)

    EPA is proposing to adopt emission standards and related provisions for aircraft gas turbine engines with rated thrusts greater than 26.7 kilonewtons. These engines are used primarily on commercial passenger and freight aircraft.

  13. Combining annual daylight simulation with photobiology data to assess the relative circadian efficacy of interior spaces

    Energy Technology Data Exchange (ETDEWEB)

    Pechacek, C.S.; Andersen, M. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Dept. of Architecture, Building Technology; Lockley, S.W. [Harvard Medical School, Boston, MA (United States). Div. of Sleep Medicine, Brigham and Women' s Hospital

    2008-07-01

    This paper addressed the issue of hospital design and the role of daylight in patient health care. It presented a new approach for integrating empirical data and findings in photobiology into the performance assessment of a space, thus combining both visual and health-related criteria. Previous studies have reported significant health care outcomes in daylit environments, although the mechanism and photoreceptor systems controlling these effects remain unknown. This study focused on furthering the previous studies beyond windows to describing the characteristics of daylight that may promote human health by providing daylighting for the appropriate synchronization of circadian rhythms, and then make specific daylighting recommendations, grounded in biological findings. In particular, this study investigated the use of daylight autonomy (DA) to simulate the probabilistic and temporal potential of daylight for human health needs. Results of photobiology research were used to define threshold values for lighting, which were then used as goals for simulations. These goals included spectrum, intensity and timing of light at the human eye. The study investigated the variability of key architectural decisions in hospital room design to determine their influence on achieving the goals. The simulations showed how choices in building orientation, window size, user-window position and interior finishes affect the circadian efficacy of a space. Design decisions can improve or degrade the health potential for the space considered. While the findings in this research were specific to hospitals, the results can be applied to other building types such as office buildings and residences. 33 refs., 7 figs.

  14. Dressing method and quadratic bundles related to symmetric spaces. Vanishing boundary conditions

    Science.gov (United States)

    Valchev, T. I.

    2016-02-01

    We consider quadratic bundles related to Hermitian symmetric spaces of the type SU(m + n)/S(U(m) × U(n)). The simplest representative of the corresponding integrable hierarchy is given by a multi-component Kaup-Newell derivative nonlinear Schrödinger equation which serves as a motivational example for our general considerations. We extensively discuss how one can apply Zakharov-Shabat's dressing procedure to derive reflectionless potentials obeying zero boundary conditions. Those could be used for one to construct fast decaying solutions to any nonlinear equation belonging to the same hierarchy. One can distinguish between generic soliton type solutions and rational solutions.

  15. Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC

    Science.gov (United States)

    Schimmerling, W.; Curtis, S. B.

    1989-01-01

    The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.

  16. Realization of Cohen-Glashow very special relativity on noncommutative space-time.

    Science.gov (United States)

    Sheikh-Jabbari, M M; Tureanu, A

    2008-12-31

    We show that the Cohen-Glashow very special relativity (VSR) theory [A. G. Cohen and S. L. Glashow, Phys. Rev. Lett. 97, 021601 (2006)] can be realized as the part of the Poincaré symmetry preserved on a noncommutative Moyal plane with lightlike noncommutativity. Moreover, we show that the three subgroups relevant to VSR can also be realized in the noncommutative space-time setting. For all of these three cases, the noncommutativity parameter theta(mu upsilon) should be lightlike (theta(mu upsilon) theta mu upsilon = 0). We discuss some physical implications of this realization of the Cohen-Glashow VSR.

  17. Discretization of space and time: mass-energy relation, accelerating expansion of the Universe, Hubble constant

    OpenAIRE

    Roatta , Luca

    2017-01-01

    Assuming that space and time can only have discrete values, we obtain the expression of the gravitational potential energy that at large distance coincides with the Newtonian. In very precise circumstances it coincides with the relativistic mass-energy relation: this shows that the Universe is a black hole in which all bodies are subjected to an acceleration toward the border of the Universe itself. Since the Universe is a black hole with a fixed radius, we can obtain the density of the Unive...

  18. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    International Nuclear Information System (INIS)

    Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert

    2013-01-01

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies

  19. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Balondo Iyela, Daddy [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Département de Physique, Université de Kinshasa (UNIKIN), B.P. 190 Kinshasa XI, Democratic Republic of Congo (Congo, The Democratic Republic of the); Govaerts, Jan [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hounkonnou, M. Norbert [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin)

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.

  20. Model Verification and Validation Concepts for a Probabilistic Fracture Assessment Model to Predict Cracking of Knife Edge Seals in the Space Shuttle Main Engine High Pressure Oxidizer

    Science.gov (United States)

    Pai, Shantaram S.; Riha, David S.

