WorldWideScience

Sample records for space reflector technology

  1. Precision segmented reflectors for space applications

    Science.gov (United States)

    Lehman, David H.; Pawlik, Eugene V.; Meinel, Aden B.; Fichter, W. B.

    1990-08-01

    A project to develop precision segmented reflectors (PSRs) which operate at submillimeter wavelengths is described. The development of a light efficient means for the construction of large-aperture segmented reflecting space-based telescopes is the primary aim of the project. The 20-m Large Deployable Reflector (LDR) telescope is being developed for a survey mission, and it will make use of the reflector panels and materials, structures, and figure control being elaborated for the PSR. The surface accuracy of a 0.9-m PSR panel is shown to be 1.74-micron RMS, the goal of 100-micron RMS positioning accuracy has been achieved for a 4-m erectable structure. A voice-coil actuator for the figure control system architecture demonstrated 1-micron panel control accuracy in a 3-axis evaluation. The PSR technology is demonstrated to be of value for several NASA projects involving optical communications and interferometers as well as missions which make use of large-diameter segmented reflectors.

  2. Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    Science.gov (United States)

    Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.

    1989-01-01

    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.

  3. Large Deployable Reflector (LDR) system concept and technology definition study. Analysis of space station requirements for LDR

    Science.gov (United States)

    Agnew, Donald L.; Vinkey, Victor F.; Runge, Fritz C.

    1989-04-01

    A study was conducted to determine how the Large Deployable Reflector (LDR) might benefit from the use of the space station for assembly, checkout, deployment, servicing, refurbishment, and technology development. Requirements that must be met by the space station to supply benefits for a selected scenario are summarized. Quantitative and qualitative data are supplied. Space station requirements for LDR which may be utilized by other missions are identified. A technology development mission for LDR is outlined and requirements summarized. A preliminary experiment plan is included. Space Station Data Base SAA 0020 and TDM 2411 are updated.

  4. Main-Reflector Manufacturing Technology for the Deep Space Optical Communications Ground Station

    Science.gov (United States)

    Britcliffe, M. J.; Hoppe, D. J.

    2001-01-01

    The Deep Space Network (DSN) has plans to develop a 10-m-diameter optical communications receiving station. The system uses the direct detection technique, which has much different requirements from a typical astronomical telescope. The receiver must operate in daylight and nighttime conditions. This imposes special requirements on the optical system to reject stray light from the Sun and other sources. One of the biggest challenges is designing a main-reflector surface that meets these requirements and can be produced at a reasonable cost. The requirements for the performance of the reflector are presented. To date, an aspherical primary reflector has been assumed. A reflector with a spherical reflector has a major cost advantage over an aspherical design, with no sacrifice in performance. A survey of current manufacturing techniques for optical mirrors of this type was performed. Techniques including solid glass, lightweight glass, diamond-turned aluminum, and composite mirrors were investigated.

  5. Deployable reflector configurations. [for space telescope

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    1983-01-01

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  6. Performance of Cat's Eye Modulating Retro-Reflectors for Free-Space Optical Communications

    National Research Council Canada - National Science Library

    Rabinovich, W. S; Goetz, P. G; Mahon, R; Swingen, L; Murphy, J; Gilbreath, G. C; Binari, S; Waluschka, E

    2004-01-01

    Modulating retro-reflectors (MRR) couple passive optical retro-reflectors with electro-optic modulators to allow free-space optical communication with a laser and pointing/acquisition/tracking system required on only one end of the link...

  7. Analysis of the Thermo-Elastic Response of Space Reflectors to Simulated Space Environment

    Science.gov (United States)

    Allegri, G.; Ivagnes, M. M.; Marchetti, M.; Poscente, F.

    2002-01-01

    high pressure Xenon lamps to simulate the direct solar irradiation and a cryogenic heat exchanger to reproduce the earth shadowing of sunlight. The temperature of the thermal cycles ranges from -80°C up to 100°C: the thermo-elastic response of the antenna has been surveyed by employing strain gauges place on the structures at several different locations. The structure has been subjected to 100 thermal cycles, each of which lasting two hours: the total duration of the exposition to the vacuum environment has been equal to 300 hours. Finally the antenna has been disassembled and its elements have been examined to evaluate the effects of the simulated exposition on each of them: the total mass loss and the final thermo-mechanical properties of the polymeric based materials which constitute the structural core of the antenna have been surveyed. The experimental results have been compared to numerical simulation performed by the NASTRAN code: the basic FEM model, developed for the unexposed antenna, has been updated to take into account the thermo-mechanical degradation of the structural elements and materials. This has allowed to obtain, by extrapolation, a FEM based prevision of the antenna thermo-elastic response for long-term operative conditions. References. [1] D. Hastings, H. Garret "Spacecraft environment interactions", Cambridge University Press, Atmospheric Series, Cambridge, 1996. [2] IAF-01-I.6.05 "On the Reliability of Honeycomb Core Bonding Joint in Sandwich Composite Materials for Space Applications" G. Allegri, U. Lecci, M. Marchetti, F. Poscente, 52° IAF Congress, 2001. [3] Meguro A. and alii, "Technology status of the 13 m aperture deployment antenna reflectors for Engineering Test Satellite VIII", Acta Astronautica, Volume: 47, Issue: 2-9, July - November, 2000, pp. 147-152. [4] Novikov L. S. "Contemporary state of spacecraft/environment interaction research" Radiation Measurements, Volume: 30, Issue: 5, October, 1999, pp. 661-667. [5] IAF-01-I.1

  8. Workshop on technology development issues for the large deployable reflector (LDR)

    International Nuclear Information System (INIS)

    Nishioka, K.

    1986-02-01

    The results of the 2nd Large Deployable Reflector (LDR) Technology Review Workshop held at Asilomar, California, March 17 to 22, 1985, are summarized. The workshop was convened to update LDR Technology status and to revise as necessary the results for the first LDR Workshop held in June 1982. There were some 100 participants representing government agencies, industry, and universities. This Workshop's goal was to assess, identify, and set priorities for the LDR technology issues based on requirements identified in the first workshop. Four high-priority technology areas were identified: (1) mirror materials and construction; (2) sensing and controls; (3) system-simulation and modeling capability; and (4) submillimeter instruments. The results of the workshop were used to provide a list of technolgy issues for the development of a technology initiatives plan for the LDR by NASA's Office of Aeronautics and Space Technology

  9. Workshop on Technology Development Issues for the Large Deployable Reflector (LDR)

    Science.gov (United States)

    Nishioka, Kenji (Editor)

    1986-01-01

    The results of the 2nd Large Deployable Reflector (LDR) Technology Review Workshop held at Asilomar, California, March 17 to 22, 1985, are summarized. The workshop was convened to update LDR Technology status and to revise as necessary the results for the first LDR Workshop held in June 1982. There were some 100 participants representing government agencies, industry, and universities. This Workshop's goal was to assess, identify, and set priorities for the LDR technology issues based on requirements identified in the first workshop. Four high-priority technology areas were identified: (1) mirror materials and construction; (2) sensing and controls; (3) system-simulation and modeling capability; and (4) submillimeter instruments. The results of the workshop were used to provide a list of technolgy issues for the development of a technology initiatives plan for the LDR by NASA's Office of Aeronautics and Space Technology.

  10. Structural-electromagnetic bidirectional coupling analysis of space large film reflector antennas

    Science.gov (United States)

    Zhang, Xinghua; Zhang, Shuxin; Cheng, ZhengAi; Duan, Baoyan; Yang, Chen; Li, Meng; Hou, Xinbin; Li, Xun

    2017-10-01

    As used for energy transmission, a space large film reflector antenna (SLFRA) is characterized by large size and enduring high power density. The structural flexibility and the microwave radiation pressure (MRP) will lead to the phenomenon of structural-electromagnetic bidirectional coupling (SEBC). In this paper, the SEBC model of SLFRA is presented, then the deformation induced by the MRP and the corresponding far field pattern deterioration are simulated. Results show that, the direction of the MRP is identical to the normal of the reflector surface, and the magnitude is proportional to the power density and the square of cosine incident angle. For a typical cosine function distributed electric field, the MRP is a square of cosine distributed across the diameter. The maximum deflections of SLFRA linearly increase with the increasing microwave power densities and the square of the reflector diameters, and vary inversely with the film thicknesses. When the reflector diameter becomes 100 m large and the microwave power density exceeds 102 W/cm2, the gain loss of the 6.3 μm-thick reflector goes beyond 0.75 dB. When the MRP-induced deflection degrades the reflector performance, the SEBC should be taken into account.

  11. Space reflector technology and its system implications

    Science.gov (United States)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1979-01-01

    The technical feasibility of providing nearly continuous solar energy to a world-distributed set of conversion sites by means of a system of orbiting, large-area, low-areal-density reflecting structures is examined. Requisite mirror area to provide a chosen, year-averaged site intensity is shown. A modeled reflector structure, with suitable planarity and ability to meet operational torques and loads, is discussed. Typical spatial and temporal insolation profiles are presented. These determine the sizing of components and the output electric power from a baselined photovoltaic conversion system. Technical and economic challenges which, if met, would allow the system to provide a large fraction of future world energy needs at costs competitive to circa-1995 fossil and nuclear sources are discussed.

  12. Handbook of reflector antennas and feed systems v.3 applications of reflectors

    CERN Document Server

    Rao, Sudhakar; Sharma, Satish K

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume III focuses on the range of reflector antenna applications, including space, terrestrial, and radar. The intent of this book volume is to provide practical applications and design information on reflector antennas used fo

  13. Study of Membrane Reflector Technology

    Science.gov (United States)

    Knapp, K.; Hedgepeth, J.

    1979-01-01

    Very large reflective surfaces are required by future spacecraft for such purposes as solar energy collection, antenna surfaces, thermal control, attitude and orbit control with solar pressure, and solar sailing. The performance benefits in large membrane reflector systems, which may be derived from an advancement of this film and related structures technology, are identified and qualified. The results of the study are reported and summarized. Detailed technical discussions of various aspects of the study are included in several separate technical notes which are referenced.

  14. Dual-reflector configuration in varied line-space grating displacement sensor

    International Nuclear Information System (INIS)

    Liu Zhengkun; Xu Xiangdong; Fu Shaojun; Zhou Qin; Liu Bin

    2008-01-01

    A method to improve the accuracy of the wavelength encoding varied line-space grating displacement sensor is presented. Based on the detailed analysis of the measured displacement errors from the single-mirror configuration sensor, a dual-reflector configuration is used to replace the previous configuration, and greatly decreases its errors. Experiments are conducted in order to make comparison of the two configurations. The results show that the measured displacement error of the sensor with dual-reflector configuration is lower than 0.03 mm in full scale (0 to 50 mm), only about 10% of the sensor with single-mirror configuration

  15. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  16. Large Deployable Reflector (LDR) Requirements for Space Station Accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-01-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  17. Large Deployable Reflector (LDR) requirements for space station accommodations

    Science.gov (United States)

    Crowe, D. A.; Clayton, M. J.; Runge, F. C.

    1985-04-01

    Top level requirements for assembly and integration of the Large Deployable Reflector (LDR) Observatory at the Space Station are examined. Concepts are currently under study for LDR which will provide a sequel to the Infrared Astronomy Satellite and the Space Infrared Telescope Facility. LDR will provide a spectacular capability over a very broad spectral range. The Space Station will provide an essential facility for the initial assembly and check out of LDR, as well as a necessary base for refurbishment, repair and modification. By providing a manned platform, the Space Station will remove the time constraint on assembly associated with use of the Shuttle alone. Personnel safety during necessary EVA is enhanced by the presence of the manned facility.

  18. Shape control of slack space reflectors using modulated solar pressure.

    Science.gov (United States)

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R

    2015-07-08

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.

  19. System concept for a moderate cost Large Deployable Reflector (LDR)

    Science.gov (United States)

    Swanson, P. N.; Breckinridge, J. B.; Diner, A.; Freeland, R. E.; Irace, W. R.; Mcelroy, P. M.; Meinel, A. B.; Tolivar, A. F.

    1986-01-01

    A study was carried out at JPL during the first quarter of 1985 to develop a system concept for NASA's LDR. Major features of the concept are a four-mirror, two-stage optical system; a lightweight structural composite segmented primary reflector; and a deployable truss backup structure with integral thermal shield. The two-stage optics uses active figure control at the quaternary reflector located at the primary reflector exit pupil, allowing the large primary to be passive. The lightweight composite reflector panels limit the short-wavelength operation to approximately 30 microns but reduce the total primary reflector weight by a factor of 3 to 4 over competing technologies. On-orbit thermal analysis indicates a primary reflector equilibrium temperature of less than 200 K with a maximum gradient of about 5 C across the 20-m aperture. Weight and volume estimates are consistent with a single Shuttle launch, and are based on Space Station assembly and checkout.

  20. Wirelessly Controllable Inflated Electroactive Polymer (EAP) Reflectors

    Science.gov (United States)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Chang, Zensheu; Sherrit, Stewart; Badescu, Mircea

    2005-01-01

    Inflatable membrane reflectors are attractive for deployable, large aperture, lightweight optical and microwave systems in micro-gravity space environment. However, any fabrication flaw or temperature variation may results in significant aberration of the surface. Even for a perfectly fabricated inflatable membrane mirror with uniform thickness, theory shows it will form a Hencky curve surface but a desired parabolic or spherical surface. Precision control of the surfaceshape of extremely flexible membrane structures is a critical challenge for the success of this technology. Wirelessly controllable inflated reflectors made of electroactive polymers (EAP) are proposed in this paper. A finite element model was configured to predict the behavior of the inflatable EAP membranes under pre-strains, pressures and distributed electric charges on the surface. To explore the controllability of the inflatable EAP reflectors, an iteration algorism was developed to find the required electric actuation for correcting the aberration of the Hencky curve to the desired parabolic curve. The correction capability of the reflectors with available EAP materials was explored numerically and is presented in this paper.

  1. Modeling for control of an inflatable space reflector, the linear 1-D case

    NARCIS (Netherlands)

    Voß, T.; Scherpen, J.M.A.; van der Schaft, A.J.

    2008-01-01

    In this paper we develop a mathematical model of the dynamics for an inflatable space reflector, which can be used to design a controller for the shape of the inflatable structure. Inflatable structures have very nice properties, suitable for aerospace applications. We can construct e.g. a huge

  2. Modeling for control of an inflatable space reflector, the nonlinear 1-D case

    NARCIS (Netherlands)

    Voß, T.; Scherpen, J.M.A.; Onck, P.R.

    2008-01-01

    In this paper we develop a mathematical model of the dynamics for an inflatable space reflector, which can be used to design a controller for the shape of the inflatable structure. Inflatable structures have very nice properties, suitable for aerospace applications. We can construct e.g. a huge

  3. Handbook of reflector antennas and feed systems v.1 theory and design of reflectors

    CERN Document Server

    Sharma, Satish K; Shafai, Lotfollah

    2013-01-01

    This is the first truly comprehensive and most up-to-date handbook available on modern reflector antennas and feed sources for diversified space and ground applications. There has never been such an all-encompassing reflector handbook in print, and no currently available title offers coverage of such recent research developments. The Handbook consists of three volumes. Volume I provides a unique combination of theoretical underpinnings with design considerations and techniques. The need for knowledge in reflector antennas has grown steadily over the last two decades due to increased use in spa

  4. The Planck Telescope reflectors

    Science.gov (United States)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  5. Reflector Technology Development and System Design for Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Adam Schaut

    2011-12-30

    Alcoa began this program in March of 2008 with the goal of developing and validating an advanced CSP trough design to lower the levelized cost of energy (LCOE) as compared to existing glass based, space-frame trough technology. In addition to showing a pathway to a significant LCOE reduction, Alcoa also desired to create US jobs to support the emerging CSP industry. Alcoa's objective during Phase I: Concept Feasibility was to provide the DOE with a design approach that demonstrates significant overall system cost savings without sacrificing performance. Phase I consisted of two major tasks; reflector surface development and system concept development. Two specific reflective surface technologies were investigated, silver metallized lamination, and thin film deposition both applied on an aluminum substrate. Alcoa prepared samples; performed test validation internally; and provided samples to the NREL for full-spectrum reflectivity measurements. The final objective was to report reflectivity at t = 0 and the latest durability results as of the completion of Phase 1. The target criteria for reflectance and durability were as follows: (1) initial (t = 0), hemispherical reflectance >93%, (2) initial spectral reflectance >90% for 25-mrad reading and >87% for 7-mrad reading, and (3) predicted 20 year durability of less than 5% optical performance drop. While the results of the reflective development activities were promising, Alcoa was unable to down-select on a reflective technology that met the target criteria. Given the progress and potential of both silver film and thin film technologies, Alcoa continued reflector surface development activities in Phase II. The Phase I concept development activities began with acquiring baseline CSP system information from both CSP Services and the DOE. This information was used as the basis to develop conceptual designs through ideation sessions. The concepts were evaluated based on estimated cost and high-level structural

  6. Surface Optimization Techniques for Deployable Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under this and several other programs, CTD has developed TEMBOREG deployable solid-surface reflectors (TEMBOREG Reflectors) to provide future NASA and Air Force...

  7. Deployable reflector configurations

    Science.gov (United States)

    Meinel, A. B.; Meinel, M. P.; Woolf, N. J.

    Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.

  8. A Review of the Reflector Compact Fluorescent Lights Technology Procurement Program: Conclusions and Results

    Energy Technology Data Exchange (ETDEWEB)

    Sandahl, Linda J.; Gilbride, Theresa L.; Ledbetter, Marc R.; McCullough, Jeffrey J.

    2008-05-19

    This report describes a project sponsored by the U.S. Department of Energy (DOE) and implemented by the Pacific Northwest National Laboratory (PNNL), from 2000 to 2007 to improve the performance of reflector type (R-lamp) compact fluorescent lamps (CFLs) and increase their availability throughout the United States by means of a technology development and procurement strategy. In 2000, at the request of the U.S. Department of Energy’s Emerging Technologies Program and its predecessors, the Pacific Northwest National Laboratory undertook a technology procurement seeking R-CFLs that were specifically designed for use in ICAT recessed can fixtures and that met other minimum performance criteria including minimum light output and size restrictions (to ensure they fit in standard residential recessed cans). The technology procurement included two phases. In Phase I, requests for proposals (RFPs) were issued in October 2002 and five manufacturers responded with 12 lamp models. Eight of these models met the minimum requirements and passed the 6-hour short-term test in a simulated ICAT environment. These eight models were subjected to long-term tests of 6,000 or more hours in a simulated ICAT environment. Three of these models passed the short- and long-term tests and were promoted through the program website (www.pnl.gov/rlamps), press releases, and fliers. To increase the number of qualifying models, a second RFP was issued in June 2005. In April 2007, DOE announced that 16 reflector CFL (R-CFL) models by four manufacturers had met all the minimum requirements of Phase 2 of the R-CFL Technology Innovation Competition. PNNL developed both the criteria and the test apparatus design for Elevated Temperature Life Testing (ETLT), which has been included by DOE in its draft ENERGY STAR specifications for the reflector category of CFLs. PNNL promoted the winning lamps through a program website, press releases, and fliers as well as through program partners. PNNL also helped

  9. Flexible-Robotic Reflector for Aerospace Applications

    Directory of Open Access Journals (Sweden)

    Nir Shvalb

    2015-01-01

    Full Text Available Existing dish based antennas tend to have geometric morphologic distortion in the surface due to drastic thermal changes common in the space environment. In this paper we present a new concept for a dynamic antenna specially designed for communication satellites. The suggested flexible-robotic antenna is based on a dual-reflector structure, where the subreflector has a complex surface shaping robotic mechanism allowing it to fix most of the morphologic errors in the main reflector. We have implemented a set of searching algorithms allowing the hyper redundant robotic subreflector to adapt its surface to the morphologic distortions in the main reflector. The suggested new antenna was constructed and tested in an RF room in which it was able to fix the loss caused by distortion in the main reflector to the original gain in less than an hour.

  10. Assembly considerations for large reflectors

    Science.gov (United States)

    Bush, H.

    1988-01-01

    The technologies developed at LaRC in the area of erectable instructures are discussed. The information is of direct value to the Large Deployable Reflector (LDR) because an option for the LDR backup structure is to assemble it in space. The efforts in this area, which include development of joints, underwater assembly simulation tests, flight assembly/disassembly tests, and fabrication of 5-meter trusses, led to the use of the LaRC concept as the baseline configuration for the Space Station Structure. The Space Station joint is linear in the load and displacement range of interest to Space Station; the ability to manually assemble and disassemble a 45-foot truss structure was demonstrated by astronauts in space as part of the ACCESS Shuttle Flight Experiment. The structure was built in 26 minutes 46 seconds, and involved a total of 500 manipulations of untethered hardware. Also, the correlation of the space experience with the neutral buoyancy simulation was very good. Sections of the proposed 5-meter bay Space Station truss have been built on the ground. Activities at LaRC have included the development of mobile remote manipulator systems (which can traverse the Space Station 5-meter structure), preliminary LDR sun shield concepts, LDR construction scenarios, and activities in robotic assembly of truss-type structures.

  11. Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions

    Science.gov (United States)

    Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.

    2012-07-01

    This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.

  12. Distress detection, location, and communications using advanced space technology

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  13. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 1: Executive summary, analyses and trades, and system concepts

    Science.gov (United States)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.

  14. Development of optical ground verification method for μm to sub-mm reflectors

    Science.gov (United States)

    Stockman, Y.; Thizy, C.; Lemaire, P.; Georges, M.; Mazy, E.; Mazzoli, A.; Houbrechts, Y.; Rochus, P.; Roose, S.; Doyle, D.; Ulbrich, G.

    2017-11-01

    Large reflectors and antennas for the IR to mm wavelength range are being planned for many Earth observation and astronomical space missions and for commercial communication satellites as well. Scientific observatories require large telescopes with precisely shaped reflectors for collecting the electro-magnetic radiation from faint sources. The challenging tasks of on-ground testing are to achieve the required accuracy in the measurement of the reflector shapes and antenna structures and to verify their performance under simulated space conditions (vacuum, low temperatures). Due to the specific surface characteristics of reflectors operating in these spectral regions, standard optical metrology methods employed in the visible spectrum do not provide useful measurement results. The current state-of-the-art commercial metrology systems are not able to measure these types of reflectors because they have to face the measurement of shape and waviness over relatively large areas with a large deformation dynamic range and encompassing a wide range of spatial frequencies. 3-D metrology (tactile coordinate measurement) machines are generally used during the manufacturing process. Unfortunately, these instruments cannot be used in the operational environmental conditions of the reflector. The application of standard visible wavelength interferometric methods is very limited or impossible due to the large relative surface roughnesses involved. A small number of infrared interferometers have been commercially developed over the last 10 years but their applications have also been limited due to poor dynamic range and the restricted spatial resolution of their detectors. These restrictions affect also the surface error slopes that can be captured and makes their application to surfaces manufactured using CRFP honeycomb technologies rather difficult or impossible. It has therefore been considered essential, from the viewpoint of supporting future ESA exploration missions, to

  15. A Modular Approach To Developing A Large Deployable Reflector

    Science.gov (United States)

    Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.

    1984-01-01

    NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple

  16. A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors

    Science.gov (United States)

    Shi, H.; Yang, B.; Thomson, M.; Fang, H.

    2011-01-01

    This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.

  17. Advanced reflector materials for solar concentrators

    Science.gov (United States)

    Jorgensen, Gary; Williams, Tom; Wendelin, Tim

    1994-10-01

    This paper describes the research and development at the US National Renewable Energy Laboratory (NREL) in advanced reflector materials for solar concentrators. NREL's research thrust is to develop solar reflector materials that maintain high specular reflectance for extended lifetimes under outdoor service conditions and whose cost is significantly lower than existing products. Much of this work has been in collaboration with private-sector companies that have extensive expertise in vacuum-coating and polymer-film technologies. Significant progress and other promising developments will be discussed. These are expected to lead to additional improvements needed to commercialize solar thermal concentration systems and make them economically attractive to the solar manufacturing industry. To explicitly demonstrate the optical durability of candidate reflector materials in real-world service conditions, a network of instrumented outdoor exposure sites has been activated.

  18. A figure control sensor for the Large Deployable Reflector (LDR)

    Science.gov (United States)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  19. Cylinder-type bottom reflector

    International Nuclear Information System (INIS)

    Elter, C.; Fritz, R.; Kissel, K.F.; Schoening, J.

    1982-01-01

    Proposal of a bottom reflector for gas-cooled nuclear reactor plants with a pebble bed of spherical fuel elements, where the horizontal forces acting from the core and the bottom reflector upon the side reflector are equally distributed. This is attained by the upper edge of the bottom reflector being placed levelly and by the angle of inclination of the recesses varying. (orig.) [de

  20. Reflector and Protections in a Sodium-cooled Fast Reactor: Modelling and Optimization

    Science.gov (United States)

    Blanchet, David; Fontaine, Bruno

    2017-09-01

    The ASTRID project (Advanced Sodium Technological Reactor for Industrial Demonstration) is a Generation IV nuclear reactor concept under development in France [1]. In this frame, studies are underway to optimize radial reflectors and protections. Considering radial protections made in natural boron carbide, this study is conducted to assess the neutronic performances of the MgO as the reference choice for reflector material, in comparison with other possible materials including a more conventional stainless steel. The analysis is based upon a simplified 1-D and 2-D deterministic modelling of the reactor, providing simplified interfaces between core, reflector and protections. Such models allow examining detailed reaction rate distributions; they also provide physical insights into local spectral effects occurring at the Core-Reflector and at the Reflector-Protection interfaces.

  1. APPLICATION OF QUATERNIONS FOR REFLECTOR PARAMETER

    Directory of Open Access Journals (Sweden)

    I. A. Konyakhin

    2016-09-01

    Full Text Available Subject of Research. The paper deals with application of quaternions for optimization of reflector parameters at autocollimation measurements in comparison with a matrix method. Computer-based results on the quaternionic models are presented that have given the possibility to determine conditions of measurement error reduction in view of apriori information on the rotation axis position. The practical synthesis technique for tetrahedron reflector parameters using found ratios is considered. Method. Originally, received conditions for reduction of autocollimation system measurement error are determined with the use of a matrix method for definition of an angular object position as a set of three equivalent consecutive turns about coordinate axes. At realization of these conditions the numerous recalculation of orientation parameters between various systems of coordinates is necessary that increases complexity and reduces resulting accuracy of autocollimation system at practical measurements. The method of quaternions gives the possibility to analyze the change of an absolute angular position in space, thus, there are conditions of accuracy increase regardless of the used systems of coordinates. Main Results. Researches on the mathematical model have shown, that the orthogonal arrangement of two basic constant directions for autocollimator tetrahedron reflector is optimal with respect to criterion of measurement error reduction at bisection arrangement of actual turn axis against them. Practical Relevance. On the basis of the found ratios between tetrahedron reflector angles and angles of its initial orientation parameters we have developed a practical method of reflector synthesis for autocollimation measurements in case of apriori information on an actual turn axis at monitoring measurements of the shaft or pipelines deformations.

  2. STEP flight experiments Large Deployable Reflector (LDR) telescope

    Science.gov (United States)

    Runge, F. C.

    1984-01-01

    Flight testing plans for a large deployable infrared reflector telescope to be tested on a space platform are discussed. Subsystem parts, subassemblies, and whole assemblies are discussed. Assurance of operational deployability, rigidization, alignment, and serviceability will be sought.

  3. Space Reflector Materials for Prometheus Application

    International Nuclear Information System (INIS)

    J. Nash; V. Munne; LL Stimely

    2006-01-01

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al 2 O 3 ), and magnesium aluminate spinel (MgAl 2 O 4 ) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of ∼5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of ∼10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES and H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be-bearing materials require

  4. Large Deployable Reflector (LDR)

    Science.gov (United States)

    Alff, W. H.

    1980-01-01

    The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.

  5. CNGS Reflector installed

    CERN Multimedia

    2006-01-01

    A major component that will help target the CNGS neutrino beam for its 732km journey through the earth's crust, from CERN to the Gran Sasso laboratory in Italy, has been installed in its final position. The transport of the huge magnetic horn reflector through the CNGS access gallery. A team from CNGS and TS/IC, and the contractors DBS, transported the magnetic horn reflector on 5th December, in a carefully conducted operation that took just under two hours. The reflector is 7m long, 1.6m in diameter and 1.6 tonnes in weight. With only a matter of centimetres to spare on either side, the reflector was transported through the CNGS access gallery, before being installed in the experiment's target chamber. The larger of two magnetic horns, the reflector will help refocus sprays of high energy pions and kaons emitted after a 0.5MW stream of protons from the Super Proton Synchrotron (SPS) strikes nucleons in a graphite target. The horns are toroidal magnetic lenses and work with high pulsed currents: 150 kA f...

  6. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Future astrophysics missions will require lightweight, thermally stable, submillimeter reflectors in sizes of 4m and greater. To date, graphite fiber reinforced...

  7. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    Science.gov (United States)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  8. Affordable Unfurlable Fan-Fold Wrapable Reflector for Small and Large Apertures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) will focus the proposed SBIR program on the development and concept feasibility of an innovative deployable mesh/membrane reflector...

  9. Highly accurate photogrammetric measurements of the Planck reflectors

    Science.gov (United States)

    Amiri Parian, Jafar; Gruen, Armin; Cozzani, Alessandro

    2017-11-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000'000 and 1:400'000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  10. Tailored reflectors for illumination.

    Science.gov (United States)

    Jenkins, D; Winston, R

    1996-04-01

    We report on tailored reflector design methods that allow the placement of general illumination patterns onto a target plane. The use of a new integral design method based on the edge-ray principle of nonimaging optics gives much more compact reflector shapes by eliminating the need for a gap between the source and the reflector profile. In addition, the reflectivity of the reflector is incorporated as a design parameter. We show the performance of design for constant irradiance on a distant plane, and we show how a leading-edge-ray method may be used to achieve general illumination patterns on nearby targets.

  11. Lightweight Thermally Stable Multi-Meter Aperture Submillimeter Reflectors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the Phase II effort will be an affordable demonstrated full-scale design for a thermally stable multi-meter submillimeter reflector. The Phase I...

  12. Space Reflector Materials for Prometheus Application

    Energy Technology Data Exchange (ETDEWEB)

    J. Nash; V. Munne; LL Stimely

    2006-01-31

    The two materials studied in depth which appear to have the most promise in a Prometheus reflector application are beryllium (Be) and beryllium oxide (BeO). Three additional materials, magnesium oxide (MgO), alumina (Al{sub 2}O{sub 3}), and magnesium aluminate spinel (MgAl{sub 2}O{sub 4}) were also recently identified to be of potential interest, and may have promise in a Prometheus application as well, but are expected to be somewhat higher mass than either a Be or BeO based reflector. Literature review and analysis indicates that material properties for Be are largely known, but there are gaps in the properties of Be0 relative to the operating conditions for a Prometheus application. A detailed preconceptual design information document was issued providing material properties for both materials (Reference (a)). Beryllium oxide specimens were planned to be irradiated in the JOY0 Japanese test reactor to partially fill the material property gaps, but more testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL) was expected to be needed. A key issue identified for BeO was obtaining material for irradiation testing with an average grain size of {approx}5 micrometers, reminiscent of material for which prior irradiation test results were promising. Current commercially available material has an average grain size of {approx}10 micrometers. The literature indicated that improved irradiation performance could be expected (e.g., reduced irradiation-induced swelling) with the finer grain size material. Confirmation of these results would allow the use of historic irradiated materials test results from the literature, reducing the extent of required testing and therefore the cost of using this material. Environmental, safety and health (ES&H) concerns associated with manufacturing are significant but manageable for Be and BeO. Although particulate-generating operations (e.g., machining, grinding, etc.) involving Be

  13. Flat Engineered Multichannel Reflectors

    Directory of Open Access Journals (Sweden)

    V. S. Asadchy

    2017-09-01

    Full Text Available Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  14. Flat Engineered Multichannel Reflectors

    Science.gov (United States)

    Asadchy, V. S.; Díaz-Rubio, A.; Tcvetkova, S. N.; Kwon, D.-H.; Elsakka, A.; Albooyeh, M.; Tretyakov, S. A.

    2017-07-01

    Recent advances in engineered gradient metasurfaces have enabled unprecedented opportunities for light manipulation using optically thin sheets, such as anomalous refraction, reflection, or focusing of an incident beam. Here, we introduce a concept of multichannel functional metasurfaces, which are able to control incoming and outgoing waves in a number of propagation directions simultaneously. In particular, we reveal a possibility to engineer multichannel reflectors. Under the assumption of reciprocity and energy conservation, we find that there exist three basic functionalities of such reflectors: specular, anomalous, and retroreflections. Multichannel response of a general flat reflector can be described by a combination of these functionalities. To demonstrate the potential of the introduced concept, we design and experimentally test three different multichannel reflectors: three- and five-channel retroreflectors and a three-channel power splitter. Furthermore, by extending the concept to reflectors supporting higher-order Floquet harmonics, we forecast the emergence of other multichannel flat devices, such as isolating mirrors, complex splitters, and multi-functional gratings.

  15. Reflectors to Focus Wave Energy

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    2005-01-01

    Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...... boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benefit for different wave reflector geometries and optimal geometrical design parameters are specified. On this basis inventors of WEC’s can...

  16. The precision segmented reflectors: Moderate mission figure control subsystem

    Science.gov (United States)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  17. Efficiency improvement of flat plate solar collector using reflector

    Directory of Open Access Journals (Sweden)

    Himangshu Bhowmik

    2017-11-01

    Full Text Available Solar collectors are the main components of a solar heating system. The collectors collect the sun’s energy, transform this radiation into heat, and then transfer this heat into a fluid, water or air, which has many household or industrial applications. This paper introduces a new technology to improve the performance of the solar thermal collectors. The solar reflector used here with the solar collector to increase the reflectivity of the collector. Thus, the reflector concentrates both direct and diffuse radiation of the sun toward the collector. To maximize the intensity of incident radiation, the reflector was allowed to change its angle with daytime. The radiations coming from the sun’s energy were converted into heat, and then this heat was transferred to the collector fluid, water. A prototype of a solar water heating system was constructed and obtained the improvement of the collector efficiency around 10% by using the reflector. Thus, the present solar water heating systems having the best thermal performance compared to the available systems.

  18. Uric Acid Spherulites in the Reflector Layer of Firefly Light Organ

    Science.gov (United States)

    Goh, King-Siang; Sheu, Hwo-Shuenn; Hua, Tzu-En; Kang, Mei-Hua; Li, Chia-Wei

    2013-01-01

    Background In firefly light organs, reflector layer is a specialized tissue which is believed to play a key role for increasing the bioluminescence intensity through reflection. However, the nature of this unique tissue remains elusive. In this report, we investigated the role, fine structure and nature of the reflector layer in the light organ of adult Luciola cerata. Principal Findings Our results indicated that the reflector layer is capable of reflecting bioluminescence, and contains abundant uric acid. Electron microscopy (EM) demonstrated that the cytosol of the reflector layer's cells is filled with densely packed spherical granules, which should be the uric acid granules. These granules are highly regular in size (∼700 nm in diameter), and exhibit a radial internal structure. X-ray diffraction (XRD) analyses revealed that an intense single peak pattern with a d-spacing value of 0.320 nm is specifically detected in the light organ, and is highly similar to the diffraction peak pattern and d-spacing value of needle-formed crystals of monosodium urate monohydrate. However, the molar ratio evaluation of uric acid to various cations (K+, Na+, Ca2+ and Mg2+) in the light organ deduced that only a few uric acid molecules were in the form of urate salts. Thus, non-salt uric acid should be the source of the diffraction signal detected in the light organ. Conclusions In the light organ, the intense single peak diffraction signal might come from a unique needle-like uric acid form, which is different from other known structures of non-salt uric acid form. The finding of a radial structure in the granules of reflector layer implies that the spherical uric acid granules might be formed by the radial arrangement of needle-formed packing matter. PMID:23441187

  19. Modulated solar pressure-based surface shape control of paraboloid space reflectors with an off-axis Sun-line

    Science.gov (United States)

    Liu, Jiafu; McInnes, Colin R.

    2018-03-01

    This paper considers utilizing solar radiation pressure (SRP) to actively control the surface shape of a reflector consisting of a rigid hoop and slack membrane with embedded reflectivity control devices. The full nonlinear static partial differential governing equations for a reflector with negligible elastic deformations are established for the circumferential, radial and transverse directions respectively, in which the SRP force with ideal/non-perfect models, the centripetal force caused by the rotation of the reflector and the internal stresses are considered. The inverse problem is then formulated by assuming that the required surface shape is known, and then the governing algebraic-differential equations used to determine the required surface reflectivity, together with the internal stresses where are presented accordingly. The validity of the approach is verified by comparing the results in this paper with corresponding published results as benchmarks. The feasible regions of the angular velocity and Sun angle for a paraboloidal reflector with an invariant radius and focal length (case 1), and the achievable focal lengths with a specific angular velocity and Sun angle (case 2) are presented for two SRP models respectively, both by considering the constraints on the reflectivity and internal stresses. It is then found that the feasible region is toward a larger angular velocity and Sun angle when using the non-perfect SRP model, compared with the ideal one in case 1. The angular velocity of the spinning reflector should be within a certain range to make the required reflectivity profiles within a practical range, i.e., [0, 0.88], as indicated from prior NASA solar sail studies. In case 2, it is found that the smallest achievable focal length of the reflector with the non-perfect SRP model is smaller than that with the ideal SRP model. It is also found that the stress level is extremely low for all cases considered and that the typical real material strength

  20. SAFARI-1 research reactor beryllium reflector element replacement, management and relocation

    International Nuclear Information System (INIS)

    Kock, Marisa De; Vlok, Jwh; Steynberg, B.J.

    2012-01-01

    decommissioned beryllium elements were also measured to investigate the occurrence of ageing mechanisms and their consequences, and to determine the location of the element's vulnerable areas. This supports the Beryllium Management Programme in terms of an optimal shuffling scheme to mitigate the effects of ageing. Currently, the decommissioned beryllium reflector elements are stored in a storage rack within the reactor pool. Due to limited space it is necessary to relocate these elements. A proposed relocation strategy based on existing literature is discussed. This strategy covers the requirements, relocation process and types of storage to be considered. (author)

  1. SAFARI-1 research reactor beryllium reflector element replacement, management and relocation

    Energy Technology Data Exchange (ETDEWEB)

    Kock, Marisa De; Vlok, Jwh; Steynberg, B J [South Africa Atomic Energy Corporation (Necsa) (South Africa)

    2012-03-15

    decommissioned beryllium elements were also measured to investigate the occurrence of ageing mechanisms and their consequences, and to determine the location of the element's vulnerable areas. This supports the Beryllium Management Programme in terms of an optimal shuffling scheme to mitigate the effects of ageing. Currently, the decommissioned beryllium reflector elements are stored in a storage rack within the reactor pool. Due to limited space it is necessary to relocate these elements. A proposed relocation strategy based on existing literature is discussed. This strategy covers the requirements, relocation process and types of storage to be considered. (author)

  2. Extended exploding reflector concept for computing prestack traveltimes for waves of different type in the DSR framework

    KAUST Repository

    Duchkov, Anton A.; Serdyukov, Alexander S.; Alkhalifah, Tariq Ali

    2013-01-01

    including reflected, head and diving waves. We develop a WENO-RK numerical scheme for solving all mentioned forms of the DSR equation. Finally the extended exploding reflector concept can be used for computing prestack traveltimes while initiating the numerical solver as if a reflector was exploding in extended imaging space.

  3. Dynamics of large reflectors - Aerospatiale concepts

    Science.gov (United States)

    Flechais, A.; Picard, P.; Dauviau, C.; Truchi, C.

    1992-08-01

    An overview is presented of studies performed under an ESTEC contract and aimed at the identification of critical development areas of unfurlable reflectors and at the analysis of the dynamic interactions between reflectors and hosting spacecraft, in particular with respect to the design of the AOCS and antenna pointing mechanism (APM). Research and development performed by Aerospatiale since 1983 in the field of unfurlable mesh reflectors and supported by CNES are summarized. An analysis covering both the deployment phase and the deployed configuration is presented. The capabilities of classical AOCS and APM control laws for large reflectors are evaluated via simulations. It is shown that the baseline reflector under consideration is compatible with the PSDE mission and classical AOCS and APM control law designs.

  4. Hybrid integrated single-wavelength laser with silicon micro-ring reflector

    Science.gov (United States)

    Ren, Min; Pu, Jing; Krishnamurthy, Vivek; Xu, Zhengji; Lee, Chee-Wei; Li, Dongdong; Gonzaga, Leonard; Toh, Yeow T.; Tjiptoharsono, Febi; Wang, Qian

    2018-02-01

    A hybrid integrated single-wavelength laser with silicon micro-ring reflector is demonstrated theoretically and experimentally. It consists of a heterogeneously integrated III-V section for optical gain, an adiabatic taper for light coupling, and a silicon micro-ring reflector for both wavelength selection and light reflection. Heterogeneous integration processes for multiple III-V chips bonded to an 8-inch Si wafer have been developed, which is promising for massive production of hybrid lasers on Si. The III-V layer is introduced on top of a 220-nm thick SOI layer through low-temperature wafer-boning technology. The optical coupling efficiency of >85% between III-V and Si waveguide has been achieved. The silicon micro-ring reflector, as the key element of the hybrid laser, is studied, with its maximized reflectivity of 85.6% demonstrated experimentally. The compact single-wavelength laser enables fully monolithic integration on silicon wafer for optical communication and optical sensing application.

  5. Unidirectional Dual-Band CPW-Fed Antenna Loaded with an AMC Reflector

    Directory of Open Access Journals (Sweden)

    Qun Luo

    2013-01-01

    Full Text Available A unidirectional dual-band coplanar waveguide fed antenna (DB-CPWFA loaded with a reflector is presented in this paper. The reflector is made of an electric ground plane, a dielectric substrate, and artificial magnetic conductor (AMC which shows an effective dual operational bandwidth. Then, the closely spaced AMC reflector is employed under the DB-DPWFA for performance improvement including unidirectional radiation, low profile, gain enhancement, and higher front-to-back (F/B ratio. The final antenna design exhibits an 8% and 13% impedance bandwidths for 2.45 GHz and 5.8 GHz frequency regions, respectively. The overall gain enhancement of about 4 dB is achieved. The F/B ratio is approximate to 20 dB with a 16 dB improvement. The measured results are inconsistent with the numerical values. The presented design is a suitable candidate for radio frequency identification (RFID reader application.

  6. Optimization of Surrounding Reflector Material for Hyb-WT

    International Nuclear Information System (INIS)

    Tariq Siddique, M.; Hong, Song Hee; Kim, Myung Hyun

    2013-01-01

    The choice of reflector material is crucial for fusion and hybrid reactors as it was for the fission reactors. Multiple reflector materials were studied for pure fusion blanket design. The purpose of reflector in fusion blanket is to enhance the tritium breeding ratio (TBR). In fusion fission hybrid blanket the roll of reflector is slightly changed as it include the fission core and the performance of fission core also needs to be optimized and evaluated with the choice of reflector material, along with the enhancement of TBR. The performance parameters of Hyb-WT are significantly influenced by the choice of reflector material. TiC is best for TRU transmutation, TBR and reduced the neutron wall loading and graphite is best for FP transmutation. Strategy of multi reflector materials gives the best TRU and FP transmutation performance and also enhanced TBR with reduced neutron wall loading and it is a better choice for Hyb-WT reflector. The neutron flux is primarily dominated by the fission neutrons

  7. Prospects for Geostationary Doppler Weather Radar

    Science.gov (United States)

    Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya

    2009-01-01

    A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.

  8. WWER radial reflector modeling by diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P. T.; Mittag, S.

    2005-01-01

    The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)

  9. Design of optically stable image reflector system.

    Science.gov (United States)

    Tsai, Chung-Yu

    2013-08-01

    The design of a partially optically stable (POS) reflector system, in which the exit ray direction and image pose are unchanged as the reflector system rotates about a specific directional vector, was presented in an earlier study by the current group [Appl. Phys. B100, 883-890 (2010)]. The present study further proposes an optically stable image (OSI) reflector system, in which not only is the optical stability property of the POS system retained, but the image position and total ray path length are also fixed. An analytical method is proposed for the design of OSI reflector systems comprising multiple reflectors. The validity of the proposed approach is demonstrated by means of two illustrative examples.

  10. 16 CFR 1512.16 - Requirements for reflectors.

    Science.gov (United States)

    2010-01-01

    ... 1512.16 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... vehicle headlamps. The use of reflector combinations off the center plane of the bicycle (defined in...) Front reflector. The reflector or mount shall not contact the ground plane when the bicycle is resting...

  11. Pyramidal-Reflector Solar Heater

    Science.gov (United States)

    1982-01-01

    Motor-driven reflector compensates for seasonal changes in Sun's altitude. System has flat-plate absorbers mounted on north side of attic interior. Skylight window on south-facing roof admits Sunlight into attic, lined with mirrors that reflect light to absorbers. Reflectors are inner surfaces of a pyramid lying on its side with window at its base and absorber plates in a cross-sectional plane near its apex.

  12. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  13. Apparatus including concave reflectors and a line of optical fibers

    International Nuclear Information System (INIS)

    Dolan, J.T.

