WorldWideScience

Sample records for space readiness coherent

  1. The coherent state on SUq(2) homogeneous space

    International Nuclear Information System (INIS)

    Aizawa, N; Chakrabarti, R

    2009-01-01

    The generalized coherent states for quantum groups introduced by Jurco and StovIcek are studied for the simplest example SU q (2) in full detail. It is shown that the normalized SU q (2) coherent states enjoy the property of completeness, and allow a resolution of the unity. This feature is expected to play a key role in the application of these coherent states in physical models. The homogeneous space of SU q (2), i.e. the q-sphere of Podles, is reproduced in complex coordinates by using the coherent states. Differential calculus in the complex form on the homogeneous space is developed. The high spin limit of the SU q (2) coherent states is also discussed.

  2. Coherent states in the fermionic Fock space

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2015-01-01

    We construct the coherent states in the sense of Gilmore and Perelomov for the fermionic Fock space. Our treatment is from the outset adapted to the infinite-dimensional case. The fermionic Fock space becomes in this way a reproducing kernel Hilbert space of continuous holomorphic functions. (paper)

  3. Quantum mechanics in coherent algebras on phase space

    International Nuclear Information System (INIS)

    Lesche, B.; Seligman, T.H.

    1986-01-01

    Quantum mechanics is formulated on a quantum mechanical phase space. The algebra of observables and states is represented by an algebra of functions on phase space that fulfills a certain coherence condition, expressing the quantum mechanical superposition principle. The trace operation is an integration over phase space. In the case where the canonical variables independently run from -infinity to +infinity the formalism reduces to the representation of quantum mechanics by Wigner distributions. However, the notion of coherent algebras allows to apply the formalism to spaces for which the Wigner mapping is not known. Quantum mechanics of a particle in a plane in polar coordinates is discussed as an example. (author)

  4. Coherent and squeezed states in phase space

    International Nuclear Information System (INIS)

    Jannussis, A.; Bartzis, V.; Vlahos, E.

    1990-01-01

    In the present paper, the coherent and the squeezed states in phase space have been studied. From the wave functions of the coherent and the squeezed state, their corresponding Wigner distribution functions are calculated. Especially the calculation of the corresponding Wigner functions for the above states permits the determination of the mean values of position and momentum and thus the Heisenberg uncertainty relation. In fact, from the related results, it is concluded that the uncertainty relation of the coherent and associated squeezed states is the same

  5. Atmospheric free-space coherent optical communications with adaptive optics

    Science.gov (United States)

    Ting, Chueh; Zhang, Chengyu; Yang, Zikai

    2017-02-01

    Free-space coherent optical communications have a potential application to offer last mile bottleneck solution in future local area networks (LAN) because of their information carrier, information security and license-free status. Coherent optical communication systems using orthogonal frequency division multiplexing (OFDM) digital modulation are successfully demonstrated in a long-haul tens Giga bits via optical fiber, but they are not yet available in free space due to atmospheric turbulence-induced channel fading. Adaptive optics is recognized as a promising technology to mitigate the effects of atmospheric turbulence in free-space optics. In this paper, a free-space coherent optical communication system using an OFDM digital modulation scheme and adaptive optics (FSO OFDM AO) is proposed, a Gamma-Gamma distribution statistical channel fading model for the FSO OFDM AO system is examined, and FSO OFDM AO system performance is evaluated in terms of bit error rate (BER) versus various propagation distances.

  6. Coherent states on horospheric three-dimensional Lobachevsky space

    Energy Technology Data Exchange (ETDEWEB)

    Kurochkin, Yu., E-mail: y.kurochkin@ifanbel.bas-net.by; Shoukavy, Dz., E-mail: shoukavy@ifanbel.bas-net.by [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Rybak, I., E-mail: Ivan.Rybak@astro.up.pt [Institute of Physics, National Academy of Sciences of Belarus, 68 Nezalezhnasci Ave., Minsk 220072 (Belarus); Instituto de Astrofísica e Ciências do Espaço, CAUP, Rua das Estrelas, 4150-762 Porto (Portugal); Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-08-15

    In the paper it is shown that due to separation of variables in the Laplace-Beltrami operator (Hamiltonian of a free quantum particle) in horospheric and quasi-Cartesian coordinates of three dimensional Lobachevsky space, it is possible to introduce standard (“conventional” according to Perelomov [Generalized Coherent States and Their Applications (Springer-Verlag, 1986), p. 320]) coherent states. Some problems (oscillator on horosphere, charged particle in analogy of constant uniform magnetic field) where coherent states are suitable for treating were considered.

  7. Phase-space evolution of x-ray coherence in phase-sensitive imaging.

    Science.gov (United States)

    Wu, Xizeng; Liu, Hong

    2008-08-01

    X-ray coherence evolution in the imaging process plays a key role for x-ray phase-sensitive imaging. In this work we present a phase-space formulation for the phase-sensitive imaging. The theory is reformulated in terms of the cross-spectral density and associated Wigner distribution. The phase-space formulation enables an explicit and quantitative account of partial coherence effects on phase-sensitive imaging. The presented formulas for x-ray spectral density at the detector can be used for performing accurate phase retrieval and optimizing the phase-contrast visibility. The concept of phase-space shearing length derived from this phase-space formulation clarifies the spatial coherence requirement for phase-sensitive imaging with incoherent sources. The theory has been applied to x-ray Talbot interferometric imaging as well. The peak coherence condition derived reveals new insights into three-grating-based Talbot-interferometric imaging and gratings-based x-ray dark-field imaging.

  8. Self-biased broadband magnet-free linear isolator based on one-way space-time coherency

    Science.gov (United States)

    Taravati, Sajjad

    2017-12-01

    This paper introduces a self-biased broadband magnet-free and linear isolator based on one-way space-time coherency. The incident wave and the space-time-modulated medium share the same temporal frequency and are hence temporally coherent. However, thanks to the unidirectionally of the space-time modulation, the space-time-modulated medium and the incident wave are spatially coherent only in the forward direction and not in the opposite direction. As a consequence, the energy of the medium strongly couples to the propagating wave in the forward direction, while it conflicts with the propagating wave in the opposite direction, yielding strong isolation. We first derive a closed-form solution for the wave scattering from a spatiotemporally coherent medium and then show that a perfectly coherent space-time-modulated medium provides a moderate isolation level which is also subject to one-way transmission gain. To overcome this issue, we next investigate the effect of space-coherency imperfection between the medium and the wave, while they are still perfectly temporally coherent. Leveraging the spatial-coherency imperfection, the medium exhibits a quasiarbitrary and strong nonreciprocal transmission. Finally, we present the experimental demonstration of the self-biased version of the proposed broadband isolator, exhibiting more than 122 % fractional operation bandwidth.

  9. Wigner distribution, partial coherence, and phase-space optics

    NARCIS (Netherlands)

    Bastiaans, M.J.

    2009-01-01

    The Wigner distribution is presented as a perfect means to treat partially coherent optical signals and their propagation through first-order optical systems from a radiometric and phase-space optical perspective

  10. Coherent states for FLRW space-times in loop quantum gravity

    International Nuclear Information System (INIS)

    Magliaro, Elena; Perini, Claudio; Marciano, Antonino

    2011-01-01

    We construct a class of coherent spin-network states that capture properties of curved space-times of the Friedmann-Lamaitre-Robertson-Walker type on which they are peaked. The data coded by a coherent state are associated to a cellular decomposition of a spatial (t=const) section with a dual graph given by the complete five-vertex graph, though the construction can be easily generalized to other graphs. The labels of coherent states are complex SL(2,C) variables, one for each link of the graph, and are computed through a smearing process starting from a continuum extrinsic and intrinsic geometry of the canonical surface. The construction covers both Euclidean and Lorentzian signatures; in the Euclidean case and in the limit of flat space we reproduce the simplicial 4-simplex semiclassical states used in spin foams.

  11. Research on the space-borne coherent wind lidar technique and the prototype experiment

    Science.gov (United States)

    Gao, Long; Tao, Yuliang; An, Chao; Yang, Jukui; Du, Guojun; Zheng, Yongchao

    2016-10-01

    Space-borne coherent wind lidar technique is considered as one of the most promising and appropriate remote Sensing methods for successfully measuring the whole global vector wind profile between the lower atmosphere and the middle atmosphere. Compared with other traditional methods, the space-borne coherent wind lidar has some advantages, such as, the all-day operation; many lidar systems can be integrated into the same satellite because of the light-weight and the small size, eye-safe wavelength, and being insensitive to the background light. Therefore, this coherent lidar could be widely applied into the earth climate research, disaster monitoring, numerical weather forecast, environment protection. In this paper, the 2μm space-borne coherent wind lidar system for measuring the vector wind profile is proposed. And the technical parameters about the sub-system of the coherent wind lidar are simulated and the all sub-system schemes are proposed. For sake of validating the technical parameters of the space-borne coherent wind lidar system and the optical off-axis telescope, the weak laser signal detection technique, etc. The proto-type coherent wind lidar is produced and the experiments for checking the performance of this proto-type coherent wind lidar are finished with the hard-target and the soft target, and the horizontal wind and the vertical wind profile are measured and calibrated, respectively. For this proto-type coherent wind lidar, the wavelength is 1.54μm, the pulse energy 80μJ, the pulse width 300ns, the diameter of the off-axis telescope 120mm, the single wedge for cone scanning with the 40°angle, and the two dualbalanced InGaAs detector modules are used. The experiment results are well consisted with the simulation process, and these results show that the wind profile between the vertical altitude 4km can be measured, the accuracy of the wind velocity and the wind direction are better than 1m/s and +/-10°, respectively.

  12. Multi-aperture digital coherent combining for free-space optical communication receivers.

    Science.gov (United States)

    Geisler, David J; Yarnall, Timothy M; Stevens, Mark L; Schieler, Curt M; Robinson, Bryan S; Hamilton, Scott A

    2016-06-13

    Space-to-ground optical communication systems can benefit from reducing the size, weight, and power profiles of space terminals. One way of reducing the required power-aperture product on a space platform is to implement effective, but costly, single-aperture ground terminals with large collection areas. In contrast, we present a ground terminal receiver architecture in which many small less-expensive apertures are efficiently combined to create a large effective aperture while maintaining excellent receiver sensitivity. This is accomplished via coherent detection behind each aperture followed by digitization. The digitized signals are then combined in a digital signal processing chain. Experimental results demonstrate lossless coherent combining of four lasercom signals, at power levels below 0.1 photons/bit/aperture.

  13. SP-100 space reactor power system readiness

    International Nuclear Information System (INIS)

    Josloff, A.T.; Matteo, D.N.; Bailey, H.S.

    1992-01-01

    This paper discusses the SP-100 Space Reactor Power System which is being developed by GE, under contract to the U.S. Department of Energy, to provide electrical power in the range of 10's to 100's of kW. The system represents an enabling technology for a wide variety of earth orbital and interplanetary science missions, nuclear electric propulsion (NEP) stages, and lunar/Mars surface power for the Space Exploration Initiative (SEI). The technology and design is now at a state of readiness to support the definition of early flight demonstration missions. Of particular importance is that SP-100 meets the demanding U.S. safety performance, reliability and life requirements. The system is scalable and flexible and can be configured to provide 10's to 100's of kWe without repeating development work and can meet DoD goals for an early, low-power demonstration flight in the 1996-1997 time frame

  14. Research progress of free space coherent optical communication

    Science.gov (United States)

    Tan, Zhenkun; Ke, Xizheng

    2018-02-01

    This paper mainly introduces the research progress of free space coherent optical communication in Xi'an University of Technology. In recent years, the research on the outer modulation technology of the laser, free-space-to-fiber coupling technique, the design of transmitting and receiving optical antenna, adaptive optical technology with or without wave-front sensor, automatic polarization control technology, frequency stabilization technology, heterodyne detection technology and high speed signal processing technology. Based on the above related research, the digital signal modulation, transmission, detection and data recovery are realized by the heterodyne detection technology in the free space optical communication system, and finally the function of smooth viewing high-definition video is realized.

  15. Coherent Structures and Spectral Energy Transfer in Turbulent Plasma: A Space-Filter Approach

    Science.gov (United States)

    Camporeale, E.; Sorriso-Valvo, L.; Califano, F.; Retinò, A.

    2018-03-01

    Plasma turbulence at scales of the order of the ion inertial length is mediated by several mechanisms, including linear wave damping, magnetic reconnection, the formation and dissipation of thin current sheets, and stochastic heating. It is now understood that the presence of localized coherent structures enhances the dissipation channels and the kinetic features of the plasma. However, no formal way of quantifying the relationship between scale-to-scale energy transfer and the presence of spatial structures has been presented so far. In the Letter we quantify such a relationship analyzing the results of a two-dimensional high-resolution Hall magnetohydrodynamic simulation. In particular, we employ the technique of space filtering to derive a spectral energy flux term which defines, in any point of the computational domain, the signed flux of spectral energy across a given wave number. The characterization of coherent structures is performed by means of a traditional two-dimensional wavelet transformation. By studying the correlation between the spectral energy flux and the wavelet amplitude, we demonstrate the strong relationship between scale-to-scale transfer and coherent structures. Furthermore, by conditioning one quantity with respect to the other, we are able for the first time to quantify the inhomogeneity of the turbulence cascade induced by topological structures in the magnetic field. Taking into account the low space-filling factor of coherent structures (i.e., they cover a small portion of space), it emerges that 80% of the spectral energy transfer (both in the direct and inverse cascade directions) is localized in about 50% of space, and 50% of the energy transfer is localized in only 25% of space.

  16. Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for use on International Space Station

    Science.gov (United States)

    Murdoch, Karen; Smith, Fred; Perry, Jay; Green, Steve

    2004-01-01

    When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of Technology Readiness Level (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.

  17. Optical Design in Phase-Space for the I13L X-Ray Imaging and Coherence Beamline at Diamond using XPHASY

    International Nuclear Information System (INIS)

    Wagner, Ulrich H.; Rau, Christoph

    2010-01-01

    I13L is a 250 m long beamline for imaging and coherent diffraction currently under construction at the Diamond Light Source. For modeling the beamline optics the phase-space based ray-tracing code XPHASY was developed, as general ray-tracing codes for x-rays do not easily allow studying the propagation of coherence along the beamline. In contrast to computational intensive wave-front propagation codes, which fully describe the propagation of a photon-beam along a beamline but obscure the impact of individual optical components onto the beamline performance, this code allows to quickly calculate the photon-beam propagation along the beamline and estimate the impact of individual components.In this paper we will discuss the optical design of the I13L coherence branch from the perspective of phase-space by using XPHASY. We will demonstrate how the phase-space representation of a photon-beam allows estimating the coherence length at any given position along the beamline. The impact of optical components on the coherence length and the effect of vibrations on the beamline performance will be discussed. The paper will demonstrate how the phase-space representation of photon-beams allows a more detailed insight into the optical performance of a coherence beamline than ray-tracing in real space.

  18. Coherent states and rational surfaces

    International Nuclear Information System (INIS)

    Brody, Dorje C; Graefe, Eva-Maria

    2010-01-01

    The state spaces of generalized coherent states associated with special unitary groups are shown to form rational curves and surfaces in the space of pure states. These curves and surfaces are generated by the various Veronese embeddings of the underlying state space into higher dimensional state spaces. This construction is applied to the parameterization of generalized coherent states, which is useful for practical calculations, and provides an elementary combinatorial approach to the geometry of the coherent state space. The results are extended to Hilbert spaces with indefinite inner products, leading to the introduction of a new kind of generalized coherent states.

  19. Relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Gudimetla, V. S. Rao

    1996-01-01

    An effort was initiated last year in the Astrionics Laboratory at Marshall Space Flight Center to examine and incorporate, if necessary, the effects of relativity in the design of space-based lidar systems. A space-based lidar system, named AEOLUS, is under development at Marshall Space Flight Center and it will be used to accurately measure atmospheric wind profiles. Effects of relativity were also observed in the performance of space-based systems, for example in case of global positioning systems, and corrections were incorporated into the design of instruments. During the last summer, the effects of special relativity on the design of space-based lidar systems were studied in detail, by analyzing the problem of laser scattering off a fixed target when the source and a co-located receiver are moving on a spacecraft. Since the proposed lidar system uses a coherent detection system, errors even in the order of a few microradians must be corrected to achieve a good signal-to-noise ratio. Previous analysis assumed that the ground is flat and the spacecraft is moving parallel to the ground, and developed analytical expressions for the location, direction and Doppler shift of the returning radiation. Because of the assumptions used in that analysis, only special relativity effects were involved. In this report, that analysis is extended to include general relativity and calculate its effects on the design.

  20. Complex space source theory of partially coherent light wave.

    Science.gov (United States)

    Seshadri, S R

    2010-07-01

    The complex space source theory is used to derive a general integral expression for the vector potential that generates the extended full Gaussian wave in terms of the input value of the vector potential of the corresponding paraxial beam. The vector potential and the fields are assumed to fluctuate on a time scale that is large compared to the wave period. The Poynting vector in the propagation direction averaged over a wave period is expressed in terms of the cross-spectral density of the fluctuating vector potential across the input plane. The Schell model is assumed for the cross-spectral density. The radiation intensity distribution and the power radiated are determined. The effect of spatial coherence on the radiation intensity distribution and the radiated power are investigated for different values of the physical parameters. Illustrative numerical results are provided to bring out the effect of spatial coherence on the propagation characteristics of the fluctuating light wave.

  1. On coherent-state representations of quantum mechanics: Wave mechanics in phase space

    DEFF Research Database (Denmark)

    Møller, Klaus Braagaard; Jørgensen, Thomas Godsk; Torres-Vega, Gabino

    1997-01-01

    In this article we argue that the state-vector phase-space representation recently proposed by Torres-Vega and co-workers [introduced in J. Chem. Phys. 98, 3103 (1993)] coincides with the totality of coherent-state representations for the Heisenberg-Weyl group. This fact leads to ambiguities when...

  2. Coherent Doppler lidar for automated space vehicle, rendezvous, station-keeping and capture

    Science.gov (United States)

    Dunkin, James A.

    1991-01-01

    Recent advances in eye-safe, short wavelength solid-state lasers offer real potential for the development of compact, reliable, light-weight, efficient coherent lidar. Laser diode pumping of these devices has been demonstrated, thereby eliminating the need for flash lamp pumping, which has been a major drawback to the use of these lasers in space based applications. Also these lasers now have the frequency stability required to make them useful in coherent lidar, which offers all of the advantages of non-coherent lidar, but with the additional advantage that direct determination of target velocity is possible by measurement of the Doppler shift. By combining the Doppler velocity measurement capability with the inherent high angular resolution and range accuracy of lidar it is possible to construct Doppler images of targets for target motion assessment. A coherent lidar based on a Tm,Ho:YAG 2-micrometer wavelength laser was constructed and successfully field tested on atmospheric targets in 1990. This lidar incorporated an all solid state (laser diode pumped) master oscillator, in conjunction with a flash lamp pumped slave oscillator. Solid-state laser technology is rapidly advancing, and with the advent of high efficiency, high power, semiconductor laser diodes as pump sources, all-solid-state, coherent lidars are a real possibility in the near future. MSFC currently has a feasibility demonstration effort under way which will involve component testing, and preliminary design of an all-solid-state, coherent lidar for automatic rendezvous, and capture. This two year effort, funded by the Director's Discretionary Fund is due for completion in 1992.

  3. Coherent detectors

    International Nuclear Information System (INIS)

    Lawrence, C R; Church, S; Gaier, T; Lai, R; Ruf, C; Wollack, E

    2009-01-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  4. Coherent detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, C R [M/C 169-327, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Church, S [Room 324 Varian Physics Bldg, 382 Via Pueblo Mall, Stanford, CA 94305-4060 (United States); Gaier, T [M/C 168-314, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Lai, R [Northrop Grumman Corporation, Redondo Beach, CA 90278 (United States); Ruf, C [1533 Space Research Building, The University of Michigan, Ann Arbor, MI 48109-2143 (United States); Wollack, E, E-mail: charles.lawrence@jpl.nasa.go [NASA/GSFC, Code 665, Observational Cosmology Laboratory, Greenbelt, MD 20771 (United States)

    2009-03-01

    Coherent systems offer significant advantages in simplicity, testability, control of systematics, and cost. Although quantum noise sets the fundamental limit to their performance at high frequencies, recent breakthroughs suggest that near-quantum-limited noise up to 150 or even 200 GHz could be realized within a few years. If the demands of component separation can be met with frequencies below 200 GHz, coherent systems will be strong competitors for a space CMB polarization mission. The rapid development of digital correlator capability now makes space interferometers with many hundreds of elements possible. Given the advantages of coherent interferometers in suppressing systematic effects, such systems deserve serious study.

  5. Beyond a Logic of Quality: Opening Space for Material-Discursive Practices of "Readiness" in Early Years Education

    Science.gov (United States)

    Evans, Katherine

    2016-01-01

    This article is an exploration of the possibilities encountered through shifting from a "logic of quality" to a "space of meaning-making" within early years education. Focusing on ideas of "readiness", this discussion aims to challenge normative understandings that relate this concept to the predictable achievement of…

  6. The effect of jitter on the performance of space coherent optical communication system with Costas loop

    Science.gov (United States)

    Li, Xin; Hong, Yifeng; Wang, Jinfang; Liu, Yang; Sun, Xun; Li, Mi

    2018-01-01

    Numerous communication techniques and optical devices successfully applied in space optical communication system indicates a good portability of it. With this good portability, typical coherent demodulation technique of Costas loop can be easily adopted in space optical communication system. As one of the components of pointing error, the effect of jitter plays an important role in the communication quality of such system. Here, we obtain the probability density functions (PDF) of different jitter degrees and explain their essential effect on the bit error rate (BER) space optical communication system. Also, under the effect of jitter, we research the bit error rate of space coherent optical communication system using Costas loop with different system parameters of transmission power, divergence angle, receiving diameter, avalanche photodiode (APD) gain, and phase deviation caused by Costas loop. Through a numerical simulation of this kind of communication system, we demonstrate the relationship between the BER and these system parameters, and some corresponding methods of system optimization are presented to enhance the communication quality.

  7. Performance analysis of coherent free space optical communications with sequential pyramid wavefront sensor

    Science.gov (United States)

    Liu, Wei; Yao, Kainan; Chen, Lu; Huang, Danian; Cao, Jingtai; Gu, Haijun

    2018-03-01

    Based-on the previous study on the theory of the sequential pyramid wavefront sensor (SPWFS), in this paper, the SPWFS is first applied to the coherent free space optical communications (FSOC) with more flexible spatial resolution and higher sensitivity than the Shack-Hartmann wavefront sensor, and with higher uniformity of intensity distribution and much simpler than the pyramid wavefront sensor. Then, the mixing efficiency (ME) and the bit error rate (BER) of the coherent FSOC are analyzed during the aberrations correction through numerical simulation with binary phase shift keying (BPSK) modulation. Finally, an experimental AO system based-on SPWFS is setup, and the experimental data is used to analyze the ME and BER of homodyne detection with BPSK modulation. The results show that the AO system based-on SPWFS can increase ME and decrease BER effectively. The conclusions of this paper provide a new method of wavefront sensing for designing the AO system for a coherent FSOC system.

  8. Geometry of spin coherent states

    Science.gov (United States)

    Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.

    2018-04-01

    Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \

  9. Infinite-mode squeezed coherent states and non-equilibrium statistical mechanics (phase-space-picture approach)

    International Nuclear Information System (INIS)

    Yeh, L.

    1992-01-01

    The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena

  10. In-Space Propulsion Technology Products Ready for Infusion on NASA's Future Science Missions

    Science.gov (United States)

    Anderson, David J.; Pencil, Eric; Peterson, Todd; Dankanich, John; Munk, Michele M.

    2012-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies that will enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling, for future NASA flagship and sample return missions currently being considered. They have a broad applicability to future competed mission solicitations. The high-temperature Advanced Material Bipropellant Rocket (AMBR) engine, providing higher performance for lower cost, was completed in 2009. Two other ISPT technologies are nearing completion of their technology development phase: 1) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 2) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; aerothermal effect models; and atmospheric models for Earth, Titan, Mars and Venus. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that have recently completed their technology development and will be ready for infusion into NASA s Discovery, New Frontiers, SMD Flagship, or technology demonstration missions.

  11. Coherent states on Hilbert modules

    International Nuclear Information System (INIS)

    Ali, S Twareque; Bhattacharyya, T; Roy, S S

    2011-01-01

    We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.

  12. A Test Methodology for Determining Space-Readiness of Xilinx SRAM-Based FPGA Designs

    International Nuclear Information System (INIS)

    Quinn, Heather M.; Graham, Paul S.; Morgan, Keith S.; Caffrey, Michael P.

    2008-01-01

    Using reconfigurable, static random-access memory (SRAM) based field-programmable gate arrays (FPGAs) for space-based computation has been an exciting area of research for the past decade. Since both the circuit and the circuit's state is stored in radiation-tolerant memory, both could be alterd by the harsh space radiation environment. Both the circuit and the circuit's state can be prote cted by triple-moduler redundancy (TMR), but applying TMR to FPGA user designs is often an error-prone process. Faulty application of TMR could cause the FPGA user circuit to output incorrect data. This paper will describe a three-tiered methodology for testing FPGA user designs for space-readiness. We will describe the standard approach to testing FPGA user designs using a particle accelerator, as well as two methods using fault injection and a modeling tool. While accelerator testing is the current 'gold standard' for pre-launch testing, we believe the use of fault injection and modeling tools allows for easy, cheap and uniform access for discovering errors early in the design process.

  13. Generalized augmented space theorem for correlated disorder and cluster coherent potential approximation

    International Nuclear Information System (INIS)

    Mookerjee, A.; Prasad, R.

    1993-09-01

    We present a method for calculating the electronic structure of disordered alloys with short range order (SRO) which guarantees positive density of states for all values of the SRO parameter. The method is based on the generalized augmented space theorem which is valid for alloys with SRO. This theorem is applied to alloys with SRO in the tight-binding linear muffin-tin orbital (TB-LMTO) framework. This is done by using the augmented space formulation of Mookerjee and cluster coherent potential approximation. As an illustration, the method is applied to a single band mode TB-LMTO Hamiltonian. We find that the SRO can induce substantial changes in the density of states. (author). 22 refs, 2 figs

  14. Partially coherent isodiffracting pulsed beams

    Science.gov (United States)

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  15. BER Analysis of Coherent Free-Space Optical Communication Systems with a Focal-Plane-Based Wavefront Sensor

    Science.gov (United States)

    Cao, Jingtai; Zhao, Xiaohui; Liu, Wei; Gu, Haijun

    2018-03-01

    A wavefront sensor is one of most important units for an adaptive optics system. Based on our previous works, in this paper, we discuss the bit-error-rate (BER) performance of coherent free space optical communication systems with a focal-plane-based wavefront sensor. Firstly, the theory of a focal-plane-based wavefront sensor is given. Then the relationship between the BER and the mixing efficiency with a homodyne receiver is discussed on the basis of binary-phase-shift-keying (BPSK) modulation. Finally, the numerical simulation results are shown that the BER will be decreased obviously after aberrations correction with the focal-plane-based wavefront sensor. In addition, the BER will decrease along with increasing number of photons received within a single bit. These analysis results will provide a reference for the design of the coherent Free space optical communication (FSOC) system.

  16. Coherent lidar wind measurements from the Space Station base using 1.5 m all-reflective optics

    Science.gov (United States)

    Bilbro, J. W.; Beranek, R. G.

    1987-01-01

    This paper discusses the space-based measurement of atmospheric winds from the point of view of the requirements of the optical system of a coherent CO2 lidar. A brief description of the measurement technique is given and a discussion of previous study results provided. The telescope requirements for a Space Station based lidar are arrived at through discussions of the desired system sensitivity and the need for lag angle compensation.

  17. Simulation of a cascaded longitudinal space charge amplifier for coherent radiation generation

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A., E-mail: aliaksei.halavanau@gmail.com [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Piot, P. [Department of Physics and Northern Illinois, Center for Accelerator & Detector Development, Northern Illinois University, DeKalb, IL 60115 (United States); Accelerator Physics Center, Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2016-05-21

    Longitudinal space charge (LSC) effects are generally considered as harmful in free-electron lasers as they can seed unfavorable energy modulations that can result in density modulations with associated emittance dilution. This “micro-bunching instabilities” is naturally broadband and could possibly support the generation of coherent radiation over a broad region of the spectrum. Therefore there has been an increasing interest in devising accelerator beam lines capable of controlling LSC induced density modulations. In the present paper we refine these previous investigations by combining a grid-less space charge algorithm with the popular particle-tracking program ELEGANT. This high-fidelity model of the space charge is used to benchmark conventional LSC models. We finally employ the developed model to investigate the performance of a cascaded LSC amplifier using beam parameters comparable to the ones achievable at Fermilab Accelerator Science & Technology (FAST) facility currently under commissioning at Fermilab.

  18. Using the phase-space imager to analyze partially coherent imaging systems: bright-field, phase contrast, differential interference contrast, differential phase contrast, and spiral phase contrast

    Science.gov (United States)

    Mehta, Shalin B.; Sheppard, Colin J. R.

    2010-05-01

    Various methods that use large illumination aperture (i.e. partially coherent illumination) have been developed for making transparent (i.e. phase) specimens visible. These methods were developed to provide qualitative contrast rather than quantitative measurement-coherent illumination has been relied upon for quantitative phase analysis. Partially coherent illumination has some important advantages over coherent illumination and can be used for measurement of the specimen's phase distribution. However, quantitative analysis and image computation in partially coherent systems have not been explored fully due to the lack of a general, physically insightful and computationally efficient model of image formation. We have developed a phase-space model that satisfies these requirements. In this paper, we employ this model (called the phase-space imager) to elucidate five different partially coherent systems mentioned in the title. We compute images of an optical fiber under these systems and verify some of them with experimental images. These results and simulated images of a general phase profile are used to compare the contrast and the resolution of the imaging systems. We show that, for quantitative phase imaging of a thin specimen with matched illumination, differential phase contrast offers linear transfer of specimen information to the image. We also show that the edge enhancement properties of spiral phase contrast are compromised significantly as the coherence of illumination is reduced. The results demonstrate that the phase-space imager model provides a useful framework for analysis, calibration, and design of partially coherent imaging methods.

  19. Dynamic coherent backscattering mirror

    Energy Technology Data Exchange (ETDEWEB)

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  20. Coherent states of the real symplectic group in a complex analytic parametrization. I. Unitary-operator coherent states

    International Nuclear Information System (INIS)

    Quesne, C.

    1986-01-01

    In the present series of papers, the coherent states of Sp(2d,R), corresponding to the positive discrete series irreducible representations 1 +n/2> encountered in physical applications, are analyzed in detail with special emphasis on those of Sp(4,R) and Sp(6,R). The present paper discusses the unitary-operator coherent states, as defined by Klauder, Perelomov, and Gilmore. These states are parametrized by the points of the coset space Sp(2d,R)/H, where H is the stability group of the Sp(2d,R) irreducible representation lowest weight state, chosen as the reference state, and depends upon the relative values of lambda 1 ,...,lambda/sub d/, subject to the conditions lambda 1 > or =lambda 2 > or = x x x > or =lambda/sub d/> or =0. A parametrization of Sp(2d,R)/H corresponding to a factorization of the latter into a product of coset spaces Sp(2d,R)/U(d) and U(d)/H is chosen. The overlap of two coherent states is calculated, the action of the Sp(2d,R) generators on the coherent states is determined, and the explicit form of the unity resolution relation satisfied by the coherent states in the representation space of the irreducible representation is obtained. The Hilbert space of analytic functions arising from the coherent state representation is studied in detail. Finally, some applications of the formalism developed in the present paper are outlined

  1. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  2. Coherent states and covariant semi-spectral measures

    International Nuclear Information System (INIS)

    Scutaru, H.

    1976-01-01

    The close connection between Mackey's theory of imprimitivity systems and the so called generalized coherent states introduced by Perelomov is established. Coherent states give a covariant description of the ''localization'' of a quantum system in the phase space in a similar way as the imprimitivity systems give a covariant description of the localization of a quantum system in the configuration space. The observation that for any system of coherent states one can define a covariant semi-spectral measure made possible a rigurous formulation of this idea. A generalization of the notion of coherent states is given. Covariant semi-spectral measures associated with systems of coherent states are defined and characterized. Necessary and sufficient conditions for a unitary representation of a Lie group to be i) a subrepresentation of an induced one and ii) a representation with coherent states are given (author)

  3. Coherence-generating power of quantum dephasing processes

    Science.gov (United States)

    Styliaris, Georgios; Campos Venuti, Lorenzo; Zanardi, Paolo

    2018-03-01

    We provide a quantification of the capability of various quantum dephasing processes to generate coherence out of incoherent states. The measures defined, admitting computable expressions for any finite Hilbert-space dimension, are based on probabilistic averages and arise naturally from the viewpoint of coherence as a resource. We investigate how the capability of a dephasing process (e.g., a nonselective orthogonal measurement) to generate coherence depends on the relevant bases of the Hilbert space over which coherence is quantified and the dephasing process occurs, respectively. We extend our analysis to include those Lindblad time evolutions which, in the infinite-time limit, dephase the system under consideration and calculate their coherence-generating power as a function of time. We further identify specific families of such time evolutions that, although dephasing, have optimal (over all quantum processes) coherence-generating power for some intermediate time. Finally, we investigate the coherence-generating capability of random dephasing channels.

  4. Representations of coherent states in non-orthogonal bases

    International Nuclear Information System (INIS)

    Ali, S Twareque; Roknizadeh, R; Tavassoly, M K

    2004-01-01

    Starting with the canonical coherent states, we demonstrate that all the so-called nonlinear coherent states, used in the physical literature, as well as large classes of other generalized coherent states, can be obtained by changes of bases in the underlying Hilbert space. This observation leads to an interesting duality between pairs of generalized coherent states, bringing into play a Gelfand triple of (rigged) Hilbert spaces. Moreover, it is shown that in each dual pair of families of nonlinear coherent states, at least one family is related to a (generally) non-unitary projective representation of the Weyl-Heisenberg group, which can then be thought of as characterizing the dual pair

  5. Pointing Knowledge for SPARCLE and Space-Based Doppler Wind Lidars in General

    Science.gov (United States)

    Emmitt, G. D.; Miller, T.; Spiers, G.

    1999-01-01

    The SPAce Readiness Coherent Lidar Experiment (SPARCLE) will fly on a space shuttle to demonstrate the use of a coherent Doppler wind lidar to accurately measure global tropospheric winds. To achieve the LOS (Line of Sight) accuracy goal of approx. m/s, the lidar system must be able to account for the orbiter's velocity (approx. 7750 m/s) and the rotational component of the earth's surface motion (approx. 450 m/s). For SPARCLE this requires knowledge of the attitude (roll, pitch and yaw) of the laser beam axis within an accuracy of 80 microradians. (approx. 15 arcsec). Since SPARCLE can not use a dedicated star tracker from its earth-viewing orbiter bay location, a dedicated GPS/INS (Global Positioning System/Inertial Navigation System) will be attached to the lidar instrument rack. Since even the GPS/INS has unacceptable drifts in attitude information, the SPARCLE team has developed a way to periodically scan the instrument itself to obtain less than 10 microradian (2 arcsec) attitude knowledge accuracy that can then be used to correct the GPS/INS output on a 30 minute basis.

  6. Compact, High Energy 2-micron Coherent Doppler Wind Lidar Development for NASA's Future 3-D Winds Measurement from Space

    Science.gov (United States)

    Singh, Upendra N.; Koch, Grady; Yu, Jirong; Petros, Mulugeta; Beyon, Jeffrey; Kavaya, Michael J.; Trieu, Bo; Chen, Songsheng; Bai, Yingxin; Petzar, paul; hide

    2010-01-01

    This paper presents an overview of 2-micron laser transmitter development at NASA Langley Research Center for coherent-detection lidar profiling of winds. The novel high-energy, 2-micron, Ho:Tm:LuLiF laser technology developed at NASA Langley was employed to study laser technology currently envisioned by NASA for future global coherent Doppler lidar winds measurement. The 250 mJ, 10 Hz laser was designed as an integral part of a compact lidar transceiver developed for future aircraft flight. Ground-based wind profiles made with this transceiver will be presented. NASA Langley is currently funded to build complete Doppler lidar systems using this transceiver for the DC-8 aircraft in autonomous operation. Recently, LaRC 2-micron coherent Doppler wind lidar system was selected to contribute to the NASA Science Mission Directorate (SMD) Earth Science Division (ESD) hurricane field experiment in 2010 titled Genesis and Rapid Intensification Processes (GRIP). The Doppler lidar system will measure vertical profiles of horizontal vector winds from the DC-8 aircraft using NASA Langley s existing 2-micron, pulsed, coherent detection, Doppler wind lidar system that is ready for DC-8 integration. The measurements will typically extend from the DC-8 to the earth s surface. They will be highly accurate in both wind magnitude and direction. Displays of the data will be provided in real time on the DC-8. The pulsed Doppler wind lidar of NASA Langley Research Center is much more powerful than past Doppler lidars. The operating range, accuracy, range resolution, and time resolution will be unprecedented. We expect the data to play a key role, combined with the other sensors, in improving understanding and predictive algorithms for hurricane strength and track. 1

  7. Sterilization of ready-to-cook Bibimbap by combined treatment with gamma irradiation for space food

    Science.gov (United States)

    Park, Jae-Nam; Song, Beom-Seok; Kim, Jae-Hun; Choi, Jong-il; Sung, Nak-Yun; Han, In-Jun; Lee, Ju-Woon

    2012-08-01

    Bibimbap, Korean traditional cooked rice mixed with various kinds of vegetables, together with mushrooms and a ground meat, and seasoned with red pepper paste, was developed as a ready-to-cook food by combined treatment with irradiation for the use in space. By gamma irradiation of 25 kGy, the total aerobic bacteria of Bibimbap that was initial by 6.3 log CFU/g decreased to below detection limit, but its sensory qualities were drastically decreased. To enhance the sensory quality, the effects of antioxidant in Bibimbap were evaluated. A treatment with 0.1% of vitamin C, vacuum packaging and gamma-irradiated at 25 kGy and -70 °C showed higher sensory scores than only the irradiation process. This result indicates that the radiation technology may be useful to produce a variety of space foods with high quality of taste and flavor, when combined with other methods.

  8. Telescopes in Near Space: Balloon Exoplanet Nulling Interferometer (BigBENI)

    Science.gov (United States)

    Lyon, Richard G.; Clampin, Mark; Petrone, Peter; Mallik, Udayan; Mauk, Robin

    2012-01-01

    A significant and often overlooked path to advancing both science and technology for direct imaging and spectroscopic characterization of exosolar planets is to fly "near space" missions, i.e. balloon borne exosolar missions. A near space balloon mission with two or more telescopes, coherently combined, is capable of achieving a subset of the mission science goals of a single large space telescope at a small fraction of the cost. Additionally such an approach advances technologies toward flight readiness for space flight. Herein we discuss the feasibility of flying two 1.2 meter telescopes, with a baseline separation of 3.6 meters, operating in visible light, on a composite boom structure coupled to a modified visible nulling coronagraph operating to achieve an inner working angle of 60 milli-arcseconds. We discuss the potential science return, atmospheric residuals at 135,000 feet, pointing control and visible nulling and evaluate the state-or-art of these technologies with regards to balloon missions.

  9. Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2018-04-01

    X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to

  10. Polarization demultiplexing in stokes space for coherent optical PDM-OFDM.

    Science.gov (United States)

    Yu, Zhenming; Yi, Xingwen; Yang, Qi; Luo, Ming; Zhang, Jing; Chen, Lei; Qiu, Kun

    2013-02-11

    We propose a polarization demultiplexing method for coherent optical PDM-OFDM based on Stokes space, without inserting training symbols. The proposed approach performs well for different modulation formats of OFDM subcarrier, and shows comparable performances with that of conventional methods, but with a fast convergence speed and reduced overhead. The OFDM signal in the time domain cannot satisfy the conditions of SS-PDM accurately. Therefore, we first digitally convert the received OFDM signals to the frequency domain using fast Fourier transform (FFT). Each subcarrier of the OFDM signal has a much lower speed and narrower bandwidth, the polarization effects that it experiences can be treated as flat. Consequently, we can apply the polarization demultiplexing in Stokes space (SS-PDM) on per subcarrier basis. We verify this method in experiment by transmitting 66.6-Gb/s PDM-OFDM signal with 4QAM subcarrier modulation over 5440km SSMF and 133.3-Gb/s PDM-OFDM signal with 16QAM subcarrier modulation over 960km SSMF respectively. We also compare the results with those of training symbols. Finally, we analyze of the convergence speed of this method.

  11. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  12. Identification of individual coherent sets associated with flow trajectories using Coherent Structure Coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy; Dabiri, John

    2017-11-01

    In recent years, there has been a proliferation of techniques that aim to characterize fluid flow kinematics on the basis of Lagrangian trajectories of collections of tracer particles. Most of these techniques depend on presence of tracer particles that are initially closely-spaced, in order to compute local gradients of their trajectories. In many applications, the requirement of close tracer spacing cannot be satisfied, especially when the tracers are naturally occurring and their distribution is dictated by the underlying flow. Moreover, current methods often focus on determination of the boundaries of coherent sets, whereas in practice it is often valuable to identify the complete set of trajectories that are coherent with an individual trajectory of interest. We extend the concept of Coherent Structure Coloring to achieve identification of the coherent set associated with individual Lagrangian trajectories. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Importantly, although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems. This work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  13. Construction of classical and non-classical coherent photon states

    International Nuclear Information System (INIS)

    Honegger, Reinhard; Rieckers, Alfred

    2001-01-01

    It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity

  14. Scalable coherent interface

    International Nuclear Information System (INIS)

    Alnaes, K.; Kristiansen, E.H.; Gustavson, D.B.; James, D.V.

    1990-01-01

    The Scalable Coherent Interface (IEEE P1596) is establishing an interface standard for very high performance multiprocessors, supporting a cache-coherent-memory model scalable to systems with up to 64K nodes. This Scalable Coherent Interface (SCI) will supply a peak bandwidth per node of 1 GigaByte/second. The SCI standard should facilitate assembly of processor, memory, I/O and bus bridge cards from multiple vendors into massively parallel systems with throughput far above what is possible today. The SCI standard encompasses two levels of interface, a physical level and a logical level. The physical level specifies electrical, mechanical and thermal characteristics of connectors and cards that meet the standard. The logical level describes the address space, data transfer protocols, cache coherence mechanisms, synchronization primitives and error recovery. In this paper we address logical level issues such as packet formats, packet transmission, transaction handshake, flow control, and cache coherence. 11 refs., 10 figs

  15. Increasing signal-to-noise ratio of swept-source optical coherence tomography by oversampling in k-space

    Science.gov (United States)

    Nagib, Karim; Mezgebo, Biniyam; Thakur, Rahul; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-03-01

    Optical coherence tomography systems suffer from noise that could reduce ability to interpret reconstructed images correctly. We describe a method to increase the signal-to-noise ratio of swept-source optical coherence tomography (SSOCT) using oversampling in k-space. Due to this oversampling, information redundancy would be introduced in the measured interferogram that could be used to reduce white noise in the reconstructed A-scan. We applied our novel scaled nonuniform discrete Fourier transform to oversampled SS-OCT interferograms to reconstruct images of a salamander egg. The peak-signal-to-noise (PSNR) between the reconstructed images using interferograms sampled at 250MS/s andz50MS/s demonstrate that this oversampling increased the signal-to-noise ratio by 25.22 dB.

  16. Autonomous Alignment Advancements for Eye-safe Coherent Lidar, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Eye-safe coherent lidar technology holds increasing promise of meeting NASA's demanding remote 3D space winds goal near term. Highly autonomous, long-range coherent...

  17. Text Coherence in Translation

    Science.gov (United States)

    Zheng, Yanping

    2009-01-01

    In the thesis a coherent text is defined as a continuity of senses of the outcome of combining concepts and relations into a network composed of knowledge space centered around main topics. And the author maintains that in order to obtain the coherence of a target language text from a source text during the process of translation, a translator can…

  18. The effect of nonlinear forces on coherently oscillating space-charge-dominated beams

    International Nuclear Information System (INIS)

    Celata, C.M.

    1987-03-01

    A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time

  19. A discrete phase-space calculus for quantum spins based on a reconstruction method using coherent states

    International Nuclear Information System (INIS)

    Weigert, S.

    1999-01-01

    To reconstruct a mixed or pure quantum state of a spin s is possible through coherent states: its density matrix is fixed by the probabilities to measure the value s along 4s(s+1) appropriately chosen directions in space. Thus, after inverting the experimental data, the statistical operator is parametrized entirely by expectation values. On this basis, a symbolic calculus for quantum spins is developed, the e xpectation-value representation . It resembles the Moyal representation for SU(2) but two important differences exist. On the one hand, the symbols take values on a discrete set of points in phase space only. On the other hand, no quasi-probabilities - that is, phase-space distributions with negative values - are encountered in this approach. (Author)

  20. Korean space food development: Ready-to-eat Kimchi, a traditional Korean fermented vegetable, sterilized with high-dose gamma irradiation

    Science.gov (United States)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Kim, Jae-Hun; Choi, Jong-Il; Byun, Myung-Woo; Lee, Ju-Woon

    2009-07-01

    Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.

  1. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Fercher, A.F.; Andersen, Peter E.

    2017-01-01

    Optical coherence tomography (OCT) is a technique that is used to peer inside a body noninvasively. Tissue structure defined by tissue absorption and scattering coefficients, and the speed of blood flow, are derived from the characteristics of light remitted by the body. Singly backscattered light...... detected by partial coherence interferometry (PCI) is used to synthesize the tomographic image coded in false colors. A prerequisite of this technique is a low time-coherent but high space-coherent light source, for example, a superluminescent diode or a supercontinuum source. Alternatively, the imaging...... technique can be realized by using ultrafast wavelength scanning light sources. For tissue imaging, the light source wavelengths are restricted to the red and near-infrared (NIR) region from about 600 to 1300 nm, the so-called therapeutic window, where absorption (μa ≈ 0.01 mm−1) is small enough. Transverse...

  2. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    International Nuclear Information System (INIS)

    Wagner, U.H.; Parson, A.; Rau, C.

    2017-01-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector. (paper)

  3. Coherence Length and Vibrations of the Coherence Beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Parson, A.; Rau, C.