    2013-01-01

    Physics-based models are routinely used to predict the performance of engineered systems to make decisions such as when to retire system components, how to extend the life of an aging system, or if a new design will be safe or available. Model verification and validation (V&V) is a process to establish credibility in model predictions. Ideally, carefully controlled validation experiments will be designed and performed to validate models or submodels. In reality, time and cost constraints limit experiments and even model development. This paper describes elements of model V&V during the development and application of a probabilistic fracture assessment model to predict cracking in space shuttle main engine high-pressure oxidizer turbopump knife-edge seals. The objective of this effort was to assess the probability of initiating and growing a crack to a specified failure length in specific flight units for different usage and inspection scenarios. The probabilistic fracture assessment model developed in this investigation combined a series of submodels describing the usage, temperature history, flutter tendencies, tooth stresses and numbers of cycles, fatigue cracking, nondestructive inspection, and finally the probability of failure. The analysis accounted for unit-to-unit variations in temperature, flutter limit state, flutter stress magnitude, and fatigue life properties. The investigation focused on the calculation of relative risk rather than absolute risk between the usage scenarios. Verification predictions were first performed for three units with known usage and cracking histories to establish credibility in the model predictions. Then, numerous predictions were performed for an assortment of operating units that had flown recently or that were projected for future flights. Calculations were performed using two NASA-developed software tools: NESSUS(Registered Trademark) for the probabilistic analysis, and NASGRO(Registered Trademark) for the fracture

  1. Mission definition study for Stanford relativity satellite. Volume 2: Engineering flight test program

    Science.gov (United States)

    1971-01-01

    The need is examined for orbital flight tests of gyroscope, dewar, and other components, in order to reduce the technical and financial risk in performing the relativity experiment. A program is described that would generate engineering data to permit prediction of final performance. Two flight tests are recommended. The first flight would test a dewar smaller than that required for the final flight, but of size and form sufficient to allow extrapolation to the final design. The second flight would use the same dewar design to carry a set of three gyroscopes, which would be evaluated for spinup and drift characteristics for a period of a month or more. A proportional gas control system using boiloff helium gas from the dewar, and having the ability to prevent sloshing of liquid helium, would also be tested.

  2. Multidimensional entropic uncertainty relation based on a commutator matrix in position and momentum spaces

    Science.gov (United States)

    Hertz, Anaelle; Vanbever, Luc; Cerf, Nicolas J.

    2018-01-01

    The uncertainty relation for continuous variables due to Byałinicki-Birula and Mycielski [I. Białynicki-Birula and J. Mycielski, Commun. Math. Phys. 44, 129 (1975), 10.1007/BF01608825] expresses the complementarity between two n -tuples of canonically conjugate variables (x1,x2,...,xn) and (p1,p2,...,pn) in terms of Shannon differential entropy. Here we consider the generalization to variables that are not canonically conjugate and derive an entropic uncertainty relation expressing the balance between any two n -variable Gaussian projective measurements. The bound on entropies is expressed in terms of the determinant of a matrix of commutators between the measured variables. This uncertainty relation also captures the complementarity between any two incompatible linear canonical transforms, the bound being written in terms of the corresponding symplectic matrices in phase space. Finally, we extend this uncertainty relation to Rényi entropies and also prove a covariance-based uncertainty relation which generalizes the Robertson relation.

  3. Proposed Modifications to Engineering Design Guidelines Related to Resistivity Measurements and Spacecraft Charging

    Science.gov (United States)

    Dennison, J. R.; Swaminathan, Prasanna; Jost, Randy; Brunson, Jerilyn; Green, Nelson; Frederickson, A. Robb

    2005-01-01

    A key parameter in modeling differential spacecraft charging is the resistivity of insulating materials. This determines how charge will accumulate and redistribute across the spacecraft, as well as the time scale for charge transport and dissipation. Existing spacecraft charging guidelines recommend use of tests and imported resistivity data from handbooks that are based principally upon ASTM methods that are more applicable to classical ground conditions and designed for problems associated with power loss through the dielectric, than for how long charge can be stored on an insulator. These data have been found to underestimate charging effects by one to four orders of magnitude for spacecraft charging applications. A review is presented of methods to measure the resistive of highly insulating materials, including the electrometer-resistance method, the electrometer-constant voltage method, the voltage rate-of-change method and the charge storage method. This is based on joint experimental studies conducted at NASA Jet Propulsion Laboratory and Utah State University to investigate the charge storage method and its relation to spacecraft charging. The different methods are found to be appropriate for different resistivity ranges and for different charging circumstances. A simple physics-based model of these methods allows separation of the polarization current and dark current components from long duration measurements of resistivity over day- to month-long time scales. Model parameters are directly related to the magnitude of charge transfer and storage and the rate of charge transport. The model largely explains the observed differences in resistivity found using the different methods and provides a framework for recommendations for the appropriate test method for spacecraft materials with different resistivities and applications. The proposed changes to the existing engineering guidelines are intended to provide design engineers more appropriate methods for

  4. Novel Risk Engine for Diabetes Progression and Mortality in USA: Building, Relating, Assessing, and Validating Outcomes (BRAVO).