    1992-01-01

    This patent describes an apparatus including a radiation source which emits in a multiplicity of directions for focusing radiation on an object which may receive radiation within a certain solid angle. It comprises a first reflector and a second reflector, the first reflector being elliptical in cross section and having a first focus and a second focus, the second reflector being circular in cross section and having a center, and a radius equal to the distance between the second reflector and the first focus, the first reflector and the second reflector being arranged so that a concave reflecting surface of the first reflector faces a concave reflecting surface of the second reflector, and so arranged that the first focus of the first reflector corresponds to the center of the second reflector, the radiation source being an elongated discharge bulb, the object being a group of two or more optical fibers defining at least one line of optical fibers which are located at the second focus of the first reflector

  14. Analysis of acoustic reflectors for SAW temperature sensor and wireless measurement of temperature

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Kim, Seong Hoon; Jeong, Jae Kee; Shin, Beom Soo

    2013-01-01

    In this study, a wireless and non power SAW (surface acoustic wave) temperature sensor was developed. The single inter digital transducer (IDT) of SAW temperature sensor of which resonance frequency is 434 MHz was fabricated on 128.deg rot-X LiNbO 3 piezoelectric substrate by semiconductor processing technology. To find optimal acoustic reflector for SAW temperature sensor, various kinds of acoustic reflectors were fabricated and their reflection characteristics were analyzed. The IDT type acoustic reflector showed better reflection characteristic than other reflectors. The wireless temperature sensing system consisting of SAW temperature sensor with dipole antenna and a microprocessor based control circuit with dipole antenna for transmitting signal to activate the SAW temperature sensor and receiving the signal from SAW temperature sensor was developed. The result with wireless SAW temperature sensing system showed that the frequency of SAW temperature sensor was linearly decreased with the increase of temperature in the range of 40 to 80.deg.C and the developed wireless SAW temperature sensing system showed the excellent performance with the coefficient of determination of 0.99

  15. Water resistant rhodium plated reflectors for use in the DIRC BaBar Cherenkov detector

    CERN Document Server

    Benkebil, M; Plaszczynski, S; Schune, M H; Wormser, G

    2000-01-01

    Early simulation studies showed that reflectors mounted on the photomultipliers would be useful for the DIRC BaBar Cherenkov detector, showing a gain between 20% and 30% in the number of Cherenkov photons. The proof of principle for these reflectors has been obtained during the beam test of a large-scale prototype of the DIRC detector. An extensive R and D has been conducted in order to test different metallization procedures. Indeed, the challenge was to find a metallization technique which can resist the pure de-ionized water (>15 M OMEGA) up to 10 yr. The chosen technology was rhodium plated reflectors. During the first BaBar cosmic run, the measured performance confirmed the results of the simulation, the prototype-II and the R and D.

  16. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  17. Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors

    Science.gov (United States)

    Coleman, Michael J.

    One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation. Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components. Our findings demonstrate that the proper choice

  18. Application of Vision Metrology to In-Orbit Measurement of Large Reflector Onboard Communication Satellite for Next Generation Mobile Satellite Communication

    Science.gov (United States)

    Akioka, M.; Orikasa, T.; Satoh, M.; Miura, A.; Tsuji, H.; Toyoshima, M.; Fujino, Y.

    2016-06-01

    Satellite for next generation mobile satellite communication service with small personal terminal requires onboard antenna with very large aperture reflector larger than twenty meters diameter because small personal terminal with lower power consumption in ground base requires the large onboard reflector with high antenna gain. But, large deployable antenna will deform in orbit because the antenna is not a solid dish but the flexible structure with fine cable and mesh supported by truss. Deformation of reflector shape deteriorate the antenna performance and quality and stability of communication service. However, in case of digital beam forming antenna with phased array can modify the antenna beam performance due to adjustment of excitation amplitude and excitation phase. If we can measure the reflector shape precisely in orbit, beam pattern and antenna performance can be compensated with the updated excitation amplitude and excitation phase parameters optimized for the reflector shape measured every moment. Softbank Corporation and National Institute of Information and Communications Technology has started the project "R&D on dynamic beam control technique for next generation mobile communication satellite" as a contracted research project sponsored by Ministry of Internal Affairs and Communication of Japan. In this topic, one of the problem in vision metrology application is a strong constraints on geometry for camera arrangement on satellite bus with very limited space. On satellite in orbit, we cannot take many images from many different directions as ordinary vision metrology measurement and the available area for camera positioning is quite limited. Feasibility of vision metrology application and general methodology to apply to future mobile satellite communication satellite is to be found. Our approach is as follows: 1) Development of prototyping simulator to evaluate the expected precision for network design in zero order and first order 2) Trial

  19. Reflector modelization for neutronic diffusion and parameters identification

    International Nuclear Information System (INIS)

    Argaud, J.P.

    1993-04-01

    Physical parameters of neutronic diffusion equations can be adjusted to decrease calculations-measurements errors. The reflector being always difficult to modelize, we choose to elaborate a new reflector model and to use the parameters of this model as adjustment coefficients in the identification procedure. Using theoretical results, and also the physical behaviour of neutronic flux solutions, the reflector model consists then in its replacement by boundary conditions for the diffusion equations on the core only. This theoretical result of non-local operator relations leads then to some discrete approximations by taking into account the multiscaled behaviour, on the core-reflector interface, of neutronic diffusion solutions. The resulting model of this approach is then compared with previous reflector modelizations, and first results indicate that this new model gives the same representation of reflector for the core than previous. (author). 12 refs

  20. Reflector-moderated critical assemblies

    International Nuclear Information System (INIS)

    Paxton, H.C.; Jarvis, G.A.; Byers, C.C.

    1975-07-01

    Experiments with reflector-moderated critical assemblies were part of the Rover Program at the Los Alamos Scientific Laboratory (LASL). These assemblies were characterized by thick D 2 O or beryllium reflectors surrounding large cavities that contained highly enriched uranium at low average densities. Because interest in this type of system has been revived by LASL Plasma Cavity Assembly studies, more detailed descriptions of the early assemblies than had been available in the unclassified literature are provided. (U.S.)

  1. Reflector construction by sound path curves - A method of manual reflector evaluation in the field

    International Nuclear Information System (INIS)

    Siciliano, F.; Heumuller, R.

    1985-01-01

    In order to describe the time-of-flight behavior of various reflectors we have set up models and derived from them analytical and graphic approaches to reflector reconstruction. In the course of this work, maximum achievable accuracy and possible simplifications were investigated. The aim of the time-of-flight reconstruction method is to determine the points of a reflector on the basis of a sound path function (sound path as the function of the probe index position). This method can only be used on materials which are isotropic in terms of sound velocity since the method relies on time of flight being converted into sound path. This paper deals only with two-dimensional reconstruction, in other words all statements relate to the plane of incidence. The method is based on the fact that the geometrical location of the points equidistant from a certain probe index position is a circle. If circles with radiuses equal to the associated sound path are drawn for various search unit positions the points of intersection of the circles are the desired reflector points

  2. Research of flaw assessment methods for beryllium reflector elements

    International Nuclear Information System (INIS)

    Shibata, Akira; Ito, Masayasu; Takemoto, Noriyuki; Tanimoto, Masataka; Tsuchiya, Kunihiko; Nakatsuka, Masafumi; Ohara, Hiroshi; Kodama, Mitsuhiro

    2012-02-01

    Reflector elements made from metal beryllium is widely used as neutron reflectors to increase neutron flux in test reactors. When beryllium reflector elements are irradiated by neutron, bending of reflector elements caused by swelling occurs, and beryllium reflector elements must be replaced in several years. In this report, literature search and investigation for non-destructive inspection of Beryllium and experiments for Preliminary inspection to establish post irradiation examination method for research of characteristics of metal beryllium under neutron irradiation were reported. (author)

  3. Optimized reflectors for non-tracking solar collectors with tubular absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Muschaweck, Julius [Optics and Energy Consulting, Munich (Germany); Spirkl, Wolfgang [Ludwig-Maximilians Univ., Sektion Physik, Munich (Germany); Timinger, Andreas [Optics and Energy Consulting, Munich (Germany); ZAE Bayern, Solar Thermal and Biomass Dept., Munich (Germany); Benz, Nikolaus; Doerfler, Michael; Gut, Martin [ZAE Bayern, Solar Thermal and Biomass Dept., Munich (Germany); Kose, Erwin [microtherm Energietecjnik GmbH, Lods, 25 (France)

    2000-07-01

    We present an approach to find optimal reflector shapes for non-tracking solar collectors under practical constraints. We focus on cylindrical absorbers and reflectors with translational symmetry. Under idealised circumstances, edge ray reflectors are well known to be optimal. However, it is not clear how optimal reflectors should be shaped in order to obtain maximum utilisable energy for given operating temperatures under practical constraints like reflectivity less than unity, real radiation data, size limits, and gaps between the reflector and the absorber. For a prototype collector with a symmetric edge ray reflector and a tubular absorber, we derive from calorimetric measurements under outdoor conditions the optical efficiency as a function of the incidence angle. Using numerical optimisation and raytracing, we compare truncated symmetric edge ray reflectors, truncated asymmetric edge ray reflectors and free forms parametrized by Bezier splines. We find that asymmetric edge ray reflectors are optimal. For reasonable operating conditions, truncated asymmetric edge ray reflectors allow much better land use and easily adapt to a large range of roof tilt angles with marginal changes in collector construction. Except near the equator, they should increase the yearly utilisable energy per absorber tube by several percent as compared to the prototype collector with symmetric reflectors. (Author)

  4. Design issues of the piezo motor for the spacecraft reflector control system

    Directory of Open Access Journals (Sweden)

    Azin Anton

    2018-01-01

    Full Text Available Creation of large-size reflectors for spacecrafts is a topical issue for the space industry. The accuracy of the reflecting surface form and the structure weight are the main criteria for the reflector design. The accuracy of the reflecting surface form during a long-term operation is provided by adjustment when using piezoelectric motors in the reflector design. These motors have small weight-size parameters and can reach great torque values. The piezo motor is a distributed mechanical-acoustic oscillation system. Mechanical-acoustic oscillations are generated in the piezo motor by a PZT-stack and transmitted to an oscillator element, and then from the oscillator element to a load action element. At high frequencies, when dimensions of the oscillator are proportionate to the wavelength, the energy is transmitted by means of acoustic waves. In this case, mechanical waves practically are not involved in the energy transmission process. This thesis shows a method for selecting the material of a mechanical-acoustic oscillation system according to the efficiency of the acoustic energy transmission via a piezoelectric layered structure.

  5. Development of Full-Scale Ultrathin Shell Reflector

    Directory of Open Access Journals (Sweden)

    Durmuş Türkmen

    2012-01-01

    Full Text Available It is aimed that a new ultrathin shell composite reflector is developed considering different design options to optimize the stiffness/mass ratio, cost, and manufacturing. The reflector is an offset parabolic reflector with a diameter of 6 m, a focal length of 4.8 m, and an offset of 0.3 m and has the ability of folding and self-deploying. For Ku-band missions a full-scale offset parabolic reflector antenna is designed by considering different concepts of stiffening: (i reflective surface and skirt, (ii reflective surface and radial ribs, and (iii reflective surface, skirt, and radial ribs. In a preliminary study, the options are modeled using ABAQUS finite element program and compared with respect to their mass, fundamental frequency, and thermal surface errors. It is found that the option of reflective surface and skirt is more advantageous. The option is further analyzed to optimize the stiffness/mass ratio considering the design parameters of material thickness, width of the skirt, and ply angles. Using the TOPSIS method is determined the best reflector concept among thirty different designs. Accordingly, new design can be said to have some advantages in terms of mass, natural frequency, number of parts, production, and assembly than both SSBR and AstroMesh reflectors.

  6. Solar reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, J

    1983-01-15

    The reflector in the form of part of a cylindrical surface delimited by two envelopes is installed on a platform which can move on an inclined curvilinear path. The angle of inclination of the path depends on the latitude of the locality. The reflected rays are focused on the tubular absorber. One of the axes of the platform is linked to a brake controlled by a sensor for intensity of solar radiation. The sensor is a pipe filled with liquid with high value of the temperature expansion coefficient, for example alcohol. The pipe is insulated from one side and is accessible to the solar rays from the opposite. One end of the pipe is equipped with a bending end or piston. In order to expand the fluid in the sensor, the pipe acts on the brake, and the reflector is installed in a position corresponding to the maximum radiation intensity.

  7. Geological signatures of drillhole radar reflectors in ONKALO

    International Nuclear Information System (INIS)

    Doese, C.; Gustafsson, J.

    2011-12-01

    The geological signatures of radar reflectors in ONKALO have been evaluated as a subactivity within the Joint Work Programme 'Rock Suitability Criteria' strategies and methodology' between Svensk Kaernbraenslehantering AB and Posiva Oy. In addition to the geological signature, the usage of geophysical data to predict large fractures was evaluated. Pilot hole radar loggings were carried out using a RAMAC GPR-250 MHz dipole antenna. The radar data were evaluated and reflectors with known position and intersection angle to the pilot hole were correlated with fractures or foliation in the pilot hole and with Tunnel Crosscutting Fractures in the tunnel. This data served as in-data for the evaluation of the geological signatures of radar reflectors. The result of the evaluation is not univocal. Half of the reflectors could be explained by fractures in the pilot hole, but only about 10 % of the reflectors can be explained by Tunnel Crosscutting Fractures. Of these 10 %, 2/3 can also be explained by foliation, leaving only some 3 % of the total reflectors more unambiguously correlated with Tunnel Crosscutting Fractures. The fractures correlated with radar reflectors do not diverge much from other fractures. Fractures having intersection angles of 30 deg- 60 deg are more likely to be detected by radar relative to other. Other properties that seem to be overrepresented in fractures correlated with radar reflectors are quartz and/or graphite content, width ≥0.8 mm and higher alteration (J a ≥3), but the data is not unambiguous. (orig.)

  8. Square Van Atta reflector with conducting mounting flame

    DEFF Research Database (Denmark)

    Nielsen, Erik Dragø

    1970-01-01

    A theoretical and numerical analysis of square Van Atta reflectors has been carried out with or without a conducting plate, used for mounting of the antenna elements. The Van Atta reflector investigated has antenna elements which are parallel half-wave dipoles interconnected in pairs by transmiss......A theoretical and numerical analysis of square Van Atta reflectors has been carried out with or without a conducting plate, used for mounting of the antenna elements. The Van Atta reflector investigated has antenna elements which are parallel half-wave dipoles interconnected in pairs...

  9. Ellisoidal reflector for measuring otoacoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Heiskanen, Vesa; Pulkki, Ville Topias

    2016-01-01

    ear canal. This study presents the design and evaluation of a truncated prolate ellipsoidal reflector in combination with a large-diaphragm low-noise microphone to measure OAEs in the open ear canal of human listeners. The reflector was designed to gain information about BM processing at low...

  10. Adaptive Nulling in Hybrid Reflector Antennas

    Science.gov (United States)

    1992-09-01

    correction of reflector distortion and vernier beamsteering, MEEE Trans. Antennas Propagat, 36:1351-1358. 4 Cherrette , A.R., et al (1989) Compensation of...Propagat, 36:1351-1358. 4. Cherrette , A.R., et al (1989) Compensation of reflector antenna surface distortion using an array feed,IEEE Trans. Antennas

  11. Optimization of reflector-boosters for solar flat-collectors

    Energy Technology Data Exchange (ETDEWEB)

    Profant, M; Weidner, P; Boettcher, A

    1979-04-01

    To increase the working temperature of solar energy systems two-sided collectors together with appropriate reflectors are used. Here, the efficiency of various reflector shapes was investigated and attempts made to optimize them under several criteria. The results indicate that with cheap and simple to manufacture reflectors good energy gains can be expected.

  12. Design of partially optically stable reflector systems and prisms

    Science.gov (United States)

    Tsai, Chuang-Yu

    2010-09-01

    The characteristics and design method of the total optically stable (TOS) reflector systems/prisms were introduced in an early paper (Tsai and Lin in Appl. Opt. 47:4158-4163, 2008), where only two types of TOS reflector system exist, namely preservation or retroreflection. In this paper, we introduce the partially optically stable (POS) reflector system, which is only optically stable about a specific directional vector; nevertheless, the exiting light ray is not restricted to preservation or retroreflection. The proposed paper also presents an analytic method for the design of POS reflector systems comprised of multiple reflectors. Furthermore, it is shown that a POS prism can be obtained by adding two refracting flat boundary surfaces with specific conditions at the entrance and exit positions of the light ray in an optical system with multiple reflectors.

  13. Technological Spaces: An Initial Appraisal

    NARCIS (Netherlands)

    Ivanov, Ivan; Bézivin, Jean; Aksit, Mehmet

    2002-01-01

    In this paper, we propose a high level view of technological spaces (TS) and relations among these spaces. A technological space is a working context with a set of associated concepts, body of knowledge, tools, required skills, and possibilities. It is often associated to a given user community with

  14. Design of node record for fast active reflector

    International Nuclear Information System (INIS)

    Wu Wenqing; Luo Mingcheng; Tang Pengyi; Liu Jiajing; Wang Jian

    2014-01-01

    Active Reflector is the one of the innovations of Five hundred meter Aperture Spherical Telescope (FAST) whose performance touches on that of the overall telescope. Therefore a real time control system is needed by the Active Reflector System. In this paper, a new record type-node record is designed for EPICS-based active reflector control system of FAST, according to more than 2000 controlled node, which will be convenient for node management of IOC and prove the reusage of IOC codes. The record type is used in design of active reflector control system of FAST Miyun model. (authors)

  15. Reflector Performance Study in Ultra-long Cycle Fast Reactor

    International Nuclear Information System (INIS)

    Tak, Taewoo; Kong, Chidong; Choe, Jiwon; Lee, Deokjung

    2013-01-01

    There are reflector assemblies outside the fuel region, surrounding the fuel assemblies and axial reflector is located at the bottom of the core to control the neutron leakage fraction which is an important factor in fast reactor system. HT-9 was used as a reflector material as well as a structure material. In this study, alternative reflector materials were proposed and their reflection performance was tested and studied focused on its physics. ODS-MA957 and SiC were chosen from iron based alloy and ceramic respectively. The two materials were tested and compared with HT-9 in UCFR-1000 as a radial and an axial reflector and it was evaluated from the neutronics point of view with comparing the core life and the coolant void reactivity. The calculation and evaluation were performed by McCARD Monte Carlo code. The reflector materials for UCFR-1000 have been investigated in the aspect of neutronics. The reflection effect shows different performance corresponding to reflector material used. Also, the neutron energy spectrum is affected by changing materials which causes spectrum softening but it is not enough to influence the core life. With more reflector material candidates such as lead-based liquid metal, reflection performance and core parameter study will be investigated for next step

  16. Approaching conversion limit with all-dielectric solar cell reflectors.

    Science.gov (United States)

    Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert

    2015-02-09

    Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.

  17. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power benifit...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  18. Large Deployable Reflector (LDR) system concept and technology definition study. Volume 2: Technology assessment and technology development plan

    Science.gov (United States)

    Agnew, Donald L.; Jones, Peter A.

    1989-01-01

    A study was conducted to define reasonable and representative LDR system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume presents thirteen technology assessments and technology development plans, as well as an overview and summary of the LDR concepts. Twenty-two proposed augmentation projects are described (selected from more than 30 candidates). The five LDR technology areas most in need of supplementary support are: cryogenic cooling; astronaut assembly of the optically precise LDR in space; active segmented primary mirror; dynamic structural control; and primary mirror contamination control. Three broad, time-phased, five-year programs were synthesized from the 22 projects, scheduled, and funding requirements estimated.

  19. LDR system concepts and technology

    Science.gov (United States)

    Pittman, B.

    1985-01-01

    The Large Deployable Reflector is a 20 meter diameter infrared/submillimeter telescope planned for the late 1990's. The Astronomy Survey Committee of the National Academy of Sciences (Field Committee) recommended LDR as one of the two space based observatories that should start development in the 80's. LDR's large aperture will give it unequaled resolution in the wavelength range from 30 to 1000 microns. To meet LDR performance goals will call for advances in several technology disciplines including: optics, controls, thermal control, detectors, cryogenic cooling, and large space structures.

  20. Effect of graphite reflector on activation of fusion breeding blanket

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  1. Dynamic analysis of the large deployable reflector

    Science.gov (United States)

    Calleson, Robert E.; Scott, A. Don

    1987-01-01

    The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.

  2. Smart space technology innovations

    CERN Document Server

    Chen, Mu-Yen

    2013-01-01

    Recently, ad hoc and wireless communication technologies have made available the device, service and information rich environment for users. Smart Space and ubiquitous computing extend the ""Living Lab"" vision of everyday objects and provide context-awareness services to users in smart living environments. This ebook investigates smart space technology and its innovations around the Living Labs. The final goal is to build context-awareness smart space and location-based service applications that integrate information from independent systems which autonomously and securely support human activ

  3. Optimal design of orientation of PV/T collector with reflectors

    International Nuclear Information System (INIS)

    Kostic, Lj.T.; Pavlovic, T.M.; Pavlovic, Z.T.

    2010-01-01

    Hybrid conversion of solar radiation implies simultaneous solar radiation conversion into thermal and electrical energy in the PV/Thermal collector. In order to get more thermal and electrical energy, flat solar radiation reflectors have been mounted on PV/T collector. To obtain higher solar radiation intensity on PV/T collector, position of reflectors has been changed and optimal position of reflectors has been determined by both experimental measurements and numerical calculation so as to obtain maximal concentration of solar radiation intensity. The calculated values have been found to be in good agreement with the measured ones, both yielding the optimal position of the flat reflector to be the lowest (5 o ) in December and the highest (38 o ) in June. In this paper, the thermal and electrical efficiency of PV/T collector without reflectors and with reflectors in optimal position have been calculated. Using these results, the total efficiency and energy-saving efficiency of PV/T collector have been determined. Energy-saving efficiency for PV/T collector without reflectors is 60.1%, which is above the conventional solar thermal collector, whereas the energy-saving efficiency for PV/T collector with reflectors in optimal position is 46.7%, which is almost equal to the values for conventional solar thermal collector. Though the energy-saving efficiency of PV/T collector decreases slightly with the solar radiation intensity concentration factor, i.e. the thermal and electrical efficiency of PV/T collector with reflectors are lower than those of PV/T collector without reflectors, the total thermal and electrical energy generated by PV/T collector with reflectors in optimal position are significantly higher than total thermal and electrical energy generated by PV/T collector without reflectors.

  4. Nonimaging reflectors as functionals of the desired irradiance

    International Nuclear Information System (INIS)

    Winston, R.; Ries, H.

    1993-01-01

    For many tasks in illumination and collection the acceptance angle is required to vary along the reflector. If the acceptance angle function is known, then the reflector profile can be calculated as a functional of it. The total flux seen by an observer from a source of uniform brightness (radiance) is proportional to the sum of the view factor of the source and its reflection. This allows one to calculate the acceptance angle function necessary to produce a certain flux distribution and thereby construct the reflector profile. The authors demonstrate the method for several examples, including finite size sources with reflectors directly joining the source

  5. Beam scanning offset Casegrain reflector antennas by subreflector movement

    OpenAIRE

    LaPean, James William

    1993-01-01

    In 1987 a NASA panel recommended the creation of the Mission to Planet Earth. This mission was intended to apply to remote sensing experience of the space community to earth remote sensing to enhance the understanding of the climatalogical processes of our planet and to determine if, and to what extent, the hydrological cycle of Earth is being affected by human activity. One of the systems required for the mission was a wide scanning, high gain reflector antenna system for use ...

  6. Large space antenna concepts for ESGP

    Science.gov (United States)

    Love, Allan W.

    1989-01-01

    It is appropriate to note that 1988 marks the 100th anniversary of the birth of the reflector antenna. It was in 1888 that Heinrich Hertz constructed the first one, a parabolic cylinder made of sheet zinc bent to shape and supported by a wooden frame. Hertz demonstrated the existence of the electromagnetic waves that had been predicted theoretically by James Clerk Maxwell some 22 years earlier. In the 100 years since Hertz's pioneering work the field of electromagnetics has grown explosively: one of the technologies is that of remote sensing of planet Earth by means of electromagnetic waves, using both passive and active sensors located on an Earth Science Geostationary Platform (ESEP). For these purposes some exquisitely sensitive instruments were developed, capable of reaching to the fringes of the known universe, and relying on large reflector antennas to collect the minute signals and direct them to appropriate receiving devices. These antennas are electrically large, with diameters of 3000 to 10,000 wavelengths and with gains approaching 80 to 90 dB. Some of the reflector antennas proposed for ESGP are also electrically large. For example, at 220 GHz a 4-meter reflector is nearly 3000 wavelengths in diameter, and is electrically quite comparable with a number of the millimeter wave radiotelescopes that are being built around the world. Its surface must meet stringent requirements on rms smoothness, and ability to resist deformation. Here, however, the environmental forces at work are different. There are no varying forces due to wind and gravity, but inertial forces due to mechanical scanning must be reckoned with. With this form of beam scanning, minimizing momentum transfer to the space platform is a problem that demands an answer. Finally, reflector surface distortion due to thermal gradients caused by the solar flux probably represents the most challenging problem to be solved if these Large Space Antennas are to achieve the gain and resolution required of

  7. Verification Test for Ultra-Light Deployment Mechanism for Sectioned Deployable Antenna Reflectors

    Science.gov (United States)

    Zajac, Kai; Schmidt, Tilo; Schiller, Marko; Seifart, Klaus; Schmalbach, Matthias; Scolamiero, Lucio

    2013-09-01

    The ultra-light deployment mechanism (UDM) is based on three carbon fibre reinforced plastics (CFRP) curved tape springs made of carbon fibre / cyanate ester prepregs.In the frame of the activity its space application suitability for the deployment of solid reflector antenna sections was investigated. A projected diameter of the full reflector of 4 m to 7 m and specific mass in the order of magnitude of 2.6kg/m2 was focused for requirement derivation.Extensive verification tests including health checks, environmental and functional tests were carried out with an engineering model to enable representative characterizing of the UDM unit.This paper presents the design and a technical description of the UDM as well as a summary of achieved development status with respect to test results and possible design improvements.

  8. Optical properties of nonimaging concentrators with corrugated reflectors

    Science.gov (United States)

    Roennelid, Mats; Perers, Bengt; Karlsson, Bjorn

    1994-09-01

    A ray tracing study has been performed on the optical properties of cylindrical nonimaging concentrators with linear corrugated reflectors. The corrugations are assumed to be V-formed and to have an extension parallel to the meridian plane of the concentrators. It is shown that the acceptance angle for radiation incident in the meridian plane can be increased for moderate corrugations. This increased acceptance is balanced by a decreased acceptance of radiation from other directions. Calculations of angular acceptance for a 2X compound parabolic concentrator is presented. It is shown that the annual irradiation on a solar collector with booster reflector can be increased if corrugated reflectors are used instead of smooth reflectors.

  9. Acoustic levitation with self-adaptive flexible reflectors.

    Science.gov (United States)

    Hong, Z Y; Xie, W J; Wei, B

    2011-07-01

    Two kinds of flexible reflectors are proposed and examined in this paper to improve the stability of single-axis acoustic levitator, especially in the case of levitating high-density and high-temperature samples. One kind is those with a deformable reflecting surface, and the other kind is those with an elastic support, both of which are self-adaptive to the change of acoustic radiation pressure. High-density materials such as iridium (density 22.6 gcm(-3)) are stably levitated at room temperature with a soft reflector made of colloid as well as a rigid reflector supported by a spring. In addition, the containerless melting and solidification of binary In-Bi eutectic alloy (melting point 345.8 K) and ternary Ag-Cu-Ge eutectic alloy (melting point 812 K) are successfully achieved by applying the elastically supported reflector with the assistance of a laser beam.

  10. The Space House TM : Space Technologies in Architectural Design

    Science.gov (United States)

    Gampe, F.; Raitt, D.

    2002-01-01

    The word "space" has always been associated with and had a profound impact upon architectural design. Until relatively recently, however, the term has been used in a different sense to that understood by the aerospace community - for them, space was less abstract, more concrete and used in the context of space flight and space exploration, rather than, say, an empty area or space requiring to be filled by furniture. However, the two senses of the word space have now converged to some extent. Interior designers and architects have been involved in designing the interior of Skylab, the structure of the International Space Station, and futuristic space hotels. Today, architects are designing, and builders are building, houses, offices and other structures which incorporate a plethora of new technologies, materials and production processes in an effort not only to introduce innovative and adventurous ideas but also in an attempt to address environmental and social issues. Foremost among these new technologies and materials being considered today are those that have been developed for and by the space industry. This paper examines some of these space technologies, such as energy efficient solar cells, durable plastics, air and water filtration techniques, which have been adapted to both provide power while reducing energy consumption, conserve resources and so on. Several of these technologies have now been employed by the European Space Agency to develop a Space House TM - the first of its kind, which will be deployed not so much on planets like Mars, but rather here on Earth. The Space House TM, which exhibits many innovative features such as high strength light-weight carbon composites, active noise-damped, (glass and plastic) windows, low-cost solar arrays and latent heat storage, air and water purification systems will be described.

  11. Wideband QAMC reflector's antenna for low profile applications

    Science.gov (United States)

    Grelier, M.; Jousset, M.; Mallégol, S.; Lepage, A. C.; Begaud, X.; LeMener, J. M.

    2011-06-01

    A wideband reflector's antenna based on quasi-artificial magnetic conductor is proposed. To validate the design, an Archimedean spiral has been backed to this new reflector. In comparison to classical solution using absorbent material, the prototype presents a very low thickness of λ/15 at the lowest operating frequency and an improved gain over a 2.4:1 bandwidth. The whole methodology to design this reflector can be applied to other wideband antennas.

  12. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation

    International Nuclear Information System (INIS)

    Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao

    2017-01-01

    Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.

  13. Theoretical methods for neutronics calculations of core-blanket and core-reflector systems in fast reactors

    International Nuclear Information System (INIS)

    Corcuera, Roberto.

    1975-12-01

    The present work is a contribution to the neutronics calculational methods of fast neutron reactors. The first step is devoted to the analysis of the validity of the few-groups (of the order of 25) multigroup scheme, and of the transport-correction approximation for the treatment of the scattering anisotropy. This analysis includes both the reactor core, where the usual approximations are found to be satisfactory, and the reflector, where it turns out that the rapid variations of the neutron flux and of it's spectrum necessitate the improvement of the multigroup cross-sections' generation. Therefore, a zero-dimensional simple and accurate model for the average spectrum in the reflector is developed by the space-energy synthesis method. Finally using the Rayleigh-Ritz method, a model is developed in which the flux is spatially represented by an analytical function. This model is applied to the analysis of the sensitivity of reflector neutronics parameters to the variations of the cross sections [fr

  14. Large Deployable Reflector (LDR) feasibility study update

    Science.gov (United States)

    Alff, W. H.; Banderman, L. W.

    1983-01-01

    In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.

  15. Benefit of Lunar Regolith on Reflector Mass Savings

    International Nuclear Information System (INIS)

    Hatton, Steven A.; El-Genk, Mohamed S.

    2007-01-01

    The 2004 NASA Vision for Space Exploration calls for the return of mankind to the moon by no later than 2020, in preparation for an adventure to Mars and beyond. An envisioned lunar outpost will provide living quarters for initially 5- 10 astronauts for up to 2 weeks, and latter for science experiments, and recovery of mineral and indigenous resources for the day-to-day operation and production of propellant. These activities would require electrical and thermal powers in the order of 10's - 100's of kilowatts 24/7. Potential power options include photovoltaic, requiring massive batteries or fuel cells for energy storage during the long nights on the moon, and nuclear reactor power systems, which are much more compact and operate independent of the sun. This paper examines the benefit of using the lunar regolith as a supplemental neutron reflector on decreasing the launch mass of the Sectored Compact Reactor (SCoRe-S), developed at the Institute for Space and Nuclear Power Studies. In addition to providing at least $2.00 of hot-clean excess reactivity at the beginning of life, various SCoRe-S concepts investigated in this paper are at least $1.00 sub-critical when shutdown, and when the bare reactor cores are submerged in wet sand and flooded with seawater, following a launch abort accident. Design calculations performed using MCNP5 confirmed that using lunar regolith as supplementary reflector reduces the launch mass of the SCoRe-S cores by ∼ 34% - 35%, or 150 - 200 kg, while satisfying the above reactivity requirements

  16. Reconfigurable antenna using plasma reflector

    Science.gov (United States)

    Jusoh, Mohd Taufik; Ahmad, Khairol Amali; Din, Muhammad Faiz Md; Hashim, Fakroul Ridzuan

    2018-02-01

    This paper presents the feasibility study and design of plasma implementation in industrial, scientific and medical (ISM) communication band. A reflector antenna with rounded shaped is proposed to collimate beam in particular direction radiated by a quarter wave antenna operating at 2.4GHz. The simulations result has shown that by using plasma as the reflector elements, the gain, directivity and radiation patterns are identical with metal elements with only small different in the broadside direction. The versatility of the antenna is achievable by introducing electrical reconfigurable option to change the beam pattern.

  17. Performance of a PV module augmented by a plane reflector

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, G. E; Hussein, H. M. S; Mohamad, M. A [Dokki, Giza (Egypt)

    2000-07-01

    This paper presents a comparative experimental study on the performance of a PV module augmented by a south facing titled plane reflector and another identical one without reflector. The tilt angles of the two PV modules and reflector overhang are selected to be according to a previous theoretical study by the authors. The reflector tilt angle has been changed once a month so that the reflected beams from the plane reflector cover the total surface area of the PV module all days of every month during the high solar radiation period (i.e. three hours before and after solar noon). The study has been carried out on the two PV modules for a complete year under the actual atmospheric conditions of Cairo, Egypt. The measuring system used in the study comprises a data acquisition system, a computer, an electronic load and weather station. The experimental results indicate that the plane reflector enhances the yearly output energy of the PV module y about 22%. [Spanish] Este articulo presenta un estudio comparativo experimental sobre el rendimiento de un modulo de PV aumentado por un reflector plano inclinado mirando hacia el sur y otro identico sin reflector. Los angulos de inclinacion de los dos modulos y el reflector sobresaliente se seleccionan para que esten de acuerdo con un estudio teorico previo hecho por los autores. El angulo de inclinacion del reflector se cambio una vez al mes de manera que los rayos reflejados por el reflector plano cubrieran el area total de la superficie del modulo de PV todos los dias de cada mes durante el periodo de radiacion alto (o sea tres horas antes y despues del medio dia solar). El estudio ha sido llevado a cabo en dos modulos de PV durante un ano completo bajo condiciones atmosfericas reales de El Cairo, Egipto. El sistema de medicion usado en el estudio comprende un sistema de adquisicion de datos, una computadora, una memoria electronica y una estacion climatologica. Los resultados experimentales indican que el reflector plano

  18. Commercial Space with Technology Maturation

    Science.gov (United States)

    McCleskey, Carey M.; Rhodes, Russell E.; Robinson, John W.

    2013-01-01

    To provide affordable space transportation we must be capable of using common fixed assets and the infrastructure for multiple purposes simultaneously. The Space Shuttle was operated for thirty years, but was not able to establish an effective continuous improvement program because of the high risk to the crew on every mission. An unmanned capability is needed to provide an acceptable risk to the primary mission. This paper is intended to present a case where a commercial space venture could share the large fixed cost of operating the infrastructure with the government while the government provides new advanced technology that is focused on reduced operating cost to the common launch transportation system. A conceivable commercial space venture could provide educational entertainment for the country's youth that would stimulate their interest in the science, technology, engineering, and mathematics (STEM) through access at entertainment parks or the existing Space Visitor Centers. The paper uses this example to demonstrate how growing public-private space market demand will re-orient space transportation industry priorities in flight and ground system design and technology development, and how the infrastructure is used and shared.

  19. A Strategy for Thailand's Space Technology Development: National Space Program (NSP)

    Science.gov (United States)

    Pimnoo, Ammarin; Purivigraipong, Somphop

    2016-07-01

    The Royal Thai Government has established the National Space Policy Committee (NSPC) with mandates for setting policy and strategy. The NSPC is considering plans and budget allocation for Thai space development. NSPC's goal is to promote the utilization of space technology in a manner that is congruent with the current situation and useful for the economy, society, science, technology, educational development and national security. The first proposed initiative of the National Space Program (NSP) is co-development of THEOS-2, a next-generation satellite system that includes Thailand's second and third earth observation satellite (THAICHOTE-2 and THAICHOTE-3). THEOS-1 or THAICHOTE-1 was the first Earth Observation Satellite of Thailand launched in 2008. At present, the THAICHOTE-1 is over the lifetime, therefore the THEOS-2 project has been established. THEOS-2 is a complete Earth Observation System comprising THAICHOTE-2&3 as well as ground control segment and capacity building. Thus, NSPC has considered that Thailand should manage the space system. Geo-Informatics and Space Technology Development Agency (GISTDA) has been assigned to propose the initiative National Space Program (NSP). This paper describes the strategy of Thailand's National Space Program (NSP) which will be driven by GISTDA. First, NSP focuses on different aspects of the utilization of space on the basis of technology, innovation, knowledge and manpower. It contains driving mechanisms related to policy, implementation and use in order to promote further development. The Program aims to increase economic competitiveness, reduce social disparity, and improve social security, natural resource management and environmental sustainability. The NSP conceptual framework includes five aspects: communications satellites, earth observation satellite systems, space economy, space exploration and research, and NSP administration. THEOS-2 is considered a part of NSP with relevance to the earth observation

  20. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  1. 49 CFR 393.26 - Requirements for reflectors.

    Science.gov (United States)

    2010-10-01

    ... case of motor vehicles so constructed that requirement for a 381 mm (15-inch) minimum height above the... used in lieu of reflex reflectors if the material as used on the vehicle, meets the performance... motor vehicle. (3) Such surfaces shall be at least 3 inches from any required lamp or reflector unless...

  2. Optimization of MNSR upper reflector material and dimensions

    International Nuclear Information System (INIS)

    Albarhoum, M.

    2007-04-01

    Calculations for the optimization of the material and dimensions of the Syrian MNSR was performed. Calculations showed that the considerably important reflectors in this case are Beryllium, Heavy water and Graphite. Dimensions of the reflector cannot any way exceed the Shim Tray dimensions. Two different ways of filling the Shim Tray with the reflector material were established: 1- the radial filling mode, and 2- the axial mode. Both modes can be performed using single sectors or cumulative ones. The axial mode proved to be better than the radial one. The axial cumulative mode proved to be more efficient than the single axial one. The axial cumulative mode was studied from two points of view; the neutronic and the economic ones. From the neutronic point of view the beryllium proved to be the best reflector, and the best dimensions were found to coincide with a thickness equal to 0.11235 cm with the bottom end being 0.4494 cm distant from the bottom of the Shim Tray. From the economic point of view it was found that the cost of the reactivity unit is the smallest when the Graphite is used. Results of this study can be applied directly to the Syrian MNSR since fabrication of any plastic containment for the reflector can easily be achieved. This is because the reactivity worth resulting from mass unit of the reflector varies depending on its position positions in the Shim Tray.(author)

  3. Reflector drums as control mechanism for craft thermionic reactors with constant emitter heating containing U-233 as fuel and beryllium as moderator

    International Nuclear Information System (INIS)

    Sahin, S.; Selvi, S.

    1980-01-01

    The suitability of borated reflector drums has been investigated and shown as a control mechanism for space craft thermionic reactors with constant emitter heating using U-233 as fuel and beryllium to be moderator, mainly due to their extremce compactness and their very soft neutron sepctrum. The achievable change in ksub(eff) allows long-term control operation with success. The use of reflector drums keeps the cone diameter and the mass of the radiation shield on minimum. The distortion of the emitter heating field remains under acceptable tolerances, mainly due to the enhanced neutron production at the outer core region and the remaining reflector part between the boron layer and the core. All neutron physics calculations have been carried out using the multigroup Ssub(N) methods. Three data groups for r-theta-calculations in S 4 -P 1 approximation (16 space angles) have been evaluated from a 123-energy-groups data library using transport theoretical methods. (orig.) [de

  4. Laser reflector with an interference coating

    International Nuclear Information System (INIS)

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-01-01

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd 3+ :YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  5. Disordered animal multilayer reflectors and the localization of light

    Science.gov (United States)

    Jordan, T. M.; Partridge, J. C.; Roberts, N. W.

    2014-01-01

    Multilayer optical reflectors constructed from ‘stacks’ of alternating layers of high and low refractive index dielectric materials are present in many animals. For example, stacks of guanine crystals with cytoplasm gaps occur within the skin and scales of fish, and stacks of protein platelets with cytoplasm gaps occur within the iridophores of cephalopods. Common to all these animal multilayer reflectors are different degrees of random variation in the thicknesses of the individual layers in the stack, ranging from highly periodic structures to strongly disordered systems. However, previous discussions of the optical effects of such thickness disorder have been made without quantitative reference to the propagation of light within the reflector. Here, we demonstrate that Anderson localization provides a general theoretical framework to explain the common coherent interference and optical properties of these biological reflectors. Firstly, we illustrate how the localization length enables the spectral properties of the reflections from more weakly disordered ‘coloured’ and more strongly disordered ‘silvery’ reflectors to be explained by the same physical process. Secondly, we show how the polarization properties of reflection can be controlled within guanine–cytoplasm reflectors, with an interplay of birefringence and thickness disorder explaining the origin of broadband polarization-insensitive reflectivity. PMID:25339688

  6. Prominent reflector beneath around the segmentation boundary between Tonankai-Nankai earthquake area

    Science.gov (United States)

    Nakanishi, A.; Shimomura, N.; Fujie, G.; Kodaira, S.; Obana, K.; Takahashi, T.; Yamamoto, Y.; Yamashita, M.; Takahashi, N.; Kaneda, Y.; Mochizuki, K.; Kato, A.; Iidaka, T.; Kurashimo, E.; Shinohara, M.; Takeda, T.; Shiomi, K.

    2013-12-01

    In the Nankai Trough subduction seismogenic zone, the Nankai and Tonankai earthquakes had often occurred simultaneously, and caused a great event. In most cases, first break of such large events of Nankai Trough usually begins from southwest off the Kii Peninsula so far. The idea of split Philippine Sea plate between the Kii Peninsula and the Shikoku Island, which explains seismicity, tectonic background, receiver function image and historical plate motion, was previously suggested. Moreover, between the Kii Peninsula and the Shikoku Island, there is a gap of deep low-frequency events observed in the belt-like zone along the strike of the subducting Philippine Sea plate. In 2010 and 2011, we conducted the large-scale high-resolution wide-angle and reflection (MCS) seismic study, and long-term observation from off Shikoku and Kii Peninsula. Marine active source seismic data have been acquired along grid two-dimensional profiles having the total length of ~800km/year. A three-dimensional seismic tomography using active and passive seismic data observed both land and ocean bottom stations have been also performed. From those data, we found a possible prominent reflector imaged in the offshore side in the Kii channel at the depth of ~18km. The velocity just beneath the reflector cannot be determined due to the lack of ray paths. Based of the amplitude information, we interpret the reflector as the forearc Moho based on the velocity gap (from ~6.4km/s to ~7.4km/s). However, the reflector is shallower than the forearc Moho of other area along the Nankai Trough. Similar reflectors are recognized along other seismic profiles around the Kii channel. In this presentation, we will show the result of structure analysis to understand the peculiar structure including the prominent reflector around the Kii channel. Relation between the structure and the existence of the segmentation of the Nankai megathrust earthquake or seismic gap of the deep low-frequency events will be also

  7. Localization of the pumping reflector for a Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Suk; Kim, Chul Joong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    For the first year plan of this program, the pumping reflectors, which are gold plated reflectors and ceramic diffuse reflectors, of the Nd:YAG laser have been localized. The laser output performances with these reflectors have been investigated. Developed reflectors can be applied successfully to our commercialized Nd:YAG laser which was worked in previous project. We designed the optical pumping system with GaAlAs diode laser bar to improve the pumping efficiency. Moreover, we investigated a simple pumping technique without changing the fleshlamp, which makes the Nd:YAG laser operate in a cw, a pulsed, and a mixed of the two mode. We expert many new applications of this diversification of output pulse shapes in industry and in medicine. 38 figs, 9 tabs, 18 refs. (Author).

  8. Optical Coating Performance for Heat Reflectors of the JWST-ISIM Electronic Component

    Science.gov (United States)

    Rashford, Robert A.; Perrygo, Charles M.; Garrison, Matthew B.; White, Bryant K.; Threat, Felix T.; Quijada, Manuel A.; Jeans, James W.; Huber, Frank K.; Bousquet, Robert R.; Shaw, Dave

    2011-01-01

    A document discusses a thermal radiator design consisting of lightweight composite materials and low-emittance metal coatings for use on the James Webb Space Telescope (JWST) structure. The structure will have a Thermal Subsystem unit to provide passive cooling to the Integrated Science Instrument Module (ISIM) control electronics. The ISIM, in the JWST observatory, is the platform that provides the mounting surfaces for the instrument control electronics. Dissipating the control electronic generated-heat away from JWST is of paramount importance so that the spacecraft s own heat does not interfere with the infrared-light gathering of distant cosmic sources. The need to have lateral control in the emission direction of the IEC (ISIM Electronics Compartment) radiators led to the development of a directional baffle design that uses multiple curved mirrorlike surfaces. This concept started out from the so-called Winston non-imaging optical concentrators that use opposing parabolic reflector surfaces, where each parabola has its focus at the opposite edge of the exit aperture. For this reason they are often known as compound parabolic concentrators or CPCs. This radiator system with the circular section was chosen for the IEC reflectors because it offers two advantages over other designs. The first is that the area of the reflector strips for a given radiator area is less, which results in a lower mass baffle assembly. Secondly, the fraction of energy emitted by the radiator strips and subsequently reflected by the baffle is less. These fewer reflections reduced the amount of energy that is absorbed and eventually re-emitted, typically in a direction outside the design emission range angle. A baffle frame holds the mirrors in position above a radiator panel on the IEC. Together, these will direct the majority of the heat from the IEC above the sunshield away towards empty space.

  9. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  10. Free piston space Stirling technology program

    Science.gov (United States)

    Dochat, G. R.; Dhar, M.

    1989-01-01

    MTI recently completed an initial technology feasibility program for NASA by designing, fabricating and testing a space power demonstrator engine (SPDE). This program, which confirms the potential of free-piston Stirling engines, provided the major impetus to initiate a free-piston Stirling space engine (SSE) technology program. The accomplishments of the SPDE program are reviewed, and an overview of the SSE technology program and technical status to date is provided. It is shown that progress in both programs continues to justify its potential for either nuclear or solar space power missions.

  11. Ray Tracing modelling of reflector for vertical bifacial panel

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar panels have recently become a new attractive building block for PV systems. In this work we propose a reflector system for a vertical bifacial panel, and use ray tracing modelling to model the performance. Particularly, we investigate the impact of the reflector volume being filled...... with a refractive medium, and shows the refractive medium improves the reflector performance since it directs almost all the light incident on the incoming plane into the PV panel....