    2017-06-01

    I13 is a 250 m long hard x-ray beamline for imaging and coherent diffraction at the Diamond Light Source. The beamline (6 keV to 35 keV) comprises two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. In particular the coherence experiments pose very high demands on the performance on the beamline instrumentation, requiring extensive testing and optimisation of each component, even during the assembly phase. Various aspects like the quality of optical components, the mechanical design concept, vibrations, drifts, thermal influences and the performance of motion systems are of particular importance. In this paper we study the impact of the front-end slit size (FE slit size), which determines the horizontal source size, onto the coherence length and the detrimental impact of monochromator vibrations using in-situ x-ray metrology in conjunction with fringe visibility measurements and vibration measurements, based on centroid tracking of an x-ray pencil beam with a photon-counting detector.

  4. Coherent states in quaternionic quantum mechanics

    Science.gov (United States)

    Adler, Stephen L.; Millard, Andrew C.

    1997-05-01

    We develop Perelomov's coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states.

  5. Are Malaysian Students Ready to Be Authors of Digital Contents? A Case Study of Digital Library Stakeholders’ Readiness

    Directory of Open Access Journals (Sweden)

    Abrizah Abdullah

    2007-09-01

    Full Text Available The paper reports on a study that ascertains the factors facilitating students to utilize digital libraries for educational purposes. The study investigates students ICT readiness, usage of online resources and information seeking behaviour of secondary school students with the specific goal of applying the results to the design of a collaborative digital library for school projects. The digital library has been conceived to support resource needs of these students as well provide the space for them to publish their school projects, which are currently submitted handwritten. The study uses the case study approach and an urban secondary school in Malaysia is chosen as the case school. Findings from a survey and focus group interviews indicate that the students are ready to collaboratively build the digital library resources as evidenced by students digital library readiness score of 31.4/40.

  6. Optimally cloned binary coherent states

    Science.gov (United States)

    Müller, C. R.; Leuchs, G.; Marquardt, Ch.; Andersen, U. L.

    2017-10-01

    Binary coherent state alphabets can be represented in a two-dimensional Hilbert space. We capitalize this formal connection between the otherwise distinct domains of qubits and continuous variable states to map binary phase-shift keyed coherent states onto the Bloch sphere and to derive their quantum-optimal clones. We analyze the Wigner function and the cumulants of the clones, and we conclude that optimal cloning of binary coherent states requires a nonlinearity above second order. We propose several practical and near-optimal cloning schemes and compare their cloning fidelity to the optimal cloner.

  7. Coherent Coupled Qubits for Quantum Annealing

    Science.gov (United States)

    Weber, Steven J.; Samach, Gabriel O.; Hover, David; Gustavsson, Simon; Kim, David K.; Melville, Alexander; Rosenberg, Danna; Sears, Adam P.; Yan, Fei; Yoder, Jonilyn L.; Oliver, William D.; Kerman, Andrew J.

    2017-07-01

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times limited primarily by the use of large persistent currents Ip. Here, we examine an alternative approach using qubits with smaller Ip and longer coherence times. We demonstrate tunable coupling, a basic building block for quantum annealing, between two flux qubits with small (approximately 50-nA) persistent currents. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence.

  8. NASA Technology Readiness Level Definitions

    Science.gov (United States)

    Mcnamara, Karen M.

    2012-01-01

    This presentation will cover the basic Technology Readiness Level (TRL) definitions used by the National Aeronautics and Space Administration (NASA) and their specific wording. We will discuss how they are used in the NASA Project Life Cycle and their effectiveness in practice. We'll also discuss the recent efforts by the International Standards Organization (ISO) to develop a broadly acceptable set of TRL definitions for the international space community and some of the issues brought to light. This information will provide input for further discussion of the use of the TRL scale in manufacturing.

  9. Special relativity effects for space-based coherent lidar experiments

    Science.gov (United States)

    Raogudimetla, V. S.

    1994-01-01

    There is a great need to develop a system that can measure accurately atmospheric wind profiles because an accurate data of wind profiles in the atmosphere constitutes single most input for reliable simulations of global climate numerical methods. Also such data helps us understand atmospheric circulation and climate dynamics better. Because of this need for accurate wind measurements, a space-based Laser Atmospheric Winds Sounder (LAWS) is being designed at MSFC to measure wind profiles in the lower atmosphere of the earth with an accuracy of 1 m/s at lower altitudes to 5m/s at higher altitudes. This system uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and received frequencies to estimate the atmospheric wind velocities. If a significant return from the ground (sea) is possible, the spacecraft speed and height are estimated from it and these results and the Doppler shift are then used to estimate the wind velocities in the atmosphere. It is expected that at the proposed wavelengths, there will be enough backscatter from the aerosols but there may no be significant return from the ground. So a coherent (heterodyne) detection system is being proposed for signal processing because it can provide high signal to noise ratio and sensitivity and thus make the best use of low ground return. However, for a heterodyne detection scheme to provide the best results, it is important that the receiving aperture be aligned properly for the proposed wind sounder, this amounts to only a few microradians tolerance in alignment. It is suspected that the satellite motion relative to the ground may introduce errors in the order of a few microradians because of special relativity. Hence, the problem of laser scattering off a moving fixed target when the source and receiver are moving, which was not treated in the past in the literature, was analyzed in the following, using relativistic electrodynamics and applied to the

  10. STS-114: Discovery Launch Readiness Press Conference

    Science.gov (United States)

    2005-01-01

    Michael Griffin, NASA Administrator; Wayne Hale, Space Shuttle Deputy Program Manager; Mike Wetmore, Director of Shuttle Processing; and 1st Lieutenant Mindy Chavez, Launch Weather Officer-United States Air Force 45th Weather Squadron are in attendance for this STS-114 Discovery launch readiness press conference. The discussion begins with Wayne Hale bringing to the table a low level sensor device for everyone to view. He talks in detail about all of the extensive tests that were performed on these sensors and the completion of these ambient tests. Chavez presents her weather forecast for the launch day of July 26th 2005. Michael Griffin and Wayne Hale answer questions from the news media pertaining to the sensors and launch readiness. The video ends with footage of Pilot Jim Kelly and Commander Eileen Collins conducting test flights in a Shuttle Training Aircraft (STA) that simulates Space Shuttle landing.

  11. EG&G Florida, Inc., KSC base operations contractor Launch Readiness Assessment System

    Science.gov (United States)

    Geaslen, W. D.

    1988-01-01

    A computerized Launch Readiness Assessment System (LRAS) which compares 'current status' of readiness against the 'required status' of readiness for the Space Shuttle. The five subsystems of the LRAS are examined in detail. The LRAS Plan specifies the overall system requirements, procedures, and reports. The LRAS Manager drives the operation of the LRAS system. The Responding Units (RU) maintain support plans and procedures which specify the detail requirements for each mission or milestone. The Master Data Tables contain the milestone, responsible RU relationships, and requirements assessment categories. The LRAS Status System serves as the launch readiness assessment reporting system. The relationships between these subsystems are displayed in diagrams.

  12. Coherent states in quaternionic quantum mechanics

    International Nuclear Information System (INIS)

    Adler, S.L.; Millard, A.C.

    1997-01-01

    We develop Perelomov close-quote s coherent states formalism to include the case of a quaternionic Hilbert space. We find that, because of the closure requirement, an attempted quaternionic generalization of the special nilpotent or Weyl group reduces to the normal complex case. For the case of the compact group SU(2), however, coherent states can be formulated using the quaternionic half-integer spin matrices of Finkelstein, Jauch, and Speiser, giving a nontrivial quaternionic analog of coherent states. copyright 1997 American Institute of Physics

  13. Process operational readiness and operational readiness follow-on

    International Nuclear Information System (INIS)

    Nertney, R.J.

    1992-11-01

    The first document in the System Safety Development Center (SSDC) series deals with the subject of Occupancy-Use Readiness. The material included in that manual provided the basis for development of the SSDC workshop in Operational Readiness. The original Occupancy Readiness Manual, however, deals only generally with the subject of process safety; i.e., the safety of overall ''processes'' such as solar collection systems, nuclear reactors, and coal fired electrical plants. The manual also fails to detail the considerations involved in maintaining the state of readiness on a continuing basis. Both of the latter subjects are dealt with in some detail in the SSDC's Operational Readiness Workshop. The purpose of this document is to provide additional documentary material dealing with subjects introduced in SSDC-1 Occupancy-Use Readiness Manual, and SSDC-12, Safety Considerations in Evaluation of Maintenance Programs. In augmenting SSDC-1, Part I of this manual provides additional material related to process safety; in the case of SSDC-12, the subject of safety considerations in evaluation of maintenance programs is broadened in Part II to include maintenance of personnel systems and procedural systems as well as hardware. ''Maintenance'' is related more directly to the concept of operational readiness and an alternative analytical tree is provided for hardware maintenance program evaluation

  14. Practical somewhat-secure quantum somewhat-homomorphic encryption with coherent states

    Science.gov (United States)

    Tan, Si-Hui; Ouyang, Yingkai; Rohde, Peter P.

    2018-04-01

    We present a scheme for implementing homomorphic encryption on coherent states encoded using phase-shift keys. The encryption operations require only rotations in phase space, which commute with computations in the code space performed via passive linear optics, and with generalized nonlinear phase operations that are polynomials of the photon-number operator in the code space. This encoding scheme can thus be applied to any computation with coherent-state inputs, and the computation proceeds via a combination of passive linear optics and generalized nonlinear phase operations. An example of such a computation is matrix multiplication, whereby a vector representing coherent-state amplitudes is multiplied by a matrix representing a linear optics network, yielding a new vector of coherent-state amplitudes. By finding an orthogonal partitioning of the support of our encoded states, we quantify the security of our scheme via the indistinguishability of the encrypted code words. While we focus on coherent-state encodings, we expect that this phase-key encoding technique could apply to any continuous-variable computation scheme where the phase-shift operator commutes with the computation.

  15. Coherent spectroscopies on ultrashort time and length scales

    Directory of Open Access Journals (Sweden)

    Schneider C.

    2013-03-01

    Full Text Available Three spectroscopic techniques are presented that provide simultaneous spatial and temporal resolution: modified confocal microscopy with heterodyne detection, space-time-resolved spectroscopy using coherent control concepts, and coherent two-dimensional nano-spectroscopy. Latest experimental results are discussed.

  16. Earned Value Management Considering Technical Readiness Level and Its Application to New Space Launcher Program

    Science.gov (United States)

    Choi, Young-In; Ahn, Jaemyung

    2018-04-01

    Earned value management (EVM) is a methodology for monitoring and controlling the performance of a project based on a comparison between planned and actual cost/schedule. This study proposes a concept of hybrid earned value management (H-EVM) that integrates the traditional EVM metrics with information on the technology readiness level. The proposed concept can reflect the progress of a project in a sensitive way and provides short-term perspective complementary to the traditional EVM metrics. A two-dimensional visualization on the cost/schedule status of a project reflecting both of the traditional EVM (long-term perspective) and the proposed H-EVM (short-term perspective) indices is introduced. A case study on the management of a new space launch vehicle development program is conducted to demonstrate the effectiveness of the proposed H-EVM concept, associated metrics, and the visualization technique.

  17. Particularities of Speech Readiness for Schooling in Pre-School Children Having General Speech Underdevelopment: A Social and Pedagogical Aspect

    Science.gov (United States)

    Emelyanova, Irina A.; Borisova, Elena A.; Shapovalova, Olga E.; Karynbaeva, Olga V.; Vorotilkina, Irina M.

    2018-01-01

    The relevance of the research is due to the necessity of creating the pedagogical conditions for correction and development of speech in children having the general speech underdevelopment. For them, difficulties generating a coherent utterance are characteristic, which prevents a sufficient speech readiness for schooling forming in them as well…

  18. A coherent free space optical link for long distance clock comparison, navigation, and communication: The Mini-Doll project

    Science.gov (United States)

    Djerroud, K.; Samain, E.; Clairon, A.; Acef, O.; Man, N.; Lemonde, P.; Wolf, P.

    2017-11-01

    We describe the realization of a 5 km free space coherent optical link through the turbulent atmosphere between a telescope and a ground target. We present the phase noise of the link, limited mainly by atmospheric turbulence and mechanical vibrations of the telescope and the target. We discuss the implications of our results for applications, with particular emphasis on optical Doppler ranging to satellites and long distance frequency transfer.

  19. Symmetric discrete coherent states for n-qubits

    International Nuclear Information System (INIS)

    Muñoz, C; Klimov, A B; Sánchez-Soto, L L

    2012-01-01

    We put forward a method of constructing discrete coherent states for n qubits. After establishing appropriate displacement operators, the coherent states appear as displaced versions of a fiducial vector that is fixed by imposing a number of natural symmetry requirements on its Q-function. Using these coherent states, we establish a partial order in the discrete phase space, which allows us to picture some n-qubit states as apparent distributions. We also analyze correlations in terms of sums of squared Q-functions. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  20. Complexified coherent states and quantum evolution with non-Hermitian Hamiltonians

    International Nuclear Information System (INIS)

    Graefe, Eva-Maria; Schubert, Roman

    2012-01-01

    The complex geometry underlying the Schrödinger dynamics of coherent states for non-Hermitian Hamiltonians is investigated. In particular, two seemingly contradictory approaches are compared: (i) a complex WKB formalism, for which the centres of coherent states naturally evolve along complex trajectories, which leads to a class of complexified coherent states; (ii) the investigation of the dynamical equations for the real expectation values of position and momentum, for which an Ehrenfest theorem has been derived in a previous paper, yielding real but non-Hamiltonian classical dynamics on phase space for the real centres of coherent states. Both approaches become exact for quadratic Hamiltonians. The apparent contradiction is resolved building on an observation by Huber, Heller and Littlejohn, that complexified coherent states are equivalent if their centres lie on a specific complex Lagrangian manifold. A rich underlying complex symplectic geometry is unravelled. In particular, a natural complex structure is identified that defines a projection from complex to real phase space, mapping complexified coherent states to their real equivalents. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  1. Search and Coherence-Building in Intuition and Insight Problem Solving

    Directory of Open Access Journals (Sweden)

    Michael Öllinger

    2017-05-01

    Full Text Available Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.

  2. Managing coherence via put/get windows

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  3. Managing coherence via put/get windows

    Science.gov (United States)

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton on Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Yorktown Heights, NY

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  4. Coherent State Quantization and Moment Problem

    Directory of Open Access Journals (Sweden)

    J. P. Gazeau

    2010-01-01

    Full Text Available Berezin-Klauder-Toeplitz (“anti-Wick” or “coherent state” quantization of the complex plane, viewed as the phase space of a particle moving on the line, is derived from the resolution of the unity provided by the standard (or gaussian coherent states. The construction of these states and their attractive properties are essentially based on the energy spectrum of the harmonic oscillator, that is on natural numbers. We follow in this work the same path by considering sequences of non-negative numbers and their associated “non-linear” coherent states. We illustrate our approach with the 2-d motion of a charged particle in a uniform magnetic field. By solving the involved Stieltjes moment problem we construct a family of coherent states for this model. We then proceed with the corresponding coherent state quantization and we show that this procedure takes into account the circle topology of the classical motion.

  5. Safe, Healthy and Ready to Succeed: Arizona School Readiness Key Performance Indicators

    Science.gov (United States)

    Migliore, Donna E.

    2006-01-01

    "Safe, Healthy and Ready to Succeed: Arizona School Readiness Key Performance Indicators" presents a set of baseline measurements that gauge how well a statewide system of school readiness supports is addressing issues that affect Arizona children's readiness for school. The Key Performance Indicators (KPIs) measure the system, rather…

  6. Coherent states of general time-dependent harmonic oscillator

    Indian Academy of Sciences (India)

    Abstract. By introducing an invariant operator, we obtain exact wave functions for a general time-dependent quadratic harmonic oscillator. The coherent states, both in x- and p-spaces, are calculated. We confirm that the uncertainty product in coherent state is always larger than Η/2 and is equal to the minimum of the ...

  7. Coherent Waves in Seismic Researches

    Science.gov (United States)

    Emanov, A.; Seleznev, V. S.

    2013-05-01

    Development of digital processing algorithms of seismic wave fields for the purpose of useful event picking to study environment and other objects is the basis for the establishment of new seismic techniques. In the submitted paper a fundamental property of seismic wave field coherence is used. The authors extended conception of coherence types of observed wave fields and devised a technique of coherent component selection from observed wave field. Time coherence and space coherence are widely known. In this paper conception "parameter coherence" has been added. The parameter by which wave field is coherent can be the most manifold. The reason is that the wave field is a multivariate process described by a set of parameters. Coherence in the first place means independence of linear connection in wave field of parameter. In seismic wave fields, recorded in confined space, in building-blocks and stratified mediums time coherent standing waves are formed. In prospecting seismology at observation systems with multiple overlapping head waves are coherent by parallel correlation course or, in other words, by one measurement on generalized plane of observation system. For detail prospecting seismology at observation systems with multiple overlapping on basis of coherence property by one measurement of area algorithms have been developed, permitting seismic records to be converted to head wave time sections which have neither reflected nor other types of waves. Conversion in time section is executed on any specified observation base. Energy storage of head waves relative to noise on basis of multiplicity of observation system is realized within area of head wave recording. Conversion on base below the area of wave tracking is performed with lack of signal/noise ratio relative to maximum of this ratio, fit to observation system. Construction of head wave time section and dynamic plots a basis of automatic processing have been developed, similar to CDP procedure in method of

  8. Self-consistency and coherent effects in nonlinear resonances

    International Nuclear Information System (INIS)

    Hofmann, I.; Franchetti, G.; Qiang, J.; Ryne, R. D.

    2003-01-01

    The influence of space charge on emittance growth is studied in simulations of a coasting beam exposed to a strong octupolar perturbation in an otherwise linear lattice, and under stationary parameters. We explore the importance of self-consistency by comparing results with a non-self-consistent model, where the space charge electric field is kept 'frozen-in' to its initial values. For Gaussian distribution functions we find that the 'frozen-in' model results in a good approximation of the self-consistent model, hence coherent response is practically absent and the emittance growth is self-limiting due to space charge de-tuning. For KV or waterbag distributions, instead, strong coherent response is found, which we explain in terms of absence of Landau damping

  9. Organisational readiness: exploring the preconditions for success in organisation-wide patient safety improvement programmes.

    Science.gov (United States)

    Burnett, Susan; Benn, Jonathan; Pinto, Anna; Parand, Anam; Iskander, Sandra; Vincent, Charles

    2010-08-01

    Patient safety has been high on the agenda for more than a decade. Despite many national initiatives aimed at improving patient safety, the challenge remains to find coherent and sustainable organisation-wide safety-improvement programmes. In the UK, the Safer Patients' Initiative (SPI) was established to address this challenge. Important in the success of such an endeavour is understanding 'readiness' at the organisational level, identifying the preconditions for success in this type of programme. This article reports on a case study of the four NHS organisations participating in the first phase of SPI, examining the perceptions of organisational readiness and the relationship of these factors with impact by those actively involved in the initiative. A mixed-methods design was used, involving a survey and semistructured interviews with senior executive leads, the principal SPI programme coordinator and the four operational leads in each of the SPI clinical work areas in all four organisations taking part in the first phase of SPI. This preliminary work would suggest that prior to the start of organisation-wide quality- and safety-improvement programmes, organisations would benefit from an assessment of readiness with time spent in the preparation of the organisational infrastructure, processes and culture. Furthermore, a better understanding of the preconditions that mark an organisation as ready for improvement work would allow policymakers to set realistic expectations about the outcomes of safety campaigns.

  10. Using nonlocal coherence to quantify quantum correlation

    OpenAIRE

    Pei, Pei; Wang, Wei; Li, Chong; Song, He-Shan

    2010-01-01

    We reexamine quantum correlation from the fundamental perspective of its consanguineous quantum property, the coherence. We emphasize the importance of specifying the tensor product structure of the total state space before discussing quantum correlation. A measure of quantum correlation for arbitrary dimension bipartite states using nonlocal coherence is proposed, and it can be easily generalized to the multipartite case. The quantification of non-entangled component within quantum correlati...

  11. Coherent error study in a retarding field energy analyzer

    International Nuclear Information System (INIS)

    Cui, Y.; Zou, Y.; Reiser, M.; Kishek, R.A.; Haber, I.; Bernal, S.; O'Shea, P.G.

    2005-01-01

    A novel cylindrical retarding electrostatic field energy analyzer for low-energy beams has been designed, simulated, and tested with electron beams of several keV, in which space charge effects play an important role. A cylindrical focusing electrode is used to overcome the beam expansion inside the device due to space-charge forces, beam emittance, etc. In this paper, we present the coherent error analysis for this energy analyzer with beam envelope equation including space charge and emittance effects. The study shows that this energy analyzer can achieve very high resolution (with relative error of around 10 -5 ) if taking away the coherent errors by using proper focusing voltages. The theoretical analysis is compared with experimental results

  12. Proof of an entropy conjecture for Bloch coherent spin states and its generalizations

    DEFF Research Database (Denmark)

    H. Lieb, Elliott; Solovej, Jan Philip

    2014-01-01

    Wehrl used Glauber coherent states to define a map from quantum density matrices to classical phase space densities and conjectured that for Glauber coherent states the mininimum classical entropy would occur for density matrices equal to projectors onto coherent states. This was proved by Lieb...

  13. Ready or Not...? Teen Sexuality and the Troubling Discourse of Readiness

    Science.gov (United States)

    Ashcraft, Catherine

    2006-01-01

    In this article, I explore how talk about being "ready" or "not ready" for sex shapes teen and adult understandings of sexuality. I argue that this "discourse of readiness" poses serious threats to teens' identity development, sexual decision making, and educators efforts to help them through these processes. To illustrate, I draw from my…

  14. Generalization of fewest-switches surface hopping for coherences

    Science.gov (United States)

    Tempelaar, Roel; Reichman, David R.

    2018-03-01

    Fewest-switches surface hopping (FSSH) is perhaps the most widely used mixed quantum-classical approach for the modeling of non-adiabatic processes, but its original formulation is restricted to (adiabatic) population terms of the quantum density matrix, leaving its implementations with an inconsistency in the treatment of populations and coherences. In this article, we propose a generalization of FSSH that treats both coherence and population terms on equal footing and which formally reduces to the conventional FSSH algorithm for the case of populations. This approach, coherent fewest-switches surface hopping (C-FSSH), employs a decoupling of population relaxation and pure dephasing and involves two replicas of the classical trajectories interacting with two active surfaces. Through extensive benchmark calculations of a spin-boson model involving a Debye spectral density, we demonstrate the potential of C-FSSH to deliver highly accurate results for a large region of parameter space. Its uniform description of populations and coherences is found to resolve incorrect behavior observed for conventional FSSH in various cases, in particular at low temperature, while the parameter space regions where it breaks down are shown to be quite limited. Its computational expenses are virtually identical to conventional FSSH.

  15. Hilbert W*-modules and coherent states

    International Nuclear Information System (INIS)

    Bhattacharyya, T; Roy, S Shyam

    2012-01-01

    Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  16. Characterising the large coherence length at diamond’s beamline I13L

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, U. H., E-mail: ulrich.wagner@diamond.ac.uk; Parsons, A. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Rahomaki, J.; Vogt, U. [KTH Royal Institute of Technology, Stockholm, Sweden, SE-100 44 (Sweden); Rau, C. [Diamond Light Source Ltd, Didcot, UK, OX11 0DE (United Kingdom); Northwestern University, Chicago, IL 60611-3008 (United States)

    2016-07-27

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  17. Characterising the large coherence length at diamond’s beamline I13L

    International Nuclear Information System (INIS)

    Wagner, U. H.; Parsons, A.; Rahomaki, J.; Vogt, U.; Rau, C.

    2016-01-01

    I13 is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques [1]. An outstanding feature of the coherence branch, due to its length and a new generation of ultra-stable beamline instrumentation [2], is its capability of delivering a very large coherence length well beyond 200 μm, providing opportunities for unique x-ray optical experiments. In this paper we discuss the challenges of measuring a large coherence length and present quantitative measurement based on analyzing diffraction patterns from a boron fiber [3]. We also discuss the limitations of this classical method in respect to detector performance, very short and long coherence lengths. Furthermore we demonstrate how a Ronchi grating setup [4] can be used to quickly establish if the beam is coherent over a large area.

  18. Spectral coherent combination of ultrashort pulses

    International Nuclear Information System (INIS)

    Ursescu, D.; Banici, R.; Ionel, L.; Rusen, L.; Sandel, S.; Blanaru, C.

    2010-01-01

    Complete text of publication follows. The coherent beam combination was chosen in several laser systems, including ELI, as a solution to increase the final attainable intensity. However, the coherent beam combination it is also a difficult technique while it has to combine coherently in space and in time several beams amplified in different laser chains. That means in particular that the beams should be in phase in every point of the amplified beam so the spatial beam profiling techniques have to be mastered with high accuracy for all the combined beams. Here it is proposed an alternative coherent beam combination than the use of identical ultrashort pulses. The idea is to spectrally combine laser pulses with complementary spectra. Collinear and non-collinear approaches have been modelled. Ongoing experimental development, including the demonstration of the rephasing for two spectrally complementary ultrashort pulses will be presented. Acknowledgements. The research leading to these results has received funding from the EC's Seventh Framework Programme (LASERLAB-EUROPE, grant agreement no. 228334).

  19. Coherent synchrotron radiation experiments for the LCLS

    International Nuclear Information System (INIS)

    Carlsten, B.E.; Russell, S.J.

    1998-01-01

    The authors describe a coherent synchrotron radiation experiment planned at Los Alamos to support the design of the Linac Coherent Light Source (LCLS) x-ray FEL. Preliminary simulations of the LCLS compressors show that a clever tuning strategy can be used to minimize the electron's beam emittance growth due to noninertial space-charge forces by employing a delicate cancellation of these forces. The purpose of the Los Alamos experiment, using a sub-picosecond chicane compressor, is to benchmark these simulations tools. In this paper, the authors present detailed numerical simulations of the experiment, and point out unique signatures of this effect that are measurable. As predicted previously, the largest emittance growths and induced energy spreads result from the nonradiative components of this space-charge force

  20. Detecting multiple moving objects in crowded environments with coherent motion regions

    Science.gov (United States)

    Cheriyadat, Anil M.; Radke, Richard J.

    2013-06-11

    Coherent motion regions extend in time as well as space, enforcing consistency in detected objects over long time periods and making the algorithm robust to noisy or short point tracks. As a result of enforcing the constraint that selected coherent motion regions contain disjoint sets of tracks defined in a three-dimensional space including a time dimension. An algorithm operates directly on raw, unconditioned low-level feature point tracks, and minimizes a global measure of the coherent motion regions. At least one discrete moving object is identified in a time series of video images based on the trajectory similarity factors, which is a measure of a maximum distance between a pair of feature point tracks.

  1. El Naschie's coherence on the subquantum medium

    International Nuclear Information System (INIS)

    Agop, M.; Ioannou, P.D.; Nica, P.; Galusca, G.; Stefan, M.

    2005-01-01

    In the hydrodynamic formulation of the Scale Relativity theory one shows that a stable vortices distribution of bipolaron type induces superconducting pairs by means of the quantum potential. One builds the superconducting fractal by an iterated map and demonstrates that the superconducting pairs results as projections of this fractal. Thus, usual mechanisms (as example the exchange interaction used in the bipolaron theory) are reduced to the coherence on the subquantum medium in a ε (∞) space (El Naschie's coherence)

  2. On phase-space representations of quantum mechanics using

    Indian Academy of Sciences (India)

    space representations of quantum mechanics using Glauber coherent states. DIÓGENES CAMPOS. Research Article Volume 87 Issue 2 August ... Keywords. Phase-space quantum mechanics, coherent states, Husimi function, Wigner function ...

  3. Generalized coherent states for the Coulomb problem in one dimension

    International Nuclear Information System (INIS)

    Nouri, S.

    2002-01-01

    A set of generalized coherent states for the one-dimensional Coulomb problem in coordinate representation is constructed. At first, we obtain a mapping for proper transformation of the one-dimensional Coulomb problem into a nonrotating four-dimensional isotropic harmonic oscillator in the hyperspherical space, and the generalized coherent states for the one-dimensional Coulomb problem is then obtained in exact closed form. This exactly soluble model can provide an adequate means for a quantum coherency description of the Coulomb problem in one dimension, sample for coherent aspects of the exciton model in one-dimension example in high-temperature superconductivity, semiconductors, and polymers. Also, it can be useful for investigating the coherent scattering of the Coulomb particles in one dimension

  4. Brightness and coherence of synchrotron radiation and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, K.J.

    1986-10-01

    The characteristics of synchrotron radiation are reviewed with particular attention to its phase-space properties and coherence. The transition of the simple undulator radiation to more intense, more coherent high-gain free electron lasers, is discussed

  5. Efficient Computation of Coherent Synchrotron Radiation Taking into Account 6D Phase Space Distribution of Emitting Electrons

    International Nuclear Information System (INIS)

    Chubar, O.; Couprie, M.-E.

    2007-01-01

    CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength -- this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use

  6. Technology readiness levels for advanced nuclear fuels and materials development

    Energy Technology Data Exchange (ETDEWEB)

    Carmack, W.J., E-mail: jon.carmack@inl.gov [Idaho National Laboratory, Idaho Falls, ID (United States); Braase, L.A.; Wigeland, R.A. [Idaho National Laboratory, Idaho Falls, ID (United States); Todosow, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-03-15

    Highlights: • Definition of nuclear fuels system technology readiness level. • Identification of evaluation criteria for nuclear fuel system TRLs. • Application of TRLs to fuel systems. - Abstract: The Technology Readiness process quantitatively assesses the maturity of a given technology. The National Aeronautics and Space Administration (NASA) pioneered the process in the 1980s to inform the development and deployment of new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications. It was also adopted by the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is needed to improve the performance and safety of current and advanced reactors, and ultimately close the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the assessment process to advanced fuel development is useful as a management, communication, and tracking tool. This article provides definition of technology readiness levels (TRLs) for nuclear fuel technology as well as selected examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).

  7. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  8. Technology readiness levels for the new millennium program

    Science.gov (United States)

    Moynihan, P. I.; Minning, C. P.; Stocky, J. F.

    2003-01-01

    NASA's New Millennium Program (NMP) seeks to advance space exploration by providing an in-space validating mechanism to verify the maturity of promising advanced technologies that cannot be adequately validated with Earth-based testing alone. In meeting this objective, NMP uses NASA Technology Readiness Levels (TRL) as key indicators of technology advancement and assesses development progress against this generalized metric. By providing an opportunity for in-space validation, NMP can mature a suitable advanced technology from TRL 4 (component and/or breadboard validation in laboratory environment) to a TRL 7 (system prototype demonstrated in an Earth-based space environment). Spaceflight technology comprises a myriad of categories, types, and functions, and as each individual technology emerges, a consistent interpretation of its specific state of technological advancement relative to other technologies is problematic.

  9. Towards testing quantum physics in deep space

    Science.gov (United States)

    Kaltenbaek, Rainer

    2016-07-01

    MAQRO is a proposal for a medium-sized space mission to use the unique environment of deep space in combination with novel developments in space technology and quantum technology to test the foundations of physics. The goal is to perform matter-wave interferometry with dielectric particles of up to 10^{11} atomic mass units and testing for deviations from the predictions of quantum theory. Novel techniques from quantum optomechanics with optically trapped particles are to be used for preparing the test particles for these experiments. The core elements of the instrument are placed outside the spacecraft and insulated from the hot spacecraft via multiple thermal shields allowing to achieve cryogenic temperatures via passive cooling and ultra-high vacuum levels by venting to deep space. In combination with low force-noise microthrusters and inertial sensors, this allows realizing an environment well suited for long coherence times of macroscopic quantum superpositions and long integration times. Since the original proposal in 2010, significant progress has been made in terms of technology development and in refining the instrument design. Based on these new developments, we submitted/will submit updated versions of the MAQRO proposal in 2015 and 2016 in response to Cosmic-Vision calls of ESA for a medium-sized mission. A central goal has been to address and overcome potentially critical issues regarding the readiness of core technologies and to provide realistic concepts for further technology development. We present the progress on the road towards realizing this ground-breaking mission harnessing deep space in novel ways for testing the foundations of physics, a technology pathfinder for macroscopic quantum technology and quantum optomechanics in space.

  10. Coherent lattice vibrations in superconductors

    International Nuclear Information System (INIS)

    Kadin, Alan M.

    2008-01-01

    A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed

  11. Entanglement between total intensity and polarization for pairs of coherent states

    Science.gov (United States)

    Sanchidrián-Vaca, Carlos; Luis, Alfredo

    2018-04-01

    We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.

  12. COHERENT DETECTION FOR SPECTRAL AMPLITUDE-CODED OPTICAL LABEL SWITCHING SYSTEMS

    DEFF Research Database (Denmark)

    Osadchiy, Alexey Vladimirovich; Tafur Monroy, Idelfonso

    2010-01-01

    Coherent detection for spectrally encoded optical labels is proposed and experimentally demonstrated for three label tones spectrally spaced at 1 GHz. The proposed method utilizes a frequency swept local oscillator in a coherent receiver supported by digital signal processing for improved...... flexibility and upgradeability while reducing label detection subsystem complexity as compared with the conventional optical autocorrelation based approaches....

  13. Coherent states for quantum compact groups

    CERN Document Server

    Jurco, B

    1996-01-01

    Coherent states are introduced and their properties are discussed for all simple quantum compact groups. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit and interpret the coherent state as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R--matrix formulation (generalizing this way the q--deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel--Weil construction) are described using the concept of coherent state. The relation between representation theory and non--commutative differential geometry is suggested.}

  14. Generalized hypergeometric coherent states

    International Nuclear Information System (INIS)

    Appl, Thomas; Schiller, Diethard H

    2004-01-01

    We introduce a large class of holomorphic quantum states by choosing their normalization functions to be given by generalized hypergeometric functions. We call them generalized hypergeometric states in general, and generalized hypergeometric coherent states in particular, if they allow a resolution of unity. Depending on the domain of convergence of the generalized hypergeometric functions, we distinguish generalized hypergeometric states on the plane, the open unit disc and the unit circle. All states are eigenstates of suitably defined lowering operators. We then study their photon number statistics and phase properties as revealed by the Husimi and Pegg-Barnett phase distributions. On the basis of the generalized hypergeometric coherent states we introduce new analytic representations of arbitrary quantum states in Bargmann and Hardy spaces as well as generalized hypergeometric Husimi distributions and corresponding phase distributions

  15. Banach spaces of continuous functions as dual spaces

    CERN Document Server

    Dales, H G; Lau, A T -M; Strauss, D

    2016-01-01

    This book gives a coherent account of the theory of Banach spaces and Banach lattices, using the spaces C_0(K) of continuous functions on a locally compact space K as the main example. The study of C_0(K) has been an important area of functional analysis for many years. It gives several new constructions, some involving Boolean rings, of this space as well as many results on the Stonean space of Boolean rings. The book also discusses when Banach spaces of continuous functions are dual spaces and when they are bidual spaces.

  16. Generalized coherent states related to the associated Bessel functions and Morse potential

    International Nuclear Information System (INIS)

    Mojaveri, B; Amiri Faseghandis, S

    2014-01-01

    Using the associated Bessel functions, a shape-invariant Lie algebra spanned by ladder operators plus the identity operator, is realized. The Hilbert space of the associated Bessel functions, representing the Lie algebra, are established and two kinds of generalized coherent states as an appropriate superposition of these functions are constructed. By implying appropriate similarity transformation on the constructed coherent states, the generalized coherent states for the Morse potential are obtained. By considering some statistical characteristics, it is revealed that the constructed coherent states indeed possess nonclassical features, such as squeezing and sub-Poissonian statistics. (paper)

  17. K-dimensional trio coherent states

    International Nuclear Information System (INIS)

    Yi, Hyo Seok; Nguyen, Ba An; Kim, Jaewan

    2004-01-01

    We introduce a novel class of higher-order, three-mode states called K-dimensional trio coherent states. We study their mathematical properties and prove that they form a complete set in a truncated Fock space. We also study their physical content by explicitly showing that they exhibit nonclassical features such as oscillatory number distribution, sub-Poissonian statistics, Cauchy-Schwarz inequality violation and phase-space quantum interferences. Finally, we propose an experimental scheme to realize the state with K = 2 in the quantized vibronic motion of a trapped ion

  18. Spacelab ready for transport to Washington, DC

    Science.gov (United States)

    1998-01-01

    Spacelab is wrapped and ready for transport to the National Air and Space Museum in Washington, DC. Spacelab was designed by the European Space Agency (ESA) for the Space Shuttle program and first flew on STS-9 in November 1983. Its final flight was the STS-90 Neurolab mission in April 1998. A sister module will travel home and be placed on display in Europe. The Spacelab concept of modular experiment racks in a pressurized shirt-sleeve environment made it highly user-friendly and accessible. Numerous experiments conceived by hundreds of scientists on the ground were conducted by flight crews in orbit. Spacelab modules served as on-orbit homes for everything from squirrel monkeys to plant seeds. They supported astronomical as well as Earth observations, for servicing the Hubble Space Telescope and for research preparatory to the International Space Station. One of the greatest benefits afforded by the Spacelab missions was the opportunity to fly a mission more than once, with the second or third flight building on the experiences and data gathered from its predecessors.

  19. A coherent modified Redfield theory for excitation energy transfer in molecular aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hwang-Fu, Yu-Hsien; Chen, Wei; Cheng, Yuan-Chung, E-mail: yuanchung@ntu.edu.tw

    2015-02-02

    Highlights: • A CMRT method for coherent energy transfer in molecular aggregates was developed. • Applicability of the method was verified in two-site systems with various parameters. • CMRT accurately describes population dynamics in the FMO-complex. • The method is accurate in a large parameter space and computationally efficient. - Abstract: Excitation energy transfer (EET) is crucial in photosynthetic light harvesting, and quantum coherence has been recently proven to be a ubiquitous phenomenon in photosynthetic EET. In this work, we derive a coherent modified Redfield theory (CMRT) that generalizes the modified Redfield theory to treat coherence dynamics. We apply the CMRT method to simulate the EET in a dimer system and compare the results with those obtained from numerically exact path integral calculations. The comparison shows that CMRT provides excellent computational efficiency and accuracy within a large EET parameter space. Furthermore, we simulate the EET dynamics in the FMO complex at 77 K using CMRT. The results show pronounced non-Markovian effects and long-lasting coherences in the ultrafast EET, in excellent agreement with calculations using the hierarchy equation of motion approach. In summary, we have successfully developed a simple yet powerful framework for coherent EET dynamics in photosynthetic systems and organic materials.

  20. Coherent states for quantum compact groups

    International Nuclear Information System (INIS)

    Jurco, B.; Stovicek, P.; CTU, Prague

    1996-01-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l , B l , C l and D l . The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  1. Wigner function and tomogram of the pair coherent state

    International Nuclear Information System (INIS)

    Meng, Xiang-Guo; Wang, Ji-Suo; Fan, Hong-Yi

    2007-01-01

    Using the entangled state representation of Wigner operator and the technique of integration within an ordered product (IWOP) of operators, the Wigner function of the pair coherent state is derived. The variations of the Wigner function with the parameters α and q in the ρ-γ phase space are discussed. The physical meaning of the Wigner function for the pair coherent state is given by virtue of its marginal distributions. The tomogram of the pair coherent state is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 ,η 2 ,τ 1 ,τ 2 >

  2. Coherence in quantum estimation

    Science.gov (United States)

    Giorda, Paolo; Allegra, Michele

    2018-01-01

    The geometry of quantum states provides a unifying framework for estimation processes based on quantum probes, and it establishes the ultimate bounds of the achievable precision. We show a relation between the statistical distance between infinitesimally close quantum states and the second order variation of the coherence of the optimal measurement basis with respect to the state of the probe. In quantum phase estimation protocols, this leads to propose coherence as the relevant resource that one has to engineer and control to optimize the estimation precision. Furthermore, the main object of the theory i.e. the symmetric logarithmic derivative, in many cases allows one to identify a proper factorization of the whole Hilbert space in two subsystems. The factorization allows one to discuss the role of coherence versus correlations in estimation protocols; to show how certain estimation processes can be completely or effectively described within a single-qubit subsystem; and to derive lower bounds for the scaling of the estimation precision with the number of probes used. We illustrate how the framework works for both noiseless and noisy estimation procedures, in particular those based on multi-qubit GHZ-states. Finally we succinctly analyze estimation protocols based on zero-temperature critical behavior. We identify the coherence that is at the heart of their efficiency, and we show how it exhibits the non-analyticities and scaling behavior proper of a large class of quantum phase transitions.

  3. The concept of readiness to change.

    Science.gov (United States)

    Dalton, Cindy C; Gottlieb, Laurie N

    2003-04-01

    Readiness is associated with change, yet there is little understanding of this construct. The purpose of this study was to examine readiness; its referents, associated factors and the resulting consequences. In the course of nursing five clients living with multiple sclerosis over a 7-month period using a Reflective Practice Model, data were systematically gathered using open-ended and then more focused questioning. Data collected during 42 client encounters (28 face-to-face encounters; 14 telephone contacts) were analysed using Chinn and Kramer's concept analysis technique. Findings. The concept of readiness was inductively derived. Readiness is both a state and a process. Before clients can create change they need to become ready to change. A number of factors trigger readiness. These include when: (a) clients perceive that a health concern is not going to resolve, (b) a change in a client's physical condition takes on new significance, (c) clients feel better able to manage their stress, (d) clients have sufficient energy, (e) clients perceive that they have adequate support in undertaking change. When one or more of these factors is present clients become ready to consider change. The process of readiness involves recognizing the need to change, weighing the costs and benefits and, when benefits outweigh costs, planning for change. The desire to change and to take action determines clients' degree of readiness. When they experience a high degree of readiness they report less anger, less depression, and view their condition in a more positive light. In contrast, when they experience a low degree of readiness they report feeling depressed, afraid and vulnerable in the face of change. Nursing has an important role to play in creating conditions to support change. To fulfil this role, nurses need to be able to assess readiness for change and the factors that enable it and then to intervene in ways that facilitate readiness.

  4. Practical free space quantum cryptography

    International Nuclear Information System (INIS)

    Schmitt-Manderbach, T.; Weier, H.; Regner, N.; Kurtsiefer, C.; Weinfurter, H.

    2005-01-01

    Full text: Quantum cryptography, the secure key distribution between two parties, is the first practical application of quantum information technology. By encoding digital information into different polarization states of single photons, a string of key bits can be established between two parties, where laws of quantum mechanics ensure that a possible eavesdropper has negligible knowledge of. Having shown the feasibility of a long distance quantum key distribution scheme, the emphasis of this work is to incorporate the previously developed compact sender and receiver modules into a quantum cryptography system suitable for every-day use in metropolitan areas. The permanent installation with automatic alignment allows to investigate in detail the sensitivity of the free space optical link to weather conditions and air turbulences commonly encountered in urban areas. We report on a successful free space quantum cryptography experiment over a distance of 500 m between the rooftops of two university buildings using the BB84 protocol. The obtained bit error rates in first runs of this experiment using faint coherent pulses with an average photon number ranging from 0.1 to 1.0 was measured to be below 3 percent for experiments carried out during night, leading to average raw key rates (before error correction and privacy amplification) of 50 kBits per second. Thanks to its simplicity of implementation, our experiment brings free space quantum key distribution a big step closer to practical usability in metropolitan networks and on a level with fibre-based quantum cryptography that up to now offers the only ready-to-use systems available. Compact and automated free space hardware is also a prerequisite for a possible earth-satellite quantum key distribution system in order to break the distance limit of about 100 km of current quantum cryptography schemes. (author)

  5. Coherent states for quantum compact groups

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, B. [European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.; Stovicek, P. [Ceske Vysoke Uceni Technicke, Prague (Czech Republic). Dept. of Mathematics]|[CTU, Prague (Czech Republic). Doppler Inst.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A{sub l}, B{sub l}, C{sub l} and D{sub l}. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested. (orig.)

  6. Subpicosecond Coherent Manipulation of X-Rays

    International Nuclear Information System (INIS)

    Adams, Bernhard W.

    2004-01-01

    The Takagi-Taupin theory is synthesized with the eikonal theory in a unified space-time approach, based upon microscopic electromagnetism. It is designed specifically to address x-ray diffraction in crystal structures being modified within down to a few femtosconds. Possible applications in the subpicosecond coherent manipulation of x-rays are given

  7. Nonlinear dynamics of semiclassical coherent states in periodic potentials

    International Nuclear Information System (INIS)

    Carles, Rémi; Sparber, Christof

    2012-01-01

    We consider nonlinear Schrödinger equations with either local or nonlocal nonlinearities. In addition, we include periodic potentials as used, for example, in matter wave experiments in optical lattices. By considering the corresponding semiclassical scaling regime, we construct asymptotic solutions, which are concentrated both in space and in frequency around the effective semiclassical phase-space flow induced by Bloch’s spectral problem. The dynamics of these generalized coherent states is governed by a nonlinear Schrödinger model with effective mass. In the case of nonlocal nonlinearities, we establish a novel averaging-type result in the critical case. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)

  8. SAR image effects on coherence and coherence estimation.

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, Douglas Lloyd

    2014-01-01

    Radar coherence is an important concept for imaging radar systems such as synthetic aperture radar (SAR). This document quantifies some of the effects in SAR which modify the coherence. Although these effects can disrupt the coherence within a single SAR image, this report will focus on the coherence between separate images, such as for coherent change detection (CCD) processing. There have been other presentations on aspects of this material in the past. The intent of this report is to bring various issues that affect the coherence together in a single report to support radar engineers in making decisions about these matters.

  9. Measurement of Spatial Coherence of Light Propagating in a Turbulent Atmosphere

    Directory of Open Access Journals (Sweden)

    P. Barcik

    2013-04-01

    Full Text Available A lot of issues have to be taken into account when designing a reliable free space optical communication link. Among these are e.g.,beam wander, fluctuation of optical intensity and loss of spatial coherence that are caused by atmospheric turbulence. This paper presents experimental measurements of spatial coherence of a laser beam. The experimental setup is based on Young's double pinhole experiment. Fringe patterns under atmospheric turbulence for four different pinhole separations are presented. From these fringe patterns, visibility is determined and the coherence radius is estimated.

  10. Career Readiness: Has Its Time Finally Come?

    Science.gov (United States)

    DeWitt, Stephen

    2012-01-01

    In 2010, the Association for Career and Technical Education (ACTE) released a "What Is Career Ready?" definition. As the career-readiness definition explains, there is much overlap between "college readiness" and "career readiness," but academic preparedness for college alone is not enough to be truly career-ready.…

  11. Definition of Technology Readiness Levels for Transmutation Fuel Development

    International Nuclear Information System (INIS)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01

    To quantitatively assess the maturity of a given technology, the Technology Readiness Level (TRL) process is used. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Transmutation fuel development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the transmutation fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Transuranic Fuel Development Campaign

  12. A group property for the coherent state representation of fermionic squeezing operators

    Science.gov (United States)

    Fan, Hong-yi; Li, Chao

    2004-06-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation.