    Science.gov (United States)

    Shao, Hui; Fonseca, Vivian; Stoecker, Charles; Liu, Shuqian; Shi, Lizheng

    2018-05-03

    There is an urgent need to update diabetes prediction, which has relied on the United Kingdom Prospective Diabetes Study (UKPDS) that dates back to 1970 s' European populations. The objective of this study was to develop a risk engine with multiple risk equations using a recent patient cohort with type 2 diabetes mellitus reflective of the US population. A total of 17 risk equations for predicting diabetes-related microvascular and macrovascular events, hypoglycemia, mortality, and progression of diabetes risk factors were estimated using the data from the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial (n = 10,251). Internal and external validation processes were used to assess performance of the Building, Relating, Assessing, and Validating Outcomes (BRAVO) risk engine. One-way sensitivity analysis was conducted to examine the impact of risk factors on mortality at the population level. The BRAVO risk engine added several risk factors including severe hypoglycemia and common US racial/ethnicity categories compared with the UKPDS risk engine. The BRAVO risk engine also modeled mortality escalation associated with intensive glycemic control (i.e., glycosylated hemoglobin engine for the US diabetes cohort provides an alternative to the UKPDS risk engine. It can be applied to assist clinical and policy decision making such as cost-effective resource allocation in USA.

  5. A Space-Economic Representation of Transitive Closures in Relational Databases

    Directory of Open Access Journals (Sweden)

    Yangjun Chen

    2006-10-01

    Full Text Available A composite object represented as a directed graph (digraph for short is an important data structure that requires efficient support in CAD/CAM, CASE, office systems, software management, web databases, and document databases. It is cumbersome to handle such objects in relational database systems when they involve ancestor-descendant relationships (or say, recursive relationships. In this paper, we present a new encoding method to label a digraph, which reduces the footprints of all previous strategies. This method is based on a tree labeling method and the concept of branchings that are used in graph theory for finding the shortest connection networks. A branching is a subgraph of a given digraph that is in fact a forest, but covers all the nodes of the graph. On the one hand, the proposed encoding scheme achieves the smallest space requirements among all previously published strategies for recognizing recursive relationships. On the other hand, it leads to a new algorithm for computing transitive closures for DAGs (directed acyclic graph in O(eþb time and O(nþb space, where n represents the number of the nodes of a DAG, e the numbers of the edges, and b the DAG's breadth. In addition, this method can be extended to cyclic digraphs and is especially suitable for a relational environment.

  6. Misconceptions in recent papers on special relativity and absolute space theories

    Science.gov (United States)

    Torr, D. G.; Kolen, P.

    1982-01-01

    Several recent papers which purport to substantiate or negate arguments in favor of certain theories of absolute space have been based on fallacious principles. This paper discusses three related instances, indicating where misconceptions have arisen. It is established, contrary to popular belief, that the classical Lorentz ether theory accounts for all the experimental evidence which supports the special theory of relativity. It is demonstrated that the ether theory predicts the null results obtained from pulsar timing and Moessbauer experiments. It is concluded that a measurement of the one-way velocity of light has physical meaning within the context of the Lorentz theory, and it is argued that an adequately designed experiment to measure the one-way velocity of light should be attempted.

  7. Embeddings relations between weighted complementary Local Morrey-type spaces and weighted local Morrey-type spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Mustafayev, R.Ch.; Ünver, T.

    2017-01-01

    Roč. 8, č. 1 (2017), s. 34-49 ISSN 2077-9879 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : local Morrey-type spaces * embeddings * iterated Hardy inequalities Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics http://www.mathnet.ru/ php /archive.phtml?wshow=paper&jrnid=emj&paperid=246&option_lang=rus

  8. Embeddings relations between weighted complementary Local Morrey-type spaces and weighted local Morrey-type spaces

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Mustafayev, R.Ch.; Ünver, T.

    2017-01-01

    Roč. 8, č. 1 (2017), s. 34-49 ISSN 2077-9879 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : local Morrey-type spaces * embeddings * iterated Hardy inequalities Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=emj&paperid=246&option_lang=rus

  9. Aspects of consolidation of engineering capability related to nuclear power plants

    International Nuclear Information System (INIS)

    Mueller, A.E.F.; Gasparian, A.E.; Calvet Filho, H.J.

    1980-01-01

    A major interest of countries launching nuclear program is to consolidate an engineering capability for Nuclear Power Plants design by performing part of the engineering services locally. A decade of nuclear power plant engineering and construction has exposed Brazilian architect-engineers to this new challenge. To cope with it, technology sources were identified, agreements were made and transfer is going on between foreign and local companies. Services performed by Brazilian architect-engineers are summarized. Foreign technology must be judiciously examined before implementation in a different environment. The receiver has to be prepared to develop his own capabilities and absorb the know-how being offered, taking into consideration the local engineering experience and construction practices. Some of the problems faced are outlined herein. The performed efforts brought Brazilian architect-engineers to a consolidated level of experience. (Author) [pt

  10. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    Science.gov (United States)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  11. 14 CFR 1266.102 - Cross-waiver of liability for agreements for activities related to the International Space Station.