  12. Simulation study of resonant reflector for S-band BWO

    International Nuclear Information System (INIS)

    Choyal, Y; Parmar, Nidhi; Saini, Ajay Kumar; Chhotray, S K; Bhat, K S; Kumar, Lalit

    2012-01-01

    This paper presents the result of simulation studies of resonant reflector used for reflection of backward wave in relativistic BWO. The resonant reflector is modelled and analyzed by CST MWS for TM 01 . A TM 01 mode is fed at the output end of the BWO and signal is observed at the cathode end. Results show that 90 percent of the backward TM 01 wave is get reflected back by the locked TM 02 mode in the resonant reflector.

  13. Bandwidth Study of the Microwave Reflectors with Rectangular Corrugations

    Science.gov (United States)

    Zhang, Liang; He, Wenlong; Donaldson, Craig R.; Cross, Adrian W.

    2016-09-01

    The mode-selective microwave reflector with periodic rectangular corrugations in the inner surface of a circular metallic waveguide is studied in this paper. The relations between the bandwidth and reflection coefficient for different numbers of corrugation sections were studied through a global optimization method. Two types of reflectors were investigated. One does not consider the phase response and the other does. Both types of broadband reflectors operating at W-band were machined and measured to verify the numerical simulations.

  14. Neutron spectrum in small iron pile surrounded by lead reflector

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Hayashi, S.A.; Kobayashi, Katsuhei; Matsumura, Tetsuo; Nishihara, Hiroshi.

    1978-01-01

    In order to save the quantity of sample material, a possibility to assess group constants of a reactor material through measurement and analysis of neutron spectrum in a small sample pile surrounded by a reflector of heavy moderator, was investigated. As the sample and the reflector, we chose iron and lead, respectively. Although the time dispersion in moderation of neutrons was considerably prolonged by the lead reflector, this hardly interferes with the assessment of group constants. Theoretical calculation revealed that both the neutron flux spectrum and the sensitivity coefficient of group constants in an iron sphere, 35 cm in diameter surrounded by the lead reflector, 25 cm thick, were close to those of the bare iron sphere, 108 cm in diameter. The neutron spectra in a small iron pile surrounded by a lead reflector were experimentally obtained by the time-of-flight method with an electron linear accelerator and the result was compared with the predicted values. It could be confirmed that a small sample pile surrounded by a reflector, such as lead, was as useful as a much larger bulk pile for the assessment of group constants of a reactor material. (auth.)

  15. Ultrabroadband Hybrid III-V/SOI Grating Reflector for On-chip Lasers

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    We report on a new type of III-V/SOI grating reflector with a broad stopband of 350 nm. This reflector has promising prospects for applications in high-speed III-V/SOI vertical cavity lasers with an improved heat dissipation capability.......We report on a new type of III-V/SOI grating reflector with a broad stopband of 350 nm. This reflector has promising prospects for applications in high-speed III-V/SOI vertical cavity lasers with an improved heat dissipation capability....

  16. NASA Space Technology Roadmaps and Priorities: Restoring NASA's Technological Edge and Paving the Way for a New Era in Space

    Science.gov (United States)

    2012-01-01

    Success in executing future NASA space missions will depend on advanced technology developments that should already be underway. It has been years since NASA has had a vigorous, broad-based program in advanced space technology development, and NASA's technology base is largely depleted. As noted in a recent National Research Council report on the U.S. civil space program: Future U.S. leadership in space requires a foundation of sustained technology advances that can enable the development of more capable, reliable, and lower-cost spacecraft and launch vehicles to achieve space program goals. A strong advanced technology development foundation is needed also to enhance technology readiness of new missions, mitigate their technological risks, improve the quality of cost estimates, and thereby contribute to better overall mission cost management. Yet financial support for this technology base has eroded over the years. The United States is now living on the innovation funded in the past and has an obligation to replenish this foundational element. NASA has developed a draft set of technology roadmaps to guide the development of space technologies under the leadership of the NASA Office of the Chief Technologist. The NRC appointed the Steering Committee for NASA Technology Roadmaps and six panels to evaluate the draft roadmaps, recommend improvements, and prioritize the technologies within each and among all of the technology areas as NASA finalizes the roadmaps. The steering committee is encouraged by the initiative NASA has taken through the Office of the Chief Technologist (OCT) to develop technology roadmaps and to seek input from the aerospace technical community with this study.

  17. The geometrical theory of diffraction for axially symmetric reflectors

    DEFF Research Database (Denmark)

    Rusch, W.; Sørensen, O.

    1975-01-01

    The geometrical theory of diffraction (GTD) (cf. [1], for example) may be applied advantageously to many axially symmetric reflector antenna geometries. The material in this communication presents analytical, computational, and experimental results for commonly encountered reflector geometries...

  18. Convergence studies of deterministic methods for LWR explicit reflector methodology

    International Nuclear Information System (INIS)

    Canepa, S.; Hursin, M.; Ferroukhi, H.; Pautz, A.

    2013-01-01

    The standard approach in modem 3-D core simulators, employed either for steady-state or transient simulations, is to use Albedo coefficients or explicit reflectors at the core axial and radial boundaries. In the latter approach, few-group homogenized nuclear data are a priori produced with lattice transport codes using 2-D reflector models. Recently, the explicit reflector methodology of the deterministic CASMO-4/SIMULATE-3 code system was identified to potentially constitute one of the main sources of errors for core analyses of the Swiss operating LWRs, which are all belonging to GII design. Considering that some of the new GIII designs will rely on very different reflector concepts, a review and assessment of the reflector methodology for various LWR designs appeared as relevant. Therefore, the purpose of this paper is to first recall the concepts of the explicit reflector modelling approach as employed by CASMO/SIMULATE. Then, for selected reflector configurations representative of both GII and GUI designs, a benchmarking of the few-group nuclear data produced with the deterministic lattice code CASMO-4 and its successor CASMO-5, is conducted. On this basis, a convergence study with regards to geometrical requirements when using deterministic methods with 2-D homogenous models is conducted and the effect on the downstream 3-D core analysis accuracy is evaluated for a typical GII deflector design in order to assess the results against available plant measurements. (authors)

  19. Space Photovoltaic Research and Technology 1995

    Science.gov (United States)

    Landis, Geoffrey (Compiler)

    1995-01-01

    The Fourteenth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from October 24-26, 1995. The abstracts presented in this volume report substantial progress in a variety of areas in space photovoltaics. Technical and review papers were presented in many areas, including high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, high efficiency multiple bandgap cells, solar cell and array technology, heteroepitaxial cells, thermophotovoltaic energy conversion, and space radiation effects. Space flight data on a variety of cells were also presented.

  20. Food technology in space habitats

    Science.gov (United States)

    Karel, M.

    1979-01-01

    The research required to develop a system that will provide for acceptable, nutritious, and safe diets for man during extended space missions is discussed. The development of a food technology system for space habitats capable of converting raw materials produced in the space habitats into acceptable food is examined.

  1. Feasibility study of fusion breeding blanket concept employing graphite reflector

    International Nuclear Information System (INIS)

    Cho, Seungyon; Ahn, Mu-Young; Lee, Cheol Woo; Kim, Eung Seon; Park, Yi-Hyun; Lee, Youngmin; Lee, Dong Won

    2015-01-01

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  2. Feasibility study of fusion breeding blanket concept employing graphite reflector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seungyon, E-mail: sycho@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Cheol Woo; Kim, Eung Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Highlights: • A Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept adopts graphite as a reflector material by reducing the amount of beryllium multiplier. • Its feasibility was investigated in view point of the nuclear performance as well as material-related issues. • A nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket. • Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions. • In conclusion, the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition. - Abstract: To obtain high tritium breeding performance with limited blanket thickness, most of solid breeder blanket concepts employ a combination of lithium ceramic as a breeder and beryllium as a multiplier. In this case, considering that huge amount of beryllium are needed in fusion power plants, its handling difficulty and cost can be a major factor to be accounted for commercial use. Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. Its feasibility has been investigated in view point of the nuclear performance as well as material-related issues. In this paper, a nuclear analysis is performed under the fusion reactor condition to address the feasibility of graphite reflector in breeding blanket, considering tritium breeding capability and neutron shielding and activation aspects. Also, the chemical stability of the graphite is investigated considering the chemical stability under accident conditions, resulting in that the adaptation of graphite reflector in breeding blanket is intrinsically safe and plausible under fusion reactor condition.

  3. Dual Space Technology Transfer

    Science.gov (United States)

    Kowbel, W.; Loutfy, R.

    2009-03-01

    Over the past fifteen years, MER has had several NASA SBIR Phase II programs in the area of space technology, based upon carbon-carbon (C-C) composites. In addition, in November 2004, leading edges supplied by MER provided the enabling technology to reach a Mach 10 record for an air breathing engine on the X-43 A flight. The MER business model constitutes a spin-off of technologies initially by incubating in house, and ultimately creating spin-off stand alone companies. FMC was formed to provide for technology transfer in the area of fabrication of C-C composites. FMC has acquired ISO 9000 and AS9100 quality certifications. FMC is fabricating under AS9100 certification, flight parts for several flight programs. In addition, FMC is expanding the application of carbon-carbon composites to several critical military programs. In addition to space technology transfer to critical military programs, FMC is becoming the world leader in the commercial area of low-cost C-C composites for furnace fixtures. Market penetrations have been accomplished in North America, Europe and Asia. Low-cost, quick turn-around and excellent quality of FMC products paves the way to greatly increased sales. In addition, FMC is actively pursuing a joint venture with a new partner, near closure, to become the leading supplier of high temperature carbon based composites. In addition, several other spin-off companies such as TMC, FiC, Li-Tech and NMIC were formed by MER with a plethora of potential space applications.

  4. Technology Applications that Support Space Exploration

    Science.gov (United States)

    Henderson, Edward M.; Holderman, Mark L.

    2011-01-01

    Several enabling technologies have been identified that would provide significant benefits for future space exploration. In-Space demonstrations should be chosen so that these technologies will have a timely opportunity to improve efficiencies and reduce risks for future spaceflight. An early window exists to conduct ground and flight demonstrations that make use of existing assets that were developed for the Space Shuttle and the Constellation programs. The work could be mostly performed using residual program civil servants, existing facilities and current commercial launch capabilities. Partnering these abilities with the emerging commercial sector, along with other government agencies, academia and with international partners would provide an affordable and timely approach to get the launch costs down for these payloads, while increasing the derived benefits to a larger community. There is a wide scope of varied technologies that are being considered to help future space exploration. However, the cost and schedule would be prohibitive to demonstrate all these in the near term. Determining which technologies would yield the best return in meeting our future space needs is critical to building an achievable Space Architecture that allows exploration beyond Low Earth Orbit. The best mix of technologies is clearly to be based on our future needs, but also must take into account the availability of existing assets and supporting partners. Selecting those technologies that have complimentary applications will provide the most knowledge, with reasonable cost, for future use The plan is to develop those applications that not only mature the technology but actually perform a useful task or mission. These might include such functions as satellite servicing, a propulsion stage, processing lunar regolith, generating and transmitting solar power, cryogenic fluid transfer and storage and artificial gravity. Applications have been selected for assessment for future

  5. Assessing Space Exploration Technology Requirements as a First Step Towards Ensuring Technology Readiness for International Cooperation in Space Exploration

    Science.gov (United States)

    Laurini, Kathleen C.; Hufenbach, Bernhard; Satoh, Maoki; Piedboeuf, Jean-Claude; Neumann, Benjamin

    2010-01-01

    Advancing critical and enhancing technologies is considered essential to enabling sustainable and affordable human space exploration. Critical technologies are those that enable a certain class of mission, such as technologies necessary for safe landing on the Martian surface, advanced propulsion, and closed loop life support. Others enhance the mission by leading to a greater satisfaction of mission objectives or increased probability of mission success. Advanced technologies are needed to reduce mass and cost. Many space agencies have studied exploration mission architectures and scenarios with the resulting lists of critical and enhancing technologies being very similar. With this in mind, and with the recognition that human space exploration will only be enabled by agencies working together to address these challenges, interested agencies participating in the International Space Exploration Coordination Group (ISECG) have agreed to perform a technology assessment as an important step in exploring cooperation opportunities for future exploration mission scenarios. "The Global Exploration Strategy: The Framework for Coordination" was developed by fourteen space agencies and released in May 2007. Since the fall of 2008, several International Space Exploration Coordination Group (ISECG) participating space agencies have been studying concepts for human exploration of the moon. They have identified technologies considered critical and enhancing of sustainable space exploration. Technologies such as in-situ resource utilization, advanced power generation/energy storage systems, reliable dust resistant mobility systems, and closed loop life support systems are important examples. Similarly, agencies such as NASA, ESA, and Russia have studied Mars exploration missions and identified critical technologies. They recognize that human and robotic precursor missions to destinations such as LEO, moon, and near earth objects provide opportunities to demonstrate the

  6. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  7. ANALISIS PERBANDINGAN OUTPUT DAYA LISTRIK PANEL SURYA SISTEM TRACKING DENGAN SOLAR REFLECTOR

    Directory of Open Access Journals (Sweden)

    I B Kd Surya Negara

    2016-03-01

    Full Text Available Indonesia merupakan negara beriklim tropis yang memiliki intensitas radiasi matahari yang sangat besar dan intensitas radiasi tersebut berpotensi untuk dikembangkan menjadi Pembangkit Listrik Tenaga Surya. Efisiensi dari panel surya saat ini masih perlu pertimbangan lebih lanjut. Efisiensi panel surya yang rendah ini, berpengaruh pada hasil output daya listrik yang dihasilkan. Upaya untuk meningkatkan output daya listrik panel surya, yaitu dengan sistem tracking dan solar reflector. Penelitian ini bertujuan untuk mengetahui output daya listrik yang lebih maksimal. Metode dalam penelitian ini menggunakan sistem tracking yang pergerakannya berdasarkan waktu dan menggunakan solar reflector dengan cermin datar dan sudut reflector yang berbeda. Hasil dari perbandingan sistem tracking dengan solar reflector yaitu solar reflector menghasilkan output daya listrik lebih besar dibandingan dengan sistem tracking, dimana solar reflector menghasilkan output daya listrik sebesar 0.1224 Watt dan sistem tracking sebesar 0.1136 Watt.

  8. Enhancing the stepped solar still performance using internal and external reflectors

    International Nuclear Information System (INIS)

    Omara, Z.M.; Kabeel, A.E.; Younes, M.M.

    2014-01-01

    Highlights: • Stepped solar still with internal and external reflectors have been investigated. • The productivity of the modified stepped solar still is higher than conventional by 103%. • The productivity of stepped still with external mirror is higher than that for conventional still by 88%. - Abstract: The performance of stepped solar still with internal and external reflectors have been investigated in the current study. The reflectors are used to enhance energy input to the stepped still. The influence of internal and external (top and bottom) reflectors on the performance of the stepped solar still is investigated. A comparison between modified stepped solar still and conventional solar still is carried out to evaluate the developed desalination system performance under the same climate conditions. The results indicated that, during experimentation the productivity of the modified stepped solar still with internal and external (top and bottom) reflectors is higher than that for conventional still approximately by 125%. In this case the estimated cost of 1 l of distillate for stepped still with reflectors and conventional solar stills is approximately 0.031$ and 0.049$, respectively

  9. Structural Feasibility Analysis of a Robotically Assembled Very Large Aperture Optical Space Telescope

    Science.gov (United States)

    Wilkie, William Keats; Williams, R. Brett; Agnes, Gregory S.; Wilcox, Brian H.

    2007-01-01

    This paper presents a feasibility study of robotically constructing a very large aperture optical space telescope on-orbit. Since the largest engineering challenges are likely to reside in the design and assembly of the 150-m diameter primary reflector, this preliminary study focuses on this component. The same technology developed for construction of the primary would then be readily used for the smaller optical structures (secondary, tertiary, etc.). A reasonable set of ground and on-orbit loading scenarios are compiled from the literature and used to define the structural performance requirements and size the primary reflector. A surface precision analysis shows that active adjustment of the primary structure is required in order to meet stringent optical surface requirements. Two potential actuation strategies are discussed along with potential actuation devices at the current state of the art. The finding of this research effort indicate that successful technology development combined with further analysis will likely enable such a telescope to be built in the future.

  10. Beyond Wires and Seeds: Reflector-guided Breast Lesion Localization and Excision.

    Science.gov (United States)

    Mango, Victoria L; Wynn, Ralph T; Feldman, Sheldon; Friedlander, Lauren; Desperito, Elise; Patel, Sejal N; Gomberawalla, Ameer; Ha, Richard

    2017-08-01

    Purpose To evaluate outcomes of Savi Scout (Cianna Medical, Aliso Viejo, Calif) reflector-guided localization and excision of breast lesions by analyzing reflector placement, localization, and removal, along with target excision and rates of repeat excision (referred to as re-excision). Materials and Methods A single-institution retrospective review of 100 women who underwent breast lesion localization and excision by using the Savi Scout surgical guidance system from June 2015 to May 2016 was performed. By using image guidance 0-8 days before surgery, 123 nonradioactive, infrared-activated, electromagnetic wave reflectors were percutaneously inserted adjacent to or within 111 breast targets. Twenty patients had two or three reflectors placed for bracketing or for localizing multiple lesions, and when ipsilateral, they were placed as close as 2.6 cm apart. Target and reflector were localized intraoperatively by one of two breast surgeons who used a handpiece that emitted infrared light and electromagnetic waves. Radiographs of the specimen and pathologic analysis helped verify target and reflector removal. Target to reflector distance was measured on the mammogram and radiograph of the specimen, and reflector depth was measured on the mammogram. Pathologic analysis was reviewed. Re-excision rates and complications were recorded. By using statistics software, descriptive statistics were generated with 95% confidence intervals (CIs) calculated. Results By using sonographic (40 of 123; 32.5%; 95% CI: 24.9%, 41.2%) or mammographic (83 of 123; 67.5%; 95% CI: 58.8% 75.1%) guidance, 123 (100%; 95% CI: 96.4%, 100%) reflectors were placed. Mean mammographic target to reflector distance was 0.3 cm. All 123 (100%; 95% CI: 96.4%, 100%) targets and reflectors were excised. Pathologic analysis yielded 54 of 110 malignancies (49.1%; 95% CI: 39.9%, 58.3%; average, 1.0 cm; range, 0.1-5 cm), 32 high-risk lesions (29.1%; 95% CI: 21.4%, 38.2%), and 24 benign lesions (21.8%; 95% CI

  11. Nonimaging reflectors for efficient uniform illumination.

    Science.gov (United States)

    Gordon, J M; Kashin, P; Rabl, A

    1992-10-01

    Nonimaging reflectors that are an extension of the design principle that was developed for compound parabolic concentrator type devices are proposed for illumination applications. The optical designs presented offer maximal lighting efficiency while they retain sharp angular control of the radiation and highly uniform flux densities on distant target planes. Our results are presented for symmetrical configurations in two dimensions (troughlike reflectors) for flat and for tubular sources. For fields of view of practical interest (half-angle in the 30-60 degrees range), these devices can achieve minimum-tomaximum intensity ratios of 0.7, while they remain compact and incur low reflective losses.

  12. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  13. Space and Industrial Brine Drying Technologies

    Science.gov (United States)

    Jones, Harry W.; Wisniewski, Richard S.; Flynn, Michael; Shaw, Hali

    2014-01-01

    This survey describes brine drying technologies that have been developed for use in space and industry. NASA has long considered developing a brine drying system for the International Space Station (ISS). Possible processes include conduction drying in many forms, spray drying, distillation, freezing and freeze drying, membrane filtration, and electrical processes. Commercial processes use similar technologies. Some proposed space systems combine several approaches. The current most promising candidates for use on the ISS use either conduction drying with membrane filtration or spray drying.

  14. Performance Improvement of Solar Water Stills by Using Reflectors

    Directory of Open Access Journals (Sweden)

    Humphrey Hamusonde Maambo

    2016-09-01

    Full Text Available The lack of safe and clean drinking water sources is one of the problems faced in most rural communities in Zambia. Water in these communities is mostly obtained from shallow wells and rivers. However, this water might be potentially contaminated with harmful substances such as pathogenic bacteria and therefore, unsafe for drinking. Solar water distillation represents an important alternative to palliate problems of fresh water shortages. Solar water stills can be used to eliminate harmful substances from contaminated water by treating it using free solar energy before it can be consumed. Therefore, there is a need to improve solar still performance to produce a greater quantity of safe drinking water. One possible method to improve performance is through adding reflectors to solar stills. Reflectors improve performance by increasing the quantity of distillate by about 22.3 % at a water depth of 15 mm and about 2 9% at a water depth of 10 mm when compared to the distillate produced from a still without reflectors. The water produced using solar stills with reflectors was tested and adhered to World Health Organization (WHO drinking water standards. This implies that solar distillation with reflectors could be adopted at a larger scale to produce safer drinking water at a reduced cost.

  15. Medical Applications of Space Light-Emitting Diode Technology--Space Station and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, H.T.; Houle, J.M.; Donohoe, D.L.; Bajic, D.M.; Schmidt, M.H.; Reichert, K.W.; Weyenberg, G.T.; Larson, D.L.; Meyer, G.A.; Caviness, J.A.

    1999-06-01

    Space light-emitting diode (LED) technology has provided medicine with a new tool capable of delivering light deep into tissues of the body, at wavelengths which are biologically optimal for cancer treatment and wound healing. This LED technology has already flown on Space Shuttle missions, and shows promise for wound healing applications of benefit to Space Station astronauts.

  16. Rapid prototyping of reflectors for vehicle lighting using laser activated remote phosphor

    Science.gov (United States)

    Lachmayer, Roland; Kloppenburg, Gerolf; Wolf, Alexander

    2015-03-01

    Bright white light sources are of significant importance for automotive front lighting systems. Today's upper class vehicles mainly use HID or LED as light source. As a further step in this development laser diode based systems offer high luminance, efficiency and allow the realization of new styling concepts and new dynamic lighting functions. These white laser diode systems can either be realized by mixing different spectral sources or by combining diodes with specific phosphors. Based on the approach of generating light using a laser and remote phosphor, lighting modules are manufactured. Four blue laser diodes (450 nm) are used to activate a phosphor coating and thus to achieve white light. A segmented paraboloid reflector generates the desired light distribution for an additional car headlamp. We use high speed milling and selective laser melting to build the reflector system for this lighting module. We compare the spectral reflection grade of these materials. Furthermore the generated modules are analyzed regarding their efficiency and light distribution. The use of Rapid Prototyping technologies allows an early validation of the chosen concept and is supposed to reduce cost and time in the product development process significantly. Therefor we discuss costs and times of the applied manufacturing technologies.

  17. Slovakia: Proposal of movable reflector for fast reactor design

    International Nuclear Information System (INIS)

    Vrban, B.

    2015-01-01

    In fast reactors a larger migration area leading to a significant leak of neutrons can be observed because especially the transport cross-sections are in general smaller as compared to light water reactors. The utilization of a moveable reflector system in conjunction with dedicated safety control rods can increase the ability of accident managing due to enhanced escaping neutrons which otherwise would be reflected back into the fuel zone. The paper demonstrates the possibility of better controlling the transient reactor by additionally moving selected reflector subassemblies equipped with the neutron trap. The main purpose of the analysis of the Gas-cooled Fast Reactor (GFR) presented in the full paper is investigation of the kinetic parameters and of the control and reflector rod worth, as well as optimization of the parts used for partial reflector withdrawal. The results found in this study may serve for future design improvements of other designs such as the liquid metal cooled fast reactors

  18. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  19. Enhanced light absorption of silicon solar cells with dielectric nanostructured back reflector

    Science.gov (United States)

    Ren, Rui; Zhong, Zheng

    2018-06-01

    This paper investigates the light absorption property of nanostructured dielectric reflectors in silicon thin film solar cells using numerical simulation. Flat thin film solar cell with ZnO nanostructured back reflector can produce comparable photocurrent to the control model with Ag nanostructured back reflector. Furthermore, when it is integrated with nano-pillar surface decoration, a photocurrent density of 29.5 mA/cm2 can be achieved, demonstrating a photocurrent enhancement of 5% as compared to the model with Ag nanostructured back reflector.

  20. STAIF96: space technology and applications international forum. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1996-01-01

    These proceedings represent papers presented at the Space Technology and Applications International Forum-STAIF. STAIF-96 hosted four technical conferences sharing the common interest in space exploration, technology, and commercialization. Topics discussed include space station, space transportation, materials processing in space, commercial forum, space power, commercial space ports, microelectronics, automation of robotics-space application, remote sensing, small business innovative research and communications. There were 243 papers presented at the forum, and 138 have been abstracted for the Energy Science and Technology database. STAIF-96 was partly sponsored by the U.S. Department of Energy

  1. Local deformation method for measuring element tension in space deployable structures

    Directory of Open Access Journals (Sweden)

    Belov Sergey

    2017-01-01

    Full Text Available The article describes the local deformation method to determine the tension of cord and thin membrane elements in space deployable structure as antenna reflector. Possible measuring instrument model, analytical and numerical solutions and experimental results are presented. The boundary effects on measurement results of metallic mesh reflector surface tension are estimated. The study case depicting non-uniform reflector surface tension is considered.

  2. Future of dual-use space awareness technologies

    Science.gov (United States)

    Kislitsyn, Boris V.; Idell, Paul S.; Crawford, Linda L.

    2000-10-01

    The use of all classes of space systems, whether owned by defense, civil, commercial, scientific, allied or foreign organizations, is increasing rapidly. In turn, the surveillance of such systems and activities in space are of interest to all parties. Interests will only increase in time and with the new ways to exploit the space environment. However, the current space awareness infrastructure and capabilities are not maintaining pace with the demands and advanced technologies being brought online. The use of surveillance technologies, some of which will be discussed in the conference, will provide us the eventual capability to observe and assess the environment, satellite health and status, and the uses of assets on orbit. This provides us a space awareness that is critical to the military operator and to the commercial entrepreneur for their respective successes. Thus the term 'dual-use technologies' has become a reality. For this reason we will briefly examine the background, current, and future technology trends that can lead us to some insights for future products and services.

  3. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  4. Self-Assembled InAs Nanowires as Optical Reflectors

    Directory of Open Access Journals (Sweden)

    Francesco Floris

    2017-11-01

    Full Text Available Subwavelength nanostructured surfaces are realized with self-assembled vertically-aligned InAs nanowires, and their functionalities as optical reflectors are investigated. In our system, polarization-resolved specular reflectance displays strong modulations as a function of incident photon energy and angle. An effective-medium model allows one to rationalize the experimental findings in the long wavelength regime, whereas numerical simulations fully reproduce the experimental outcomes in the entire frequency range. The impact of the refractive index of the medium surrounding the nanostructure assembly on the reflectance was estimated. In view of the present results, sensing schemes compatible with microfluidic technologies and routes to innovative nanowire-based optical elements are discussed.

  5. Free-piston Stirling technology for space power

    Science.gov (United States)

    Slaby, Jack G.

    1989-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed here is the completion of the Space Power Demonstrator Engine (SPDE) testing-culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engine (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding.

  6. Technology transfer trends in Indian space programme

    Science.gov (United States)

    Sridhara Murthi, K. R.; Shoba, T. S.

    2010-10-01

    Indian space programme, whose objectives involve acceleration of economic and social development through applications of space technology, has been engaged in the development of state-of-the-art satellite systems, launch vehicles and equipment necessary for applications. Even during the early phase of evolution of this Programme, deliberate policies have been adopted by the national space agency, namely, Indian Space Research Organisation (ISRO), to promote spin-off benefit from the technologies developed for the use of space projects. Consistently adhering to this policy, ISRO has transferred over 280 technologies till date, spanning a wide spectrum of disciplines. This has resulted in a fruitful two-way cooperation between a number of SMEs and the ISRO. In order to make the technology transfer process effective, ISRO has adopted a variety of functional and organizational policies that included awareness building measures, licensee selection methods, innovative contract systems, diverse transfer processes, post licencing services and feedback mechanisms. Besides analyzing these policies and their evolution, the paper discusses various models adopted for technology transfer and their impact on assessment. It also touches upon relevant issues relating to creating interface between public funded R&D and the private commercial enterprises. It suggests few models in which international cooperation could be pursued in this field.

  7. Ellipsoidal reflector for measuring oto-acoustic emissions

    DEFF Research Database (Denmark)

    Epp, Bastian; Pulkki, Ville; Heiskanen, Vesa

    2014-01-01

    A truncated prolate ellipsoidal reflector having the ear canal of a listener at one focal point and large- diaphragm low-noise microphone at the other focal point is proposed for free-field recordings of oto-acoustic emissions. A prototype reflector consisting of three pieces is presented, which...... enables measuring the response of the system with different truncations. The response of the system is measured with a miniature loud- speaker, and proof-of-concept measurements of oto-acoustic emissions are presented. The effect of truncation and other physical parameters to the performance of the system...

  8. Technology for Future NASA Missions: Civil Space Technology Initiative (CSTI) and Pathfinder

    Science.gov (United States)

    1988-01-01

    SEPTEMBER 1988 PACE Space Research and Technology Overview 1 Frederick P. Povinelli Civil Space Technology Initiative 15 Judith H. Ambrus...Peterson Peterson Pierson Pietsch Pilcher Pistole Piszczor Pittian Plotkin Portnoy Poucher Povinelli Povell Pozarovski Priebe Prior Pyle

  9. NASA space station automation: AI-based technology review

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures.

  10. Distribution of analytes over TXRF reflectors

    International Nuclear Information System (INIS)

    Bernasconi, G.; Tajani, A.

    2000-01-01

    One of the most frequently used methods for trace element analysis in TXRF involves the evaporation of small amounts of aqueous solutions over flat reflectors. This method has the advantage of in-situ pre-concentration of the analytes, which together with the low background due to the total reflection in the substrate leads to excellent detection limits and high signal to noise ratio. The spiking of the liquid sample with an internal standard provides also a simple way to achieve multielemental quantitative analysis. However the elements are not homogeneously distributed over the reflector after the liquid phase has been evaporated. This distribution may be different for the unknown elements and the internal standards and may influence the accuracy of the quantitative results. In this presentation we used μ-XRF techniques to map this distribution. Small (20 μl) drops of a binary solution were evaporated over silicon reflectors and then mapped using a focused X-ray beam with about 100 μm resolution. A typical ring structure showing some differences in the distribution of both elements has been observed. One of the reflectors was also measured in a TXRF setup turning it at different angles with reference to the X-ray beam (with constant incidence and take-off angles) and variations of the intensity relation between both elements were measured. This work shows the influence of the sample distribution and proposes methods to evaluate it. In order to assess the limitations of the accuracy of the results due to the sample distribution more measurements would be necessary, however due to the small size of typical TXRF samples and the tight geometry of TXRF setups the influence of the sample distribution is not large. (author)

  11. Characterization of a Bifacial Photovoltaic Panel Integrated with External Diffuse and Semimirror Type Reflectors

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Silicon wafer accounts for almost one-half the cost of a photovoltaic (PV panel. A bifacial silicon solar cell is attractive due to its potential of enhancing power generation from the same silicon wafer in comparison with a conventional monofacial solar cell. The bifacial PV cell is able to capture solar radiation by back surface. This ability requires a suitable reflector appropriately oriented and separated from the cell’s rear surface. In order to optimize the bifacial solar cell performance with respect to an external back surface reflector, diffuse and semimirror reflectors were investigated at various angles and separations from the back surface. A simple bifacial solar panel, consisting of four monocrystalline Si solar cells, was designed and built. Reflection from the rear surface was provided by an extended semimirror and a white-painted diffuse reflector. Maximum power generation was observed at 30° with respect to ground for the semimirror reflector and 10° for diffuse reflector at an optimized reflector-panel separation of 115 mm. Output power enhancement of 20% and 15% from semimirror and diffuse reflectors, respectively, were observed. This loss from diffuse reflector is attributed to scattering of light beyond the rear surface capture cross-section of the bifacial solar panel.

  12. Thermal Stability of a 4 Meter Primary Reflector for the Scanning Microwave Limb Sounder

    Science.gov (United States)

    Cofield, Richard E.; Kasl, Eldon P.

    2011-01-01

    The Scanning Microwave Limb Sounder (SMLS) is a space-borne heterodyne radiometer which will measure pressure, temperature and atmospheric constituents from thermal emission in [180,680] GHz. SMLS, planned for the NRC Decadal Survey's Global Atmospheric Composition Mission, uses a novel toric Cassegrain antenna to perform both elevation and azimuth scanning. This provides better horizontal and temporal resolution and coverage than were possible with elevation-only scanning in the two previous MLS satellite instruments. SMLS is diffraction-limited in the vertical plane but highly astigmatic in the horizontal (beam aspect ratio approx. 1:20). Nadir symmetry ensures that beam shape is nearly invariant over plus or minus 65 deg azimuth. A low-noise receiver FOV is swept over the reflector system by a small azimuth-scanning mirror. We describe the fabrication and thermal-stability test of a composite demonstration primary reflector, having full 4m height and 1/3 the width planned for flight. Using finite-element models of reflectors and structure, we evaluate thermal deformations and optical performance for 4 orbital environments and isothermal soak. We compare deformations with photogrammetric measurements made during soak tests in a chamber. The test temperature range exceeds predicted orbital ranges by large factors, implying in-orbit thermal stability of 0.21 micron rms (root mean square)/C, which meets SMLS requirements.

  13. Marshall Space Flight Center Technology Investments Overview

    Science.gov (United States)

    Tinker, Mike

    2014-01-01

    NASA is moving forward with prioritized technology investments that will support NASA's exploration and science missions, while benefiting other Government agencies and the U.S. aerospace enterprise. center dotThe plan provides the guidance for NASA's space technology investments during the next four years, within the context of a 20-year horizon center dotThis plan will help ensure that NASA develops technologies that enable its 4 goals to: 1.Sustain and extend human activities in space, 2.Explore the structure, origin, and evolution of the solar system, and search for life past and present, 3.Expand our understanding of the Earth and the universe and have a direct and measurable impact on how we work and live, and 4.Energize domestic space enterprise and extend benefits of space for the Nation.

  14. Effect of phototherapy with alumunium foil reflectors on neonatal hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Tony Ijong Dachlan

    2015-03-01

    Full Text Available Background Neonatal hyperbilirubinemia (NH is one of the most common problems in neonates, but it can be treated with blue light phototherapy. Developing countries with limited medical equipment and funds have difficulty providing effective phototherapy to treat NH, leading to increased risk of bilirubin encephalopathy. Phototherapy with white reflecting curtains can decrease the duration of phototherapy needed to reduce bilirubin levels. Objective To compare the duration of phototherapy needed in neonates with NH who underwent phototherapy with and without aluminum foil reflectors. Methods This open clinical trial was conducted from July to August 2013 at Dr. Hasan Sadikin Hospital, Bandung, Indonesia. The inclusion criteria were term neonates with uncomplicated NH presenting in their first week of life. Subjects were randomized into two groups, those who received phototherapy with or without aluminum foil reflectors. Serum bilirubin is taken at 12th, 24th, 48th hours, then every 24 hours if needed until phototherapy can be stopped according to American Academy of Pediatrics guidelines. The outcome measured was the duration of phototherapy using survival analysis. The difference between the two groups was tested by Gehan method. Results Seventy newborns who fulfilled the inclusion criteria and had similar characteristics were randomized into two groups. The duration of phototherapy needed was significantly less in the group with aluminum foil reflectors than in the group without reflectors [72 vs. 96 hours, respectively, (P<0.01]. Conclusion The required duration of phototherapy with aluminum foil reflectors is significantly less than that of phototherapy without reflectors, in neonates with NH.

  15. Space weather effects on ground based technology

    Science.gov (United States)

    Clark, T.

    Space weather can affect a variety of forms of ground-based technology, usually as a result of either the direct effects of the varying geomagnetic field, or as a result of the induced electric field that accompanies such variations. Technologies affected directly by geomagnetic variations include magnetic measurements made d ringu geophysical surveys, and navigation relying on the geomagnetic field as a direction reference, a method that is particularly common in the surveying of well-bores in the oil industry. The most obvious technology affected by induced electric fields during magnetic storms is electric power transmission, where the example of the blackout in Quebec during the March 1989 magnetic storm is widely known. Additionally, space weather effects must be taken into account in the design of active cathodic protection systems on pipelines to protect them against corrosion. Long-distance telecommunication cables may also have to be designed to cope with space weather related effects. This paper reviews the effects of space weather in these different areas of ground-based technology, and provides examples of how mitigation against hazards may be achieved. (The paper does not include the effects of space weather on radio communication or satellite navigation systems).

  16. Space Station Freedom - Accommodation for technology R&D

    Science.gov (United States)

    Holt, Alan C.

    1989-01-01

    The paper examines the features of the accommodation equipment designed for the candidate technology payloads of the Space Station, which include magnetic plasma thruster systems and a hypothetical advanced electromagnetic propulsion system utilizing high-temperature superconductivity materials. The review of the accommodation-equipment concepts supports the assumption that some propulsion technologies can be tested on the Space Station while being attached externally to the station's truss structure. For testing technologies with inherent operation or performance hazards, space platforms and smaller free-flyers coordinated with the Space Station can be used. Diagrams illustrating typical accommodation equipment configurations are included.

  17. Proposal for a United Nations Basic Space Technology Initiative

    Science.gov (United States)

    Balogh, Werner

    Putting space technology and its applications to work for sustainable economic and social development is the primary objective of the United Nations Programme on Space Applications, launched in 1971. A specific goal for achieving this objective is to establish a sustainable national space capacity. The traditional line of thinking has supported a logical progression from building capacity in basic space science, to using space applications and finally - possibly - to establishing indigenous space technology capabilities. The experience in some countries suggests that such a strict line of progression does not necessarily hold true and that priority given to the establishment of early indigenous space technology capabilities may contribute to promoting the operational use of space applications in support of sustainable economic and social development. Based on these findings and on the experiences with the United Nations Basic Space Science Initiative (UNBSSI) as well as on a series of United Nations/International Academy of Astronautics Workshops on Small Satellites in the Service of Developing Countries, the United Nations Office for Outer Space Affairs (UNOOSA) is considering the launch of a dedicated United Nations Basic Space Technology Initiative (UNBSTI). The initiative would aim to contribute to capacity building in basic space technology and could include, among other relevant fields, activities related to the space and ground segments of small satellites and their applications. It would also provide an international framework for enhancing cooperation between all interested actors, facilitate the exchange of information on best practices, and contribute to standardization efforts. It is expected that these activities would advance the operational use of space technology and its applications in an increasing number of space-using countries and emerging space nations. The paper reports on these initial considerations and on the potential value-adding role

  18. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    International Nuclear Information System (INIS)

    Lee, Hyun Jin; Kim, Jong Kyu; Lee, Sang Nam

    2015-01-01

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m 2 . When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system

  19. Numerical Study of Concentration Characteristics of Linear Fresnel Reflector System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Jin [Kookmin Univ., Seoul (Korea, Republic of); Kim, Jong Kyu; Lee, Sang Nam [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-12-15

    In this study, we numerically investigated the concentration characteristics of a linear Fresnel reflector system that can drive a solar thermal absorption refrigeration system to be installed in Saudi Arabia. Using an optical modeling program based on the Monte Carlo ray-tracing method, we simulated the concentrated solar flux, concentration efficiency, and concentrated solar energy on four representative days of the year - the vernal equinox, summer solstice, autumnal equinox, and winter solstice. Except the winter solstice, the concentrations were approximately steady from 9 AM to 15 PM, and the concentration efficiencies exceed 70%. Moreover, the maximum solar flux around the solar receiver center changes only within the range of 13.0 - 14.6 kW/m{sup 2}. When we investigated the effects of the receiver installation height, reflector width, and reflector gap, the optimal receiver installation height was found to be 5 m. A smaller reflector width had a greater concentration efficiency. However, the design of the reflector width should be based on the capacity of the refrigeration system because it dominantly affects the concentrated solar energy. The present study was an essential prerequisite for thermal analyses of the solar receiver. Thus, an optical-thermal integration study in the future will assist with the performance prediction and design of the entire system.

  20. The effects of stainless steel radial reflector on core reactivity for small modular reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jung Kil, E-mail: jkkang@email.kings.ac.kr; Hah, Chang Joo, E-mail: changhah@kings.ac.kr [KINGS, 658-91, Haemaji-ro, Seosaeng-myeon, Ulju-gun, Ulsan, 689-882 (Korea, Republic of); Cho, Sung Ju, E-mail: sungju@knfc.co.kr; Seong, Ki Bong, E-mail: kbseong@knfc.co.kr [KNFC, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of)

    2016-01-22

    Commercial PWR core is surrounded by a radial reflector, which consists of a baffle and water. Radial reflector is designed to reflect neutron back into the core region to improve the neutron efficiency of the reactor and to protect the reactor vessels from the embrittling effects caused by irradiation during power operation. Reflector also helps to flatten the neutron flux and power distributions in the reactor core. The conceptual nuclear design for boron-free small modular reactor (SMR) under development in Korea requires to have the cycle length of 4∼5 years, rated power of 180 MWth and enrichment less than 5 w/o. The aim of this paper is to analyze the effects of stainless steel radial reflector on the performance of the SMR using UO{sub 2} fuels. Three types of reflectors such as water, water/stainless steel 304 mixture and stainless steel 304 are selected to investigate the effect on core reactivity. Additionally, the thickness of stainless steel and double layer reflector type are also investigated. CASMO-4/SIMULATE-3 code system is used for this analysis. The results of analysis show that single layer stainless steel reflector is the most efficient reflector.

  1. Technology transfer: The key to successful space engineering education

    Science.gov (United States)

    Fletcher, L. S.; Page, R. H.

    The 1990s are the threshold of the space revolution for the next century. This space revolution was initiated by space pioneers like Tsiolkovsky, Goddard, and Oberth, who contributed a great deal to the evolution of space exploration, and more importantly, to space education. Recently, space engineering education programs for all ages have been advocated around the world, especially in Asia and Europe, as well as the U.S.A. and the Soviet Union. And yet, although space related technologies are developing rapidly, these technologies are not being incorporated successfully into space education programs. Timely technology transfer is essential to assure the continued education of professionals. This paper reviews the evolution of space engineering education and identifies a number of initiatives which could strengthen space engineering education for the next century.

  2. Measurement of the stored energy in the NRX reactor reflector graphite

    Energy Technology Data Exchange (ETDEWEB)

    Hilton, H. B.; Larson, E. A.G.

    1959-07-15

    With the co-operation of workers at Windscale and Harwell, whose assistance is hereby gratefully acknowledged, the stored energy content of the inner reflector graphite of NRX has been measured. Measurements made at three different elevations and at different positions through the reflector show that there is, at present, no danger to NRX from an accidental release of the energy. The energy stored in the reflector in 1958 is less by a factor five to ten than the stored energy as measured in 1953. It appears that there has been a continual release of stored energy since 1954 when, after the rehabilitation, the maximum power was raised to 40 MW. Additional thermocouples have been installed in the inner reflector, and future stored energy measurements are being scheduled. (author)

  3. Technology Investment Agendas to Expand Human Space Futures

    Science.gov (United States)

    Sherwood, Brent

    2012-01-01

    The paper develops four alternative core-technology advancement specifications, one for each of the four strategic goal options for government investment in human space flight. Already discussed in the literature, these are: Explore Mars; Settle the Moon; accelerate commercial development of Space Passenger Travel; and enable industrial scale-up of Space Solar Power for Earth. In the case of the Explore Mars goal, the paper starts with the contemporary NASA accounting of ?55 Mars-enabling technologies. The analysis decomposes that technology agenda into technologies applicable only to the Explore Mars goal, versus those applicable more broadly to the other three options. Salient technology needs of all four options are then elaborated to a comparable level of detail. The comparison differentiates how technologies or major developments that may seem the same at the level of budget lines or headlines (e.g., heavy-lift Earth launch) would in fact diverge widely if developed in the service of one or another of the HSF goals. The paper concludes that the explicit choice of human space flight goal matters greatly; an expensive portfolio of challenging technologies would not only enable a particular option, it would foreclose the others. Technologies essential to enable human exploration of Mars cannot prepare interchangeably for alternative futures; they would not allow us to choose later to Settle the Moon, unleash robust growth of Space Passenger Travel industries, or help the transition to a post-petroleum future with Space Solar Power for Earth. The paper concludes that a decades-long decision in the U.S.--whether made consciously or by default--to focus technology investment toward achieving human exploration of Mars someday would effectively preclude the alternative goals in our lifetime.

  4. Variation of reflected radiation from all reflectors of a flat plate solar collector during a year

    International Nuclear Information System (INIS)

    Pavlović, Zoran T.; Kostić, Ljiljana T.

    2015-01-01

    In this paper the impact of flat plate reflectors (bottom, top, left and right reflectors) made of Al, on total solar radiation on a solar collector during a day time over a whole year is analyzed. An analytical model for determining optimum tilt angles of a collector and reflectors for any point on the Earth is proposed. Variations of reflectors' optimal inclination angles with changes of the collector's optimal tilt angle during the year are also calculated. Optimal inclination angles of the reflectors for the South directed solar collector are calculated and compared to experimental data. It is shown that optimal inclination of the bottom reflector is the lowest in December and the highest in June, while for the top reflector the lowest value is in June and the highest value is in December. On the other hand, optimal inclination of the left and right side reflectors for optimum tilt angle of the collector does not change during the year and it is 66°. It is found that intensity of the solar radiation on the collector increases for about 80% in the summer period (June–September) by using optimally inclined reflectors, in comparison to the collector without reflectors. - Highlights: • The impacts of flat plate reflectors on solar radiation on the collector are given. • The results of the optimal inclinations of reflectors during the year are shown. • The solar radiation on the collector with reflectors is 80% higher in the summer. • This model may be applied on thermal, PV, PV/T and energy harvesting systems

  5. Development of a New core/reflector model for coarse-mesh nodal methods

    International Nuclear Information System (INIS)

    Pogosbekyan, Leonid; Cho, Jin Young; Kim, Young Il; Kim, Young Jin; Joo, Hyung Kuk; Chang, Moon Hee.