  13. A group property for the coherent state representation of fermionic squeezing operators

    International Nuclear Information System (INIS)

    Fan Hongyi; Li Chao

    2004-01-01

    For the two-mode fermionic squeezing operators we find that their coherent state projection operator representation make up a loyal representation, which is homomorphic to an SO(4) group, though the fermionic coherent states are not mutual orthogonal. Thus the result of successively operating with many fermionic squeezing operators on a state can be equivalent to a single operation. The fermionic squeezing operators are mappings of orthogonal transformations in Grassmann number pseudo-classical space in the fermionic coherent state representation

  14. Coherent combination of ultrafast fiber amplifiers

    International Nuclear Information System (INIS)

    Hanna, Marc; Guichard, Florent; Druon, Frédéric; Georges, Patrick; Zaouter, Yoann; Papadopoulos, Dimitris N

    2016-01-01

    We review recent progress in coherent combining of femtosecond pulses amplified in optical fibers as a way to scale the peak and average power of ultrafast sources. Different methods of achieving coherent pulse addition in space (beam combining) and time (divided pulse amplification) domains are described. These architectures can be widely classified into active methods, where the relative phases between pulses are subject to a servomechanism, and passive methods, where phase matching is inherent to the geometry. Other experiments that combine pulses with different spectral contents, pulses that have been nonlinearly broadened or successive pulses from a mode-locked laser oscillator, are then presented. All these techniques allow access to unprecedented parameter range for fiber ultrafast sources. (topical review)

  15. Maintenance-Ready Web Application Development

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2016-01-01

    Full Text Available The current paper tackles the subject of developing maintenance-ready web applications. Maintenance is presented as a core stage in a web application’s lifecycle. The concept of maintenance-ready is defined in the context of web application development. Web application maintenance tasks types are enunciated and suitable task types are identified for further analysis. The research hypothesis is formulated based on a direct link between tackling maintenance in the development stage and reducing overall maintenance costs. A live maintenance-ready web application is presented and maintenance related aspects are highlighted. The web application’s features, that render it maintenance-ready, are emphasize. The cost of designing and building the web-application to be maintenance-ready are disclosed. The savings in maintenance development effort facilitated by maintenance ready features are also disclosed. Maintenance data is collected from 40 projects implemented by a web development company. Homogeneity and diversity of collected data is evaluated. A data sample is presented and the size and comprehensive nature of the entire dataset is depicted. Research hypothesis are validated and conclusions are formulated on the topic of developing maintenance-ready web applications. The limits of the research process which represented the basis for the current paper are enunciated. Future research topics are submitted for debate.

  16. Stochasticity induced by coherent wavepackets

    International Nuclear Information System (INIS)

    Fuchs, V.; Krapchev, V.; Ram, A.; Bers, A.

    1983-02-01

    We consider the momentum transfer and diffusion of electrons periodically interacting with a coherent longitudinal wavepacket. Such a problem arises, for example, in lower-hybrid current drive. We establish the stochastic threshold, the stochastic region δv/sub stoch/ in velocity space, the associated momentum transfer j, and the diffusion coefficient D. We concentrate principally on the weak-field regime, tau/sub autocorrelation/ < tau/sub bounce/

  17. Military Readiness: DODs Readiness Rebuilding Efforts May Be at Risk without a Comprehensive Plan

    Science.gov (United States)

    2016-09-01

    specific elements that are to be in strategic plans. 8Chairman of the Joint Chiefs of Staff Guide 3401D, CJCS Guide to the Chairman’s Readiness ...all its major functions and operations. DOD strategic guidance makes it clear that rebuilding readiness is a priority that supports the... readiness recovery efforts. Evaluations of the plan to monitor goals and objectives Assessments, through objective measurement and systematic

  18. The Diamond Beamline I13L for Imaging and Coherence

    International Nuclear Information System (INIS)

    Rau, C.; Wagner, U.; Peach, A.; Singh, B.; Wilkin, G.; Jones, C.; Robinson, I. K.

    2010-01-01

    I13L is the first long beamline at Diamond dedicated to imaging and coherence. Two independent branches will operate in the energy range of 6-30 keV with spatial resolution on the micro- to nano-lengthscale. The Imaging branch is dedicated to imaging and tomography with In-line phase contrast and full-field microscopy on the micron to nano-length scale. Ultimate resolution will be achieved on the Coherence branch at I13L with imaging techniques in the reciprocal space. The experimental stations will be located about 250 m from the source, taking advantage of the coherence properties of the source. The beamline has some outstanding features such as the mini-beta layout of the storage ring's straight section. The optical layout is optimized for beam stability and high optical quality to preserve the coherent radiation. In the experimental stations several methods will be available, starting for the first user with in-line phase contrast imaging on the imaging branch and Coherent X-ray Diffraction (CXRD) on the coherence branch.

  19. Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

    International Nuclear Information System (INIS)

    Vela-Arevalo, Luz V.; Fox, Ronald F.

    2005-01-01

    A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwave strength and frequency have a great effect in the localization of Floquet states, since quasienergy avoided crossings produce delocalization of the Floquet states, showing that tuning of the parameters is very important. Using wavelet-based time-frequency analysis, the classical phase-space structure is determined, which allows us to show that the driven coherent state is located in a large regular region in which the z coordinate is in resonance with the external field. The expectation values of the wave packet show that the driven coherent state evolves along the classical trajectory

  20. Simulation of space charge effects in a synchrotron

    International Nuclear Information System (INIS)

    Machida, Shinji; Ikegami, Masanori

    1998-01-01

    We have studied space charge effects in a synchrotron with multi-particle tracking in 2-D and 3-D configuration space (4-D and 6-D phase space, respectively). First, we will describe the modelling of space charge fields in the simulation and a procedure of tracking. Several ways of presenting tracking results will be also mentioned. Secondly, it is discussed as a demonstration of the simulation study that coherent modes of a beam play a major role in beam stability and intensity limit. The incoherent tune in a resonance condition should be replaced by the coherent tune. Finally, we consider the coherent motion of a beam core as a driving force of halo formation. The mechanism is familiar in linac, and we apply it in a synchrotron

  1. Solar Ready: An Overview of Implementation Practices

    Energy Technology Data Exchange (ETDEWEB)

    Watson, A.; Guidice, L.; Lisell, L.; Doris, L.; Busche, S.

    2012-01-01

    This report explores three mechanisms for encouraging solar ready building design and construction: solar ready legislation, certification programs for solar ready design and construction, and stakeholder education. These methods are not mutually exclusive, and all, if implemented well, could contribute to more solar ready construction. Solar ready itself does not reduce energy use or create clean energy. Nevertheless, solar ready building practices are needed to reach the full potential of solar deployment. Without forethought on incorporating solar into design, buildings may be incompatible with solar due to roof structure or excessive shading. In these cases, retrofitting the roof or removing shading elements is cost prohibitive. Furthermore, higher up-front costs due to structural adaptations and production losses caused by less than optimal roof orientation, roof equipment, or shading will lengthen payback periods, making solar more expensive. With millions of new buildings constructed each year in the United States, solar ready can remove installation barriers and increase the potential for widespread solar adoption. There are many approaches to promoting solar ready, including solar ready legislation, certification programs, and education of stakeholders. Federal, state, and local governments have the potential to implement programs that encourage solar ready and in turn reduce barriers to solar deployment. With the guidance in this document and the examples of jurisdictions and organizations already working to promote solar ready building practices, federal, state, and local governments can guide the market toward solar ready implementation.

  2. E-health readiness assessment framework in iran.

    Science.gov (United States)

    Rezai-Rad, M; Vaezi, R; Nattagh, F

    2012-01-01

    Concept of e-readiness is used in many areas such as e-business, e-commerce, e-government, and e-banking. In terms of healthcare, e-readiness is a rather new concept, and is propounded under the title of E-healthcare. E-health readiness refers to the readiness of communities and healthcare institutions for the expected changes brought by programs related to Information and Communications Technology (lCT). The present research is conducted aiming at designing E-health Readiness Assessment Framework (EHRAF) in Iran. The e-health readiness assessment framework was designed based on reviewing literature on e-readiness assessment models and opinions of ICT and health experts. In the next step, Delphi method was used to develop and test the designed framework. Three questionnaires developed to test and modify the model while determining weights of the indices; afterward they were either sent to experts through email or delivered to them in face. The designed framework approved with 4 dimensions, 11 constituents and 58 indices. Technical readiness had the highest importance coefficient (0.256099), and the other dimensions were of the next levels of coefficient importance: core readiness (0.25520), social communication readiness (0.244658), and engagement readiness (0.244039). The framework presents the movement route and investment priorities in e-health in Iran. The proposed framework is a good instrument for measuring the e-readiness in health centers in Iran, and for identifying strengths and weaknesses of these centers to access ICT and its implementation for more effectiveness and for analyzing digital divide between them, as well.

  3. E-Health Readiness Assessment Framework in Iran

    Science.gov (United States)

    Rezai-Rad, M; Vaezi, R; Nattagh, F

    2012-01-01

    Background: Concept of e-readiness is used in many areas such as e-business, e-commerce, e-government, and e-banking. In terms of healthcare, e-readiness is a rather new concept, and is propounded under the title of E-healthcare. E-health readiness refers to the readiness of communities and healthcare institutions for the expected changes brought by programs related to Information and Communications Technology (lCT). The present research is conducted aiming at designing E-health Readiness Assessment Framework (EHRAF) in Iran. Methods: The e-health readiness assessment framework was designed based on reviewing literature on e-readiness assessment models and opinions of ICT and health experts. In the next step, Delphi method was used to develop and test the designed framework. Three questionnaires developed to test and modify the model while determining weights of the indices; afterward they were either sent to experts through email or delivered to them in face. Results: The designed framework approved with 4 dimensions, 11 constituents and 58 indices. Technical readiness had the highest importance coefficient (0.256099), and the other dimensions were of the next levels of coefficient importance: core readiness (0.25520), social communication readiness (0.244658), and engagement readiness (0.244039). Conclusion: The framework presents the movement route and investment priorities in e-health in Iran. The proposed framework is a good instrument for measuring the e-readiness in health centers in Iran, and for identifying strengths and weaknesses of these centers to access ICT and its implementation for more effectiveness and for analyzing digital divide between them, as well. PMID:23304661

  4. Capture ready study

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, A.

    2007-07-15

    There are a large number of ways in which the capture of carbon as carbon dioxide (CO{sub 2}) can be integrated into fossil fuel power stations, most being applicable for both gas and coal feedstocks. To add to the choice of technology is the question of whether an existing plant should be retrofitted for capture, or whether it is more attractive to build totally new. This miscellany of choices adds considerably to the commercial risk of investing in a large power station. An intermediate stage between the non-capture and full capture state would be advantageous in helping to determine the best way forward and hence reduce those risks. In recent years the term 'carbon capture ready' or 'capture ready' has been coined to describe such an intermediate stage plant and is now widely used. However a detailed and all-encompassing definition of this term has never been published. All fossil fuel consuming plant produce a carbon dioxide gas byproduct. There is a possibility of scrubbing it with an appropriate CO{sub 2} solvent. Hence it could be said that all fossil fuel plant is in a condition for removal of its CO{sub 2} effluent and therefore already in a 'capture ready' state. Evidently, the practical reality of solvent scrubbing could cost more than the rewards offered by such as the ETS (European Trading Scheme). In which case, it can be said that although the possibility exists of capturing CO{sub 2}, it is not a commercially viable option and therefore the plant could not be described as ready for CO{sub 2} capture. The boundary between a capture ready and a non-capture ready condition using this definition cannot be determined in an objective and therefore universally acceptable way and criteria must be found which are less onerous and less potentially contentious to assess. 16 refs., 2 annexes.

  5. 2D-Zernike Polynomials and Coherent State Quantization of the Unit Disc

    Energy Technology Data Exchange (ETDEWEB)

    Thirulogasanthar, K., E-mail: santhar@gmail.com [Concordia University, Department of Comuter Science and Software Engineering (Canada); Saad, Nasser, E-mail: nsaad@upei.ca [University of Prince Edward Island, Department of mathematics and Statistics (Canada); Honnouvo, G., E-mail: g-honnouvo@yahoo.fr [McGill University, Department of Mathematics and Statistics (Canada)

    2015-12-15

    Using the orthonormality of the 2D-Zernike polynomials, reproducing kernels, reproducing kernel Hilbert spaces, and ensuring coherent states attained. With the aid of the so-obtained coherent states, the complex unit disc is quantized. Associated upper symbols, lower symbols and related generalized Berezin transforms also obtained. A number of necessary summation formulas for the 2D-Zernike polynomials proved.

  6. Three-Dimensional Optical Coherence Tomography (3D OCT), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Applied Science Innovations, Inc. proposes a new tool of 3D optical coherence tomography (OCT) for cellular level imaging at video frame rates and dramatically...

  7. Space-Ready Advanced Imaging System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase II effort Toyon will increase the state-of-the-art for video/image systems. This will include digital image compression algorithms as well as system...

  8. Readiness for Living Technology

    DEFF Research Database (Denmark)

    Peronard, Jean-Paul

    2013-01-01

    This paper is a comparative analysis between workers in healthcare with high and low degree of readiness for living technology such as robotics. To explore the differences among workers’ readiness for robotics in healthcare, statistical analysis was conducted in the data set obtained from 200...

  9. Implementation of Space Charge Forces in BimBim

    CERN Document Server

    Gottlob, Emmanuel; Oeftiger, Adrian

    An numerical algorithm is described for the implementation of linearised coherent space charge forces into BimBim, an eigenvalue solver for the coherent modes of oscillation of multibunch beams in the presence of beam coupling impedance, beam-beam, transverse feedback and now space charge effects. First results obtained with the model are described and compared to existing results where applicable.

  10. Construction and testing of a space ready rectenna

    Science.gov (United States)

    Brown, Alan M.

    1993-01-01

    In Feb. 1993, the Solar Power Satellite (SPS) Working Group from ISAS, Japan will launch a sounding rocket into low earth orbit to perform two activities: collect scientific information on the high power microwave-ionosphere interaction, and demonstrate microwave power transmission in space at 2.45 GHz. The SPS Working Group announced an open invitation to international agencies willing to collaborate with the Microwave Energy Transmission in Space (METS) experiment in a number of categories. Under the sponsorship of the NASA's Lewis Research Center, the Center for Space Power located at Texas A&M University joined the experiment by producing a microwave rectifying receiving antenna (rectenna). The rectenna is a special type of receiving antenna with unique properties and characteristics. The rectenna's main purpose is to efficiently convert microwave power into DC power. The rectenna is an advanced component in microwave power beaming technology developed for 2.45 GHz. The state-of-the-art rectenna for this frequency consists of dipole antennas, filter circuits, and transmission lines etched on a thin layer of Kapton film. The format of the thin film rectenna is ideally suited for space applications. Thin film rectennas have a low specific mass of approximately 1 kg/kW. The main component of the rectenna is the rectifying diode. High conversion efficiencies (90 percent) in microwave to DC power are capable with special Schottky barrier diodes correctly located in the rectenna circuitry. The theory of operation of the 2.45 GHz rectenna is explained. Experimental test results on the METS rectenna are presented. The packaging of the rectenna is also discussed to meet space qualifications.

  11. From cardinal spline wavelet bases to highly coherent dictionaries

    International Nuclear Information System (INIS)

    Andrle, Miroslav; Rebollo-Neira, Laura

    2008-01-01

    Wavelet families arise by scaling and translations of a prototype function, called the mother wavelet. The construction of wavelet bases for cardinal spline spaces is generally carried out within the multi-resolution analysis scheme. Thus, the usual way of increasing the dimension of the multi-resolution subspaces is by augmenting the scaling factor. We show here that, when working on a compact interval, the identical effect can be achieved without changing the wavelet scale but reducing the translation parameter. By such a procedure we generate a redundant frame, called a dictionary, spanning the same spaces as a wavelet basis but with wavelets of broader support. We characterize the correlation of the dictionary elements by measuring their 'coherence' and produce examples illustrating the relevance of highly coherent dictionaries to problems of sparse signal representation. (fast track communication)

  12. Evidence based practice readiness: A concept analysis.

    Science.gov (United States)

    Schaefer, Jessica D; Welton, John M

    2018-01-15

    To analyse and define the concept "evidence based practice readiness" in nurses. Evidence based practice readiness is a term commonly used in health literature, but without a clear understanding of what readiness means. Concept analysis is needed to define the meaning of evidence based practice readiness. A concept analysis was conducted using Walker and Avant's method to clarify the defining attributes of evidence based practice readiness as well as antecedents and consequences. A Boolean search of PubMed and Cumulative Index for Nursing and Allied Health Literature was conducted and limited to those published after the year 2000. Eleven articles met the inclusion criteria for this analysis. Evidence based practice readiness incorporates personal and organisational readiness. Antecedents include the ability to recognize the need for evidence based practice, ability to access and interpret evidence based practice, and a supportive environment. The concept analysis demonstrates the complexity of the concept and its implications for nursing practice. The four pillars of evidence based practice readiness: nursing, training, equipping and leadership support are necessary to achieve evidence based practice readiness. Nurse managers are in the position to address all elements of evidence based practice readiness. Creating an environment that fosters evidence based practice can improve patient outcomes, decreased health care cost, increase nurses' job satisfaction and decrease nursing turnover. © 2018 John Wiley & Sons Ltd.

  13. What Are the Costs of Trauma Center Readiness? Defining and Standardizing Readiness Costs for Trauma Centers Statewide.

    Science.gov (United States)

    Ashley, Dennis W; Mullins, Robert F; Dente, Christopher J; Garlow, Laura; Medeiros, Regina S; Atkins, Elizabeth V; Solomon, Gina; Abston, Dena; Ferdinand, Colville H

    2017-09-01

    Trauma center readiness costs are incurred to maintain essential infrastructure and capacity to provide emergent services on a 24/7 basis. These costs are not captured by traditional hospital cost accounting, and no national consensus exists on appropriate definitions for each cost. Therefore, in 2010, stakeholders from all Level I and II trauma centers developed a survey tool standardizing and defining trauma center readiness costs. The survey tool underwent minor revisions to provide further clarity, and the survey was repeated in 2013. The purpose of this study was to provide a follow-up analysis of readiness costs for Georgia's Level I and Level II trauma centers. Using the American College of Surgeons Resources for Optimal Care of the Injured Patient guidelines, four readiness cost categories were identified: Administrative, Clinical Medical Staff, Operating Room, and Education/Outreach. Through conference calls, webinars and face-to-face meetings with financial officers, trauma medical directors, and program managers from all trauma centers, standardized definitions for reporting readiness costs within each category were developed. This resulted in a survey tool for centers to report their individual readiness costs for one year. The total readiness cost for all Level I trauma centers was $34,105,318 (avg $6,821,064) and all Level II trauma centers was $20,998,019 (avg $2,333,113). Methodology to standardize and define readiness costs for all trauma centers within the state was developed. Average costs for Level I and Level II trauma centers were identified. This model may be used to help other states define and standardize their trauma readiness costs.

  14. Partially coherent imaging and spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, Roman

    2003-03-01

    A description of spatially partially coherent imaging based on the propagation of second order spatial coherence wavelets and marginal power spectra (Wigner distribution functions) is presented. In this dynamics, the spatial coherence wavelets will be affected by the system through its elementary transfer function. The consistency of the model with the both extreme cases of full coherent and incoherent imaging was proved. In the last case we obtained the classical concept of optical transfer function as a simple integral of the elementary transfer function. Furthermore, the elementary incoherent response function was introduced as the Fourier transform of the elementary transfer function. It describes the propagation of spatial coherence wavelets form each object point to each image point through a specific point on the pupil planes. The point spread function of the system was obtained by a simple integral of the elementary incoherent response function. (author)

  15. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    Science.gov (United States)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  16. Coupled Qubits for Next Generation Quantum Annealing: Improving Coherence

    Science.gov (United States)

    Weber, Steven; Samach, Gabriel; Hover, David; Rosenberg, Danna; Yoder, Jonilyn; Kim, David K.; Kerman, Andrew; Oliver, William D.

    Quantum annealing is an optimization technique which potentially leverages quantum tunneling to enhance computational performance. Existing quantum annealers use superconducting flux qubits with short coherence times, limited primarily by the use of large persistent currents. Here, we examine an alternative approach, using flux qubits with smaller persistent currents and longer coherence times. We demonstrate tunable coupling, a basic building-block for quantum annealing, between two such qubits. Furthermore, we characterize qubit coherence as a function of coupler setting and investigate the effect of flux noise in the coupler loop on qubit coherence. Our results provide insight into the available design space for next-generation quantum annealers with improved coherence. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  17. Coherence properties of the radiation from X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, E L; Schneidmiller, E A; Yurkov, M V

    2006-08-15

    We present a comprehensive analysis of coherence properties of the radiation from X-ray free electron laser (XFEL). We consider practically important case when XFEL is optimized for maximum gain. Such an optimization allows to reduce significantly parameter space. Application of similarity techniques to the results of numerical simulations allows to present all output characteristics of the optimized XFEL as functions of the only parameter, ratio of the emittance to the radiation wavelength, {epsilon}=2{pi} {epsilon}/{lambda}. Our studies show that optimum performance of the XFEL in terms of transverse coherence is achieved at the value of the parameter {epsilon} of about unity. At smaller values of {epsilon} the degree of transverse coherence is reduced due to strong influence of poor longitudinal coherence on a transverse one. At large values of the emittance the degree of transverse coherence degrades due to poor mode selection. Comparative analysis of existing XFEL projects, European XFEL, LCLS, and SCSS is presented as well. (orig.)

  18. Preparing for success: Readiness models for rural telehealth

    Directory of Open Access Journals (Sweden)

    Jennett P

    2005-01-01

    Full Text Available Background: Readiness is an integral and preliminary step in the successful implementation of telehealth services into existing health systems within rural communities. Methods and Materials: This paper details and critiques published international peer-reviewed studies that have focused on assessing telehealth readiness for rural and remote health. Background specific to readiness and change theories is provided, followed by a critique of identified telehealth readiness models, including a commentary on their readiness assessment tools. Results: Four current readiness models resulted from the search process. The four models varied across settings, such as rural outpatient practices, hospice programs, rural communities, as well as government agencies, national associations, and organizations. All models provided frameworks for readiness tools. Two specifically provided a mechanism by which communities could be categorized by their level of telehealth readiness. Discussion: Common themes across models included: an appreciation of practice context, strong leadership, and a perceived need to improve practice. Broad dissemination of these telehealth readiness models and tools is necessary to promote awareness and assessment of readiness. This will significantly aid organizations to facilitate the implementation of telehealth.

  19. High-dose processing and application to Korean space foods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Choi, Jong-il [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kim, Jae-Hun [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Korea Astronaut Project Division, Korea Aerospace Research Institute, Daejeon 305-333 (Korea, Republic of); Byun, Myung-Woo [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Kang, Sang-Wook; Choi, Gi-Hyuk [Korea Astronaut Project Division, Korea Aerospace Research Institute, Daejeon 305-333 (Korea, Republic of); Lee, Ju-Woon [Team for Radiation Food Science and Biotechnology, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr

    2009-07-15

    Nutrition bar, Ramen (ready-to-cook noodle), and two Korean traditional foods (Kimchi, fermented vegetable; Sujeonggwa, cinnamon beverage) have been developed as space foods using high-dose gamma irradiation. Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. Sterilization of Space Kimchi (SK) was confirmed by a microbiological test. The hardness of the Space Kimchi was lower than the untreated Kimchi (CON), but higher than the irradiated only Kimchi. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 {sup o}C for 30 days. The optimal doses for eliminating the contaminated microbes and maintaining the qualities of the Nutrition bars, Ramen, and Sujeonggwa were determined at 15, 10 and 6 kGy, respectively. All the Korean space food were certificated for use in space flight conditions of 30 days by the Russian Institute for Biomedical Problems.

  20. High-dose processing and application to Korean space foods

    Science.gov (United States)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Kang, Sang-Wook; Choi, Gi-Hyuk; Lee, Ju-Woon

    2009-07-01

    Nutrition bar, Ramen (ready-to-cook noodle), and two Korean traditional foods ( Kimchi, fermented vegetable; Sujeonggwa, cinnamon beverage) have been developed as space foods using high-dose gamma irradiation. Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. Sterilization of Space Kimchi (SK) was confirmed by a microbiological test. The hardness of the Space Kimchi was lower than the untreated Kimchi (CON), but higher than the irradiated only Kimchi. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. The optimal doses for eliminating the contaminated microbes and maintaining the qualities of the Nutrition bars, Ramen, and Sujeonggwa were determined at 15, 10 and 6 kGy, respectively. All the Korean space food were certificated for use in space flight conditions of 30 days by the Russian Institute for Biomedical Problems.

  1. High-dose processing and application to Korean space foods

    International Nuclear Information System (INIS)

    Song, Beom-Seok; Park, Jin-Gyu; Park, Jae-Nam; Han, In-Jun; Choi, Jong-il; Kim, Jae-Hun; Byun, Myung-Woo; Kang, Sang-Wook; Choi, Gi-Hyuk; Lee, Ju-Woon

    2009-01-01

    Nutrition bar, Ramen (ready-to-cook noodle), and two Korean traditional foods (Kimchi, fermented vegetable; Sujeonggwa, cinnamon beverage) have been developed as space foods using high-dose gamma irradiation. Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. Sterilization of Space Kimchi (SK) was confirmed by a microbiological test. The hardness of the Space Kimchi was lower than the untreated Kimchi (CON), but higher than the irradiated only Kimchi. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 o C for 30 days. The optimal doses for eliminating the contaminated microbes and maintaining the qualities of the Nutrition bars, Ramen, and Sujeonggwa were determined at 15, 10 and 6 kGy, respectively. All the Korean space food were certificated for use in space flight conditions of 30 days by the Russian Institute for Biomedical Problems.

  2. Preliminary Demonstration of Power Beaming With Non-Coherent Laser Diode Arrays

    National Research Council Canada - National Science Library

    Kare, Jordin

    1999-01-01

    A preliminary demonstration of free-space electric power transmission has been conducted using non-coherent laser diode arrays as the transmitter and standard silicon photovoltaic cell arrays as the receiver...

  3. From Readiness to Action: How Motivation Works

    Directory of Open Access Journals (Sweden)

    Kruglanski Arie W.

    2014-09-01

    Full Text Available We present a new theoretical construct labeled motivational readiness. It is defined as the inclination, whether or not ultimately implemented, to satisfy a desire. A general model of readiness is described which builds on the work of prior theories, including animal learning models and personality approaches, and which aims to integrate a variety of research findings across different domains of motivational research. Components of this model include the Want state (that is, an individual’s currently active desire, and the Expectancy of being able to satisfy that Want. We maintain that the Want concept is the critical ingredient in motivational readiness: without it, readiness cannot exist. In contrast, some motivational readiness can exist without Expectancy. We also discuss the role of incentive in motivational readiness. Incentive is presently conceived of in terms of a Match between a Want and a Perceived Situational Affordance. Whereas in classic models incentive was portrayed as a first order determinant of motivational readiness, here we describe it as a second order factor which affects readiness by influencing Want, Expectancy, or both. The new model’s relation to its theoretical predecessors, and its implications for future research, also are discussed.

  4. 'Capture ready' regulation of fossil fuel power plants - Betting the UK's carbon emissions on promises of future technology

    International Nuclear Information System (INIS)

    Markusson, Nils; Haszeldine, Stuart

    2010-01-01

    Climate change legislation requires emissions reductions, but the market shows interest in investing in new fossil fuelled power plants. The question is whether capture ready policy can reconcile these interests. The term 'capture ready' has been used a few years by the UK Government when granting licences for fossil fuelled power plants, but only recently has the meaning of the term been defined. The policy has been promoted as a step towards CCS and as an insurance against carbon lock-in. This paper draws on literature on technology lock-in and on regulation of technology undergoing development. Further, versions of the capture readiness concept proposed to date are compared. Capture readiness requirements beyond the minimum criterion of space on the site for capture operations are explored. This includes integration of capture and power plant, downstream operations, overall system integration and regulation of future retrofitting. Capture readiness comes with serious uncertainties and is no guarantee that new-built fossil plants will be abatable or abated in the future. As a regulatory strategy, it has been over-promised in the UK.

  5. Coherence of Radial Implicative Fuzzy Systems with Nominal Consequents

    Czech Academy of Sciences Publication Activity Database

    Coufal, David

    -, č. 4 (2006), s. 60-66 ISSN 1509-4553 R&D Projects: GA MŠk 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : implicative fuzzy system * radial fuzzy system * nominal output space * coherence Subject RIV: IN - Informatics, Computer Science

  6. Exploring the need for Transition Readiness Scales within cystic fibrosis services: A qualitative descriptive study.

    Science.gov (United States)

    Bourke, Mary; Houghton, Catherine

    2018-07-01

    To explore healthcare professionals' and patients' perceptions of the potential use of a Transition Readiness Scale in cystic fibrosis care. This included an examination of barriers and facilitators to its implementation along with the identification of key items to include in a Transition Readiness Scale. Due to increasing life expectancy and improved quality of life, more adolescents with cystic fibrosis are transitioning from paediatric to adult health care. To assess and correctly manage this transition, a more structured approach to transition is advocated. This can be achieved using a Transition Readiness Scale to potentially identify or target areas of care in which the adolescent may have poor knowledge. These key items include education, developmental readiness taking into account relationships, reproduction, future plans and self-management skills. Existing tools to gauge readiness concentrate mainly on education and self-care needs assessment as their key items. Currently, there is no specific cystic fibrosis Transition Readiness Scale in use in Ireland or internationally. The study used a descriptive qualitative design. Data were collected using semi-structured interviews (n = 8) and analysed using a thematic approach. The findings identified the potential benefits of this tool and second the resources which need to be in place before its development and implementation into cystic fibrosis services. Transition Readiness Scales have substantial relevance with cystic fibrosis services emphasising the importance of establishing the necessary resources prior to its implementation. These were identified as more staff, a dedicated private space and staff training and education. Significant resources are needed to fully integrate Transition Readiness Scales in practice. The study findings suggest multidisciplinary collaborations, and patient engagement is pivotal in planning and easing the transition process for adolescents with cystic fibrosis. © 2018 The

  7. Development of space foods using radiation technology

    International Nuclear Information System (INIS)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-01

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source (γ-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties

  8. Development of space foods using radiation technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju-Woon; Byun, Myung-Woo; Kim, Jae-Hun; Song, Beom-Suk; Choi, Jong-IL; Park, Jin-Kyu; Park, Jae-Nam; Han, In-Jun

    2008-07-15

    Four Korean food items (Kimchi, ready-to-eat fermented vegetable; Ramen, ready-to-cook noodles; Nutrition bar, ready-to-eat raw grain bar; Sujeonggwa, cinnamon beverage) have been developed as space foods by the application of high-dose gamma irradiation. All Korean space foods were certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems. Establishment of research protocols on muscle atrophy mechanism using two-dimensional electrophoresis and various blotting analyses are conducted. And two bio-active molecules that potentially play an preventive role of muscle atrophy are uncovered. Integrative protocols linking between the effect of bio-active molecules and treadmill exercise for muscle atrophy inhibition are established. Reduction in body temperature and heartbeat rate were monitored after HIT injection to mice was conducted. Development of Korean astronaut preferred flavoring for space food was conducted to reduced atherogenic index (AI) than butter fat. The spread added honey and pineapple essence was preferred spreadability and overall flavor by sensory evaluation. Flavor was affected by irradiation source ({gamma}-ray or electron beam) or irradiation dosage (10, 20, 30, 40 and 50 kGy) using electronic nose system an space foods using gamma irradiation pH of porridge was mostly stable and pH increased. Most of TBARS value was generally low, and there wasn't any significant difference. Consistency, viscosity, and firmness was higher in round rice porridge and half rice porridge than in rice powder porridge, and increase in added water amount led to decrease of all textural properties.

  9. Quantum coherence generating power, maximally abelian subalgebras, and Grassmannian geometry

    Science.gov (United States)

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2018-01-01

    We establish a direct connection between the power of a unitary map in d-dimensions (d algebra). This set can be seen as a topologically non-trivial subset of the Grassmannian over linear operators. The natural distance over the Grassmannian induces a metric structure on Md, which quantifies the lack of commutativity between the pairs of subalgebras. Given a maximally abelian subalgebra, one can define, on physical grounds, an associated measure of quantum coherence. We show that the average quantum coherence generated by a unitary map acting on a uniform ensemble of quantum states in the algebra (the so-called coherence generating power of the map) is proportional to the distance between a pair of maximally abelian subalgebras in Md connected by the unitary transformation itself. By embedding the Grassmannian into a projective space, one can pull-back the standard Fubini-Study metric on Md and define in this way novel geometrical measures of quantum coherence generating power. We also briefly discuss the associated differential metric structures.

  10. Direct measurement of exciton valley coherence in monolayer WSe2

    KAUST Repository

    Hao, Kai

    2016-02-29

    In crystals, energy band extrema in momentum space can be identified by a valley index. The internal quantum degree of freedom associated with valley pseudospin indices can act as a useful information carrier, analogous to electronic charge or spin. Interest in valleytronics has been revived in recent years following the discovery of atomically thin materials such as graphene and transition metal dichalcogenides. However, the valley coherence time—a crucial quantity for valley pseudospin manipulation—is difficult to directly probe. In this work, we use two-dimensional coherent spectroscopy to resonantly generate and detect valley coherence of excitons (Coulomb-bound electron–hole pairs) in monolayer WSe2 (refs ,). The imposed valley coherence persists for approximately one hundred femtoseconds. We propose that the electron–hole exchange interaction provides an important decoherence mechanism in addition to exciton population recombination. This work provides critical insight into the requirements and strategies for optical manipulation of the valley pseudospin for future valleytronics applications.

  11. 基于MUSIC-Group Delay算法的相邻相干信号源定位%Closely spaced coherent-source localization based on MUSIC-group delay algorithm

    Institute of Scientific and Technical Information of China (English)

    郑家芝

    2016-01-01

    为了准确的进行相邻的相干信号源定位,提出了一种基于多重信号分类群延迟(MUSIC-group delay)的改进算法。首先,将空间平滑技术引入到波达方向(DoA)估计当中去除部分相干信号。由于在信号源相邻的情况下子空间算法的性能降低,就结合了 MUSIC-Group Delay算法来区分相邻的信号源,这种方法因为自身的加和性通过 MUSIC 相位谱来计算群延迟函数,从而能估计出相邻的信号源。理论分析和仿真结果表明提出的方法估计相邻的相干信号源比子空间算法更精确,分辨率更高。%In this paper,the closely spaced coherent-source localization is considered,and an improved method based on the group delay of Multiple Signal Classification (MUSIC)is presented.Firstly,we introduce the spatial smoothing technique into direction of arrival (DoA)estimation to get rid of the coherent part of signals.Due to the degraded per-formance of sub-space based methods on the condition of nearby sources,we then utilize the MUSIC-Group Delay algo-rithm to distinguish the closely spaced sources,which can resolve spatially close sources by the use of the group delay function computed from the MUSIC phase spectrum for efficient DoA estimation owing to its spatial additive property. Theoretical analysis and simulation results demonstrate that the proposed approach can estimate the DoA of the coherent close signal sources more precisely and have higher resolution compared with sub-space based methods.

  12. Vogtle Unit 1 readiness review: Assessment of Georgia Power Company readiness review pilot program

    International Nuclear Information System (INIS)

    Lewis, G.

    1987-09-01

    Georgia Power Company (GPC) performed a readiness review at Vogtle Unit 1 as a pilot program. The pilot program was a new and innovative approach for the systematic and disciplined review, with senior management involvement, of GPC's implementation of design, construction, and operational readiness processes. The program's principal objective was to increase the level of assurance that quality programs at Vogtle Unit 1 have been accomplished in accordance with regulatory requirements. This report assesses the effectiveness of the GPC's readiness review pilot program (RRPP) at Vogtle Unit 1. It includes (1) an overview of what was experienced during the program's implementation, (2) an assessment of how well program objectives were met, and (3) lessons learned on the future use of the readiness review concept. Overall, GPC and the NRC staff believe that the RRPP at Vogtle Unit 1 was a success and that the program provided significant added assurance that Vogtle Unit 1 licensing commitments and NRC regulations have been adequately implemented. Although altering the NRC licensing review process for the few plants still in the construction pipeline may not be appropriate, licensees may benefit significantly by performing readiness reviews on their own initiative as GPC did for Vogtle. (7 refs.)

  13. Coherent quantum logic

    International Nuclear Information System (INIS)

    Finkelstein, D.

    1987-01-01

    The von Neumann quantum logic lacks two basic symmetries of classical logic, that between sets and classes, and that between lower and higher order predicates. Similarly, the structural parallel between the set algebra and linear algebra of Grassmann and Peano was left incomplete by them in two respects. In this work a linear algebra is constructed that completes this correspondence and is interpreted as a new quantum logic that restores these invariances, and as a quantum set theory. It applies to experiments with coherent quantum phase relations between the quantum and the apparatus. The quantum set theory is applied to model a Lorentz-invariant quantum time-space complex

  14. Measurement of coherent $\\pi^{+}$ production in low energy neutrino-Carbon scattering

    CERN Document Server

    Abe, K.

    2016-11-04

    We report the first measurement of the flux-averaged cross section for charged current coherent $\\pi^{+}$ production on carbon for neutrino energies less than 1.5 GeV to a restricted final state phase space region in the T2K near detector, ND280. Comparisons are made with predictions from the Rein-Sehgal coherent production model and the model by Alvarez-Ruso {\\it et al.}, the latter representing the first implementation of an instance of the new class of microscopic coherent models in a neutrino interaction Monte Carlo event generator. This results contradicts the null results reported by K2K and SciBooNE in a similar neutrino energy region.

  15. Factors of children's school readiness

    Directory of Open Access Journals (Sweden)

    Ljubica Marjanovič Umek

    2006-12-01

    Full Text Available The purpose of the study was to examine the effect of preschool on children's school readiness in connection with their intellectual abilities, language competence, and parents' education. The sample included 219 children who were 68 to 83 months old and were attending the first year of primary school. Children were differentiated by whether or not they had attended preschool before starting school. Children's intellectual ability was determined using Raven's Coloured Progressive Matrices (CPM; Raven, Raven, & Court, 1999, language competence using the Lestvice splošnega govornegarazvoja–LJ (LSGR–LJ, Scales of General Language Development; Marjanovič Umek, Kranjc, Fekonja in Bajc, 2004, and school readiness with the Preizkus pripravljenosti za šolo (PPŠ, Test of School Readiness; Toličič, 1986. The results indicate that children's intellectual ability and language competence have a high predictive value for the school readiness — they explained 51% of the variance in children's scores on the PPŠ. Preschool enrollment has a positive effect on school readiness for children whose parents have a low level of education, but not for those whose parents are highly educated.

  16. Space station orbit maintenance

    Science.gov (United States)

    Kaplan, D. I.; Jones, R. M.

    1983-01-01

    The orbit maintenance problem is examined for two low-earth-orbiting space station concepts - the large, manned Space Operations Center (SOC) and the smaller, unmanned Science and Applications Space Platform (SASP). Atmospheric drag forces are calculated, and circular orbit altitudes are selected to assure a 90 day decay period in the event of catastrophic propulsion system failure. Several thrusting strategies for orbit maintenance are discussed. Various chemical and electric propulsion systems for orbit maintenance are compared on the basis of propellant resupply requirements, power requirements, Shuttle launch costs, and technology readiness.

  17. Cognitive Readiness

    National Research Council Canada - National Science Library

    Morrison, John

    2002-01-01

    Cognitive readiness is described as the mental preparation an individual needs to establish and sustain competent performance in the complex and unpredictable environment of modern military operations...

  18. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  19. Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Du, Hongchu; Xu, Zheng; Liu, Liwang; Onufriienko, Oleksandr; May, Paul W; Vanacken, Johan; Szabó, Pavol; Kačmarčík, Jozef; Yuan, Haifeng; Samuely, Peter; Dunin-Borkowski, Rafal E; Hofkens, Johan; Moshchalkov, Victor V

    2017-11-28

    In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.

  20. Quantum physics of an elementary system in de Sitter space

    International Nuclear Information System (INIS)

    Rabeie, A.

    2012-01-01

    We present the coherent states of a scalar massive particle on 1+3-de Sitter space. These states are vectors in Hilbert space, and they are labeled by points in the associated phase space. To do this, we use the fact that the phase space of a scalar massive particle on 1+3-de Sitter space is a cotangent bundle T * (S 3 ) which is isomorphic with the complex sphere S C 3 . Then by using the heat kernel on '' S C 3 '' that was presented by Hall-Mitchell, we construct our coherent states. At the end, by these states we quantize the classical kinetic energy on de Sitter space. (orig.)

  1. Coherently Enhanced Wireless Power Transfer

    OpenAIRE

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alu, Andrea

    2017-01-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load, which is not easily implemented in near-field WPT. Here, we introduce the concept of coherently enhanced wireless power transfer. We show that a principle similar to the on...

  2. A theory of organizational readiness for change

    Directory of Open Access Journals (Sweden)

    Weiner Bryan J

    2009-10-01

    Full Text Available Abstract Background Change management experts have emphasized the importance of establishing organizational readiness for change and recommended various strategies for creating it. Although the advice seems reasonable, the scientific basis for it is limited. Unlike individual readiness for change, organizational readiness for change has not been subject to extensive theoretical development or empirical study. In this article, I conceptually define organizational readiness for change and develop a theory of its determinants and outcomes. I focus on the organizational level of analysis because many promising approaches to improving healthcare delivery entail collective behavior change in the form of systems redesign--that is, multiple, simultaneous changes in staffing, work flow, decision making, communication, and reward systems. Discussion Organizational readiness for change is a multi-level, multi-faceted construct. As an organization-level construct, readiness for change refers to organizational members' shared resolve to implement a change (change commitment and shared belief in their collective capability to do so (change efficacy. Organizational readiness for change varies as a function of how much organizational members value the change and how favorably they appraise three key determinants of implementation capability: task demands, resource availability, and situational factors. When organizational readiness for change is high, organizational members are more likely to initiate change, exert greater effort, exhibit greater persistence, and display more cooperative behavior. The result is more effective implementation. Summary The theory described in this article treats organizational readiness as a shared psychological state in which organizational members feel committed to implementing an organizational change and confident in their collective abilities to do so. This way of thinking about organizational readiness is best suited for

  3. Simulation of partially coherent light propagation using parallel computing devices

    Science.gov (United States)

    Magalhães, Tiago C.; Rebordão, José M.

    2017-08-01

    Light acquires or loses coherence and coherence is one of the few optical observables. Spectra can be derived from coherence functions and understanding any interferometric experiment is also relying upon coherence functions. Beyond the two limiting cases (full coherence or incoherence) the coherence of light is always partial and it changes with propagation. We have implemented a code to compute the propagation of partially coherent light from the source plane to the observation plane using parallel computing devices (PCDs). In this paper, we restrict the propagation in free space only. To this end, we used the Open Computing Language (OpenCL) and the open-source toolkit PyOpenCL, which gives access to OpenCL parallel computation through Python. To test our code, we chose two coherence source models: an incoherent source and a Gaussian Schell-model source. In the former case, we divided into two different source shapes: circular and rectangular. The results were compared to the theoretical values. Our implemented code allows one to choose between the PyOpenCL implementation and a standard one, i.e using the CPU only. To test the computation time for each implementation (PyOpenCL and standard), we used several computer systems with different CPUs and GPUs. We used powers of two for the dimensions of the cross-spectral density matrix (e.g. 324, 644) and a significant speed increase is observed in the PyOpenCL implementation when compared to the standard one. This can be an important tool for studying new source models.

  4. Multiple symbol partially coherent detection of MPSK

    Science.gov (United States)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  5. Partnership readiness for community-based participatory research.

    Science.gov (United States)

    Andrews, Jeannette O; Newman, Susan D; Meadows, Otha; Cox, Melissa J; Bunting, Shelia

    2012-08-01

    The use of a dyadic lens to assess and leverage academic and community partners' readiness to conduct community-based participatory research (CBPR) has not been systematically investigated. With a lack of readiness to conduct CBPR, the partnership and its products are vulnerable. The purpose of this qualitative study was to explore the dimensions and key indicators necessary for academic and community partnership readiness to conduct CBPR. Key informant interviews and focus groups (n = 36 participants) were conducted with academic and community participants who had experiences with CBPR partnerships. A 'framework analysis' approach was used to analyze the data and generate a new model, CBPR Partnership Readiness Model. Antecedents of CBPR partnership readiness are a catalyst and mutual interest. The major dimensions of the CBPR Partnership Readiness Model are (i) goodness of fit, (ii) capacity, and (iii) operations. Preferred outcomes are sustainable partnership and product, mutual growth, policy and social and health impact on the community. CBPR partnership readiness is an iterative and dynamic process, partnership and issue specific, influenced by a range of environmental and contextual factors, amenable to change and essential for sustainability and promotion of health and social change in the community.

  6. Coherent Laser Radar Metrology System for Large Scale Optical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of laser radar metrology inspection system is proposed that incorporates a novel, dual laser coherent detection scheme capable of eliminating both...

  7. Readiness to change criminal women and men

    Directory of Open Access Journals (Sweden)

    Krzysztof Biel

    2017-12-01

    Full Text Available The readiness of offenders to social rehabilitation is a new category in our country. Meanwhile, the research conducted in many countries indicates its usefulness in the diagnosis and selection of participants of rehabilitation programmes. This entails more effective interaction with convicted persons and greater responsibility on the part of convicted people for their own social rehabilitation process. The aim of this article is to present the main assumptions and models of readiness for change and their usefulness in social rehabilitation practice and to present pilot studies of readiness for change among criminal women and men in Kraków. Application of the Polish adaptation of the CVTRQ questionnaire made it possible to determine the level of convicted persons’ readiness, taking into account deficits in particular scales of the questionnaire and variables differentiating the group of ready and not ready people. At the end, guidelines for further research will be presented.

  8. New class of uncertainty relations for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1984-01-01

    A class of uncertainty relations for partially coherent light is derived; the uncertainty relations in this class express the fact that the product of the effective widths of the space-domain intensity and the spatial-frequency-domain intensity of the light has a lower bound and that this lower

  9. Uncertainty principle and informational entropy for partially coherent light

    NARCIS (Netherlands)

    Bastiaans, M.J.