    Science.gov (United States)

    2010-01-01

    ... “launch vehicle” means an object, or any part thereof, intended for launch, launched from Earth, or... services; and (ii) All activities related to ground support, test, training, simulation, or guidance and... persons or both between two different space objects, between two different locations on the same space...

  12. Genetic engineering to enhance crop-based phytonutrients (nutraceuticals) to alleviate diet-related diseases.

    Science.gov (United States)

    Mattoo, Autar K; Shukla, Vijaya; Fatima, Tahira; Handa, Avtar K; Yachha, Surender K

    2010-01-01

    Nutrition studies have provided unambiguous evidence that a number of human health maladies including chronic coronary artery, hypertension, diabetes, osteoporosis, cancer and age- and lifestyle-related diseases are associated with the diet. Several favorable and a few deleterious natural dietary ingredients have been identified that predispose human populations to various genetic and epigenetic based disorders. Media dissemination of this information has greatly raised public awareness of the beneficial effects due to increased consumption of fruit, vegetables and whole grain cereals-foods rich in phytonutrients, protein and fiber. However, the presence of intrinsically low levels of the beneficial phytonutrients in the available genotypes of crop plants is not always at par with the recommended daily allowance (RDA) for different phytonutrients (nutraceuticals). Molecular engineering of crop plants has offered a number of tools to markedly enhance intracellular concentrations of some of the beneficial nutrients, levels that, in some cases, are closer to the RDA threshold. This review brings together literature on various strategies utilized for bioengineering both major and minor crops to increase the levels of desirable phytonutrients while also decreasing the concentrations of deleterious metabolites. Some of these include increases in: protein level in potato; lysine in corn and rice; methionine in alfalfa; carotenoids (beta-carotene, phytoene, lycopene, zeaxanthin and lutein) in rice, potato, canola, tomato; choline in tomato; folates in rice, corn, tomato and lettuce; vitamin C in corn and lettuce; polyphenolics such as flavonol, isoflavone, resveratrol, chlorogenic acid and other flavonoids in tomato; anthocyanin levels in tomato and potato; alpha-tocopherol in soybean, oil seed, lettuce and potato; iron and zinc in transgenic rice. Also, molecular engineering has succeeded in considerably reducing the levels of the offending protein glutelin in rice

  13. Automation of reverse engineering process in aircraft modeling and related optimization problems

    Science.gov (United States)

    Li, W.; Swetits, J.

    1994-01-01

    During the year of 1994, the engineering problems in aircraft modeling were studied. The initial concern was to obtain a surface model with desirable geometric characteristics. Much of the effort during the first half of the year was to find an efficient way of solving a computationally difficult optimization model. Since the smoothing technique in the proposal 'Surface Modeling and Optimization Studies of Aerodynamic Configurations' requires solutions of a sequence of large-scale quadratic programming problems, it is important to design algorithms that can solve each quadratic program in a few interactions. This research led to three papers by Dr. W. Li, which were submitted to SIAM Journal on Optimization and Mathematical Programming. Two of these papers have been accepted for publication. Even though significant progress has been made during this phase of research and computation times was reduced from 30 min. to 2 min. for a sample problem, it was not good enough for on-line processing of digitized data points. After discussion with Dr. Robert E. Smith Jr., it was decided not to enforce shape constraints in order in order to simplify the model. As a consequence, P. Dierckx's nonparametric spline fitting approach was adopted, where one has only one control parameter for the fitting process - the error tolerance. At the same time the surface modeling software developed by Imageware was tested. Research indicated a substantially improved fitting of digitalized data points can be achieved if a proper parameterization of the spline surface is chosen. A winning strategy is to incorporate Dierckx's surface fitting with a natural parameterization for aircraft parts. The report consists of 4 chapters. Chapter 1 provides an overview of reverse engineering related to aircraft modeling and some preliminary findings of the effort in the second half of the year. Chapters 2-4 are the research results by Dr. W. Li on penalty functions and conjugate gradient methods for

  14. Numerical relativity for D dimensional axially symmetric space-times: Formalism and code tests

    International Nuclear Information System (INIS)

    Zilhao, Miguel; Herdeiro, Carlos; Witek, Helvi; Nerozzi, Andrea; Sperhake, Ulrich; Cardoso, Vitor; Gualtieri, Leonardo

    2010-01-01

    The numerical evolution of Einstein's field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modeling black hole production in TeV gravity scenarios, to analysis of the stability of exact solutions, and to tests of cosmic censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for D≥5, or SO(D-3) for D≥6. Performing a dimensional reduction on a (D-4) sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata, and Nakamura formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the Lean code and perform a variety of simulations of nonspinning black hole space-times. Specifically, we present a modified moving puncture gauge, which facilitates long-term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5, 6.