    1997-10-01

    This work presents two approaches for reflector simulation in coarse-mesh nodal methods. The first approach is called Interface Matrix Technique (IMT), which simulates the baffle as a banishingly thin layer having the property of reflection and transmission. We applied this technique within the frame of AFEN (Analytic Function Expansion Nodal) method, and developed the AFEN-IM (Interface Matrix) method. AFEN-IM method shows 1.24% and 0.42 % in maximum and RMS (Root Mean Square) assemblywise power error for ZION-1 benchmark problem. The second approach is L-shaped reflector homogenization method. This method is based on the integral response conservation along the L-shaped core-reflector interface. The reference reflector response is calculated from 2-dimensional spectral calculation and the response of the homogenized reflector is derived from the one-node 2-dimensional AFEN problem solution. This method shows 5 times better accuracy than the 1-dimensional homogenization technique in the assemblywise power. Also, the concept of shroud/reflector homogenization for hexagonal core have been developed. The 1-dimensional spectral calculation was used for the determination of 2 group cross sections. The essence of homogenization concept consists in the calculation of equivalent shroud width, which preserve albedo for the fast neutrons in 2-dimensional reflector. This method shows a relative error less than 0.42% in assemblywise power and a difference of 9x10 -5 in multiplication factor for full-core model. (author). 9 refs., 3 tabs., 28 figs

  6. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    Science.gov (United States)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  7. Identifying Reflectors in Seismic Images via Statistic and Syntactic Methods

    Directory of Open Access Journals (Sweden)

    Carlos A. Perez

    2010-04-01

    Full Text Available In geologic interpretation of seismic reflection data, accurate identification of reflectors is the foremost step to ensure proper subsurface structural definition. Reflector information, along with other data sets, is a key factor to predict the presence of hydrocarbons. In this work, mathematic and pattern recognition theory was adapted to design two statistical and two syntactic algorithms which constitute a tool in semiautomatic reflector identification. The interpretive power of these four schemes was evaluated in terms of prediction accuracy and computational speed. Among these, the semblance method was confirmed to render the greatest accuracy and speed. Syntactic methods offer an interesting alternative due to their inherently structural search method.

  8. The Application of Intelligent Building Technologies to Space Hotels

    Science.gov (United States)

    Fawkes, S.

    This paper reports that over the last few years Intelligent Building technologies have matured and standardised. It compares the functions of command and control systems in future large space facilities such as space hotels to those commonly found in Intelligent Buildings and looks at how Intelligent Building technologies may be applied to space hotels. Many of the functions required in space hotels are the same as those needed in terrestrial buildings. The adaptation of standardised, low cost, Intelligent Building technologies would reduce capital costs and ease development of future space hotels. Other aspects of Intelligent Buildings may also provide useful models for the development and operation of space hotels.

  9. Numerical form-finding method for large mesh reflectors with elastic rim trusses

    Science.gov (United States)

    Yang, Dongwu; Zhang, Yiqun; Li, Peng; Du, Jingli

    2018-06-01

    Traditional methods for designing a mesh reflector usually treat the rim truss as rigid. Due to large aperture, light weight and high accuracy requirements on spaceborne reflectors, the rim truss deformation is indeed not negligible. In order to design a cable net with asymmetric boundaries for the front and rear nets, a cable-net form-finding method is firstly introduced. Then, the form-finding method is embedded into an iterative approach for designing a mesh reflector considering the elasticity of the supporting rim truss. By iterations on form-findings of the cable-net based on the updated boundary conditions due to the rim truss deformation, a mesh reflector with a fairly uniform tension distribution in its equilibrium state could be finally designed. Applications on offset mesh reflectors with both circular and elliptical rim trusses are illustrated. The numerical results show the effectiveness of the proposed approach and that a circular rim truss is more stable than an elliptical rim truss.

  10. Space and energy. [space systems for energy generation, distribution and control

    Science.gov (United States)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  11. UWB Technology and Applications on Space Exploration

    Science.gov (United States)

    Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Ni, Jianjun; Rafford, Melinda

    2006-01-01

    Ultra-wideband (UWB), also known as impulse or carrier-free radio technology, is one promising new technology. In February 2002, the Federal Communications Commission (FCC) approved the deployment of this technology. It is increasingly recognized that UWB technology holds great potential to provide significant benefits in many terrestrial and space applications such as precise positioning/tracking and high data rate mobile wireless communications. This talk presents an introduction to UWB technology and some applications on space exploration. UWB is characterized by several uniquely attractive features, such as low impact on other RF systems due to its extremely low power spectral densities, immunity to interference from narrow band RF systems due to its ultra-wide bandwidth, multipath immunity to fading due to ample multipath diversity, capable of precise positioning due to fine time resolution, capable of high data rate multi-channel performance. The related FCC regulations, IEEE standardization efforts and industry activities also will be addressed in this talk. For space applications, some projects currently under development at NASA Johnson Space Center will be introduced. These include the UWB integrated communication and tracking system for Lunar/Mars rover and astronauts, UWB-RFID ISS inventory tracking, and UWB-TDOA close-in high resolution tracking for potential applications on robonaut.

  12. Selection of lamp reflector construction and fishing time of lift net

    Directory of Open Access Journals (Sweden)

    Gondo Puspito

    2017-06-01

    Full Text Available This study aimed to determine lift net’s lamp reflector construction which is able to give highest weight on catch and determine the best fishing time. Three lamp reflector constructions were made of cylinder shape for one construction and cone shape with opening angle α = 62° and 90° for two others. The dimension (øR × HR for each reflector are 30 × 37 (cm, 40 × 18 (cm and 40 × 39.62 (cm. Each lamp reflector was being operated by 1 lift net for 15 nights. Total fishing operations were twice per night within interval 07.00–12.00 PM and 00.00–05.00 AM. Results of the catch gave 2 schools of fish which were plankton feeders and predators. Plankton feeders included anchovy Stolephorus spp. 477 kg, mackerel (Rastrelliger spp. 1934 kg, and malayan half (Decapterus sp. 15.5 kg. Predators consisted of hairtail (Trichiurus sp. 982 kg, yellowstrip scad (Selaroides spp. 29 kg, and giant trevally (Caranx sp. 26.3 kg. The lift net which operated lamp reflector of α = 90° has the highest catch of 2,307.8 kg, while the lamp reflector of α = 62° has 1895 kg of catch. The one with cylinder shape has 1261 kg of catch.

  13. In-Space Structural Assembly: Applications and Technology

    Science.gov (United States)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  14. Space Technology and Applications International Forum -1999. Proceedings

    International Nuclear Information System (INIS)

    El-Genk, M.S.

    1999-01-01

    These proceedings represent papers presented at the 1999 Space Technology and Applications International Forum (STAIF-99). This is a large conference in terms of the number of hosted technical sessions and the technical papers presented. This year's theme, ''Opportunities and Challenges for the New Millenium,'' covered a broad spectrum of topics in space science and technology that spans the range from basic research, such as thermophysics in microgravity and breakthrough propulsion physics, to the most recent advances in space power and propulsion, space exploration and commercialization, next generation launch systems, and the international effort to deploy and assemble the international space station. STAIF-99 was co-sponsored by the United States Department of Energy. The two-volume proceedings includes 253 articles, out of which 28 have been abstracted for the Energy,Science and Technology database

  15. Stochastic and sensitivity analysis of shape error of inflatable antenna reflectors

    Science.gov (United States)

    San, Bingbing; Yang, Qingshan; Yin, Liwei

    2017-03-01

    Inflatable antennas are promising candidates to realize future satellite communications and space observations since they are lightweight, low-cost and small-packaged-volume. However, due to their high flexibility, inflatable reflectors are difficult to manufacture accurately, which may result in undesirable shape errors, and thus affect their performance negatively. In this paper, the stochastic characteristics of shape errors induced during manufacturing process are investigated using Latin hypercube sampling coupled with manufacture simulations. Four main random error sources are involved, including errors in membrane thickness, errors in elastic modulus of membrane, boundary deviations and pressure variations. Using regression and correlation analysis, a global sensitivity study is conducted to rank the importance of these error sources. This global sensitivity analysis is novel in that it can take into account the random variation and the interaction between error sources. Analyses are parametrically carried out with various focal-length-to-diameter ratios (F/D) and aperture sizes (D) of reflectors to investigate their effects on significance ranking of error sources. The research reveals that RMS (Root Mean Square) of shape error is a random quantity with an exponent probability distribution and features great dispersion; with the increase of F/D and D, both mean value and standard deviation of shape errors are increased; in the proposed range, the significance ranking of error sources is independent of F/D and D; boundary deviation imposes the greatest effect with a much higher weight than the others; pressure variation ranks the second; error in thickness and elastic modulus of membrane ranks the last with very close sensitivities to pressure variation. Finally, suggestions are given for the control of the shape accuracy of reflectors and allowable values of error sources are proposed from the perspective of reliability.

  16. Space Transportation Materials and Structures Technology Workshop. Volume 2: Proceedings

    International Nuclear Information System (INIS)

    Cazier, F.W. Jr.; Gardner, J.E.

    1993-02-01

    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems. Separate abstracts have been prepared for papers in this report

  17. Transparent conducting oxide contacts and textured metal back reflectors for thin film silicon solar cells

    Science.gov (United States)

    Franken, R. H.-J.

    2006-09-01

    With the growing population and the increasing environmental problems of the 'common' fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic (PV) systems, can play a major role in the urgently needed energy transition in electricity production. At the present time PV module production is dominated by the crystalline wafer technology. Thin film silicon technology is an alternative solar energy technology that operates at lower efficiencies, however, it has several significant advantages, such as the possibility of deposition on cheap (flexible) substrates and the much smaller silicon material consumption. Because of the small thickness of the solar cells, light trapping schemes are needed in order to obtain enough light absorption and current generation. This thesis describes the research on thin film silicon solar cells with the focus on the optimization of the transparent conducting oxide (TCO) layers and textured metal Ag substrate layers for the use as enhanced light scattering back reflectors in n-i-p type of solar cells. First we analyzed ZnO:Al (TCO) layers deposited in an radio frequent (rf) magnetron deposition system equipped with a 7 inch target. We have focused on the improvement of the electrical properties without sacrificing the optical properties by increasing the mobility and decreasing the grain boundary density. Furthermore, we described some of the effects on light trapping of ZnO:Al enhanced back reflectors. The described effects are able to explain the observed experimental data. Furthermore, we present a relation between the surface morphology of the Ag back contact and the current enhancement in microcrystalline (muc-Si:H) solar cells. We show the importance of the lateral feature sizes of the Ag surface on the light scattering and introduce a method to characterize the quality of the back reflector by combining the vertical and lateral feature sizes

  18. The space technology demand on materials and processes

    Science.gov (United States)

    Dauphin, J.

    1983-01-01

    Space technology requires a rational and accurate policy of materials and processes selection. This paper examines some areas of space technology where materials and process problems have occurred in the past and how they can be solved in the future.

  19. Application of advanced technology to space automation

    Science.gov (United States)

    Schappell, R. T.; Polhemus, J. T.; Lowrie, J. W.; Hughes, C. A.; Stephens, J. R.; Chang, C. Y.

    1979-01-01

    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits.

  20. Simultaneous delivery of electron beam therapy and ultrasound hyperthermia using scanning reflectors: a feasibility study

    International Nuclear Information System (INIS)

    Moros, Eduardo G.; Straube, William L.; Klein, Eric E.; Yousaf, Muhammed; Myerson, Robert J.

    1995-01-01

    Purpose: The feasibility of simultaneously delivering external electron beam radiation and superficial hyperthermia using a scanning ultrasound reflector-array system (SURAS) was experimentally investigated and demonstrated. Methods and Materials: A new system uses a scanning reflector to distribute the acoustic energy from a planar ultrasound array over the surface of the target volume. External photon/electron beams can be concurrently delivered with hyperthermia by irradiating through the scanning reflectors. That is, this system enables the acoustic waves and the radiation beams to enter the target volume from the same direction. Reflectors were constructed of air-equivalent materials for maximum acoustic reflection and minimum radiation attenuation. Acoustically, the air reflectors were compared to brass reflectors (assumed ideal) for reflectivity and specular quality using several single transducers ranging in frequency from 0.68 to 4.8 MHz. The relative reflectivity was determined from acoustic power measurements using a force-balance technique. The specular quality was assessed by comparing the acoustic pressure fields reflected by air reflectors with those reflected by brass reflectors. Also, acoustic pressure fields generated by a SURAS prototype for two different arrays (2.24 and 4.5 MHz) were measured to investigate field distribution variations as a function of the distance separating the array and the scanning reflector. All pressure fields were measured with a hydrophone in a degassed water tank. Finally, to determine the effect of the air reflectors on electron dose distributions, these were measured using film in a water-equivalent solid phantom after passage of a 20 MeV electron beam through the SURAS. These measurements were performed with the reflector scanning continuously across the electron beam and at rest within the electron beam. Results: The measurements performed using single ultrasound transducers showed that the air reflectors had

  1. The Personal Health Technology Design Space

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Frost, Mads

    2016-01-01

    . To enable designers to make informed and well-articulated design decision, the authors propose a design space for personal health technologies. This space consists of 10 dimensions related to the design of data sampling strategies, visualization and feedback approaches, treatment models, and regulatory......Interest is increasing in personal health technologies that utilize mobile platforms for improved health and well-being. However, although a wide variety of these systems exist, each is designed quite differently and materializes many different and more or less explicit design assumptions...

  2. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  3. Reflector homogenization

    International Nuclear Information System (INIS)

    Sanchez, R.; Ragusa, J.; Santandrea, S.

    2004-01-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P 0 transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP N core calculations. (Author)

  4. Advanced Manufacture of Reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Angel, Roger [Univ. of Arizona, Tucson, AZ (United States)

    2014-12-17

    The main project objective has been to develop an advanced gravity sag method for molding large glass solar reflectors with either line or point focus, and with long or short focal length. The method involves taking standard sized squares of glass, 1.65 m x 1.65 m, and shaping them by gravity sag into precision steel molds. The method is designed for high volume manufacture when incorporated into a production line with separate pre-heating and cooling. The performance objectives for the self-supporting glass mirrors made by this project include mirror optical accuracy of 2 mrad root mean square (RMS), requiring surface slope errors less than 1 mrad rms, a target not met by current production of solar reflectors. Our objective also included development of new methods for rapidly shaping glass mirrors and coating them for higher reflectivity and soil resistance. Reflectivity of 95% for a glass mirror with anti-soil coating was targeted, compared to the present ~94% with no anti-soil coating. Our mirror cost objective is ~$20/m2 in 2020, a significant reduction compared to the present ~$35/m2 for solar trough mirrors produced for trough solar plants.

  5. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case.

    Science.gov (United States)

    Ao, Dongyang; Li, Yuanhao; Hu, Cheng; Tian, Weiming

    2017-12-22

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  6. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Directory of Open Access Journals (Sweden)

    Dongyang Ao

    2017-12-01

    Full Text Available The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS in the synthetic aperture radar (SAR images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures.

  7. Accurate Analysis of Target Characteristic in Bistatic SAR Images: A Dihedral Corner Reflectors Case

    Science.gov (United States)

    Ao, Dongyang; Hu, Cheng; Tian, Weiming

    2017-01-01

    The dihedral corner reflectors are the basic geometric structure of many targets and are the main contributions of radar cross section (RCS) in the synthetic aperture radar (SAR) images. In stealth technologies, the elaborate design of the dihedral corners with different opening angles is a useful approach to reduce the high RCS generated by multiple reflections. As bistatic synthetic aperture sensors have flexible geometric configurations and are sensitive to the dihedral corners with different opening angles, they specially fit for the stealth target detections. In this paper, the scattering characteristic of dihedral corner reflectors is accurately analyzed in bistatic synthetic aperture images. The variation of RCS with the changing opening angle is formulated and the method to design a proper bistatic radar for maximizing the detection capability is provided. Both the results of the theoretical analysis and the experiments show the bistatic SAR could detect the dihedral corners, under a certain bistatic angle which is related to the geometry of target structures. PMID:29271917

  8. Theoretical modeling of the dynamics of a semiconductor laser subject to double-reflector optical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Bakry, A. [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia); Abdulrhmann, S. [Jazan University, 114, Department of Physics, Faculty of Sciences (Saudi Arabia); Ahmed, M., E-mail: mostafa.farghal@mu.edu.eg [King Abdulaziz University, 80203, Department of Physics, Faculty of Science (Saudi Arabia)

    2016-06-15

    We theoretically model the dynamics of semiconductor lasers subject to the double-reflector feedback. The proposed model is a new modification of the time-delay rate equations of semiconductor lasers under the optical feedback to account for this type of the double-reflector feedback. We examine the influence of adding the second reflector to dynamical states induced by the single-reflector feedback: periodic oscillations, period doubling, and chaos. Regimes of both short and long external cavities are considered. The present analyses are done using the bifurcation diagram, temporal trajectory, phase portrait, and fast Fourier transform of the laser intensity. We show that adding the second reflector attracts the periodic and perioddoubling oscillations, and chaos induced by the first reflector to a route-to-continuous-wave operation. During this operation, the periodic-oscillation frequency increases with strengthening the optical feedback. We show that the chaos induced by the double-reflector feedback is more irregular than that induced by the single-reflector feedback. The power spectrum of this chaos state does not reflect information on the geometry of the optical system, which then has potential for use in chaotic (secure) optical data encryption.

  9. New technology innovations with potential for space applications

    Science.gov (United States)

    Krishen, Kumar

    2008-07-01

    Human exploration and development of space is being pursued by spacefaring nations to explore, use, and enable the development of space and expand the human experience there. The goals include: increasing human knowledge of nature's processes using the space environment; exploring and settling the solar system; achieving routine space travel; and enriching life on Earth through living and working in space. A crucial aspect of future space missions is the development of infrastructure to optimize safety, productivity, and costs. A major component of mission execution is operations management. NASA's International Space Station is providing extensive experience in both infrastructure and operations. In view of this, a vigorously organized approach is needed to implement successful space-, planet-, and ground-based research and operations that entails wise and efficient use of technical and human resources. Many revolutionary technologies being pursued by researchers and technologists may be vital in making space missions safe, reliable, cost-effective, and productive. These include: ionic polymer-metal composite technology; solid-state lasers; time-domain sensors and communication systems; high-temperature superconductivity; nanotechnology; variable specific impulse magneto plasma rocket; fuzzy logic; wavelet technology; and neural networks. An overview of some of these will be presented, along with their application to space missions.

  10. In-Space Inspection Technologies Vision

    Science.gov (United States)

    Studor, George

    2012-01-01

    Purpose: Assess In-Space NDE technologies and needs - current & future spacecraft. Discover & build on needs, R&D & NDE products in other industries and agencies. Stimulate partnerships in & outside NASA to move technologies forward cooperatively. Facilitate group discussion on challenges and opportunities of mutual benefit. Focus Areas: Miniaturized 3D Penetrating Imagers Controllable Snake-arm Inspection systems Miniature Free-flying Micro-satellite Inspectors

  11. Extended exploding reflector concept for computing prestack traveltimes for waves of different type in the DSR framework

    KAUST Repository

    Duchkov, Anton A.

    2013-09-22

    The double-square-root (DSR) equation can be viewed as a Hamilton-Jacobi equation describing kinematics of downward data continuation in depth. It describes simultaneous propagation of source and receiver rays which allows computing reflection wave prestack traveltimes (for multiple sources) in a one run thus speeding up solution of the forward problem. Here we give and overview of different alternative forms of the DSR equation which allows stepping in two-way time and subsurface offset instead of depth. Different forms of the DSR equation are suitable for computing different types of waves including reflected, head and diving waves. We develop a WENO-RK numerical scheme for solving all mentioned forms of the DSR equation. Finally the extended exploding reflector concept can be used for computing prestack traveltimes while initiating the numerical solver as if a reflector was exploding in extended imaging space.

  12. Feasibility for the Use of Flat Booster Reflectors in Various Photovoltaic Installations

    OpenAIRE

    Gelegenis, John Joachim; Axaopoulos, Petros; Misailidis, Stavros; Giannakidis, George; Samarakou, Maria; Bonaros, Bassilios

    2016-01-01

    The feasibility for the addition of flat booster reflectors to PV panels is techno-economically investigated for various applications (building attached PVs, ground installations, grid-connected or stand-alone units) and various PV types (mono-crystalline and amorphous silicon PV panels). A model developed to this aim is applied to optimize the parameters of the PV/reflector module and to evaluate its applicability according to the solar radiation data of Athens (Greece). The reflectors may l...

  13. A telescope for observation from space of extreme lightnings in the upper atmosphere

    International Nuclear Information System (INIS)

    Nam, S.; Artikova, S.; Chung, T.; Garipov, G.; Jeon, J.A.; Jeong, S.; Jin, J.Y.; Khrenov, B.A.; Kim, J.E.; Kim, M.; Kim, Y.K.; Klimov, P.; Lee, J.; Lee, H.Y.; Na, G.W.; Oh, S.J.; Panasyuk, M.; Park, I.H.; Park, J.H.; Park, Y.-S.

    2008-01-01

    A new type of telescope with a wide field-of-view and functions of fast zoom-in has been introduced. Two kinds of MEMS (Micro-Electro-Mechanical Systems) micromirrors, digital and analog, are used for reflectors of the telescope, placed at different focal lengths. We apply this technology to the observation from space of TLE (Transient Luminous Events), extremely large transient sparks occurring at the upper atmosphere. TLE are one type of important backgrounds to be understood for future space observation of UHECR (Ultra-High Energy Cosmic Rays). The launch of the payload carried by a Russian microsatellite is foreseen in the middle of 2008

  14. Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials

    International Nuclear Information System (INIS)

    Bernard Jones; J. Blair Briggs; Leland Monteirth

    2007-01-01

    A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well as to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated

  15. Household appliances using solar energy technology

    International Nuclear Information System (INIS)

    Gul, H.

    2000-01-01

    Many solar energy technologies are now sufficiently developed to make it possible to use these to replace some of our conventional energy sources, but still need improvement and reduction in cost. It is, therefore, necessary to focus attention on household uses of solar energy. This paper describes the recent developments and current position in respect of several such devices, which include; solar cooker, with curved concentrator, Panel Cooker, Solar Dryer, solar water heater, Solar Still, Solar Water Pump, Solar Water Disinfection, Solar space Heating and greenhouse solar Reflectors, Development and Extension activities on these should be taken up at various levels. (author)

  16. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    Science.gov (United States)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  17. Sustainable In-Space Manufacturing through Rapid Prototyping Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — In space manufacturing is crucial to humanity’s continued exploration and habitation of space. While new spacecraft and propulsion technologies promise higher...

  18. Enhancement of thermal neutron self-shielding in materials surrounded by reflectors

    International Nuclear Information System (INIS)

    Cornelia Chilian; Gregory Kennedy

    2012-01-01

    Materials containing from 41 to 1124 mg chlorine and surrounded by polyethylene containers of various thicknesses, from 0.01 to 5.6 mm, were irradiated in a research reactor neutron spectrum and the 38 Cl activity produced was measured as a function of polyethylene reflector thickness. For the material containing the higher amount of chlorine, the 38 Cl specific activity decreased with increasing reflector thickness, indicating increased neutron self-shielding. It was found that the amount of neutron self-shielding increased by as much as 52% with increasing reflector thickness. This is explained by neutrons which have exited the material subsequently reflecting back into it and thus increasing the total mean path length in the material. All physical and empirical models currently used to predict neutron self-shielding have ignored this effect and need to be modified. A method is given for measuring the adjustable parameter of a self-shielding model for a particular sample size and combination of neutron reflectors. (author)

  19. Study of light collection uniformity dependence on reflector type in a large scintillation counter

    International Nuclear Information System (INIS)

    Astvatsaturov, R.G.; Ivanov, V.I.; Knapik, E.; Kramarenko, V.A.; Malakhov, A.I.; Khachaturyan, M.N.

    1977-01-01

    An investigation of the way to improve uniformity of light collection onto photoelectric multiplier photocathode, for the 100x10x2 cm scintillation counter, has been undertaken. Pulse amplitude versus the point, particles strike a scintillator, relationship, has been demonstrated for several types of reflectors. Used as reflectors were: white papar, aluminium foil, black papar and a combination of above reflectors. Experimental data analysis shows, that the combination of reflectors with different reflection coefficient, provides a means for 1,5 time improvement of counter light collection uniformity, with no impairment of amplitude characteristics

  20. Development priorities for in-space propulsion technologies

    Science.gov (United States)

    Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold

    2013-02-01

    During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.

  1. Bottom reflector for power reactors

    International Nuclear Information System (INIS)

    Elter, C.; Kissel, K.F.; Schoening, J.; Schwiers, H.G.

    1982-01-01

    In pebble bed reactors erosion and damage due fuel elements movement on the surface of the bottom reflector should be minimized. This can be achieved by chamfering and/or rounding the cover edges of the graphite blocks and the edges between the drilled holes and the surface of the graphite block. (orig.) [de

  2. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  3. HI-STAR. Health Improvements Through Space Technologies and Resources: Final Report

    Science.gov (United States)

    Finarelli, Margaret G.

    2002-01-01

    The purpose of this document is to describe a global strategy to integrate the use of space technology in the fight against malaria. Given the well-documented relationship between the vector and its environment, and the ability of existing space technologies to monitor environmental factors, malaria is a strong candidate for the application of space technology. The concept of a malaria early warning system has been proposed in the past' and pilot studies have been conducted. The HI-STAR project (Health Improvement through Space Technologies and Resources) seeks to build on this concept and enhance the space elements of the suggested framework. As such, the mission statement for this International Space University design project has been defined as follows: "Our mission is to develop and promote a global strategy to help combat malaria using space technology". A general overview of malaria, aspects of how space technology can be useful, and an outline of the HI-STAR strategy is presented.

  4. Transport equivalent diffusion constants for reflector region in PWRs

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Sekimoto, Hiroshi

    2002-01-01

    The diffusion-theory-based nodal method is widely used in PWR core designs for reason of its high computing speed in three-dimensional calculations. The baffle/reflector (B/R) constants used in nodal calculations are usually calculated based on a one-dimensional transport calculation. However, to achieve high accuracy of assembly power prediction, two-dimensional model is needed. For this reason, the method for calculating transport equivalent diffusion constants of reflector material was developed so that the neutron currents on the material boundaries could be calculated exactly in diffusion calculations. Two-dimensional B/R constants were calculated using the transport equivalent diffusion constants in the two-dimensional diffusion calculation whose geometry reflected the actual material configuration in the reflector region. The two-dimensional B/R constants enabled us to predict assembly power within an error of 1.5% at hot full power conditions. (author)

  5. LDR structural technology activities at JPL

    Science.gov (United States)

    Wada, Ben

    1988-01-01

    The status of the Large Deployable Reflector (LDR) technology requirements and the availability of that technology in the next few years are summarized. The research efforts at JPL related to these technology needs are also discussed. LDR requires that a large and relatively stiff truss-type backup structure have a surface accurate to 100 microns in space (initial position with thermal distortions) and the dynamic characteristics predictable and/or measurable by on-orbit system identification for micron level motion. This motion may result from the excitation of the lower modes or from wave-type motions. It is also assumed that the LDR structure can be ground tested to validate its ability to meet mission requirements. No program manager will commit a structural design based solely on analysis, unless the analysis is backed by a validation test program.

  6. Projecting technology change to improve space technology planning and systems management

    Science.gov (United States)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  7. Analysis and test of a 16-foot radial rib reflector developmental model

    Science.gov (United States)

    Birchenough, Shawn A.

    1989-01-01

    Analytical and experimental modal tests were performed to determine the vibrational characteristics of a 16-foot diameter radial rib reflector model. Single rib analyses and experimental tests provided preliminary information relating to the reflector. A finite element model predicted mode shapes and frequencies of the reflector. The analyses correlated well with the experimental tests, verifying the modeling method used. The results indicate that five related, characteristic mode shapes form a group. The frequencies of the modes are determined by the relative phase of the radial ribs.

  8. Live from Space Station Learning Technologies Project

    Science.gov (United States)

    2001-01-01

    This is the Final Report for the Live From Space Station (LFSS) project under the Learning Technologies Project FY 2001 of the MSFC Education Programs Department. AZ Technology, Inc. (AZTek) has developed and implemented science education software tools to support tasks under the LTP program. Initial audience consisted of 26 TreK in the Classroom schools and thousands of museum visitors to the International Space Station: The Earth Tour exhibit sponsored by Discovery Place museum.

  9. Overview of space nuclear technologies and the American Nuclear Society

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.

    2000-01-01

    The American Nuclear Society (ANS) has seen an aspect of the universe where nuclear technology is the best energy source available for power, transportation, etc. The National Aeronautics and Space Administration (NASA) has been exploiting this aspect of the universe by sending machines and humans into it and exploring, colonizing, industrializing, developing, inhabiting, etc. Space is the final frontier, and nuclear technology is the best suited for today's or the next century's space exploration and development. Many aspects of nuclear technology and its uses in space will be needed. ANS encompasses these and many more aspects of nuclear technology, and all have some role to play in the exploration and development of space. It should be ANS's intent to be an advisory body to NASA on the nuclear aspects of space exploration

  10. Study of retro reflector array for the polarimeter-interferometer system on EAST Tokamak

    Science.gov (United States)

    Lan, T.; Wang, S. X.; Liu, H. Q.; Liu, J.; Jie, Y. X.; Zou, Z. Y.; Li, W. M.; Gao, X.; Qin, H.

    2015-12-01

    In this paper, we experimentally verify the feasibility of replacing individual retro reflectors (RRs) with retro reflector array (RRA) in EAST POlarimeter/INTerferometer (POINT) system, by considering mode transformation and power wastage. Being exposed to plasma environment directly, RRs have risks of deformation, erosion and deposition. RRA is preferable because it can be installed within a smaller space and provide a gap of several centimeters for the shutter design. This protective structure can reduce the cost of device maintenance and bring down system errors. According to Helmholtz-Kirchhoff integral theorem, the optimized incident diameter for the RRA, constituted by seven hexagonal RR cells, is 40 mm in POINT system. The corresponding bench tests are carried out by measuring the propagation properties of reflected beams by plane RRA for perpendicular incidence and reflected beams by terrace RRA for oblique incidence. The experimental results illustrate that RRA can be satisfactorily applied in POINT system at the optimized incident diameter. In view of the energy wastage caused by plasma film coating, it is found that RRA has more advantages for diagnostics using shorter wavelengths, such as the case in ITER.

  11. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    Science.gov (United States)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  12. Space technology transfer to developing countries: opportunities and difficulties

    Science.gov (United States)

    Leloglu, U. M.; Kocaoglan, E.

    Space technology, with its implications on science, economy and security, is mostly chosen as one of the priority areas for technological development by developing countries. Most nations aspiring to begin playing in the space league prefer technology transfer programs as a first step. Decreasing initial costs by small satellite technology made this affordable for many countries. However, there is a long way from this first step to establishment of a reliable space industry that can both survive in the long term with limited financial support from the government and meet national needs. This is especially difficult when major defense companies of industrialized countries are merging to sustain their competitiveness. The prerequisites for the success are implementation of a well-planned space program and existence of industrialization that can support basic testing and manufacturing activities and supply qualified manpower. In this study, the difficulties to be negotiated and the vicious circles to be broken for latecomers, that is, developing countries that invest on space technologies are discussed. Especially, difficulties in the technology transfer process itself, brain drain from developing countries to industrialized countries, strong competition from big space companies for domestic needs, costs of establishing and maintaining an infrastructure necessary for manufacturing and testing activities, and finally, the impact of export control will be emphasized. We will also try to address how and to what extent collaboration can solve or minimize these problems. In discussing the ideas mentioned above, lessons learned from the BILSAT Project, a technology transfer program from the UK, will be referred.

  13. Research and Technology 1996: Innovation in Time and Space

    Science.gov (United States)

    1996-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1996 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities.

  14. Albedo-adjusted fast-neutron diffusion coefficients in reactor reflectors

    International Nuclear Information System (INIS)

    Terney, W.B.

    1975-01-01

    In the newer, larger pressurized-water reactor cores, the calculated power distributions are fairly sensitive to the number of neutron groups used and to the treatment of the reflector cross sections. Comparisons between transport and diffusion calculations show that the latter substantially underpredict the reflector albedos in the fast (top) group and that the power distribution is shifted toward the core center when compared to 4-group transport theory results. When the fast-neutron diffusion coefficients are altered to make the transport- and diffusion-theory albedos agree, the power distributions are also brought into agreement. An expression for the fast-neutron diffusion coefficients in reflector regions has been derived such that the diffusion calculation reproduces the albedo obtained from a transport solution. In addition, a correction factor for mesh effects applicable to coarse mesh problems is presented. The use of the formalism gives the correct albedos and improved power distributions. (U.S.)

  15. Performance improvement of the finned passive PVT system using reflectors like removable insulation covers

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mokhtari, Farhad

    2016-01-01

    Highlights: • A passive PVT system means the combination of a PV panel and a compact solar water heater. • Comparative study was done on performance characteristics in passive and hybrid PVT systems. • Reflectors effects on performance of a finned passive PVT system were numerically studied. • Results show that the finned passive PVT system has higher performance than the hybrid type. • Reflectors reduce the night heat losses and increase the solar radiation rate on PVT system. - Abstract: A passive photovoltaic–thermal system (PVT) is the combination of a photovoltaic (PV) panel and a compact solar water heater for co-generation of heat and electricity. This system bears considerable heat losses to ambient, particularly at noncollection times. One simple way to overcome this problem is to use a removable insulation cover on the collector's outer glazing. In this paper, the effects of the reflectors on day and night performance of a finned passive PVT system were numerically studied. At nonenergy collection time, the reflectors can turn and cover the collector cover glass as a nonconductor material. Simulation results showed that the reflectors reduce the night heat losses and increase the solar radiation rate on the absorber plate. The use of removable insulation reflectors resulted to saving extra sensibly thermal energy. Also, the solar cells power generation (P_s_c), in the case of reflectors installed, was reinforced.

  16. Space weapon technology and policy

    Science.gov (United States)

    Hitchens, Theresa

    2017-11-01

    The military use of space, including in support of nuclear weapons infrastructure, has greatly increased over the past 30 years. In the current era, rising geopolitical tensions between the United States and Russia and China have led to assumptions in all three major space powers that warfighting in space now is inevitable, and possible because of rapid technological advancements. New capabilities for disrupting and destroying satellites include radio-frequency jamming, the use of lasers, maneuverable space objects and more capable direct-ascent anti-satellite weapons. This situation, however, threatens international security and stability among nuclear powers. There is a continuing and necessary role for diplomacy, especially the establishment of normative rules of behavior, to reduce risks of misperceptions and crisis escalation, including up to the use of nuclear weapons. U.S. policy and strategy should seek a balance between traditional military approaches to protecting its space assets and diplomatic tools to create a more secure space environment.

  17. CW 100MW microwave power transfer in space

    International Nuclear Information System (INIS)

    Takayama, K.; Hiramatsu, S.; Shiho, M.

    1991-01-01

    A proposal is made for high-power microwave transfer in space. The concept consists in a microwave power station integrating a multistage microwave free-electron laser and asymmetric dual-reflector system. Its use in space is discussed. 9 refs., 2 figs., 1 tab

  18. Free-piston Stirling technology for space power

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1994-01-01

    An overview is presented of the NASA Lewis Research Center free-piston Stirling engine activities directed toward space power. This work is being carried out under NASA's new Civil Space Technology Initiative (CSTI). The overall goal of CSTI's High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space missions. The Stirling cycle offers an attractive power conversion concept for space power needs. Discussed in this paper is the completion of the Space Power Demonstrator Engine (SPDE) testing - culminating in the generation of 25 kW of engine power from a dynamically-balanced opposed-piston Stirling engine at a temperature ratio of 2.0. Engine efficiency was approximately 22 percent. The SPDE recently has been divided into two separate single-cylinder engines, called Space Power Research Engines (SPRE), that now serve as test beds for the evaluation of key technology disciplines. These disciplines include hydrodynamic gas bearings, high-efficiency linear alternators, space qualified heat pipe heat exchangers, oscillating flow code validation, and engine loss understanding. The success of the SPDE at 650 K has resulted in a more ambitious Stirling endeavor - the design, fabrication, test and evaluation of a designed-for-space 25 kW per cylinder Stirling Space Engine (SSE). The SSE will operate at a hot metal temperature of 1050 K using superalloy materials. This design is a low temperature confirmation of the 1300 K design. It is the 1300 K free-piston Stirling power conversion system that is the ultimate goal; to be used in conjunction with the SP-100 reactor. The approach to this goal is in three temperature steps. However, this paper concentrates on the first two phases of this program - the 650 K SPDE and the 1050 K SSE

  19. The reflector effect on the neutron lifetimes in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Gonnelli, Eduardo

    2013-01-01

    The aim of this study is to present the reflector effect on the neutron lifetimes in the IPEN/MB-01 reactor. The proposed method requires an approach which takes into account both the reflector and the core, so that the point kinetics equations, which constitute the theoretical basis of all mathematical development, contemplate both regions of the reactor. From these equations, as known as two regions kinetics point equations, theoretical expressions are obtained for the Auto Power Spectral Densities (APSD), which are used for least squares fit of the experimental data of APSD obtained in several subcritical states. The prompt neutron generation time, the neutron lifetimes in the reflector and the neutron return fraction from the reflector to the core are derived from the fitting. (author)

  20. Space power technology for the twenty-first century (SPT21)

    International Nuclear Information System (INIS)

    Borger, W.U.; Massie, L.D.

    1988-01-01

    During the spring and summer months of 1987, the Aero Propulsion Laboratory of the Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, Ohio in cooperation with the Air Force Space Technology Center at Kirtland AFB, New Mexico, undertook an initiative to develop a Strategic Plan for Space Power Technology Development. The initiative was called SPT21, Space Power Technology for the Twenty-First Century. The planning process involved the participation of other Government organizations (U.S. Army, Navy, DOE and NASA) along with major aerospace companies and universities. Following an SPT21 kickoff meeting on 28 May 1987, detailed strategic planning was accomplished through seven (7) Space Power Technology Discipline Workshops commencing in June 1987 and concluding in August 1987. Technology Discipline Workshops were conducted in the following areas: (1) Solar Thermal Dynamic Power Systems (2) Solar Photovoltaic Cells and Arrays (3) Thermal Management Technology (4) Energy Storage Technology (5) Nuclear Power Systems Technology (6) Power Conditioning, Distribution and Control and (7) Systems Technology/Advanced Concepts. This technical paper summarizes the planning process and describes the salient findings and conclusions of the workshops

  1. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  2. Robotic Fish Technology and Its Applications to Space Mechatronics

    OpenAIRE

    Yamamoto, Ikuo; Shin, Nobuhiro; Oka, Taishi; Matsui, Miki

    2014-01-01

    The authors have developed a shark ray robotic fish based on biomimetic approaches. The paper describes the newly developed robotic fish technology and its application to mechatronics in the space. It is found that robotic fish technology creates not only new underwater robotics, but also the next generation space mechatronics for geological survey of lunar/planets and dust cleaning in the space station.

  3. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    Science.gov (United States)

    Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin

    2017-09-01

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.

  4. Investigation of the crack in a reflector element of JRR-4

    International Nuclear Information System (INIS)

    2008-09-01

    The JRR-4 (Japan Research Reactor No.4) has been used as a shared utilization facility for many researches since the first criticality in January 1965. A crack was ascertained on a weld area of one reflector element on December 28, 2007. The Department of Research Reactor and Tandem Accelerator set up an ad hoc working group of experts in the JAEA (Japan Atomic Energy Agency), and investigated cause of crack on the weld area. The following examinations were carried out; visual examination, dimensional examination, fractography examination and so on. It was concluded that the main cause of the crack is the swelling of graphite in the reflector element. The swelling must be due to neutron irradiation. We carried out a radiografical examination of the other reflector elements. As the result, we determined that many of them were not in a suitable state to be used because of swelling of graphite. The design of the new reflector elements should be carried out, based on the relation between the irradiation does and swelling rate, which has been obtained in these investigation. (author)

  5. Connecting Learning Spaces Using Mobile Technology

    Science.gov (United States)

    Chen, Wenli; Seow, Peter; So, Hyo-Jeong; Toh, Yancy; Looi, Chee-Kit

    2010-01-01

    The use of mobile technology can help extend children's learning spaces and enrich the learning experiences in their everyday lives where they move from one context to another, switching locations, social groups, technologies, and topics. When students have ubiquitous access to mobile devices with full connectivity, the in-situ use of the mobile…

  6. Development of an innovative reflector drive mechanism using magnetic repulsion force for 4S reactor

    International Nuclear Information System (INIS)

    Tsuji, K.; Watanabe, M.; Inagaki, H.; Nishikawa, A.; Takahashi, H.; Wakamatsu, M.; Matsumiya, H.; Nishiguchi, Y.

    2001-01-01

    A small sized fast reactor 4S: (Super Safe Small and Simple) which has a core of 10 - 30 years life time is controlled by reflectors. The reflector is required to be risen at very low speed to make up for the reactivity swing during operation. This report shows the development of an innovative reflector drive mechanism using magnetic repulsion force that can move at a several micrometer per one step. This drive mechanism has a passive shut down capability, and can eliminate reflector drive line. (author)

  7. Design of the Graphite Reflectors in Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Haeng; Cho, Yeong Garp; Kim, Tae Kyu; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Graphite is often used as one of reflector materials for research reactors because of its low neutron absorption cross-section, good moderating properties, and relatively low and stable price. In addition, graphite has excellent properties at high temperatures, so it is widely used as a core material in high temperature reactors. However, its material characteristics such as strength, elastic modulus, thermal expansion coefficient, dimensional change, and thermal conductivity sensitively depend on neutron fluence, temperature, and its manufacturing process. In addition, the Wigner energy and the treatment of the graphite waste such as C-14 should also be considered. For the design of the graphite reflectors, it is therefore essential to understand the material characteristics of chosen graphite materials at given conditions. Especially, the dimensional changes and the thermal conductivity are very important factors to design the nuclear components using graphite as a nonstructural material. Hence, in this study, the material characteristics of graphite are investigated via some experiments in literature. Improving design methods for graphite reflectors in research reactors are then suggested to minimize the problems, and the advantages and disadvantages of each method are also discussed

  8. Heavy reflector experiments in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Silva, Graciete Simoes de Andrade e; Mura, Luis Felipe; Fuga, Rinaldo; Jerez, Rogerio; Mendonca, Arlindo Gilson

    2012-01-01

    Full text: The heavy reflector experiments performed in the IPEN/MB-01 research reactor facility comprise a set of critical configurations employing the standard 28x26-fuel-rod configuration. The heavy reflector either Stainless Steel, Carbon Steel or Nickel plates was placed at one of the faces of the IPEN/MB-01 reactor. Criticality is achieved by inserting the control banks BC1 and BC2 to the critical position. 32 plates around 0.3 mm thick were used in the experiment. The chosen distance between last fuel rod row and the first laminate for both type of laminates was 5.5 mm. Considering initially the SS case, the experimental data reveal that the reactivity decreases up to the sixth plate and after that it increases, becomes nearly zero (which was equivalent to initial zero excess reactivity with zero plates) for the 21 plates case and reaches a value of 154.91 pcm when the whole set of 32 plates are inserted in the reflector. This is a very striking result because it demonstrates that when all 32 plates are inserted in the reflector there is a net gain of reactivity. The reactivity behavior demonstrates all the physics events already mentioned in this work. When the number of plates are small (around 6), the neutron absorption in the plates is more important than the neutron reflection and the reactivity decreases. This condition holds up to a point where the neutron reflection becomes more important than the neutron absorption in the plates and the reactivity increases. The experimental data for the Carbon Steel and Nickel case shows the main features of the SS case, but for the Carbon Steel case the reactivity gain is small, thus demonstrating that Carbon Steel or essentially iron has not the reflector capability as the SS laminates do. The measured data of Nickel plates show a higher reactivity gain, thus demonstrating that Nickel is a good reflector. The theoretical analysis employing MCNP5 and ENDF/B-VII.0 show that the SS calculated results are in a good

  9. Disruptive Space Technology

    OpenAIRE

    Benson, Jim

    2004-01-01

    In 1997 "The Innovator’s Dilemma" by Clayton M. Christensen became a popular book in the small satellite and launch vehicle communities. But like the weather, every one talks about “Disruptive Technology” but few do anything about it. In the ‘70s and ‘80s, people were looking for “Paradigm Shifts,” and since the resurrection of Donald Rumsfeld, a recent watchword has been “Transformational Technology.” But today’s buzzword is now “Responsive Space Systems.”

  10. Handbook of solar energy data for south-facing surfaces in the United States. Volume I. An insolation, array shadowing, and reflector augmentation model

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.

    1980-01-15

    This handbook provides estimates of average available solar insolation to fixed, flat-plate, south-facing collector surfaces at various array tilt angles at numerous sites in the US. This first volume contains average daily, total insolation estimates, by month, and annual totals for 235 locations. A model that estimates the direct, diffuse, and reflected components of total insolation on an hourly, daily, and monthly basis is presented. A shadow loss model and a reflector augmentation model providing estimates of the losses and gains associated with various fixed array geometries are also described. These models can be used with the insolation model provided or with other recorded data. A FORTRAN computer program with user's guide is presented. The program can be used to generate additional handbook values or to examine the effects of array shadowing and fixed reflector augmentation effects on a daily, monthly, or annual basis. Array shadowing depends on location, array size, array tilt, array separation, and time. The program can be used to examine trade-offs between array spacing and insolation losses due to shadowing. The reflector augmentation program can be used to examine trade-offs among array size and tilt, separation, and reflector tilt to determine the combination of design values that optimize the economic objectives or technical criteria of the system.