    1986-01-01

    It is shown that, among all partially coherent wave fields having the same informational entropy, the product of the effective widths of the intensity functions in the space and the spatial-frequency domains takes its minimum value for a wave field with a Gaussian-shaped cross-spectral density

  10. Bursts of Coherent Synchrotron Radiation in Electron Storage Rings: a Dynamical Model

    Energy Technology Data Exchange (ETDEWEB)

    Venturini, Marco

    2002-09-17

    Evidence of coherent synchrotron radiation (CSR) has been reported recently at the electron storage rings of several light source facilities. The main features of the observations are (i) a radiation wavelength short compared to the nominal bunch length, and (ii) a coherent signal showing recurrent bursts of duration much shorter than the radiation damping time, but with spacing equal to a substantial fraction of the damping time. We present a model of beam longitudinal dynamics that reproduces these features.

  11. Cohering power of quantum operations

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Kaifeng, E-mail: bkf@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China); Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India); Zhang, Lin, E-mail: linyz@zju.edu.cn [Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018 (China); Wu, Junde, E-mail: wjd@zju.edu.cn [School of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2017-05-18

    Highlights: • Quantum coherence. • Cohering power: production of quantum coherence by quantum operations. • Study of cohering power and generalized cohering power, and their comparison for differentmeasures of quantum coherence. • Operational interpretation of cohering power. • Bound on cohering power of a generic quantum operation. - Abstract: Quantum coherence and entanglement, which play a crucial role in quantum information processing tasks, are usually fragile under decoherence. Therefore, the production of quantum coherence by quantum operations is important to preserve quantum correlations including entanglement. In this paper, we study cohering power–the ability of quantum operations to produce coherence. First, we provide an operational interpretation of cohering power. Then, we decompose a generic quantum operation into three basic operations, namely, unitary, appending and dismissal operations, and show that the cohering power of any quantum operation is upper bounded by the corresponding unitary operation. Furthermore, we compare cohering power and generalized cohering power of quantum operations for different measures of coherence.

  12. Determining transition readiness in congenital heart disease: Assessing the utility of the Transition Readiness Questionnaire

    Science.gov (United States)

    The Transition Readiness Assessment Questionnaire (TRAQ) is a tool commonly used to assess transition readiness in adolescents with chronic diseases. It was previously validated in youth with special health care needs (YSHCN), but no patients with congenital heart disease (CHD) were included in the ...

  13. Towards spectral-domain optical coherence tomography on a silicon chip

    NARCIS (Netherlands)

    Akça, B.I.; Worhoff, Kerstin; Nguyen, V.D.; Kalkman, J.; van Leeuwen, Ton; de Ridder, R.M.; Pollnau, Markus

    Optical coherence tomography (OCT) is a widely used optical imaging technology, particularly in the medical field, since it can provide non-invasive, sub-micrometer resolution diagnostic images of tissue. Current OCT systems contain optical fibers and free-space optical components which make these

  14. Designing a supply chain of ready-mix concrete using Voronoi diagrams

    Science.gov (United States)

    Kozniewski, E.; Orlowski, M.; Orlowski, Z.

    2017-10-01

    Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.

  15. The U.S. Needs a Coherent Space Policy.

    Science.gov (United States)

    Pressler, Larry

    1983-01-01

    Despite the possibility that efforts to prevent an arms race in space between the United States and the Soviet Union might fail, a serious attempt should be made to develop an arms control agreement because of the great risks of war in space and the expense of developing new weapons. (IS)

  16. Coherent Doppler lidar for automated space vehicle rendezvous, stationkeeping and capture

    Science.gov (United States)

    Bilbro, James A.

    1991-01-01

    The inherent spatial resolution of laser radar makes ladar or lidar an attractive candidate for Automated Rendezvous and Capture application. Previous applications were based on incoherent lidar techniques, requiring retro-reflectors on the target vehicle. Technology improvements (reduced size, no cryogenic cooling requirement) have greatly enhanced the construction of coherent lidar systems. Coherent lidar permits the acquisition of non-cooperative targets at ranges that are limited by the detection capability rather than by the signal-to-noise ratio (SNR) requirements. The sensor can provide translational state information (range, velocity, and angle) by direct measurement and, when used with any array detector, also can provide attitude information by Doppler imaging techniques. Identification of the target is accomplished by scanning with a high pulse repetition frequency (dependent on the SNR). The system performance is independent of range and should not be constrained by sun angle. An initial effort to characterize a multi-element detection system has resulted in a system that is expected to work to a minimum range of 1 meter. The system size, weight and power requirements are dependent on the operating range; 10 km range requires a diameter of 3 centimeters with overall size at 3 x 3 x 15 to 30 cm, while 100 km range requires a 30 cm diameter.

  17. Analytic function theory of several variables elements of Oka’s coherence

    CERN Document Server

    Noguchi, Junjiro

    2016-01-01

    The purpose of this book is to present the classical analytic function theory of several variables as a standard subject in a course of mathematics after learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert's two volumes, GL227(236) (Theory of Stein spaces) and GL265 (Coherent analytic sheaves) with a lowering of the level for novice graduate students (here, Grauert's direct image theorem is limited to the case of finite maps). The core of the theory is "Oka's Coherence", found and proved by Kiyoshi Oka. It is indispensable, not only in the study of complex analysis and complex geometry, but also in a large area of modern mathematics. In this book, just after an introductory chapter on holomorphic functions (Chap. 1), we prove Oka's First Coherence Theorem for holomorphic functions in Chap. 2. This defines a unique character of the book compared with other books on this subject, in which the notion of coherence appear...

  18. The coherent state variational algorithm and the QCD deconfinement phase transition

    International Nuclear Information System (INIS)

    Somsky, W.R.

    1989-01-01

    This thesis describes the coherent state variational algorithm, its implementation in a recently completed set of computer programs, and its application to the study of the QCD deconfinement phase transition. The coherent state variational algorithm is a computational method for studying the large-N limit of non-abelian gauge theories by direct exploitation of the classical nature of this limit. Unlike Monte Carlo methods, this technique is applicable to both euclidean and hamiltonian formulations of lattice gauge theories and is deterministic, rather than statistical, in nature. The first part of this thesis presents the theoretical basis of the coherent state algorithm and describes the application of the algorithm, to non-abelian lattice gauge theories. The second part describes the symbolic methods involved in the computer implementation of the coherent state algorithm and gives an overview of the programs which form the full coherent state implementation. The final part of this thesis discusses the application of the coherent state algorithm to the study of the QCD deconfinement phase transition at large N. The results obtained are indicative of a second-order transition for lattices of temporal extent N ν = 1 and N τ = 2 in both three and four space-time dimensions

  19. Starting school healthy and ready to learn: using social indicators to improve school readiness in Los Angeles County.

    Science.gov (United States)

    Wold, Cheryl; Nicholas, Will

    2007-10-01

    School readiness is an important public health outcome, determined by a set of interdependent health and developmental trajectories and influenced by a child's family, school, and community environments. The same factors that influence school readiness also influence educational success and health throughout life. A California cigarette tax ballot initiative (Proposition 10) created new resources for children aged 0 to 5 years and their families statewide through county-level First 5 commissions, including First 5 LA in Los Angeles County. An opportunity to define and promote school readiness indicators was facilitated by collaborative relationships with a strong emphasis on data among First 5 LA, the Children's Planning Council, and the Los Angeles County Public Health Department, and other child-serving organizations. A workgroup developed school readiness goals and indicators based on recommendations of the National Education Goals Panel and five key domains of child well-being: 1) good health, 2) safety and survival, 3) economic well-being, 4) social and emotional well-being, and 5) education/workforce readiness. The Los Angeles County Board of Supervisors and First 5 LA Commission adopted the school readiness indicators. First 5 LA incorporated the indicators into the results-based accountability framework for its strategic plan and developed a community-oriented report designed to educate and spur school readiness-oriented action. The Los Angeles County Board of Supervisors approved a countywide consensus-building plan designed to engage key stakeholders in the use of the indicators for planning, evaluation, and community-building activities. School readiness indicators in Los Angeles County represent an important step forward for public health practice, namely, the successful blending of an expanded role for assessment with the ecological model.

  20. The Readiness Ruler as a measure of readiness to change poly-drug use in drug abusers

    DEFF Research Database (Denmark)

    Hesse, Morten

    2006-01-01

    Readiness to change is a crucial issue in the treatment of substance use disorders. Experiences with methadone maintenance treatment (MMT) has shown that continuous drug and alcohol use with all its consequences characterize most MMT programs. In a prospective study of drug abusers seeking opiate...... agonist maintenance treatment in the City of Copenhagen, subjects were administered the Addiction Severity Index, and the Readiness Ruler for each of 11 different licit and illicit drugs by research technicians. Data was collected upon admission to the program and at a 18 month follow-up. Subjects who...... indicated they wanted to quit or cut down upon admission, reported less drug use at 18 month follow-up, after controlling for severity of drug problems at intake. Subjects who expressed readiness to change their drug use upon admission decreased their drug use. It is concluded that the Readiness Ruler...

  1. Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China); Beijing Computational Science Research Center, Beijing 100193 (China); Xu, Jing-Bo, E-mail: xujb@zju.edu.cn [Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2017-01-30

    We investigate the performances of quantum coherence and multipartite entanglement close to the quantum critical point of a one-dimensional anisotropic spin-1/2 XXZ spin chain by employing the real-space quantum renormalization group approach. It is shown that the quantum criticality of XXZ spin chain can be revealed by the singular behaviors of the first derivatives of renormalized quantum coherence and multipartite entanglement in the thermodynamics limit. Moreover, we find the renormalized quantum coherence and multipartite entanglement obey certain universal exponential-type scaling laws in the vicinity of the quantum critical point of XXZ spin chain. - Highlights: • The QPT of XXZ chain is studied by renormalization group. • The renormalized coherence and multiparticle entanglement is investigated. • Scaling laws of renormalized coherence and multiparticle entanglement are revealed.

  2. Clifford coherent state transforms on spheres

    Science.gov (United States)

    Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao

    2018-01-01

    We introduce a one-parameter family of transforms, U(m)t,t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.

  3. High-energy, 2µm laser transmitter for coherent wind LIDAR

    Science.gov (United States)

    Singh, Upendra N.; Yu, Jirong; Kavaya, Michael J.; Koch, Grady J.

    2017-11-01

    A coherent Doppler lidar at 2μm wavelength has been built with higher output energy (300 mJ) than previously available. The laser transmitter is based on the solid-state Ho:Tm:LuLiF, a NASA Langley Research Center invented laser material for higher extraction efficiency. This diode pumped injection seeded MOPA has a transform limited line width and diffraction limited beam quality. NASA Langley Research Center is developing coherent wind lidar transmitter technology at eye-safe wavelength for satellite-based observation of wind on a global scale. The ability to profile wind is a key measurement for understanding and predicting atmospheric dynamics and is a critical measurement for improving weather forecasting and climate modeling. We would describe the development and performance of an engineering hardened 2μm laser transmitter for coherent Doppler wind measurement from ground/aircraft/space platform.

  4. Nonlinear Coherent Structures, Microbursts and Turbulence

    Science.gov (United States)

    Lakhina, G. S.

    2015-12-01

    Nonlinear waves are found everywhere, in fluids, atmosphere, laboratory, space and astrophysical plasmas. The interplay of nonlinear effects, dispersion and dissipation in the medium can lead to a variety of nonlinear waves and turbulence. Two cases of coherent nonlinear waves: chorus and electrostatic solitary waves (ESWs) and their impact on modifying the plasma medium are discussed. Chorus is a right-hand, circularly-polarized electromagnetic plane wave. Dayside chorus is a bursty emission composed of rising frequency "elements" with duration of ~0.1 to 1.0 s. Each element is composed of coherent subelements with durations of ~1 to 100 ms or more. The cyclotron resonant interaction between energetic electrons and the coherent chorus waves is studied. An expression for the pitch angle transport due to this interaction is derived considering a Gaussian distribution for the time duration of the chorus elements. The rapid pitch scattering can provide an explanation for the ionospheric microbursts of ~0.1 to 0.5 s in bremsstrahlung x-rays formed by ~10-100 keV precipitating electrons. On the other hand, the ESWs are observed in the electric field component parallel to the background magnetic field, and are usually bipolar or tripolar. Generation of coherent ESWs has been explained in terms of nonlinear fluid models of ion- and electron-acoustic solitons and double layers (DLs) based on Sagdeev pseudopotential technique. Fast Fourier transform of electron- and ion-acoustic solitons/DLs produces broadband wave spectra which can explain the properties of the electrostatic turbulence observed in the magnetosheath and plasma sheet boundary layer, and in the solar wind, respectively.

  5. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    International Nuclear Information System (INIS)

    Tilborg, J. van; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-01-01

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed

  6. The dynamics of coherent flow structures within a submerged permeable bed

    Science.gov (United States)

    Blois, G.; Best, J.; Sambrook Smith, G.; Hardy, R. J.; Lead, J.

    2009-12-01

    The existence of complex 3D coherent vortical structures in turbulent boundary layers has been widely reported from experimental observations (Adrian et al., 2007, Christensen and Adrian, 2001) and investigations of natural open channel flows (e.g. Kostaschuk and Church, 1993; Best, 2005). The interaction between these flow structures and the solid boundary that is responsible for their generation is also receiving increasing attention due to the central role played by turbulence in governing erosion-deposition processes. Yet, for the majority of studies, the bed roughness has been represented using rough impermeable surfaces. While not inherently acknowledged, most research in this area is thus only strictly applicable to those natural river beds composed either of bedrock or clay, or that have armoured, impermeable, surfaces. Recently, many researchers have noted the need to account for the role of bed permeability in order to accurately reproduce the true nature of flow over permeable gravel-bed rivers. For these cases, the near-bed flow is inherently and mutually linked to the interstitial-flow occurring in the porous solid matrix. This interaction is established through turbulence mechanisms occurring across the interface that may be important for influencing the incipient motion of cohesionless sediment. However, the nature of this turbulence and the formation of coherent structures within such permeable beds remain substantially unresolved due to the technical challenges of collecting direct data in this region. In this paper, we detail the existence and dynamic nature of coherent vortical structures within the individual pore spaces of a permeable bed submerged by a free stream flow. Laboratory experiments are reported in which a permeable flume bed was constructed using spheres packed in an offset cubic arrangement. We applied a high resolution E-PIV (Endoscopic Particle Image Velocimetry) approach in order to fully resolve the instantaneous structure of

  7. Coherent state methods for semi-classical heavy-ion physics

    International Nuclear Information System (INIS)

    Remaud, B.; Sebille, F.; Raffray, Y.

    1985-01-01

    A semi-classical model of many fermion systems is developed in view of solving the Vlasov equation; it provides an unified description of both static and dynamic properties of the system. The phase space distribution functions are written as convolution products of generalized coherent state distributions with semi-probabilistic weight functions. The generalized coherent states are defined from the local constants of motion of the dynamical system; they may reduce to the usuel ones (eigen states of the annihilation operator) only at the harmonic limit. Solving the Vlasov equation consists in two steps: (i) search for weight functions which properly describe the initial density distributions (ii) calculation of the evolutions of the coherent state set which acts as a moving basis for the Vlasov equation solutions. Sample applications to statics are analyzed: fermions in a harmonic field, self-consistent nuclear slabs. Outlooks of dynamical applications are discussed with a special attention to the fast nucleon emission in heavy-ion reactions

  8. Dimensions of community and organizational readiness for change.

    Science.gov (United States)

    Castañeda, Sheila F; Holscher, Jessica; Mumman, Manpreet K; Salgado, Hugo; Keir, Katherine B; Foster-Fishman, Pennie G; Talavera, Gregory A

    2012-01-01

    Readiness can influence whether health interventions are implemented in, and ultimately integrated into, communities. Although there is significant research interest in readiness and capacity for change, the measurement of these constructs is still in its infancy. The purpose of this review was to integrate existing assessment models of community and organizational readiness. The database PubMed was searched for articles; articles, book chapters, and practitioner guides identified as references cited in the list of core articles. Studies were included if they met the following criteria: (1) Empirical research, (2) identified community or organizational readiness for innovative health programming in the study's title, purpose, research questions, or hypotheses, and (3) identified methods to measure these constructs. Duplicate articles were deleted and measures published before 1995 were excluded. The search yielded 150 studies; 13 met all criteria. This article presents the results of a critical review of 13 community and organizational readiness assessment models, stemming from articles, chapters, and practitioner's guides focusing on assessing, developing, and sustaining community and organizational readiness for innovative public health programs. Readiness is multidimensional and different models place emphasis on different components of readiness, such as (1) community and organizational climate that facilitates change, (2) attitudes and current efforts toward prevention, (3) commitment to change, and (4) capacity to implement change. When initiating the program planning process, it is essential to assess these four domains of readiness to determine how they apply to the nuances across different communities. Thus, community-based participatory research (CBPR) partnerships, in efforts to focus on public health problems, may consider using readiness assessments as a tool for tailoring intervention efforts to the needs of the community.

  9. Coherent photoluminescence excitation spectroscopy of semicrystalline polymeric semiconductors

    Science.gov (United States)

    Silva, Carlos; Grégoire, Pascal; Thouin, Félix

    In polymeric semiconductors, the competition between through-bond (intrachain) and through-space (interchain) electronic coupling determines two-dimensional spatial coherence of excitons. The balance of intra- and interchain excitonic coupling depends very sensitively on solid-state microstructure of the polymer film (polycrystalline, semicrystalline with amorphous domains, etc.). Regioregular poly(3-hexylthiophene) has emerged as a model material because its photoluminescence (PL) spectral lineshape reveals intricate information on the magnitude of excitonic coupling, the extent of energetic disorder, and on the extent to which the disordered energy landscape is correlated. I discuss implementation of coherent two-dimensional electronic spectroscopy. We identify cross peaks between 0-0 and 0-1 excitation peaks, and we measure their time evolution, which we interpret within the context of a hybrid HJ aggregate model. By measurement of the homogeneous linewidth in diverse polymer microstructures, we address the nature of optical transitions within such hynbrid aggregate model. These depend strongly on sample processing, and I discuss the relationship between microstructure, steady-state absorption and PL spectral lineshape, and 2D coherent PL excitation spectral lineshapes.

  10. Doublet Pulse Coherent Laser Radar for Tracking of Resident Space Objects

    Science.gov (United States)

    2014-09-01

    any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a...tracking 10 cm2 cross section targets in LEO as well as tracking near Earth objects (NEOs) such as meteoroids, and asteroids may well be possible...using short pulsewidth doublet pulse coherent ladar technique offers a means for precision tracking. The technique offers best of both worlds ; precise

  11. Pathways to School Readiness: Executive Functioning Predicts Academic and Social-Emotional Aspects of School Readiness

    Science.gov (United States)

    Mann, Trisha D.; Hund, Alycia M.; Hesson-McInnis, Matthew S.; Roman, Zachary J.

    2017-01-01

    The current study specified the extent to which hot and cool aspects of executive functioning predicted academic and social-emotional indicators of school readiness. It was unique in focusing on positive aspects of social-emotional readiness, rather than problem behaviors. One hundred four 3-5-year-old children completed tasks measuring executive…

  12. Reproducing Kernels and Coherent States on Julia Sets

    Energy Technology Data Exchange (ETDEWEB)

    Thirulogasanthar, K., E-mail: santhar@cs.concordia.ca; Krzyzak, A. [Concordia University, Department of Computer Science and Software Engineering (Canada)], E-mail: krzyzak@cs.concordia.ca; Honnouvo, G. [Concordia University, Department of Mathematics and Statistics (Canada)], E-mail: g_honnouvo@yahoo.fr

    2007-11-15

    We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems.

  13. Reproducing Kernels and Coherent States on Julia Sets

    International Nuclear Information System (INIS)

    Thirulogasanthar, K.; Krzyzak, A.; Honnouvo, G.

    2007-01-01

    We construct classes of coherent states on domains arising from dynamical systems. An orthonormal family of vectors associated to the generating transformation of a Julia set is found as a family of square integrable vectors, and, thereby, reproducing kernels and reproducing kernel Hilbert spaces are associated to Julia sets. We also present analogous results on domains arising from iterated function systems

  14. Roadmap for an EArth Defense Initiative (READI)

    Science.gov (United States)

    Burke, J. D.; Hussain, A.; Soni, A.; Johnson-Freese, J.; Faull, J.; Schmidt, N.; Wilson, T.; Thangavelu, M.

    2015-12-01

    During the 2015 Space Studies Program of the International Space University, a team of thirty-four participants from seventeen countries carried out a team project on the subject of planetary defense against near-Earth object impacts. The READI Project presents the components of a complete architecture representing practical future strategies and methods for protecting our planet and life as we know it. The findings and recommendations of the project are as follows: for detection and tracking, add infrared instruments in space and radar in Earth's southern hemisphere, as well as dedicated ground telescopes and a program for spectroscopic and other characterization of asteroids and comets; for deflection, develop and space-qualify kinetic and nuclear interceptors, as well as long-range laser ablators; for education and outreach, develop programs aimed at the cohort of children aged 6-15 and their parents; and for evacuation and recovery, provide distributed shelters and increased emergency planning. The project recognizes that the enactment of any deflection strategy would require significant international collaboration; thus, we recommend the formation of a Mitigation Action Group (MAG) in addition to the existing organizations IAWN and SMPAG. The MAG should be chartered to recommend deflection strategies to the UN Security Council in the event of an imminent NEO impact and, upon approval, to lead international deflection action.

  15. Performance improvement of coherent free-space optical communication with quadrature phase-shift keying modulation using digital phase estimation.

    Science.gov (United States)

    Li, Xueliang; Geng, Tianwen; Ma, Shuang; Li, Yatian; Gao, Shijie; Wu, Zhiyong

    2017-06-01

    The performance of coherent free-space optical (CFSO) communication with phase modulation is limited by both phase fluctuations and intensity scintillations induced by atmospheric turbulence. To improve the system performance, one effective way is to use digital phase estimation. In this paper, a CFSO communication system with quadrature phase-shift keying modulation is studied. With consideration of the effects of log-normal amplitude fluctuations and Gauss phase fluctuations, a two-stage Mth power carrier phase estimation (CPE) scheme is proposed. The simulation results show that the phase noise can be suppressed greatly by this scheme, and the system symbol error rate performance with the two-stage Mth power CPE can be three orders lower than that of the single-stage Mth power CPE. Therefore, the two-stage CPE we proposed can contribute to the performance improvements of the CFSO communication system and has determinate guidance sense to its actual application.

  16. Pulsed EPR study of spin coherence time of P donors in isotopically controlled Si

    International Nuclear Information System (INIS)

    Abe, Eisuke; Isoya, Junichi; Itoh, Kohei M.

    2006-01-01

    We investigate spin coherence time of electrons bound to phosphorus donors in silicon single crystals. The samples are isotopically controlled so that they may possess various concentrations (from 4.7% to 99.2%) of 29 Si, which is the only non-zero-spin stable isotope of silicon. The orientation dependence of electron-spin coherence times are presented, and electron spin echo envelope modulation is analyzed in time-frequency space

  17. Spatial coherence of flood-rich and flood-poor periods across Germany

    Science.gov (United States)

    Merz, Bruno; Dung, Nguyen Viet; Apel, Heiko; Gerlitz, Lars; Schröter, Kai; Steirou, Eva; Vorogushyn, Sergiy

    2018-04-01

    Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.

  18. Terahertz-bandwidth coherence measurements of a quantum dash laser in passive and active mode-locking operation.

    Science.gov (United States)

    Martin, Eamonn; Watts, Regan; Bramerie, Laurent; Shen, Alexandre; Gariah, Harry; Blache, Fabrice; Lelarge, Francois; Barry, Liam

    2012-12-01

    This research carries out coherence measurements of a 42.7 GHz quantum dash (QDash) semiconductor laser when passively, electrically, and optically mode-locked. Coherence of the spectral lines from the mode-locked laser is determined by examining the radio frequency beat-tone linewidth as the mode spacing is increased up to 1.1 THz. Electric-field measurements of the QDash laser are also presented, from which a comparison between experimental results and accepted theory for coherence in passively mode-locked lasers has been performed.

  19. First Responder Readiness: A Systems Approach to Readiness Assessment Using Model Based Vulnerability Analysis Techniques

    Science.gov (United States)

    2005-09-01

    to come—if it be not to come, it will be now—if it be not now, yet it will come—the readiness is all. . .” --- Shakespeare , Hamlet , 5.2.215-219...BLANK 1 I. READINESS OVERVIEW A. INTRODUCTION “ Hamlet : . . . There is a special providence in the fall of a sparrow. If it be now ‘tis not

  20. Contribution to coherent atom optics - Design of multiple wave devices

    International Nuclear Information System (INIS)

    Impens, F.

    2008-03-01

    The theoretical work presented in this manuscript addresses two complementary issues in coherent atom optics. The first part addresses the perspectives offered by coherent atomic sources through the design of two experiment involving the levitation of a cold atomic sample in a periodic series of light pulses, and for which coherent atomic clouds are particularly well-suited. These systems appear as multiple wave atom interferometers. A striking feature of these experiments is that a unique system performs both the sample trapping and interrogation. To obtain a transverse confinement, a novel atomic lens is proposed, relying on the interaction between an atomic wave with a spherical light wave. The sensitivity of the sample trapping towards the gravitational acceleration and towards the pulse frequencies is exploited to perform the desired measurement. These devices constitute atomic wave resonators in momentum space, which is a novel concept in atom optics. A second part develops new theoretical tools - most of which inspired from optics - well-suited to describe the propagation of coherent atomic sources. A phase-space approach of the propagation, relying on the evolution of moments, is developed and applied to study the low-energy dynamics of Bose-Einstein condensates. The ABCD method of propagation for atomic waves is extended beyond the linear regime to account perturbatively for mean-field atomic interactions in the atom-optical aberration-less approximation. A treatment of the atom laser extraction enabling one to describe aberrations in the atomic beam, developed in collaboration with the Atom Optics group at the Institute of Optics, is exposed. Last, a quality factor suitable for the characterization of diluted matter waves in a general propagation regime has been proposed. (author)

  1. Contextual factors influencing readiness for dissemination of obesity prevention programs and policies.

    Science.gov (United States)

    Dreisinger, Mariah L; Boland, Elizabeth M; Filler, Carl D; Baker, Elizabeth A; Hessel, Amy S; Brownson, Ross C

    2012-04-01

    Within the realm of obesity prevention research, there have been many promising interventions to improve physical activity and nutrition among diverse target populations. However, very little information is known about the dissemination and replication of these interventions. In 2007 and 2008 as part of a larger obesity prevention initiative, Missouri Foundation for Health funded 19 community-based programs throughout the state that showed promise of being model practices and committed to promoting their dissemination. Semi-structured key informant interviews were conducted with 64 individuals across the grant sites to help stage their readiness for dissemination. Through these interviews, the project team was able to identify the variables that impact a program's readiness for widespread distribution. Some factors contributing to readiness include: strong intervention planning and an existing sustainability plan; physical space available for the intervention; staff and monetary resources; administrative buy-in; community buy-in and engagement; a strong partner base and an agency with a healthy and active mission. These findings add to the literature by systematically identifying a set of key contextual variables. The qualitative data collected support a proposed framework and helps to establish a process for maintaining successful interventions based on several important factors that impact dissemination.

  2. Readiness for hospital discharge: A concept analysis.

    Science.gov (United States)

    Galvin, Eileen Catherine; Wills, Teresa; Coffey, Alice

    2017-11-01

    To report on an analysis on the concept of 'readiness for hospital discharge'. No uniform operational definition of 'readiness for hospital discharge' exists in the literature; therefore, a concept analysis is required to clarify the concept and identify an up-to-date understanding of readiness for hospital discharge. Clarity of the concept will identify all uses of the concept; provide conceptual clarity, an operational definition and direction for further research. Literature review and concept analysis. A review of literature was conducted in 2016. Databases searched were: Academic Search Complete, CINAHL Plus with Full Text, PsycARTICLES, Psychology and Behavioural Sciences Collection, PsycINFO, Social Sciences Full Text (H.W. Wilson) and SocINDEX with Full Text. No date limits were applied. Identification of the attributes, antecedents and consequences of readiness for hospital discharge led to an operational definition of the concept. The following attributes belonging to 'readiness for hospital discharge' were extracted from the literature: physical stability, adequate support, psychological ability, and adequate information and knowledge. This analysis contributes to the advancement of knowledge in the area of hospital discharge, by proposing an operational definition of readiness for hospital discharge, derived from the literature. A better understanding of the phenomenon will assist healthcare professionals to recognize, measure and implement interventions where necessary, to ensure patients are ready for hospital discharge and assist in the advancement of knowledge for all professionals involved in patient discharge from hospital. © 2017 John Wiley & Sons Ltd.

  3. Partial coherence with application to the monotonicity problem of coherence involving skew information

    Science.gov (United States)

    Luo, Shunlong; Sun, Yuan

    2017-08-01

    Quantifications of coherence are intensively studied in the context of completely decoherent operations (i.e., von Neuamnn measurements, or equivalently, orthonormal bases) in recent years. Here we investigate partial coherence (i.e., coherence in the context of partially decoherent operations such as Lüders measurements). A bona fide measure of partial coherence is introduced. As an application, we address the monotonicity problem of K -coherence (a quantifier for coherence in terms of Wigner-Yanase skew information) [Girolami, Phys. Rev. Lett. 113, 170401 (2014), 10.1103/PhysRevLett.113.170401], which is introduced to realize a measure of coherence as axiomatized by Baumgratz, Cramer, and Plenio [Phys. Rev. Lett. 113, 140401 (2014), 10.1103/PhysRevLett.113.140401]. Since K -coherence fails to meet the necessary requirement of monotonicity under incoherent operations, it is desirable to remedy this monotonicity problem. We show that if we modify the original measure by taking skew information with respect to the spectral decomposition of an observable, rather than the observable itself, as a measure of coherence, then the problem disappears, and the resultant coherence measure satisfies the monotonicity. Some concrete examples are discussed and related open issues are indicated.

  4. Measuring coherence with entanglement concurrence

    Science.gov (United States)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-07-01

    Quantum coherence is a fundamental manifestation of the quantum superposition principle. Recently, Baumgratz et al (2014 Phys. Rev. Lett. 113 140401) presented a rigorous framework to quantify coherence from the view of theory of physical resource. Here we propose a new valid quantum coherence measure which is a convex roof measure, for a quantum system of arbitrary dimension, essentially using the generalized Gell-Mann matrices. Rigorous proof shows that the proposed coherence measure, coherence concurrence, fulfills all the requirements dictated by the resource theory of quantum coherence measures. Moreover, strong links between the resource frameworks of coherence concurrence and entanglement concurrence is derived, which shows that any degree of coherence with respect to some reference basis can be converted to entanglement via incoherent operations. Our work provides a clear quantitative and operational connection between coherence and entanglement based on two kinds of concurrence. This new coherence measure, coherence concurrence, may also be beneficial to the study of quantum coherence.

  5. GOES-R Space Weather Data: Achieving User Ready Products

    Science.gov (United States)

    Rowland, W. F.; Tilton, M.; Redmon, R. J.; Goodman, S. J.; Comerford, M.

    2017-12-01

    Forecasters and the science community will rely on improved Space Weather products from the next generation of Geostationary Operational Environmental Satellite (GOES-R Series) for decades to come. Many issues must be successfully addressed in order to produce useful products. The instruments themselves and their basic scientific measurements (Level 1b data, i.e. L1b) must be calibrated and validated. Algorithms must be created to transform L1b into the specific environmental parameters that are of interest to forecasters and the community (Level 2+, i.e. L2+). In the case of Space Weather data, because the L2+ products are not generated within the core GOES-R Ground Segment, a separate system had to be developed in order to implement the L2+ products. Finally, the products must be made available to real time and retrospective users, as well as preserved for future generations. We give an overview of the path to production of the GOES-R Space Weather products, and the role of the National Centers for Environmental Information (NCEI) in this process.

  6. G+ COMMUNITY: MEASURING TEACHERS’ READINESS AND ACCEPTANCE

    Directory of Open Access Journals (Sweden)

    Mohd Faisal Farish Ishak

    2017-08-01

    Full Text Available The purpose of this paper is to explore teachers’ acceptance and readiness in using the cloud-based community as a platform for professional collaboration related to their teaching and learning. Familiarity with certain social networking platforms has made the preferable collaboration among teachers only limited to using Facebook, WhatsApp or Telegram. However, with time and space constraints in schools, some of the sharing sessions could not be done effectively most of the time. The study focuses on teachers’ acceptance and readiness of having their community in the cloud when they were introduced to the platform during a Continuous Professional Development (CPD course. A total number of 61 teachers used Google Community named as ‘Contemporary Children’s Literature (CCL 2016’ as a platform for their Professional Learning Community (PLC during the course. Descriptive analysis was done using Google Sheets and the findings show that these teachers are receptive towards Google Community in terms of its engagement level, usefulness as well as ease of use. The introduction to Google Community has created a new pathway for their collaboration especially for teaching and learning purposes. In a nutshell, their acceptance towards the cloud-based community indicates that, given the right training channel, teachers are positive and opened to utilising and integrating the cloud-based technology in their current teaching practice.

  7. Detecting phase synchronization between coupled non-phase-coherent oscillators

    International Nuclear Information System (INIS)

    Follmann, Rosangela; Macau, Elbert E.N.; Rosa, Epaminondas

    2009-01-01

    We compare two methods for detecting phase synchronization in coupled non-phase-coherent oscillators. One method is based on the locking of self-sustained oscillators with an irregular signal. The other uses trajectory recurrences in phase space. We identify the pros and cons of both methods and propose guidelines to detect phase synchronization in data series.

  8. Dynamic isoperimetry and the geometry of Lagrangian coherent structures

    International Nuclear Information System (INIS)

    Froyland, Gary

    2015-01-01

    The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume.The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer–Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian.Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation. (paper)

  9. Reliability Concerns for Flying SiC Power MOSFETs in Space

    Science.gov (United States)

    Galloway, K. F.; Witulski, A. F.; Schrimpf, R. D.; Sternberg, A. L.; Ball, D. R.; Javanainen, A.; Reed, R. A.; Sierawski, B. D.; Lauenstein, J-M

    2018-01-01

    SiC power MOSFETs are space-ready in terms of typical reliability measures. However, single event burnout (SEB) often occurs at voltages 50% or lower than specified breakdown. Data illustrating burnout for 1200 V devices is reviewed and the space reliability of SiC MOSFETs is discussed.

  10. On-off intermittency and coherent bursting in stochastically-driven coupled maps

    International Nuclear Information System (INIS)

    Metta, Sabino; Provenzale, Antonello; Spiegel, Edward A.

    2010-01-01

    On-off intermittency is a phase space mechanism for bursting in dynamical systems. Here we recall how the simple example of a logistic map with a time-dependent control parameter, considered as a dynamical variable of the system, gives rise to bursting or on-off behavior. We show that, for a given realization of the driver, a stochastically driven logistic map in the on-off intermittent regime always converges to the same temporal dynamics, independently of initial conditions. In that sense, the map is not chaotic. We then explore the behavior of two coupled on-off logistic maps, each driven by a separate random process, and show that, for a wide range of coupling strengths, bursting becomes at least partially coherent. The bursting coherence has a smooth dependence on the coupling parameter and no sharp transition from coherence to incoherence is detected. In the system of two coupled on-off maps studied here, coherent bursting is rooted in the behavior during off phases when the mapped coordinates take on extremely small values.

  11. Path integrals and coherent states of SU(2) and SU(1,1)

    CERN Document Server

    Inomata, Akira; Kuratsuji, Hiroshi

    1992-01-01

    The authors examine several topical subjects, commencing with a general introduction to path integrals in quantum mechanics and the group theoretical backgrounds for path integrals. Applications of harmonic analysis, polar coordinate formulation, various techniques and path integrals on SU(2) and SU(1, 1) are discussed. Soluble examples presented include particle-flux system, a pulsed oscillator, magnetic monopole, the Coulomb problem in curved space and others.The second part deals with the SU(2) coherent states and their applications. Construction and generalization of the SU(2) coherent sta

  12. Fuzzy spheres from inequivalent coherent states quantizations

    International Nuclear Information System (INIS)

    Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques

    2007-01-01

    The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets

  13. Optical space communication: An overview

    International Nuclear Information System (INIS)

    Jain, V.K.

    1994-01-01

    In this paper, importance of the optical space communication has been highlighted. Its merits and demerits over the conventional microwave system has been presented. In contrast to coherent systems, use of an optical preamplifier in direct detection system has been emphasized. Status of some of the ongoing/future space communication projects has been given. (author). 9 refs, 5 figs

  14. Brightness and coherence of radiation from undulators and high-gain free electron lasers

    International Nuclear Information System (INIS)

    Kim, Kwang-Je.

    1987-03-01

    The purpose of this paper is to review the radiation characteristics of undulators and high-gain free electron lasers (FELs). The topics covered are: a phase-space method in wave optics and synchrotron radiation, coherence from the phase-space point of view, discussions of undulator performances in next-generation synchrotron radiation facility and the characteristics of the high-gain FELs and their performances

  15. Magnetic fusion: Environmental Readiness Document

    International Nuclear Information System (INIS)

    1981-03-01

    Environmental Readiness Documents are prepared periodically to review and evaluate the environmental status of an energy technology during the several phases of development of that technology. Through these documents, the Office of Environment within the Department of Energy provides an independent and objective assessment of the environmental risks and potential impacts associated with the progression of the technology to the next stage of development and with future extensive use of the technology. This Environmental Readiness Document was prepared to assist the Department of Energy in evaluating the readiness of magnetic fusion technology with respect to environmental issues. An effort has been made to identify potential environmental problems that may be encountered based upon current knowledge, proposed and possible new environmental regulations, and the uncertainties inherent in planned environmental research

  16. Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms

    Directory of Open Access Journals (Sweden)

    A. Caliman

    Full Text Available Temporal coherence (i.e., the degree of synchronicity of a given variable among ecological units within a predefined space has been shown for several limnological features among temperate lakes, allowing predictions about the structure and function of ecosystems. However, there is little evidence of temporal coherence among tropical aquatic systems, where the climatic variability among seasons is less pronounced. Here, we used data from long-term monitoring of physical, chemical and biological variables to test the degree of temporal coherence among 18 tropical coastal lagoons. The water temperature and chlorophyll-a concentration had the highest and lowest temporal coherence among the lagoons, respectively, whereas the salinity and water colour had intermediate temporal coherence. The regional climactic factors were the main factors responsible for the coherence patterns in the water temperature and water colour, whereas the landscape position and morphometric characteristics explained much of the variation of the salinity and water colour among the lagoons. These results indicate that both local (lagoon morphometry and regional (precipitation, air temperature factors regulate the physical and chemical conditions of coastal lagoons by adjusting the terrestrial and marine subsidies at a landscape-scale. On the other hand, the chlorophyll-a concentration appears to be primarily regulated by specific local conditions resulting in a weak temporal coherence among the ecosystems. We concluded that temporal coherence in tropical ecosystems is possible, at least for some environmental features, and should be evaluated for other tropical ecosystems. Our results also reinforce that aquatic ecosystems should be studied more broadly to accomplish a full understanding of their structure and function.

  17. Beyond College Eligibility: A New Framework for Promoting College Readiness. College Readiness Indicator Systems Resource Series

    Science.gov (United States)

    Annenberg Institute for School Reform at Brown University, 2014

    2014-01-01

    The College Readiness Indicator Systems (CRIS) initiative was developed in response to a troubling pattern: More students than ever are enrolling in college after high school, but many of them are not college ready, as evidenced by persistently low rates of college completion. The sense of urgency to close the gap between college eligibility and…

  18. Organisational readiness for introducing a performance management system

    Directory of Open Access Journals (Sweden)

    Michael Ochurub

    2012-09-01

    Full Text Available Orientation: The successful introduction of performance management systems to the public service requires careful measurement of readiness for change.Research purpose: This study investigated the extent to which employees were ready for change as an indication of whether their organisation was ready to introduce a performance management system (PMS.Motivation for the study: Introducing system changes in organisations depends on positive employee preconditions. There is some debate over whether organisations can facilitate these preconditions. This research investigates change readiness linked to the introduction of a PMS in a public sector organisation. The results add to the growing literature on levels of change readiness.Research design, approach and method: The researchers used a quantitative, questionnairebased design. Because the organisation was large, the researchers used stratified sampling to select a sample from each population stratum. The sample size was 460, which constituted 26% of the total population. They used a South African change readiness questionnaire to elicit employee perceptions and opinions.Main findings: The researchers found that the organisation was not ready to introduce a PMS. The study identified various challenges and key factors that were negatively affecting the introduction of a PMS.Practical/managerial implications: The intention to develop and introduce performance management systems is generally to change the attitudes, values and approaches of managers and employees to the new strategies, processes and plans to improve productivity and performance. However, pre-existing conditions and attitudes could have an effect. It is essential to ensure that organisations are ready to introduce performance management systems and to provide sound change leadership to drive the process effectively. This study contributes to the body of knowledge about the challenges and factors organisations should consider when they

  19. Quantum coherence: Reciprocity and distribution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh, E-mail: asukumar@hri.res.in [Harish-Chandra Research Institute, Allahabad-211019 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094 (India)

    2017-03-18

    Quantum coherence is the outcome of the superposition principle. Recently, it has been theorized as a quantum resource, and is the premise of quantum correlations in multipartite systems. It is therefore interesting to study the coherence content and its distribution in a multipartite quantum system. In this work, we show analytically as well as numerically the reciprocity between coherence and mixedness of a quantum state. We find that this trade-off is a general feature in the sense that it is true for large spectra of measures of coherence and of mixedness. We also study the distribution of coherence in multipartite systems by looking at monogamy-type relation–which we refer to as additivity relation–between coherences of different parts of the system. We show that for the Dicke states, while the normalized measures of coherence violate the additivity relation, the unnormalized ones satisfy the same. - Highlights: • Quantum coherence. • Reciprocity between quantum coherence and mixedness. • Distribution of quantum coherence in multipartite quantum systems. • Additivity relation for distribution of quantum coherence in Dicke and “X” states.

  20. Discrete coherent and squeezed states of many-qudit systems

    International Nuclear Information System (INIS)

    Klimov, Andrei B.; Munoz, Carlos; Sanchez-Soto, Luis L.

    2009-01-01

    We consider the phase space for n identical qudits (each one of dimension d, with d a primer number) as a grid of d n xd n points and use the finite Galois field GF(d n ) to label the corresponding axes. The associated displacement operators permit to define s-parametrized quasidistributions on this grid, with properties analogous to their continuous counterparts. These displacements allow also for the construction of finite coherent states, once a fiducial state is fixed. We take this reference as one eigenstate of the discrete Fourier transform and study the factorization properties of the resulting coherent states. We extend these ideas to include discrete squeezed states, and show their intriguing relation with entangled states of different qudits.

  1. Neutron scattering in disordered alloys: coherent and incoherent intensities

    International Nuclear Information System (INIS)

    Mookerjee, A.; Yussouff, M.

    1985-02-01

    A priori it is not clear how to split the total intensity of thermal neutron scattering from disordered alloys into a coherent and an incoherent part. We present here a formalism to do this. The formalism is based on the augmented space technique introduced earlier by one of the authors. It includes disorder in mass, force constants and scattering lengths. A self-consistent CCPA which is tractable for realistic calculations is presented for the coherent and incoherent intensities. This is expected to prove useful in theoretically analysis data for alloys (e.g. Nisub(x)Ptsub(1-x), Nisub(x)Pdsub(1-x), Nisub(x)Crsub(1-x)) for which it is necessary to go beyond the usual single site CPAs for reliable accuracy. (author)

  2. Stability of anisotropic beams with space charge

    International Nuclear Information System (INIS)

    Hofmann, I.

    1997-07-01

    We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)

  3. Development and Pilot Test of the Workplace Readiness Questionnaire, a Theory-Based Instrument to Measure Small Workplaces' Readiness to Implement Wellness Programs.

    Science.gov (United States)

    Hannon, Peggy A; Helfrich, Christian D; Chan, K Gary; Allen, Claire L; Hammerback, Kristen; Kohn, Marlana J; Parrish, Amanda T; Weiner, Bryan J; Harris, Jeffrey R

    2017-01-01

    To develop a theory-based questionnaire to assess readiness for change in small workplaces adopting wellness programs. In developing our scale, we first tested items via "think-aloud" interviews. We tested the revised items in a cross-sectional quantitative telephone survey. The study setting comprised small workplaces (20-250 employees) in low-wage industries. Decision-makers representing small workplaces in King County, Washington (think-aloud interviews, n = 9), and the United States (telephone survey, n = 201) served as study subjects. We generated items for each construct in Weiner's theory of organizational readiness for change. We also measured workplace characteristics and current implementation of workplace wellness programs. We assessed reliability by coefficient alpha for each of the readiness questionnaire subscales. We tested the association of all subscales with employers' current implementation of wellness policies, programs, and communications, and conducted a path analysis to test the associations in the theory of organizational readiness to change. Each of the readiness subscales exhibited acceptable internal reliability (coefficient alpha range, .75-.88) and was positively associated with wellness program implementation ( p < .05). The path analysis was consistent with the theory of organizational readiness to change, except change efficacy did not predict change-related effort. We developed a new questionnaire to assess small workplaces' readiness to adopt and implement evidence-based wellness programs. Our findings also provide empirical validation of Weiner's theory of readiness for change.

  4. Life Cycle Cost Analysis of Ready Mix Concrete Plant

    Science.gov (United States)

    Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.

    2013-11-01

    India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.

  5. Nonrelativistic electron bunch train for coherently enhanced terahertz radiation sources

    International Nuclear Information System (INIS)

    Li Yuelin; Kim, Kwang-Je

    2008-01-01

    We propose to generate a train of prebunched electron beams for producing coherently enhanced Smith-Purcell radiation [S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953)] in the terahertz wavelength range. In this scheme, a train of picosecond laser pulses is produced to drive a photoemission gun to generate a train of 50 keV electron pulses. The parameters are chosen so that the space-charge effect does not destroy the pulse time structure. Smith-Purcell radiation from the electron pulse train is enhanced due both to the short length of the individual electron bunch and to the repetitive structure of the beam. Example systems producing coherent terahertz power at about 1 mW are described

  6. Exchange gate on the qudit space and Fock space

    International Nuclear Information System (INIS)

    Fujii, Kazuyuki

    2003-01-01

    We construct an exchange gate with small elementary gates on the space of qudits, which consist of three controlled shift gates and three 'reverse' gates. This is a natural extension of the qubit case. We also consider a similar situation in Fock space, but in this case we find some differences. However, we can construct the exchange gate by making use of a generalized coherent operator based on the Lie algebra su(2), which is a well-known method in quantum optics. We also make a brief comment on 'imperfect clones'

  7. Understanding Early Educators' Readiness to Change

    Science.gov (United States)

    Peterson, Shira M.