  15. Rock engineering applications, 1991

    International Nuclear Information System (INIS)

    Franklin, J.A.; Dusseault, M.B.

    1991-01-01

    This book demonstrates how to apply the theories and principles of rock engineering to actual engineering and construction tasks. It features insights on geology for mining and tunnelling applications. It is practical resource that focuses on the latest technological innovation and examines up-to-date procedures used by engineers for coping with complex rock conditions. The authors also discuss question related to underground space, from design approaches to underground housing and storage. And they cover the monitoring of storage caverns for liquid and gaseous products or toxic and radioactive wastes

  16. Bringing Art, Music, Theater and Dance Students into Earth and Space Science Research Labs: A New Art Prize Science and Engineering Artists-in-Residence Program

    Science.gov (United States)

    Moldwin, M.; Mexicotte, D.

    2017-12-01

    A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their

  17. Device for controlling the composition of the mixture burnt in the combustion spaces of an internal combustion engine. Einrichtung zur Regelung der Zusammensetzung des in den Brennraeumen einer Brennkraftmaschine zur Verbrennung kommenden Betriebsgemisches

    Energy Technology Data Exchange (ETDEWEB)

    Latsch, R; Bianchi, V

    1986-07-31

    The purpose of the invention is to create a device by which the extent of the reaction to the control of the composition of the mixture burnt in the combustion spaces of an internal combustion engine can be measured in a sensitive, responsive and safe way, where the position of the elements detecting the reaction should have a relatively small effect on the accuracy of the measurement and the extent of measurement. According to the invention, this problem is solved by the use of 2 thermal sensors connected to a control device (photo-electric diode, photo-electric transistor), one of which acts catalytically and causes the parts of the gas mixture there to react. The thermal sensor output signals are periodically integrated via the piston work and are entered in the control device. The measured temperature is a measure of how far the method of operation of the internal combustion engine has approached its limits. (HWJ).

  18. The Riemann surface of static limit dispersion relation and projective spaces

    International Nuclear Information System (INIS)

    Majewski, M.; Meshcheryakov, V.A.; Meshcheryakov, D.V.; Tran Quang Tuyet

    2004-01-01

    The rigorous Bogolyubov's proof of the dispersion relations (DR) for pion-nucleon scattering is a good foundation for the static models. DR contain a small parameter (ratio of the pion-nucleon masses). The static models arise when this parameter goes to zero. The S-matrix in the static models has a block structure. Each block of the S-matrix has a finite order NxN and is a matrix of meromorphic functions of the light particle energy ω in the complex plane with cuts (-∞, -1], [+1,+∞). In the elastic case, it reduces to N functions S i (ω) connected by the NxN crossing-symmetry matrix A. The unitarity and the crossing symmetry are the base for the system of nonlinear boundary value problems. It defines the analytical continuation of S i (ω) from the physical sheet to the unphysical ones and can be treated as a system of nonlinear difference equations. The problem is solvable for any 2x2 crossing-symmetry matrix A that permits one to calculate the Regge trajectories for the SU(2) static model. It is shown that global analyses of this system can be carried out effectively in projective spaces P N-1 and P N . The connection between the spaces P N-1 and P N is discussed. Some particular solutions of the system are found

  19. Preface: Space and geophysical research related to Latin America - Part 1

    Science.gov (United States)

    Mendoza, Blanca

    2016-03-01

    For the last 25 years, every two to three years the Conferencia Latinoamericana de Geofísica Espacial (COLAGE) is held in one of the Latin American countries for the purpose of promoting scientific exchange among scientists of the region and to encourage continued research that is unique to this area of the world. At the more recent conference, the community realized that many individuals both within and outside Latin America have contributed greatly to the understanding of the space sciences in this area of the world. It was therefore decided to assemble a Special Issue Space and Geophysical Physics related to Latin America, presenting recent results and where submissions would be accepted from the world wide community of scientists involved in research appropriate to Latin America. Because of the large number of submissions, these papers will be printed in two separate issues; this is Part 1. These papers show the wide variety of research, both theoretical and applied, that is currently being developed in the Sub-Continent.

  20. Mingling, observing, and lingering: everyday public spaces and their implications for well-being and social relations.

    Science.gov (United States)

    Cattell, Vicky; Dines, Nick; Gesler, Wil; Curtis, Sarah

    2008-09-01

    The rejuvenation of public spaces is a key policy concern in the UK. Drawing on a wide literature and on qualitative research located in a multi-ethnic area of East London, this paper explores their relationship to well-being and social relations. It demonstrates that ordinary spaces are a significant resource for both individuals and communities. The beneficial properties of public spaces are not reducible to natural or aesthetic criteria, however. Social interaction in spaces can provide relief from daily routines, sustenance for people's sense of community, opportunities for sustaining bonding ties or making bridges, and can influence tolerance and raise people's spirits. They also possess subjective meanings that accumulate over time and can contribute to meeting diverse needs. Different users of public spaces attain a sense of well- being for different reasons: the paper calls for policy approaches in which the social and therapeutic properties of a range of everyday spaces are more widely recognised and nurtured.