  11. Uranium Enrichment Reduction in the Prototype Gen-IV Sodium-Cooled Fast Reactor (PGSFR with PBO Reflector

    Directory of Open Access Journals (Sweden)

    Chihyung Kim

    2016-04-01

    Full Text Available The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  12. Uranium enrichment reduction in the Prototype Gen-IV sodium-cooled fast reactor (PGSFR) with PBO reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Donny; Kim, Chi Hyung; Kim, Yong Hee [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2016-04-15

    The Korean Prototype Gen-IV sodium-cooled fast reactor (PGSFR) is supposed to be loaded with a relatively-costly low-enriched U fuel, while its envisaged transuranic fuels are not available for transmutation. In this work, the U-enrichment reduction by improving the neutron economy is pursued to save the fuel cost. To improve the neutron economy of the core, a new reflector material, PbO, has been introduced to replace the conventional HT9 reflector in the current PGSFR core. Two types of PbO reflectors are considered: one is the conventional pin-type and the other one is an inverted configuration. The inverted PbO reflector design is intended to maximize the PbO volume fraction in the reflector assembly. In addition, the core radial configuration is also modified to maximize the performance of the PbO reflector. For the baseline PGSFR core with several reflector options, the U enrichment requirement has been analyzed and the fuel depletion analysis is performed to derive the equilibrium cycle parameters. The linear reactivity model is used to determine the equilibrium cycle performances of the core. Impacts of the new PbO reflectors are characterized in terms of the cycle length, neutron leakage, radial power distribution, and operational fuel cost.

  13. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  14. Lidar technologies for airborne and space-based applications

    International Nuclear Information System (INIS)

    Henson, T.D.; Schmitt, R.L.; Sobering, T.J.; Raymond, T.D.; Stephenson, D.A.

    1994-10-01

    This study identifies technologies required to extend the capabilities of airborne light detection and ranging (lidar) systems and establish the feasibility of autonomous space-based lidars. Work focused on technologies that enable the development of a lightweight, low power, rugged and autonomous Differential Absorption Lidar (DIAL) instruments. Applications for airborne or space-based DIAL include the measurement of water vapor profiles in support of climate research and processing-plant emissions signatures for environmental and nonproliferation monitoring. A computer-based lidar performance model was developed to allow trade studies to be performed on various technologies and system configurations. It combines input from the physics (absorption line strengths and locations) of the problem, the system requirements (weight, power, volume, accuracy), and the critical technologies available (detectors, lasers, filters) to produce the best conceptual design. Conceptual designs for an airborne and space-based water vapor DIAL, and a detailed design of a ground-based water vapor DIAL demonstration system were completed. Future work planned includes the final testing, integration, and operation of the demonstration system to prove the capability of the critical enabling technologies identified

  15. Recent Developments of Reflectarray Antennas in Dual-Reflector Configurations

    Directory of Open Access Journals (Sweden)

    Carolina Tienda

    2012-01-01

    Full Text Available Recent work on dual-reflector antennas involving reflectarrays is reviewed in this paper. Both dual-reflector antenna with a reflectarray subreflector and dual-reflectarrays antennas with flat or parabolic main reflectarray are considered. First, a general analysis technique for these two configurations is described. Second, results for beam scanning and contoured-beam applications in different frequency bands are shown and discussed. The performance and capabilities of these antennas are shown by describing some practical design cases for radar, satellite communications, and direct broadcast satellite (DBS applications.

  16. Collapsible structure for an antenna reflector

    Science.gov (United States)

    Trubert, M. R. (Inventor)

    1973-01-01

    A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.

  17. New two-port multimode interference reflectors

    NARCIS (Netherlands)

    Kleijn, E.; Smit, M.K.; Wale, M.J.; Leijtens, X.J.M.

    2012-01-01

    Multi-mode interference reflectors (MIRs) are versatile components. Two new MIR designs with a fixed 50/50 reflection to transmission ratio are introduced. Measurements on these new devices and on devices similar to those in [1] are presented and compared to the design values. Measured losses are

  18. Space matters: the relational power of mobile technologies

    Directory of Open Access Journals (Sweden)

    Nancy Odendaal

    2014-01-01

    Full Text Available The ubiquitous presence of mobile telephony and proliferation of digital networks imply a critical role for these technologies in overcoming the constraints of space in fragmented cities. Academic literature draws from a range of disciplines but fails to address the significance of new technologies for African and South African cities. Debates on technologies and urban spaces reflect a Northern bias and case literature that dwells on the developmental aspects of ICT do not engage with the broader significance with regards to urban change in African cities. This research addresses these gaps by examining the local transformative qualities of mobile telephony in a South African city, Durban. It focuses on the ways in which informal traders active in the city use technology. Actor-network theory was used in the analysis of the field work, uncovering material and human actors, network stabilization processes and agency in determining the transformative potential of this form of digital networking at city and local scales. Findings indicate that appropriation of technology is informed by livelihood strategies. Innovation is enabled when translation extends to appropriation. More in-depth research is needed on how technology is molded and appropriated to suit livelihoods. Throughout the research the spatial dimensions of the relationship between mobile telephony and networks were considered. The network spaces that emerge from actor relations do not correspond with the physical spaces usually considered in policy.

  19. New NASA Technologies for Space Exploration

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    NASA is developing new technologies to enable planetary exploration. NASA's Space Launch System is an advance vehicle for exploration beyond LEO. Robotic explorers like the Mars Science Laboratory are exploring Mars, making discoveries that will make possible the future human exploration of the planet. In this presentation, we report on technologies being developed at NASA KSC for planetary exploration.

  20. Space Internet Architectures and Technologies for NASA Enterprises

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2001-01-01

    NASA's future communications services will be supplied through a space communications network that mirrors the terrestrial Internet in its capabilities and flexibility. The notional requirements for future data gathering and distribution by this Space Internet have been gathered from NASA's Earth Science Enterprise (ESE), the Human Exploration and Development in Space (HEDS), and the Space Science Enterprise (SSE). This paper describes a communications infrastructure for the Space Internet, the architectures within the infrastructure, and the elements that make up the architectures. The architectures meet the requirements of the enterprises beyond 2010 with Internet 'compatible technologies and functionality. The elements of an architecture include the backbone, access, inter-spacecraft and proximity communication parts. From the architectures, technologies have been identified which have the most impact and are critical for the implementation of the architectures.

  1. Transformational Technologies to Expedite Space Access and Development

    International Nuclear Information System (INIS)

    Rather, John D. G.

    2010-01-01

    Throughout history the emergence of new technologies has enabled unforeseen breakthrough capabilities that rapidly transformed the world. Some global examples from the twentieth century include AC electric power, nuclear energy, and turbojet engines. At the systems level, success of both Apollo and the Space Shuttle programs depended upon taming hydrogen propulsion and developing high-temperature atmospheric reentry materials. Human space development now is stymied because of a great need for breakthrough technologies and strategies. It is believed that new capabilities exist within the present states-of-the-art of superconducting technology that can be implemented to transform the future of human space development. This paper is an overview of three other papers presented within this forum, which summarizes the principles and consequences of StarTram, showing how the resulting breakthrough advantages can lead directly to safe space tourism and massive development of the moon, Mars and the outer solar system. StarTram can implement cost-effective solar power from space, simple utilization of asteroid material to protect humans from ionizing radiation, and effective defense of the Earth from devastating cosmic impacts. Synergistically, StarTram technologies will revolutionize ground transportation on the Earth, leading to enormous reduction in energy consumption and creation of millions of jobs. High energy lasers will also be discussed because of their importance to power beaming applications.

  2. CSIR eNews: Space technology

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available The CSIR Satellite Applications Centre is a key component of the CSIR's efforts to maximise the benefit of information, communications and space technology for industry and society. The centre at Hartebeesthoek is located some 70 km west of Pretoria...

  3. CSIR eNews: Space technology

    CSIR Research Space (South Africa)

    CSIR

    2009-09-01

    Full Text Available The CSIR Satellite Applications Centre is a key component of the CSIR's efforts to maximise the benefit of information, communications and space technology for industry and society. The centre at Hartebeesthoek is located some 70 km west of Pretoria...

  4. CSIR eNews: Space technology

    CSIR Research Space (South Africa)

    CSIR

    2007-12-01

    Full Text Available The CSIR Satellite Applications Centre is a key component of the CSIR's efforts to maximise the benefit of information, communications and space technology for industry and society. The centre at Hartebeesthoek is located some 70 km west of Pretoria...

  5. CSIR eNews: Space technology

    CSIR Research Space (South Africa)

    CSIR

    2008-12-01

    Full Text Available The CSIR Satellite Applications Centre is a key component of the CSIR's efforts to maximise the benefit of information, communications and space technology for industry and society. The centre at Hartebeesthoek is located some 70 km west of Pretoria...

  6. The international handbook of space technology

    CERN Document Server

    Badescu, Viorel

    2014-01-01

    This comprehensive handbook provides an overview of space technology and a holistic understanding of the system-of-systems that is a modern spacecraft. With a foreword by Elon Musk, CEO and CTO of SpaceX, and contributions from globally leading agency experts from NASA, ESA, JAXA, and CNES, as well as European and North American academics and industrialists, this handbook, as well as giving an interdisciplinary overview, offers, through individual self-contained chapters, more detailed understanding of specific fields, ranging through: ·         Launch systems, structures, power, thermal, communications, propulsion, and software, to ·         entry, descent and landing, ground segment, robotics, and data systems, to ·         technology management, legal and regulatory issues, and project management. This handbook is an equally invaluable asset to those on a career path towards the space industry as it is to those already within the industry.

  7. Vertical reflector for bifacial PV-panels

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar modules offer an interesting price/performance ratio, and much work has been focused on directing the ground albedo to the back of the solar cells. In this work we design and develop a reflector for a vertical bifacial panel, with the objective to optimize the energy harvest...

  8. Development of an environment-insensitive PWR radial reflector model applicable to modern nodal reactor analysis method

    International Nuclear Information System (INIS)

    Mueller, E.M.

    1989-05-01

    This research is concerned with the development and analysis of methods for generating equivalent nodal diffusion parameters for the radial reflector of a PWR. The requirement that the equivalent reflector data be insensitive to changing core conditions is set as a principle objective. Hence, the environment dependence of the currently most reputable nodal reflector models, almost all of which are based on the nodal equivalence theory homgenization methods of Koebke and Smith, is investigated in detail. For this purpose, a special 1-D nodal equivalence theory reflector model, called the NGET model, is developed and used in 1-D and 2-D numerical experiments. The results demonstrate that these modern radial reflector models exhibit sufficient sensitivity to core conditions to warrant the development of alternative models. A new 1-D nodal reflector model, which is based on a novel combination of the nodal equivalence theory and the response matrix homogenization methods, is developed. Numerical results varify that this homogenized baffle/reflector model, which is called the NGET-RM model, is highly insensitive to changing core conditions. It is also shown that the NGET-RM model is not inferior to any of the existing 1-D nodal reflector models and that it has features which makes it an attractive alternative model for multi-dimensional reactor analysis. 61 refs., 40 figs., 36 tabs

  9. In-Space Propulsion (346620) Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Technologies include, but are not limited to, electric and advanced chemical propulsion, propellantless propulsion such as aerocapture and solar sails, sample return...

  10. Development and Performance Evaluation of Light Shelves Using Width-Adjustable Reflectors

    Directory of Open Access Journals (Sweden)

    Heangwoo Lee

    2018-01-01

    Full Text Available In recent years, there has been an increase in the consumption of energy for lighting purposes, which has led to an increase in the number of studies being conducted on this subject. Most studies have focused on light shelves, which are daylighting systems used for reducing the lighting energy required for the interiors of buildings. However, the existing light shelves cannot actively deal with external environmental factors, which often lead to an infringement of the right to light during the night when the performance of the light shelf deteriorates. Therefore, in this study, we propose a light shelf with a width-adjustable reflector and verify its validity using a testbed. The reflector of the proposed light shelf system is modularized so that the length can be adjusted in stages. The optimum width of the light shelf is calculated in terms of the energy reduction and uniformity ratio improvement, and the obtained optimum width is varied depending on the season. We find that the width-adjustable reflector can save 20% and 21.6% more lighting energy than light shelves with fixed reflector widths of 0.3 m and 0.6 m, respectively.

  11. Medical technology advances from space research

    Science.gov (United States)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  12. Global shielding analysis of the 2-element ANS core and reflector with photoneutrons

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1996-01-01

    This paper describes the initial global 2-D shielding analyses for the 2-element, heavy-water cooled and reflected Advanced Neutron Source reactor which was to have been built in Oak Ridge, Tennessee. The portion of the system analyzed encompassed the highly enriched core, the 1.5-m-thick heavy-water reflector, the aluminum reflector vessel, and the first 0.2 m of light water beyond the reflector vessel. While some results are presented, this paper focuses primarily on the lessons learned during the analysis of this rather unique system

  13. Miniaturization of components and systems for space using MEMS-technology

    Science.gov (United States)

    Grönland, Tor-Arne; Rangsten, Pelle; Nese, Martin; Lang, Martin

    2007-06-01

    Development of MEMS-based (micro electro mechanical system) components and subsystems for space applications has been pursued by various research groups and organizations around the world for at least two decades. The main driver for developing MEMS-based components for space is the miniaturization that can be achieved. Miniaturization can not only save orders of magnitude in mass and volume of individual components, but it can also allow increased redundancy, and enable novel spacecraft designs and mission scenarios. However, the commercial breakthrough of MEMS has not occurred within the space business as it has within other branches such as the IT/telecom or automotive industries, or as it has in biotech or life science applications. A main explanation to this is the highly conservative attitude to new technology within the space community. This conservatism is in many senses motivated by a very low risk acceptance in the few and costly space projects that actually ends with a space flight. To overcome this threshold there is a strong need for flight opportunities where reasonable risks can be accepted. Currently there are a few flight opportunities allowing extensive use of new technology in space, but one of the exceptions is the PRISMA program. PRISMA is an international (Sweden, Germany, France, Denmark, Norway, Greece) technology demonstration program with focus on rendezvous and formation flying. It is a two satellite LEO mission with a launch scheduled for the first half of 2009. On PRISMA, a number of novel technologies e.g. RF metrology sensor for Darwin, autonomous formation flying based on GPS and vision-based sensors, ADN-based "green propulsion" will be demonstrated in space for the first time. One of the satellites will also have a miniaturized propulsion system onboard based on MEMS-technology. This novel propulsion system includes two microthruster modules, each including four thrusters with micro- to milli-Newton thrust capability. The novelty

  14. Technology transfer from the space exploration initiative

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Space exploration has demonstrated that it stimulates the national economy by creating new and improved products, increased employment, and provides a stimulus to education. The exploration of the Moon and Mars under the Space Exploration Initiative has the potential of accelerating this stimulates to the economy. It is difficult to identify all of the concrete ways this will be accomplished. However, many areas can be identified. The space exploration building blocks of power, propulsion, spacecraft, robotics, rovers, mining and manufacturing, communications, navigation, habitats, life support and infrastructures are reviewed to identify possible technology areas. For example, better means for working in hazardous areas and handling hazardous waste are potential outcomes of this initiative. Methods to produce higher quality goods and improve America's competitiveness in manufacturing will undoubtedly evolve from the need to produce products that must last many years in the harsh environments of space and planetary surfaces. Some ideas for technology transfer are covered in this paper

  15. The space shuttle program technologies and accomplishments

    CERN Document Server

    Sivolella, Davide

    2017-01-01

    This book tells the story of the Space Shuttle in its many different roles as orbital launch platform, orbital workshop, and science and technology laboratory. It focuses on the technology designed and developed to support the missions of the Space Shuttle program. Each mission is examined, from both the technical and managerial viewpoints. Although outwardly identical, the capabilities of the orbiters in the late years of the program were quite different from those in 1981. Sivolella traces the various improvements and modifications made to the shuttle over the years as part of each mission story. Technically accurate but with a pleasing narrative style and simple explanations of complex engineering concepts, the book provides details of many lesser known concepts, some developed but never flown, and commemorates the ingenuity of NASA and its partners in making each Space Shuttle mission push the boundaries of what we can accomplish in space. Using press kits, original papers, newspaper and magazine articles...

  16. NASA space station automation: AI-based technology review. Executive summary

    Science.gov (United States)

    Firschein, O.; Georgeff, M. P.; Park, W.; Cheeseman, P. C.; Goldberg, J.; Neumann, P.; Kautz, W. H.; Levitt, K. N.; Rom, R. J.; Poggio, A. A.

    1985-01-01

    Research and Development projects in automation technology for the Space Station are described. Artificial Intelligence (AI) based technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics.

  17. Shaping Single Offset Reflector Antennas Using Local Axis-Displaced Confocal Quadrics

    Directory of Open Access Journals (Sweden)

    Rafael A. Penchel

    2016-01-01

    Full Text Available This work investigates a novel numerical procedure for the solution of an exact formulation for the Geometrical Optics synthesis of a single reflector antenna by simultaneously imposing Snell’s Law and Conservation of Energy in a tube of rays, yielding a second-order nonlinear partial differential equation of Monge-Ampère type, which can be solved as a boundary value problem. The investigation explores the interpolating properties of confocal quadrics to locally represent the shaped reflector surface. It allows the partial derivatives involved in the formulation to be analytically expressed. To illustrate the method, two examples of offset single reflectors shaped to radiate a Gaussian power density within a superelliptical contoured beam are presented. The results are validated by Physical Optics analysis with equivalent edge currents.

  18. Non-uniformly sampled grids in double pole coordinate system for freeform reflector construction

    Science.gov (United States)

    Ma, Donglin; Pacheco, Shaun; Feng, Zexin; Liang, Rongguang

    2015-08-01

    We propose a new method to design freeform reflectors by nonuniformly sampling the source intensity distribution in double pole coordinate system. In double pole coordinate system, there is no pole for the whole hemisphere because both poles of the spherical coordinate system are moved to southernmost point of the sphere and overlapped together. With symmetric definition of both angular coordinates in the modified double pole coordinate system, a better match between the source intensity distribution and target irradiance distribution can be achieved for reflectors with large acceptance solid angle, leading to higher light efficiency and better uniformity on the target surface. With non-uniform sampling of the source intensity, we can design circular freeform reflector to obtain uniform rectangular illumination pattern. Aided by the feedback optimization, the freeform reflector can achieve the collection efficiency for ideal point source over 0.7 and relative standard deviation (RSD) less than 0.1.

  19. Reflector automatic acquisition and pointing based on auto-collimation theodolite

    Science.gov (United States)

    Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu

    2018-01-01

    An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.

  20. An overview of DARPA's advanced space technology program

    Science.gov (United States)

    Nicastri, E.; Dodd, J.

    1993-02-01

    The Defense Advanced Research Projects Agency (DARPA) is the central research and development organization of the DoD and, as such, has the primary responsibility for the maintenance of U.S. technological superiority over potential adversaries. DARPA's programs focus on technology development and proof-of-concept demonstrations of both evolutionary and revolutionary approaches for improved strategic, conventional, rapid deployment and sea power forces, and on the scientific investigation into advanced basic technologies of the future. DARPA can move quickly to exploit new ideas and concepts by working directly with industry and universities. For four years, DARPA's Advanced Space Technology Program (ASTP) has addressed various ways to improve the performance of small satellites and launch vehicles. The advanced technologies that are being and will be developed by DARPA for small satellites can be used just as easily on large satellites. The primary objective of the ASTP is to enhance support to operational commanders by developing and applying advanced technologies that will provide cost-effective, timely, flexible, and responsive space systems. Fundamental to the ASTP effort is finding new ways to do business with the goal of quickly inserting new technologies into DoD space systems while reducing cost. In our view, these methods are prime examples of what may be termed 'technology leveraging.' The ASTP has initiated over 50 technology projects, many of which were completed and transitioned to users. The objectives are to quickly qualify these higher risk technologies for use on future programs and reduce the risk of inserting these technologies into major systems, and to provide the miniaturized systems that would enable smaller satellites to have significant - rather than limited - capability. Only a few of the advanced technologies are described, the majority of which are applicable to both large and small satellites.

  1. Super Global Projects and Environmentally Friendly Technologies Used in Space Exploration: Realities and Prospects of the Space Age

    Directory of Open Access Journals (Sweden)

    Sergey Krichevsky

    2018-02-01

    Full Text Available The 60th anniversary of the Space Age is an important intermediate finishing point on the way of a man and the whole humanity to space. Along with the outstanding achievements, there are a number of challenges and contradictions in space exploration due to the aggravation of the global crisis on Earth, low efficiency and the backlog of space research in the transition to a new technology based reality and clean technologies. Both the international astronautics and the space exploration area nowadays face difficulties in choosing a new paradigm and a development strategy that is becoming even more complicated due to the current unstable and turbulent situation on Earth. The article reveals the optimistic scenario of further space exploration, as well as the methodological and practical aspects of new projects and technologies. The periodization of the Space Age history has been conducted. It has been also proposed a new classification of the “space” phenomenon due to concretizing the concept of “global” in the form of a three-scale structure encompassing the following levels: 1 planetary global; 2 super global; 3 universally global. The notion of “super global space exploration project” has been introduced. The concept of further space exploration is proposed, which includes four interrelated super global projects:1 Earth Protection System from Asteroid and Comet Threat; 2 Moon Exploration; 3 Mars Exploration; 4 Cosmic Humanity. Since the humanity is embarking on the practical implementation of these super global projects, it is urgent to make a transition towards a new technology based order, as well as up-to-date technologies. A couple of ecological projects and space exploration technologies of the 20th and 21st centuries have been exemplified and analyzed. It has been also worked out the list of new environmentally friendly space technologies and projects. The research makes an emphasis upon a great potential of clean and green

  2. Design and measured performances of a plane reflector augmented box-type solar-energy cooker

    International Nuclear Information System (INIS)

    Ekechukwu, O.V.

    2001-06-01

    The design philosophy, construction and measured performances of a plane-reflector augmented box-type solar-energy cooker are presented. The experimental solar cooker consists of an aluminum plate absorber painted matt black and a double-glazed lid. The bottom and sides are lagged with fibreglass wool insulator. The reflector consists of a wooden-framed commercially-available specular plane mirror which is sized to form a cover for the box when not in use. Provision is made for four cooking vessels each capable of holding up to 1 kg of water. Results of thermal performance tests show stagnation absorber plate temperatures of 138 deg. C and 119 deg. C for the cooker with and without the plane reflector in place, respectively. Boiling times of 60 minutes (3600 seconds) and 70 minutes (4200 seconds) for 1 kg of water, for the cooker with and without the reflector in place, respectively, were recorded. The solar cooker performance has been rated using the first figure of merit (F 1 ) on the no-load test and the second figure of merit (F 2 ) on the sensible heat tests. Predicted water boiling times using the two figures of merit compared favourable with measured values. The performance of the cooker with the plane reflector in place was improved tremendously compared to that without the reflector in place. (author)

  3. Space assets, technology and services in support of energy policy

    Science.gov (United States)

    Vasko, C. A.; Adriaensen, M.; Bretel, A.; Duvaux-Bechon, I.; Giannopapa, C. G.

    2017-09-01

    Space can be used as a tool by decision and policy makers in developing, implementing and monitoring various policy areas including resource management, environment, transport, security and energy. This paper focuses on the role of space for the energy policy. Firstly, the paper summarizes the European Union's (EU) main objectives in energy policy enclosed in the Energy Strategy 2020-2030-2050 and demonstrates how space assets can contribute to achieving those objectives. Secondly, the paper addresses how the European Space Agency (ESA) has established multiple initiatives and programs that directly finance the development of space assets, technology and applications that deliver services in support of the EU energy policy and sector. These efforts should be continued and strengthened in order to overcome identified technological challenges. The use of space assets, technology and applications, can help achieve the energy policy objectives for the next decades.

  4. Technology transfer of military space microprocessor developments

    Science.gov (United States)

    Gorden, C.; King, D.; Byington, L.; Lanza, D.

    1999-01-01

    Over the past 13 years the Air Force Research Laboratory (AFRL) has led the development of microprocessors and computers for USAF space and strategic missile applications. As a result of these Air Force development programs, advanced computer technology is available for use by civil and commercial space customers as well. The Generic VHSIC Spaceborne Computer (GVSC) program began in 1985 at AFRL to fulfill a deficiency in the availability of space-qualified data and control processors. GVSC developed a radiation hardened multi-chip version of the 16-bit, Mil-Std 1750A microprocessor. The follow-on to GVSC, the Advanced Spaceborne Computer Module (ASCM) program, was initiated by AFRL to establish two industrial sources for complete, radiation-hardened 16-bit and 32-bit computers and microelectronic components. Development of the Control Processor Module (CPM), the first of two ASCM contract phases, concluded in 1994 with the availability of two sources for space-qualified, 16-bit Mil-Std-1750A computers, cards, multi-chip modules, and integrated circuits. The second phase of the program, the Advanced Technology Insertion Module (ATIM), was completed in December 1997. ATIM developed two single board computers based on 32-bit reduced instruction set computer (RISC) processors. GVSC, CPM, and ATIM technologies are flying or baselined into the majority of today's DoD, NASA, and commercial satellite systems.

  5. The upgrade of intense pulsed neutron source (IPNS) through the change of coolant and reflector

    CERN Document Server

    Baek, I C; Iverson, E B

    2002-01-01

    The current intense pulsed neutron source (IPNS) depleted uranium target is cooled by light water. The inner reflector material is graphite and the outer reflector material is beryllium. The presence of H sub 2 O in the target moderates neutrons and leads to a higher absorption loss in the target than is necessary. D sub 2 O coolant in the small quantities required minimizes this effect. We have studied the possible improvement in IPNS beam fluxes that would result from changing the coolant from H sub 2 O to D sub 2 O and the inner reflector from graphite to beryllium. Neutron intensities were calculated for directions normal to the viewed surface of each moderator for four different cases of combinations of target coolant and reflector materials. The simulations reported here were performed using the MCNPX (version 2.1.5) computer program. Our results show that substantial gains in neutron beam intensities can be achieved by appropriate combination of target coolant and reflector materials. The combination o...

  6. User manual for semi-circular compact range reflector code: Version 2

    Science.gov (United States)

    Gupta, Inder J.; Burnside, Walter D.

    1987-01-01

    A computer code has been developed at the Ohio State University ElectroScience Laboratory to analyze a semi-circular paraboloidal reflector with or without a rolled edge at the top and a skirt at the bottom. The code can be used to compute the total near field of the reflector or its individual components at a given distance from the center of the paraboloid. The code computes the fields along a radial, horizontal, vertical or axial cut at that distance. Thus, it is very effective in computing the size of the sweet spot for a semi-circular compact range reflector. This report describes the operation of the code. Various input and output statements are explained. Some results obtained using the computer code are presented to illustrate the code's capability as well as being samples of input/output sets.

  7. Measuring device for bending of beryllium reflector

    International Nuclear Information System (INIS)

    Nishida, Seiri; Sakamoto, Naoki.

    1994-01-01

    The device of the present invention can measure bending of a beryllium reflector formed in a reactor core of a nuclear reactor by a relatively easy operation. Namely, a sensor portion comprises a long-support that can be inserted to a fuel element-insertion hole disposed in the reactor and a plurality of distance sensors disposed in a longitudinal direction of the support. A supersonic wave sensor which is advantageous in the heat resistance, the size and the accuracy and can conduct measurement in water relatively easily is used as the distance sensors. However, other sensors, instead of the sensor described above, may also be used. The plurality of distance sensors detect the bending amount of the beryllium reflector in the longitudinal direction by such an easy operation of inserting such a sensor portion to the fuel element-insertion hole upon exchange of fuel elements. (I.S.)

  8. REVIEW ARTICLE: Bioluminescent signals and the role of reflectors

    Science.gov (United States)

    Herring, Peter J.

    2000-11-01

    Organisms in a well lit environment use optical signals derived from the selective reflection of ambient light. In a dim or dark environment it is very difficult (because of low photon numbers) to detect the contrast between light reflected from the organism and that from the background, and many organisms use bioluminescent signals instead. The use of such signals on land is largely restricted to sexual signalling by the luminous beetles, but in the deep ocean their use is widespread, involving both many different organisms and a range of uses which parallel those of reflective signals on land. Some bioluminescent signals rely almost entirely on an optically unmodified light source (e.g. a secretion) but others depend upon complex optical structures, particularly reflectors, in the light-emitting organs. Reflectors in the light organs of many shrimp, squid and fish are based on constructive interference systems but employ different biological materials. They and other structures modify the angular, spectral and intensity distributions of bioluminescent signals. The ready availability of highly efficient biological reflectors has been a formative influence in the evolution of bioluminescent signalling in the sea.

  9. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings.

    Science.gov (United States)

    Chung, Kyungjae; Yu, Sunkyu; Heo, Chul-Joon; Shim, Jae Won; Yang, Seung-Man; Han, Moon Gyu; Lee, Hong-Seok; Jin, Yongwan; Lee, Sang Yoon; Park, Namkyoo; Shin, Jung H

    2012-05-08

    Thin-film color reflectors inspired by Morpho butterflies are fabricated. Using a combination of directional deposition, silica microspheres with a wide size distribution, and a PDMS (polydimethylsiloxane) encasing, a large, flexible reflector is created that actually provides better angle-independent color characteristics than Morpho butterflies and which can even be bent and folded freely without losing its Morpho-mimetic photonic properties. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors

    Directory of Open Access Journals (Sweden)

    H. Haddad

    2018-02-01

    Full Text Available This study proposes a new approach to flatten retrodirective corner reflectors. The proposed method enables compact reflectors via Transformation Optics (TO combined with Surface Impedance Modulation (SIM. This combination permits to relax the constraints on the anisotropic material resulting from the TO. Phase gradient approach is generalized to be used within anisotropic media and is implemented with SIM. Different reflector setups are designed, simulated and compared for fop = 8GHz using ANSYS® HFSS® in order to validate the use of such a combination.

  11. Composites Materials and Manufacturing Technologies for Space Applications

    Science.gov (United States)

    Vickers, J. H.; Tate, L. C.; Gaddis, S. W.; Neal, R. E.

    2016-01-01

    Composite materials offer significant advantages in space applications. Weight reduction is imperative for deep space systems. However, the pathway to deployment of composites alternatives is problematic. Improvements in the materials and processes are needed, and extensive testing is required to validate the performance, qualify the materials and processes, and certify components. Addressing these challenges could lead to the confident adoption of composites in space applications and provide spin-off technical capabilities for the aerospace and other industries. To address the issues associated with composites applications in space systems, NASA sponsored a Technical Interchange Meeting (TIM) entitled, "Composites Materials and Manufacturing Technologies for Space Applications," the proceedings of which are summarized in this Conference Publication. The NASA Space Technology Mission Directorate and the Game Changing Program chartered the meeting. The meeting was hosted by the National Center for Advanced Manufacturing (NCAM)-a public/private partnership between NASA, the State of Louisiana, Louisiana State University, industry, and academia, in association with the American Composites Manufacturers Association. The Louisiana Center for Manufacturing Sciences served as the coordinator for the TIM.

  12. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  13. Assessment of irradiation effects on beryllium reflector and heavy water tank of JRR-3M

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Yoji; Kakehuda, Kazuhiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M, a swimming pool type research reactor with beryllium and heavy water reflectors, has been operated since 1990. Since the beryllium reflectors are close to fuel and receive high fast neutron fluence in a relatively short time, they may be subject to change their dimensions by swelling due mostly to entrapped helium gaseous. This may bend the reflectors to the outside and narrow gaps between the reflectors and the fuel elements. The gaps have been measured with an ultrasonic thickness gage in an annual inspection. The results in 1996 show that the maximum of expansion in the diametral directions was 0.6 mm against 1.6 mm of a managed value for replacement of the reflector. A heavy water tank of the JRR-3M is made of aluminum alloy A5052. Surveillance tests of the alloy have been conducted to evaluate irradiation effects of the heavy water tank. Five sets of specimens of the alloy have been irradiated in the beryllium reflectors where fast neutron flux is higher than that in the heavy water tank. In 1994, one set of specimens had been unloaded and carried out the post-irradiation tests. The results show that the heavy water tank preserved satisfactory mechanical properties. (author)

  14. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  15. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    Science.gov (United States)

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated

  16. Tourism, technology and narratives: Reflections for the design of tourist spaces

    OpenAIRE

    de Villasante García, Rafael; Casellas Oriol, Sílvia

    2017-01-01

    We characterize tourism essentially as a phenomenon of communication between architecture, a territory, a space and its visitors. The design of tourist spaces has evolved over time, according to the technologies used to build them. The emergence of new technologies enables new interactions with our environment and a constant connection with sources of information, in addition to geo-location and augmented reality. These are technologies that are re-configuring the tourist space and, therefore...

  17. A numerical method for the design of free-form reflectors for lighting applications

    NARCIS (Netherlands)

    Prins, C.R.; Thije Boonkkamp, ten J.H.M.; Roosmalen, van J.; IJzerman, W.L.; Tukker, T.W.

    2013-01-01

    In this article we present a method for the design of fully free-form reflectors for illumination systems. We derive an elliptic partial differential equation of the Monge-Ampère type for the surface of a reflector that converts an arbitrary parallel beam of light into a desired intensity output

  18. Statement of Aaron Cohen, Director, Research and Engineering, Johnson Space Center and Chairman, Space Station Advanced Technology Advisory Committee, National Aeronautics and Space Administration, before the Subcommittee on Science, Technology, and Space, Committee on Commerce, Science, and Transportation, United States Senate

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    The activities of NASA's Space Station Advanced Technology Advisory Committee is discussed. Advanced Technology Advisory Committee (ATAC) activities over the last year are reviewed in preparation of the report to Congress on the potential for advancing automation and robotics technology for the space station and for the U.S. economy.

  19. Education and Outreach on Space Sciences and Technologies in Taiwan

    Science.gov (United States)

    Tiger Liu, Jann-Yeng; Chen, hao-Yen; Lee, I.-Te

    2014-05-01

    The Ionospheric Radio Science Laboratory (IRSL) at Institute of Space Science, National Central University in Taiwan has been conducting a program for public outreach educations on space science by giving lectures, organizing camps, touring exhibits, and experiencing hand-on experiments to elementary school, high school, and college students as well as general public since 1991. The program began with a topic of traveling/living in space, and was followed by space environment, space mission, and space weather monitoring, etc. and a series of course module and experiment (i.e. experiencing activity) module was carried out. For past decadal, the course modules have been developed to cover the space environment of the Sun, interplanetary space, and geospace, as well as the space technology of the rocket, satellite, space shuttle (plane), space station, living in space, observing the Earth from space, and weather observation. Each course module highlights the current status and latest new finding as well as discusses 1-3 key/core issues/concepts and equip with 2-3 activity/experiment modules to make students more easily to understand the topics/issues. Regarding the space technologies, we focus on remote sensing of Earth's surface by FORMOSAT-2 and occultation sounding by FORMOSAT-3/COSMIC of Taiwan space mission. Moreover, scientific camps are given to lead students a better understanding and interesting on space sciences/ technologies. Currently, a visualized image projecting system, Dagik Earth, is developed to demonstrate the scientific results on a sphere together with the course modules. This system will dramatically improve the educational skill and increase interests of participators.

  20. Status of irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Centre was organised to development the new irradiation technology for the application at JMTR re-operation. The new irradiation engineering building was remoulded from the old RI development building, and was started to use from the end of September, 2008. Advanced in-situ instrumentation technology(high temperature multi-paired thermocouple, ceramic sensor,application of optical measurement), 99 Mo production technology by new Mo solution irradiation method,recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian countries. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi-paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  1. Status of Irradiation technology development in JMTR

    International Nuclear Information System (INIS)

    Inaba, Y.; Inoue, S.; Izumo, H.; Kitagishi, S.; Tsuchiya, K.; Saito, T.; Ishitsuka, E.

    2008-01-01

    Irradiation Engineering Section of the Neutron Irradiation and Testing Reactor Center was organized to development the new irradiation technology for the application at JMTR re operation. The new irradiation engineering building was remodeled from the old RI development building, and was started to use from the end of September, 2008. Advanced in situ instrumentation technology (high temperature multi paired thermocouple, ceramic sensor, application of optical measurement), 99M o production technology by new Mo solution irradiation method, recycling technology on used beryllium reflector, and so on are planned as the development of new irradiation technologies. The development will be also important for the education and training programs through the development of young generation in not only Japan but also Asian counties. In this report, as the status of the development the new irradiation technology, new irradiation engineering building, high temperature multi paired thermocouple, experiences of optical measurement, recycling technology on used beryllium reflector are introduced

  2. Hybrid grating reflectors: Origin of ultrabroad stopband

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug, E-mail: ilch@fotonik.dtu.dk [DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-04

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well as a weak guided mode (GM) resonance. Most of the reflected power results from the FP resonance, while the GM resonance plays a key role in achieving a reflectance close to 100% as well as broadening the stopband. An HG sample with 7 InGaAlAs quantum wells included in the cap layer has been fabricated by directly wafer-bonding a III-V cap layer onto a Si grating layer. Its reflection property has been characterized. This heterogeneously integrated HG reflector may allow for a hybrid III-V on Si laser to be thermally efficient, which has promising prospects for silicon photonics light sources and high-speed operation.

  3. High-efficiency amorphous silicon solar cell on a periodic nanocone back reflector

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Ching-Mei; Cui, Yi [Department of Materials Science and Engineering, Durand Building, 496 Lomita Mall, Stanford University, Stanford, CA 94305-4034 (United States); Battaglia, Corsin; Pahud, Celine; Haug, Franz-Josef; Ballif, Christophe [Ecole Polytechnique Federale de Lausanne (EPFL), Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Rue Breguet 2, 2000 Neuchatel (Switzerland); Ruan, Zhichao; Fan, Shanhui [Department of Electrical Engineering, Stanford University (United States)

    2012-06-15

    An amorphous silicon solar cell on a periodic nanocone back reflector with a high 9.7% initial conversion efficiency is presented. The optimized back-reflector morphology provides powerful light trapping and enables excellent electrical cell performance. Up-scaling to industrial production of large-area modules should be possible using nanoimprint lithography. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Lasers in space.

    CSIR Research Space (South Africa)

    Michaelis, MM

    2008-04-01

    Full Text Available cube, laser beam reflectors, placed on the Moon half a century ago. These early achievements will soon be followed by a plethora of experiments involving lasers in low earth orbit (LEO) or at Lagrange points. And not much later, laser communications... will stretch out as far as Mars and beyond. One important low Earth orbit (LEO) application is the removal of space debris by Earth based or LEO relayed lasers as promoted by Phipps et al.3. Another is military communication. The prominent L1 laser space...

  5. UV dichroic coatings on metallic reflectors

    International Nuclear Information System (INIS)

    Raghunath, C; Babu, N J; Chandran, K M

    2008-01-01

    The work presented here explains the design and deposition process of dichroic coating on metallic reflectors developed for UV curing systems. Special designs are adopted to achieve the spectral band and optimized to suit to the requirements. A mirror, which reflects the UV radiation (220 - 400 nm) and absorbs visible and infrared radiation (400 - 2000nm), is described in detail

  6. UV dichroic coatings on metallic reflectors

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, C; Babu, N J; Chandran, K M [Hind High Vacuum Co. Pvt. Ltd. No.17, Phase 1, Peenya Industrial Area, Bangalore 560058 (India)

    2008-05-01

    The work presented here explains the design and deposition process of dichroic coating on metallic reflectors developed for UV curing systems. Special designs are adopted to achieve the spectral band and optimized to suit to the requirements. A mirror, which reflects the UV radiation (220 - 400 nm) and absorbs visible and infrared radiation (400 - 2000nm), is described in detail.

  7. In-space research, technology and engineering experiments and Space Station

    Science.gov (United States)

    Tyson, Richard; Gartrell, Charles F.

    1988-01-01

    The NASA Space Station will serve as a technology research laboratory, a payload-servicing facility, and a large structure fabrication and assembly facility. Space structures research will encompass advanced structural concepts and their dynamics, advanced control concepts, sensors, and actuators. Experiments dealing with fluid management will gather data on such fundamentals as multiphase flow phenomena. As requirements for power systems and thermal management grow, experiments quantifying the performance of energy systems and thermal management concepts will be undertaken, together with expanded efforts in the fields of information systems, automation, and robotics.

  8. Critical Technologies for the Development of Future Space Elevator Systems

    Science.gov (United States)

    Smitherman, David V., Jr.

    2005-01-01

    A space elevator is a tether structure extending through geosynchronous earth orbit (GEO) to the surface of the earth. Its center of mass is in GEO such that it orbits the earth in sync with the earth s rotation. In 2004 and 2005, the NASA Marshall Space Flight Center and the Institute for Scientific Research, Inc. worked under a cooperative agreement to research the feasibility of space elevator systems, and to advance the critical technologies required for the future development of space elevators for earth to orbit transportation. The discovery of carbon nanotubes in the early 1990's was the first indication that it might be possible to develop materials strong enough to make space elevator construction feasible. This report presents an overview of some of the latest NASA sponsored research on space elevator design, and the systems and materials that will be required to make space elevator construction possible. In conclusion, the most critical technology for earth-based space elevators is the successful development of ultra high strength carbon nanotube reinforced composites for ribbon construction in the 1OOGPa range. In addition, many intermediate technology goals and demonstration missions for the space elevator can provide significant advancements to other spaceflight and terrestrial applications.

  9. The transfer of dual-use outer space technologies: confrontation or co-operation ?

    OpenAIRE

    Gasparini Alves, Péricles; Gasteyger, Curt

    2005-01-01

    The right of any State to develop outer space technologies is, in principle, unquestionable. In practice, problems arise when technology development approaches the very fine line between civil and military application, largely because most the technologies can be used for dual military and civil purposes. This dichotomy has raised a series of political, military, and other concerns which affect the transfer of outer space technologies, and particularly between established and emerging space-c...

  10. Temperature Distribution and Influence Mechanism on Large Reflector Antennas under Solar Radiation

    Science.gov (United States)

    Wang, C. S.; Yuan, S.; Liu, X.; Xu, Q.; Wang, M.; Zhu, M. B.; Chen, G. D.; Duan, Y. H.

    2017-10-01

    The solar impact on antenna must be lessened for the large reflector antenna operating at high frequencies to have great electromagnetic performances. Therefore, researching the temperature distribution and its influence on large reflector antenna is necessary. The variation of solar incidence angle is first calculated. Then the model is simulated by the I-DEAS software, with the temperature, thermal stress, and thermal distortion distribution through the day obtained. In view of the important influence of shadow on antenna structure, a newly proposed method makes a comprehensive description of the temperature distribution on the reflector and its influence through the day by dividing a day into three different periods. The sound discussions and beneficial summary serve as the scientific foundation for the engineers to compensate the thermal distortion and optimize the antenna structure.

  11. Technology demonstration of space intravehicular automation and robotics

    Science.gov (United States)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  12. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  13. Canning and inspection system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Goldman, L.A.; Hawke, B.C.

    1980-01-01

    A system is disclosed for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor. The system includes a transfer chute, environmental chamber, conveyor and canning mechanism operative to remove and replace closures on containers into which fuel and reflector elements are inserted or from which stored elements are removed while maintaining a sealed gaseous environment and permitting visual and mechanical inspection of the elements by an operator located in a remote shielded area

  14. Development of corotational formulated FEM for application to 30m class large deployable reflector

    International Nuclear Information System (INIS)

    Ozawa, Satoru; Fujiwara, Yuuichi; Tsujihata, Akio

    2010-01-01

    JAXA, Japan Aerospace Exploration Agency, is now developing a corotational formulated finite element analysis method and its software 'Origami/ETS' for the development of 30m class large deployable reflectors. For the reason that the deployable reflector is composed of beams, cables and mesh, this analysis method is generalized for finite elements with multiple nodes, which are commonly used in linear finite element analyses. The large displacement and rotation are taken into account by the corotational formulation. The tangent stiffness matrix for finite elements with multiple nodes is obtained as follows; the geometric stiffness matrix of two node elements is derived by taking variation of the element's corotational matrix from the virtual work of finite elements with large displacement; similarly the geometric stiffness matrix for three node elements is derived; as the extension of two and three node element theories, the geometric stiffness matrix for multiple node elements is derived; with the geometric stiffness matrix for multiple node elements, the tangent stiffness matrix is obtained. The analysis method is applied for the deployment analysis and static structural analysis of the 30m class large deployable reflector. In the deployment analysis, it is confirmed that this method stably analyzes the deployment motion from the deployment configuration to the stowed configuration of the reflector. In the static analysis, it is confirmed that the mesh structure is analyzed successfully. The 30m class large deployable reflector is now still being developed and is about to undergo several tests with its prototypes. This analysis method will be used in the tests and verifications of the reflector.

  15. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    International Nuclear Information System (INIS)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-01-01

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements

  16. Plasmonic scattering back reflector for light trapping in flat nano-crystalline silicon solar cells

    NARCIS (Netherlands)

    van Dijk, L.; van de Groep, J.; Veldhuizen, L.W.; Di Vece, M.; Polman, A.; Schropp, R.E.I.

    2016-01-01

    Most types of thin film solar cells require light management to achieve sufficient light absorptance. We demonstrate a novel process for fabricating a scattering back reflector for flat, thin film hydrogenated nanocrystalline silicon (nc-Si:H) solar cells. This scattering back reflector consists of

  17. Study of 3D visualization of fast active reflector based on openGL and EPICS

    International Nuclear Information System (INIS)

    Luo Mingcheng; Wu Wenqing; Liu Jiajing; Tang Pengyi; Wang Jian

    2014-01-01

    Active Reflector is the one of the innovations of Five hundred meter Aperture Spherical Telescope (FAST). Its performance will influence the performance of whole telescope and for display all status of ARS in real time, the EPICS (Experimental Physics and Industrial Control System) is used to develop the control system of ARS and virtual 3D technology-OpenGL is used to visualize the status. For the real-time performance of EPICS, the status visualization is also display in real time for users to improve the efficiency of telescope observing. (authors)

  18. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    Science.gov (United States)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  19. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 2

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This is the second volume of papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools; systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development; perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; and robotics technologies.