    2012-01-01

    Researchers in the fields of humanistic psychology, counseling, organizational change, and implementation science have been asking a question that is at the heart of today's early care and education quality improvement efforts: When it comes to changing one's behavior, what makes a person ready to change? Although the concept of readiness to…

  8. Readiness Assessment Plan, Hanford 200 areas treated effluent disposal facilities

    International Nuclear Information System (INIS)

    Ulmer, F.J.

    1995-01-01

    This Readiness Assessment Plan documents Liquid Effluent Facilities review process used to establish the scope of review, documentation requirements, performance assessment, and plant readiness to begin operation of the Treated Effluent Disposal system in accordance with DOE-RLID-5480.31, Startup and Restart of Facilities Operational Readiness Review and Readiness Assessments

  9. Consistency of the directionality of partially coherent beams in turbulence expressed in terms of the angular spread and the far-field average intensity

    International Nuclear Information System (INIS)

    Xiao-Wen, Chen; Xiao-Ling, Ji

    2010-01-01

    Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence. (classical areas of phenomenology)

  10. Coherent betatron instability in the Tevatron

    International Nuclear Information System (INIS)

    Bogacz, S.A.; Harrison, M.; Ng, K.Y.

    1988-01-01

    The coherent betatron instability was first observed during the recent 1987-88 Tevatron fixed target run. In this operating mode 1000 consecutive bunches are loaded into the machine at 150 GeV with a bunch spacing of 18.8 /times/ 10 -9 sec (53 MHz). The normalized transverse emittance is typically 15 π /times/ 10 -6 m rad in each plane with a longitudinal emittance of about 1.5 eV-sec. The beam is accelerated to 800 GeV in 13 sec. and then it is resonantly extracted during a 23 sec flat top. As the run progressed the bunch intensities were increased until at about 1.4 /times/ 10 10 ppb (protons per bunch) we experienced the onset of a coherent horizontal oscillation taking place in the later stages of the acceleration cycle (>600 GeV). This rapidly developing coherent instability results in a significant emittance growth, which limits machine performance and in a catastrophic scenario it even prevents extraction of the beam. In this paper we will present a simple analytic description of the observed instability. We will show that a combination of a resistive wall coupled bunch effect and a single bunch slow head-tail instability is consistent with the above observations. Finally, a systematic numerical analysis of our model (growth-time vs chromaticity plots) points to the existence of the ≥1 slow head-tail modes as a plausible mechanism for the observed coherent instability. This last claim, as mentioned before, does not have conclusive experimental evidence, although it is based on a very good agreement between the measured values of the instability growth-time and the ones calculated on the basis of our model. 4 refs., 3 figs

  11. Category 3 investigation-derived waste Readiness Evaluation Plan

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    1996-08-01

    This Readiness Evaluation Plan presents the methodology used to assess the readiness for loading investigation-derived waste (IDW) drums on trucks for transport to the Environmental Restoration Disposal Facility (ERDF). The scope of this Readiness Evaluation Plan includes an assessment of the organizations, procedures, and regulatory approvals necessary for the handling of IDW containers and the subsequent transportation of materials to ERDF

  12. Coherently Enhanced Wireless Power Transfer

    Science.gov (United States)

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alù, Andrea

    2018-04-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.

  13. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  14. The psychometric properties of the Readiness and Motivation Questionnaire: a symptom-specific measure of readiness for change in the eating disorders.

    Science.gov (United States)

    Geller, Josie; Brown, Krista E; Srikameswaran, Suja; Piper, William; Dunn, Erin C

    2013-09-01

    Readiness for change, as assessed by the readiness and motivation interview (RMI), predicts a number of clinical outcome variables in eating disorders including enrollment in intensive treatment, symptom change, dropout, and relapse. Although clinically useful, the training and administration of the RMI is time consuming. The purpose of this research was to (a) develop a self-report, symptom-specific version of the RMI, the readiness and motivation questionnaire (RMQ), that can be used to assess readiness for change across all eating disorder diagnoses and (b) establish its psychometric properties. The RMQ provides stage of change, internality, and confidence scores for each of 4 eating disorder symptom domains (restriction, bingeing, and cognitive and compensatory behaviors). Individuals (N = 244) with current eating disorder diagnoses completed the RMQ and measures of convergent, discriminant, and criterion validity. Similar to the RMI scores, readiness scores on the RMQ differed according to symptom domain. Regarding criterion validity, RMQ scores were significantly associated with ratings of anticipated difficulty of recovery activities and completion of recovery activities. The RMQ contributed significant unique variance to anticipated difficulty of recovery activities, beyond those accounted for by the RMI and a questionnaire measure of global readiness. The RMQ is thus an acceptable alternative to the RMI, providing global and domain-specific readiness information when time or cost prohibits use of an interview.

  15. Production technology readiness assessment of surfactant in the research center for Chemistry-Indonesian Institute of Sciences

    Science.gov (United States)

    Setiawan, Arief Ameir Rahman; Sulaswatty, Anny

    2017-11-01

    The common problem faced by the institution working on research, innovation and technology development is lack of quantitative measures to determine the technology readiness of research. No common communication language between R & D Institutions and industry about the level of preparedness of a research resulting a barrier to technology diffusion interaction. This lack of connection between R & D institutes with industry may lead to "sluggishness" occurs in innovating. For such circumstance, assessing technology readiness of research is very important. One of wide spread methods for the assessment is Technology Readiness Level (TRL, also known as Technometer), which is introduced by NASA (National Aeronautics and Space Administration). TRL is a general guide that provides an overview of maturity level of a technology. This study aims to identify and demonstrate the implementation of TRL to assess a number of surfactant researches in the Research Center for Chemistry, Indonesian Institute of Sciences. According to the assessment, it has been obtained the surfactant recommended for further development towards commercialization of R & D results, i.e. Glycerol Mono Stearate (GMS), which has reached the level of TRL 7.

  16. Pisot q-coherent states quantization of the harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Gazeau, J.P., E-mail: gazeau@apc.univ-paris7.fr [Laboratoire APC, Univ. Paris Diderot, Sorbonne Paris Cite, 75205 Paris (France); Olmo, M.A. del, E-mail: olmo@fta.uva.es [Departamento de Fisica Teorica and IMEVA, Universidad de Valladolid, E-47005, Valladolid (Spain)

    2013-03-15

    We revisit the quantized version of the harmonic oscillator obtained through a q-dependent family of coherent states. For each q, 0spaces, angle operator, probability distributions and related statistical features, time evolution and semi-classical phase space trajectories. - Highlights: Black-Right-Pointing-Pointer Quantized version of the harmonic oscillator (HO) through a q-family of coherent states. Black-Right-Pointing-Pointer For q,0

  17. What are the characteristics of 'sexually ready' adolescents? Exploring the sexual readiness of youth in urban poor Accra.

    Science.gov (United States)

    Biney, Adriana A E; Dodoo, F Nii-Amoo

    2016-01-05

    Adolescent sexual activity, especially among the urban poor, remains a challenge. Despite numerous interventions and programs to address the negative consequences arising from early and frequent sexual activity among youth in sub-Saharan Africa, including Ghana, only slight progress has been made. A plausible explanation is that our understanding of what adolescents think about sex and about their own sexuality is poor. In that sense, examining how adolescents in urban poor communities think about their sexual readiness, and identifying characteristics associated with that sexual self-concept dimension, should deepen our understanding of this topical issue. A total of 196 male and female adolescents, ages 12 to 19, were surveyed in the 2011 RIPS Urban Health and Poverty Project in Accra, Ghana. The youth responded to three statements which determined their levels of sexual readiness. Other background characteristics were also obtained enabling the assessment of the correlates of their preparedness to engage in sex. The data were analyzed using ordered logistic regression models. Overall, the majority of respondents did not consider themselves ready for sex. Multivariate analyses indicated that sexual experience, exposure to pornographic movies, gender, ethnicity and household wealth were significantly linked to their readiness for sex. Sexual readiness is related to sexual activity as well as other characteristics of the adolescents, suggesting the need to consider these factors in the design of programs and interventions to curb early sex. The subject of sexual readiness has to be investigated further to ensure adolescents do not identify with any negative effects of this sexual self-view.

  18. Measuring Success: David Conley's College Readiness Framework and the Illinois College and Career Readiness Act. In Brief

    Science.gov (United States)

    Baber, Lorenzo D.; Castro, Erin L.; Bragg, Debra D.

    2010-01-01

    The purpose of this brief is to understand the Illinois College and Career Readiness (CCR) Act in light of David Conley's college readiness model. Although not mentioned specifically by the Illinois statute, evaluation results gathered by the Office of Community College Research and Leadership (OCCRL) show alignment between a number of programs…

  19. Ordering states with various coherence measures

    Science.gov (United States)

    Yang, Long-Mei; Chen, Bin; Fei, Shao-Ming; Wang, Zhi-Xi

    2018-04-01

    Quantum coherence is one of the most significant theories in quantum physics. Ordering states with various coherence measures is an intriguing task in quantification theory of coherence. In this paper, we study this problem by use of four important coherence measures—the l_1 norm of coherence, the relative entropy of coherence, the geometric measure of coherence and the modified trace distance measure of coherence. We show that each pair of these measures give a different ordering of qudit states when d≥3. However, for single-qubit states, the l_1 norm of coherence and the geometric coherence provide the same ordering. We also show that the relative entropy of coherence and the geometric coherence give a different ordering for single-qubit states. Then we partially answer the open question proposed in Liu et al. (Quantum Inf Process 15:4189, 2016) whether all the coherence measures give a different ordering of states.

  20. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  1. Mini-Split Heat Pump Evaluation and Zero Energy Ready Home Support

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States)

    2017-01-01

    IBACOS worked with builder Imagine Homes to evaluate the performance of an occupied new construction test house following construction of the house in the hot, humid climate of San Antonio, Texas. The project measures the effectiveness of a space conditioning strategy using a multihead mini-split heat pump (MSHP) system in a reduced-load home to achieve acceptable comfort levels (temperature and humidity) and energy performance. IBACOS collected long-term data and analyzed the energy consumption and comfort conditions of the occupied house after one year of operation. Although measured results indicate that the test system provides comfort both inside and outside the ASHRAE Standard 55-2010 range, the occupants of the house claimed both adequate comfort and appreciation of the ease of use and flexibility of the installed MSHP system. IBACOS also assisted the builder to evaluate design and specification changes necessary to comply with Zero Energy Ready Home, but the builder chose to not move forward with it because of concerns about the 'solar ready' requirements of the program.

  2. A simple coherent attack and practical security of differential phase shift quantum cryptography

    International Nuclear Information System (INIS)

    Kronberg, D A

    2014-01-01

    The differential phase shift quantum key distribution protocol reveals good security against such powerful attacks as unambiguous state discrimination and beam splitting attacks. Its complete security analysis is complex due to high dimensions of the supposed spaces and density operators. In this paper, we consider a particular and conceptually simple coherent attack, available in practical implementations. The main condition for this attack is the length of used coherent state tuples of order 8–12. We show that under this condition, no high level of practical distance between legitimate users can be achieved. (paper)

  3. Instructional Alignment of Workplace Readiness Skills in Marketing Education

    Science.gov (United States)

    Martin, Sarah J.; Reed, Philip A.

    2015-01-01

    This study examined high school marketing education teachers' knowledge of workplace readiness skills and whether that knowledge had an impact on student workplace readiness skill achievement. Further, this study examined the usage of Virginia's 13 Workplace Readiness Skills curriculum and identified the teaching methods and instructional…

  4. Solar Sail Propulsion Technology Readiness Level Database

    Science.gov (United States)

    Adams, Charles L.

    2004-01-01

    The NASA In-Space Propulsion Technology (ISPT) Projects Office has been sponsoring 2 solar sail system design and development hardware demonstration activities over the past 20 months. Able Engineering Company (AEC) of Goleta, CA is leading one team and L Garde, Inc. of Tustin, CA is leading the other team. Component, subsystem and system fabrication and testing has been completed successfully. The goal of these activities is to advance the technology readiness level (TRL) of solar sail propulsion from 3 towards 6 by 2006. These activities will culminate in the deployment and testing of 20-meter solar sail system ground demonstration hardware in the 30 meter diameter thermal-vacuum chamber at NASA Glenn Plum Brook in 2005. This paper will describe the features of a computer database system that documents the results of the solar sail development activities to-date. Illustrations of the hardware components and systems, test results, analytical models, relevant space environment definition and current TRL assessment, as stored and manipulated within the database are presented. This database could serve as a central repository for all data related to the advancement of solar sail technology sponsored by the ISPT, providing an up-to-date assessment of the TRL of this technology. Current plans are to eventually make the database available to the Solar Sail community through the Space Transportation Information Network (STIN).

  5. Temperature dependence of the coherence in polariton condensates

    Science.gov (United States)

    Rozas, E.; Martín, M. D.; Tejedor, C.; Viña, L.; Deligeorgis, G.; Hatzopoulos, Z.; Savvidis, P. G.

    2018-02-01

    We present a time-resolved experimental study of the temperature effect on the coherence of traveling polariton condensates. The simultaneous detection of their emission both in real and reciprocal space allows us to fully monitor the condensates' dynamics. We obtain fringes in reciprocal space as a result of the interference between polariton wave packets (WPs) traveling with the same speed. The periodicity of these fringes is inversely proportional to the spatial distance between the interfering WPs. In a similar fashion, we obtain interference fringes in real space when WPs traveling in opposite directions meet. The visibility of both real- and reciprocal-space interference fringes rapidly decreases with increasing temperature and vanishes. A theoretical description of the phase transition, considering the coexistence of condensed and noncondensed particles, for an out-of-equilibrium condensate such as ours is still missing, yet a comparison with theories developed for atomic condensates allows us to infer a critical temperature for the BEC-like transition when the visibility goes to zero.

  6. Teleportation of a Coherent Superposition State Via a nonmaximally Entangled Coherent Xhannel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ We investigate the problemm of teleportation of a superposition coherent state with nonmaximally entangled coherent channel. Two strategies are considered to complete the task. The first one uses entanglement concentration to purify the channel to a maximally entangled one. The second one teleports the state through the nonmaximally entangled coherent channel directly. We find that the probabilities of successful teleportations for the two strategies are depend on the amplitudes of the coherent states and the mean fidelity of teleportation using the first strategy is always less than that of the second strategy.

  7. Coherence effects in radiative scattering

    International Nuclear Information System (INIS)

    Knoll, J.; Lenk, R.

    1993-03-01

    The bremsstrahl-production of photons in dense matter is reinvestigated using the example of an exactly solvable quantum mechanical model in one space dimension. Coherence phenomena between successive radiative scatterings among the constituents lead to a modification of the production cross section in the medium relative to the incoherent quasi-free prescription used in kinetic models. Analytic expressions for the correction factor have been derived comparing the quantum rates with the corresponding incoherent quasi-free rates. The result has implications for the kinetic description of all kinds of radiative processes in nucleus-nucleus collisions, both on the level of hadron and parton dynamics. (orig.)

  8. What Are the ACT College Readiness Benchmarks? Information Brief

    Science.gov (United States)

    ACT, Inc., 2013

    2013-01-01

    The ACT College Readiness Benchmarks are the minimum ACT® college readiness assessment scores required for students to have a high probability of success in credit-bearing college courses--English Composition, social sciences courses, College Algebra, or Biology. This report identifies the College Readiness Benchmarks on the ACT Compass scale…

  9. Electricity market readiness plan : Ontario Energy Board

    International Nuclear Information System (INIS)

    2001-03-01

    This document informs electric power market participants of the Ontario Energy Board's newly developed market readiness plan and target timelines that local distribution companies (LDCs) must meet for retail marketing. The Ontario Energy Board's plan incorporates relevant independent market operator (IMO)-administered market milestones with retail market readiness targeted for September 2001. The market readiness framework involves a self-certification process for LDCs by August 10, 2001, through which the Board will be able to monitor progress and assess the feasibility of meeting the target timelines. For retail market readiness, all LDCs will have to calculate settlement costs, produce unbundled bills, provide standard supply service, change suppliers and accommodate retail transactions. LDCs must be either authorized participants in the IMO-administered market or become retail customers of their host LDC. Unbundled bills will include itemized charges for energy price, transmission, distribution and debt retirement charge. 1 tab., 1 fig

  10. Symplectic Group Representation of the Two-Mode Squeezing Operator in the Coherent State Basis

    Science.gov (United States)

    Fan, Hong-Yi; Chen, Jun-Hua

    2003-11-01

    We find that the coherent state projection operator representation of the two-mode squeezing operator constitutes a loyal group representation of symplectic group, which is a remarkable property of the coherent state. As a consequence, the resultant effect of successively applying two-mode squeezing operators are equivalent to a single squeezing in the two-mode Fock space. Generalization of this property to the 2n-mode case is also discussed. The project supported by National Natural Science Foundation of China under Grant No. 10575057

  11. StormReady in a Box: Enhancing NOAA's Presence in Schools

    Science.gov (United States)

    Grondin, N. S.; Franks, C.

    2015-12-01

    The National Weather Service StormReady Supporter program exists to give schools, companies, TV stations, and other facilities the opportunity to earn recognition for their weather preparedness and awareness. Requirements to earn StormReady Supporter status include having a facility warning point, use of NOAA Weather Radios, and weather hazard Emergency Operation Plans. Despite the increasing importance of weather preparedness in schools, only 1.2% of Minnesota schools are deemed StormReady by the National Weather Service. It was determined that the major impedance for schools becoming StormReady Supporters is the lack of time for administrators to engage in anything "extra" beyond their listed duties. As part of a 2015 Hollings Scholar project, the StormReady in a Box concept was developed to remedy this, by empowering teachers and students to take charge and complete the StormReady Supporter application for their school. StormReady in a Box is a project developed for Junior High School students to learn about weather preparedness and to help their school acquire StormReady status. The project was designed to be relevant to the Minnesota State Education Standards in Science, be simple for teachers to do with their students, and most importantly, to be enjoyable for Junior High School age students to do. The project was also designed to enhance critical thinking skills and logical reasoning abilities, as they relate to the StormReady Supporter application. This presentation will present the overall rationale for the undertaking of this project, the creation of, and the logical next steps for the StormReady in a Box project.

  12. A Model of Feeding Readiness for Preterm Infants

    OpenAIRE

    Pickler, Rita H.

    2004-01-01

    This paper presents a theoretical model of bottle feeding readiness in preterm infants, which hypothesizes relationships between bottle feeding readiness, experience, and outcomes. The synactive theory of development provided the conceptual foundation for the model. The model, which is currently being tested, is designed to establish bottle feeding readiness criteria that will help nurses decide when to offer a bottle to a preterm infant The model may also provide a useful framework for deter...

  13. Smart Grid Technology and Consumer Call Center Readiness

    OpenAIRE

    Schamber, Kelsey L.

    2010-01-01

    The following reasearch project deals with utility call center readiness to address customer concerns and questions about the Smart Grid and smart meter technology. Since consumer engagement is important for the benefits of the Smart Grid to be realized, the readiness and ability of utilities to answer consumer questions is an important issue. Assessing the readiness of utility call centers to address pertinant customer concerns was accomplished by calling utility call centers with Smart Grid...

  14. Universal School Readiness Screening at Kindergarten Entry

    Science.gov (United States)

    Quirk, Matthew; Dowdy, Erin; Dever, Bridget; Carnazzo, Katherine; Bolton, Courtney

    2018-01-01

    Researchers examined the concurrent and predictive validity of a brief (12-item) teacher-rated school readiness screener, the Kindergarten Student Entrance Profile (KSEP), using receiver operating characteristic (ROC) curve analysis to examine associations between (N = 78) children's social-emotional (SE) and cognitive (COG) readiness with…

  15. Topological Properties of Spatial Coherence Function

    International Nuclear Information System (INIS)

    Ji-Rong, Ren; Tao, Zhu; Yi-Shi, Duan

    2008-01-01

    The topological properties of the spatial coherence function are investigated rigorously. The phase singular structures (coherence vortices) of coherence function can be naturally deduced from the topological current, which is an abstract mathematical object studied previously. We find that coherence vortices are characterized by the Hopf index and Brouwer degree in topology. The coherence flux quantization and the linking of the closed coherence vortices are also studied from the topological properties of the spatial coherence function

  16. Students’ Readiness for E-learning Application in Higher Education

    Directory of Open Access Journals (Sweden)

    Atousa Rasouli

    2016-07-01

    Full Text Available The main goal of this research was to investigate the readiness of art students in applying e-learning. This study adopted a survey research design. From three public Iranian Universities (Alzahra, Tarbiat Modares, and Tehran, 347 students were selected by multistage cluster sampling and via Morgan Table. Their readiness for E-learning application was assessed by a self-developed questionnaire. Data analysis was done by indexes of descriptive statistics and one sample t-test. Analysis of results found a significant relationship between the readiness of undergraduate students, graduate students, and post-graduate students to apply E-learning, but there was no significant relationship between students’ readiness and gender, university, and subject. Results revealed that Art students were in a moderate level of readiness for applying E-learning.

  17. Coherent exciton transport in dendrimers and continuous-time quantum walks

    Science.gov (United States)

    Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander

    2006-03-01

    We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.

  18. Nonlinear dynamics of resonant electrons interacting with coherent Langmuir waves

    Science.gov (United States)

    Tobita, Miwa; Omura, Yoshiharu

    2018-03-01

    We study the nonlinear dynamics of resonant particles interacting with coherent waves in space plasmas. Magnetospheric plasma waves such as whistler-mode chorus, electromagnetic ion cyclotron waves, and hiss emissions contain coherent wave structures with various discrete frequencies. Although these waves are electromagnetic, their interaction with resonant particles can be approximated by equations of motion for a charged particle in a one-dimensional electrostatic wave. The equations are expressed in the form of nonlinear pendulum equations. We perform test particle simulations of electrons in an electrostatic model with Langmuir waves and a non-oscillatory electric field. We solve equations of motion and study the dynamics of particles with different values of inhomogeneity factor S defined as a ratio of the non-oscillatory electric field intensity to the wave amplitude. The simulation results demonstrate deceleration/acceleration, thermalization, and trapping of particles through resonance with a single wave, two waves, and multiple waves. For two-wave and multiple-wave cases, we describe the wave-particle interaction as either coherent or incoherent based on the probability of nonlinear trapping.

  19. “Getting Ready for School:” A Preliminary Evaluation of a Parent-Focused School-Readiness Program

    Directory of Open Access Journals (Sweden)

    Kimberly G. Noble

    2012-01-01

    Full Text Available Children from disadvantaged backgrounds tend to start school with fewer school readiness skills than their more advantaged peers. Emergent literacy and math skills play an important role in this gap. The family is essential in helping children build these skills, and the active involvement of families is crucial to the success of any intervention for young children. The Getting Ready for School (GRS program is a parent-focused curriculum designed to help parents equip their children with the skills and enthusiasm necessary for learning when they start school. Parents meet in weekly workshops led by a trained facilitator and implement the curriculum at home with their children. The objective of this pilot study was to assess the promise of the GRS intervention in children participating in an urban Head Start program and to explore parents' responses to the intervention. We hypothesized that participation in GRS would improve school readiness in literacy and math skills, relative to participation in business-as-usual Head Start. Four Head Start classrooms (two randomly selected “intervention” and two “comparison” classrooms participated in this study. Preliminary analyses suggest that GRS improves school readiness over and above a Head Start-as-usual experience. Implications for early childhood programs and policies are discussed.

  20. Telescope aperture optimization for spacebased coherent wind lidar

    Science.gov (United States)

    Ge, Xian-ying; Zhu, Jun; Cao, Qipeng; Zhang, Yinchao; Yin, Huan; Dong, Xiaojing; Wang, Chao; Zhang, Yongchao; Zhang, Ning

    2015-08-01

    Many studies have indicated that the optimum measurement approach for winds from space is a pulsed coherent wind lidar, which is an active remote sensing tool with the characteristics that high spatial and temporal resolutions, real-time detection, high mobility, facilitated control and so on. Because of the significant eye safety, efficiency, size, and lifetime advantage, 2μm wavelength solid-state laser lidar systems have attracted much attention in spacebased wind lidar plans. In this paper, the theory of coherent detection is presented and a 2μm wavelength solid-state laser lidar system is introduced, then the ideal aperture is calculated from signal-to-noise(SNR) view at orbit 400km. However, considering real application, even if the lidar hardware is perfectly aligned, the directional jitter of laser beam, the attitude change of the lidar in the long round trip time of the light from the atmosphere and other factors can bring misalignment angle. So the influence of misalignment angle is considered and calculated, and the optimum telescope diameter(0.45m) is obtained as the misalignment angle is 4 μrad. By the analysis of the optimum aperture required for spacebased coherent wind lidar system, we try to present the design guidance for the telescope.

  1. A Proposed Conceptual Model of Military Medical Readiness

    National Research Council Canada - National Science Library

    Van Hall, Brian M

    2007-01-01

    .... The purpose of this research is to consolidate existing literature on the latent variable of medical readiness, and to propose a composite theoretical model of medical readiness that may provide...

  2. Spectral-domain optical coherence tomography staging and autofluorescence imaging in achromatopsia.

    Science.gov (United States)

    Greenberg, Jonathan P; Sherman, Jerome; Zweifel, Sandrine A; Chen, Royce W S; Duncker, Tobias; Kohl, Susanne; Baumann, Britta; Wissinger, Bernd; Yannuzzi, Lawrence A; Tsang, Stephen H

    2014-04-01

    IMPORTANCE Evidence is mounting that achromatopsia is a progressive retinal degeneration, and treatments for this condition are on the horizon. OBJECTIVES To categorize achromatopsia into clinically identifiable stages using spectral-domain optical coherence tomography and to describe fundus autofluorescence imaging in this condition. DESIGN, SETTING, AND PARTICIPANTS A prospective observational study was performed between 2010 and 2012 at the Edward S. Harkness Eye Institute, New York-Presbyterian Hospital. Participants included 17 patients (aged 10-62 years) with full-field electroretinography-confirmed achromatopsia. MAIN OUTCOMES AND MEASURES Spectral-domain optical coherence tomography features and staging system, fundus autofluorescence and near-infrared reflectance features and their correlation to optical coherence tomography, and genetic mutations served as the outcomes and measures. RESULTS Achromatopsia was categorized into 5 stages on spectral-domain optical coherence tomography: stage 1 (2 patients [12%]), intact outer retina; stage 2 (2 patients [12%]), inner segment ellipsoid line disruption; stage 3 (5 patients [29%]), presence of an optically empty space; stage 4 (5 patients [29%]), optically empty space with partial retinal pigment epithelium disruption; and stage 5 (3 patients [18%]), complete retinal pigment epithelium disruption and/or loss of the outer nuclear layer. Stage 1 patients showed isolated hyperreflectivity of the external limiting membrane in the fovea, and the external limiting membrane was hyperreflective above each optically empty space. On near infrared reflectance imaging, the fovea was normal, hyporeflective, or showed both hyporeflective and hyperreflective features. All patients demonstrated autofluorescence abnormalities in the fovea and/or parafovea: 9 participants (53%) had reduced or absent autofluorescence surrounded by increased autofluorescence, 4 individuals (24%) showed only reduced or absent autofluorescence, 3

  3. A Study of Fleet Surgical Teams Readiness Posture in Amphibious Readiness Groups

    National Research Council Canada - National Science Library

    Tennyson, Ruby

    2000-01-01

    This thesis describes and evaluates Fleet Surgical Teams (FSTs). It examines how Navy Medicine adapted FSTs to changing support requirements associated with the Total Health Care Support Readiness Requirement (THCSRR...

  4. Coherently combining data between detectors for all-sky semi-coherent continuous gravitational wave searches

    International Nuclear Information System (INIS)

    Goetz, E; Riles, K

    2016-01-01

    We present a method for coherently combining short data segments from gravitational-wave detectors to improve the sensitivity of semi-coherent searches for continuous gravitational waves. All-sky searches for continuous gravitational waves from unknown sources are computationally limited. The semi-coherent approach reduces the computational cost by dividing the entire observation timespan into short segments to be analyzed coherently, then combined together incoherently. Semi-coherent analyses that attempt to improve sensitivity by coherently combining data from multiple detectors face a computational challenge in accounting for uncertainties in signal parameters. In this article, we lay out a technique to meet this challenge using summed Fourier transform coefficients. Applying this technique to one all-sky search algorithm called TwoSpect, we confirm that the sensitivity of all-sky, semi-coherent searches can be improved by coherently combining the short data segments, e.g., by up to 42% over a single detector for an all-sky search. For misaligned detectors, however, this improvement requires careful attention when marginalizing over unknown polarization parameters. In addition, care must be taken in correcting for differential detector velocity due to the Earth’s rotation for high signal frequencies and widely separated detectors. (paper)

  5. Spectral coherence in windturbine wakes

    Energy Technology Data Exchange (ETDEWEB)

    Hojstrup, J. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  6. Readiness for organisational change among general practice staff.

    Science.gov (United States)

    Christl, B; Harris, M F; Jayasinghe, U W; Proudfoot, J; Taggart, J; Tan, J

    2010-10-01

    Increasing demands on general practice to manage chronic disease may warrant organisational change at the practice level. Staff's readiness for organisational change can act as a facilitator or barrier to implementing interventions aimed at organisational change. To explore general practice staff readiness for organisational change and its association with staff and practices characteristics. This is a cross-sectional study of practices in three Australian states involved in a randomised control trial on the effectiveness of an intervention to enhance the role of non-general practitioner staff in chronic disease management. Readiness for organisational change, job satisfaction and practice characteristics were assessed using questionnaires. 502 staff from 58 practices completed questionnaires. Practice characteristics were not associated with staff readiness for change. A multilevel regression analysis showed statistically significant associations between staff readiness for organisational change (range 1 to 5) and having a non-clinical staff role (vs general practitioner; B=-0.315; 95% CI -0.47 to -0.16; pchange which addresses the mix of practice staff. Moderately low job satisfaction may be an opportunity for organisational change.

  7. PERFORMANCES PARENTS ABOUT EMOTIONAL READINESS OF THE CHILD TO SCHOOL WHEN ANALYZING THE CHARACTERISTICS OF EMOTIONAL READINESS OF CHILDREN IN THE TRANSITION FROM KINDERGARTEN TO FIRST GRADE

    Directory of Open Access Journals (Sweden)

    Ekaterina Sergeevna Novitskaya

    2016-02-01

    Full Text Available The article examines the importance of emotional understanding of parents child’s readiness for school. The aim of the study was to determine the characteristics of parental influence perceptions about the emotional readiness of children to the actual level of emotional readiness of the child. An experimental study was conducted comparing the methods, testing, questionnaires, observations, interviews, expert assessments, Longitude. We compared the performance of emotional readiness of children in the preparatory group of the kindergarten and the beginning of the school year in first grade. The study revealed that parents consider the emotional readiness primarily in the structure of the psychological readiness; representations of parents about the emotional readiness to occupy the last place among the other groups of ideas. Weak concrete definition of representations of parents about the emotional school readiness issues contributes to the emotional sphere of the child at an early stage of learning in first grade.

  8. Concept of economic readiness levels assessment

    Science.gov (United States)

    Yuniaristanto, Sutopo, W.; Widiyanto, A.; Putri, A. S.

    2017-11-01

    This research aims to build a concept of Economic Readiness Level (ERL) assessment for incubation center. ERL concept is arranged by considering both market and business aspects. Every aspect is divided into four phases and each of them consists of some indicators. Analytic Hierarchy Process (AHP) is used to develop the ERL in calculating the weight of every single aspect and indicator. Interval scale between 0 and 4 is also applied in indicator assessment. In order to calculate ERL, score in every indicator and the weight of both the aspect and indicator are considered. ERL value is able to show in detail the innovative product readiness level from economic sight, market and business aspect. There are four levels in Economic Readiness Level scheme which are investigation, feasibility, planning and introduction.

  9. Space-Time Disarray and Visual Awareness

    Directory of Open Access Journals (Sweden)

    Jan Koenderink

    2012-04-01

    Full Text Available Local space-time scrambling of optical data leads to violent jerks and dislocations. On masking these, visual awareness of the scene becomes cohesive, with dislocations discounted as amodally occluding foreground. Such cohesive space-time of awareness is technically illusory because ground truth is jumbled whereas awareness is coherent. Apparently the visual field is a construction rather than a (veridical perception.

  10. E-Learning Readiness in Medicine: Turkish Family Medicine (FM) Physicians Case

    Science.gov (United States)

    Parlakkiliç, Alaattin

    2015-01-01

    This research investigates e-learning readiness level of family medicine physicians (FM) in Turkey. The study measures the level of e-learning readiness of Turkish FM physicians by an online e-learning readiness survey. According to results five areas are ready at Turkish FM physicians but need a few improvements:…

  11. Strategic leadership will be essential for dietitian eHealth readiness: A qualitative study exploring dietitian perspectives of eHealth readiness.

    Science.gov (United States)

    Maunder, Kirsty; Walton, Karen; Williams, Peter; Ferguson, Maree; Beck, Eleanor

    2018-05-16

    To explore dietitians' perspectives on the eHealth readiness of Australian dietitians, and to identify strategies to improve eHealth readiness of the profession. Dietitians who met the criteria for nutrition informatics experts participated in semi-structured interviews between June 2016 and March 2017. The interviews were recorded and transcribed verbatim. Thematic analysis using coding was undertaken until consensus was reached by the researchers regarding key themes, topics and exemplar quotes. Interviews with 10 nutrition informatics experts revealed 25 discussion topics grouped into four main themes: benefits of eHealth for dietitians; risks of dietitians not being involved in eHealth; dietitians are not ready for eHealth; and strategies to improve eHealth readiness. The strategies identified for improving eHealth readiness included: collaboration and representation, education, offering of incentives and mentoring, as well as development of a national strategy, organisational leaders, nutrition informatics champions and a supportive environment. These findings suggest that dietitians may not be ready for eHealth. Strategic leadership and the actioning of other identified strategies will be imperative to preparing dietitians for eHealth to ensure the profession can practice effectively in the digital age, optimise nutrition care and support research for eHealth. If dietitians do not engage in eHealth, others may take their place, or dietitians may be forced to use eHealth in ways that are not the most effective for practice or maximising patient outcomes. © 2018 Dietitians Association of Australia.

  12. Coherent manipulation of atoms using laser light

    International Nuclear Information System (INIS)

    Shore, B.W.

    2008-01-01

    The internal structure of a particle an atom or other quantum system in which the excitation energies are discrete undergoes change when exposed to pulses of near-resonant laser light. This tutorial review presents basic concepts of quantum states, of laser radiation and of the Hilbert-space state vector that provides the theoretical portrait of probability amplitudes the tools for quantifying quantum properties not only of individual atoms and molecules but also of artificial atoms and other quantum systems. It discusses the equations of motion that describe the laser-induced changes (coherent excitation), and gives examples of laser=pulse effects, with particular emphasis on two-state and three-state adiabatic time evolution within the rotating-wave approximation. It provides pictorial descriptions of excitation based on the Bloch equations that allow visualization of two-state excitation as motion of a three-dimensional vector (the Bloch vector). Other visualization techniques allow portrayal of more elaborate systems, particularly the Hilbert-space motion of adiabatic states subject to various pulse sequences. Various more general multilevel systems receive treatment that includes degeneracies, chains and loop linkages. The concluding sections discuss techniques for creating arbitrary pre-assigned quantum states, for manipulating them into alternative coherent superpositions and for analyzing an unknown superposition. Appendices review some basic mathematical concepts and provide further details of the theoretical formalism, including photons, pulse propagation, statistical averages, analytic solutions to the equations of motion, exact solutions of periodic Hamiltonians, and population-trapping 'dark' states. (author)

  13. Designing for competence: spaces that enhance collaboration readiness in healthcare.

    Science.gov (United States)

    Lamb, Gerri; Shraiky, James

    2013-09-01

    Many universities in the United States are investing in classrooms and campuses designed to increase collaboration and teamwork among the health professions. To date, we know little about whether these learning spaces are having the intended impact on student performance. Recent advances in the identification of interprofessional teamwork competencies provide a much-needed step toward a defined outcome metric. Rigorous study of the relationship between design and student competence in collaboration also requires clear specification of design concepts and development of testable frameworks. Such theory-based evaluation is crucial for design to become an integral part of interprofessional education strategies and initiatives. Current classroom and campus designs were analyzed for common themes and features in collaborative spaces as a starting place for specification of design concepts and model development. Four major themes were identified: flexibility, visual transparency/proximity, technology and environmental infrastructure. Potential models linking this preliminary set of design concepts to student competencies are proposed and used to generate hypotheses for future study of the impact of collaborative design spaces on student outcomes.

  14. Analyzing International Readiness of Small and Medium-Sized Enterprises

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Hamidizadeh

    2015-01-01

    Full Text Available Internationalization has different connotations for different social sciences and its social, economic and cultural impacts have been examined by a number of studies. While firms’ internationalization processes have been understood as being dynamic, the concept of international readiness has rarely been the main focus of research efforts, which until a decade ago, focused principally on explaining sequences of entry modes and choices of markets. The emergence of the study of international entrepreneurship has enhanced the role of readiness. This study reviews the concept of international readiness by experimental and theoretical studies. Axioms in this research are based on content analysis. The framework incorporates measures to evaluate SMEs’ international readiness. The paper concludes with a research agenda as a guide for future work on considering the readiness as a critical phase before the internationalization process.

  15. Operational readiness of EFAD systems

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1992-02-01

    An assessment of the operational readiness of the Emergency Filtered Air Discharge (EFAD) systems, installed in Canadian CANDU multi-unit nuclear power plants, was performed in this project. Relevant Canadian and foreign standards and regulatory requirements have been reviewed and documentation on EFAD system design, operation, testing and maintenance have been assessed to identify likely causes and potential failures of EFAD systems and their components under both standby and accident conditions. Recommendations have also been provided in this report for revisions which are needed to achieve and maintain appropriate operational readiness of EFAD systems

  16. Diagnostics of children's school readiness in scientific studies abroad

    Directory of Open Access Journals (Sweden)

    Nazarenko V.V.

    2012-06-01

    Full Text Available The article considers the problem of children's school readiness as it is represented in contemporary studies of foreign scholars. It displays a variety of approaches to estimation of school readiness as well as the ways of measuring the levels of child development as relating to school readiness, namely those of them which are in common practice in education.

  17. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  18. Remedial action and waste disposal project - ERDF readiness evaluation plan

    International Nuclear Information System (INIS)

    Casbon, M.A.

    1996-06-01

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the Environmental Restoration and Disposal Facility. The evaluation was conducted at the conclusion of a series of readiness activities that began in January 1996. These activities included completion of the physical plant; preparation, review, and approval of operating procedures; definition and assembly of the necessary project and operational organizations; and activities leading to regulatory approval of the plant and operating plans

  19. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    Science.gov (United States)

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  20. Material appearance modeling a data-coherent approach

    CERN Document Server

    Dong, Yue; Guo, Baining

    2013-01-01

    A principal aim of computer graphics is to generate images that look as real as photographs. Realistic computer graphics imagery has however proven to be quite challenging to produce, since the appearance of materials arises from complicated physical processes that are difficult to analytically model and simulate, and image-based modeling of real material samples is often impractical due to the high-dimensional space of appearance data that needs to be acquired.This book presents a general framework based on the inherent coherency in the appearance data of materials to make image-based appeara

  1. Optical Coherence and Quantum Optics

    CERN Document Server

    Mandel, Leonard

    1995-01-01

    This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media. The book starts with a full mathematical introduction to the subject area and each chapter concludes with a set of exercises. The authors are renowned scientists and have made substantial contributions to many of the topi

  2. Saturn V First Stage (S-1C) Ready for Assembly AT KSC

    Science.gov (United States)

    1968-01-01

    This photograph shows the Saturn V first stage (S-1C) in the Vehicle Assembly Building at Kennedy Space Center ready to be mated with the second and third stages to complete the assembly of a Saturn V launch vehicle. This particular Saturn V was used for Apollo 6, which was a systems test flight. The towering 363-foot Saturn V was a multi-stage, multi-engine launch vehicle standing taller than the Statue of Liberty. Altogether, the Saturn V engines produced as much power as 85 Hoover Dams.

  3. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  4. Numerical study of jet noise radiated by turbulent coherent structures

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, F.

    1995-08-01

    a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)

  5. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-08-01

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  6. Store operations to maintain cache coherence

    Energy Technology Data Exchange (ETDEWEB)

    Evangelinos, Constantinos; Nair, Ravi; Ohmacht, Martin

    2017-09-12

    In one embodiment, a computer-implemented method includes encountering a store operation during a compile-time of a program, where the store operation is applicable to a memory line. It is determined, by a computer processor, that no cache coherence action is necessary for the store operation. A store-without-coherence-action instruction is generated for the store operation, responsive to determining that no cache coherence action is necessary. The store-without-coherence-action instruction specifies that the store operation is to be performed without a cache coherence action, and cache coherence is maintained upon execution of the store-without-coherence-action instruction.

  7. Averaging, not internal noise, limits the development of coherent motion processing

    Directory of Open Access Journals (Sweden)

    Catherine Manning

    2014-10-01

    Full Text Available The development of motion processing is a critical part of visual development, allowing children to interact with moving objects and navigate within a dynamic environment. However, global motion processing, which requires pooling motion information across space, develops late, reaching adult-like levels only by mid-to-late childhood. The reasons underlying this protracted development are not yet fully understood. In this study, we sought to determine whether the development of motion coherence sensitivity is limited by internal noise (i.e., imprecision in estimating the directions of individual elements and/or global pooling across local estimates. To this end, we presented equivalent noise direction discrimination tasks and motion coherence tasks at both slow (1.5°/s and fast (6°/s speeds to children aged 5, 7, 9 and 11 years, and adults. We show that, as children get older, their levels of internal noise reduce, and they are able to average across more local motion estimates. Regression analyses indicated, however, that age-related improvements in coherent motion perception are driven solely by improvements in averaging and not by reductions in internal noise. Our results suggest that the development of coherent motion sensitivity is primarily limited by developmental changes within brain regions involved in integrating motion signals (e.g., MT/V5.

  8. Democracy in schools: are educators ready for teacher leadership?

    Directory of Open Access Journals (Sweden)

    Elsabé de Villiers

    2011-01-01

    Full Text Available The aim of this research was to determine educators' perceptions of and readiness for teacher leadership. A total of 283 educators in the Eden and Central Karoo Education District in the Western Cape participated in the study. The participants included district officials, principals, and members of school management teams, as well as veteran, middle, and novice educators. A series of instruments was used to determine educators' perspectives, perceptions and readiness for teacher leadership, including the Teacher Leadership Readiness Instrument (TLRI. The results indicated that educators held positive assumptions about teacher leadership. Educators' preliminary leadership perceptions, assumptions about and readiness for teacher leadership proved that the majority of educators are ready for a more distributed, deep democratic leadership practice in schools. Educators acknowledged the need for continuous professional development in the area of teacher leadership. It was also found that as preliminary leadership perceptions of educators improve or strengthen, readiness for teacher leadership is also likely to improve or strengthen. These findings have significant implications for leadership practices, collaboration, capacity-building and improvement in schools, educators' self-esteem, motivation and productivity, as well as student outcomes.

  9. Overview: Texas College and Career Readiness Standards

    Science.gov (United States)

    Texas Higher Education Coordinating Board, 2009

    2009-01-01

    The Texas College and Career Readiness Standards define what students should know and be able to accomplish in order to succeed in entry-level college courses or skilled workforce opportunities upon graduation from high school. This paper answers the following questions: (1) Who developed the Texas College and Career Readiness Standards?; (2) What…

  10. On the possibility of superconducting phase coherence through time barriers

    International Nuclear Information System (INIS)

    Barone, A.; Kulik, I.O.

    1993-01-01

    The possibility of the occurrence of weak coupling between the superconducting order parameters in a single superconductor before and after an ultrashot quenching of superconductivity, is analyzed. The time barrier corresponding to such a quenching of the order parameter has to be shorter than, or comparable with, the characteristic 'coherence time' τ ∼ = Δ. Such an effect is somewhat analogous to a Josephson effect in which phase difference is now considered in the time domain rather than in space. A qualitative derivation of the constitutive relation for such a weak time correlation is obtained which gives, by the duality condition, a dependence of the supercharge on the time phase difference. The role of high-T c superconductors in the detection of this coherent transient response appears to be quite relevant. 21 refs., 4 figs

  11. On P-coherent endomorphism rings

    Indian Academy of Sciences (India)

    A ring is called right -coherent if every principal right ideal is finitely presented. Let M R be a right -module. We study the -coherence of the endomorphism ring of M R . It is shown that is a right -coherent ring if and only if every endomorphism of M R has a pseudokernel in add M R ; S is a left -coherent ring if and ...