  1. Energy-related scientists and engineers: a statistical profile of recent entrants into the work force, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Sharon E.

    1979-12-01

    This report examines the educational and employment characteristics of scientists and engineers who graduated during the years 1972, 1974, 1975, and 1976, with special attention to those whose work involves energy. The characteristics of energy-related graduates are also compared to those of more experienced scientists and engineers involved in energy activities. Information is based on the results of the 1976 and 1978 National Surveys of Recent Science and Engineering Graduates, and the 1976 National Survey of Natural and Social Scientists and Engineers, sponsored by the National Science Foundation and the US Department of Energy. Tabulations are included for the first time on employment involving specific energy sources and activities. Other characteristics discussed include educational level, salary, primary work activity, type of employer, and the proportion of graduates who found employment in their major field.

  2. In-Space Propulsion Engine Architecture based on Sublimation of Planetary Resources: From Exploration Robots to NEO Mitigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The sources of power used for deep space probe missions are usually derived from either solar panels for electrical energy, radioisotope thermal generators for...

  3. Proceedings of the NASA/Florida Institute of Technology Environmental Engineering Conference on Nitrogen Tetroxide. [with emphasis on space shuttle

    Science.gov (United States)

    Rhodes, E. L.

    1978-01-01

    Methods of reducing the user hazards of nitrogen tetroxide, a hypergolic oxidizer are discussed. Kennedy Space Center developments in N2O4 control for the space shuttle are featured. Other areas covered are life support equipment and transportation.

  4. Relations between generalized von Neumann-Jordan and James constants for quasi-Banach spaces

    Directory of Open Access Journals (Sweden)

    Young Chel Kwun

    2016-07-01

    Full Text Available Abstract Let C N J ( B $\\mathcal{C}_{NJ} ( \\mathcal{B} $ and J ( B $J ( \\mathcal{B} $ be the generalized von Neumann-Jordan and James constants of a quasi-Banach space B $\\mathcal{B}$ , respectively. In this paper we shall show the relation between C N J ( B $\\mathcal {C}_{NJ} ( \\mathcal{B} $ , J ( B $J ( \\mathcal{B} $ , and the modulus of convexity. Also, we show that if B $\\mathcal{B}$ is not uniform non-square then J ( B = C N J ( B = 2 $J ( \\mathcal{B} =\\mathcal{C}_{NJ} ( \\mathcal{B} =2$ . Moreover, we give an equivalent formula for the generalized von Neumann-Jordan constant.

  5. Relating landfill gas emissions to atmospheric pressure using numerical modeling and state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, T.G.; Christophersen, Mette; Moldrup, P.

    2003-01-01

    were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil......-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas...... permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods...

  6. Gravity Probe B: final results of a space experiment to test general relativity.

    Science.gov (United States)

    Everitt, C W F; DeBra, D B; Parkinson, B W; Turneaure, J P; Conklin, J W; Heifetz, M I; Keiser, G M; Silbergleit, A S; Holmes, T; Kolodziejczak, J; Al-Meshari, M; Mester, J C; Muhlfelder, B; Solomonik, V G; Stahl, K; Worden, P W; Bencze, W; Buchman, S; Clarke, B; Al-Jadaan, A; Al-Jibreen, H; Li, J; Lipa, J A; Lockhart, J M; Al-Suwaidan, B; Taber, M; Wang, S

    2011-06-03

    Gravity Probe B, launched 20 April 2004, is a space experiment testing two fundamental predictions of Einstein's theory of general relativity (GR), the geodetic and frame-dragging effects, by means of cryogenic gyroscopes in Earth orbit. Data collection started 28 August 2004 and ended 14 August 2005. Analysis of the data from all four gyroscopes results in a geodetic drift rate of -6601.8±18.3  mas/yr and a frame-dragging drift rate of -37.2±7.2  mas/yr, to be compared with the GR predictions of -6606.1  mas/yr and -39.2  mas/yr, respectively ("mas" is milliarcsecond; 1  mas=4.848×10(-9)  rad).

  7. Solar radiation interception of various planting space patterns of maize and its relation to yields

    International Nuclear Information System (INIS)

    Akhir, N.