  20. Reflector modelization in neutronic and optimization methods applied to fuel loading pattern; Modelisation du reflecteur en neutronique et methodes d`optimisation appliquees aux plans de rechargement

    Energy Technology Data Exchange (ETDEWEB)

    Argaud, J P

    1995-12-01

    I Physical description of P.W.R nuclear core can be handled by multigroup neutronic diffusion model. We are interested in two problems, using the same approach for the optimization aspect. To deal with some differences between calculations and measurements, the question of their reduction is then introduced. A reflector parameters identification from core measurements is then purposed, the reflector being at the present time the less known part of core diffusion model. This approach conducts to study the reflector model, in particular by an analysis of its transport origin. It leads finally to a new model of reflector described by boundary operators using an integral formulation on the core/reflector interface. That is on this new model that a parameter identification formulation of calculations-measurements differences reduction is given, using an adjoint state formulation to minimize errors by a gradient method. Furthermore, nuclear fuel reload of P.W.R core needs an optimal distribution of fuel assemblies, namely a loading pattern. This combinatorial optimization problem is then expressed as a cost function minimization, the cost function describing the power spatial distribution. Various methods (linear programming, simulated annealing,...), used to solve this problem, are detailed, given in particular a practical search example. A new approach is then proposed, using the gradient of the cost function to direct the search in the patterns discrete space. Final results of complete patterns search trials are presented, and compared to those obtained by other methods. In particular the results are obtained very quickly. (author). 81 refs., 55 figs., 5 appends.

  1. Hybrid grating reflectors: Origin of ultrabroad stopband

    DEFF Research Database (Denmark)

    Park, Gyeong Cheol; Taghizadeh, Alireza; Chung, Il-Sug

    2016-01-01

    Hybrid grating (HG) reflectors with a high-refractive-index cap layer added onto a high contrast grating (HCG) provide a high reflectance close to 100% over a broader wavelength range than HCGs. The combination of a cap layer and a grating layer brings a strong Fabry-Perot (FP) resonance as well ...

  2. Enhancement of Solar Water Pasteurization with Reflectors

    OpenAIRE

    Safapour, Negar; Metcalf, Robert H.

    1999-01-01

    A simple and reliable method that could be used in developing countries to pasteurize milk and water with solar energy is described. A cardboard reflector directs sunshine onto a black jar, heating water to pasteurizing temperatures in several hours. A reusable water pasteurization indicator verifies that pasteurization temperatures have been reached.

  3. Enhancement of solar water pasteurization with reflectors.

    Science.gov (United States)

    Safapour, N; Metcalf, R H

    1999-02-01

    A simple and reliable method that could be used in developing countries to pasteurize milk and water with solar energy is described. A cardboard reflector directs sunshine onto a black jar, heating water to pasteurizing temperatures in several hours. A reusable water pasteurization indicator verifies that pasteurization temperatures have been reached.

  4. Automated entry technologies for confined space work activities: A survey.

    Science.gov (United States)

    Botti, Lucia; Ferrari, Emilio; Mora, Cristina

    2017-04-01

    Work in confined spaces poses a significant risk to workers and rescuers involved in the emergency response when an accident occurs. Despite several standards and regulations define the safety requirements for such activities, injuries, and fatalities still occur. Furthermore, the on-site inspections after accidents often reveal that both employers and employees fail to implement safe entry procedures. Removing the risk is possible by avoiding the worker entry, but many activities require the presence of the operator inside the confined space to perform manual tasks. The following study investigates the available technologies for hazardous confined space work activities, e.g., cleaning, inspecting, and maintenance tasks. The aim is to provide a systematic review of the automated solutions for high-risk activities in confined spaces, considering the non-man entry as the most effective confined space safety strategy. Second, this survey aims to provide suggestions for future research addressing the design of new technologies. The survey consists of about 60 papers concerning innovative technologies for confined space work activities. The document review shows that several solutions have been developed and automation can replace the workers for a limited number of hazardous tasks. Several activities still require the manual intervention due to the complex characteristics of confined spaces, e.g., to remove the remains of the automatic cleaning process from the bottom of a tank. The results show that available technologies require more flexibility to adapt to such occupational environments and further research is needed.

  5. Progress update of NASA's free-piston Stirling space power converter technology project

    Science.gov (United States)

    Dudenhoefer, James E.; Winter, Jerry M.; Alger, Donald

    1992-01-01

    A progress update is presented of the NASA LeRC Free-Piston Stirling Space Power Converter Technology Project. This work is being conducted under NASA's Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power Element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system power output and system thermal and electric energy conversion efficiency at least five fold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss progress toward 1050 K Stirling Space Power Converters. Fabrication is nearly completed for the 1050 K Component Test Power Converter (CTPC); results of motoring tests of the cold end (525 K), are presented. The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, bearings, superalloy joining technologies, high efficiency alternators, life and reliability testing, and predictive methodologies. This paper will compare progress in significant areas of component development from the start of the program with the Space Power Development Engine (SPDE) to the present work on CTPC.

  6. The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells

    NARCIS (Netherlands)

    Demontis, V.; Sanna, C.; Melskens, J.; Santbergen, R.; Smets, A.H.M.; Damiano, A.; Zeman, M.

    2013-01-01

    Thin oxide interlayers are commonly added to the back reflector of thin-film silicon solar cells to increase their current. To gain more insight in the enhancement mechanism, we tested different back reflector designs consisting of aluminium-doped zinc oxide (ZnO:Al) and/or hydrogenated silicon

  7. Proposed suitable electron reflector layer materials for thin-film CuIn1-xGaxSe2 solar cells

    Science.gov (United States)

    Sharbati, Samaneh; Gharibshahian, Iman; Orouji, Ali A.

    2018-01-01

    This paper investigates the electrical properties of electron reflector layer to survey materials as an electron reflector (ER) for chalcopyrite CuInGaSe solar cells. The purpose is optimizing the conduction-band and valence-band offsets at ER layer/CIGS junction that can effectively reduce the electron recombination near the back contact. In this work, an initial device model based on an experimental solar cell is established, then the properties of a solar cell with electron reflector layer are physically analyzed. The electron reflector layer numerically applied to baseline model of thin-film CIGS cell fabricated by ZSW (efficiency = 20.3%). The improvement of efficiency is achievable by electron reflector layer materials with Eg > 1.3 eV and -0.3 AsS4 as well as CuIn1-xGaxSe (x > 0.5) are efficient electron reflector layer materials, so the potential improvement in efficiency obtained relative gain of 5%.

  8. Recent trends in space mapping technology

    DEFF Research Database (Denmark)

    Bandler, John W.; Cheng, Qingsha S.; Hailu, Daniel

    2004-01-01

    We review recent trends in the art of Space Mapping (SM) technology for modeling and design of engineering devices and systems. The SM approach aims at achieving a satisfactory solution with a handful of computationally expensive so-called "fine" model evaluations. SM procedures iteratively update...

  9. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  10. Structured surface reflector design for oblique incidence beam splitter at 610 GHz

    OpenAIRE

    Defrance , Fabien; Casaletti , Massimiliano; Sarrazin , Julien; Wiedner , Martina; Gibson , Hugh; Gay , Gregory; Lefevre , Roland; Delorme , Yan

    2016-01-01

    International audience; An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measureme...

  11. Enhancement of Solar Water Pasteurization with Reflectors

    Science.gov (United States)

    Safapour, Negar; Metcalf, Robert H.

    1999-01-01

    A simple and reliable method that could be used in developing countries to pasteurize milk and water with solar energy is described. A cardboard reflector directs sunshine onto a black jar, heating water to pasteurizing temperatures in several hours. A reusable water pasteurization indicator verifies that pasteurization temperatures have been reached. PMID:9925631

  12. In-Space Propulsion Technology Products for NASA's Future Science and Exploration Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michelle M.

    2011-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered, as well as having broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models: and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, Science Mission Directorate (SMD) Flagship, and Exploration technology demonstration missions

  13. Sensitivity analysis of reflector types and impurities in 10 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2007-01-01

    The 2-D and 3-D neutronics models for 10 MW nuclear research reactor of MTR type have been developed and presented in this paper. Our results agree very well with the results of seven countries mentioned in the IAEA-TECDOC-233. To study the effect of reflector types on the reactor effective multiplication factor, five types of reflectors such as pure beryllium, beryllium, heavy water, carbon and water are selected for this study. The pure beryllium is found to be the most efficient reflector in this group. The effect of the most important impurities, which exist on the beryllium reflector such as iron, silicon and aluminium on the reactor multiplication factor, have been analyzed as well. It is found that the iron impurity affects the reactor multiplication factor the most compared to silicon and aluminium impurities. (author)

  14. Terahertz antenna technology for space applications

    CERN Document Server

    Choudhury, Balamati; Jha, Rakesh Mohan

    2016-01-01

    This book explores the terahertz antenna technology towards implementation of compact, consistent and cheap terahertz sources, as well as the high sensitivity terahertz detectors. The terahertz EM band provides a transition between the electronic and the photonic regions thus adopting important characteristics from these regimes. These characteristics, along with the progress in semiconductor technology, have enabled researchers to exploit hitherto unexplored domains including satellite communication, bio-medical imaging, and security systems. The advances in new materials and nanostructures such as graphene will be helpful in miniaturization of antenna technology while simultaneously maintaining the desired output levels. Terahertz antenna characterization of bandwidth, impedance, polarization, etc. has not yet been methodically structured and it continues to be a major research challenge. This book addresses these issues besides including the advances of terahertz technology in space applications worldwide,...

  15. SPace weather applications in a technology-dependent society

    Science.gov (United States)

    Ngwira, C. M.

    2017-12-01

    Space weather can adversely key technology assets, such as, high-voltage electric power transmission grids, oil and gas pipelines, and communications systems that are critical to national security and economy. However, the term of "space weather" is not well known in our society. This presentation will introduce key concepts related to the space weather problem and show how space weather impacts our everyday life. The goal is to promote awareness among the general public. Also, this presentation will highlight how space weather is being used to promote STEM education for community college students through the NASA internship program.

  16. Process for removing and installing the side reflector of a high temperature reactor

    International Nuclear Information System (INIS)

    Fritz, R.; Kalden, B.; Kissel, K.F.; Schoening, J.

    1979-01-01

    The pressure of the HTR is released and the absorber rods in the side reflector region are removed from their armoured tubes. Manipulators are inserted in the empty armoured tubes. Using these, metal inserts can be removed, a bulkhead can be built up near the pebble bed and the square blocks of the side reflector can be taken out. (DG) [de

  17. Space-reactor electric systems: subsystem technology assessment

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.

    1983-01-01

    This report documents the subsystem technology assessment. For the purpose of this report, five subsystems were defined for a space reactor electric system, and the report is organized around these subsystems: reactor; shielding; primary heat transport; power conversion and processing; and heat rejection. The purpose of the assessment was to determine the current technology status and the technology potentials for different types of the five subsystems. The cost and schedule needed to develop these potentials were estimated, and sets of development-compatible subsystems were identified

  18. Research and Technology at the John F. Kennedy Space Center 1993

    Science.gov (United States)

    1993-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1993 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. Major areas of research include material science, advanced software, industrial engineering, nondestructive evaluation, life sciences, atmospheric sciences, environmental technology, robotics, and electronics and instrumentation.

  19. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, J. W.

    1996-01-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  20. Medical and surgical applications of space biosensor technology

    Science.gov (United States)

    Hines, John W.

    1996-02-01

    Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to

  1. Renewable side reflector structure for a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Martin, Roger.

    1977-01-01

    The description is given of a renewable side reflector structure for a pebble bed high temperature reactor of the kind comprising a cylindrical graphite vessel constituting the neutron reflector, this vessel being filled with graphite pebbles containing the nuclear fuel and enclosed in a concrete protective containment. The internal peripheral area of the vessel is constituted by a line of adjacent graphite rods mounted so that they can rotate about their longitudinal axis and manoeuvrable from outside the concrete containment by means of a shaft passing into it [fr

  2. Nonimaging compound parabolic concentrator-type reflectors with variable extreme direction.

    Science.gov (United States)

    Gordon, J M; Rabl, A

    1992-12-01

    The properties of nonimaging compound parabolic concentrator (CPC)-type devices are examined in which the extreme direction is not constant but rather is a variable that can change along the reflector. One can then retain the maximal concentration or radiative efficiency of the CPC while the flux map on the absorber or target is modified, depending on whether the device is used for optical concentration or for lighting. Two general classes of reflector are derived, and all the nonimaging devices developed to date are shown to be special cases of the general solution. These two classes are the nonimaging analog of converging and diverging devices of imaging optics.

  3. Performance improvements of symmetry-breaking reflector structures in nonimaging devices

    Science.gov (United States)

    Winston, Roland

    2004-01-13

    A structure and method for providing a broken symmetry reflector structure for a solar concentrator device. The component of the optical direction vector along the symmetry axis is conserved for all rays propagated through a translationally symmetric optical device. This quantity, referred to as the translational skew invariant, is conserved in rotationally symmetric optical systems. Performance limits for translationally symmetric nonimaging optical devices are derived from the distributions of the translational skew invariant for the optical source and for the target to which flux is to be transferred. A numerically optimized non-tracking solar concentrator utilizing symmetry-breaking reflector structures can overcome the performance limits associated with translational symmetry.

  4. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  5. A Study of Thermal Performance of Contemporary Technology-Rich Educational Spaces

    Directory of Open Access Journals (Sweden)

    Sarah Elmasry

    2013-08-01

    Full Text Available One of the most dominant features of a classroom space is its high occupancy, which results in high internal heat gain (approximately 5 KW. Furthermore, installation of educational technologies, such as smart boards, projectors and computers in the spaces increases potential internal heat gain. Previous studies on office buildings indicate that with the introduction of IT equipment in spaces during the last decade, cooling load demands are increasing with an associated increase in summer electrical demand. Due to the fact that educational technologies in specific correspond to pedagogical practices within the space, a lot of variations due to occupancy patterns occur. Also, thermal loads caused by educational technologies are expected to be dependent on spatial configuration, for example, position with respect to the external walls, lighting equipment, mobility of devices. This study explores the thermal impact of educational technologies in 2 typical educational spaces in a facility of higher education; the classroom and the computer lab. The results indicate that a heat gain ranging between 0.06 and 0.095 KWh/m2 is generated in the rooms when educational technologies are in use. The second phase of this study is ongoing, and investigates thermal zones within the rooms due to distribution of educational technologies. Through simulation of thermal performance of the rooms, alternative room configurations are thus recommended in response to the observed thermal zones.

  6. Space Qualified Non-Destructive Evaluation and Structural Health Monitoring Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen Aeronautics is proposing an innovative space qualified non-destructive evaluation and health monitoring technology. The technology is built on concepts...

  7. National Aeronautics and Space Administration plans for space communication technology

    Science.gov (United States)

    Alexovich, R. E.

    1979-01-01

    A program plan is presented for a space communications application utilizing the 30/20 GHz frequency bands (30 GHz uplink and 20 GHz downlink). Results of market demand studies and spacecraft systems studies which significantly affect the supporting research and technology program are also presented, along with the scheduled activities of the program plan.

  8. The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Science.gov (United States)

    Pitman, C. L.; Erb, D. M.; Izygon, M. E.; Fridge, E. M., III; Roush, G. B.; Braley, D. M.; Savely, R. T.

    1992-01-01

    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described.

  9. Wicked problems in space technology development at NASA

    Science.gov (United States)

    Balint, Tibor S.; Stevens, John

    2016-01-01

    Technological innovation is key to enable future space exploration missions at NASA. Technology development, however, is not only driven by performance and resource considerations, but also by a broad range of directly or loosely interconnected factors. These include, among others, strategy, policy and politics at various levels, tactics and programmatics, interactions between stakeholders, resource requirements, performance goals from component to system level, mission infusion targets, portfolio execution and tracking, and technology push or mission pull. Furthermore, at NASA, these influences occur on varying timescales and at diverse geographic locations. Such a complex and interconnected system could impede space technology innovation in this examined segment of the government environment. Hence, understanding the process through NASA's Planning, Programming, Budget and Execution cycle could benefit strategic thinking, planning and execution. Insights could be gained through suitable models, for example assessing the key drivers against the framework of Wicked Problems. This paper discusses NASA specific space technology innovation and innovation barriers in the government environment through the characteristics of Wicked Problems; that is, they do not have right or wrong solutions, only improved outcomes that can be reached through authoritative, competitive, or collaborative means. We will also augment the Wicked Problems model to account for the temporally and spatially coupled, and cyclical nature of this NASA specific case, and propose how appropriate models could improve understanding of the key influencing factors. In turn, such understanding may subsequently lead to reducing innovation barriers, and stimulating technology innovation at NASA. Furthermore, our approach can be adopted for other government-directed environments to gain insights into their structures, hierarchies, operational flow, and interconnections to facilitate circular dialogs towards

  10. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  11. Performance comparison of solar parabolic trough system with glass and film reflector

    International Nuclear Information System (INIS)

    Xu, Qian; Li, Longlong; Li, Huairui; Huang, Weidong; Li, Yongping

    2014-01-01

    Highlights: • Solar trough model should consider refractive surface error with glass reflector. • Solar trough system with glass mirror has less efficiency than that with film mirror. • Solar trough system has very low efficiency in a winter day at high latitude. - Abstract: This paper considers the refractive surface error transfer process to present an optical performance model of solar trough system as well as the reflective surface error. We validate the optical model through comparing the calculation results with the experimental data. The optimized design parameters are presented based on the maximization of the annual average net heat efficiency. The results show that maximum relative error of 20% for the optical efficiency may produce if the refractive surface error transfer process is ignored. It indicates that the refractive surface error should be considered in predicting the performance of the solar trough system especially for the glass reflector as well as the reflective surface error. We apply the model to compare the performance of solar parabolic trough system with vacuum tube receiver under two kinds of reflectors, which are glass mirror and film mirror. The results indicate that both parabolic trough systems with a vacuum tube receiver and a north–south axis tracking system are relatively inefficient in winter days, and the net energy output in the winter solstice is less than one sixth of the summer. The net heat efficiency of solar trough system with film mirror is 50% less than that of the system with the glass mirror at noon of the winter solstice and latitude 40 if the design and parameter of the two systems are the same. The results indicate that film reflector is more preferable than glass reflector especially in high latitude if they have the same optical property

  12. Internet Technology for Future Space Missions

    Science.gov (United States)

    Hennessy, Joseph F. (Technical Monitor); Rash, James; Casasanta, Ralph; Hogie, Keith

    2002-01-01

    Ongoing work at National Aeronautics and Space Administration Goddard Space Flight Center (NASA/GSFC), seeks to apply standard Internet applications and protocols to meet the technology challenge of future satellite missions. Internet protocols and technologies are under study as a future means to provide seamless dynamic communication among heterogeneous instruments, spacecraft, ground stations, constellations of spacecraft, and science investigators. The primary objective is to design and demonstrate in the laboratory the automated end-to-end transport of files in a simulated dynamic space environment using off-the-shelf, low-cost, commodity-level standard applications and protocols. The demonstrated functions and capabilities will become increasingly significant in the years to come as both earth and space science missions fly more sensors and the present labor-intensive, mission-specific techniques for processing and routing data become prohibitively. This paper describes how an IP-based communication architecture can support all existing operations concepts and how it will enable some new and complex communication and science concepts. The authors identify specific end-to-end data flows from the instruments to the control centers and scientists, and then describe how each data flow can be supported using standard Internet protocols and applications. The scenarios include normal data downlink and command uplink as well as recovery scenarios for both onboard and ground failures. The scenarios are based on an Earth orbiting spacecraft with downlink data rates from 300 Kbps to 4 Mbps. Included examples are based on designs currently being investigated for potential use by the Global Precipitation Measurement (GPM) mission.

  13. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  14. Target-moderator-reflector optimization for JAERI 5 MW pulsed spallation neutron source

    International Nuclear Information System (INIS)

    Watanabe, Noboru; Teshigawara, Makoto; Kai, Tetsuya

    1999-01-01

    Optimization studies on the target-moderator-reflector neutronics for the projected intense pulsed-spallation-neutron-source in JAERI are reported. In order to obtain the highest possible performance of the source a new target-moderator-reflector system has been proposed and effects of various parameters, such as material and the shape/dimensions of the target, the profile/distribution of the proton beam, material and dimensions of the reflector, the coupling scheme of the target-moderator, moderator parameters, etc., on slow neutron performance and energy deposition in cryogenic moderators have extensively been studied by neutronic calculations. A cold neutron moderator for high-resolution together with high-intensity experiments has newly been proposed. It was found that, by adopting a flat target with a flat beam profile, the slow neutron intensities from the moderators could be rather insensitive to the target/beam dimensions, providing more flexibility to the engineering design of the target and the moderators. The moderator position relative to the target is another important issue to be optimized. It was confirmed that the proposed target-moderator-reflector layout made it possible to put all the moderators almost at the best position (It has not been possible so far), resulting in a higher performance. The predicted performance obtained with nearly optimized parameters was compared with those of similar projects in the world to justify the present concept. (author)

  15. In-Space Propulsion Technology Program Solar Electric Propulsion Technologies

    Science.gov (United States)

    Dankanich, John W.

    2006-01-01

    NASA's In-space Propulsion (ISP) Technology Project is developing new propulsion technologies that can enable or enhance near and mid-term NASA science missions. The Solar Electric Propulsion (SEP) technology area has been investing in NASA s Evolutionary Xenon Thruster (NEXT), the High Voltage Hall Accelerator (HiVHAC), lightweight reliable feed systems, wear testing, and thruster modeling. These investments are specifically targeted to increase planetary science payload capability, expand the envelope of planetary science destinations, and significantly reduce the travel times, risk, and cost of NASA planetary science missions. Status and expected capabilities of the SEP technologies are reviewed in this presentation. The SEP technology area supports numerous mission studies and architecture analyses to determine which investments will give the greatest benefit to science missions. Both the NEXT and HiVHAC thrusters have modified their nominal throttle tables to better utilize diminished solar array power on outbound missions. A new life extension mechanism has been implemented on HiVHAC to increase the throughput capability on low-power systems to meet the needs of cost-capped missions. Lower complexity, more reliable feed system components common to all electric propulsion (EP) systems are being developed. ISP has also leveraged commercial investments to further validate new ion and hall thruster technologies and to potentially lower EP mission costs.

  16. Technology assessment of advanced automation for space missions

    Science.gov (United States)

    1982-01-01

    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology.

  17. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  18. Dual-Use Space Technology Transfer Conference and Exhibition. Volume 1

    Science.gov (United States)

    Krishen, Kumar (Compiler)

    1994-01-01

    This document contains papers presented at the Dual-Use Space Technology Transfer Conference and Exhibition held at the Johnson Space Center February 1-3, 1994. Possible technology transfers covered during the conference were in the areas of information access; innovative microwave and optical applications; materials and structures; marketing and barriers; intelligent systems; human factors and habitation; communications and data systems; business process and technology transfer; software engineering; biotechnology and advanced bioinstrumentation; communications signal processing and analysis; new ways of doing business; medical care; applications derived from control center data systems; human performance evaluation; technology transfer methods; mathematics, modeling, and simulation; propulsion; software analysis and decision tools systems/processes in human support technology; networks, control centers, and distributed systems; power; rapid development perception and vision technologies; integrated vehicle health management; automation technologies; advanced avionics; ans robotics technologies. More than 77 papers, 20 presentations, and 20 exhibits covering various disciplines were presented b experts from NASA, universities, and industry.

  19. Leaky wave enhanced feeds for multibeam reflectors to be used for telecom satellite based links

    NARCIS (Netherlands)

    Neto, A.; Ettorre, M.; Gerini, G.; Maagt, P. de

    2012-01-01

    The use of dielectric super-layers for shaping the radiation pattern of focal plane feeds of a multibeam reflector system is discussed. Using the super-layers, it is possible to reduce the spillover from the reflectors without increasing the dimension of each aperture. The effect has been

  20. Excellent polarization-independent reflector based on guided mode resonance effect

    International Nuclear Information System (INIS)

    Xu Cheng; Xu Lin-Min; Qiang Ying-Huai; Zhu Ya-Bo; Liu Jiong-Tian; Ma Jian-Yong

    2011-01-01

    A broad band polarization-independent reflector working in the telecommunication C+L band is proposed using the guided mode resonance effect of a periodic surface relief element deposited by a layer of silicon medium. It is shown that this structure can provide high reflection (R > 99.5%) and wide angular bandwidth (θ ≈ 20°, R > 98%) for both TE and TM polarizations over a wide spectrum band 1.5 μm∼1.6 μm. Furthermore, it is found by rigorous coupled wave analysis that the polarization-independent reflector proposed here is tolerant of a deviation of grating thickness, which makes it very easy to fabricate in experiments. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Refractory alloy technology for space nuclear power applications

    International Nuclear Information System (INIS)

    Cooper, R.H. Jr.; Hoffman, E.E.

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys

  2. Effect of holed reflector on acoustic radiation force in noncontact ultrasonic dispensing of small droplets

    Science.gov (United States)

    Tanaka, Hiroki; Wada, Yuji; Mizuno, Yosuke; Nakamura, Kentaro

    2016-06-01

    We investigated the fundamental aspects of droplet dispensing, which is an important procedure in the noncontact ultrasonic manipulation of droplets in air. A holed reflector was used to dispense a droplet from a 27.4 kHz standing-wave acoustic field to a well. First, the relationship between the hole diameter of the reflector and the acoustic radiation force acting on a levitated droplet was clarified by calculating the acoustic impedance of the point just above the hole. When the hole diameter was half of (or equal to) the acoustic wavelength λ, the acoustic radiation force was ∼80% (or 50%) of that without a hole. The maximal diameters of droplets levitated above the holes through flat and half-cylindrical reflectors were then experimentally investigated. For instance, with the half-cylindrical reflector, the maximal diameter was 5.0 mm for a hole diameter of 6.0 mm, and droplets were levitatable up to a hole diameter of 12 mm (∼λ).

  3. Technology evaluation for space station atmospheric leakage

    Energy Technology Data Exchange (ETDEWEB)

    Lemon, D.K.; Friesel, M.A.; Griffin, J.W.; Skorpik, J.R.; Shepard, C.L.; Antoniak, Z.I.; Kurtz, R.J.

    1990-02-01

    A concern in operation of a space station is leakage of atmosphere through seal points and through the walls as a result of damage from particle (space debris and micrometeoroid) impacts. This report describes a concept for a monitoring system to detect atmosphere leakage and locate the leak point. The concept is based on analysis and testing of two basic methods selected from an initial technology survey of potential approaches. 18 refs., 58 figs., 5 tabs.

  4. Advancing automation and robotics technology for the space station and the US economy

    Science.gov (United States)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  5. Flat reflector versus curved reflector in the stability of an inversion operator for seismic and geological models with vertical variation of velocity; O refletor plano versus o curvo na estabilizacao de um operador de inversao de modelos sismico-geologicos com variacao vertical de velocidade

    Energy Technology Data Exchange (ETDEWEB)

    Figueiro, Wilson Mouzer [Bahia Univ., Salvador, BA (Brazil). Programa de Pesquisa e Pos-Graduacao em Geofisica

    1995-12-31

    It is known that, in seismic reflection tomography, the slowness parameters of the model are worse determined the reflector parameters. In a matter of fact, the slowness field has a great influence in the ambiguity and instability found in the seismic inverse problems. Here it is verified numerically that models with a curved reflector instead of a flat reflector improves significantly the situation of uniqueness and stability of the operator that is used in the method of Gauss-Newton. Models that have vertical variation of velocity are considered. At first with a flat reflector and linear variation with depth of the square of the slowness function without damping. For each reflector depth, the matrix A{sup T}A shows very small eigenvalues and extremely high condition numbers. In many cases the use of a damping does not work well and it is necessary to find another way to stabilize the operator A{sup T}A. Replacing the flat reflector by a curved and varying the depth as in the previous case and keeping fixed the other parameters, we get minimum eigenvalues and condition numbers much more large and small, respectively. It was observed that the condition number of A{sup T}A in the curved reflector case is less than in the flat reflector damped case. It is possible, then, to say that the curved reflector produces a very better situation of stability, in comparison with the flat case, when we have a vertical variation of the seismic velocity. (author). 4 refs., 3 figs

  6. The Role of Venezuelan Space Technology in Promoting Development in Latin America

    Science.gov (United States)

    Pena, J. A.; Yumin, T.

    2017-09-01

    Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela's rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  7. THE ROLE OF VENEZUELAN SPACE TECHNOLOGY IN PROMOTING DEVELOPMENT IN LATIN AMERICA

    Directory of Open Access Journals (Sweden)

    J. A. Pena

    2017-09-01

    Full Text Available Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Venezuela formally recognizes the advantages of space resources and pursues national level activity to harness them. Venezuela space cooperation has grown in the past several years, contributing to debates over Venezuela’s rising influence in the Latin America. This paper summarizes the establishment and current development of space activities in the Bolivarian Republic of Venezuela, these activities are focused on the areas of telecommunications, Earth observation, research and development space and has as a primary goal the satisfaction of social needs. This analysis offers the elements most important of the Venezuelan space policy: technological transfer, capacity building and human training and international cooperation including the new participation of Venezuela in the international charter on space and major disasters. Our analysis shows that Venezuela has the potential to become a space leadership country, promoting the social welfare, integration, and sustainable development of Latin American countries.

  8. Communicating with the public: space of nuclear technology

    Energy Technology Data Exchange (ETDEWEB)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto, E-mail: pmaffei@ipen.br, E-mail: araquino@usp.br, E-mail: amgordon@ipen.br, E-mail: rloliveira@ipen.br, E-mail: rpadua@ipen.br, E-mail: mmvieira@ipen.br, E-mail: rvicente@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  9. Communicating with the public: space of nuclear technology

    International Nuclear Information System (INIS)

    Maffei, Patricia Martinez; Aquino, Afonso Rodrigues; Gordon, Ana Maria Pinho Leite; Oliveira, Rosana Lagua de; Padua, Rafael Vicente de; Vieira, Martha Marques Ferreira; Vicente, Roberto

    2011-01-01

    For two decades the Nuclear and Energy Research Institute (IPEN) has been developing activities for popularization of its R and D activities in the nuclear field. Some of the initiatives already undertaken by IPEN are lectures at schools, guided visits to IPEN facilities, printed informative material, FAQ page in the Web, and displays in annual meetings and technology fairs highlighting its achievements. In order to consolidate these initiatives, IPEN is planning to have a permanent Space of Nuclear Technology (SNT), aiming at introducing students, teachers and the general public to the current applications of nuclear technology in medicine, industry, research, electric power generation, etc. It is intended as an open room to the public and will have a permanent exhibit with historical, scientific, technical and cultural developments of nuclear technology and will also feature temporary exhibitions about specific themes. The space will display scientific material in different forms to allow conducting experiments to demonstrate some of the concepts associated with the properties of nuclear energy, hands-on programs and activities that can be customized to the students' grade level and curriculum. (author)

  10. Reflectivity quenching of ESR multilayer polymer film reflector in optically bonded scintillator arrays

    Science.gov (United States)

    Loignon-Houle, Francis; Pepin, Catherine M.; Charlebois, Serge A.; Lecomte, Roger

    2017-04-01

    The 3M-ESR multilayer polymer film is a widely used reflector in scintillation detector arrays. As specified in the datasheet and confirmed experimentally by measurements in air, it is highly reflective (> 98 %) over the entire visible spectrum (400-1000 nm) for all angles of incidence. Despite these outstanding characteristics, it was previously found that light crosstalk between pixels in a bonded LYSO scintillator array with ESR reflector can be as high as ∼30-35%. This unexplained light crosstalk motivated further investigation of ESR optical performance. Analytical simulation of a multilayer structure emulating the ESR reflector showed that the film becomes highly transparent to incident light at large angles when surrounded on both sides by materials of refractive index higher than air. Monte Carlo simulations indicate that a considerable fraction (∼25-35%) of scintillation photons are incident at these leaking angles in high aspect ratio LYSO scintillation crystals. The film transparency was investigated experimentally by measuring the scintillation light transmission through the ESR film sandwiched between a scintillation crystal and a photodetector with or without layers of silicone grease. Strong light leakage, up to nearly 30%, was measured through the reflector when coated on both sides with silicone, thus elucidating the major cause of light crosstalk in bonded arrays. The reflector transparency was confirmed experimentally for angles of incidence larger than 60 ° using a custom designed setup allowing illumination of the bonded ESR film at selected grazing angles. The unsuspected ESR film transparency can be beneficial for detector arrays exploiting light sharing schemes, but it is highly detrimental for scintillator arrays designed for individual pixel readout.

  11. Evolution of new materials for space applications

    International Nuclear Information System (INIS)

    Purdy, D.M.

    1983-01-01

    The implications of spacecraft design requirements for materials technology are surveyed, with a focus on current trends and future needs. Criteria for materials selection are discussed, including contamination control (low-outgassing materials), electrical and thermal characteristics, structural stiffness, safety requirements, and survivability (under natural space conditions for longer periods and under potential hostile particle-beam or laser attack). The applications and potential of polymer-matrix, metal-matrix and ceramic-matrix composites are discussed and compared. While polymer-matrix-material applications are seen as extendable by using high-stiffness fibers and improving ultraviolet protection, the greatest potential is seen in the development of the metal-matrix and ceramic-matrix composites, as used in the Space Shuttle. A need for cheaper, lighter, more radiation-resistant and less contamination-prone thermal-control coatings than the present optical-solar-reflector tiles, silica fabric, and indium-tin-oxide coating is projected. Methods for the analysis of structural defects in viscoelastic electrical components are presented. The materials requirements of larger and more powerful future spacecraft are evaluated. 17 references

  12. Distribution of the thermal neutron field around the graphite reflector of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Binh, Nguyen Duc; Tuan, Nguyen Minh; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Thermal neutron flux distributions around the graphite reflector of the Dalat Nuclear Research Reactor are determined by the method for neutron activating Cu foils. The major results are as follows: a/The axial distributions at the inner and outer margins of the graphite reflector have unsymmetrical shapes, similar to axial distributions in the core. There is a dissimilarity between the distribution curves at the inner margin and those at the outer margin of the reflector. b/ The radial distribution on the upper surface of the graphite reflector is measured and is described by the two-group neutron diffusion theory. The maximal value of the curve lies at the position of R{sub m}ax = 22.5 cm. c/ The distribution in the twenty water irradiation holes around the rotary specimen rack is obtained. (author). 3 refs., 5 figs., 1 tab.

  13. Sensitivity analysis of reflector types and impurities in a 10 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Khamis, I.

    2008-01-01

    The 2-D and 3-D neutronics models for 10 MW nuclear research reactor of MTR type have been developed and presented in this paper. Our results agree very well with the results of seven countries mentioned in the IAEA-TECDOC-233. To study the effect of reflector types on the reactor effective multiplication factor, five types of reflectors such as pure beryllium, beryllium, heavy water, carbon and water are selected for this study. The pure beryllium is found to be the most efficient reflector in this group. The effect of the most important impurities, which exist on the beryllium reflector such as iron, silicon and aluminium on the reactor multiplication factor, have been analyzed as well. It is found that the iron impurity affects the reactor multiplication factor the most compared to silicon and aluminium impurities. (author)

  14. Calculation of radiation heat generation on a graphite reflector side of IAN-R1 Reactor

    International Nuclear Information System (INIS)

    Duque O, J.; Velez A, L.H.

    1987-01-01

    Calculation methods for radiation heat generation in nuclear reactor, based on the point kernel approach are revisited and applied to the graphite reflector of IAN-R1 reactor. A Fortran computer program was written for the determination of total heat generation in the reflector, taking 1155 point in it

  15. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    International Nuclear Information System (INIS)

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  16. New Method to Characterize Degradation of First Surface Aluminum Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, F.; Heller, P.; Meyen, S.; Pitz-Paal, R.; Kennedy, C.; Fernandez-Garcia, A.; Schmucker, M.

    2010-10-01

    This paper reports the development of a new optical instrument capable of characterizing the aging process of enhanced first surface aluminum reflectors for concentrating solar power (CSP) application. Samples were exposed outdoors at different sites and in accelerated exposure tests. All samples exposed outdoors showed localized corrosion spots. Degradation originated from points of damage in the protective coating, but propagated underneath the protective coating. The degraded samples were analyzed with a microscope and with a newly designed space-resolved specular reflectometer (SR)2 that is capable of optically detecting and characterizing the corrosion spots. The device measures the specular reflectance at three acceptance angles and the wavelengths with spatial resolution using a digital camera's CMOS sensor. It can be used to measure the corrosion growth rate during outdoor and accelerated exposure tests. These results will allow a correlation between the degraded mirror surface and its specular reflectance.

  17. Thermal performance of a linear Fresnel reflector solar concentrator PV/T energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomaa, Mohamed R. [State Engineering University of Armenia (Armenia)], E-Mail: Dmoh_elbehary@yahoo.com

    2011-07-01

    This is a report on an investigation of photovoltaic/thermal (PV/T) collectors. Solar energy conversion efficiency was increased by taking advantage of PV/T collectors and low solar concentration technologies, combined into a PV/T system operated at elevated temperature. The main novelty is the coupling of a linear Fresnel mirror reflecting concentrator with a channel PV/T collector. Concentrator PV/T collectors can function at temperatures over 100 degrees celsius, and thus thermal energy can be made to drive processes such as refrigeration, desalination and steam production. Solar system analytical thermal performance gives efficiency values over 60%. Combined electric and thermal (CET) efficiency is high. A combined electric and heat power for the linear fresnel reflector approach that employs high performance CPV technology to produce both electricity and thermal energy at low to medium temperatures is presented. A well-functioning PV/T system can be designed and constructed with low concentration and a total efficiency of nearly 80% can be attained.

  18. Wavelength shifting reflector foils for liquid Ar scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Manuel [Physik Institut, Universitaet Zuerich (Switzerland); Collaboration: GERDA-Collaboration

    2013-07-01

    Liquid argon is used as a scintillator in several present and upcoming experiments. In Gerda it is used as a coolant, shielding and will be instrumented to become an active veto in Phase II. Its scintillation light has a wavelength of 128 nm, that gets absorbed by quartz. In order to measure the light using photo multiplier tubes (PMT) for cryogenic temperatures which have a quartz window, it is converted to longer wavelength by coated reflector foils. The conversion efficiency and stability of several such coatings was optimized using VM2000 and Tetratex separately as reflector foils. The efficiency has been measured in a liquid Ar set up build especially for this purpose. It employs a 3'' low radioactivity PMT of type R11065-10 from Hamamatsu, the favorite photo sensor candidate to be used in Gerda.

  19. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  20. The applicability of DOE solar cell and array technology to space power

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Berman, P. A.

    1980-01-01

    An evaluation of the main terrestrial photovoltaic development projects was performed. Technologies that may have applicability to space power are identified. Where appropriate, recommendations are made for programs to capitalize on developed technology. It is concluded that while the funding expended by DOE is considerably greater than the space (NASA and DOD) budget for photovoltaics, the terrestrial goals and the means for satisfying them are sufficiently different from space needs that little direct benefit currently exists for space applications.

  1. Refractory alloy technology for space nuclear power applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H. Jr.; Hoffman, E.E. (eds.)

    1984-01-01

    Purpose of this symposium is twofold: (1) to review and document the status of refractory alloy technology for structural and fuel-cladding applications in space nuclear power systems, and (2) to identify and document the refractory alloy research and development needs for the SP-100 Program in both the short and the long term. In this symposium, an effort was made to recapture the space reactor refractory alloy technology that was cut off in midstream around 1973 when the national space nuclear reactor program began in the early 1960s, was terminated. The six technical areas covered in the program are compatibility, processing and production, welding and component fabrication, mechanical and physical properties, effects of irradiation, and machinability. The refractory alloys considered are niobium, molybdenum, tantalum, and tungsten. Thirteen of the 14 pages have been abstracted separately. The remaining paper summarizes key needs for further R and D on refractory alloys. (DLC)

  2. Use of an electron reflector to improve dose uniformity at the vertex during total skin electron therapy

    International Nuclear Information System (INIS)

    Peters, V.G.

    2000-01-01

    Purpose: The vertex of the scalp is always tangentially irradiated during total skin electron therapy (TSET). This study was conducted to determine the dose distribution at the vertex for a commonly used irradiation technique and to evaluate the use of an electron reflector, positioned above the head, as a means of improving the dose uniformity. Methods and Materials: Phantoms, simulating the head of a patient, were irradiated using our standard procedure for TSET. The technique is a six-field irradiation using dual angled electron beams at a treatment distance of 3.6 meters. Vertex dosimetry was performed using ionization methods and film. Measurements were made for an unmodified 6 MeV electron beam and for a 4 MeV beam obtained by placing an acrylic scattering plate in the beam line. Studies were performed to examine the effect of electron scattering on vertex dose when a lead reflector, 50 x 50 cm in area, was positioned above the phantom. Results: The surface dose at the vertex, in the absence of the reflector, was found to be less than 40% of the prescribed skin dose. Use of the lead reflector increased this value to 73% for the 6 MeV beam and 99% for the degraded 4 MeV beam. Significant improvements in depth dose were also observed. The dose enhancement is not strongly dependent on reflector distance or angulation since the reflector acts as a large source of broadly scattered electrons. Conclusion: The vertex may be significantly underdosed using standard techniques for total skin electron therapy. Use of an electron reflector improves the dose uniformity at the vertex and may reduce or eliminate the need for supplemental irradiation

  3. Status of material development for lifetime expansion of beryllium reflector

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, C [Materion Brush Beryllium and Composites, California (United States); Tsuchiya, Kunihiko; Kawamura, Hiroshi [Japan Atomic Energy Agency, Oarai Research and Development Center, Oarai, Ibaraki (Japan); Hatano, Y [Univ. of Toyama, Toyama (Japan); Chakrov, P [INP-KNNC, Almaty (Kazakhstan); Kodama, M [Nippon Nuclear Fuel Development Co., Ltd., Oarai, Ibaraki (Japan)

    2012-03-15

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  4. A 100 kW-Class Technology Demonstrator for Space Solar Power

    Science.gov (United States)

    Howell, J.; Carrington, C.; Day, G.

    2004-12-01

    A first step in the development of solar power from space is the flight demonstration of critical technologies. These fundamental technologies include efficient solar power collection and generation, power management and distribution, and thermal management. In addition, the integration and utilization of these technologies into a viable satellite bus could provide an energy-rich platform for a portfolio of payload experiments such as wireless power transmission (WPT). This paper presents the preliminary design of a concept for a 100 kW-class free-flying platform suitable for flight demonstration of Space Solar Power (SSP) technology experiments.

  5. Cost-Effective Additive Manufacturing in Space: HELIOS Technology Challenge Guide

    Science.gov (United States)

    DeVieneni, Alayna; Velez, Carlos Andres; Benjamin, David; Hollenbeck, Jay

    2012-01-01

    Welcome to the HELIOS Technology Challenge Guide. This document is intended to serve as a general road map for participants of the HELIOS Technology Challenge [HTC] Program and the associated inaugural challenge: HTC-01: Cost-Effective Additive Manufacturing in Space. Please note that this guide is not a rule book and is not meant to hinder the development of innovative ideas. Its primary goal is to highlight the objectives of the HTC-01 Challenge and to describe possible solution routes and pitfalls that such technology may encounter in space. Please also note that participants wishing to demonstrate any hardware developed under this program during any future HELIOS Technology Challenge showcase event(s) may be subject to event regulations to be published separately at a later date.

  6. Advanced Exploration Technologies: Micro and Nano Technologies Enabling Space Missions in the 21st Century

    Science.gov (United States)

    Krabach, Timothy

    1998-01-01

    Some of the many new and advanced exploration technologies which will enable space missions in the 21st century and specifically the Manned Mars Mission are explored in this presentation. Some of these are the system on a chip, the Computed-Tomography imaging Spectrometer, the digital camera on a chip, and other Micro Electro Mechanical Systems (MEMS) technology for space. Some of these MEMS are the silicon micromachined microgyroscope, a subliming solid micro-thruster, a micro-ion thruster, a silicon seismometer, a dewpoint microhygrometer, a micro laser doppler anemometer, and tunable diode laser (TDL) sensors. The advanced technology insertion is critical for NASA to decrease mass, volume, power and mission costs, and increase functionality, science potential and robustness.

  7. Solid-Core, Gas-Cooled Reactor for Space and Surface Power

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The solid-core, gas-cooled, Submersion-Subcritical Safe Space (S and 4) reactor is developed for future space power applications and avoidance of single point failures. The Mo-14%Re reactor core is loaded with uranium nitride fuel in enclosed cavities, cooled by He-30%Xe, and sized to provide 550 kWth for seven years of equivalent full power operation. The beryllium oxide reflector disassembles upon impact on water or soil. In addition to decreasing the reactor and shadow shield mass, Spectral Shift Absorber (SSA) materials added to the reactor core ensure that it remains subcritical in the worst-case submersion accident. With a 0.1 mm thick boron carbide coating on the outside surface of the core block and 0.25 mm thick iridium sleeves around the fuel stacks, the reflector outer diameter is 43.5 cm and the combined reactor and shadow shield mass is 935.1 kg. With 12.5 atom% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide intersititial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating, the S and 4 reactor has a slightly smaller reflector outer diameter of 43.0 cm, and a total reactor and shield mass of 901.7 kg. With 8.0 atom% europium-151 added to the fuel, 2.0 mm diameter europium-151 sesquioxide interstitial pins, and a 0.1 mm thick europium-151 sesquioxide coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  8. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  9. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    International Nuclear Information System (INIS)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D 2 O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the 'lifetime-averaged' spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required

  10. Making Breakthroughs in the Turbulent Decade: China's Space Technology During the Cultural Revolution.

    Science.gov (United States)

    Li, Chengzhi; Zhang, Dehui; Hu, Danian

    2017-09-01

    This article discusses why Chinese space programs were able to develop to the extent they did during the turbulent decade of the Cultural Revolution (1966-1976). It first introduces briefly what China had accomplished in rocket and missile technology before the Cultural Revolution, including the establishment of a system for research and manufacturing, breakthroughs in rocket technology, and programs for future development. It then analyzes the harmful impacts of the Cultural Revolution on Chinese space programs by examining activities of contemporary mass factions in the Seventh Ministry of Machinery Industry. In the third section, this article presents the important developments of Chinese space programs during the Cultural Revolution and explores briefly the significance of these developments for the future and overall progress in space technology. Finally, it discusses the reasons for the series of developments of Chinese space technology during the Cultural Revolution. This article concludes that, although the Cultural Revolution generated certain harmful impacts on the development of Chinese space technology, the Chinese essentially accomplished their scheduled objectives in their space program, both because of the great support of top Chinese leaders, including the officially disgraced Lin Biao and the Gang of Four, and due to the implementation of many effective special measures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  12. Ghana Space Science and Technology Institute (GSSTI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Ghana Space Science and Technology Institute (GSSTI) of the Ghana Atomic Energy Commission was established to exploit space science and technology for socio-economic development of Ghana. The report gives the structure of GSSTI and the detailed activities of the year. Various activities include: training and seminars, projects and workshops. Publications and their abstracts are also listed. The report also highlights some of the challenges, provides some recommendations and points to some expectation for the following year.