  12. Organizational readiness in specialty mental health care.

    Science.gov (United States)

    Hamilton, Alison B; Cohen, Amy N; Young, Alexander S

    2010-01-01

    Implementing quality improvement efforts in clinics is challenging. Assessment of organizational "readiness" for change can set the stage for implementation by providing information regarding existing strengths and deficiencies, thereby increasing the chance of a successful improvement effort. This paper discusses organizational assessment in specialty mental health, in preparation for improving care for individuals with schizophrenia. To assess organizational readiness for change in specialty mental health in order to facilitate locally tailored implementation strategies. EQUIP-2 is a site-level controlled trial at nine VA medical centers (four intervention, five control). Providers at all sites completed an organizational readiness for change (ORC) measure, and key stakeholders at the intervention sites completed a semi-structured interview at baseline. At the four intervention sites, 16 administrators and 43 clinical staff completed the ORC, and 38 key stakeholders were interviewed. The readiness domains of training needs, communication, and change were the domains with lower mean scores (i.e., potential deficiencies) ranging from a low of 23.8 to a high of 36.2 on a scale of 10-50, while staff attributes of growth and adaptability had higher mean scores (i.e., potential strengths) ranging from a low of 35.4 to a high of 41.1. Semi-structured interviews revealed that staff perceptions and experiences of change and decision-making are affected by larger structural factors such as change mandates from VA headquarters. Motivation for change, organizational climate, staff perceptions and beliefs, and prior experience with change efforts contribute to readiness for change in specialty mental health. Sites with less readiness for change may require more flexibility in the implementation of a quality improvement intervention. We suggest that uptake of evidence-based practices can be enhanced by tailoring implementation efforts to the strengths and deficiencies of the

  13. Signatures of discrete breathers in coherent state quantum dynamics

    International Nuclear Information System (INIS)

    Igumenshchev, Kirill; Ovchinnikov, Misha; Prezhdo, Oleg; Maniadis, Panagiotis

    2013-01-01

    In classical mechanics, discrete breathers (DBs) – a spatial time-periodic localization of energy – are predicted in a large variety of nonlinear systems. Motivated by a conceptual bridging of the DB phenomena in classical and quantum mechanical representations, we study their signatures in the dynamics of a quantum equivalent of a classical mechanical point in phase space – a coherent state. In contrast to the classical point that exhibits either delocalized or localized motion, the coherent state shows signatures of both localized and delocalized behavior. The transition from normal to local modes have different characteristics in quantum and classical perspectives. Here, we get an insight into the connection between classical and quantum perspectives by analyzing the decomposition of the coherent state into system's eigenstates, and analyzing the spacial distribution of the wave-function density within these eigenstates. We find that the delocalized and localized eigenvalue components of the coherent state are separated by a mixed region, where both kinds of behavior can be observed. Further analysis leads to the following observations. Considered as a function of coupling, energy eigenstates go through avoided crossings between tunneling and non-tunneling modes. The dominance of tunneling modes in the high nonlinearity region is compromised by the appearance of new types of modes – high order tunneling modes – that are similar to the tunneling modes but have attributes of non-tunneling modes. Certain types of excitations preferentially excite higher order tunneling modes, allowing one to study their properties. Since auto-correlation functions decrease quickly in highly nonlinear systems, short-time dynamics are sufficient for modeling quantum DBs. This work provides a foundation for implementing modern semi-classical methods to model quantum DBs, bridging classical and quantum mechanical signatures of DBs, and understanding spectroscopic experiments

  14. GARCH and Irregularly Spaced Data

    NARCIS (Netherlands)

    Meddahi, N.; Renault, E.; Werker, B.J.M.

    2003-01-01

    An exact discretization of continuous time stochastic volatility processes observed at irregularly spaced times is used to give insights on how a coherent GARCH model can be specified for such data. The relation of our approach with those in the existing literature is studied.

  15. Coherent states in quantum mechanics

    CERN Document Server

    Rodrigues, R D L; Fernandes, D

    2001-01-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.

  16. UNIVERSITY TEACHERS’ READINESS TO APPLY THE MODERN EDUCATIONAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Irina O. Kotlyarova

    2015-01-01

    Full Text Available The aim of the research is to investigate the readiness of the university teachers to apply the modern educational technologies. Methods. The methods include theoretical: analysis of existing modern educational technologies, the concept «readiness» and its components, abstraction of signs and kinds of modern educational technologies based on the scientific literature and in the Federal State Educational Standards (FSES; empirical: questionnaires and testing methods for detecting levels of university teachers’ skills and readiness to use modern educational technology. Results. The main features of modern educational technologies are identified and justified that are to comply with modern methodology of the theory and practice of education study and the latest FSES requirements; the level of science, manufacturing, and modern rules of human relations. The components of readiness of university teachers to use modern educational technology are structured. The linguistic component is included along with the cognitive, psychological, operational, connotative components; its necessity is proved. The average level of readiness for the use of modern educational technology by university teachers is identified. Scientific novelty. The author specifies the features of the modern educational technology. The most significant components of higher-education teaching personnel readiness to use technological innovations are identified. As a whole, these results form the indicative framework for the development and measurement of readiness of the university teachers to use the modern educational technology. The development of the readiness of the university teachers to apply the modern educational technologies is proved to be an issue of current interest. Practical significance. The research findings can be used as the basis of techniques and methods designing for its further development and measurement of the training, retraining and advanced training of

  17. Wigner function for the generalized excited pair coherent state

    International Nuclear Information System (INIS)

    Meng Xiangguo; Wang Jisuo; Liang Baolong; Li Hongqi

    2008-01-01

    This paper introduces the generalized excited pair coherent state (GEPCS). Using the entangled state |η> representation of Wigner operator, it obtains the Wigner function for the GEPCS. In the ρ-γ phase space, the variations of the Wigner function distributions with the parameters q, α, k and l are discussed. The tomogram of the GEPCS is calculated with the help of the Radon transform between the Wigner operator and the projection operator of the entangled state |η 1 , η 2 , τ 1 , τ 2 >. The entangled states |η> and η 1 , η 2 , τ 1 , τ 2 > provide two good representative space for studying the Wigner functions and tomograms of various two-mode correlated quantum states

  18. From quantum coherence to quantum correlations

    Science.gov (United States)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  19. Entropic cohering power in quantum operations

    Science.gov (United States)

    Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng

    2018-02-01

    Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.

  20. The utility of single-item readiness screeners in middle school.

    Science.gov (United States)

    Lewis, Crystal G; Herman, Keith C; Huang, Francis L; Stormont, Melissa; Grossman, Caroline; Eddy, Colleen; Reinke, Wendy M

    2017-10-01

    This study examined the benefit of utilizing one-item academic and one-item behavior readiness teacher-rated screeners at the beginning of the school year to predict end-of-school year outcomes for middle school students. The Middle School Academic and Behavior Readiness (M-ABR) screeners were developed to provide an efficient and effective way to assess readiness in students. Participants included 889 students in 62 middle school classrooms in an urban Missouri school district. Concurrent validity with the M-ABR items and other indicators of readiness in the fall were evaluated using Pearson product-moment correlation coefficients, with the academic readiness item having medium to strong correlations with other baseline academic indicators (r=±0.56 to 0.91) and the behavior readiness item having low to strong correlations with baseline behavior items (r=±0.20 to 0.79). Next, the predictive validity of the M-ABR items was analyzed with hierarchical linear regressions using end-of-year outcomes as the dependent variable. The academic and behavior readiness items demonstrated adequate validity for all outcomes with moderate effects (β=±0.31 to 0.73 for academic outcomes and β=±0.24 to 0.59 for behavioral outcomes) after controlling for baseline demographics. Even after controlling for baseline scores, the M-ABR items predicted unique variance in almost all outcome variables. Four conditional probability indices were calculated to obtain an optimal cut score, to determine ready vs. not ready, for both single-item M-ABR scales. The cut point of "fair" yielded the most acceptable values for the indices. The odd ratios (OR) of experiencing negative outcomes given a "fair" or lower readiness rating (2 or below on the M-ABR screeners) at the beginning of the year were significant and strong for all outcomes (OR=2.29 to OR=14.46), except for internalizing problems. These findings suggest promise for using single readiness items to screen for varying negative end

  1. Experimental generation of optical coherence lattices

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)

    2016-08-08

    We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.

  2. Coherent states in quantum mechanics

    International Nuclear Information System (INIS)

    Rodrigues, R. de Lima; Fernandes Junior, Damasio; Batista, Sheyla Marques

    2001-12-01

    We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out. (author)

  3. Consumers' health-related motive orientations and ready meal consumption behaviour.

    Science.gov (United States)

    Geeroms, Nele; Verbeke, Wim; Van Kenhove, Patrick

    2008-11-01

    Based on a multidimensional perspective on the meaning of health, this study explores associations between consumers' health-related motive orientations (HRMO) and ready meal consumption behaviour. Cross-sectional data were collected from a sample of 1934 Flemish consumers through an on-line survey. The respondents rated 45 health statements referring to people's motives for pursuing health. The survey also assessed information on several aspects of ready meal consumption, i.e. consumption frequency, beliefs and attitudes toward ready meals and ready meal buying criteria. Based on a two-step cluster analysis, we identified five distinct subgroups in the sample, according to their HRMO: health is about energy (Energetic Experimenters), emotional well-being/enjoying life (Harmonious Enjoyers), social responsibility/physical well-being (Normative Carers), achievement/outward appearance (Conscious Experts) and autonomy (Rationalists). Ready meal consumption patterns differed between these segments, with Energetic Experimenters and Conscious Experts showing significantly more positive attitudes, stronger beliefs and both higher penetration and consumption frequency related to ready meals, compared to Harmonious Enjoyers, Normative Carers and Rationalists. These findings may relate to the individualistic versus altruistic health orientation perspective of the identified segments, and are valuable in the context of improving consumer-oriented product development, positioning and marketing of ready meals.

  4. Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Majury, Helena [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Boutari, Joelle [University of Oxford, Clarendon Laboratory, Oxford (United Kingdom); O' Sullivan, Elizabeth [Queen' s University, Centre for Secure Information Technologies (CSIT), Belfast (United Kingdom); Ferraro, Alessandro; Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom)

    2018-12-15

    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localization in the position space - resulting from the choice of small values of the coin parameter and assisted by post-selection - to engineer large-size coherent superpositions of position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms. (orig.)

  5. Coherent distributions for the rigid rotator

    Energy Technology Data Exchange (ETDEWEB)

    Grigorescu, Marius [CP 15-645, Bucharest 014700 (Romania)

    2016-06-15

    Coherent solutions of the classical Liouville equation for the rigid rotator are presented as positive phase-space distributions localized on the Lagrangian submanifolds of Hamilton-Jacobi theory. These solutions become Wigner-type quasiprobability distributions by a formal discretization of the left-invariant vector fields from their Fourier transform in angular momentum. The results are consistent with the usual quantization of the anisotropic rotator, but the expected value of the Hamiltonian contains a finite “zero point” energy term. It is shown that during the time when a quasiprobability distribution evolves according to the Liouville equation, the related quantum wave function should satisfy the time-dependent Schrödinger equation.

  6. PARMELA-B A new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    CERN Document Server

    Koltenbah, B E C; Greegor, R B; Dowell, D H

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA_B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self- fields. The self-fields are due to CSR and S...

  7. Numerical Relativity for Space-Based Gravitational Wave Astronomy

    Science.gov (United States)

    Baker, John G.

    2011-01-01

    In the next decade, gravitational wave instruments in space may provide high-precision measurements of gravitational-wave signals from strong sources, such as black holes. Currently variations on the original Laser Interferometer Space Antenna mission concepts are under study in the hope of reducing costs. Even the observations of a reduced instrument may place strong demands on numerical relativity capabilities. Possible advances in the coming years may fuel a new generation of codes ready to confront these challenges.

  8. Modulating the amplitude and phase of the complex spectral degree of coherence with plasmonic interferometry

    Science.gov (United States)

    Li, Dongfang; Pacifici, Domenico

    The spectral degree of coherence describes the correlation of electromagnetic fields, which plays a key role in many applications, including free-space optical communications and speckle-free bioimaging. Recently, plasmonic interferometry, i.e. optical interferometry that employs surface plasmon polaritons (SPPs), has enabled enhanced light transmission and high-sensitivity biosensing, among other applications. It offers new ways to characterize and engineer electromagnetic fields using nano-structured thin metal films. Here, we employ plasmonic interferometry to demonstrate full control of spatial coherence at length scales comparable to the wavelength of the incident light. Specifically, by measuring the diffraction pattern of several double-slit plasmonic structures etched on a metal film, the amplitude and phase of the degree of spatial coherence is determined as a function of slit-slit separation distance and incident wavelength. When the SPP contribution is turned on (i.e., by changing the polarization of the incident light from TE to TM illumination mode), strong modulation of both amplitude and phase of the spatial coherence is observed. These findings may help design compact modulators of optical spatial coherence and other optical elements to shape the light intensity in the far-field.

  9. Historical space steps of Turkey: It is high time to establish the Turkish space agency

    Science.gov (United States)

    Ercan, Cihan; Kale, İzzet

    2017-01-01

    This paper discusses the importance of space in today's space driven world, the current space activities of Turkey, its space organizations with legislation background information and calls for the necessity for the establishment of the Turkish Space Agency (TSA). Firstly, the importance of space is given which is followed by a brief background and current space activities in Turkey. Then, the answers to why Turkey needs a National Space Agency are outlined by stating its expected role and duties. Additionally, the framework for space policy for Turkey is proposed and the findings are compared with other developing regional space actors. Lastly, it is proposed and demonstrated that Turkey is on the right track with its space policy and it is suggested that the establishment of the TSA is critical both for a coherent space policy and progress as well as the successful development of its national space industry, security and international space relations.

  10. Experimental study of coherence vortices: Local properties of phase singularities in a spatial coherence function

    DEFF Research Database (Denmark)

    Wang, W.; Duan, Z.H.; Hanson, Steen Grüner

    2006-01-01

    By controlling the irradiance of an extended quasimonochromatic, spatially incoherent source, an optical field is generated that exhibits spatial coherence with phase singularities, called coherence vortices. A simple optical geometry for direct visualization of coherence vortices is proposed, an...

  11. Criterion of transverse coherence of self-amplified spontaneous emission in high gain free electron laser amplifiers

    International Nuclear Information System (INIS)

    Xie, M.; Kim, K.J.

    1995-01-01

    In a high gain free electron laser amplifier based on Self-Amplified Spontaneous Emission (SASE) the spontaneous radiation generated by an electron beam near the undulator entrance is amplified many orders of magnitude along the undulator. The transverse coherence properties of the amplified radiation depends on both the amplification process and the coherence of the seed radiation (the undulator radiation generated in the first gain length or so). The evolution of the transverse coherence in the amplification process is studied based on the solution of the coupled Maxwell-Vlasov equations including higher order transverse modes. The coherence of the seed radiation is determined by the number of coherent modes in the phase space area of the undulator radiation. We discuss the criterion of transverse coherence and identify governing parameters over a broad range of parameters. In particular we re-examine the well known emittance criterion for the undulator radiation, which states that full transverse coherence is guaranteed if the rms emittance is smaller than the wavelength divided by 4π. It is found that this criterion is modified for SASE because of the different optimization conditions required for the electron beam. Our analysis is a generalization of the previous study by Yu and Krinsky for the case of vanishing emittance with parallel electron beam. Understanding the transverse coherence of SASE is important for the X-ray free electron laser projects now under consideration at SLAC and DESY

  12. Nurses’ perspectives on readiness of organizations for change: a comparative study

    Directory of Open Access Journals (Sweden)

    Amarneh BH

    2017-04-01

    Full Text Available Basil Hameed Amarneh Department of Psychiatric and Community Health Nursing, Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan Purpose: The purpose of this study is to evaluate readiness for change perceived by nurses at Jordanian hospitals according to the hospital type and the gender of nurse.Background: There are misconceptions about readiness for change, and only a few health care and nursing studies about organizational readiness for change have been conducted. Nurses’ perceptions of their organizations’ readiness for change are important; they help in introducing, managing, and maintaining the change.Methods: Using a quantitative comparative research design and a validated survey, data were collected in 2010 from a convenience sample of 130 nurses from four government and three private hospitals with a response rate of 59%.Results: There are some issues in Jordanian hospitals, which show that change has to be managed well. Nurses in government hospitals and female nurses perceived their hospitals to be more ready for change, compared with those in private hospitals and male nurses.Conclusion: Government hospitals were more ready to change than private hospitals, particularly in supporting collaborative and multidisciplinary team approaches to patient care. More than male nurses, female nurses perceived that their organizations were ready to use or plan to use advanced practice nurses. One of the recommendations is a need for targeted intervention to improve readiness for change. Keywords: readiness for change, organizations, hospitals, nurses, Jordan

  13. Analysis of e-learning implementation readiness based on integrated elr model

    Science.gov (United States)

    Adiyarta, K.; Napitupulu, D.; Rahim, R.; Abdullah, D.; Setiawan, MI

    2018-04-01

    E-learning nowadays has become a requirement for institutions to support their learning activities. To adopt e-learning, an institution requires a large strategy and resources for optimal application. Unfortunately, not all institutions that have used e-learning got the desired results or expectations. This study aims to identify the extent of the level of readiness of e-learning implementation in institution X. The degree of institutional readiness will determine the success of future e-learning utilization. In addition, institutional readiness measurement are needed to evaluate the effectiveness of strategies in e-learning development. The research method used is survey with questionnaire designed based on integration of 8 best practice ELR (e-learning readiness) model. The results showed that from 13 factors of integrated ELR model being measured, there are 3 readiness factors included in the category of not ready and needs a lot of work. They are human resource (2.57), technology skill (2.38) and content factors (2.41). In general, e-learning implementation in institutions is in the category of not ready but needs some of work (3.27). Therefore, the institution should consider which factors or areas of ELR factors are considered still not ready and needs improvement in the future.

  14. Iranian Clinical Nurses' Readiness for Self-Directed Learning.

    Science.gov (United States)

    Malekian, Morteza; Ghiyasvandian, Sharzad; Cheraghi, Mohammad Ali; Hassanzadeh, Akbar

    2015-05-17

    Clinical nurses are in need of being able to adapt to the ever-changing environment of clinical settings. The prerequisite for their successful adaptation is to be lifelong learners. An approach for making nurses lifelong learners is self-directed learning. This study was undertaken to evaluate a group of Iranian clinical nurses' readiness for self-directed learning and its relationship with some of their personal characteristics. This cross-sectional descriptive study was conducted in 2014. A random sample of 314 nurses working in three hospitals affiliated to Isfahan Social Security Organization, Isfahan, Iran, was recruited to complete the Fisher's Self-directed Learning Readiness Scale. In total, 279 nurses filled the scale completely. The mean of their readiness for self-directed learning was 162.50±14.11 (120-196). The correlation of self-directed learning readiness with age, gender, marital status, and university degree was not statistically significant. Most nurses had great readiness for self-directed learning. Accordingly, nursing policy-makers need to develop strategies for promoting their self-directed learning. Moreover, innovative teaching methods such as problem solving and problem-based learning should be employed to prepare nurses for effectively managing the complexities of their ever-changing work environment.

  15. Identification of individual coherent sets associated with flow trajectories using coherent structure coloring

    Science.gov (United States)

    Schlueter-Kuck, Kristy L.; Dabiri, John O.

    2017-09-01

    We present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified. This algorithm is proven successful in identifying coherent structures of varying complexities in canonical unsteady flows. Additionally, the method is able to assess the relative coherence of the associated structure in comparison to the surrounding flow. Although the method is demonstrated here in the context of fluid flow kinematics, the generality of the approach allows for its potential application to other unsupervised clustering problems in dynamical systems such as neuronal activity, gene expression, or social networks.

  16. Technology Readiness Level Guidebook

    Science.gov (United States)

    2017-09-01

    This guidebook provides the necessary information for conducting a Technology Readiness Level (TRL) Assessment. TRL Assessments are a tool for determining the maturity of technologies and identifying next steps in the research process. This guidebook...

  17. Investigation on the properties of the formation and coherence of intense fringe near nonlinear medium slab

    Science.gov (United States)

    Hu, Yonghua; Qiu, Yaqiong; Li, Yang; Shi, Lin

    2018-03-01

    Near medium intense (NMI) fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated.

  18. Parent Involvement in the Getting Ready for School Intervention Is Associated With Changes in School Readiness Skills

    Directory of Open Access Journals (Sweden)

    Maria Marti

    2018-05-01

    Full Text Available The role of parent involvement in school readiness interventions is not well-understood. The Getting Ready for School (GRS intervention is a novel program that has both home and school components and aims to improve early literacy, math, and self-regulatory skills in preschool children from socioeconomically disadvantaged families. In this study, we first examined associations between family characteristics and different indices of parent involvement in the GRS intervention. We then examined associations between parent involvement and change in children's school readiness skills over time. Participants were 133 preschool children attending Head Start and their parents who participated in the GRS intervention during the academic year 2014–2015. Parent involvement was operationalized as attendance to GRS events at the school, time spent at home doing GRS activities, and usage of digital program materials, which included a set of videos to support the implementation of parent-child activities at home. Although few family characteristics were significantly associated with parent involvement indices, there was a tendency for some markers of higher socioeconomic status to be linked with greater parent involvement. In addition, greater parent involvement in the GRS intervention was significantly associated with greater gains in children's early literacy, math, and self-regulatory skills. These findings suggest that parent involvement in comprehensive early interventions could be beneficial in terms of improving school readiness for preschoolers from disadvantaged families.

  19. Parent Involvement in the Getting Ready for School Intervention Is Associated With Changes in School Readiness Skills

    Science.gov (United States)

    Marti, Maria; Merz, Emily C.; Repka, Kelsey R.; Landers, Cassie; Noble, Kimberly G.; Duch, Helena

    2018-01-01

    The role of parent involvement in school readiness interventions is not well-understood. The Getting Ready for School (GRS) intervention is a novel program that has both home and school components and aims to improve early literacy, math, and self-regulatory skills in preschool children from socioeconomically disadvantaged families. In this study, we first examined associations between family characteristics and different indices of parent involvement in the GRS intervention. We then examined associations between parent involvement and change in children's school readiness skills over time. Participants were 133 preschool children attending Head Start and their parents who participated in the GRS intervention during the academic year 2014–2015. Parent involvement was operationalized as attendance to GRS events at the school, time spent at home doing GRS activities, and usage of digital program materials, which included a set of videos to support the implementation of parent-child activities at home. Although few family characteristics were significantly associated with parent involvement indices, there was a tendency for some markers of higher socioeconomic status to be linked with greater parent involvement. In addition, greater parent involvement in the GRS intervention was significantly associated with greater gains in children's early literacy, math, and self-regulatory skills. These findings suggest that parent involvement in comprehensive early interventions could be beneficial in terms of improving school readiness for preschoolers from disadvantaged families. PMID:29904362

  20. Child Readiness to Kindergarten in Parents and Pedagogues Sight

    OpenAIRE

    POKORNÁ, Ivana

    2014-01-01

    The bachelor thesis deals with the readiness of 3-4 year old children to enter kindergarten. The theoretical part describes the biological and psychosocial development of the child aged three to four years and highlights the various factors that may affect the child's entry into kindergarten. Describes the family and kindergarten, the issue of adaptation in pre-school and readiness of the child to them. The practical part contains research focused on the perception of the readiness of childre...

  1. Coherent quantum dynamics launched by incoherent relaxation in a quantum circuit simulator of a light-harvesting complex

    Science.gov (United States)

    Chin, A. W.; Mangaud, E.; Atabek, O.; Desouter-Lecomte, M.

    2018-06-01

    Engineering and harnessing coherent excitonic transport in organic nanostructures has recently been suggested as a promising way towards improving manmade light-harvesting materials. However, realizing and testing the dissipative system-environment models underlying these proposals is presently very challenging in supramolecular materials. A promising alternative is to use simpler and highly tunable "quantum simulators" built from programmable qubits, as recently achieved in a superconducting circuit by Potočnik et al. [A. Potočnik et al., Nat. Commun. 9, 904 (2018), 10.1038/s41467-018-03312-x]. We simulate the real-time dynamics of an exciton coupled to a quantum bath as it moves through a network based on the quantum circuit of Potočnik et al. Using the numerically exact hierarchical equations of motion to capture the open quantum system dynamics, we find that an ultrafast but completely incoherent relaxation from a high-lying "bright" exciton into a doublet of closely spaced "dark" excitons can spontaneously generate electronic coherences and oscillatory real-space motion across the network (quantum beats). Importantly, we show that this behavior also survives when the environmental noise is classically stochastic (effectively high temperature), as in present experiments. These predictions highlight the possibilities of designing matched electronic and spectral noise structures for robust coherence generation that do not require coherent excitation or cold environments.

  2. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence

    Science.gov (United States)

    Liu, Dajun; Wang, Guiqiu; Wang, Yaochuan

    2018-01-01

    Based on the Huygens-Fresnel integral and the relationship of Lorentz distribution and Hermite-Gauss function, the average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence have been investigated by using numerical examples. The influences of beam parameters and oceanic turbulence on the propagation properties are also discussed in details. It is shown that the partially coherent Lorentz-Gauss beam with smaller coherence length will spread faster in oceanic turbulence, and the stronger oceanic turbulence will accelerate the spreading of partially coherent Lorentz-Gauss beam in oceanic turbulence.

  3. Television Viewing, Educational Quality of the Home Environment, and School Readiness.

    Science.gov (United States)

    Clarke, Angela Teresa; Kurtz-Costes, Beth

    1997-01-01

    Researchers examined relationships among children's television viewing, school readiness, parental employment, and the home environment's educational quality. Thirty low-income parents completed surveys. Their preschoolers completed IQ and school readiness assessments. Television viewing adversely related to school readiness and the home…

  4. 75 FR 28594 - Ready-to-Learn Television Program

    Science.gov (United States)

    2010-05-21

    ... DEPARTMENT OF EDUCATION [CFDA Number 84.295A] Ready-to-Learn Television Program AGENCY: Office of Innovation and Improvement, Department of Education. ACTION: Notice inviting applications for new awards for... INFORMATION CONTACT: The Ready-to-Learn Television Program, U.S. Department of Education, 400 Maryland Avenue...

  5. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  6. Volitional Control of Neuromagnetic Coherence

    Directory of Open Access Journals (Sweden)

    Matthew D Sacchet

    2012-12-01

    Full Text Available Coherence of neural activity between circumscribed brain regions has been implicated as an indicator of intracerebral communication in various cognitive processes. While neural activity can be volitionally controlled with neurofeedback, the volitional control of coherence has not yet been explored. Learned volitional control of coherence could elucidate mechanisms of associations between cortical areas and its cognitive correlates and may have clinical implications. Neural coherence may also provide a signal for brain-computer interfaces (BCI. In the present study we used the Weighted Overlapping Segment Averaging (WOSA method to assess coherence between bilateral magnetoencephalograph (MEG sensors during voluntary digit movement as a basis for BCI control. Participants controlled an onscreen cursor, with a success rate of 124 of 180 (68.9%, sign-test p < 0.001 and 84 out of 100 (84%, sign-test p < 0.001. The present findings suggest that neural coherence may be volitionally controlled and may have specific behavioral correlates.

  7. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Science.gov (United States)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  8. Development of cancer medical treatment/diagnostic equipment using the source of X-rays in space coherence

    International Nuclear Information System (INIS)

    Sato, Isamu; Shintomi, Kazutaka; Hayakawa, Ken

    2009-01-01

    In Nihon University, the research and development of Parametric X-rays radiation (PXR) by the 100 MeV electron linac are advanced. It was proved by basic experiment that PXR was a source of coherent X-rays. Coherent X-rays have the characteristic that a refraction action is guided with an irradiation matter. According to this action, the contrast image pick-up of an irradiation matter is attained, and X-rays becomes possible to focus a point itself. Research of cancer medical treatment and diagnosis are advanced using the new source of X-ray. Miniaturization of the source is important for the spread of cancer medical new treatment and diagnoses. Recently, the tabletop type 100 MeV class cryogenic linac with energy recovery is under development. In symposium, we report progress of these research and development. (author)

  9. Operational resource theory of total quantum coherence

    Science.gov (United States)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  10. 75 FR 16763 - Ready-to-Learn Television Program

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF EDUCATION [CFDA Number 84.295A] Ready-to-Learn Television Program AGENCY: Office of Innovation and Improvement, Department of Education. ACTION: Notice inviting applications for new awards for... FR 13515) a notice inviting applications for new awards for FY 2010 for the Ready-to-Learn Television...

  11. 75 FR 18170 - Ready-to-Learn Television Program

    Science.gov (United States)

    2010-04-09

    ... DEPARTMENT OF EDUCATION [CFDA Number 84.295A] Ready-to-Learn Television Program AGENCY: Office of Innovation and Improvement, Department of Education. ACTION: Notice inviting applications for new awards for... FR 13515) a notice inviting applications for new awards for FY 2010 for the Ready-to-Learn Television...

  12. Readiness towards Entrepreneurship Education: Students and Malaysian Universities

    Science.gov (United States)

    Othman, Norasmah; Hashim, Norashidah; Wahid, Hariyaty Ab

    2012-01-01

    Purpose: The purpose of this paper is to observe the readiness of students and the internal environment of Malaysian public universities in the implementation of entrepreneurship education. Design/methodology/approach: The authors employed a quantitative approach and the main instrument used to gauge the entrepreneurship readiness among students…

  13. Rice University: Innovation to Increase Student College Readiness

    Science.gov (United States)

    Gigliotti, Jennifer

    2012-01-01

    "College readiness" means that a student can enter a college classroom without remediation and successfully complete entry-level college requirements (Conley, 2012). In order for students to be considered college ready, they must acquire skills, content knowledge, and behaviors before leaving high school. Research on high-school performance…

  14. Replacing Remediation with Readiness. An NCPR Working Paper

    Science.gov (United States)

    Conley, David T.

    2010-01-01

    This paper critically examines traditional means of assessing college students' need for remediation and suggests as a replacement an expanded definition of college readiness, where readiness is more complex than rudimentary content knowledge and more multifaceted than a single cut point. The paper presents and explains four dimensions of…

  15. Fluctuation theorems in feedback-controlled open quantum systems: Quantum coherence and absolute irreversibility

    Science.gov (United States)

    Murashita, Yûto; Gong, Zongping; Ashida, Yuto; Ueda, Masahito

    2017-10-01

    The thermodynamics of quantum coherence has attracted growing attention recently, where the thermodynamic advantage of quantum superposition is characterized in terms of quantum thermodynamics. We investigate the thermodynamic effects of quantum coherent driving in the context of the fluctuation theorem. We adopt a quantum-trajectory approach to investigate open quantum systems under feedback control. In these systems, the measurement backaction in the forward process plays a key role, and therefore the corresponding time-reversed quantum measurement and postselection must be considered in the backward process, in sharp contrast to the classical case. The state reduction associated with quantum measurement, in general, creates a zero-probability region in the space of quantum trajectories of the forward process, which causes singularly strong irreversibility with divergent entropy production (i.e., absolute irreversibility) and hence makes the ordinary fluctuation theorem break down. In the classical case, the error-free measurement ordinarily leads to absolute irreversibility, because the measurement restricts classical paths to the region compatible with the measurement outcome. In contrast, in open quantum systems, absolute irreversibility is suppressed even in the presence of the projective measurement due to those quantum rare events that go through the classically forbidden region with the aid of quantum coherent driving. This suppression of absolute irreversibility exemplifies the thermodynamic advantage of quantum coherent driving. Absolute irreversibility is shown to emerge in the absence of coherent driving after the measurement, especially in systems under time-delayed feedback control. We show that absolute irreversibility is mitigated by increasing the duration of quantum coherent driving or decreasing the delay time of feedback control.

  16. What Does It Mean to Be El Niño Ready?

    Directory of Open Access Journals (Sweden)

    Michael H. Glantz

    2018-03-01

    Full Text Available Once an El Niño event has been forecast, government warnings and news headlines highlight the need for society to get ready for the potential impacts of the event, whether drought, flood, heatwave, disease outbreak, or water shortage. The notion of readiness for a climate-, water- or weather-related hazard or disaster is a fuzzy term, subject to a wide range of conflicting perceptions. Not every government sees El Niño as a direct threat to the wellbeing of its citizens. In this paper, we conceptualize readiness and identify reasons that some governments do not as well as cannot prepare for El Niño’s foreseeable consequences. Central among those reasons are its characteristics: quasi-periodicity, event variability, difficulties with onset forecasting, and the fact that El Niño and its “teleconnections” are influenced by numerous other oceanic and atmospheric oscillations. As a result, there is no universally accepted approach to or reliable measure of readiness. The concept is often discussed qualitatively in terms of “shades of readiness”, such as hardly ready, somewhat ready, almost ready, and absolutely ready. Although El Niño is still difficult to forecast, the existing knowledge about it can provide usable information for decision makers to choose whether to pursue strategic or tactical disaster risk reduction policies.

  17. Proof-of-principle test of coherent-state continuous variable quantum key distribution through turbulent atmosphere (Conference Presentation)

    Science.gov (United States)

    Derkach, Ivan D.; Peuntinger, Christian; Ruppert, László; Heim, Bettina; Gunthner, Kevin; Usenko, Vladyslav C.; Elser, Dominique; Marquardt, Christoph; Filip, Radim; Leuchs, Gerd

    2016-10-01

    Continuous-variable quantum key distribution is a practical application of quantum information theory that is aimed at generation of secret cryptographic key between two remote trusted parties and that uses multi-photon quantum states as carriers of key bits. Remote parties share the secret key via a quantum channel, that presumably is under control of of an eavesdropper, and which properties must be taken into account in the security analysis. Well-studied fiber-optical quantum channels commonly possess stable transmittance and low noise levels, while free-space channels represent a simpler, less demanding and more flexible alternative, but suffer from atmospheric effects such as turbulence that in particular causes a non-uniform transmittance distribution referred to as fading. Nonetheless free-space channels, providing an unobstructed line-of-sight, are more apt for short, mid-range and potentially long-range (using satellites) communication and will play an important role in the future development and implementation of QKD networks. It was previously theoretically shown that coherent-state CV QKD should be in principle possible to implement over a free-space fading channel, but strong transmittance fluctuations result in the significant modulation-dependent channel excess noise. In this regime the post-selection of highly transmitting sub-channels may be needed, which can even restore the security of the protocol in the strongly turbulent channels. We now report the first proof-of-principle experimental test of coherent state CV QKD protocol using different levels Gaussian modulation over a mid-range (1.6-kilometer long) free-space atmospheric quantum channel. The transmittance of the link was characterized using intensity measurements for the reference but channel estimation using the modulated coherent states was also studied. We consider security against Gaussian collective attacks, that were shown to be optimal against CV QKD protocols . We assumed a

  18. Emergence of the Coherent Structure of Liquid Water

    Directory of Open Access Journals (Sweden)

    Ivan Bono

    2012-07-01

    Full Text Available We examine in some detail the interaction of water molecules with the radiative electromagnetic field and find the existence of phase transitions from the vapor phase to a condensed phase where all molecules oscillate in unison, in tune with a self-trapped electromagnetic field within extended mesoscopic space regions (Coherence Domains. The properties of such a condensed phase are examined and found to be compatible with the phenomenological properties of liquid water. In particular, the observed value of critical density is calculated with good accuracy.

  19. An organisational coherence model to maintain employee contributions during organisational crises

    Directory of Open Access Journals (Sweden)

    Hendrik J. Pelser

    2016-06-01

    Full Text Available Orientation: Crises that threaten an organisation’s continued existence cannot be seen in isolation when considering the perception of threats to individual job security. These threats often go hand in hand with employee panic. Research purpose: The aim of this study was to establish a model to assist organisations in managing employee emotionality and panic during times of crisis. Motivation for the study: Environmental crises threaten organisations’ existence, threatening employees’ livelihood and resulting in employee panic. Panic reduces employees’ contributions. Organisations that are successful harness employee contributions at all times. Research design, approach, and method: A modernist qualitative research methodology was adopted, which included a case study as research strategy, purposive sampling to select 12 research participants, semi-structured interviews for data gathering, focus groups for data verification, and the use of grounded theory for data analysis. Main findings: An organisation’s ability to manage employee panic depends on the relationship between the foundational elements of authentic leadership, crisis readiness, resilience practices, versatile and committed talent, strategic management, quality management, and coherence actions taken during the crisis, which include crisis leadership, ongoing visible communication, mindfulness, work flexibility, and decisions based on the greatest financial need and social support. Practical/managerial implications: The study provides a best-practice option for managing emotionality during crises for the case organisation and other organisations within the vehicle components and other manufacturing industries. Contribution/value-add: The Coherence Hexagons Model is presented as a tool to manage employee panic during crisis. Keywords: crisis management; employee emotionality; employee panic; authentic leadership; talent management

  20. Promoting community readiness for physical activity among older adults in Germany--protocol of the ready to change intervention trial.

    Science.gov (United States)

    Brand, Tilman; Gansefort, Dirk; Rothgang, Heinz; Röseler, Sabine; Meyer, Jochen; Zeeb, Hajo

    2016-02-01

    Healthy ageing is an important concern for many societies facing the challenge of an ageing population. Physical activity (PA) is a major contributor to healthy ageing; however insufficient PA levels are prevalent in old age in Germany. Community capacity building and community involvement are often recommended as key strategies to improve equitable access to prevention and health promotion. However, evidence for the effectiveness of these strategies is scarce. This study aims to assess the community readiness for PA promotion in local environments and to analyse the utility of strategies to increase community readiness for reaching vulnerable groups. We designed a mixed method intervention trial comprising three study modules. The first module includes an assessment of community readiness for PA interventions in older adults. The assessment is carried out in a sample of 24 municipalities in the Northwest of Germany using structured key informant interviews. In the second module, eight municipalities with the low community readiness are selected from the sample and randomly assigned to one of two study groups: active enhancement of community readiness (intervention) versus no enhancement (control). After enhancing community readiness in the active enhancement group, older adults in both study groups will be recruited for participation in a PA intervention. Participation rates are compared between the study groups to evaluate the effects of the intervention. In addition, a cost-effectiveness analysis is carried out calculating recruitment costs per person reached in the two study groups. In the third module, qualitative interviews are conducted with participants and non-participants of the PA intervention exploring reasons for participation or non-participation. This study offers the potential to contribute to the evidence base of reaching vulnerable older adults for PA interventions and provide ideas on how to reduce participation barriers. Its findings will inform

  1. Effect of an Individual Readiness Assurance Test on a Team Readiness Assurance Test in the Team-Based Learning of Physiology

    Science.gov (United States)

    Gopalan, Chaya; Fox, Dainielle J.; Gaebelein, Claude J.

    2013-01-01

    We examined whether requiring an individual readiness assurance test (iRAT) before a team readiness assurance test (tRAT) would benefit students in becoming better problem solvers in physiology. It was tested in the form of tRAT scores, the time required to complete the tRAT assignment, and individual performance on the unit examinations. Students…

  2. Readiness to proceed: Characterization planning basis

    International Nuclear Information System (INIS)

    Adams, M.R.

    1998-01-01

    This report summarizes characterization requirements, data availability, and data acquisition plans in support of the Phase 1 Waste Feed Readiness to Proceed Mid-Level Logic. It summarizes characterization requirements for the following program planning documents: Waste Feed Readiness Mid-Level Logic and Decomposition (in development); Master blue print (not available); Tank Waste Remediation System (TWRS) Operations and Utilization Plan and Privatization Contract; Enabling assumptions (not available); Privatization low-activity waste (LAW) Data Quality Objective (DQO); Privatization high-level waste (HLW) DQO (draft); Problem-specific DQOs (in development); Interface control documents (draft). Section 2.0 defines the primary objectives for this report, Section 3.0 discusses the scope and assumptions, and Section 4.0 identifies general characterization needs and analyte-specific characterization needs or potential needs included in program documents and charts. Section 4.0 also shows the analyses that have been conducted, and the archive samples that are available for additional analyses. Section 5.0 discusses current plans for obtaining additional samples and analyses to meet readiness-to-proceed requirements. Section 6.0 summarizes sampling needs based on preliminary requirements and discusses other potential characterization needs. Many requirements documents are preliminary. In many cases, problem-specific DQOs have not been drafted, and only general assumptions about the document contents could be obtained from the authors. As a result, the readiness-to-proceed characterization requirements provided in this document are evolving and may change

  3. Stimulated coherent transition radiation

    International Nuclear Information System (INIS)

    Hung-chi Lihn.

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed

  4. Coherence in electron energy loss spectrometry

    International Nuclear Information System (INIS)

    Schattschneider, P.; Werner, W.S.M.

    2005-01-01

    Coherence effects in electron energy loss spectrometry (EELS) and in energy filtering are largely neglected although they occur frequently due to Bragg scattering in crystals. We discuss how coherence in the inelastically scattered wave field can be described by the mixed dynamic form factor (MDFF), and how it relates to the density matrix of the scattered electrons. Among the many aspects of 'inelastic coherence' are filtered high-resolution images, dipole-forbidden transitions, coherence in plasma excitations, errors in chemical microanalysis, coherent double plasmons, and circular dichroism

  5. EEG slow-wave coherence changes in propofol-induced general anesthesia: Experiment and theory

    Directory of Open Access Journals (Sweden)

    Kaier eWang

    2014-10-01

    Full Text Available The electroencephalogram (EEG patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. [Physical Review X 3(2, 021005 (2013] proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing and time (Hopf, modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing--Hopf balance (wake to Hopf-dominated chaotic slow-waves (unconsciousness. Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05--1.5 Hz slow-wave coherence between frontal, occipital, and frontal-occipital electrode pairs, with the most pronounced wake-versus-unconscious coherence changes occurring at the frontal cortex.

  6. Coherent x-rays from PEP

    International Nuclear Information System (INIS)

    Baird, S.; Nuhn, H.-D.; Tatchyn, R.; Winick, H.; Fisher, A.S.; Gallardo, J.C.; Pellegrini, C.

    1991-01-01

    This paper explores the use of a large-circumference, high-energy, electron-positron collider such as PEP to drive a free-electron laser (FEL), producing high levels of coherent power at short wavelengths. The author consider Self-Amplified Spontaneous Emission (SASE), in which electron bunches with low emittance, high peak current and small energy spread radiate coherently in a single passthrough a long undulator. As the electron beam passes down the undulator, its interaction with the increasingly intense spontaneous radiation causes a bunch density modulation at the optical wavelength, resulting in stimulated emissional growth of coherent power in a single pass. The need for optical-cavity mirrors, which place a lower limit on the wavelength of a conventional FEL oscillator, is avoided. The authors explore various combinations of electron-beam and undulator parameters, as well as special undulator designs and optical klystrons (OK), to reach high average or peak coherent power at wavelengths around 40 angstrom by achieving significant exponential gain or full saturation. Examples are presented for devices that achieve high peak coherent power (up to about 400 MW) with lower average coherent power (about 20 mW) and other devices which produce a few watts of average coherent power

  7. Coherent cavity-enhanced dual-comb spectroscopy.

    Science.gov (United States)

    Fleisher, Adam J; Long, David A; Reed, Zachary D; Hodges, Joseph T; Plusquellic, David F

    2016-05-16

    Dual-comb spectroscopy allows for the rapid, multiplexed acquisition of high-resolution spectra without the need for moving parts or low-resolution dispersive optics. This method of broadband spectroscopy is most often accomplished via tight phase locking of two mode-locked lasers or via sophisticated signal processing algorithms, and therefore, long integration times of phase coherent signals are difficult to achieve. Here we demonstrate an alternative approach to dual-comb spectroscopy using two phase modulator combs originating from a single continuous-wave laser capable of > 2 hours of coherent real-time averaging. The dual combs were generated by driving the phase modulators with step-recovery diodes where each comb consisted of > 250 teeth with 203 MHz spacing and spanned > 50 GHz region in the near-infrared. The step-recovery diodes are passive devices that provide low-phase-noise harmonics for efficient coupling into an enhancement cavity at picowatt optical powers. With this approach, we demonstrate the sensitivity to simultaneously monitor ambient levels of CO2, CO, HDO, and H2O in a single spectral region at a maximum acquisition rate of 150 kHz. Robust, compact, low-cost and widely tunable dual-comb systems could enable a network of distributed multiplexed optical sensors.

  8. A practical implementation science heuristic for organizational readiness: R = MC2

    Science.gov (United States)

    Cook, Brittany S.; Lamont, Andrea; Wandersman, Abraham; Castellow, Jennifer; Katz, Jason; Beidas, Rinad S.

    2015-01-01

    There are many challenges when an innovation (i.e., a program, process, or policy that is new to an organization) is actively introduced into an organization. One critical component for successful implementation is the organization’s readiness for the innovation. In this article, we propose a practical implementation science heuristic, abbreviated as R= MC2. We propose that organizational readiness involves: 1) the motivation to implement an innovation, 2) the general capacities of an organization, and 3) the innovation-specific capacities needed for a particular innovation. Each of these components can be assessed independently and be used formatively. The heuristic can be used by organizations to assess readiness to implement and by training and technical assistance providers to help build organizational readiness. We present an illustration of the heuristic by showing how behavioral health organizations differ in readiness to implement a peer specialist initiative. Implications for research and practice of organizational readiness are discussed. PMID:26668443

  9. Launch Window Trade Analysis for the James Webb Space Telescope

    Science.gov (United States)

    Yu, Wayne H.; Richon, Karen

    2014-01-01

    The James Webb Space Telescope (JWST) is a large-scale space telescope mission designed to study fundamental astrophysical questions ranging from the formation of the universe to the origin of planetary systems and the origins of life. JWSTs orbit design is a Libration Point Orbit (LPO) around the Sun-Earth/Moon (SEM) L2 point for a planned mission lifetime of 10.5 years. The launch readiness period for JWST is from Oct 1st, 2018 November 30th, 2018. This paper presents the first launch window analysis for the JWST observatory using finite-burn modeling; previous analysis assumed a single impulsive midcourse correction to achieve the mission orbit. The physical limitations of the JWST hardware stemming primarily from propulsion, communication and thermal requirements alongside updated mission design requirements result in significant launch window within the launch readiness period. Future plans are also discussed.

  10. e-Learning readiness amongst nursing students at the Durban ...

    African Journals Online (AJOL)

    e-Learning readiness amongst nursing students at the Durban University of ... make the shift from traditional learning to the technological culture of e-Learning at a ... equipment and technological readiness for the change in learning method.

  11. A survey on the measure of combat readiness

    Science.gov (United States)

    Wen, Kwong Fook; Nor, Norazman Mohamad; Soon, Lee Lai

    2014-09-01

    Measuring the combat readiness in military forces involves the measures of tangible and intangible elements of combat power. Though these measures are applicable, the mathematical models and formulae used focus mainly on either the tangible or the intangible elements. In this paper, a review is done to highlight the research gap in the formulation of a mathematical model that incorporates tangible elements with intangible elements to measure the combat readiness of a military force. It highlights the missing link between the tangible and intangible elements of combat power. To bridge the gap and missing link, a mathematical model could be formulated that measures both the tangible and intangible aspects of combat readiness by establishing the relationship between the causal (tangible and intangible) elements and its effects on the measure of combat readiness. The model uses multiple regression analysis as well as mathematical modeling and simulation which digest the capability component reflecting its assets and resources, the morale component reflecting human needs, and the quality of life component reflecting soldiers' state of satisfaction in life. The results of the review provide a mean to bridge the research gap through the formulation of a mathematical model that shows the total measure of a military force's combat readiness. The results also significantly identify parameters for each of the variables and factors in the model.

  12. University Research Initiative Program for Combat Readiness

    Science.gov (United States)

    1999-05-01

    microscope image of one of the lenses. This array was selected for testing because it is fabricated in a relatively inexpensive polyacrylic material, the...potent analogues of the potassium -sparing diuretic, amiloride. However, our results 179 University Reasearch Initiative for Combat Readiness Annual Report...for Combat Readiness Annual Report for the period June 1, 1998 - June 30, 1999 Roger H. Sawyer University of South Carolina Columbia, SC 29208 May

  13. NHI Component Technical Readiness Evaluation System

    International Nuclear Information System (INIS)

    Sherman, S.; Wilson, Dane F.; Pawel, Steven J.