    2003-01-01

    A research was carried out to study solar radiation interception and its relation to yield of maize in various plant spacing patterns at high elevation. The goal of this research was to contribute the development of crop science, especially the plant ecophysiology. A field experiment was executed from March to August 1998 at Assessment Institute of Agricultural Technology, Sukarami, West Sumatra. The experiment was arranged in Randomized Block Design and each treatment was replicated three times. The experiment data was analyzed by ANOVA and path analysis. The results of experiment indicated that the percentage of solar radiation interception gave high contribution to the dry grain yield for Pioneer-7 cultivar, and the solar radiation interception was depend on LAI and leaf angle

  8. The relative benefits of green versus lean office space: three field experiments.

    Science.gov (United States)

    Nieuwenhuis, Marlon; Knight, Craig; Postmes, Tom; Haslam, S Alexander

    2014-09-01

    Principles of lean office management increasingly call for space to be stripped of extraneous decorations so that it can flexibly accommodate changing numbers of people and different office functions within the same area. Yet this practice is at odds with evidence that office workers' quality of life can be enriched by office landscaping that involves the use of plants that have no formal work-related function. To examine the impact of these competing approaches, 3 field experiments were conducted in large commercial offices in The Netherlands and the U.K. These examined the impact of lean and "green" offices on subjective perceptions of air quality, concentration, and workplace satisfaction as well as objective measures of productivity. Two studies were longitudinal, examining effects of interventions over subsequent weeks and months. In all 3 experiments enhanced outcomes were observed when offices were enriched by plants. Implications for theory and practice are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  9. Business innovation symposium ‘At what price? IP-related thoughts on new business models for space information’

    Science.gov (United States)

    Smith, Lesley Jane

    2011-09-01

    Spatial data and imagery generators are set to become tomorrow's key players in the information society. This is why satellite owners and operators are examining new revenue-producing models for developing space-related products and services. The use and availability of broadband internet width and satellite data-based services will continue to increase in the future. With the capacity to deliver real time precision downstream data, space agencies and the satellite industry can respond to the demand for high resolution digital space information which, with the appropriate technology, can be integrated into a variety of web-based applications. At a time when the traditional roles of space agencies are becoming more hybrid, largely as a result of the greater drive towards commercial markets, new value-added markets for space-related information products are continuing to attract attention. This paper discusses whether traditional data policies on space data access and IP licensing schemes stand to remain the feasible prototype for distributing and marketing space data, and how this growth market might benefit from looking at an 'up and running' global IP management system already operating to manage end user digital demand. PrefaceThe terminology describing the various types of spatial data and space-based information is not uniformly used within the various principles, laws and policies that govern space data. For convenience only this paper refers to primary or raw data gathered by the space-based industry as spatial or raw data, and the data as processed and sold on or distributed by ground-based companies as space information products and services. In practise, spatial data range from generic to specific data sets, digital topography, through to pictures and imagery services at various resolutions, with 3-D perspectives underway. The paper addresses general IP considerations relating to spatial data, with some reference to remote sensing itself. Exact IP details

  10. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  11. High Temperature "Smart" P3 Sensors and Electronics for Distributed Engine Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current engine control architectures impose limitations on the insertion of new control capabilities due to weight penalties and reliability issues related to...

  12. Source Space Analysis of Event-Related Dynamic Reorganization of Brain Networks

    Directory of Open Access Journals (Sweden)

    Andreas A. Ioannides

    2012-01-01

    Full Text Available How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  13. Source space analysis of event-related dynamic reorganization of brain networks.

    Science.gov (United States)

    Ioannides, Andreas A; Dimitriadis, Stavros I; Saridis, George A; Voultsidou, Marotesa; Poghosyan, Vahe; Liu, Lichan; Laskaris, Nikolaos A

    2012-01-01

    How the brain works is nowadays synonymous with how different parts of the brain work together and the derivation of mathematical descriptions for the functional connectivity patterns that can be objectively derived from data of different neuroimaging techniques. In most cases static networks are studied, often relying on resting state recordings. Here, we present a quantitative study of dynamic reconfiguration of connectivity for event-related experiments. Our motivation is the development of a methodology that can be used for personalized monitoring of brain activity. In line with this motivation, we use data with visual stimuli from a typical subject that participated in different experiments that were previously analyzed with traditional methods. The earlier studies identified well-defined changes in specific brain areas at specific latencies related to attention, properties of stimuli, and tasks demands. Using a recently introduced methodology, we track the event-related changes in network organization, at source space level, thus providing a more global and complete view of the stages of processing associated with the regional changes in activity. The results suggest the time evolving modularity as an additional brain code that is accessible with noninvasive means and hence available for personalized monitoring and clinical applications.

  14. NASA Space Environments Technical Discipline Team Space Weather Activities

    Science.gov (United States)

    Minow, J. I.; Nicholas, A. C.; Parker, L. N.; Xapsos, M.; Walker, P. W.; Stauffer, C.