  13. Microstructure Analysis on Beryllium Reflector Blocks of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Suk Hoon; Jang, Jin Sung; Jeong, Yong Hwan; Han, Chang Hee; Jung, Yang Il; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Choi, Yong Seok; Oh, Kyu Hwan [Seoul National University, Seoul (Korea, Republic of)

    2012-05-15

    A pure beryllium has a very low mass absorption coefficient: it has been used as the reflector element material in research reactors. The lifetime of beryllium reflector elements usually determined by the swelling: the swelling leads to dimensional change in the reflector frame, which results in bending or cracking of the parts. The mechanical interference in between parts should be avoided; the anisotropy of beryllium also needs to be considered. A beryllium has hexagonal close-pack (HCP) crystal structure, which is inherently anisotropic. It has virtually no ductility in one direction. There are two main aspects in the manufacturing of beryllium which will affect its isotropy, and those are the powder morphology and the consolidation process. Powder metallurgy permits the material to be produced in isotropic and fine-grained form, which overcomes the crystal structure problem by distributing loads in low ductility oriented grains to high ductility oriented grains. There are three representative consolidating methods to make beryllium reflector blocks. Traditionally, most powder-derived grades of beryllium have been consolidated by vacuum hot-pressing (VHP). A column of loose beryllium powder is compacted under vacuum by the pressure of the opposed upper and lower punches, bringing the billet to final density. The VHP process is directional in nature: it contributes to the anisotropy of the material properties. Another consolidating method for beryllium powder is hot isostatic pressing (HIPing), which will enhance its isotropy. During HIPing, The argon gas exerts pressure uniformly in all directions on the can containing the beryllium powder. The HIP process is effective to improve the isotropy of the resulting material as well as refinement of grain sizes. The last consolidating method is hot extrusion (HE). A roughly close packed beryllium is subjected to severe plastic defomation, the grains are refined and the tensile strength is enhanced. Since the material

  14. Lithographic wavelength control of an external cavity laser with a silicon photonic crystal cavity-based resonant reflector.

    Science.gov (United States)

    Liles, Alexandros A; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of a new design for external cavity hybrid lasers consisting of a III-V semiconductor optical amplifier (SOA) with fiber reflector and a photonic crystal (PhC)-based resonant reflector on SOI. The silicon reflector is composed of an SU8 polymer bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and side-mode suppression ratios of more than 25 dB.

  15. Space Missions for Automation and Robotics Technologies (SMART) Program

    Science.gov (United States)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  16. Technology Estimating 2: A Process to Determine the Cost and Schedule of Space Technology Research and Development

    Science.gov (United States)

    Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.

    2014-01-01

    As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.

  17. Space Solar Power Technology for Lunar Polar Applications

    Science.gov (United States)

    Henley, Mark W.; Howell, Joe T.

    2004-01-01

    The technology for Laser-Photo-Voltaic Wireless Power Transistor (Laser-PV WPT) is being developed for lunar polar applications by Boeing and NASA Marshall Space Center. A lunar polar mission could demonstrate and validate Laser-PV WPT and other SSP technologies, while enabling access to cold, permanently shadowed craters that are believed to contain ice. Crater may hold frozen water and other volatiles deposited over billion of years, recording prior impact event on the moon (and Earth). A photo-voltaic-powered rover could use sunlight, when available, and laser light, when required, to explore a wide range of lunar terrain. The National Research Council recently found that a mission to the moon's south pole-Aitkir basin has priority for space science

  18. Infrared diffractive filtering for extreme ultraviolet multilayer Bragg reflectors

    NARCIS (Netherlands)

    Medvedev, Viacheslav; van den Boogaard, Toine; van der Meer, R.; Yakshin, Andrey; Louis, Eric; Krivtsun, V.M.; Bijkerk, Frederik

    2013-01-01

    Abstract: We report on the development of a hybrid mirror realized by integrating an EUV-reflecting multilayer coating with a lamellar grating substrate. This hybrid irror acts as an efficient Bragg reflector for extreme ultraviolet (EUV) radiation at a given wavelength while simultaneously

  19. Simultaneous travel time tomography for updating both velocity and reflector geometry in triangular/tetrahedral cell model

    Science.gov (United States)

    Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu

    2018-05-01

    To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.

  20. Evaluating Russian space nuclear reactor technology for United States applications

    International Nuclear Information System (INIS)

    Polansky, G.F.; Schmidt, G.L.; Voss, S.S.; Reynolds, E.L.

    1994-01-01

    Space nuclear power and nuclear electric propulsion are considered important technologies for planetary exploration, as well as selected earth orbit applications. The Nuclear Electric Propulsion Space Test Program (NEPSTP) was intended to provide an early flight demonstration of these technologies at relatively low cost through extensive use of existing Russian technology. The key element of Russian technology employed in the program was the Topaz II reactor. Refocusing of the activities of the Ballistic Missile Defense Organization (BMDO), combined with budgetary pressures, forced the cancellation of the NEPSTP at the end of the 1993 fiscal year. The NEPSTP was faced with many unique flight qualification issues. In general, the launch of a spacecraft employing a nuclear reactor power system complicates many spacecraft qualification activities. However, the NEPSTP activities were further complicated because the reactor power system was a Russian design. Therefore, this program considered not only the unique flight qualification issues associated with space nuclear power, but also with differences between Russian and United States flight qualification procedures. This paper presents an overview of the NEPSTP. The program goals, the proposed mission, the spacecraft, and the Topaz II space nuclear power system are described. The subject of flight qualification is examined and the inherent difficulties of qualifying a space reactor are described. The differences between United States and Russian flight qualification procedures are explored. A plan is then described that was developed to determine an appropriate flight qualification program for the Topaz II reactor to support a possible NEPSTP launch

  1. Space power needs and forecasted technologies for the 1990s and beyond

    International Nuclear Information System (INIS)

    Buden, D.; Albert, T.

    1987-01-01

    A new generation of reactors for electric power will be available for space missions to satisfy military and civilian needs in the 1990s and beyond. To ensure a useful product, nuclear power plant development must be cognizant of other space power technologies. Major advances in solar and chemical technologies need to be considered in establishing the goals of future nuclear power plants. In addition, the mission needs are evolving into new regimes. Civilian and military power needs are forecasted to exceed anything used in space to date. Technology trend forecasts have been mapped as a function of time for solar, nuclear, chemical, and storage systems to illustrate areas where each technology provides minimum mass. Other system characteristics may dominate the usefulness of a technology on a given mission. This paper will discuss some of these factors, as well as forecast future military and civilian power needs and the status of technologies for the 1990s and 2000s. 6 references

  2. Properties of solar generators with reflectors and radiators

    Science.gov (United States)

    Ebeling, W. D.; Rex, D.; Bierfischer, U.

    1980-06-01

    Radiation cooled concentrator systems using silicon and GaAs cells were studied. The principle of radiation cooling by the reflector surfaces is discussed for cylindrical parabolic reflectors (SARA), truncated hexagonal pyramids, and a small trough configuration. Beam paths, collection properties for imperfect orientation, and thermal optimization parameters were analyzed. The three concentrating systems with radiation cooling offer advantages over the plane panel and over the large trough. With silicon solar cells they exhibit considerably lower solar cell consumption per Kw and also lower mass per kW. With GaAs cells the SARA system reduces the number of solar cells needed per kW to less than 10%. Also in all other cases SARA offers the best values for alpha and F sub sol, as long as narrow angular tolerances of the panel orientation can be met. Analysis of the energy collecting properties for imperfect orientation shows the superiority of the hexagonal concentrator. This device can produce power for even large angles between the sun and the panel normal.

  3. Slab Penetration vs. Slab Stagnation: Mantle Reflectors as an Indicator

    Science.gov (United States)

    Okeler, A.; Gu, Y. J.; Schultz, R.; Contenti, S. M.

    2011-12-01

    Subducting oceanic lithosphere along convergent margins may stagnate near the base of the upper mantle or penetrate into the lower mantle. These dynamic processes cause extensive thermal and compositional variations, which can be observed in terms of impedance contrast (reflectivity) and topography of mantle transition zone (MTZ) discontinuities, i.e., 410- and 660-km discontinuities. In this study, we utilize ~ 15000 surface-reflected shear waves (SS) and their precursory arrivals (S410S and S660S) to analyze subduction related deformations on mantle reflectivity structure. We apply pre-stack, time-to-depth migration technique to SS precursors, and move weak underside reflections using PREM-predicted travel-time curves. Common Mid-point gathers are formed to investigate structure under the western Pacific, south America, and Mediterranean convergent boundaries. In general, mantle reflectivity structures are consistent with previous seismic tomography models. In regions of slab penetration (e.g., southern Kurile arc, Aegean Sea), our results show 1) a substantial decrease in S660S amplitude, and 2) strong lower mantle reflector(s) at ~ 900 km depth. These reflective structures are supported by zones of high P and S velocities extending into the lower mantle. Our 1-D synthetic simulations suggest that the decreasing S660S amplitudes are, at least partially, associated with shear wave defocusing due to changes in reflector depth (by ±20 km) within averaging bin. Assuming a ~500 km wide averaging area, a dipping reflector with 6-8 % slope can reduce the amplitude of a SS precursor by ~50%. On the other hand, broad depressions with strong impedance contrast at the base of the MTZ characterize the regions of slab stagnation, such as beneath the Tyrrhenian Sea and northeastern China. For the latter region, substantial topography on the 660-km discontinuity west of the Wadati-Benioff zone suggests that the stagnant part of the Pacific plate across Honshu arc is not

  4. The Large Deployable Reflector (LDR) report of the Science Coordination Group

    Science.gov (United States)

    1986-01-01

    The Large Deployable Reflector (LDR) is a telescope designed to carry out high-angular resolution, high-sensitivity observations at far-infrared and submillimeter wavelengths. The scientific rationale for the LDR is discussed in light of the recent Infrared Astronomical Satellite (IRAS) and Kuiper Airborne Observatory (KAO) results and the several new ground-based observatories planned for the late 1980s. The importance of high sensitivity and high angular resolution observations from space in the submillimeter region is stressed. The scientific and technical problems of using the LDR in a light bucket mode at approx. less than 5 microns and in designing the LDR as an unfilled aperture with subarcsecond resolution are also discussed. The need for an aperture as large as 20 m is established, along with the requirements of beam-shape stability, spatial chopping, thermal control, and surface figure stability. The instrument complement required to cover the wavelength-spectral resolution region of interest to the LDR is defined.

  5. Discussion on Application of Space Materials and Technological Innovation in Dynamic Fashion Show

    Science.gov (United States)

    Huo, Meilin; Kim, Chul Soo; Zhao, Wenhan

    2018-03-01

    In modern dynamic fashion show, designers often use the latest ideas and technology, and spend their energy in stage effect and overall environment to make audience’s watching a fashion show like an audio-visual feast. With rapid development of China’s science and technology, it has become a design trend to strengthen the relationship between new ideas, new trends and technology in modern art. With emergence of new technology, new methods and new materials, designers for dynamic fashion show stage art can choose the materials with an increasingly large scope. Generation of new technology has also made designers constantly innovate the stage space design means, and made the stage space design innovated constantly on the original basis of experiences. The dynamic clothing display space is on design of clothing display space, layout, platform decoration style, platform models, performing colors, light arrangement, platform background, etc.

  6. Lead foil wrapping of the plastic scintillators for the gamma ray detection: optical reflector or spectrum intensifier?

    International Nuclear Information System (INIS)

    Taheri, A.; Askari, M.; Sasanpour, M. Taghan

    2017-01-01

    This paper studies the effect of lead wrapping on the response of the plastic scintillators as gamma detectors. Experimental tests and Geant4 simulations showed that lead wrapping cannot increase the gamma absorption efficiency of the detector but, as a reflector, it can improve the optical properties of the detector. The reflectivity of the lead foil as an optical reflector was determined equal to 66% using an experimental-simulation combined method. Based on the obtained results, the optical collection efficiency of the detector was also increased about 4% after employing the lead reflector.

  7. Exploration Space Suit Architecture and Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.; McFarland, Shane M.; Korona, F. Adam

    2013-01-01

    This paper continues forward where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars left off in the development of a space suit architecture that is modular in design and could be reconfigured prior to launch or during any given mission depending on the tasks or destination. This space suit system architecture and technologies required based on human exploration (EVA) destinations will be discussed, and how these systems should evolve to meet the future exploration EVA needs of the US human space flight program. A series of exercises and analyses provided a strong indication that the Constellation Program space suit architecture, with its maximum reuse of technology and functionality across a range of mission profiles and destinations, is postured to provide a viable solution for future space exploration missions. The destination environmental analysis demonstrates that the modular architecture approach could provide the lowest mass and mission cost for the protection of the crew, given any human mission outside of low-Earth orbit. Additionally, some of the high-level trades presented here provide a review of the environmental and nonenvironmental design drivers that will become increasingly important as humans venture farther from Earth. The presentation of destination environmental data demonstrates a logical clustering of destination design environments that allows a focused approach to technology prioritization, development, and design that will maximize the return on investment, largely independent of any particular design reference mission.

  8. A nonlinear equivalent circuit method for analysis of passive intermodulation of mesh reflectors

    Directory of Open Access Journals (Sweden)

    Jiang Jie

    2014-08-01

    Full Text Available Passive intermodulation (PIM has gradually become a serious electromagnetic interference due to the development of high-power and high-sensitivity RF/microwave communication systems, especially large deployable mesh reflector antennas. This paper proposes a field-circuit coupling method to analyze the PIM level of mesh reflectors. With the existence of many metal–metal (MM contacts in mesh reflectors, the contact nonlinearity becomes the main reason for PIM generation. To analyze these potential PIM sources, an equivalent circuit model including nonlinear components is constructed to model a single MM contact so that the transient current through the MM contact point induced by incident electromagnetic waves can be calculated. Taking the electric current as a new electromagnetic wave source, the far-field scattering can be obtained by the use of electromagnetic numerical methods or the communication link method. Finally, a comparison between simulation and experimental results is illustrated to verify the validity of the proposed method.

  9. Accurate antenna reflector loss measurements for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1996-01-01

    Antenna reflector losses may play an important role in the calibration budget for a microwave radiometer. If the losses are small they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident...

  10. Technical and Economical study of New Technologies and Reusable Space Vehicles promoting Space Tourism.

    Science.gov (United States)

    Srivastav, Deepanshu; Malhotra, Sahil

    2012-07-01

    For many of us space tourism is an extremely fascinating and attractive idea. But in order for these to start we need vehicles that will take us to orbit and bring us back. Current space vehicles clearly cannot. Only the Space Shuttle survives past one use, and that's only if we ignore the various parts that fall off on the way up. So we need reusable launch vehicles. Launch of these vehicles to orbit requires accelerating to Mach 26, and therefore it uses a lot of propellant - about 10 tons per passenger. But there is no technical reason why reusable launch vehicles couldn't come to be operated routinely, just like aircraft. The main problem about space is how much it costs to get there, it's too expensive. And that's mainly because launch vehicles are expendable - either entirely, like satellite launchers, or partly, like the space shuttle. The trouble is that these will not only reduce the cost of launch - they'll also put the makers out of business, unless there's more to launch than just a few satellites a year, as there are today. Fortunately there's a market that will generate far more launch business than satellites ever well - passenger travel. This paper assesses this emerging market as well as technology that will make space tourism feasible. The main conclusion is that space vehicles can reduce the cost of human transport to orbit sufficiently for large new commercial markets to develop. Combining the reusability of space vehicles with the high traffic levels of space tourism offers the prospect of a thousandfold reduction in the cost per seat to orbit. The result will be airline operations to orbit involving dozens of space vehicles, each capable of more than one flight per day. These low costs will make possible a rapid expansion of space science and exploration. Luckily research aimed at developing low-cost reusable launch vehicles has increased recently. Already there are various projects like Spaceshipone, Spaceshiptwo, Spacebus, X-33 NASA etc. The

  11. Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector

    Science.gov (United States)

    Angel, Roger P

    2013-01-08

    The invention is a generator for photovoltaic conversion of concentrated sunlight into electricity. A generator according to the invention incorporates a plurality of photovoltaic cells and is intended for operation near the focus of a large paraboloidal reflector pointed at the sun. Within the generator, the entering concentrated light is relayed by secondary optics to the cells arranged in a compact, concave array. The light is delivered to the cells at high concentration, consistent with high photovoltaic conversion efficiency and low cell cost per unit power output. Light enters the generator, preferably first through a sealing window, and passes through a field lens, preferably in the form of a full sphere or ball lens centered on the paraboloid focus. This lens forms a concentric, concave and wide-angle image of the primary reflector, where the intensity of the concentrated light is stabilized against changes in the position of concentrated light entering the generator. Receiving the stabilized light are flat photovoltaic cells made in different shapes and sizes and configured in a concave array corresponding to the concave image of a given primary reflector. Photovoltaic cells in a generator are also sized and interconnected so as to provide a single electrical output that remains high and stable, despite aberrations in the light delivered to the generator caused by, for example, mispointing or bending of the primary reflector. In some embodiments, the cells are set back from the image formed by the ball lens, and part of the light is reflected onto each cell small secondary reflectors in the form of mirrors set around its perimeter.

  12. Research and technology: 1994 annual report of the John F. Kennedy Space Center

    Science.gov (United States)

    1994-01-01

    As the NASA Center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, the John F. Kennedy Space Center is placing increasing emphasis on its advanced technology development program. This program encompasses the efforts of the Engineering Development Directorate laboratories, most of the KSC operations contractors, academia, and selected commercial industries - all working in a team effort within their own areas of expertise. This edition of the Kennedy Space Center Research and Technology 1994 Annual Report covers efforts of all these contributors to the KSC advanced technology development program, as well as our technology transfer activities. The Technology Programs and Commercialization Office (DE-TPO), (407) 867-3017, is responsible for publication of this report and should be contacted for any desired information regarding the advanced technology program.

  13. Design and manufacture of large lightweight composite reflectors for microwave testing

    Science.gov (United States)

    Towers, P.

    The installation of the largest compact microwave test range constructed to date prompted the design and manufacture of a 250-sq ft parabolic reflector supported by a lightweight, dimensionally stable structure that could be produced at relatively low cost to high tolerances. These tolerances had, moreover, to be maintained during transport and erection in an indoor test range that was remote from the manufacturing site. The dish designed to meet these requirements consisted of an 'egg box' structure with epoxy/glass composite skin-aluminum honeycomb core sandwich construction. Tiles of this same material formed the substrate for a strickled syntactic-filled epoxy resin grout that was subsequently machined to form the silver-coated reflector surface.

  14. A study of the effect of Al2O3 reflector on response function of NaI(Tl) detector

    International Nuclear Information System (INIS)

    Tam, Hoang Duc; Chuong, Huynh Dinh; Thanh, Tran Thien; Van Tao, Chau

    2016-01-01

    This study aims to assess the effect of Al 2 O 3 reflector surrounding the NaI(Tl) crystal on the detector response function, based on Monte Carlo simulation, which can verify the precise model of the NaI(Tl) detector. The method used in determining the suitable thickness of Al 2 O 3 reflector is to compare the calculated and experimental values of full-energy peak efficiency. The results show that the Al 2 O 3 reflector should have a thickness of 0.8–1.2 mm for the maximum deviation between the experimental and simulated efficiency of 3.2% at all concerning energies. In addition, the obtained results are in good agreement with the response function of simulation and experimental spectra. - Highlights: • The study was conducted to verify the model of Monte Carlo simulation. • The effect of Al 2 O 3 reflector on the detector response function was investigated. • The optimum thickness of Al 2 O 3 reflector is suggested.

  15. The technology management process at the European space agency

    Science.gov (United States)

    Guglielmi, M.; Williams, E.; Groepper, P.; Lascar, S.

    2010-03-01

    Technology is developed at the European Space Agency (ESA) under several programmes: corporate and domain specific, mandatory and optional, with different time horizons and covering different levels of the TRL scale. To improve the transparency and efficiency of the complete process, it was felt necessary to establish an agreed end to end process for the management of all technology R&D activity that could: Include all ESA programmes and consider the requirements of European users Lead to coordinated multi-year work plan and yearly procurement plans Prepare and enable future European space programmes Be harmonized with national initiatives in Europe Thereby establishing the basis for a product policy to reduce risks to technology users, reduce costs and delays, and enhance industrial competitiveness and non-dependence. In response to the above needs, ESA has developed a technology management process called the ESA End-to-End process (E2E), from establishment of the strategy to the monitoring and evaluation of R&D results. In this paper, the complete process will be described in detail including a discussion on its strengths and limitations, and its links to the wider European Harmonization process. The paper will be concluded with the introduction of the ESA Technology Tree: a basic tool to structure and facilitate communication about technology issues.

  16. Beryllium reflectors for research reactors. Review and preliminary finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Pablo S; Cocco, Roxana G., E-mail: rcocco@invap.com.ar [INVAP S.E., Rio Negro (Argentina)

    2012-03-15

    Beryllium is used in numerous research reactors to moderate neutron energy and to reflect neutrons back into the core, thus intensifying the thermal neutron flux. However, beryllium is degraded by radiation damage, as a result of both displacement and transmutation. Displacement damage leads to point defect clustering, irradiation hardening and embrittlement. Transmutation produces helium, which results in high levels of gas and swelling, even at low temperatures. A brief state-of-the-art review on the use of reflector assemblies reveals that each user has adopted a different method for overcoming problems related to swelling: strengthening, cracking and distortion. In the present work a preliminary study about the geometry influence on the reflector assembly behavior was performed by a Finite Element Analysis (FEA). A simplified study was made varying its geometry in height, thickness and width. The results showed that the most influencing parameter in avoiding distortion due to swelling is firstly the reflector's assembly height, H; secondly its thickness, L, and lastly its angle/width, {theta}. These results contribute to the understanding of distortion behavior and the stresses generated in a simple geometry Be bar subjected to radiation, which can be a useful tool for mechanical design of more complex components. (author)

  17. Design and Manufacture of a Low-Profile Radar Retro-Reflector

    National Research Council Canada - National Science Library

    Bird, Dudley

    2005-01-01

    .... Radar retro-reflectors are often passive, but active elements can be included to enhance the backscattered signal, or to modify it in some way, such as by the introduction of modulation or simulation of range profiles...

  18. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    Science.gov (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  19. Uptake of Space Technologies - An Educational Programme

    Science.gov (United States)

    Bacai, Hina; Zolotikova, Svetlana; Young, Mandy; Cowsill, Rhys; Wells, Alan; Monks, Paul; Archibald, Alexandra; Smith, Teresa

    2013-04-01

    Earth Observation data and remote sensing technologies have been maturing into useful tools that can be utilised by local authorities and businesses to aid in activates such as monitoring climate change trends and managing agricultural land and water uses. The European Earth observation programme Copernicus, previously known as GMES (Global Monitoring for Environment and Security), provides the means to collect and process multi-source EO and environmental data that supports policy developments at the European level. At the regional and local level, the Copernicus programme has been initiated through Regional Contact Office (RCO), which provide knowledge, training, and access to expertise both locally and at a European level through the network of RCOs established across Europe in the DORIS_Net (Downstream Observatory organised by Regions active In Space - Network) project (Grant Agreement No. 262789 Coordination and support action (Coordinating) FP7 SPA.2010.1.1-07 "Fostering downstream activities and links with regions"). In the East Midlands UK RCO, educational and training workshops and modules have been organised to highlight the wider range of tools and application available to businesses and local authorities in the region. Engagement with businesses and LRA highlighted the need to have a tiered system of training to build awareness prior to investigating innovative solutions and space technology uses for societal benefits. In this paper we outline education and training programmes which have been developed at G-STEP (GMES - Science and Technology Education Partnership), University of Leicester, UK to open up the Copernicus programme through the Regional Contact Office to downstream users such as local businesses and LRAs. Innovative methods to introduce the operational uses of Space technologies in real cases through e-learning modules and web-based tools will be described and examples of good practice for educational training in these sectors will be

  20. Terrestrial Micro Renewable Energy Applications of Space Technology

    Science.gov (United States)

    Komerath, N. M.; Komerath, P. P.

    This paper explores the synergy between technologies intended for extraterrestrial in situ resource utilization and those for terrestrial mass-market micro renewable power generation systems. The case for a micro renewable energy architecture is presented. The obstacles hindering market success are summarized, along with opportunities from recent demonstrations suggesting that the public appetite for sophisticated technology worldwide may be underappreciated by technical researchers. Technical innovations from space research are summarized along with estimates of possible conversion efficiencies. It is argued that the cost-effectiveness of micro power generation must be viewed through the value of the first few watts of available power, rather than the marginal cost per kilowatt-hour of electric power from utility power grids. This leads to the finding that the actual target cost per unit power, and efficiency, are well within reach of space technology products. Hybrid systems integrating power extraction from multiple resources, and adaptable for multiple applications, can break through mass market price barriers. Recent work to develop learning resources and test beds as part of a Micro Renewable Energy Laboratory is summarized.

  1. The use of paraffin wax in a new solar cooker with inner and outer reflectors

    Directory of Open Access Journals (Sweden)

    Arabacigil Bihter

    2015-01-01

    Full Text Available In this paper, the potential use and effectiveness of paraffin wax in a new solar cooker was experimentally investigated during daylight and late evening hours. For these experiments, a cooker having an inner reflecting surface was designed, constructed by filling paraffin wax and metal shavings. The side- and sub-surface temperatures of the paraffin wax in the cooker are measured in the summer months of June and July. The thermal efficiency of the cooker was tested on different conditions. The results show that the optimum angle of the outer reflector is 30°. Here, the peak temperature of the paraffin wax in the solar cooker was 83.4 °C. The average solar radiation reflected makes a contribution of 9.26% to the temperature of paraffin wax with the outer reflector. The solar cooker with the outer reflector angle of 30° receives also reflected radiation from the inner reflectors. Besides, the heating time is decreased to approximately 1 hour. The designed solar cooker can be effectively used with 30.3% daily thermal efficiency and paraffin wax due to the amount of energy stored.

  2. Guided-mode resonant solar cells and flat-top reflectors: Analysis, design, fabrication and characterization

    Science.gov (United States)

    Khaleque, Tanzina

    This dissertation addresses the guided-mode resonance (GMR) effect and its applications. In particular, this study presents theoretical analysis and corresponding experiments on two important GMR devices that can be broadly described as GMR-enabled thin-film solar cells and flat-top reflectors. The GMR-induced enhanced absorption of input light is observed and quantified in a fabricated nano-patterned amorphous silicon (a-Si) thin-film. Compared to a reference homogeneous thin-film of a-Si, approximately 50% integrated absorbance enhancement is achieved in the patterned structure. This result motivates the application of these resonance effects in thin-film solar cells where enhanced solar absorbance is a crucial requirement. Light trapping in thin-film solar cells through the GMR effect is theoretically explained and experimentally demonstrated. Nano-patterned solar cells with 300-nm periods in one-dimensional gratings are designed, fabricated, and characterized. Compared to a planar reference solar cell, around 35% integrated absorption enhancement is observed over the 450--750-nm wavelength range. This light-management method results in enhanced short-circuit current density of 14.8 mA/cm 2, which is a ˜40% improvement over planar solar cells. The experimental demonstration proves the potential of simple and well-designed guided-mode resonant features in thin-film solar cells. In order to complement the research on GMR thin-film solar cells, a single-step, low-cost fabrication method for generating resonant nano-grating patterns on poly-methyl-methacrylate (PMMA; plexiglas) substrates using thermal nano-imprint lithography is reported. The imprinted structures of both one and two dimensional nano-grating patterns with 300 nm period are fabricated. Thin films of indium-tin-oxide and silicon are deposited over patterned substrates and the absorbance of the films is measured. Around 25% and 45% integrated optical absorbance enhancement is observed over the 450-nm

  3. Modeling study on the thermal performance of a modified cavity receiver with glass window and secondary reflector

    International Nuclear Information System (INIS)

    Chang, Huawei; Duan, Chen; Wen, Ke; Liu, Yuting; Xiang, Can; Wan, Zhongmin; He, Sinian; Jing, Changwei; Shu, Shuiming

    2015-01-01

    Highlights: • A modified cavity receiver with glass window and secondary reflector is presented. • Optical and thermal performance of the modified cavity receiver is investigated. • Effects of glass window and secondary reflector are analyzed with comparison study. - Abstract: The development of a cavity receiver for a 1 kW beta type solar Stirling engine is presented in this work. The proposed receiver is composed of an additional quartz glass window and a secondary reflector aiming at improving the thermal performance. Monte-Carlo ray-tracing method is adopted to study the optical property and calculate radiative exchange factors of the solar collector system. The results show that the radiation flux sent to the proposed cavity receiver is 5003 W, and the optical efficiency of this receiver is 70.8%. Numerical simulation is conducted to investigate the thermal performance of this modified receiver. The proposed receiver is also compared with other three simulated receivers combining the presence and absence of the quartz glass window and the secondary reflector. The numerical simulation results show that the modified receiver with both quartz glass window and secondary trumpet reflector outperformed other designs, and its heat loss is reduced about 56% compared to the initial receiver without both quartz glass window and secondary reflector. Hence, the impact factors on the modified receiver radiation and convection heat transfer are well analyzed including temperature, the inner surface orientation and emissivity. The research indicates that the proposed cavity receiver can efficiently reduce the heat loss from cavity and is suitable for Stirling engine applications.

  4. NASA space communications R and D (Research and Development): Issues, derived benefits, and future directions

    Science.gov (United States)

    1989-02-01

    Space communication is making immense strides since ECHO was launched in 1962. It was a simple passive reflector of signals that demonstrated the concept. Today, satellites incorporating transponders, sophisticated high-gain antennas, and stabilization systems provide voice, video, and data communications to millions of people nationally and worldwide. Applications of emerging technology, typified by NASA's Advanced Communications Technology Satellite (ACTS) to be launched in 1992, will use newer portions of the frequency spectrum (the Ka-band at 30/20 GHz), along with antennas and signal-processing that could open yet new markets and services. Government programs, directly or indirectly, are responsible for many space communications accomplishments. They are sponsored and funded in part by NASA and the U.S. Department of Defense since the early 1950s. The industry is growing rapidly and is achieving international preeminence under joint private and government sponsorship. Now, however, the U.S. space communications industry - satellite manufacturers and users, launch services providers, and communications services companies - are being forced to adapt to a different environment. International competition is growing, and terrestrial technologies such as fiber optics are claiming markets until recently dominated by satellites. At the same time, advancing technology is opening up opportunities for new applications and new markets in space exploration, for defense, and for commercial applications of several types. Space communications research, development, and applications (RD and A) programs need to adjust to these realities, be better coordinated and more efficient, and be more closely attuned to commercial markets. The programs must take advantage of RD and A results in other agencies - and in other nations.

  5. Theoretical and experimental investigation on internal reflectors in a single-slope solar still

    International Nuclear Information System (INIS)

    Karimi Estahbanati, M.R.; Ahsan, Amimul; Feilizadeh, Mehrzad; Jafarpur, Khosrow; Ashrafmansouri, Seyedeh-Saba; Feilizadeh, Mansoor

    2016-01-01

    Highlights: • The effect of installing an internal reflector in solar stills is investigated. • A mathematical model is presented which takes into account the effect of all walls. • The model is validated with the experimental data. • The internal reflector can increase yearly distillate production by 34%. • Cloud factor significantly decreases the effect of internal reflector. - Abstract: This study investigated the effect of an internal reflector (IR) on the productivity of a single-slope solar still (during the summer and winter) experimentally and theoretically. A mathematical model was presented which took into account the effect of all walls (north, south, west and east) of the still on the amount of received solar radiation to brine, and the model was validated with the experimental data. The model can calculate the yield of the still with and without IR on various walls. The results show that the simultaneous use of IR on front and side walls enhances the still’s efficiency by 18%. However, installation of an IR on the back wall can increase the annual efficiency by 22%. The installation of IRs on all walls in comparison to a still without IR can increase the distillate production at winter, summer and the entire year by 65%, 22% and 34%, respectively. Furthermore, the effect of cloud factor on the installation of IRs on all walls was examined, and the results indicate that the increasing the cloud factor decreases the influence of IRs significantly.

  6. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  7. Optical Computers and Space Technology

    Science.gov (United States)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  8. The NASA In-Space Propulsion Technology Project, Products, and Mission Applicability

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Liou, Larry; Dankanich, John; Munk, Michelle M.; Kremic, Tibor

    2009-01-01

    The In-Space Propulsion Technology (ISPT) Project, funded by NASA s Science Mission Directorate (SMD), is continuing to invest in propulsion technologies that will enable or enhance NASA robotic science missions. This overview provides development status, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of aerocapture, electric propulsion, advanced chemical thrusters, and systems analysis tools. Aerocapture investments improved: guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars, and Venus; and models for aerothermal effects. Investments in electric propulsion technologies focused on completing NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6 to 7 kW throttle-able gridded ion system. The project is also concluding its High Voltage Hall Accelerator (HiVHAC) mid-term product specifically designed for a low-cost electric propulsion option. The primary chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. The project is also delivering products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. In-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations.

  9. Space Solar Power Technology Demonstration for Lunar Polar Applications

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, J.

    2002-01-01

    A solar power generation station on a mountaintop near the moon's North or South pole can receive sunlight 708 hours per lunar day, for continuous power generation. Power can be beamed from this station over long distances using a laser-based wireless power transmission system and a photo-voltaic receiver. This beamed energy can provide warmth, electricity, and illumination for a robotic rover to perform scientific experiments in cold, dark craters where no other power source is practical. Radio-frequency power transmission may also be demonstrated in lunar polar applications to locate and recover sub-surface deposits of volatile material, such as water ice. High circular polarization ratios observed in data from Clementine spacecraft and Arecibo radar reflections from the moon's South pole suggest that water ice is indeed present in certain lunar polar craters. Data from the Lunar Prospector spacecraft's epi-thermal neutron spectrometer also indicate that hydrogen is present at the moon's poles. Space Solar Power technology enables investigation of these craters, which may contain a billion-year-old stratigraphic record of tremendous scientific value. Layers of ice, preserved at the moon's poles, could help us determine the sequence and composition of comet impacts on the moon. Such ice deposits may even include distinct strata deposited by secondary ejecta following significant Earth (ocean) impacts, linked to major extinctions of life on Earth. Ice resources at the moon's poles could provide water and air for human exploration and development of space as well as rocket propellant for future space transportation. Technologies demonstrated and matured via lunar polar applications can also be used in other NASA science missions (Valles Marineris. Phobos, Deimos, Mercury's poles, asteroids, etc.) and in future large-scale SSP systems to beam energy from space to Earth. Ground-based technology demonstrations are proceeding to mature the technology for such a near

  10. Technology R&D for space commerce

    Science.gov (United States)

    Sadin, Stanley R.; Christensen, Carissa B.; Steen, Robert G.

    1992-01-01

    The potential effects of reserach conducted by the NASA Office of Aeronautics and Space Technology, OAST, on the aerospace industry are addressed. Program elements aimed at meeting commercial needs and those aimed at meeting NASA needs which have secondary effects benefiting aerospace firms are considered. Particular attention is given to current and future NASA programs for cooperating with industry and the potential effects of OAST research on nonaerospace industries.

  11. Handling system for nuclear reactor fuel and reflector elements

    International Nuclear Information System (INIS)

    Hawke, B.C.; Goldman, L.A.

    1980-01-01

    A system for canning, inspecting and transferring to a storage area fuel and reflector elements from a nuclear reactor is described. The canning mechanism operates in a sealed gaseous environment and visual and mechanical inspection of the elements is possible by an operator from a remote shielded area. (UK)

  12. High performance GaN-based LEDs on patterned sapphire substrate with patterned composite SiO2/Al2O3 passivation layers and TiO2/Al2O3 DBR backside reflector.

    Science.gov (United States)

    Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping

    2013-09-09

    GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.

  13. Novel large deployable antenna backing structure concepts for foldable reflectors

    Science.gov (United States)

    Fraux, V.; Lawton, M.; Reveles, J. R.; You, Z.

    2013-12-01

    This paper describes a number of large deployable antenna (LDA) reflector structure concepts developed at EnerSys-ABSL. Furthermore, EnerSys-ABSL has confirmed the desire to build a breadboard demonstrator of a backing deployable structure for a foldable reflector in the diameter range of 4-9 m. As part of this project EnerSys-ABSL has explored five novel deployable structure concepts. This paper presents the top level definition of these concepts together with the requirements considered in the design and selection of the preferred candidate. These new concepts are described and then compared through a trade-off analysis to identify the most suitable concept that EnerSys-ABSL would like to consider for the breadboard demonstrator. Finally, the kinematics of the chosen concept is described in more detail and future steps in the development process are highlighted.

  14. A Microwave Holographic Procedure for Large Symmetric Reflector Antennas Using a Fresnel-Zone Field Data Processing

    Directory of Open Access Journals (Sweden)

    Giuseppe Mazzarella

    2012-01-01

    Full Text Available In this paper we propose a new holographic procedure for the diagnostic of large reflector antennas, based on the direct use of the Fresnel-field pattern. The relation leading from the Fresnel field to the current on the reflector surface is formulated in the least-squares sense as a discrete data inverse problem and then regularized by using a singular value decomposition approach. A detailed theoretical analysis of the problem and full assessment of the presented technique are provided. Simulations are carried out by using the radiative near-field pattern generated with a commercial software. Results show good accuracy and robustness to noise for the retrieval of the panel-to-panel misalignment of a reflector antenna.

  15. Guided-mode resonant filters and reflectors: Principles, design, and fabrication

    Science.gov (United States)

    Niraula, Manoj

    angular and spectral domains and realized with carefully crafted nanogratings operating in the non-subwavelength regime. We study the pathway and inter-modal interference effects inducing this intriguing reflection state. In a proof-of-concept experiment, we obtain angular and spectral bandwidths of 4 mrad and 1 nm, respectively. This filter concept can be used for focus-free spectral and spatial filtering in compact holographic and interferometric optical instruments. We report unpolarized broadband reflectors enabled by a serial arrangement of a pair of polarized subwavelength gratings. Optimized with inverse numerical methods, our elemental gratings consist of a partially etched crystalline-silicon film on a quartz substrate. The resulting reflectors exhibit extremely wide spectral reflection bands in one polarization. By arranging two such reflectors sequentially with orthogonal periodicities, there results an unpolarized spectral band possessing bandwidth exceeding those of the individual polarized bands. In the experiments reported herein, we achieve zero-order reflectance exceeding 97% under unpolarized light incidence over a 500-nm-wide wavelength band in the near-infrared domain. Moreover, the resonant unpolarized broadband accommodates an ultra-high-reflection band spanning 85 nm and exceeding 99.9% in efficiency. The elemental polarization-sensitive reflectors based on one-dimensional resonant gratings have simple design, robust performance, and are straightforward to fabricate. Hence, this technology is a promising alternative to traditional multilayer thin-film reflectors especially at longer wavelengths of light where multilayer deposition may be infeasible or impractical. We demonstrate an interesting attribute of resonant bandpass filters which is high angular stability for fully conical light incidence. Fashioning an experimental bandpass filter with a subwavelength silicon grating on a quartz substrate, we show that fully conical incidence provides an

  16. Applications of quantum entanglement in space

    International Nuclear Information System (INIS)

    Ursin, R.; Aspelmeyer, M.; Jennewein, T.; Zeilinger, A.

    2005-01-01

    Full text: Quantum entanglement is at the heart of quantum physics. At the same time it is the basis for novel quantum communication schemes, such as quantum cryptography over long distances. Bringing quantum entanglement to the space environment will open a new range of fundamental physics experiments, and will provide unique opportunities for quantum communication applications over long distances. We proposed tests of quantum communication in space, whereby an entangled photon Source is placed onboard the ISS, and two entangled photons are transmitted via a simultaneous down link and received at two distant ground stations. Furthermore, performing a series of consecutive single down links with separate ground stations will enable a test of establishing quantum cryptography even on a global scale. This Space-QUEST proposal was submitted within ESA's OA-2004 and was rated as 'outstanding' because of both, a novel and imaginative scientific content and for technological applications of quantum cryptography respectively. We intend to explore the possibilities to send, receive and manipulate single entangled photon pairs using telescopes, reflectors and high-power lasers over a distance of some tens of kilometers up to 100 kilometers experimentally. A distance of approx. 10 kilometer would already correspond to one atmospheric equivalent and would thus imply the feasibility of installing a ground to satellite link. We are already collaborating with European Space Agency ESA, to investigate and outline the accommodation of a quantum communication terminal in existing optical terminals for satellite communication. (author)

  17. The effect of swelling in Inconel 600 on the performance of FFTF [Fast Flux Test Facility] reflector assemblies

    International Nuclear Information System (INIS)

    Makenas, B.J.; Trenchard, R.G.; Hecht, S.L.; McCarthy, J.M.; Garner, F.A.

    1986-02-01

    The Fast Flux Test Facility (FFTF) is designed with non-fueled outer row assemblies, each of which consists of a stack of Inconel 600 blocks penetrated by 316 stainless steel (SS) coolant tubes. These assemblies act as a radial neutron reflector and as a straight but flexible core boundary. During an FFTF refueling outage it was observed that the degree of difficulty in withdrawing an outer row driver fuel assembly was a function of the peak fast fluence of neighboring reflector assemblies. It was subsequently determined through various postirradiation examinations that the reflector assemblies were both bowed and stiff. Measurements of the individual Inconel 600 blocks indicated that the blocks had distorted into a trapezoidal cross section due to differential swelling of Inconel 600 in a steep radial flux gradient. Immersion density results indicate greater irradiation induced volumetric swelling than any previously reported data or correlation for Inconel 600 at equivalent fast fluence. The Inconel 600 swelled approximately the same amount as the SA 316 SS reflector components. Transmission electron microscopy studies on the Inconel blocks and swelling measurements on related materials have been performed and these data have been related to the performance of the reflector materials

  18. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station

    Science.gov (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2015-01-01

    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  19. Frequency Selective Surfaces for extended Bandwidth backing reflector functions

    NARCIS (Netherlands)

    Pasian, M.; Neto, A.; Monni, S.; Ettorre, M.; Gerini, G.

    2008-01-01

    This paper deals with the use of Frequency Selective Surfaces (FSS) to increase the Efficiency × Bandwidth product in Ultra-Wide Band (UWB) antenna arrays whose efficiency is limited by the front-to-back ratio. If the backing reflector is realized in one metal plane solution its location will be

  20. Modeling of Complex Material Systems in Extreme Environments for Space Technology

    Data.gov (United States)

    National Aeronautics and Space Administration — Among the many enabling technologies of space research is the design of materials which are stable in the environments of interest for a given application. At the...

  1. Novel back-reflector architecture with nanoparticle based buried light-scattering microstructures for improved solar cell performance

    Science.gov (United States)

    Desta, Derese; Ram, Sanjay K.; Rizzoli, Rita; Bellettato, Michele; Summonte, Caterina; Jeppesen, Bjarke R.; Jensen, Pia B.; Tsao, Yao-Chung; Wiggers, Hartmut; Pereira, Rui N.; Balling, Peter; Larsen, Arne Nylandsted

    2016-06-01

    A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

  2. Technology of hardening fills for mined spaces

    International Nuclear Information System (INIS)

    Simek, P.; Holas, M.; Chyla, A.; Pech, P.

    1985-01-01

    The technology is described of hardening fills for mined spaces of uranium deposits in North Bohemian chalk. A special equipment was developed for the controlled preparation of a hardening mixture. The composition of the fill is determined by the strength of the filled rock, expecially by the standard strength, i.e., the minimal strength of the filling under uniaxial pressure. The said parameter determines the consumption of binding materials and thereby the total costs of the filling. A description is presented of the filling technology, including rabbit tube transport of the mixture and quality control. (Pu)

  3. Critical Technology Determination for Future Human Space Flight

    Science.gov (United States)

    Mercer, Carolyn R.; Vangen, Scott D.; Williams-Byrd, Julie A.; Stecklein, Jonette M.; Rahman, Shamim A.; Rosenthal, Matthew E.; Hornyak, David M.; Alexander, Leslie; Korsmeyer, David J.; Tu, Eugene L.; hide

    2012-01-01

    As the National Aeronautics and Space Administration (NASA) prepares to extend human presence throughout the solar system, technical capabilities must be developed to enable long duration flights to destinations such as near Earth asteroids, Mars, and extended stays on the Moon. As part of the NASA Human Spaceflight Architecture Team, a Technology Development Assessment Team has identified a suite of critical technologies needed to support this broad range of missions. Dialog between mission planners, vehicle developers, and technologists was used to identify a minimum but sufficient set of technologies, noting that needs are created by specific mission architecture requirements, yet specific designs are enabled by technologies. Further consideration was given to the re-use of underlying technologies to cover multiple missions to effectively use scarce resources. This suite of critical technologies is expected to provide the needed base capability to enable a variety of possible destinations and missions. This paper describes the methodology used to provide an architecture-driven technology development assessment ("technology pull"), including technology advancement needs identified by trade studies encompassing a spectrum of flight elements and destination design reference missions.

  4. Influence of surface error on electromagnetic performance of reflectors based on Zernike polynomials

    Science.gov (United States)

    Li, Tuanjie; Shi, Jiachen; Tang, Yaqiong

    2018-04-01

    This paper investigates the influence of surface error distribution on the electromagnetic performance of antennas. The normalized Zernike polynomials are used to describe a smooth and continuous deformation surface. Based on the geometrical optics and piecewise linear fitting method, the electrical performance of reflector described by the Zernike polynomials is derived to reveal the relationship between surface error distribution and electromagnetic performance. Then the relation database between surface figure and electric performance is built for ideal and deformed surfaces to realize rapidly calculation of far-field electric performances. The simulation analysis of the influence of Zernike polynomials on the electrical properties for the axis-symmetrical reflector with the axial mode helical antenna as feed is further conducted to verify the correctness of the proposed method. Finally, the influence rules of surface error distribution on electromagnetic performance are summarized. The simulation results show that some terms of Zernike polynomials may decrease the amplitude of main lobe of antenna pattern, and some may reduce the pointing accuracy. This work extracts a new concept for reflector's shape adjustment in manufacturing process.