    2007-01-01

    A decision process for evaluating the technical readiness or maturity of components (i.e., heat exchangers, chemical reactors, valves, etc.) for use by the U.S. DOE Nuclear Hydrogen Initiative is described. This system is used by the DOE NHI to assess individual components in relation to their readiness for pilot-scale and larger-scale deployment and to drive the research and development work needed to attain technical maturity. A description of the evaluation system is provided, and examples are given to illustrate how it is used to assist in component R and D decisions.

  14. Dynamics and design of space nets for orbital capture

    CERN Document Server

    Yang, Leping; Zhen, Ming; Liu, Haitao

    2017-01-01

    This book covers the topics of theoretical principles, dynamics model and algorithm, mission analysis, system design and experimental studies of space nets system, aiming to provide an initial framework in this field and serve as a ready reference for those interested. Space nets system represents a forefront field in future development of aerospace technologies. However, it involves new challenges and problems such as nonlinear and distorted nets structure, complex rigid flexible coupling dynamics, orbital transfer of space flexible composite and dynamics control. Currently, no comprehensive books on space nets dynamics and design are available, so potential readers can get to know the working mechanism, dynamics elements, and mission design of the space nets system from a Chinese perspective.

  15. Architecture for Mitigating Short-Term Warning Cosmic Threats: READI Project

    Science.gov (United States)

    Nambiar, Shrrirup P.; Hussein, Alaa; Silva-Martinez, Jackelynne; Reinert, Jessica; Gonzalez, Fernando

    2016-01-01

    Earth is being constantly bombarded by a large variety of celestial bodies and has been since its formation 4.5 billion years ago. Among those bodies, mainly asteroids and comets, there are those that have the potential to create large scale destruction upon impact. The only extinction-level impact recorded to date was 65 million years ago, during the era of dinosaurs. The probability of another extinction-level, or even city-killer, impact may be negligible, but the consequences can be severe for the biosphere and for our species. Therefore it is highly imperative for us to be prepared for such a devastating impact in the near future, especially since humanity is at the threshold of wielding technologies that allow us to do so. Majority of scientists, engineers, and policymakers have focused on long-term strategies and warning periods for Earth orbit crossing Near-Earth Objects (NEOs), and have suggested methods and policies to tackle such problems. However, less attention has been paid to short warning period NEO threats. Such NEOs test current technological and international cooperation capabilities in protecting ourselves, and can create unpredictable devastation ranging from local to global scale. The most recent example is the Chelyabinsk incident in Russia. This event has provided a wakeup call for space agencies and governments around the world towards establishing a Planetary Defense Program. The Roadmap for EArth Defense Initiative (READI) is a project by a team of international, intercultural, and interdisciplinary participants of the International Space University's Space Studies Program 2015 hosted by Ohio University, Athens, OH proposing a roadmap for space agencies, governments, and the general public to tackle NEOs with a short warning before impact. Taking READI as a baseline, this paper presents a technical description of methodologies proposed for detection and impact mitigation of a medium-sized comet (up to 800m across) with a short

  16. Coherence effects and average multiplicity in deep inelastic scattering at small χ

    International Nuclear Information System (INIS)

    Kisselev, A.V.; Petrov, V.A.

    1988-01-01

    The average hadron multiplicity in deep inelastic scattering at small χ is calculated in this paper. Its relationship with the average multiplicity in e + e - annihilation is established. As shown the results do not depend on a choice of the gauge vector. The important role of coherence effects in both space-like and time-like jet evolution is clarified. (orig.)

  17. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  18. Coherence and Sense of Coherence

    DEFF Research Database (Denmark)

    Dau, Susanne

    2014-01-01

    Constraints in the implementation of models of blended learning can be explained by several causes, but in this paper, it is illustrated that lack of sense of coherence is a major factor of these constraints along with the referential whole of the perceived learning environments. The question exa...

  19. Does oculomotor readiness mediate exogenous capture of visual attention?

    Science.gov (United States)

    MacLean, Gregory H; Klein, Raymond M; Hilchey, Matthew D

    2015-10-01

    The oculomotor readiness hypothesis makes 2 predictions: Shifts in covert attention are accompanied by preparedness to move one's eyes to the attended region, and preparedness to move one's eyes to a region in space is accompanied by a shift in covert attention to the prepared location. Both predictions have been disconfirmed using an endogenous attention task. In the 2 experiments presented here, the same 2 predictions were tested using an exogenous attention task. It was found that participants experienced covert capture without accompanying oculomotor activation and experienced oculomotor activation without accompanying covert capture. While under everyday conditions the overt and covert orienting systems may be strongly linked, apparently they can nonetheless operate with a high degree of independence from one another. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  20. Higher coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Nagashima, Keisuke; Kawachi, Tetsuya

    2001-01-01

    X-ray lasers generated by an ultra short pulse laser have advantages such as monochromatic, short pulse duration, small beam divergence, high intensity, and coherence. Spatial coherence is most important for applications, we have investigated the transient collisional excitation (TCE) scheme x-ray laser lasing from Ne-like titanium (31.6 nm), Ne-like silver (13.9 nm) and tin (11.9 nm). However, the spatial coherence was not so good with this scheme. We have been studying to improve the spatial coherence of the x-ray laser and have proposed to use coherent seed light tuned to the x-ray laser wavelength generated from higher harmonics generation (HHG), which is introduced to the x-ray laser medium (Ne-like titanium, Ni-like silver plasmas). We present about the theoretical study of the coupling efficiency HHG light with x-ray laser medium. (author)

  1. PARMELA sub B a new version of PARMELA with coherent synchrotron radiation effects and a finite difference space charge routine

    CERN Document Server

    Koltenbah, B E C; Greegor, R B; Dowell, D H

    2002-01-01

    Recent interest in advanced laser light sources has stimulated development of accelerator systems of intermediate beam energy, 100-200 MeV, and high charge, 1-10 nC, for high power FEL applications and high energy, 1-2 GeV, high charge, SASE-FEL applications. The current generation of beam transport codes which were developed for high-energy, low-charge beams with low self-fields are inadequate to address this energy and charge regime, and better computational tools are required to accurately calculate self-fields. To that end, we have developed a new version of PARMELA, named PARMELA sub B and written in Fortran 95, which includes a coherent synchrotron radiation (CSR) routine and an improved, generalized space charge (SC) routine. An electron bunch is simulated by a collection of macro-particles, which traverses a series of beam line elements. At each time step through the calculation, the momentum of each particle is updated due to the presence of external and self-fields. The self-fields are due to CSR an...

  2. Y2K compliance readiness and contingency planning.

    Science.gov (United States)

    Stahl, S; Cohan, D

    1999-09-01

    As the millennium approaches, discussion of "Y2K compliance" will shift to discussion of "Y2K readiness." While "compliance" focuses on the technological functioning of one's own computers, "readiness" focuses on the operational planning required in a world of interdependence, in which the functionality of one's own computers is only part of the story. "Readiness" includes the ability to cope with potential Y2K failures of vendors, suppliers, staff, banks, utility companies, and others. Administrators must apply their traditional skills of analysis, inquiry and diligence to the manifold imaginable challenges which Y2K will thrust upon their facilities. The SPICE template can be used as a systematic tool to guide planning for this historic event.

  3. DOE Richland readiness review for PUREX

    International Nuclear Information System (INIS)

    Zamorski, M.J.

    1984-01-01

    For ten months prior to the November 1983 startup of the Plutonium and URanium EXtraction (PUREX) Plant, the Department of Energy's Richland Operations Office conducted an operational readiness review of the facility. This review was performed consistent with DOE and RL Order 5481.1 and in accordance with written plans prepared by the program and safety divisions. It involved personnel from five divisions within the office. The DOE review included two tasks: (1) overview and evaluation of the operating contractor's (Rockwell Hanford) readiness review for PUREX, and (2) independent assessment of 25 significant aspects of the startup effort. The RL reviews were coordinated by the program division and were phased in succession with the contractor's readiness review. As deficiencies or concerns were noted in the course of the review they were documented and required formal response from the contractor. Startup approval was given in three steps as the PUREX Plant began operation. A thorough review was performed and necessary documentation was prepared to support startup authorization in November 1983, before the scheduled startup date

  4. Long-lived coherence in carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P [ARC Centre of Excellence for Coherent X-ray Science, Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Victoria 3122 (Australia); Quiney, H M; Nugent, K A, E-mail: jdavis@swin.edu.a [ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Victoria 3010 (Australia)

    2010-08-15

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S{sub 2}|S{sub 0}) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  5. Long-lived coherence in carotenoids

    International Nuclear Information System (INIS)

    Davis, J A; Cannon, E; Van Dao, L; Hannaford, P; Quiney, H M; Nugent, K A

    2010-01-01

    We use two-colour vibronic coherence spectroscopy to observe long-lived vibrational coherences in the ground electronic state of carotenoid molecules, with decoherence times in excess of 1 ps. Lycopene and spheroidene were studied isolated in solution, and within the LH2 light-harvesting complex extracted from purple bacteria. The vibrational coherence time is shown to increase significantly for the carotenoid in the complex, providing further support to previous assertions that long-lived electronic coherences in light-harvesting complexes are facilitated by in-phase motion of the chromophores and surrounding proteins. Using this technique, we are also able to follow the evolution of excited state coherences and find that for carotenoids in the light-harvesting complex the (S 2 |S 0 ) superposition remains coherent for more than 70 fs. In addition to the implications of this long electronic decoherence time, the extended coherence allows us to observe the evolution of the excited state wavepacket. These experiments reveal an enhancement of the vibronic coupling to the first vibrational level of the C-C stretching mode and/or methyl-rocking mode in the ground electronic state 70 fs after the initial excitation. These observations open the door to future experiments and modelling that may be able to resolve the relaxation dynamics of carotenoids in solution and in natural light-harvesting systems.

  6. Nonlinear dynamics of the magnetosphere and space weather

    Science.gov (United States)

    Sharma, A. Surjalal

    1996-01-01

    The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.

  7. SCRL-Model for Human Space Flight Operations Enterprise Supply Chain

    Science.gov (United States)

    Tucker, Brian; Paxton, Joseph

    2010-01-01

    This paper will present a Supply Chain Readiness Level (SCRL) model that can be used to evaluate and configure adaptable and sustainable program and mission supply chains at an enterprise level. It will also show that using SCRL in conjunction with Technology Readiness Levels (TRLs), Manufacturing Readiness Levels (MRLs) and National Aeronautics Space Administrations (NASA s) Project Lifecycle Process will provide a more complete means of developing and evaluating a robust sustainable supply chain that encompasses the entire product, system and mission lifecycle. In addition, it will be shown that by implementing the SCRL model, NASA can additionally define supplier requirements to enable effective supply chain management (SCM). Developing and evaluating overall supply chain readiness for any product, system and mission lifecycle is critical for mission success. Readiness levels are presently being used to evaluate the maturity of technology and manufacturing capability during development and deployment phases of products and systems. For example, TRLs are used to support the assessment of the maturity of a particular technology and compare maturity of different types of technologies. MRLs are designed to assess the maturity and risk of a given technology from a manufacturing perspective. In addition, when these measurement systems are used collectively they can offer a more comprehensive view of the maturity of the system. While some aspects of the supply chain and supply chain planning are considered in these familiar metric systems, certain characteristics of an effective supply chain, when evaluated in more detail, will provide an improved insight into the readiness and risk throughout the supply chain. Therefore, a system that concentrates particularly on supply chain attributes is required to better assess enterprise supply chain readiness.

  8. Coherent ambient infrasound recorded by the global IMS network

    Science.gov (United States)

    Matoza, R. S.; Landes, M.; Le Pichon, A.; Ceranna, L.; Brown, D.

    2011-12-01

    The International Monitoring System (IMS) includes a global network of infrasound arrays, which is designed to detect atmospheric nuclear explosions anywhere on the planet. The infrasound network also has potential application in detection of natural hazards such as large volcanic explosions and severe weather. Ambient noise recorded by the network includes incoherent wind noise and coherent infrasound. We present a statistical analysis of coherent infrasound recorded by the IMS network. We have applied broadband (0.01 to 5 Hz) array processing systematically to the multi-year IMS historical dataset (2005-present) using an implementation of the Progressive Multi-Channel Correlation (PMCC) algorithm in log-frequency space. We show that IMS arrays consistently record coherent ambient infrasound across the broad frequency range from 0.01 to 5 Hz when wind-noise levels permit. Multi-year averaging of PMCC detection bulletins emphasizes continuous signals such as oceanic microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, or anthropogenic activity (e.g., mining or industrial activity). While many of these continuous or repetitive signals are of interest in their own right, they may dominate IMS array detection bulletins and obscure or complicate detection of specific signals of interest. The new PMCC detection bulletins have numerous further applications, including in volcano and microbarom studies, and in IMS data quality assessment.

  9. Community Readiness Within Systems of Care: The Validity and Reliability of the System of Care Readiness and Implementation Measurement Scale (SOC-RIMS).

    Science.gov (United States)

    Rosas, Scott R; Behar, Lenore B; Hydaker, William M

    2016-01-01

    Establishing a system of care requires communities to identify ways to successfully implement strategies and support positive outcomes for children and their families. Such community transformation is complex and communities vary in terms of their readiness for implementing sustainable community interventions. Assessing community readiness and guiding implementation, specifically for the funded communities implementing a system of care, requires a well-designed tool with sound psychometric properties. This scale development study used the results of a previously published concept mapping study to create, administer, and assess the psychometric characteristics of the System of Care Readiness and Implementation Measurement Scale (SOC-RIMS). The results indicate the SOC-RIMS possesses excellent internal consistency characteristics, measures clearly discernible dimensions of community readiness, and demonstrates the target constructs exist within a broad network of content. The SOC-RIMS can be a useful part of a comprehensive assessment in communities where system of care practices, principles, and philosophies are implemented and evaluated.

  10. Gain with and without population inversion via vacuum-induced coherence in a V-type atom without external coherent driving

    International Nuclear Information System (INIS)

    Xu Weihua; Wu Jinhui; Gao Jinyue

    2006-01-01

    In a three-level V-type atomic system without any external coherent driving, owing to the coherence that results from the vacuum of the radiation field, both the probe gain with and without population inversion can be achieved with very weak incoherent pumping. The gain is achieved in the absence of any external coherent driving field, so it is different from the gain without inversion in ordinary laser-driven schemes where a coherent driving field is necessary to create the coherence. The gain is also different from the conventional lasing gain because the population inversion is achieved via vacuum-induced coherence, which is dependent on the atomic coherence

  11. The global coherence initiative: creating a coherent planetary standing wave.

    Science.gov (United States)

    McCraty, Rollin; Deyhle, Annette; Childre, Doc

    2012-03-01

    The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other

  12. First Experimental Demonstration of Coherent CAP for 300-Gb/s Metropolitan Optical Networks

    DEFF Research Database (Denmark)

    Estaran Tolosa, Jose Manuel; Iglesias Olmedo, Miguel; Zibar, Darko

    2014-01-01

    We report on high - capacity coherent links employing dual polarization 2D - CAP modulation, allowing for signal design in 8 - dimensional space. Successful demodulation of 221 Gb/s (7.5 b/s/Hz) and 336 Gb/s (7.8 b/s/Hz) after 225 km and 451 km of standard single - mode fiber (SSMF) is achieved....

  13. VCSEL Based Coherent PONs

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Rodes, Roberto; Caballero Jambrina, Antonio

    2014-01-01

    We present a review of research performed in the area of coherent access technologies employing vertical cavity surface emitting lasers (VCSELs). Experimental demonstrations of optical transmission over a passive fiber link with coherent detection using VCSEL local oscillators and directly modula...

  14. DOE Zero Energy Ready Home Case Study: United Way of Long Island, United Veterans Beacon House

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    United Way of Long Island’s Housing Development Corporation built this 3,719-ft2 two–story, 5-bedroom home in Huntington Station, New York, to the rigorous performance requirements of the U.S. Department of Energy’s Zero Energy Ready Home Program. The home is packed with high-performance features like LED lighting and ENERGY STAR appliances. The asymmetrical, optimally angled roof provides plenty of space for roof-mounted solar panels for electric generation and hot water.

  15. Solid scintillator 'Ready Cap' for measurement with a liquid scintillation counter

    International Nuclear Information System (INIS)

    Ijiri, Kenichi; Endo, Masashi; Nogawa, Norio; Tsuda, Shoko; Nakamura, Aiko; Morikawa, Naotake; Osaki, Susumu.

    1990-01-01

    'Ready Cap', a small plastic container coated with solid scintillator has recently been introduced (Beckman Instruments, Inc.). Pulse height spectra and counting efficiencies obtained with a liquid scintillator and Ready Cap using a liquid scintillation counter were compared for 15 different radionuclides. For radionuclides emitting low-energy β-rays or characteristic X-rays, the spectra for Ready Cap shifted toward the higher energy side compared with the spectra for the liquid scintillator. This tendency was reversed for the nuclides emitting higher-energy β-radiations ( 36 Cl and 32 P). Generally, counting efficiencies both in Ready Cap and in liquid scintillator increased with increase in the energy of β- or X-rays. For some nuclides, Ready Cap gave higher counting efficiencies and for others it gave lower values than in the liquid scintillator. However, the differences were not large within each nuclide. The use of Ready Cap is recommended for measurements of radionuclides when liquid scintillation cocktails have no means of waste disposal under the present Japanese radioisotope regulation. (author)

  16. Research on Influencing Factors of Salespeople's Empowerment Readiness in Green Energy Enterprise

    Science.gov (United States)

    Dong, Yuan; Liu, Xiaohui

    As market competition in green energy enterprises continues to intensify, marketing activities are enlarging and customer demand is increasingly growing and diversifying. More and more green energy enterprises have empowered their own salespeople. And managers in green energy enterprises are more concerned with the issues which employees suit to be empowered and which factors will influence employee empowerment readiness. This paper proposes the definition of salespeople's empowerment readiness, analyzes influencing factors of salespeople's empowerment readiness, discusses the effect mechanism of influencing factors of salespeople's empowerment readiness, finally, and puts forward some suggestions to enhance salespeople's empowerment readiness from the perspective of human resource management practice.

  17. Proper Names and Their Functions in the Text Coherency Formation (at the Material of the Novels “The Twelve Chairs” and “The Little Golden Calf” by I. Ilf and E. Petrov

    Directory of Open Access Journals (Sweden)

    Tatyana Valentinovna Milevskaya

    2015-12-01

    Full Text Available The article deals with the onomastic space structure in the literary text and its constituents functions in realization of coherency as a text forming category. It is stated that providing global text coherence onyms could represent both denotative coreference and significative coherence of nomination units. The data of the studies have proved that the following units take part in providing text coherency of the novel "The Twelve Chairs" by I. Ilf and E. Petrov: anthroponyms, toponyms, and ergonyms. Having used a frame approach to the proper names analysis the authors could modify and clearly specify a detailed onym functional classification (which is known in linguistics of onyms, pointing to the necessary to distinguish six instead of three groups of onyms according to their functions in providing text coherency: 1 onyms that maintain coherency of the whole text; 2onyms that construct space-time coordinates of the literary picture of the world; 3 onyms that are both naming the characters who directly interact with the protagonists and designing external relations of the text passage; 4 onyms that organize internal relations of the text passage and represent the main characters of the text passage; 5 onyms that form space-time background of the text passage; 6 optional onyms, which do not play a significant role in the text coherency. With the particular examples the authors proved that some onyms could simultaneously perform different functions forming both external and internal links.

  18. Symmetric configurations highlighted by collective quantum coherence

    Energy Technology Data Exchange (ETDEWEB)

    Obster, Dennis [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics, Nijmegen (Netherlands); Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan); Sasakura, Naoki [Kyoto University, Yukawa Institute for Theoretical Physics, Kyoto (Japan)

    2017-11-15

    Recent developments in quantum gravity have shown the Lorentzian treatment to be a fruitful approach towards the emergence of macroscopic space-times. In this paper, we discuss another related aspect of the Lorentzian treatment: we argue that collective quantum coherence may provide a simple mechanism for highlighting symmetric configurations over generic non-symmetric ones. After presenting the general framework of the mechanism, we show the phenomenon in some concrete simple examples in the randomly connected tensor network, which is tightly related to a certain model of quantum gravity, i.e., the canonical tensor model. We find large peaks at configurations invariant under Lie-group symmetries as well as a preference for charge quantization, even in the Abelian case. In future study, this simple mechanism may provide a way to analyze the emergence of macroscopic space-times with global symmetries as well as various other symmetries existing in nature, which are usually postulated. (orig.)

  19. Quantum Interference and Coherence Theory and Experiments

    CERN Document Server

    Ficek, Zbigniew; Rhodes, William T; Asakura, Toshimitsu; Brenner, Karl-Heinz; Hänsch, Theodor W; Kamiya, Takeshi; Krausz, Ferenc; Monemar, Bo; Venghaus, Herbert; Weber, Horst; Weinfurter, Harald

    2005-01-01

    For the first time, this book assembles in a single volume accounts of many phenomena involving quantum interference in optical fields and atomic systems. It provides detailed theoretical treatments and experimental analyses of such phenomena as quantum erasure, quantum lithography, multi-atom entanglement, quantum beats, control of decoherence, phase control of quantum interference, coherent population trapping, electromagnetically induced transparency and absorption, lasing without inversion, subluminal and superluminal light propagation, storage of photons, quantum interference in phase space, interference and diffraction of cold atoms, and interference between Bose-Einstein condensates. This book fills a gap in the literature and will be useful to both experimentalists and theoreticians.

  20. Investigation on the properties of the formation and coherence of intense fringe near nonlinear medium slab

    Directory of Open Access Journals (Sweden)

    Yonghua Hu

    2018-03-01

    Full Text Available Near medium intense (NMI fringe is a kind of intense fringe which can be formed near Kerr medium in high-power laser beam propagation. The formation properties of NMI fringe and the relations between NMI fringe and related important parameters are systematically investigated. It is found that it is the co-existence of two wirelike phase-typed scatterers in the incident beam spot which is mainly responsible for the high intensity of NMI fringe. From the viewpoint of coherent superposition, the formation process of NMI fringe is analyzed, and the mechanism that NMI fringe is formed by the coherent superposition of the localized bright fringes in the exit field of Kerr medium slab is demonstrated. The fluctuations of NMI fringe properties with beam wavelength, scatterer spacing and object distance are studied, the coherence of NMI fringe are revealed, and the approximate periodicity of the appearance of remarkable NMI fringe for these parameters are obtained. Especially, it is found that the intensity of NMI fringe is very sensitive to scatterer spacing. Besides, the laws about how NMI fringe properties will be changed by the modulation properties of scatterers and the medium thickness are demonstrated. Keywords: High-power laser beam, Nonlinear propagation, Kerr medium, Small-scale scatterer, Nonlinear imaging

  1. Solar Training Network and Solar Ready Vets

    Energy Technology Data Exchange (ETDEWEB)

    Dalstrom, Tenley Ann

    2016-09-14

    In 2016, the White House announced the Solar Ready Vets program, funded under DOE's SunShot initiative would be administered by The Solar Foundation to connect transitioning military personnel to solar training and employment as they separate from service. This presentation is geared to informing and recruiting employer partners for the Solar Ready Vets program, and the Solar Training Network. It describes the programs, and the benefits to employers that choose to connect to the programs.

  2. Making Technology Ready: Integrated Systems Health Management

    Science.gov (United States)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  3. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  4. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  5. Coherent Multistatic ISAR Imaging

    NARCIS (Netherlands)

    Dorp, Ph. van; Otten, M.P.G.; Verzeilberg, J.M.M.

    2012-01-01

    This paper presents methods for Coherent Multistatic Radar Imaging for Non Cooperative Target Recognition (NCTR) with a network of radar sensors. Coherent Multistatic Radar Imaging is based on an extension of existing monostatic ISAR algorithms to the multistatic environment. The paper describes the

  6. Coherence and correspondence in engineering design

    Directory of Open Access Journals (Sweden)

    Konstantinos V. Katsikopoulos

    2009-03-01

    Full Text Available I show how the coherence/correspondence distinction can inform the conversation about decision methods for engineering design. Some engineers argue for the application of multi-attribute utility theory while others argue for what they call heuristics. To clarify the differences among methods, I first ask whether each method aims at achieving coherence or correspondence. By analyzing statements in the design literature, I argue that utility theory aims at achieving coherence and heuristics aim at achieving correspondence. Second, I ask if achieving coherence always implies achieving correspondence. It is important to provide an answer because while in design the objective is correspondence, it is difficult to assess it, and coherence that is easier to assess is used as a surrogate. I argue that coherence does not always imply correspondence in design and that this is also the case in problems studied in judgment and decision-making research. Uncovering the conditions under which coherence implies, or does not imply, correspondence is a topic where engineering design and judgment and decision-making research might connect.

  7. Ready for kindergarten: Are intelligence skills enough?

    Directory of Open Access Journals (Sweden)

    Caroline Fitzpatrick

    2017-12-01

    Full Text Available This study investigated how different profiles of kindergarten readiness in terms of student intellectual ability, academic skills and classroom engagement relate to future academic performance. Participants are French-Canadian children followed in the context of the Quebec Longitudinal Study of Child Development (N = 670. Trained examiners measured number knowledge, receptive vocabulary and fluid intelligence when children were in kindergarten. Teachers rated kindergarten classroom engagement. Outcomes included fourth-grade teacherrated achievement and directly assessed mathematical skills. Latent class analyses revealed three kindergarten readiness profiles: high (57%, moderate (34% and low (9.3% readiness. Using multiple regression, we found that a more favourable kindergarten profile predicted better fourth-grade academic performance. Identifying children at risk of academic difficulty is an important step for preventing underachievement and dropout. These results suggest the importance of promoting a variety of cognitive, academic and behavioural skills to enhance later achievement in at-risk learners.

  8. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Timothy John [Northern Illinois U.

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  9. Theory of coherent resonance energy transfer

    International Nuclear Information System (INIS)

    Jang, Seogjoo; Cheng, Y.-C.; Reichman, David R.; Eaves, Joel D.

    2008-01-01

    A theory of coherent resonance energy transfer is developed combining the polaron transformation and a time-local quantum master equation formulation, which is valid for arbitrary spectral densities including common modes. The theory contains inhomogeneous terms accounting for nonequilibrium initial preparation effects and elucidates how quantum coherence and nonequilibrium effects manifest themselves in the coherent energy transfer dynamics beyond the weak resonance coupling limit of the Foerster and Dexter (FD) theory. Numerical tests show that quantum coherence can cause significant changes in steady state donor/acceptor populations from those predicted by the FD theory and illustrate delicate cooperation of nonequilibrium and quantum coherence effects on the transient population dynamics.

  10. Predicting implementation from organizational readiness for change: a study protocol

    Directory of Open Access Journals (Sweden)

    Kelly P Adam

    2011-07-01

    Full Text Available Abstract Background There is widespread interest in measuring organizational readiness to implement evidence-based practices in clinical care. However, there are a number of challenges to validating organizational measures, including inferential bias arising from the halo effect and method bias - two threats to validity that, while well-documented by organizational scholars, are often ignored in health services research. We describe a protocol to comprehensively assess the psychometric properties of a previously developed survey, the Organizational Readiness to Change Assessment. Objectives Our objective is to conduct a comprehensive assessment of the psychometric properties of the Organizational Readiness to Change Assessment incorporating methods specifically to address threats from halo effect and method bias. Methods and Design We will conduct three sets of analyses using longitudinal, secondary data from four partner projects, each testing interventions to improve the implementation of an evidence-based clinical practice. Partner projects field the Organizational Readiness to Change Assessment at baseline (n = 208 respondents; 53 facilities, and prospectively assesses the degree to which the evidence-based practice is implemented. We will conduct predictive and concurrent validities using hierarchical linear modeling and multivariate regression, respectively. For predictive validity, the outcome is the change from baseline to follow-up in the use of the evidence-based practice. We will use intra-class correlations derived from hierarchical linear models to assess inter-rater reliability. Two partner projects will also field measures of job satisfaction for convergent and discriminant validity analyses, and will field Organizational Readiness to Change Assessment measures at follow-up for concurrent validity (n = 158 respondents; 33 facilities. Convergent and discriminant validities will test associations between organizational readiness and

  11. e-Learning readiness amongst nursing students at the Durban ...

    African Journals Online (AJOL)

    Marilynne Coopasami

    c Centre for Excellence in Learning and Teaching, ML Sultan Campus, Durban University of Technology, Durban ... education, technological and equipment readiness require attention before it can be ... strategy; consider the benefits and disadvantages of e- ... using an appropriate tool to measure e-Learning readiness has.

  12. 47 CFR 15.118 - Cable ready consumer electronics equipment.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Cable ready consumer electronics equipment. 15... Unintentional Radiators § 15.118 Cable ready consumer electronics equipment. (a) All consumer electronics TV... provisions of this section. Consumer electronics TV receiving equipment that includes features intended for...

  13. Developing hybrid near-space technologies for affordable access to suborbital space

    Science.gov (United States)

    Badders, Brian David

    High power rockets and high altitude balloons are two near-space technologies that could be combined in order to provide access to the mesosphere and, eventually, suborbital space. This "rockoon" technology has been used by several large budget space programs before being abandoned in favor of even more expensive, albeit more accurate, ground launch systems. With the increased development of nano-satellites and atmospheric sensors, combined with rising interest in global atmospheric data, there is an increase in desire for affordable access to extreme altitudes that does not necessarily require the precision of ground launches. Development of hybrid near-space technologies for access to over 200k ft. on a small budget brings many challenges within engineering, systems integration, cost analysis, market analysis, and business planning. This research includes the design and simulation testing of all the systems needed for a safe and reusable launch system, the cost analysis for initial production, the development of a business plan, and the development of a marketing plan. This project has both engineering and scientific significance in that it can prove the space readiness of new technologies, raise their technology readiness levels (TRLs), expedite the development process, and also provide new data to the scientific community. It also has the ability to stimulate university involvement in the aerospace industry and help to inspire the next generation of workers in the space sector. Previous development of high altitude balloon/high power rocket hybrid systems have been undertaken by government funded military programs or large aerospace corporations with varying degrees of success. However, there has yet to be a successful flight with this type of system which provides access to the upper mesosphere in a university setting. This project will aim to design and analyze a viable system while testing the engineering process under challenging budgetary constraints. The

  14. Maintaining Web Cache Coherency

    Directory of Open Access Journals (Sweden)

    2000-01-01

    Full Text Available Document coherency is a challenging problem for Web caching. Once the documents are cached throughout the Internet, it is often difficult to keep them coherent with the origin document without generating a new traffic that could increase the traffic on the international backbone and overload the popular servers. Several solutions have been proposed to solve this problem, among them two categories have been widely discussed: the strong document coherency and the weak document coherency. The cost and the efficiency of the two categories are still a controversial issue, while in some studies the strong coherency is far too expensive to be used in the Web context, in other studies it could be maintained at a low cost. The accuracy of these analysis is depending very much on how the document updating process is approximated. In this study, we compare some of the coherence methods proposed for Web caching. Among other points, we study the side effects of these methods on the Internet traffic. The ultimate goal is to study the cache behavior under several conditions, which will cover some of the factors that play an important role in the Web cache performance evaluation and quantify their impact on the simulation accuracy. The results presented in this study show indeed some differences in the outcome of the simulation of a Web cache depending on the workload being used, and the probability distribution used to approximate updates on the cached documents. Each experiment shows two case studies that outline the impact of the considered parameter on the performance of the cache.

  15. Sleep Duration and School Readiness of Chinese Preschool Children.

    Science.gov (United States)

    Tso, Winnie; Rao, Nirmala; Jiang, Fan; Li, Albert Martin; Lee, So-Lun; Ho, Frederick Ka-Wing; Li, Sophia Ling; Ip, Patrick

    2016-02-01

    To examine the average sleep duration in Chinese preschoolers and to investigate the association between sleep duration and school readiness. This is a cross-sectional study that included 553 Chinese children (mean age = 5.46 years) from 20 preschools in 2 districts of Hong Kong. Average daily sleep duration in the last week was reported by parents and school readiness as measured by the teacher-rated Chinese Early Development Instrument (CEDI). Most Chinese preschoolers had 9-10 hours of sleep per day. Only 11% of preschoolers had the recommended 11-12 hours of sleep per day. This group was associated with more "very ready" CEDI domains. Sleep deprivation (≤7 hours per day) was associated with a lower CEDI total score, lower scores in the emotional maturity and language/cognitive domain, and prosocial behaviors subdomain but a greater score in the hyperactivity/inattention subdomain. Children with a lower family socioeconomic index, lower maternal education level, infrequent parent-child interactions, and who used electronic devices for more than 3 hours per day had shortened sleep durations. Optimal sleep duration was associated with better school readiness in preschool children, whereas sleep deprivation was associated with lower school readiness, more hyperactivity and inattention, and less prosocial behavior. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. College Readiness versus College Worthiness: Examining the Role of Principal Beliefs on College Readiness Initiatives in an Urban U.S. High School

    Science.gov (United States)

    Convertino, Christina; Graboski-Bauer, Ashley

    2018-01-01

    In light of increasing emphasis on the importance of post-secondary education to personal economic security, there is growing interest to promote college readiness initiatives in high schools, particularly for low-income and minority students for whom the harmful effects of institutional inequities on college readiness is well-documented.…

  17. Usability and Workflow Evaluation of “RhEumAtic Disease Activity” (READY)

    Science.gov (United States)

    Yen, Po-Yin; Lara, Barbara; Lopetegui, Marcelo; Bharat, Aseem; Ardoin, Stacy; Johnson, Bernadette; Mathur, Puneet; Embi, Peter J.

    2016-01-01

    Summary Background RhEumAtic Disease activitY (READY) is a mobile health (mHealth) application that aims to create a shared platform integrating data from both patients and physicians, with a particular emphasis on arthritis disease activity. Methods We made READY available on an iPad and pilot implemented it at a rheumatology out-patient clinic. We conducted 1) a usability evaluation study to explore patients’ and physicians’ interactions with READY, and 2) a time motion study (TMS) to observe the clinical workflow before and after the implementation. Results A total of 33 patients and 15 physicians participated in the usability evaluation. We found usability problems in navigation, data entry, pain assessment, documentation, and instructions along with error messages. Despite these issues, 25 (75,76%) patients reported they liked READY. Physicians provided mixed feedback because they were concerned about the impact of READY on clinical workflow. Six physicians participated in the TMS. We observed 47 patient visits (44.72 hours) in the pre-implementation phase, and 42 patient visits (37.82 hours) in the post-implementation phase. We found that patients spent more time on READY than paper (4.39mins vs. 2.26mins), but overall, READY did not delay the workflow (pre = 52.08 mins vs. post = 45.46 mins). This time difference may be compensated with READY eliminating a workflow step for the staff. Conclusion Patients preferred READY to paper documents. Many found it easier to input information because of the larger font size and the ease of ‘tapping’ rather than writing-out or circling answers. Even though patients spent more time on READY than using paper documents, the longer usage of READY was mainly due to when troubleshooting was needed. Most patients did not have problems after receiving initial support from the staff. This study not only enabled improvements to the software but also serves as good reference for other researchers or institutional decision

  18. Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

    2011-08-21

    The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

  19. DOE Zero Energy Ready Home Case Study: Thrive Home Builders, Lowry Plan

    Energy Technology Data Exchange (ETDEWEB)

    Pacific Northwest National Laboratory

    2017-09-01

    Thrive Home Builders built this 4,119-ft2 home at the Lowry development in Denver, Colorado, to the high-performance criteria of the U.S. Department of Energy’s Zero Energy Ready Home Program. Despite the dense positioning of the homes, mono-plane roof designs afforded plenty of space for the 8.68 kW of photovoltaic panels. With the PV, the home achieves a Home Energy Rating System (HERS) score of 4 and the home owners should enjoy energy bills of about $-11 a year. Without the PV, the home would score a HERS 38 (far lower than the HERS 80 to 100 of typical new homes).

  20. Individual Ready Reserve: It's Relevance in Supporting the Long War

    National Research Council Canada - National Science Library

    Chisholm, Shelley A

    2008-01-01

    ... in sustaining personnel readiness while supporting on going operations. In response to meeting these personnel readiness concerns, the Army Reserve will require the call-up of Soldiers currently serving in the IRR...

  1. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  2. Integrated coherent matter wave circuits

    International Nuclear Information System (INIS)

    Ryu, C.; Boshier, M. G.

    2015-01-01

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  3. Coherent states in quantum physics

    CERN Document Server

    Gazeau, Jean-Pierre

    2009-01-01

    This self-contained introduction discusses the evolution of the notion of coherent states, from the early works of Schrödinger to the most recent advances, including signal analysis. An integrated and modern approach to the utility of coherent states in many different branches of physics, it strikes a balance between mathematical and physical descriptions.Split into two parts, the first introduces readers to the most familiar coherent states, their origin, their construction, and their application and relevance to various selected domains of physics. Part II, mostly based on recent original results, is devoted to the question of quantization of various sets through coherent states, and shows the link to procedures in signal analysis. Title: Coherent States in Quantum Physics Print ISBN: 9783527407095 Author(s): Gazeau, Jean-Pierre eISBN: 9783527628292 Publisher: Wiley-VCH Dewey: 530.12 Publication Date: 23 Sep, 2009 Pages: 360 Category: Science, Science: Physics LCCN: Language: English Edition: N/A LCSH:

  4. Deformed exterior algebra, quons and their coherent states

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.

    2002-08-01

    We review the notion of the deformation of the exterior wedge product. This allows us to construct the deformation of the algebra of exterior forms over a vector space and also over an arbitrary manifold. We relate this approach to the generalized statistics and we study quons, as a particular case of these generalized statistics. We also give their statistical properties. A large part of the work is devoted to the problem of constructing coherent states for the deformed oscillators. We give a review of all the approaches existing in the literature concerning this point and enforce it with many examples. (author)

  5. Nuclear Space Power Systems Materials Requirements

    International Nuclear Information System (INIS)

    Buckman, R.W. Jr.

    2004-01-01

    High specific energy is required for space nuclear power systems. This generally means high operating temperatures and the only alloy class of materials available for construction of such systems are the refractory metals niobium, tantalum, molybdenum and tungsten. The refractory metals in the past have been the construction materials selected for nuclear space power systems. The objective of this paper will be to review the past history and requirements for space nuclear power systems from the early 1960's through the SP-100 program. Also presented will be the past and present status of refractory metal alloy technology and what will be needed to support the next advanced nuclear space power system. The next generation of advanced nuclear space power systems can benefit from the review of this past experience. Because of a decline in the refractory metal industry in the United States, ready availability of specific refractory metal alloys is limited

  6. Managing Military Readiness

    Science.gov (United States)

    2017-02-01

    These metrics contain critical information and have their place in readiness management. However, they have never been sufficient to fully...demand signals along with simultaneity assumptions form the es- sence of the operational requirements in national strategy. This section briefly... places demands on the capability and capacity of the Air Force that consume its resources in today’s fight and exceed our capacity to address

  7. Market readiness report : status of preparation for Ontario's competitive retail electricity market

    International Nuclear Information System (INIS)

    2002-01-01

    The Ontario Energy Board (OEB) assumes a leadership role in the electricity sector to ensure the readiness of retail participants in Ontario's competitive electricity market. The Market Readiness Project Team is instrumental in this activity. The team, led by the Independent Electricity Market Operator, provides information and advice regarding the technical readiness of the retail industry, with particular focus on the readiness of distributors to carry out their important functions in a competitive market. This report provides an assessment of the team regarding the industry's technical readiness based on information as of December 14, 2001. The status of retail market readiness was reviewed in terms of the viability of the design of the new competitive market and on the status of Ontario distributors in enabling a competitive market. The workplan for the remaining industry activities needed to achieve market opening were then summarized along with the contingency arrangements for any distributors that are not ready for market opening. Based on several projections, an estimated 88 per cent of Ontario contracts will be served by a distributor starting on a May 1, 2002 market opening. tabs., figs., appendices

  8. LOBSTER: new space x-ray telescopes

    Science.gov (United States)

    Hudec, R.; Sveda, L.; Pína, L.; Inneman, A.; Semencova, V.; Skulinova, M.

    2017-11-01

    The LOBSTER telescopes are based on the optical arrangement of the lobster eye. The main difference from classical X-ray space telescopes in wide use is the very large field of view while the use of optics results in higher efficiency if compared with detectors without optics. Recent innovative technologies have enabled to design, to develop and to test first prototypes. They will provide deep sensitive survey of the sky in X-rays for the first time which is essential for both long-term monitoring of celestial high-energy sources as well as in understanding transient phenomena. The technology is now ready for applications in space.

  9. Asymmetry and coherence weight of quantum states

    Science.gov (United States)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  10. Coherent systems with multistate components

    International Nuclear Information System (INIS)

    Caldarola, L.

    1980-01-01

    The basic rules of the Boolean algebra with restrictions on variables are briefly recalled. This special type of Boolean algebra allows one to handle fault trees of systems made of multistate (two or more than two states) components. Coherent systems are defined in the case of multistate components. This definition is consistent with that originally suggested by Barlow in the case of binary (two states) components. The basic properties of coherence are described and discussed. Coherent Boolean functions are also defined. It is shown that these functions are irredundant, that is they have only one base which is at the same time complete and irredundant. However, irredundant functions are not necessarily coherent. Finally a simplified algorithm for the calculation of the base of a coherent function is described. In the case that the function is not coherent, the algorithm can be used to reduce the size of the normal disjunctive form of the function. This in turn eases the application of the Nelson algorithm to calculate the complete base of the function. The simplified algorithm has been built in the computer program MUSTAFA-1. In a sample case the use of this algorithm caused a reduction of the CPU time by a factor of about 20. (orig.)

  11. Digital adaptive optics for achieving space-invariant lateral resolution in optical coherence tomography

    International Nuclear Information System (INIS)

    Kumar, A.

    2015-01-01

    Optical coherence tomography (OCT) is a non-invasive optical interferometric imaging technique that provides reflectivity profiles of the sample structures with high axial resolution. The high axial resolution is due to the use of low coherence (broad-band) light source. However, the lateral resolution in OCT depends on the numerical aperture (NA) of the focusing/imaging optics and it is affected by defocus and other higher order optical aberrations induced by the imperfect optics, or by the sample itself.Hardware based adaptive optics (AO) has been successfully combined with OCT to achieve high lateral resolution in combination with high axial resolution provided by OCT. AO, which conventionally uses Shack-Hartmann wavefront sensor (SH WFS) and deformable mirror for wavefront sensing and correction respectively, can compensate for optical aberration and can enable diffraction-limited resolution in OCT. Visualization of cone photoreceptors in 3-D has been successfully demonstrated using AO-OCT. However, OCT being an interferometric imaging technique can provide access to phase information.This phase information can be exploited by digital adaptive optics (DAO) techniques to correct optical aberration in the post-processing step to obtain diffraction-limited space invariant lateral resolution throughout the image volume. Thus, the need for hardware based AO can be eliminated, which in turn can reduce the system complexity and economical cost. In the first paper of this thesis, a novel DAO method based on sub-aperture correlation is presented which is the digital equivalent of SH WFS. The advantage of this method is that it is non-iterative in nature and it does not require a priori knowledge of any system parameters such wavelength, focal length, NA or detector pixel size. For experimental proof, a FF SS OCT system was used and the sample consisted of resolution test target and a plastic plate that introduced random optical aberration. Experimental results show that

  12. Irradiation of ready made meals -Lasagne

    International Nuclear Information System (INIS)

    Barkia, Ines

    2007-01-01

    The effect of ionizing radiation on the microbiological, nutritional, chemical and sensory quality of chilled ready-made meals was assessed. The ready meals used for this experimental work are lasagne. Following arrival at the semi-industrial Cobalt 60 irradiation facility, the meals were either left unirradiated or irradiated with doses of 2 or 4 kGy after which they were stored for up to 23 days at 3C. Results showed that 2 or 4 kGy doses of gamma irradiation decreased the total counts of mesophilic aerobic bacteria and increased the shelf-life of lasagne. In terms of nutritional quality, it was found that losses of vitamin A and E due to irradiation treatment were considerable at 4 kGy. Total acidity, and p H, were all well within the acceptable limit for up to one week for ready meals treated with 2 and 4 kGy whereas peroxide index showed high values at 4 kGy. Sensory results showed no significant differences between the non-irradiated and irradiated meals at 2 kGy. However, the results were less promising at 4 kGy since differences were significant. (Author). 60 refs

  13. Teachers’ Readiness to Implement Digital Curriculum in Kuwaiti Schools

    Directory of Open Access Journals (Sweden)

    Hamed Mubarak Al-Awidi

    2017-03-01

    Findings\tTeachers are moderately ready for implementation of the digital curriculum in both components of readiness (technical and pedagogical. Teachers identified some factors that that hinder their readiness. These factors are related to time constraints, knowledge and skills, infrastructure, and technical support. Recommendations for Practitioners: This paper will guide curriculum decision makers to find the best ways to help and support teachers to effectively implement the digital. Future Research: Follow up studies may examine the effectiveness of teacher education pro-grams in preparing students teachers to implement the digital curriculum, and the role of education decision makers in facilitating the implementation of the digital curriculum.

  14. Computer-Based Assessment of School Readiness and Early Reasoning

    Science.gov (United States)

    Csapó, Beno; Molnár, Gyöngyvér; Nagy, József

    2014-01-01

    This study explores the potential of using online tests for the assessment of school readiness and for monitoring early reasoning. Four tests of a face-to-face-administered school readiness test battery (speech sound discrimination, relational reasoning, counting and basic numeracy, and deductive reasoning) and a paper-and-pencil inductive…

  15. COHERENT Experiment: current status

    International Nuclear Information System (INIS)

    Akimov, D; Belov, V; Bolozdynya, A; Burenkov, A; Albert, J B; Del Valle Coello, M; D’Onofrio, M; Awe, C; Barbeau, P S; Cervantes, M; Becker, B; Cabrera-Palmer, B; Collar, J I; Cooper, R J; Cooper, R L; Cuesta, C; Detwiler, J; Eberhardt, A; Dean, D; Dolgolenko, A G

    2017-01-01

    The COHERENT Collaboration is realizing a long term neutrino physics research program. The main goals of the program are to detect and study elastic neutrino-nucleus scattering (CEνNS). This process is predicted by Standard Model but it has never been observed experimentally because of the very low energy of the recoil nucleus. COHERENT is using different detector technologies: CsI[Na] and NaI scintillator crystals, a single-phase liquid Ar and a Ge detectors. The placement of all the detector setups is in the basement of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The current status of the COHERENT experimental program is presented. (paper)

  16. The Readiness of Students to Learn Interprofessional Teamwork in Antenatal Care

    Directory of Open Access Journals (Sweden)

    Dina Zakiyyatul Fuadah

    2016-09-01

    Full Text Available Introduction: Indonesia as a developing country have a higher Maternal Mortality Rate (MMR. The prevention efforts is developing interprofessional collaborative practice (IPCP in the level of health care. Collaboration attitudes should start from education level through interprofessional education training and simulation for student. The objective of this study was to analyze the effect of interprofessional education training toward the readiness of students to learn interprofessional teamwork in antenatal care. Methods: Quasi-experimental design (pre test and post test without control with Time-Series Design. Participants used in this study were students of five semester in STIKes Karya Husada Kediri year of 2011/2012 and the number of samples are 60 students. Technique sampling using simple random. The data collected by used questionnaires Readiness Interprofessional Learning Scale (RIPLS and checklist observations using Teamwork Score (TWS. Anova, Friedman test, and Kruskal Wallis was used to statistically analyzed the data. Results: Readiness to learn interprofessional teamwork indicates the value of p = 0.001 thats means there are significant differences between the readiness before and after training IPE. Delta test showed that p value > 0.05 so there is no difference between the three programs study on readiness to learn interprofessional teamwork in antenatal care. Discussion: Interprofessional education training using simulation methods can affect the readiness of nursing, midwifery and nutritionist students for learning interprofessional teamwork in antenatal care. Keywords: interprofessional education, readiness, training and simulations, pre clinics students, antenatal care.