    2017-12-01

    The Space Environment Technical Discipline Team (TDT) is a technical organization led by NASA's Technical Fellow for Space Environments that supports NASA's Office of the Chief Engineer through the NASA Engineering and Safety Center. The Space Environments TDT conducts independent technical assessments related to the space environment and space weather impacts on spacecraft for NASA programs and provides technical expertise to NASA management and programs where required. This presentation will highlight the status of applied space weather activities within the Space Environment TDT that support development of operational space weather applications and a better understanding of the impacts of space weather on space systems. We will first discuss a tool that has been developed for evaluating space weather launch constraints that are used to protect launch vehicles from hazardous space weather. We then describe an effort to better characterize three-dimensional radiation transport for CubeSat spacecraft and processing of micro-dosimeter data from the International Space Station which the team plans to make available to the space science community. Finally, we will conclude with a quick description of an effort to maintain access to the real-time solar wind data provided by the Advanced Composition Explorer satellite at the Sun-Earth L1 point.

  15. The Japanese Medakafish (Oryzias latipes) as Animal Model for Space-related Bone Research

    Science.gov (United States)

    Renn, J.; Schaedel, M.; Elmasri, H.; Wagner, T.; Goerlich, R.; Furutani-Seiki, M.; Kondoh, H.; Schartl, M.; Winkler, C.

    Long-term space flight leads to bone loss due to reduced mechanical load. Animal models are needed to support the analysis of the underlying mechanisms at the molecular and cellular level that are presently largely unclear. For this, small laboratory fish offer many experimental advantages as in vivo models to study disease related processes. They produce large numbers of completely transparent embryos, are easy to keep under laboratory and space conditions and have relatively compact genomes. We are using the Japanese Medaka to characterize the genetic networks regulating bone formation and to study bone formation and remodeling under microgravity. We showed that despite the large evolutionary distance many known factors regulating bone formation are conserved between fish and humans. This includes osteoprotegerin (opg), a key regulator of bone resorption that is altered at the transcriptional level by simulated microgravity in mammals in vitro (Kanematsu et al., Bone 30, 2002). To monitor, how opg is regulated by altered gravity in vivo in fish and how fish react to microgravity, we isolated the Medaka opg regulatory region and produced transgenic fish that carry the green fluorescent protein reporter under the control of the Medaka opg promoter. This model will be useful to monitor gravity-induced changes at the molecular level in vivo. Fish also provide the opportunity to identify novel genes involved in bone formation by using large-scale mutagenesis screens. We have characterized several lines of mutant fish subjected to ENU mutagenesis that show morphological defects in the formation of the bone precursor cell compartment of the axial skeleton, the sclerotome. Using this genetic approach, the identification of the mutated genes is expected to reveal novel components of the genetic cascades that regulate bone formation. In an attempt to identify genes specifically expressed in the sclerotome in Medaka, we identified and characterized dmrt2, a gene that so far

  16. Economically Disadvantaged Minority Girls' Knowledge and Perceptions of Science and Engineering and Related Careers

    Science.gov (United States)

    Wang, Hui-Hui; Billington, Barbara L.

    2016-01-01

    This article addresses economically disadvantaged minority girls' knowledge and perceptions of science and engineering and the influence of their experiences with science, technology, engineering, and mathematics (STEM) on their choices for future careers. We interviewed three girls who participated in a 4-H-led gender-inclusive STEM program. Our…

  17. Feasibility study of a pressure-fed engine for a water recoverable space shuttle booster. Volume 1: Executive summary

    Science.gov (United States)

    1972-01-01

    An overview is presented of the results of the analyses conducted in support of the selected engine system for the pressure-fed booster stage. During initial phases of the project, a gimbaled, regeneratively cooled, fixed thrust engine having a coaxial pintle injector was selected as optimum for this configuration.

  18. Operation of a cryogenic rocket engine an outline with down-to-earth and up-to-space remarks

    CERN Document Server

    Kitsche, Wolfgang

    2010-01-01

    This book presents the operational aspects of the rocket engine on a test facility. It will be useful to engineers and scientists who are in touch with the test facility. To aerospace students it shall provide an insight of the job on the test facility. And to interest readers it shall provide an impression of this thrilling area of aerospace.

  19. China’s Space Program: A New Tool for PRC Soft Power in International Relations?

    Science.gov (United States)

    2009-03-01

    permanent presence in space. Luan Enjie, director of Chinese counterpart to NASA , the China National Space Administration (CNSA), said, “Exploring...manned space launches have been by ardently watched live by junior astronomic buffs that make the long trek to the launch site in Hebei province to see...the Chinese National Space Administration (CNSA, similar to NASA ) partnered with ESA to collaborate on a joint mission to study the Earth’s

  20. Solution of the stationary vacuum equations of relativity for conformally flat 3-spaces

    International Nuclear Information System (INIS)

    Perjes, Z.; Lukacs, B.; Sebestyen, A.; Valentini, A.; Sparling, G.A.J.

    1983-08-01

    The solution of Einstein's vacuum gravitational equations for stationary space-times with a conformally flat 3-space is presented. There is no other solution of this problem than the Ehlers-rotation generalizations of the three conformastat space-times including the Schwarzschild metric. (author)