  5. Cryo-optical testing of large aspheric reflectors operating in the sub mm range

    Science.gov (United States)

    Roose, S.; Houbrechts, Y.; Mazzoli, A.; Ninane, N.; Stockman, Y.; Daddato, R.; Kirschner, V.; Venacio, L.; de Chambure, D.

    2006-02-01

    The cryo-optical testing of the PLANCK primary reflector (elliptical off-axis CFRP reflector of 1550 mm x 1890 mm) is one of the major issue in the payload development program. It is requested to measure the changes of the Surface Figure Error (SFE) with respect to the best ellipsoid, between 293 K and 50 K, with a 1 μm RMS accuracy. To achieve this, Infra Red interferometry has been used and a dedicated thermo mechanical set-up has been constructed. This paper summarises the test activities, the test methods and results on the PLANCK Primary Reflector - Flight Model (PRFM) achieved in FOCAL 6.5 at Centre Spatial de Liege (CSL). Here, the Wave Front Error (WFE) will be considered, the SFE can be derived from the WFE measurement. After a brief introduction, the first part deals with the general test description. The thermo-elastic deformations will be addressed: the surface deformation in the medium frequency range (spatial wavelength down to 60 mm) and core-cell dimpling.

  6. Simulation requirements for the Large Deployable Reflector (LDR)

    Science.gov (United States)

    Soosaar, K.

    1984-01-01

    Simulation tools for the large deployable reflector (LDR) are discussed. These tools are often the transfer function variety equations. However, transfer functions are inadequate to represent time-varying systems for multiple control systems with overlapping bandwidths characterized by multi-input, multi-output features. Frequency domain approaches are the useful design tools, but a full-up simulation is needed. Because of the need for a dedicated computer for high frequency multi degree of freedom components encountered, non-real time smulation is preferred. Large numerical analysis software programs are useful only to receive inputs and provide output to the next block, and should be kept out of the direct loop of simulation. The following blocks make up the simulation. The thermal model block is a classical heat transfer program. It is a non-steady state program. The quasistatic block deals with problems associated with rigid body control of reflector segments. The steady state block assembles data into equations of motion and dynamics. A differential raytrace is obtained to establish a change in wave aberrations. The observation scene is described. The focal plane module converts the photon intensity impinging on it into electron streams or into permanent film records.

  7. The Geometric Theory of Roof Reflector Resonators

    Science.gov (United States)

    1976-12-01

    reflector, if properly oriented, (The terms "roof-top prism ," "right-angle prism ," and - incorrectly - " Porro prism " are encountered in .the literature...Q-switch prisms ) in laser resonators have been infrequent compared to the attention given spherical mirrors. This chapter summarizes the relevant...designator (Refs 42 and 43). In one experiment, a 900 roof prism was tested in a resonator with a 70% reflecting filat mirror. Thus, in Fig. 2, the right roof

  8. Technology Assessment of Laser-Assisted Materials Processing in Space

    Science.gov (United States)

    Nagarathnam, Karthik; Taminger, Karen M. B.

    2001-01-01

    Lasers are useful for performing operations such as joining, machining, built-up freeform fabrication, shock processing, and surface treatments. These attributes are attractive for the supportability of longer-term missions in space due to the multi-functionality of a single tool and the variety of materials that can be processed. However, current laser technology also has drawbacks for space-based applications, specifically size, power efficiency, lack of robustness, and problems processing highly reflective materials. A review of recent laser developments will be used to show how these issues may be reduced and indicate where further improvement is necessary to realize a laser-based materials processing capability in space. The broad utility of laser beams in synthesizing various classes of engineering materials will be illustrated using state-of-the art processing maps for select lightweight alloys typically found on spacecraft. With the advent of recent breakthroughs in diode-pumped solid-state lasers and fiber optic technologies, the potential to perform multiple processing techniques is increasing significantly. Lasers with suitable wavelengths and beam properties have tremendous potential for supporting future space missions to the moon, Mars and beyond.

  9. Cognition and learning in space technology

    Directory of Open Access Journals (Sweden)

    Kelber Ruhena Abrão

    2016-12-01

    Full Text Available This work analyzes the impact of new technologies in everyday teaching situations. This is a qualitative research, one study of descriptive case, based on observations of the spaces of the classrooms, the same group of children between June 2013 and April 2015, the 1st, 2nd and 3rd years of Primary Education a Catholic private school, as well as interviews with the regents’ teachers of these classes. We seek to establish links between the acquisition of written language in conventional texts and those in hypertext, as well as understand how to structure the scientific and digital literacy in these areas. In that sense, it was found that these experiences are possible to happen in designed spaces antagonistically to traditional spaces as often, it is less rigid, more flexible, a fact that makes the pleasant atmosphere and at the same time, more accessible, providing an environment sometimes hybrid, in which the dimensions of notebook and tablet coexist and fusion of these opposed pairs of written language acquisition occurs.

  10. Measurement of radiation damage on an optical reflector

    International Nuclear Information System (INIS)

    Peng, K.C.; Sahu, S.K.; Huang, H.C.; Ueno, K.; Chang, Y.H.; Wang, C.H.; Hou, W.S.

    1997-01-01

    We measured the radiation damage on an optical white fluorocarbon reflector called Goretex, which is to be used for aerogel threshold counters and crystal calorimeters of the BELLE detector of the KEK B-factory. Reflectance of the Goretex surface was monitored to see any effect of the radiation damage. Maximum equivalent dose was 8.6 Mrad. No radiation damage is observed within measurement errors. (orig.)

  11. Environmental Control and Life Support Systems technology options for Space Station application

    Science.gov (United States)

    Hall, J. B., Jr.; Ferebee, M. J., Jr.; Sage, K. H.

    1985-01-01

    Continuous assessments regarding the suitability of candidate technologies for manned Space Stations will be needed over the next several years to obtain a basis for recommending the optimum system for an Initial Operating Capability (IOC) Space Station which is to be launched in the early 1990's. This paper has the objective to present analysis programs, the candidate recommendations, and the recommended approach for integration these candidates into the NASA Space Station reference configuration. Attention is given to ECLSS (Environmental Control and Life Support System) technology assessment program, an analysis approach for candidate technology recommendations, mission model variables, a candidate integration program, metabolic oxygen recovery, urine/flush water and all waste water recovery, wash water and condensate water recovery, and an integration analysis.

  12. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    International Nuclear Information System (INIS)

    Jansen, Frank; Behrens, Joerg; Pospisil, Stanislav; Kudela, Karel

    2011-01-01

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  13. Space situational awareness satellites and ground based radiation counting and imaging detector technology

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Frank, E-mail: frank.jansen@dlr.de [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Behrens, Joerg [DLR Institute of Space Systems, Robert-Hooke-Str. 7, 28359 Bremen (Germany); Pospisil, Stanislav [Czech Technical University, IEAP, 12800 Prague 2, Horska 3a/22 (Czech Republic); Kudela, Karel [Slovak Academy of Sciences, IEP, 04001 Kosice, Watsonova 47 (Slovakia)

    2011-05-15

    We review the current status from the scientific and technological point of view of solar energetic particles, solar and galactic cosmic ray measurements as well as high energy UV-, X- and gamma-ray imaging of the Sun. These particles and electromagnetic data are an important tool for space situational awareness (SSA) aspects like space weather storm predictions to avoid failures in space, air and ground based technological systems. Real time data acquisition, position and energy sensitive imaging are demanded by the international space weather forecast services. We present how newly developed, highly miniaturized radiation detectors can find application in space in view of future SSA related satellites as a novel space application due to their counting and imaging capabilities.

  14. Ultrafast pre-breakdown dynamics in Al₂O₃SiO₂ reflector by femtosecond UV laser spectroscopy.

    Science.gov (United States)

    Du, Juan; Li, Zehan; Xue, Bing; Kobayashi, Takayoshi; Han, Dongjia; Zhao, Yuanan; Leng, Yuxin

    2015-06-29

    Ultrafast carrier dynamics in Al2O3/SiO2 high reflectors has been investigated by UV femtosecond laser. It is identified by laser spectroscopy that, the carrier dynamics contributed from the front few layers of Al2O3 play a dominating role in the initial laser-induced damage of the UV reflector. Time-resolved reflection decrease after the UV excitation is observed, and conduction electrons is found to relaxed to a mid-gap defect state locating about one photon below the conduction band . To interpret the laser induced carrier dynamics further, a theoretical model including electrons relaxation to a mid-gap state is built, and agrees very well with the experimental results.. To the best of our knowledge, this is the first study on the pre-damage dynamics in UV high reflector induced by femtosecond UV laser.

  15. Use of non-quarter-wave designs to increase the damage resistance of reflectors at 532 and 1064 nanometers

    International Nuclear Information System (INIS)

    Gill, D.H.; Newnam, B.E.; McLeod, J.

    1977-01-01

    The damage resistance of multilayer dielectric laser reflectors has been increased by using non-quarter-wave thicknesses for the top few layers. These designs minimize the standing-wave electric field in the high-index layers, which are generally the weaker layers. Algebraic equations have been derived for optimum film thicknesses and for the resulting peak electric fields. Five sets of reflectors for 532 and 1064 nm were fabricated according to these designs by two vendors using two different material combinations. Each set contained one reflector of standard all-quarter-wave design and three reflectors each with a different number of modified layers. The damage thresholds of the modified designs were found to be higher than the all-quarter-wave designs, in some cases by a factor greater than 2. The damage thresholds have been analyzed and explained in terms of standing-wave electric field patterns

  16. Optical Reflectance Measurements for Commonly Used Reflectors

    Science.gov (United States)

    Janecek, Martin; Moses, William W.

    2008-08-01

    When simulating light collection in scintillators, modeling the angular distribution of optical light reflectance from surfaces is very important. Since light reflectance is poorly understood, either purely specular or purely diffuse reflectance is generally assumed. In this paper we measure the optical reflectance distribution for eleven commonly used reflectors. A 440 nm, output power stabilized, un-polarized laser is shone onto a reflector at a fixed angle of incidence. The reflected light's angular distribution is measured by an array of silicon photodiodes. The photodiodes are movable to cover 2pi of solid angle. The light-induced current is, through a multiplexer, read out with a digital multimeter. A LabVIEW program controls the motion of the laser and the photodiode array, the multiplexer, and the data collection. The laser can be positioned at any angle with a position accuracy of 10 arc minutes. Each photodiode subtends 6.3deg, and the photodiode array can be positioned at any angle with up to 10 arc minute angular resolution. The dynamic range for the current measurements is 10 5:1. The measured light reflectance distribution was measured to be specular for several ESR films as well as for aluminum foil, mostly diffuse for polytetrafluoroethylene (PTFE) tape and titanium dioxide paint, and neither specular nor diffuse for Lumirrorreg, Melinexreg and Tyvekreg. Instead, a more complicated light distribution was measured for these three materials.

  17. Progress in space nuclear reactor power systems technology development - The SP-100 program

    Science.gov (United States)

    Davis, H. S.

    1984-01-01

    Activities related to the development of high-temperature compact nuclear reactors for space applications had reached a comparatively high level in the U.S. during the mid-1950s and 1960s, although only one U.S. nuclear reactor-powered spacecraft was actually launched. After 1973, very little effort was devoted to space nuclear reactor and propulsion systems. In February 1983, significant activities toward the development of the technology for space nuclear reactor power systems were resumed with the SP-100 Program. Specific SP-100 Program objectives are partly related to the determination of the potential performance limits for space nuclear power systems in 100-kWe and 1- to 100-MW electrical classes. Attention is given to potential missions and applications, regimes of possible space power applicability, safety considerations, conceptual system designs, the establishment of technical feasibility, nuclear technology, materials technology, and prospects for the future.

  18. Oceanic Sub-Moho Reflectors in and Around the Segmentation Boundary Between the Tonankai-Nankai Earthquake Area, the Central Nankai Trough

    Science.gov (United States)

    Nakanishi, A.; Kodaira, S.; Miura, S.; Ito, A.; Sato, T.; Park, J.; Obana, K.; Kaneda, Y.

    2006-12-01

    The Nankai Trough is a unique subduction zone because the recurrence intervals of M8 class earthquakes and the segmentation of rupture zones are well documented on the basis of geophysical, geological and historic data. In 2004, large intraslab earthquake (Mw7.5) occurred southeast off the Kii Peninsula, the central Nankai Trough. Recent ocean bottom seismograph observation off the Kii Peninsula shows seismicity concentrated in the oceanic crust and the uppermost mantle. To understand the genesis of such intraslab earthquakes and its relation to large interplate earthquakes as well as to obtain an entire structural image of Nankai Trough subduction seismogenic zone, a wide-angle reflection/refraction survey across the coseismic rupture zone of the Tonankai earthquake was conducted in 2004. This research is part of "Structure research on plate dynamics of the presumed rupture zone of the Tonankai-Nankai Earthquakes" funded by Ministry of Education, Culture, Sports, Science and Technology. The result of structural image shows a bit thicker oceanic crust (>8km) subducting landward, and the existence of oceanic sub-Moho reflectors in the uppermost mantle. The aftershocks of the 2004 off Kii Peninsula earthquake are distributed within the oceanic crust and the uppermantle, which is not consistent with the estimated fault plane of main shock. Comparing the structural image with this aftershock distribution and usual seismicity in the uppermost mantle, the depth of the oceanic sub-Moho reflectors and the intraslab events within the uppermantle are both distributed around 20km. We consider that such sub-Moho reflectors may become a seismic fault of intraslab earthquakes.

  19. Space power subsystem automation technology

    Science.gov (United States)

    Graves, J. R. (Compiler)

    1982-01-01

    The technology issues involved in power subsystem automation and the reasonable objectives to be sought in such a program were discussed. The complexities, uncertainties, and alternatives of power subsystem automation, along with the advantages from both an economic and a technological perspective were considered. Whereas most spacecraft power subsystems now use certain automated functions, the idea of complete autonomy for long periods of time is almost inconceivable. Thus, it seems prudent that the technology program for power subsystem automation be based upon a growth scenario which should provide a structured framework of deliberate steps to enable the evolution of space power subsystems from the current practice of limited autonomy to a greater use of automation with each step being justified on a cost/benefit basis. Each accomplishment should move toward the objectives of decreased requirement for ground control, increased system reliability through onboard management, and ultimately lower energy cost through longer life systems that require fewer resources to operate and maintain. This approach seems well-suited to the evolution of more sophisticated algorithms and eventually perhaps even the use of some sort of artificial intelligence. Multi-hundred kilowatt systems of the future will probably require an advanced level of autonomy if they are to be affordable and manageable.

  20. NASA advanced space photovoltaic technology-status, potential and future mission applications

    Science.gov (United States)

    Flood, Dennis J.; Piszczor, Michael, Jr.; Stella, Paul M.; Bennett, Gary L.

    1989-01-01

    The NASA program in space photovoltaic research and development encompasses a wide range of emerging options for future space power systems, and includes both cell and array technology development. The long range goals are to develop technology capable of achieving 300 W/kg for planar arrays, and 300 W/sq m for concentrator arrays. InP and GaAs planar and concentrator cell technologies are under investigation for their potential high efficiency and good radiation resistance. The Advanced Photovoltaic Solar Array (APSA) program is a near term effort aimed at demonstrating 130 W/kg beginning of life specific power using thin (62 micrometer) silicon cells. It is intended to be technology transparent to future high efficiency cells and provides the baseline for development of the 300 W/kg array.

  1. Parametric x-ray FEL operating with external Bragg reflectors

    International Nuclear Information System (INIS)

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-01-01

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10 2 -10 4 times up to 10 9 . One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times

  2. Precision Optical Coatings for Large Space Telescope Mirrors

    Science.gov (United States)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  3. Analytical modelling of waveguide mode launchers for matched feed reflector systems

    DEFF Research Database (Denmark)

    Palvig, Michael Forum; Breinbjerg, Olav; Meincke, Peter

    2016-01-01

    Matched feed horns aim to cancel cross polarization generated in offset reflector systems. An analytical method for predicting the mode spectrum generated by inclusions in such horns, e.g. stubs and pins, is presented. The theory is based on the reciprocity theorem with the inclusions represented...... by current sources. The model is supported by Method of Moments calculations in GRASP and very good agreement is seen. The model gives rise to many interesting observations and ideas for new or improved mode launchers for matched feeds.......Matched feed horns aim to cancel cross polarization generated in offset reflector systems. An analytical method for predicting the mode spectrum generated by inclusions in such horns, e.g. stubs and pins, is presented. The theory is based on the reciprocity theorem with the inclusions represented...

  4. Structured surface reflector design for oblique incidence beam splitter at 610 GHz.

    Science.gov (United States)

    Defrance, F; Casaletti, M; Sarrazin, J; Wiedner, M C; Gibson, H; Gay, G; Lefèvre, R; Delorme, Y

    2016-09-05

    An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measurements confirm a good agreement (within 1%) with computer simulations using Feko, validating the method. The beam splitter at 610 GHz has a measured efficiency of 78% under oblique incidence illumination that ensures a similar intensity between the four reflected beams (variation of about 1%).

  5. Transformation of the corner: A shield cloak and a planar retro-reflector

    Science.gov (United States)

    Yang, R.; Lei, Z. Y.; Fan, J.; Gao, D. X.; Wang, Z. X.; Xie, Y. J.

    2013-10-01

    A metallic sheet, coated with a few blocks of all-dielectric isotropic materials, is presented for creating an illusion or an image of a corner based on quasi-conformal transformation optics. On the one hand, our design is able to generate cloaking effects to conceal objects hiding inside a corner. On the other hand, we propose to use such a planar transformation device to represent a corner reflector that reflects light directly back to its source. The full wave simulation shows our device is capable of operating considerably well in a broad frequency range, and presents only the appearance of a bare corner functioning as a shield cloak or a planar retro-reflector.

  6. Novel Space-based Solar Power Technologies and Architectures for Earth and Beyond

    Science.gov (United States)

    Howell, Joe T.; Fikes, John C.; O'Neill, Mark J.

    2005-01-01

    Research, development and studies of novel space-based solar power systems, technologies and architectures for Earth and beyond are needed to reduce the cost of clean electrical power for terrestrial use and to provide a stepping stone for providing an abundance of power in space, i.e., manufacturing facilities, tourist facilities, delivery of power between objects in space, and between space and surface sites. The architectures, technologies and systems needed for space to Earth applications may also be used for in-space applications. Advances in key technologies, i.e., power generation, power management and distribution, power beaming and conversion of beamed power are needed to achieve the objectives of both terrestrial and extraterrestrial applications. Power beaming or wireless power transmission (WPT) can involve lasers or microwaves along with the associated power interfaces. Microwave and laser transmission techniques have been studied with several promising approaches to safe and efficient WPT identified. These investigations have included microwave phased array transmitters, as well as laser transmission and associated optics. There is a need to produce "proof-of-concept" validation of critical WPT technologies for both the near-term, as well as far-term applications. Investments may be harvested in near-term beam safe demonstrations of commercial WPT applications. Receiving sites (users) include ground-based stations for terrestrial electrical power, orbital sites to provide power for satellites and other platforms, future space elevator systems, space vehicle propulsion, and space to surface sites. This paper briefly discusses achieving a promising approach to the solar power generation and beamed power conversion. The approach is based on a unique high-power solar concentrator array called Stretched Lens Array (SLA) for both solar power generation and beamed power conversion. Since both versions (solar and laser) of SLA use many identical components

  7. Membrane Reflector Vertical Cavity Lasers at Near- and Midwave-Infrared

    Science.gov (United States)

    2014-05-30

    independent broadband reflectors based on cross-stacked gratings, Optics Express, (04 2011): 9050. doi: 10.1364/OE.19.009050 Tapas Kumar Saha, Mingyu Lu... Mingyu Lu, Huiqing Zhai, Deyin Zhao, Weidong Zhou. Design of a compact grating coupler with controllable linewidths via transverse resonance and

  8. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  9. Colliding Pulse Mode-Locked Laser Diode using Multimode Interference Reflectors

    NARCIS (Netherlands)

    Gordon Gallegos, Carlos; Guzmán, R.C.; Jimenez, A.; Leijtens, X.J.M.; Carpintero, G.

    2014-01-01

    We present a novel fully monolithic Colliding Pulse Mode-Locked Laser Diode (CPML) using Multimode Interference Reflectors (MMIRs) to create the laser resonator. We demonstrate experimentally for the first time to our knowledge the Colliding Pulse mode-locking of a laser using MMIRs by observation

  10. Robotic Technology Efforts at the NASA/Johnson Space Center

    Science.gov (United States)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center’s Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of “dull, dirty or dangerous” tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center’s newest development areas can provide crew with low mass exercise capability and also augment an astronaut’s strength while wearing a space suit.This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center’s Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  11. Technology development for laser-cooled clocks on the International Space Station

    Science.gov (United States)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  12. Copper Disk Manufactured at the Space Optics Manufacturing and Technology Center

    Science.gov (United States)

    2001-01-01

    This photograph shows Wes Brown, Marshall Space Flight Center's (MSFC's) lead diamond tuner, an expert in the science of using diamond-tipped tools to cut metal, inspecting the mold's physical characteristics to ensure the uniformity of its more than 6,000 grooves. This king-size copper disk, manufactured at the Space Optics Manufacturing and Technology Center (SOMTC) at MSFC, is a special mold for making high resolution monitor screens. This master mold will be used to make several other molds, each capable of forming hundreds of screens that have a type of lens called a fresnel lens. Weighing much less than conventional optics, fresnel lenses have multiple concentric grooves, each formed to a precise angle, that together create the curvature needed to focus and project images. The MSFC leads NASA's space optics manufacturing technology development as a technology leader for diamond turning. The machine used to manufacture this mold is among many one-of-a-kind pieces of equipment of MSFC's SOMTC.

  13. Overview of free-piston Stirling engine technology for space power application

    International Nuclear Information System (INIS)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center (LeRC) free-piston Stirling engine activities directed toward space-power application. Free-piston Stirling technology is applicable for both solar and nuclear powered systems. As such, the NASA Lewis Research Center serves as the project office to manage the newly initiated SP-100 Advanced Technology program. This program provides the technology push for providing significant component and subsystem options for increased efficiency, reliability and survivability, and power output growth at reduced specific mass. One of the major elements of the program is the development of advanced power conversion of which the Stirling cycle is a viable candidate. Under this program the status of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) is presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators

  14. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR

    Directory of Open Access Journals (Sweden)

    Matthew C. Garthwaite

    2017-06-01

    Full Text Available Trihedral corner reflectors are being increasingly used as point targets in deformation monitoring studies using interferometric synthetic aperture radar (InSAR techniques. The frequency and size dependence of the corner reflector Radar Cross Section (RCS means that no single design can perform equally in all the possible imaging modes and radar frequencies available on the currently orbiting Synthetic Aperture Radar (SAR satellites. Therefore, either a corner reflector design tailored to a specific data type or a compromise design for multiple data types is required. In this paper, I outline the practical and theoretical considerations that need to be made when designing appropriate radar targets, with a focus on supporting multi-frequency SAR data. These considerations are tested by performing field experiments on targets of different size using SAR images from TerraSAR-X, COSMO-SkyMed and RADARSAT-2. Phase noise behaviour in SAR images can be estimated by measuring the Signal-to-Clutter ratio (SCR in individual SAR images. The measured SCR of a point target is dependent on its RCS performance and the influence of clutter near to the deployed target. The SCR is used as a metric to estimate the expected InSAR displacement error incurred by the design of each target and to validate these observations against theoretical expectations. I find that triangular trihedral corner reflectors as small as 1 m in dimension can achieve a displacement error magnitude of a tenth of a millimetre or less in medium-resolution X-band data. Much larger corner reflectors (2.5 m or greater are required to achieve the same displacement error magnitude in medium-resolution C-band data. Compromise designs should aim to satisfy the requirements of the lowest SAR frequency to be used, providing that these targets will not saturate the sensor of the highest frequency to be used. Finally, accurate boresight alignment of the corner reflector can be critical to the overall

  15. Heavy reflector experiments composed of carbon steel and nickel in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Silva, Graciete Simoes de Andrade e; Mura, Luis Felipe; Jerez, Rogerio; Mendonca, Arlindo Gilson; Fuga, Rinaldo

    2013-01-01

    The heavy reflector experiments performed in the IPEN/Mb-01 research reactor facility comprise a set of critical configurations employing the standard 28x26-fuel-rod configuration. The heavy reflector either, carbon steel or nickel plates was placed at one of the faces of the IPEN/MB-01 reactor. Criticality is achieved by inserting the control banks BC1 and BC2 to the critical position. 32 plates around 0.3 mm thick were used in all the experiment. The chosen distance between last fuel rod row and the first laminate for all types of laminates was 5.5 mm. Considering initially the carbon steel case, the experimental data reveal that the reactivity decreases up to the fifth plate and after that it increases, becomes nearly zero (which was equivalent to initial zero excess reactivity with zero plates) for the 28 plates case and reaches a value of 42.73 pcm when the whole set of 32 plates are inserted in the reflector. This is a very striking result because it demonstrates that when all 32 plates are inserted in the reflector there is a net gain of reactivity. The reactivity behavior demonstrates all the physics events already mentioned in this work. When the number of plates are small (around 5), the neutron absorption in the plates is more important than the neutron reflection and the reactivity decreases. This condition holds up to a point where the neutron reflection becomes more important than the neutron absorption in the plates and the reactivity increases. The experimental data for the nickel case shows the main features of the carbon steel case, but for the carbon steel case the reactivity gain is small, thus demonstrating that carbon steel or essentially iron has not the reflector capability as the nickel laminates do. The measured data of nickel plates show a higher reactivity gain, thus demonstrating that nickel is a better reflector than iron. The theoretical analysis employing MCNP5 and ENDF/B-VII.0 show that the calculated results have good results up to

  16. Neutron reflector design with Californium 252 neutron for Boron neutron chapter therapy facility using MCNP5 simulation method

    International Nuclear Information System (INIS)

    Muhammad Fakhrurreza; Kusminanto; Y Sardjono

    2014-01-01

    In this research has made a reflector design to provide beams of Neutron for BNCT with Californium-252 radioactive source. This collimator is useful to obtain optimum epithermal neutron flux with the smallest impurity radiation (thermal neutron, fast neutron, and gamma). The design process is done using Monte Carlo N-Particle simulation version 5 (MCNP5) code to calculate the neutron flux tally form. The chosen reflector design is the reflectors which use material such as BeO ceramic with 13 cm thick. Moderator use sulfur material with the slope angle of the cone is 30°. From the calculation result, it is obtained that Reflector with 1 gram Californium-252 source can produce a neutron output thermal which has thermal neutron specification 2.23189 x 10 9 n/s.cm 2 , epithermal neutron 3.51548 x 10 9 n/s.cm 2 , and fast neutron 4.82241 x 10 9 n/s.cm 2 From the result, it needs additional collimator because the BNCT requirement. (author)

  17. Split core experiments; Part I. Axial neutron flux distribution measurements in the reactor core with a central horizontal reflector

    Energy Technology Data Exchange (ETDEWEB)

    Strugar, P; Raisic, N; Obradovic, D; Jovanovic, S [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1965-05-01

    A series of critical experiments were performed on the RB reactor in order to determine the thermal neutron flux increase in the central horizontal reflector formed by a split reactor core. The objectives of these experiments were to study the possibilities of improving the thermal neutron flux characteristics of the neutron beam in the horizontal beam tube of the RA research reactor. The construction of RA reactor enables to split the core in two, to form a central horizontal reflector in front of the beam tube. This is achieved by replacing 2% enriched uranium slugs in the fuel channel by dummy aluminium slugs. The purpose of the first series of experiments was to study the gain in thermal neutron component inside the horizontal reflector and the loss of reactivity as a function of the lattice pitch and central reflector thickness.

  18. A Management Strategy for the Heavy Water Reflector Cooling System of HANARO Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. S.; Park, Y. C.; Lim, S. P. (and others)

    2007-11-15

    Heavy water is used as the reflector and the moderator of the HANARO research reactor. After over 10 years operation since first criticality in 1995 there arose some operational issues related with the tritium. A task force team(TFT) has been operated for 1 year since September 2006 to study and deduce resolutions of the issues concerning the tritium and the degradation of heavy water in the HANARO reflector system. The TFT drew many recommendations on the hardware upgrade, tritium containing air control, heavy water quality management, waste management, and tritium measurement system upgrade.

  19. Assembly of Space CFRP Structures with Racing Sailing Boats Technology

    Science.gov (United States)

    Nieto, Jose; Yuste, Laura; Pipo, Alvaro; Santarsiero, Pablo; Bureo, Rafael

    2014-06-01

    Carbon Fiber Reinforced Plastic (CFRP) is commonly used in space applications to get structures with good mechanical performances and a reduced mass. Most of larger parts of spatial structures are already made of CFRP but the achieved weight saving may be jeopardized by the use of metallic brackets as joining elements. This paper describes the work carried out to study and evaluate ways of reducing weight and costs of the joints between structural elements commonly used in space applications.The main objective of this project is to adapt design solutions coming from the racing sailing boats technology to space applications: the use of out-of autoclave (OoA) cured CFRP joints. In addition to that other CFRP solution common in space business, 3D- RTM Bracket, has been evaluated.This development studies the manufacturing and assembly feasibility making use of these CFRP technologies.This study also compares traditional metallic solutions with innovative CFRP ones in terms of mechanical performances at elementary level. Weight and cost of presented solutions are also compared.

  20. Development and test of the ZELT-3D computer code for unfolding power distributions using side reflector instrumentation signals

    International Nuclear Information System (INIS)

    Knob, P.J.

    1983-01-01

    The impossibility of using internal instrumentation in high temperature reactor with spherical fuel, lead to the development of an instrumentation system that will be able to monitorate power perturbations only using detectors located in the reflectors. This instrumentation is divided in three parts: one for each reflector, higher, lower and lateral. The development of a system located in the lateral reflector is shown. The system was tested for Kahter from IRE-KFA of very low dimensions and for the PNP-300 power reactor of very large dimensions. Good results were obtained. (E.G.) [pt

  1. Reflector optimization for coupled liquid hydrogen moderator

    International Nuclear Information System (INIS)

    Kiyanagi, Y.; Iwasa, H.; Watanabe, N.; Furusaka, M.

    1991-01-01

    As a part of optimization studies on a coupled liquid hydrogen moderator system, the optimal thickness of the reflector, the effects of neutron absorbing liners and other beam hole/moderator on the cold-neutron-beam intensity were studied experimentally. It turns out that the optimal thickness is rather thick in this system and the existence of Cd liners around the beam extraction hole considerably reduces the cold neutron beam intensity, while the existence of other beam hole and moderator does not give an important intensity reduction. (author)

  2. Technical-economic feasibility of orbiting sunlight reflectors

    Science.gov (United States)

    Alferov, Z.; Minin, V.

    1986-02-01

    The use of deflectors in orbit as a means of providing artificial illumination is examined. Considerations of technical and economic feasibility are addressed. Three main areas of application are distinguished: reflecting sunlight onto the surface of the Earth; concentration of the flow of solar energy on an orbiting receiver; and retransmission of optical radiation. The advantages of the artificial Earth illumination application of the orbiting reflector scheme in terms of energy savings in lighting cities, and additional daylight time for critical periods of farming operations are discussed.

  3. Gas-cooled reactor for space power systems

    International Nuclear Information System (INIS)

    Walter, C.E.; Pearson, J.S.

    1987-05-01

    Reactor characteristics based on extensive development work on the 500-MWt reactor for the Pluto nuclear ramjet are described for space power systems useful in the range of 2 to 20 MWe for operating times of 1 y. The modest pressure drop through the prismatic ceramic core is supported at the outlet end by a ceramic dome which also serves as a neutron reflector. Three core materials are considered which are useful at temperatures up to about 2000 K. Most of the calculations are based on a beryllium oxide with uranium dioxide core. Reactor control is accomplished by use of a burnable poison, a variable-leakage reflector, and internal control rods. Reactivity swings of 20% are obtained with a dozen internal boron-10 rods for the size cores studied. Criticality calculations were performed using the ALICE Monte Carlo code. The inherent high-temperature capability of the reactor design removes the reactor as a limiting condition on system performance. The low fuel inventories required, particularly for beryllium oxide reactors, make space power systems based on gas-cooled near-thermal reactors a lesser safeguard risk than those based on fast reactors

  4. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  5. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  6. Exploration Space Suit Architecture: Destination Environmental-Based Technology Development

    Science.gov (United States)

    Hill, Terry R.

    2010-01-01

    This paper picks up where EVA Space Suit Architecture: Low Earth Orbit Vs. Moon Vs. Mars (Hill, Johnson, IEEEAC paper #1209) left off in the development of a space suit architecture that is modular in design and interfaces and could be reconfigured to meet the mission or during any given mission depending on the tasks or destination. This paper will walk though the continued development of a space suit system architecture, and how it should evolve to meeting the future exploration EVA needs of the United States space program. In looking forward to future US space exploration and determining how the work performed to date in the CxP and how this would map to a future space suit architecture with maximum re-use of technology and functionality, a series of thought exercises and analysis have provided a strong indication that the CxP space suit architecture is well postured to provide a viable solution for future exploration missions. Through the destination environmental analysis that is presented in this paper, the modular architecture approach provides the lowest mass, lowest mission cost for the protection of the crew given any human mission outside of low Earth orbit. Some of the studies presented here provide a look and validation of the non-environmental design drivers that will become every-increasingly important the further away from Earth humans venture and the longer they are away. Additionally, the analysis demonstrates a logical clustering of design environments that allows a very focused approach to technology prioritization, development and design that will maximize the return on investment independent of any particular program and provide architecture and design solutions for space suit systems in time or ahead of being required for any particular manned flight program in the future. The new approach to space suit design and interface definition the discussion will show how the architecture is very adaptable to programmatic and funding changes with

  7. Technology development for nuclear power generation for space application

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M., E-mail: guimarae@ieav.cta.br, E-mail: lamartine.guimaraes@pq.cnpq.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear; Faria, Saulo M. de [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2015-07-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  8. Technology development for nuclear power generation for space application

    International Nuclear Information System (INIS)

    Guimaraes, Lamartine N.F.; Ribeiro, Guilherme B.; Braz Filho, Francisco A.; Nascimento, Jamil A.; Placco, Guilherme M.

    2015-01-01

    For a few years now, the TERRA project is developing several technology pieces to foster nuclear space applications. In this way, a nuclear reactor concept has been developed as a first proposal. Together, the problem of heat to electricity conversion has been addressed. A closed Brayton cycle is being built and a Stirling machine is being worked out and perfected. In addition, two types of heat pipes are being look at. One related with high temperature made of Mo13Re, an especial alloy. And a second one made of copper, which mainly could be used as a passive heat rejection. In this way, all major areas of interest in a micro station to be used in space has been addressed. A new passive technology has been inferred and is related with Tesla turbine or its evolution, known as multi fluid passive turbine. This technology has the potential to either: improve the Brayton cycle or its efficiency. In this paper, some details are discussed and some will be shown during the presentation, as the work evolve. (author)

  9. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    International Nuclear Information System (INIS)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-01

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future

  10. Effects of Radial Reflector Composition on Core Reactivity and Peak Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Yoon; Lee, Kyung Hoon; Song, Jae Seung

    2007-10-15

    The effects of radial SA-240 alloy shroud on core reactivity and peak power are evaluated. The existence of radial SA-240 alloy shroud makes reflector water volume decrease, so the thermal absorption cross section of radial reflector is lower than without SA-240 alloy shroud case. Finally, the cycle length is increased from 788 EFPD to 845 EFPD and the peak power is decreased from 1.66 to 1.49. In the case of without SA-240 alloy shroud, a new core loading pattern search has been performed. For the guarantee of the same equivalent cycle length of with SA-240 alloy shroud case, the enrichment of U-235 should be increased from 4.22 w/o to 4.68 w/o. The nuclear key safety parameters of new core loading pattern have been calculated and recorded for the future.

  11. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    Science.gov (United States)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-01-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  12. Active wavefront control challenges of the NASA Large Deployable Reflector (LDR)

    Science.gov (United States)

    Meinel, Aden B.; Meinel, Marjorie P.; Manhart, Paul K.; Hochberg, Eric B.

    1989-09-01

    The 20-m Large Deployable Reflector will have a segmented primary mirror. Achieving diffraction-limited performance at 50 microns requires correction for the errors of tilt and piston of the primary mirror. This correction can be obtained in two ways, the use of an active primary or a correction at a demagnified pupil of the primary. A critical requirement is the means for measurement of the wavefront error and maintaining phasing during the observation of objects that may be too faint for determining the error. Absolute phasing can only be determined using a cooperative source. Maintenance of phasing can be done with an on-board source. A number of options are being explored as discussed below. The many issues concerning the assessment and control of an active segmented mirror will be addressed with an early construction of the Precision Segmented Reflector testbed.

  13. Effects of reflector and crystal surface on the performance of a depth-encoding PET detector with dual-ended readout

    International Nuclear Information System (INIS)

    Ren, Silin; Yang, Yongfeng; Cherry, Simon R.

    2014-01-01

    Purpose: Depth encoding detectors are required to improve the spatial resolution and spatial resolution uniformity of small animal positron emission tomography (PET) scanners, as well as dedicated breast and brain scanners. Depth of interaction (DOI) can be measured by using dual-ended readout of lutetium oxyorthosilicate (LSO) scintillator arrays with position-sensitive avalanche photodiodes. Inter-crystal reflectors and crystal surface treatments play important roles in determining the performance of dual-ended detectors. In this paper, the authors evaluated five LSO arrays made with three different intercrystal reflectors and with either polished or unpolished crystal surfaces. Methods: The crystal size in all arrays was 1.5 mm, which is typical of the detector size used in small animal and dedicated breast scanners. The LSO arrays were measured with dual-ended readout and were compared in terms of flood histogram, energy resolution, and DOI resolution performance. Results: The four arrays using enhanced specular reflector (ESR) and Toray reflector provided similar quality flood histograms and the array using Crystal Wrap reflector gave the worst flood histogram. The two arrays using ESR reflector provided the best energy resolution and the array using Crystal Wrap reflector yielded the worst energy resolution. All arrays except the polished ESR array provided good DOI resolution ranging from 1.9 mm to 2.9 mm. DOI resolution improved as the gradient in light collection efficiency with depth (GLCED) increased. The geometric mean energies were also calculated for these dual-ended readout detectors as an alternative to the conventional summed total energy. It was shown that the geometric mean energy is advantageous in that it provides more uniform photopeak amplitude at different depths for arrays with high GLCED, and is beneficial in event selection by allowing a fixed energy window independent of depth. A new method of DOI calculation that improved the linearity

  14. Cesic: optomechanical technology last development results and new HBCesic highly light weighted space mirror development including corrective function 7th international conference on space optics, october 2008

    Science.gov (United States)

    Devilliers, Christophe; Kroedel, Mathias

    2017-11-01

    Thales-Alenia-Space and ECM has developed a new SiC ceramic composite to produce very lightweight space mirrors and structure. Cesicmade by ECM has been selected for its own intrinsic properties ( high specific Young modulus, high conductivity , low CTE, high strength for a ceramics) and its large manufacturing capabilities. Recently a full monolithic space instrument for earth observation, with a monolithic Cesicstructure and with Cesicmirrors has been designed, manufactured and space qualified and is now ready for launch. The Cesictelescope assembly has been tested under shock environment, vibration loads, and full qualification thermal environment. All these qualification tests were done directly on the flight model. Extensive development has been also performed to design, size, manufacture and test a very light weight reflector shell made as a single part. This 1 meter reflective shell has an areal density of less than 10 Kg/m2 has been manufactured with its surface grounded to the bi parabolic shape. Such challenging areal density has requested a very thin skin associated with a ribs thickness of less than 2mm. In order to demonstrate the high stability and strength of Cesicthe reflector has been tested successfully under very aggressive environment up to 350°C and also an acoustic test with flight representative levels was successfully performed. To produce future very lightweight space mirrors ECM develop with the support of Thales-Alenia-Space since some years an improved version of Cesicceramic, called HB-Cesic©. HB-Cesicmade by ECM is developed for its higher intrinsic properties, Young modulus, strength and especially its direct polishing capabilities down to 3 nm micro-roughness. One of the major targets for this development was also to overcome size limitations of the C/C raw material of currently around 1x1 m to produce mirror up to 3,5 m diameter out of a single C/C raw material block. Under ESA study a 600 mm mirror with a surface density of only

  15. IER 203 CED-2 Report: LLNL Final Design for BERP Ball With a Composite Reflector of Thin Polyethylene Backed by Nickel

    Energy Technology Data Exchange (ETDEWEB)

    Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kim, S. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-18

    This report documents the results of final design (CED-2) for IER 203, BERP Ball Composite Reflection, and focuses on critical configurations with a 4.5 kg α-phase plutonium sphere reflected by a combination of thin high-density polyethylene (HDPE) backed by a thick nickel reflector. The Lawrence Livermore National Laboratory’s (LLNL’s) Nuclear Criticality Safety Division, in support of fissile material operations, calculated surprisingly reactive configurations when a fissile core was surrounded by a thin, moderating reflector backed by a thick metal reflector. These composite reflector configurations were much more reactive than either of the single reflector materials separately. The calculated findings have resulted in a stricter-than-anticipated criticality control set, impacting programmatic work. IER 203 was requested in response to these seemingly anomalous calculations to see if the composite reflection effect could be shown experimentally. This report focuses on the Beryllium Reflected Plutonium (BERP) ball as a fissile material core reflected by polyethylene and nickel. A total of four critical configurations were designed as part of CED-2. Fabrication costs are estimated to be $98,500, largely due to the cost of the large nickel reflectors. The IER 203 experiments could reasonably be expected to begin in early FY2017.

  16. Space technology, sustainable development and community applications: Internet as a facilitator

    Science.gov (United States)

    Peter, Nicolas; Afrin, Nadia; Goh, Gérardine; Chester, Ed

    2006-07-01

    Among other approaches, space technologies are currently being deployed for disaster management, environmental monitoring, urban planning, health applications, communications, etc. Although space-based applications have tremendous potential for socioeconomic development, they are primarily technology driven and the requirements from the end-users (i.e. the development community) are rarely taken into consideration during the initial development stages. This communication gap between the "space" and "development" communities can be bridged with the help of the web-based knowledge sharing portal focused on space applications for development. This online community uses the development gateway foundation's sophisticated content management system. It is modeled after the development gateway's knowledge sharing portals ( http://topics.developmentgateway.org) and draws from their expertise in knowledge management, partnership building and marketing. These types of portal are known to facilitate broad-based partnerships across sectors, regions and the various stakeholders but also to facilitate North-South and South-South cooperation. This paper describes the initiative "Space for Development" ( http://topics.developmentgateway.org/space) started in 2004 which aims to demonstrate how such a web-based portal can be structured to facilitate knowledge sharing in order to bridge the gap between the "space" and "development" communities in an innovative and global manner.

  17. Advancing automation and robotics technology for the space station and for the US economy

    Science.gov (United States)

    Nunamaker, Robert

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  18. Analysis of Arbitrary Reflector Antennas Applying the Geometrical Theory of Diffraction Together with the Master Points Technique

    Directory of Open Access Journals (Sweden)

    María Jesús Algar

    2013-01-01

    Full Text Available An efficient approach for the analysis of surface conformed reflector antennas fed arbitrarily is presented. The near field in a large number of sampling points in the aperture of the reflector is obtained applying the Geometrical Theory of Diffraction (GTD. A new technique named Master Points has been developed to reduce the complexity of the ray-tracing computations. The combination of both GTD and Master Points reduces the time requirements of this kind of analysis. To validate the new approach, several reflectors and the effects on the radiation pattern caused by shifting the feed and introducing different obstacles have been considered concerning both simple and complex geometries. The results of these analyses have been compared with the Method of Moments (MoM results.

  19. Aquarius Reflector Surface Temperature Monitoring Test and Analysis

    Science.gov (United States)

    Abbott, Jamie; Lee, Siu-Chun; Becker, Ray

    2008-01-01

    The presentation addresses how to infer the front side temperatures for the Aquarius L-band reflector based upon backside measurement sites. Slides discussing the mission objectives and design details are at the same level found on typical project outreach websites and in conference papers respectively. The test discussion provides modest detail of an ordinary thermal balance test using mockup hardware. The photographs show an off-Lab vacuum chamber facility with no compromising details.

  20. Overview of NASA's Space Solar Power Technology Advanced Research and Development Program

    Science.gov (United States)

    Howell, Joe; Mankins, John C.; Davis, N. Jan (Technical Monitor)

    2001-01-01

    Large solar power satellite (SPS) systems that might provide base load power into terrestrial markets were examined extensively in the 1970s by the US Department of Energy (DOE) and the National Aeronautics and Space Administration (NASA). Following a hiatus of about 15 years, the subject of space solar power (SSP) was reexamined by NASA from 1995-1997 in the 'fresh look' study, and during 1998 in an SSP 'concept definition study', and during 1999-2000 in the SSP Exploratory Research and Technology (SERT) program. As a result of these efforts, during 2001, NASA has initiated the SSP Technology Advanced Research and Development (STAR-Dev) program based on informed decisions. The goal of the STAR-Dev program is to conduct preliminary strategic technology research and development to enable large, multi-megawatt to gigawatt-class space solar power (SSP) systems and wireless power transmission (WPT) for government missions and commercial markets (in-space and terrestrial). Specific objectives include: (1) Release a NASA Research Announcement (NRA) for SSP Projects; (2) Conduct systems studies; (3) Develop Component Technologies; (4) Develop Ground and Flight demonstration systems; and (5) Assess and/or Initiate Partnerships. Accomplishing these objectives will allow informed future decisions regarding further SSP and related research and development investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (commercial, science, and other government).