  17. Coherence-driven argumentation to norm consensus

    NARCIS (Netherlands)

    Joseph, S.; Prakken, H.

    2009-01-01

    In this paper coherence-based models are proposed as an alternative to logic-based BDI and argumentation models for the reasoning of normative agents. A model is provided for how two coherence-based agents can deliberate on how to regulate a domain of interest. First a deductive coherence model

  18. Parameter-space metric of semicoherent searches for continuous gravitational waves

    International Nuclear Information System (INIS)

    Pletsch, Holger J.

    2010-01-01

    Continuous gravitational-wave (CW) signals such as emitted by spinning neutron stars are an important target class for current detectors. However, the enormous computational demand prohibits fully coherent broadband all-sky searches for prior unknown CW sources over wide ranges of parameter space and for yearlong observation times. More efficient hierarchical ''semicoherent'' search strategies divide the data into segments much shorter than one year, which are analyzed coherently; then detection statistics from different segments are combined incoherently. To optimally perform the incoherent combination, understanding of the underlying parameter-space structure is requisite. This problem is addressed here by using new coordinates on the parameter space, which yield the first analytical parameter-space metric for the incoherent combination step. This semicoherent metric applies to broadband all-sky surveys (also embedding directed searches at fixed sky position) for isolated CW sources. Furthermore, the additional metric resolution attained through the combination of segments is studied. From the search parameters (sky position, frequency, and frequency derivatives), solely the metric resolution in the frequency derivatives is found to significantly increase with the number of segments.

  19. Implementation plan for WRAP Module 1 operational readiness review

    International Nuclear Information System (INIS)

    Irons, L.G.

    1994-01-01

    The Waste Receiving and Processing Module 1 (WRAP 1) will be used to receive, sample, treat, and ship contact-handled (CH) transuranic (TRU), low-level waste (LLW), and low-level mixed waste (LLMW) to storage and disposal sites both on the Hanford site and off-site. The primary mission of WRAP 1 is to characterize and certify CH waste in 55-gallon and 85-gallon drums; and its secondary function is to certify CH waste standard waste boxes (SWB) and boxes of similar size for disposal. The WRAP 1 will provide the capability for examination (including x-ray, visual, and contents sampling), limited treatment, repackaging, and certification of CH suspect-TRU waste in 55-gallon drums retrieved from storage, as well as newly generated CH LLW and CH TRU waste drums. The WRAP 1 will also provide examination (X-ray and visual only) and certification of CH LLW and CH TRU waste in small boxes. The decision to perform an Operational Readiness Review (ORR) was made in accordance with WHC-CM-5-34, Solid Waste Disposal Operations Administration, Section 1.4, Operational Readiness Activities. The ORR will ensure plant and equipment readiness, management and personnel readiness, and management programs readiness for the initial startup of the facility. This implementation plan is provided for defining the conduct of the WHC ORR

  20. Technology Readiness of School Teachers: An Empirical Study of Measurement and Segmentation

    Science.gov (United States)

    Badri, Masood; Al Rashedi, Asma; Yang, Guang; Mohaidat, Jihad; Al Hammadi, Arif

    2014-01-01

    The Technology Readiness Index (TRI) developed by Parasuraman (2000) was adapted to measure the technology readiness of public school teachers in Abu Dhabi, United Arab Emirates. The study aims at better understanding the factors (mostly demographics) that affect such readiness levels. In addition, Abu Dhabi teachers are segmented into five main…

  1. Defining School Readiness in Maryland: A Multi-Dimensional Perspective. Publication #2012-44

    Science.gov (United States)

    Forry, Nicole; Wessel, Julia

    2012-01-01

    Increased emphasis has been placed on children's ability to enter kindergarten ready to learn, a concept referred to as "school readiness." School readiness has been defined by the Maryland State Department of Education as "the stage of human development that enables a child to engage in, and benefit from, primary learning…

  2. Nuclear structure with coherent states

    CERN Document Server

    Raduta, Apolodor Aristotel

    2015-01-01

    This book covers the essential features of a large variety of nuclear structure properties, both collective and microscopic in nature. Most of results are given in an analytical form thus giving deep insight into the relevant phenomena. Using coherent states as variational states, which allows a description in the classical phase space, or provides the generating function for a boson basis, is an efficient tool to account, in a realistic fashion, for many complex properties. A detailed comparison with all existing nuclear structure models provides readers with a proper framework and, at the same time, demonstrates the prospects for new developments. The topics addressed are very much of current concern in the field. The book will appeal to practicing researchers and, due to its self-contained account, can also be successfully read and used by new graduate students.

  3. GIS Readiness Survey 2014

    DEFF Research Database (Denmark)

    Schrøder, Lise; Hvingel, Line Træholt; Hansen, Henning Sten

    2014-01-01

    The GIS Readiness Survey 2014 is a follow-up to the corresponding survey that was carried out among public institutions in Denmark in 2009. The present survey thus provides an updated image of status and challenges in relation to the use of spatial information, the construction of the com- mon...

  4. School Readiness Factor Analyzed.

    Science.gov (United States)

    Brenner, Anton; Scott, Leland H.

    This paper is an empirical statistical analysis and interpretation of data relating to school readiness previously examined and reported on a theoretical basis. A total of 118 white, middle class children from six consecutive kindergarten groups in Dearborn, Michigan were tested with seven instruments, evaluated in terms of achievement, ability,…

  5. Consumer behaviors towards ready-to-eat foods based on food-related lifestyles in Korea

    OpenAIRE

    Bae, Hyun-Joo; Chae, Mi-Jin; Ryu, Kisang

    2010-01-01

    The purpose of this study was to examine consumers' behaviors toward ready-to-eat foods and to develop ready-to-eat food market segmentation in Korea. The food-related lifestyle and purchase behaviors of ready-to-eat foods were evaluated using 410 ready-to-eat food consumers in the Republic of Korea. Four factors were extracted by exploratory factor analysis (health-orientation, taste-orientation, convenience-orientation, and tradition-orientation) to explain the ready-to eat food consumers' ...

  6. Quantum Limits of Space-to-Ground Optical Communications

    Science.gov (United States)

    Hemmati, H.; Dolinar, S.

    2012-01-01

    For a pure loss channel, the ultimate capacity can be achieved with classical coherent states (i.e., ideal laser light): (1) Capacity-achieving receiver (measurement) is yet to be determined. (2) Heterodyne detection approaches the ultimate capacity at high mean photon numbers. (3) Photon-counting approaches the ultimate capacity at low mean photon numbers. A number of current technology limits drive the achievable performance of free-space communication links. Approaching fundamental limits in the bandwidth-limited regime: (1) Heterodyne detection with high-order coherent-state modulation approaches ultimate limits. SOA improvements to laser phase noise, adaptive optics systems for atmospheric transmission would help. (2) High-order intensity modulation and photon-counting can approach heterodyne detection within approximately a factor of 2. This may have advantages over coherent detection in the presence of turbulence. Approaching fundamental limits in the photon-limited regime (1) Low-duty cycle binary coherent-state modulation (OOK, PPM) approaches ultimate limits. SOA improvements to laser extinction ratio, receiver dark noise, jitter, and blocking would help. (2) In some link geometries (near field links) number-state transmission could improve over coherent-state transmission

  7. Smoke Ready Toolbox for Wildfires

    Science.gov (United States)

    This site provides an online Smoke Ready Toolbox for Wildfires, which lists resources and tools that provide information on health impacts from smoke exposure, current fire conditions and forecasts and strategies to reduce exposure to smoke.

  8. External Factors, Internal Factors and Self-Directed Learning Readiness

    Science.gov (United States)

    Ramli, Nurjannah; Muljono, Pudji; Afendi, Farit M.

    2018-01-01

    There are many factors which affect the level of self-directed learning readiness. This study aims to investigate the relationship between external factors, internal factors and self-directed learning readiness. This study was carried out by using a census method for fourth year students of medical program of Tadulako University. Data were…

  9. E-Learning Readiness in Public Secondary Schools in Kenya

    Science.gov (United States)

    Ouma, Gordon O.; Awuor, Fredrick M.; Kyambo, Benjamin

    2013-01-01

    As e-learning becomes useful to learning institutions worldwide, an assessment of e-learning readiness is essential for the successful implementation of e-learning as a platform for learning. Success in e-learning can be achieved by understanding the level of readiness of e-learning environments. To facilitate schools in Kenya to implement…

  10. Students' Readiness for E-Learning Application in Higher Education

    Science.gov (United States)

    Rasouli, Atousa; Rahbania, Zahra; Attaran, Mohammad

    2016-01-01

    The main goal of this research was to investigate the readiness of art students in applying e-learning. This study adopted a survey research design. From three public Iranian Universities (Alzahra, Tarbiat Modares, and Tehran), 347 students were selected by multistage cluster sampling and via Morgan Table. Their readiness for E-learning…

  11. System analysis for technology transfer readiness assessment of horticultural postharvest

    Science.gov (United States)

    Hayuningtyas, M.; Djatna, T.

    2018-04-01

    Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.

  12. A proposed framework of big data readiness in public sectors

    Science.gov (United States)

    Ali, Raja Haslinda Raja Mohd; Mohamad, Rosli; Sudin, Suhizaz

    2016-08-01

    Growing interest over big data mainly linked to its great potential to unveil unforeseen pattern or profiles that support organisation's key business decisions. Following private sector moves to embrace big data, the government sector has now getting into the bandwagon. Big data has been considered as one of the potential tools to enhance service delivery of the public sector within its financial resources constraints. Malaysian government, particularly, has considered big data as one of the main national agenda. Regardless of government commitment to promote big data amongst government agencies, degrees of readiness of the government agencies as well as their employees are crucial in ensuring successful deployment of big data. This paper, therefore, proposes a conceptual framework to investigate perceived readiness of big data potentials amongst Malaysian government agencies. Perceived readiness of 28 ministries and their respective employees will be assessed using both qualitative (interview) and quantitative (survey) approaches. The outcome of the study is expected to offer meaningful insight on factors affecting change readiness among public agencies on big data potentials and the expected outcome from greater/lower change readiness among the public sectors.

  13. Effects of Personnel Injuries on Cinc Mission Readiness

    Science.gov (United States)

    1997-09-01

    activities in which injury may be sustained: ACTSPEC (activity specific): 1 =N/A 5 = 0 Course 9 = Fastrope 13 = Patrolling 2 = Running 6 = Weightlifting 10...NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS EFFECTS OF PERSONNEL INJURIES ON CINC MISSION READINESS by Erin G. Snow September, 1997...Thesis 4. TITLE AND SUBTITLE EFFECTS OF PERSONNEL INJURIES ON CINC MISSION READINESS 6. AUTHOR(S) Snow, Erin G. 5. FUNDING NUMBERS 7. PERFORMING

  14. Progress in coherent laser radar

    Science.gov (United States)

    Vaughan, J. M.

    1986-01-01

    Considerable progress with coherent laser radar has been made over the last few years, most notably perhaps in the available range of high performance devices and components and the confidence with which systems may now be taken into the field for prolonged periods of operation. Some of this increasing maturity was evident at the 3rd Topical Meeting on Coherent Laser Radar: Technology and Applications. Topics included in discussions were: mesoscale wind fields, nocturnal valley drainage and clear air down bursts; airborne Doppler lidar studies and comparison of ground and airborne wind measurement; wind measurement over the sea for comparison with satellite borne microwave sensors; transport of wake vortices at airfield; coherent DIAL methods; a newly assembled Nd-YAG coherent lidar system; backscatter profiles in the atmosphere and wavelength dependence over the 9 to 11 micrometer region; beam propagation; rock and soil classification with an airborne 4-laser system; technology of a global wind profiling system; target calibration; ranging and imaging with coherent pulsed and CW system; signal fluctuations and speckle. Some of these activities are briefly reviewed.

  15. Effect of quantum lattice fluctuations on quantum coherent oscillations in a coherently driven quantum dot-cavity system

    International Nuclear Information System (INIS)

    Zhu, Ka-Di; Li, Wai-Sang

    2003-01-01

    The quantum coherent oscillations in a coherently driven quantum dot-cavity system with the presence of strong exciton-phonon interactions are investigated theoretically in a fully quantum treatment. It is shown that even at zero temperature, the strong exciton-phonon interactions still affect the quantum coherent oscillations significantly

  16. Dephasing in coherent communication with weak signal states

    International Nuclear Information System (INIS)

    Jarzyna, Marcin; Banaszek, Konrad; Demkowicz-Dobrzański, Rafał

    2014-01-01

    We analyse the ultimate quantum limit on the accessible information for an optical communication scheme when time bins carry coherent light pulses prepared in one of several orthogonal modes and the phase undergoes diffusion after each channel use. This scheme, an example of a quantum memory channel, can be viewed as noisy pulse position modulation (PPM) keying with phase fluctuations occurring between consecutive PPM symbols. We derive a general expression for the output states in the Fock basis and implement a numerical procedure to calculate the Holevo quantity. Using asymptotic properties of Toeplitz matrices, we also present an analytic expression for the Holevo quantity valid for very weak signals and sufficiently strong dephasing when the dominant contribution comes from the single-photon sector in the Hilbert space of signal states. Based on numerical results we conjecture an inequality for contributions to the Holevo quantity from multiphoton sectors which implies that in the asymptotic limit of weak signals, for arbitrarily small dephasing the accessible information scales linearly with the average number of photons contained in the pulse. Such behaviour presents a qualitative departure from the fully coherent case. (paper)

  17. Length of stay after vaginal birth: sociodemographic and readiness-for-discharge factors.

    Science.gov (United States)

    Weiss, Marianne; Ryan, Polly; Lokken, Lisa; Nelson, Magdalen

    2004-06-01

    The impact of reductions in postpartum length of stay have been widely reported, but factors influencing length of hospital stay after vaginal birth have received less attention. The study purpose was to compare the sociodemographic characteristics and readiness for discharge of new mothers and their newborns at 3 discharge time intervals, and to determine which variables were associated with postpartum length of stay. The study sample comprised 1,192 mothers who were discharged within 2 postpartum days after uncomplicated vaginal birth at a tertiary perinatal center in the midwestern United States. The sample was divided into 3 postpartum length-of-stay groups: group 1 (18-30 hr), group 2 (31-42 hr), and group 3 (43-54 hr). Sociodemographic and readiness-for-discharge data were collected by self-report and from a computerized hospital information system. Measures of readiness for discharge included perceived readiness (single item and Readiness for Discharge After Birth Scale), documented maternal and neonatal clinical problems, and feeding method. Compared with other groups, the longest length-of-stay group was older; of higher socioeconomic status and education; and with more primiparous, breastfeeding, white, married mothers who were living with the baby's father, had adequate home help, and had a private payor source. This group also reported greater readiness for discharge, but their newborns had more documented clinical problems during the postbirth hospitalization. In logistic regression modeling, earlier discharge was associated with young age, multiparity, public payor source, low socioeconomic status, lack of readiness for discharge, bottle-feeding, and absence of a neonatal clinical problem. Sociodemographic characteristics and readiness for discharge (clinical and perceived) were associated with length of postpartum hospital stay. Length of stay is an outcome of a complex interface between patient, provider, and payor influences on discharge timing

  18. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Science.gov (United States)

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  19. Quantum coherence and correlations in quantum system

    Science.gov (United States)

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  20. Exergy of partially coherent thermal radiation

    International Nuclear Information System (INIS)

    Wijewardane, S.; Goswami, Yogi

    2012-01-01

    Exergy of electromagnetic radiation has been studied by a number of researchers for well over four decades in order to estimate the maximum conversion efficiencies of thermal radiation. As these researchers primarily dealt with solar and blackbody radiation, which have a low degree of coherence, they did not consider the partial coherence properties of thermal radiation. With the recent development of surface structures, which can emit radiation with high degree of coherence, the importance of considering the partial coherent properties in exergy calculation has become a necessity as the coherence properties directly influence the entropy of the wave field. Here in this paper we derive an expression for the exergy of quasi-monochromatic radiation using statistical thermodynamics and show that it is identical with the expressions derived using classical thermodynamics. We also present a method to calculate the entropy, thereby the exergy of partially coherent radiation using statistical thermodynamics and a method called matrix treatment of wave field. -- Highlights: ► Considered partial coherence of radiation for the first time to calculate exergy. ► The importance of this method is emphasized with energy conversion examples. ► Derived an expression for the exergy of radiation using statistical thermodynamics. ► Adopted a method to calculate intensity of statistically independent principle wave.

  1. Painlevé IV coherent states

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, David, E-mail: david.bermudez@weizmann.ac.il [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Contreras-Astorga, Alonso, E-mail: aloncont@iun.edu [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Fernández C, David J., E-mail: david@fis.cinvestav.mx [Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-11-15

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states.

  2. Painlevé IV coherent states

    International Nuclear Information System (INIS)

    Bermudez, David; Contreras-Astorga, Alonso; Fernández C, David J.

    2014-01-01

    A simple way to find solutions of the Painlevé IV equation is by identifying Hamiltonian systems with third-order differential ladder operators. Some of these systems can be obtained by applying supersymmetric quantum mechanics (SUSY QM) to the harmonic oscillator. In this work, we will construct families of coherent states for such subset of SUSY partner Hamiltonians which are connected with the Painlevé IV equation. First, these coherent states are built up as eigenstates of the annihilation operator, then as displaced versions of the extremal states, both involving the related third-order ladder operators, and finally as extremal states which are also displaced but now using the so called linearized ladder operators. To each SUSY partner Hamiltonian corresponds two families of coherent states: one inside the infinite subspace associated with the isospectral part of the spectrum and another one in the finite subspace generated by the states created through the SUSY technique. - Highlights: • We use SUSY QM to obtain Hamiltonians with third-order differential ladder operators. • We show that these systems are related with the Painlevé IV equation. • We apply different definitions of coherent states to these Hamiltonians using the third-order ladder operators and some linearized ones. • We construct families of coherent states for such systems, which we called Painlevé IV coherent states

  3. Checklist for clinical readiness published

    Science.gov (United States)

    Scientists from NCI, together with collaborators from outside academic centers, have developed a checklist of criteria to evaluate the readiness of complex molecular tests that will guide decisions made during clinical trials. The checklist focuses on tes

  4. Sense of Coherence and Gambling: Exploring the Relationship Between Sense of Coherence, Gambling Behaviour and Gambling-Related Harm.

    Science.gov (United States)

    Langham, Erika; Russell, Alex M T; Hing, Nerilee; Gainsbury, Sally M

    2017-06-01

    Understanding why some people experience problems with gambling whilst others are able to restrict gambling to recreational levels is still largely unexplained. One potential explanation is through salutogenesis, which is a health promotion approach of understanding factors which move people towards health rather than disease. An important aspect of salutogenesis is sense of coherence. Individuals with stronger sense of coherence perceive their environment as comprehensible, manageable and meaningful. The present study examined the relationship of individuals' sense of coherence on their gambling behaviour and experience of gambling related harm. This exploratory study utilised an archival dataset (n = 1236) from an online, cross sectional survey of people who had experienced negative consequences from gambling. In general, a stronger sense of coherence was related to lower problem gambling severity. When gambling behaviour was controlled for, sense of coherence was significantly related to the experience of individual gambling harms. A strong sense of coherence can be seen as a protective factor against problematic gambling behaviour, and subsequent gambling related harms. These findings support the value of both primary and tertiary prevention strategies that strengthen sense of coherence as a harm minimisation strategy. The present study demonstrates the potential value of, and provides clear direction for, considering sense of coherence in order to understand gambling-related issues.

  5. Readiness factors for lean implementation in healthcare settings--a literature review.

    Science.gov (United States)

    Al-Balushi, S; Sohal, A S; Singh, P J; Al Hajri, A; Al Farsi, Y M; Al Abri, R

    2014-01-01

    The purpose of this paper is to determine the readiness factors that are critical to the application and success of lean operating principles in healthcare organizations through a review of relevant literature. A comprehensive review of literature focussing on lean and lean healthcare was conducted. Leadership, organizational culture, communication, training, measurement, and reward systems are all commonly attributed readiness factors throughout general change management and lean literature. However, directly related to the successful implementation of lean in healthcare is that a setting is able to authorize a decentralized management style and undertake an end-to-end process view. These can be particularly difficult initiatives for complex organizations such as healthcare settings. The readiness factors identified are based on a review of the published literature. The external validity of the findings could be enhanced if tested using an empirical study. The readiness factors identified will enable healthcare practitioners to be better prepared as they begin their lean journeys. Sustainability of the lean initiative will be at stake if these readiness factors are not addressed. To the best of the knowledge, this is the first paper that provides a consolidated list of key lean readiness factors that can guide practice, as well as future theory and empirical research.

  6. Validating Acquisition IS Integration Readiness with Drills

    DEFF Research Database (Denmark)

    Wynne, Peter J.

    2017-01-01

    To companies, mergers and acquisitions are important strategic tools, yet they often fail to deliver their expected value. Studies have shown the integration of information systems is a significant roadblock to the realisation of acquisition benefits, and for an IT department to be ready......), to understand how an IT department can use them to validate their integration plans. The paper presents a case study of two drills used to validate an IT department’s readiness to carry out acquisition IS integration, and suggests seven acquisition IS integration drill characteristics others could utilise when...

  7. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrej

    2013-06-15

    -ray holography, and coherent X-ray diffractive imaging (CXDI). In the former, the dynamics of a system are explored whereas in the latter two predominantly static real space images of the sample are obtained by phase retrieval techniques. Using the intense, coherent, and ultrashort X-ray pulses produced by so-called X-ray free-electron lasers and energy recovery linacs these techniques promise new insights in structural biology, condensed matter physics, magnetism and other correlated systems. The key feature of all these methods is the interference between the field scattered by different parts of the sample under study. As such, spatial coherence across the sample is essential and understanding the coherence properties of the beams generated at new generation X-ray sources is of vital importance for the scientific community. This understanding can even be used to improve the applied methods. In this thesis we aim to describe existing and develop new techniques to study transverse coherence properties of X-ray beams at third and fourth generation sources.

  8. Coherence properties of third and fourth generation X-ray sources. Theory and experiment

    International Nuclear Information System (INIS)

    Singer, Andrej

    2013-06-01

    -ray holography, and coherent X-ray diffractive imaging (CXDI). In the former, the dynamics of a system are explored whereas in the latter two predominantly static real space images of the sample are obtained by phase retrieval techniques. Using the intense, coherent, and ultrashort X-ray pulses produced by so-called X-ray free-electron lasers and energy recovery linacs these techniques promise new insights in structural biology, condensed matter physics, magnetism and other correlated systems. The key feature of all these methods is the interference between the field scattered by different parts of the sample under study. As such, spatial coherence across the sample is essential and understanding the coherence properties of the beams generated at new generation X-ray sources is of vital importance for the scientific community. This understanding can even be used to improve the applied methods. In this thesis we aim to describe existing and develop new techniques to study transverse coherence properties of X-ray beams at third and fourth generation sources.

  9. Why Do We Need Future Ready Librarians? That Kid.

    Science.gov (United States)

    Ray, Mark

    2018-01-01

    In this article, the author examines the need of the Future Ready Librarians (FRL) initiative. The FRL Framework helps define how librarians might lead, teach, and support schools based on the core research-based components defined by Future Ready. The framework and initiative are intended to be ways to change the conversation about school…

  10. Balancing the Readiness Equation in Early Childhood Education Reform

    Science.gov (United States)

    Brown, Christopher P.

    2010-01-01

    As policy-makers continue to implement early childhood education reforms that frame the field as a mechanism that is to ready children for elementary school success, questions arise as to how the multiple variables in the readiness equation, such as the child, family, and program, are affected by these policies. The instrumental case study…

  11. Parental Learning and School Readiness in the Gearing Up for Kindergarten Program

    Directory of Open Access Journals (Sweden)

    Sharon Query

    2013-06-01

    Full Text Available Entering kindergarten is a key moment in a young child’s life, and parents are a child’s first teacher. What can guide parents as they assist children with school readiness? Gearing Up for Kindergarten is an intensive parent education and school readiness program designed to help parents and children prepare for school. Gearing Up for Kindergarten is a parent education program that combines early learning opportunities for pre-kindergarten children with parent education opportunities for adults. This study presents findings from evaluation efforts conducted with 59 Gearing Up for Kindergarten adult participants during the 2006-2007 school year. Participants in the program demonstrated (1 high satisfaction with program quality and experiences, (2 impacts on parental knowledge and confidence, and (3 significant and positive changes in parental practices related to school readiness. Implications for parent education and programs intended to strengthen school readiness among pre-kindergarten children are explored. Parent education on school readiness can provide a substantive resource as parents help their children develop and become ready for the school years.

  12. On the phase space representations. 1

    International Nuclear Information System (INIS)

    Polubarinov, I.V.

    1978-01-01

    The Dirac representation theory deals usually with the amplitude formalism of the quantum theory. An introduction is given into a theory of some other representations, which are applicable in the density matrix formalism and can naturally be called phase space representations (PSR). They use terms of phase space variables (x and p simultaneously) and give a description, close to the classical phase space description. Definitions and algebraic properties are given in quantum mechanics for such PSRs as the Wigner representation, coherent state representation and others. Completeness relations of a matrix type are used as a starting point. The case of quantum field theory is also outlined

  13. Technology Readiness for the Smart Grid

    Energy Technology Data Exchange (ETDEWEB)

    Kirkham, Harold; Marinovici, Maria C.; Fitzpatrick, G.; Lindsey, K.; McBride, James; Clark, G. L.

    2013-06-30

    Reluctance to adopt new technology into a utility application is understandable, given the critical nature of the infrastructure and the less-than-ideal experiences of some power companies. The authors of this paper have considered adapting the NASA approach of classifying technology readiness, but find it not quite appropriate because NASA was both the developer and the eventual user of the new technology it was evaluating, whereas a utility is ordinarily in the mode of a customer, acquiring a new product from a manufacturer. Instead of a generic scale of technology readiness, a scale of readiness is proposed specifically for the smart grid, based on the many standards that exist for the relevant technologies. In this paper we present an overall structure for organization those standards. The acceptance of new technology is organized into five SGL (Smart Grid Level) steps, numbered five through 9 to correspond approximately to the last five numbers of the NASA TRL scale. SGL 5 is a certification that the hardware and software of the technology is safe for the system into which is intended to be placed. SGL 6 is documentation that the system is safe for itself, and will have adequate reliability. It is thus clear that the steps differ from NASA’s TRL in that technology development is not required, the transition is more one of documenting already existing system readiness. Since SGL 6 describes a system that is safe for the power system and for itself, it should not be restricted from being in a pilot-scale study, and achieving SGL 7. A larger-scale demonstration in a realistic environment will demonstrate interoperability and achieve SGL 8. Only when systems are installed and operating, and when disposal plans are in place will the designation of fully operable at SGL 9 be granted.

  14. Conjoint behavioral consultation: implementing a tiered home-school partnership model to promote school readiness.

    Science.gov (United States)

    Clarke, Brandy L; Sheridan, Susan M; Woods, Kathryn E

    2014-01-01

    An ecological perspective to school readiness focuses on child and family readiness by enhancing the developmental contexts and relationships within which children reside (e.g., home environment, parent-child relationship, home-school relationships). The Getting Ready intervention is an ecological, relationally based, tiered intervention providing both universal and intensive services to children and families to promote child and family school readiness. Intensive level consultation services were provided via Conjoint Behavioral Consultation (CBC; Sheridan & Kratochwill, 1992 , 2008 ). The purpose of this article is to describe the implementation and effects of CBC within the Getting Ready intervention to promote child and family school readiness. Keys to successful implementation of the CBC intervention and issues needing further investigation are discussed.

  15. Measuring readiness for entrepreneurship: An information tool proposal

    Directory of Open Access Journals (Sweden)

    Alicia Coduras

    2016-05-01

    Full Text Available A profound review of the literature on entrepreneurship reveals that it does not exist a specific information tool to measure the individuals’ readiness for entrepreneurship. The purpose of this research has been building such kind of instrument to estimate the individuals’ readiness for entrepreneurship. Its design takes in consideration the inclusion of the main variables identified by the literature as those most associated with entrepreneurial profiles. These variables have been grouped into three categories: sociological, psychological and managerial-entrepreneurial. Each group provides batteries of items which are evaluated thanks to a specific scoring system. The final objective is to provide a system to calculate individual scores of readiness for entrepreneurship and, at the same time, partial scores on concrete aspects of it. The information tool is presented at this paper and will be tested and refined in the near future.

  16. Quantum Processes Which Do Not Use Coherence

    Directory of Open Access Journals (Sweden)

    Benjamin Yadin

    2016-11-01

    Full Text Available A major signature of quantum mechanics beyond classical physics is coherence, the existence of superposition states. The recently developed resource theory of quantum coherence allows the formalization of incoherent operations—those operations which cannot create coherence. We identify the set of operations which additionally do not use coherence. These are such that coherence cannot be exploited by a classical observer, who measures incoherent properties of the system, to go beyond classical dynamics. We give a physical interpretation in terms of interferometry and prove a dilation theorem, showing how these operations can always be constructed by the system interacting, in an incoherent way, with an ancilla. Such a physical justification is not known for the incoherent operations; thus, our results lead to a physically well-motivated resource theory of coherence. Next, we investigate the implications for coherence in multipartite systems. We show that quantum correlations can be defined naturally with respect to a fixed basis, providing a link between coherence and quantum discord. We demonstrate the interplay between these two quantities in the operations that we study and suggest implications for the theory of quantum discord by relating these operations to those which cannot create discord.

  17. Effects of quantum coherence on work statistics

    Science.gov (United States)

    Xu, Bao-Ming; Zou, Jian; Guo, Li-Sha; Kong, Xiang-Mu

    2018-05-01

    In the conventional two-point measurement scheme of quantum thermodynamics, quantum coherence is destroyed by the first measurement. But as we know the coherence really plays an important role in the quantum thermodynamics process, and how to describe the work statistics for a quantum coherent process is still an open question. In this paper, we use the full counting statistics method to investigate the effects of quantum coherence on work statistics. First, we give a general discussion and show that for a quantum coherent process, work statistics is very different from that of the two-point measurement scheme, specifically the average work is increased or decreased and the work fluctuation can be decreased by quantum coherence, which strongly depends on the relative phase, the energy level structure, and the external protocol. Then, we concretely consider a quenched one-dimensional transverse Ising model and show that quantum coherence has a more significant influence on work statistics in the ferromagnetism regime compared with that in the paramagnetism regime, so that due to the presence of quantum coherence the work statistics can exhibit the critical phenomenon even at high temperature.

  18. Bursting and critical layer frequencies in minimal turbulent dynamics and connections to exact coherent states

    Science.gov (United States)

    Park, Jae Sung; Shekar, Ashwin; Graham, Michael D.

    2018-01-01

    The dynamics of the turbulent near-wall region is known to be dominated by coherent structures. These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant solutions known as exact coherent states (ECS), some of which display nonlinear critical layer dynamics (motions that are highly localized around the surface on which the streamwise velocity matches the wave speed of ECS). The present work aims to investigate temporal coherence in minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very close to those displayed by an ECS family recently identified in the channel flow geometry. The frequencies of these ECS are determined by critical layer structures and thus might be described as "critical layer frequencies." While the bursting frequency is predominant near the wall, the ECS frequencies (critical layer frequencies) become predominant over the bursting frequency at larger distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are classified into strong and relatively weak classes with respect to an intermittent approach to a lower branch ECS. This temporally intermittent approach is closely related to an intermittent low drag event, called hibernating turbulence, found in minimal and large domains. The relationship between the strong burst and the instability of the lower branch ECS is further discussed in state space. The state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower branch ECS. In particular, strong bursting processes are always preceded by hibernation events. This precursor dynamics to strong turbulence may aid in development of more effective control schemes by a way of anticipating dynamics

  19. Study of the Readiness of Czech Companies to the Industry 4.0

    Directory of Open Access Journals (Sweden)

    Jakub Kopp

    2017-07-01

    Full Text Available The article deals with the results of the questionnaire survey that analyzes the readiness of Czech companies on the trend of the Industry 4.0. It means mainly whether Czech companies are interested in the fourth industrial revolution and whether they are ready for this trend. The readiness is expressed in defined levels.

  20. Measuring readiness for entrepreneurship: An information tool proposal

    OpenAIRE

    Alicia Coduras; José Manuel Saiz-Alvarez; Jesús Ruiz

    2016-01-01

    A profound review of the literature on entrepreneurship reveals that it does not exist a specific information tool to measure the individuals’ readiness for entrepreneurship. The purpose of this research has been building such kind of instrument to estimate the individuals’ readiness for entrepreneurship. Its design takes in consideration the inclusion of the main variables identified by the literature as those most associated with entrepreneurial profiles. These variables have been grouped i...

  1. Development of the Writing Readiness Inventory Tool in Context (WRITIC)

    NARCIS (Netherlands)

    van Hartingsveldt, Margo J.; de Vries, Liesbeth; Cup, Edith HC; de Groot, Imelda JM; Nijhuis-van der Sanden, Maria WG

    2014-01-01

    This article describes the development of the Writing Readiness Inventory Tool in Context (WRITIC), a measurement evaluating writing readiness in Dutch kindergarten children (5 and 6 years old). Content validity was established through 10 expert evaluations in three rounds. Construct validity was

  2. The quantum coherence of disordered dipolar bosonic gas

    International Nuclear Information System (INIS)

    Wang Jiguo; Zhang Aixia; Tang Rongan; Gao Jimin; Xue Jukui

    2013-01-01

    We investigate the coherence of correlated dipolar gas in the presence of disorder within a three-site Bose–Hubbard model. We show that the interplay between the on-site interaction, the inter-site dipole–dipole interactions (DDI) and the disorder exhibits new and interesting coherence characters that cannot take place in a non-dipolar system. The ratio between the on-site interaction and DDI plays a dominant role in the phase coherence. The resonance character of the coherence against both disorder and interactions emerges. DDI can enhance the coherence at certain values of the disorder and on-site interaction. In the coherence region, the enhancement of the coherence by disorder in a dipolar system is more significant than that in a non-dipolar system. In particular, the on-site interaction and DDI together can enhance the coherence even in the clean dipolar system (i.e. a dipolar system without disorder). However, without the on-site interaction, disorder, DDI or both together suppress the coherence. Furthermore, the relationship between the coherence and the energy gap and the compressibility of the system is also discussed. (paper)

  3. Characterisation of dispersive systems using a coherer

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2002-01-01

    Full Text Available The possibility of characterization of aluminium powders using a horizontal coherer has been considered. Al powders of known dimension were treated with a high frequency electromagnetic field or with a DC electric field, which were increased until a dielectric breakdown occurred. Using a multifunctional card PC-428 Electronic Design and a suitable interface between the coherer and PC, the activation time of the coherer was measured as a function of powder dimension and the distance between the coherer electrodes. It was also shown that the average dimension of powders of unknown size could be determined using the coherer.

  4. Sensory characterization of a ready-to-eat sweetpotato breakfast cereal by descriptive analysis

    Science.gov (United States)

    Dansby, M. A.; Bovell-Benjamin, A. C.

    2003-01-01

    The sweetpotato [Ipomoea batatas (L.) Lam], an important industry in the United States, has been selected as a candidate crop to be grown on future long-duration space missions by NASA. Raw sweetpotato roots were processed into flour, which was used to formulate ready-to-eat breakfast cereal (RTEBC). Twelve trained panelists evaluated the sensory attributes of the extruded RTEBC using descriptive analysis. The samples were significantly different (Psensory attributes, which could be used to differentiate the appearance, texture, and flavor of sweetpotato RTEBC, were described. The data could be used to optimize the RTEBC and for designing studies to test its consumer acceptance.

  5. Readiness and motivation for change among young women with broadly defined eating disorders.

    Science.gov (United States)

    Ålgars, Monica; Ramberg, Carin; Moszny, Josefine; Hagman, Jessica; Rintala, Hanna; Santtila, Pekka

    2015-01-01

    Readiness and motivation for change were examined in 32 women with broadly defined eating disorders who took part in a 10-week Cognitive Behavioral Therapy (CBT)-based group intervention. Readiness for change and eating disorder psychopathology were assessed before and after the intervention. The results revealed significant negative associations between degree of eating disorder symptoms and degree of readiness for change before the intervention started. In particular, higher levels of eating concern, shape concern, and body dissatisfaction were associated with lower motivation for change. No significant associations between degree of readiness for change before the intervention started and changes in eating disorder symptoms at the end of intervention were found. Readiness for change increased from the beginning to the end of the intervention, indicating that group CBT may be a cost-effective and time-efficient way of enhancing readiness and motivation for change in individuals with eating psychopathology.

  6. NGNP Infrastructure Readiness Assessment: Consolidation Report

    International Nuclear Information System (INIS)

    Castle, Brian K.

    2011-01-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  7. NGNP Infrastructure Readiness Assessment: Consolidation Report

    Energy Technology Data Exchange (ETDEWEB)

    Brian K Castle

    2011-02-01

    The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce in place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.

  8. Work-readiness skills in the Fasset Sector

    Directory of Open Access Journals (Sweden)

    Melandi Raftopoulos

    2009-09-01

    Full Text Available The objective of the study was to determine the work -readiness skills that are regarded as important by employers and graduates in the Fasset Sector of South Africa. A cross-sectional survey design was  used  to  achieve  this  objective.  Two  convenience  samples, namely  24  employers  and  333 graduates, completed  the Work Readiness Skills Scale. This scale was validated as a one-factor model with  an  alpha  coeffcient of  0.88. Oral  and written  communication,  self-discipline,  time management, interpersonal skills and teamwork, problem-solving skills and positive work ethic were rated as important skills for securing employment in this sector by employers and graduates alike. In addition, employers valued numeracy skills and motivation, whereas graduates regarded confidence and  leadership skills as  important. The results have implications for the curriculum design of the Fasset Work Readiness Programme presented to graduates in this industry.

  9. Coherent chirped pulse laser network with Mickelson phase conjugator.

    Science.gov (United States)

    Okulov, A Yu

    2014-04-10

    The mechanisms of nonlinear phase-locking of a large fiber amplifier array are analyzed. The preference is given to the most suitable configuration for a coherent coupling of thousands of fundamental spatial mode fiber beams into a single smooth beam ready for chirped pulse compression. It is shown that a Michelson phase-conjugating configuration with double passage through an array of fiber amplifiers has the definite advantage compared to a one-way fiber array coupled in a Mach-Zehnder configuration. Regardless of the amount of synchronized fiber amplifiers, the Michelson phase-conjugating interferometer is expected to do a perfect compensation of the phase-piston errors and collimation of backwardly amplified fiber beams on an entrance/output beam splitter. In both configurations, the nonlinear transformation of the stretched pulse envelope, due to gain saturation, is capable of randomizing the position of chirp inside an envelope; thus it may reduce the visibility of the interference pattern at an output beam splitter. Certain advantages are inherent to the sech-form temporal envelope because of the exponential precursor and self-similar propagation in gain medium. The Gaussian envelope is significantly compressed in a deep gain saturation regime, and the frequency chirp position inside pulse envelope is more deformed.

  10. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  11. Experimental Constraints of the Exotic Shearing of Space-Time

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Jonathan William [Univ. of Chicago, IL (United States)

    2016-08-01

    The Holometer program is a search for rst experimental evidence that space-time has quantum structure. The detector consists of a pair of co-located 40-m power-recycled interferometers whose outputs are read out synchronously at 50 MHz, achieving sensitivity to spatiallycorrelated uctuations in dierential position on time scales shorter than the light-crossing time of the instruments. Unlike gravitational wave interferometers, which time-resolve transient geometrical disturbances in the spatial background, the Holometer is searching for a universal, stationary quantization noise of the background itself. This dissertation presents the nal results of the Holometer Phase I search, an experiment congured for sensitivity to exotic coherent shearing uctuations of space-time. Measurements of high-frequency cross-spectra of the interferometer signals obtain sensitivity to spatially-correlated eects far exceeding any previous measurement, in a broad frequency band extending to 7.6 MHz, twice the inverse light-crossing time of the apparatus. This measurement is the statistical aggregation of 2.1 petabytes of 2-byte dierential position measurements obtained over a month-long exposure time. At 3 signicance, it places an upper limit on the coherence scale of spatial shear two orders of magnitude below the Planck length. The result demonstrates the viability of this novel spatially-correlated interferometric detection technique to reach unprecedented sensitivity to coherent deviations of space-time from classicality, opening the door for direct experimental tests of theories of relational quantum gravity.

  12. Assessing spacing impact on coherent features in a wind turbine array boundary layer

    Directory of Open Access Journals (Sweden)

    N. Ali

    2018-02-01

    Full Text Available As wind farms become larger, the spacing between turbines becomes a significant design consideration that can impose serious economic constraints. To investigate the turbulent flow structures in a 4 × 3 Cartesian wind turbine array boundary layer (WTABL, a wind tunnel experiment was carried out parameterizing the streamwise and spanwise wind turbine spacing. Four cases are chosen spacing turbines by 6 or 3D in the streamwise direction, and 3 or 1.5D in the spanwise direction, where D = 12 cm is the rotor diameter. Data are obtained experimentally using stereo particle image velocimetry. Mean streamwise velocity showed maximum values upstream of the turbine with the spacing of 6 and 3D in the streamwise and spanwise direction, respectively. Fixing the spanwise turbine spacing to 3D, variations in the streamwise spacing influence the turbulent flow structure and the power available to following wind turbines. Quantitative comparisons are made through spatial averaging, shifting measurement data and interpolating to account for the full range between devices to obtain data independent of array spacing. The largest averaged Reynolds stress is seen in cases with spacing of 3D × 3D. Snapshot proper orthogonal decomposition (POD was employed to identify the flow structures based on the turbulence kinetic energy content. The maximum turbulence kinetic energy content in the first POD mode is seen for turbine spacing of 6D × 1.5D. The flow upstream of each wind turbine converges faster than the flow downstream according to accumulation of turbulence kinetic energy by POD modes, regardless of spacing. The streamwise-averaged profile of the Reynolds stress is reconstructed using a specific number of modes for each case; the case of 6D × 1.5D spacing shows the fastest reconstruction to compare the rate of reconstruction of statistical profiles. Intermediate modes are also used to reconstruct the averaged profile and show that the

  13. Capture ready fossil fuel plants: a critical stage in tackling climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.; Jia Li; Xi Liang [Imperial College, London (United Kingdom). Energy Technology for Sustainable Development Group

    2006-07-01

    Ways in which gasification-based systems can approach the CO{sub 2} capture ready ideal is discussed, together with possible methods for assessing the optimum degree of capture readiness. A key technology choice for power plants is whether or not to incorporate a shift before capture. Financial returns for making plants capture ready are also discussed. 10 refs., 3 tabs.

  14. Some remarks on quantum coherence theory

    International Nuclear Information System (INIS)

    Burzynski, A.

    1982-01-01

    This paper is devoted to the basic topics connected with coherence in quantum mechanics and quantum theory of radiation. In particular the formalism of the normal ordered coherence functions in cases of one and many degrees of freedom is described in detail. A few examples illustrate the analysis of the coherence properties of the various quantum states of the field of radiation. (author)

  15. Optical Coherence Tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Themstrup, Lotte; Banzhaf, Christina

    2014-01-01

    Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described as the o......Optical coherence tomography (OCT) has developed rapidly since its first realisation in medicine and is currently an emerging technology in the diagnosis of skin disease. OCT is an interferometric technique that detects reflected and backscattered light from tissue and is often described...

  16. Coherence of light. 2. ed.

    International Nuclear Information System (INIS)

    Perina, J.

    1985-01-01

    This book puts the theory of coherence of light on a rigorous mathematical footing. It deals with the classical and quantum theories and with their inter-relationships, including many results from the author's own research. Particular attention is paid to the detection of optical fields, using the correlation functions, photocount statistics and coherent state. Radiometry with light fields of arbitrary states of coherence is discussed and the coherent state methods are demonstrated by photon statistics of radiation in random and nonlinear media, using the Heisenberg-Langevin and Fokker-Planck approaches to the interaction of radiation with matter. Many experimental and theoretical results are compared. A full list of references to theoretical and experimental literature is provided. The book is intended for researchers and postgraduate students in the fields of quantum optics, quantum electronics, statistical optics, nonlinear optics, optical communication and optoelectronics. (Auth.)

  17. Measuring Success: Metrics that Link Supply Chain Management to Aircraft Readiness

    National Research Council Canada - National Science Library

    Balestreri, William

    2002-01-01

    ..., The Theory of Constraints proved to be a viable tool for establishing aircraft readiness as the ultimate goal of Marine Corps aviation logistics, and provided a means for identifying and eliminating readiness...

  18. Controlling quantum interference in phase space with amplitude

    OpenAIRE

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-01-01

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n?=?2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space a...

  19. Perturbative coherence in field theory

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  20. Models of coherent exciton condensation

    International Nuclear Information System (INIS)

    Littlewood, P B; Eastham, P R; Keeling, J M J; Marchetti, F M; Simons, B D; Szymanska, M H

    2004-01-01

    That excitons in solids might condense into a phase-coherent ground state was proposed about 40 years ago, and has been attracting experimental and theoretical attention ever since. Although experimental confirmation has been hard to come by, the concepts released by this phenomenon have been widely influential. This tutorial review discusses general aspects of the theory of exciton and polariton condensates, focusing on the reasons for coherence in the ground state wavefunction, the BCS to Bose crossover(s) for excitons and for polaritons, and the relationship of the coherent condensates to standard lasers